WorldWideScience

Sample records for scaling first-principles molecular

  1. A Scalable O(N) Algorithm for Large-Scale Parallel First-Principles Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Osei-Kuffuor, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fattebert, Jean-Luc [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-01-01

    Traditional algorithms for first-principles molecular dynamics (FPMD) simulations only gain a modest capability increase from current petascale computers, due to their O(N3) complexity and their heavy use of global communications. To address this issue, we are developing a truly scalable O(N) complexity FPMD algorithm, based on density functional theory (DFT), which avoids global communications. The computational model uses a general nonorthogonal orbital formulation for the DFT energy functional, which requires knowledge of selected elements of the inverse of the associated overlap matrix. We present a scalable algorithm for approximately computing selected entries of the inverse of the overlap matrix, based on an approximate inverse technique, by inverting local blocks corresponding to principal submatrices of the global overlap matrix. The new FPMD algorithm exploits sparsity and uses nearest neighbor communication to provide a computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic orbitals are confined, and a cutoff beyond which the entries of the overlap matrix can be omitted when computing selected entries of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to O(100K) atoms on O(100K) processors, with a wall-clock time of O(1) minute per molecular dynamics time step.

  2. First Principles Quantitative Modeling of Molecular Devices

    Science.gov (United States)

    Ning, Zhanyu

    In this thesis, we report theoretical investigations of nonlinear and nonequilibrium quantum electronic transport properties of molecular transport junctions from atomistic first principles. The aim is to seek not only qualitative but also quantitative understanding of the corresponding experimental data. At present, the challenges to quantitative theoretical work in molecular electronics include two most important questions: (i) what is the proper atomic model for the experimental devices? (ii) how to accurately determine quantum transport properties without any phenomenological parameters? Our research is centered on these questions. We have systematically calculated atomic structures of the molecular transport junctions by performing total energy structural relaxation using density functional theory (DFT). Our quantum transport calculations were carried out by implementing DFT within the framework of Keldysh non-equilibrium Green's functions (NEGF). The calculated data are directly compared with the corresponding experimental measurements. Our general conclusion is that quantitative comparison with experimental data can be made if the device contacts are correctly determined. We calculated properties of nonequilibrium spin injection from Ni contacts to octane-thiolate films which form a molecular spintronic system. The first principles results allow us to establish a clear physical picture of how spins are injected from the Ni contacts through the Ni-molecule linkage to the molecule, why tunnel magnetoresistance is rapidly reduced by the applied bias in an asymmetric manner, and to what extent ab initio transport theory can make quantitative comparisons to the corresponding experimental data. We found that extremely careful sampling of the two-dimensional Brillouin zone of the Ni surface is crucial for accurate results in such a spintronic system. We investigated the role of contact formation and its resulting structures to quantum transport in several molecular

  3. Towards a Molecular Scale Understanding of Surface Chemistry and Photocatalysis on Metal Oxides: Surface Science Experiments and First Principles Theory

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, Ulrike [Tulane Univ., New Orleans, LA (United States)

    2015-01-29

    This project has provided an increased understanding of molecular processes and structure-activity relationships in photocatalytic systems. This could ultimately lead to guidelines on how to make TiO2-based photocatalytic systems more efficient. This directly relates to the Program’s mission to develop a mechanistic understanding of chemical reactions that pertain to environmental remediation and pollution control; energy production (photoelectrochemical and production of hydrogen); and novel materials synthesis.

  4. First-principles molecular transport calculation for the benzenedithiolate molecule

    Science.gov (United States)

    Rumetshofer, M.; Dorn, G.; Boeri, L.; Arrigoni, E.; von der Linden, W.

    2017-10-01

    A first-principles approach based on density functional theory and non-equilibrium Green’s functions is used to study the molecular transport system consisting of benzenedithiolate connected with monoatomic gold and platinum electrodes. Using symmetry arguments we explain why the conductance mechanism is different for gold and platinum electrodes. We present the charge stability diagram for the benzenedithiolate connected with monoatomic platinum electrodes including many-body effects in terms of an extended Hubbard Hamiltonian and discuss how the electrodes and the many-body effects influence the transport properties of the system.

  5. First Principles Modelling of Shape Memory Alloys Molecular Dynamics Simulations

    CERN Document Server

    Kastner, Oliver

    2012-01-01

    Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and  covers  thermodynamical, micro-mechanical  and crystallographical aspects. It addresses scientists in these research fields and thei...

  6. Next generation extended Lagrangian first principles molecular dynamics

    Science.gov (United States)

    Niklasson, Anders M. N.

    2017-08-01

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  7. First-principles and classical molecular dynamics study of threshold displacement energy in beryllium

    Science.gov (United States)

    Vladimirov, P. V.; Borodin, V. A.

    2017-02-01

    Beryllium selected as a neutron multiplier material for the tritium breeding blanket of fusion reactor should withstand high doses of fast neutron irradiation. The damage produced by irradiation is usually evaluated assuming that the number of atomic displacements to the threshold displacement energy, Ed, which is considered as an intrinsic material parameter. In this work the value of Ed for hcp beryllium is estimated simultaneously from classical and first-principles molecular dynamics simulations. Quite similar quantitative pictures of defect production are observed in both simulation types, though the predicted displacement threshold values seem to be approximately two times higher in the first-principles approach. We expect that, after more detailed first-principles investigations, this approach can be used for scaling the damage prediction predictions by classical molecular dynamics, opening a way for more consistent calculations of displacement damage in materials.

  8. Molecular Electronics: Insight from First-Principles Transport Simulations

    DEFF Research Database (Denmark)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2010-01-01

    Conduction properties of nanoscale contacts can be studied using first-principles simulations. Such calculations give insight into details behind the conductance that is not readily available in experiments. For example, we may learn how the bonding conditions of a molecule to the electrodes affe...... the atomic arrangement and transport channels....

  9. First-principles and classical molecular dynamics study of threshold displacement energy in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Vladimirov, P.V. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Borodin, V.A., E-mail: Borodin_VA@nrcki.ru [National Research Center “Kurchatov Institute”, 123182 Moscow (Russian Federation); NRNU MEPhI, 115409 Moscow (Russian Federation)

    2017-02-15

    Highlights: • Beryllium is a functional material of future fusion reactors. • The threshold displacement energy by fast particles is studied. • Classical and first principles simulations are used. - Abstract: Beryllium selected as a neutron multiplier material for the tritium breeding blanket of fusion reactor should withstand high doses of fast neutron irradiation. The damage produced by irradiation is usually evaluated assuming that the number of atomic displacements to the threshold displacement energy, E{sub d}, which is considered as an intrinsic material parameter. In this work the value of E{sub d} for hcp beryllium is estimated simultaneously from classical and first-principles molecular dynamics simulations. Quite similar quantitative pictures of defect production are observed in both simulation types, though the predicted displacement threshold values seem to be approximately two times higher in the first-principles approach. We expect that, after more detailed first-principles investigations, this approach can be used for scaling the damage prediction predictions by classical molecular dynamics, opening a way for more consistent calculations of displacement damage in materials.

  10. Acidity constants of lumiflavin from first principles molecular dynamics simulations

    NARCIS (Netherlands)

    Kiliç, M.; Ensing, B.

    2014-01-01

    We have computed the free energy profiles of the deprotonation reactions of lumiflavin in the semiquinone and fully reduced oxidation states using constrained DFT-based molecular dynamics simulations. In the semiquinone state, the N5 nitrogen atom and the N1 nitrogen atom can become protonated. We

  11. Extreme Scale Computing for First-Principles Plasma Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choogn-Seock [Princeton University

    2011-10-12

    World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.

  12. Magnetic materials at finite temperatures: thermodynamics and combined spin and molecular dynamics derived from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Eisenbach, Markus [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perera, Meewanage Dilina N. [Univ. of Georgia, Athens, GA (United States). Center for Simulational Physics; Landau, David P [Univ. of Georgia, Athens, GA (United States). Center for Simulational Physics; Nicholson, Don M. [Univ. of North Carolina, Asheville, NC (United States). Dept. of Physics; Yin, Junqi [Univ. of Tennessee, Knoxville, TN (United States). National Inst. for Computational Sciences; Brown, Greg [Florida State Univ., Tallahassee, FL (United States). Dept. of Physics

    2015-01-01

    We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles-derived simulations.

  13. First principles molecular dynamics applied to homogeneous catalysis: on ethylene insertion mechanisms and metathesis

    NARCIS (Netherlands)

    Meier, R.J.; Aagaard, O.M.; Buda, F.

    2000-01-01

    We have summarized part of our work involving first principles molecular dynamics simulations on organometallic-based homogeneous catalysts. Explicit dynamics effects can be uniquely extracted from such simulations, and related to structure and reactivity. Examples given deal with metallocene-based

  14. A method of orbital analysis for large-scale first-principles simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ohwaki, Tsukuru [Advanced Materials Laboratory, Nissan Research Center, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523 (Japan); Otani, Minoru [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ozaki, Taisuke [Research Center for Simulation Science (RCSS), Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2014-06-28

    An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF{sub 4})

  15. Bulk and Interfacial Aqueous Fluoride: An Investigation via First Principles Molecular Dynamics

    OpenAIRE

    Ho, Ming-Hsun; Klein, Michael L.; Kuo, I-F. William

    2009-01-01

    Using first principles molecular dynamics simulation, we have studied a fluoride anion embedded in a periodically replicated water slab composed of 215 water molecules to mimic both bulk and interfacial solvation. In contrast to some recent experiments, our findings suggest that there are only small structural changes for fluoride and its first solvation shell in the bulk. Moreover, the presence of fluoride does not significantly alter the rotational dynamics of nearby water. In addition, we ...

  16. High-Performance First-Principles Molecular Dynamics for Predictive Theory and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gygi, Francois [Univ. of California, Davis, CA (United States). Dept. of Computer Science; Galli, Giulia [Univ. of Chicago, IL (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-12-03

    This project focused on developing high-performance software tools for First-Principles Molecular Dynamics (FPMD) simulations, and applying them in investigations of materials relevant to energy conversion processes. FPMD is an atomistic simulation method that combines a quantum-mechanical description of electronic structure with the statistical description provided by molecular dynamics (MD) simulations. This reliance on fundamental principles allows FPMD simulations to provide a consistent description of structural, dynamical and electronic properties of a material. This is particularly useful in systems for which reliable empirical models are lacking. FPMD simulations are increasingly used as a predictive tool for applications such as batteries, solar energy conversion, light-emitting devices, electro-chemical energy conversion devices and other materials. During the course of the project, several new features were developed and added to the open-source Qbox FPMD code. The code was further optimized for scalable operation of large-scale, Leadership-Class DOE computers. When combined with Many-Body Perturbation Theory (MBPT) calculations, this infrastructure was used to investigate structural and electronic properties of liquid water, ice, aqueous solutions, nanoparticles and solid-liquid interfaces. Computing both ionic trajectories and electronic structure in a consistent manner enabled the simulation of several spectroscopic properties, such as Raman spectra, infrared spectra, and sum-frequency generation spectra. The accuracy of the approximations used allowed for direct comparisons of results with experimental data such as optical spectra, X-ray and neutron diffraction spectra. The software infrastructure developed in this project, as applied to various investigations of solids, liquids and interfaces, demonstrates that FPMD simulations can provide a detailed, atomic-scale picture of structural, vibrational and electronic properties of complex systems

  17. First-principles electron transport with phonon coupling: Large scale at low cost

    DEFF Research Database (Denmark)

    Gunst, Tue; Markussen, Troels; Palsgaard, Mattias L. N.

    2017-01-01

    Phonon-assisted tunneling plays a crucial role for electronic device performance and even more so with future size down-scaling. We show how one can include this effect in large-scale first-principles calculations using a single "special thermal displacement" (STD) of the atomic coordinates......-to-band and source-to-drain tunneling. In a diode the phonons lead to a rectification ratio suppression in good agreement with experiments, while in an ultrathin body transistor the phonons increase off currents by four orders of magnitude, and the subthreshold swing by a factor of 4, in agreement with perturbation...

  18. First-Principles Molecular Dynamics Calculations of the Equation of State for Tantalum

    Directory of Open Access Journals (Sweden)

    Shigeaki Ono

    2009-10-01

    Full Text Available The equation of state of tantalum (Ta has been investigated to 100 GPa and 3,000 K using the first-principles molecular dynamics method. A large volume dependence of the thermal pressure of Ta was revealed from the analysis of our data. A significant temperature dependence of the calculated effective Grüneisen parameters was confirmed at high pressures. This indicates that the conventional approach to analyze thermal properties using the Mie-Grüneisen approximation is likely to have a significant uncertainty in determining the equation of state for Ta, and that an intrinsic anharmonicity should be considered to analyze the equation of state.

  19. First principles centroid molecular dynamics simulation of hydride in nanoporous C12A7:H-

    Science.gov (United States)

    Ikeda, Takashi

    2017-05-01

    Hydrides in nanoporous [Ca24Al28O64]4+(H-)4 (C12A7:H-) were investigated via first principles centroid molecular dynamics (CMD). The quality of our CMD simulations was assessed by examining the temperature dependence of the distribution of hydrides in the cages constituting the C12A7 framework. The vibrational states of C12A7:H- were analyzed by using the trajectories of the centroids generated in our CMD simulations. We find that the rattling motions of H- and D- behave qualitatively differently, resulting in non-trivial isotope effects, which are suggested to be detectable by using infrared and Raman spectroscopy.

  20. Pyridine ;alligator-clip; as molecular negative differential resistor predicted by first-principles study

    Science.gov (United States)

    Zhang, J.; Qin, Z.; Yao, K. L.

    2017-11-01

    Based on non-equilibrium Green's function and density functional theory, a first-principles study of the transport properties of two benzene-pyridines sandwiching the σ barrier of ethyl is performed. Using symmetric leads, strong negative differential resistance (NDR) effects with high peak-to-valley ratios (PVRs) are present under low bias. When using asymmetric leads, the PVR can be modulated to higher value with the unchanging of voltage (Vpeak) corresponding current peak (Ipeak). Our investigations indicate that pyridine ;alligator-clip; can be used as very good low bias molecular NDR devices.

  1. A first-principles study of aryloxyanthraquinone-based optical molecular switch

    Science.gov (United States)

    Vakili, Mohamad; Sobhkhizi, Alireza; Darugar, Vahidreza; Kanaani, Ayoub; Ajloo, Davood

    2017-10-01

    We study the transport properties of 4-((9,10-dioxo-9,10-dihydroanthracen-1-yl)oxy) benzaldehyde molecular optical switch by the first-principles calculations. Our molecule can reversibly switch between trans and ana forms by visible or UV irradiation. We studied many properties such as, I-V characteristics, the effect of electrode materials on electronic transport properties, on-off ratio and spatial distribution of molecular projected self-consistent Hamiltonian orbitals corresponding to both forms. The physical behavior of conductance interpret in terms of the HOMO-LUMO gap, the effective conjugation lengths, and size of the frontier molecular orbitals. Our results show, current through the ana form is higher than that the trans form.

  2. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions

    CERN Document Server

    Miceli, Giacomo; Pasquarello, Alfredo

    2016-01-01

    We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed a...

  3. First-principles molecular dynamics study of Al/Alq3 interfaces

    Directory of Open Access Journals (Sweden)

    Kousuke Takeuchi et al

    2007-01-01

    Full Text Available We have carried out first-principles molecular dynamics simulations of Al deposition on tris (8-hydroxyquinoline aluminum (Alq3 layers to investigate atomic geometries and electronic properties of Al/Alq3 interfaces. Al atoms were ejected to Alq3 one by one with the kinetic energy of 37.4 kJ/mol, which approximately corresponds to the average kinetic energy of Al at the boiling temperature of metal Al. The first Al atom interacts with two of the three O atoms of meridional Alq3. Following Al atoms interact with Alq3 rather weakly and they tend to aggregate each other to form Al clusters. During the deposition process, Alq3 was not broken and its molecular structure remained essentially intact. At the interface, weak bonds between deposited Al atoms and N and C atoms were formed. The projected density of states (PDOS onto the Alq3 molecular orbitals shows gap states in between the highest occupied molecular orbitals (HOMOs and the lowest unoccupied molecular orbitals (LUMOs, which were experimentally observed by ultraviolet photoelectron spectroscopy (UPS and metastable atom electron spectroscopy (MAES. Our results show that even though the Alq3 molecular structure is retained, weak N–Al and C–Al bonds induce gap states.

  4. First-principles electron transport with phonon coupling: Large scale at low cost

    Science.gov (United States)

    Gunst, Tue; Markussen, Troels; Palsgaard, Mattias L. N.; Stokbro, Kurt; Brandbyge, Mads

    2017-10-01

    Phonon-assisted tunneling plays a crucial role for electronic device performance and even more so with future size down-scaling. We show how one can include this effect in large-scale first-principles calculations using a single "special thermal displacement" (STD) of the atomic coordinates at almost the same cost as elastic transport calculations, by extending the recent method of Zacharias et al. [Phys. Rev. B 94, 075125 (2016), 10.1103/PhysRevB.94.075125] to the important case of Landauer conductance. We apply the method to ultrascaled silicon devices and demonstrate the importance of phonon-assisted band-to-band and source-to-drain tunneling. In a diode the phonons lead to a rectification ratio suppression in good agreement with experiments, while in an ultrathin body transistor the phonons increase off currents by four orders of magnitude, and the subthreshold swing by a factor of 4, in agreement with perturbation theory.

  5. First-principles molecular dynamics study of deuterium diffusion in liquid tin

    Science.gov (United States)

    Liu, Xiaohui; Zheng, Daye; Ren, Xinguo; He, Lixin; Chen, Mohan

    2017-08-01

    Understanding the retention of hydrogen isotopes in liquid metals, such as lithium and tin, is of great importance in designing a liquid plasma-facing component in fusion reactors. However, experimental diffusivity data of hydrogen isotopes in liquid metals are still limited or controversial. We employ first-principles molecular dynamics simulations to predict diffusion coefficients of deuterium in liquid tin at temperatures ranging from 573 to 1673 K. Our simulations indicate faster diffusion of deuterium in liquid tin than the self-diffusivity of tin. In addition, we find that the structural and dynamic properties of tin are insensitive to the inserted deuterium at temperatures and concentrations considered. We also observe that tin and deuterium do not form stable solid compounds. These predicted results from simulations enable us to have a better understanding of the retention of hydrogen isotopes in liquid tin.

  6. Extended First-Principles Molecular Dynamics Method From Cold Materials to Hot Dense Plasmas

    CERN Document Server

    Zhang, Shen; Kang, Wei; Zhang, Ping; He, Xian-Tu

    2016-01-01

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically, and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of elec- tronic structures. This gives an edge to the extended method in the calculation of the lowering of ionization potential, X-ray absorption/emission spectra, opacity, and high-Z dense plasmas, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  7. First-principles molecular dynamics study of proton transfer mechanism in bovine cytochrome c oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Katsumasa [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Boero, Mauro [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Tateno, Masaru [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Shiraishi, Kenji [CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Oshiyama, Atsushi [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan)

    2007-09-12

    Density functional based first-principles molecular dynamics calculations, performed on a model system extracted from the bovine cytochrome c oxidase, have been performed in an attempt to inspect the proton transfer mechanism across a peptide group. Our model system includes the specific Tyr440-Ser441 peptide group involved in a novel proton transfer path and shows that the Y440-S441 enol peptide group [-C(OH) = N-], which is a structural isomer of a keto form [-CO-NH-], is the product of the deprotonation of an imidic acid [-C(OH)-NH-] occurring in the vicinity of the deprotonated aspartic acid residue. For the subsequent enol-to-keto tautomerization, a direct H{sup +} transfer path in the Y440-S441 peptide group has been identified, in which the transition state takes a distorted four-membered ring structure.

  8. A First Principles Molecular Dynamics Study Of Calcium Ion In Water

    Energy Technology Data Exchange (ETDEWEB)

    Lightstone, F; Schwegler, E; Allesch, M; Gygi, F; Galli, G

    2005-01-28

    In this work we report on Car-Parrinello simulations of the divalent calcium ion in water, aimed at understanding the structure of the hydration shell and at comparing theoretical results with a series of recent experiments. Our paper shows some of the progress in the investigation of aqueous solutions brought about by the advent of ab initio molecular dynamics and highlights the importance of accessing subtle details of ion-water interactions from first-principles. Calcium plays a vital role in many biological systems, including signal transduction, blood clotting and cell division. In particular, calcium ions are known to interact strongly with proteins as they tend to bind well to both negatively charged (e.g. in aspartate and glutamate) and uncharged oxygens (e.g. in main-chain carbonyls). The ability of calcium to coordinate multiple ligands (from 6 to 8 oxygen atoms) with an asymmetric coordination shell enables it to cross-link different segments of a protein and induce large conformational changes. The great biochemical importance of the calcium ion has led to a number of studies to determine its hydration shell and its preferred coordination number in water. Experimental studies have used a variety of techniques, including XRD, EXAFS, and neutron diffraction to elucidate the coordination of Ca{sup 2+} in water. The range of coordination numbers (n{sub C}) inferred by X-ray diffraction studies varies from 6 to 8, and is consistent with that reported in EXAFS experiments (8 and 7.2). A wider range of values (6 to 10) was found in early neutron diffraction studies, depending on concentration, while a more recent measurement by Badyal, et al. reports a value close to 7. In addition to experimental measurements, many theoretical studies have been carried out to investigate the solvation of Ca{sup 2+} in water and have also reported a wide range of coordination numbers. Most of the classical molecular dynamics (MD) and QM/MM simulations report n{sub C} in the

  9. Accurate and scalable O(N) algorithm for first-principles molecular-dynamics computations on large parallel computers.

    Science.gov (United States)

    Osei-Kuffuor, Daniel; Fattebert, Jean-Luc

    2014-01-31

    We present the first truly scalable first-principles molecular dynamics algorithm with O(N) complexity and controllable accuracy, capable of simulating systems with finite band gaps of sizes that were previously impossible with this degree of accuracy. By avoiding global communications, we provide a practical computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic wave functions are confined, and a cutoff beyond which the components of the overlap matrix can be omitted when computing selected elements of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to 101,952 atoms on 23,328 processors, with a wall-clock time of the order of 1 min per molecular dynamics time step and numerical error on the forces of less than 7×10(-4)  Ha/Bohr.

  10. Accurate and Scalable O(N) Algorithm for First-Principles Molecular-Dynamics Computations on Large Parallel Computers

    Energy Technology Data Exchange (ETDEWEB)

    Osei-Kuffuor, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fattebert, Jean-Luc [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-01-01

    We present the first truly scalable first-principles molecular dynamics algorithm with O(N) complexity and controllable accuracy, capable of simulating systems with finite band gaps of sizes that were previously impossible with this degree of accuracy. By avoiding global communications, we provide a practical computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic wave functions are confined, and a cutoff beyond which the components of the overlap matrix can be omitted when computing selected elements of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to 101 952 atoms on 23 328 processors, with a wall-clock time of the order of 1 min per molecular dynamics time step and numerical error on the forces of less than 7x10-4 Ha/Bohr.

  11. Understanding Lithium Solvation and Diffusion through Topological Analysis of First-Principles Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Harsh [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gyulassy, Attila [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ong, Mitchell [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lordi, Vincenzo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Draeger, Erik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pask, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pascucci, Valerio [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bremer, Peer -Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-27

    The performance of lithium-ion batteries is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact, both, the solvation and diffusivity of Li ions. In this work, we present our application of the topological techniques to extract and predict such behavior in the data generated by the first-principles molecular dynamics simulation of Li ions in an important organic solvent -ethylene carbonate. More specifically, we use the scalar topology of the electron charge density field to analyze the evolution of the solvation structures. This allows us to derive a parameter-free bond definition for lithium-oxygen bonds, to provide a quantitative measure for bond strength, and to understand the regions of influence of each atom in the simulation. This has provided new insights into how and under what conditions certain bonds may form and break. As a result, we can identify and, more importantly, predict, unstable configurations in solvation structures. This can be very useful in understanding when small changes to the atoms' movements can cause significantly different bond structures to evolve. Ultimately, this promises to allow scientists to explore lithium ion solvation and diffusion more systematically, with the aim of new insights and potentially accelerating the calculations themselves.

  12. The charged interface between Pt and water: First principles molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Tamio Ikeshoji

    2012-09-01

    Full Text Available The charged interface between a platinum electrode and an aqueous solution is investigated by first-principles molecular dynamics simulations in which charges in the system are controlled by the effective screening medium method under periodic boundary conditions. H3O+ and OH are located above or on the Pt surface. Water molecules rotate to screen the electric field induced by the charge accumulated on the Pt surface. The time-averaged electrostatic potential near the Pt surface is structured with a flattened “bulk” region. The potential difference between the Pt Fermi level and the bulk potential is proportional to the charge and is used to estimate the Pt electrode potential via the PZC (potential of the zero charge. The surface charge significantly polarizes the water molecules near the Pt surface. The OH stretching frequency of molecules on the negatively charged (7 ∼ 14 μC/cm2 Pt electrode shift to lower values (red shift by 100 ∼ 200 cm−1. For the positively charged Pt lattice, a complex feature results from a charge transfer reaction that takes place there. The electrode structure is also influenced by accumulated charge as the distance between the top surface Pt layer and the next layer underneath increases for both the negatively and positively charged surfaces.

  13. First principle and ReaxFF molecular dynamics investigations of formaldehyde dissociation on Fe(100) surface.

    Science.gov (United States)

    Yamada, Takahiro; Phelps, Donald K; van Duin, Adri C T

    2013-09-05

    Detailed formaldehyde adsorption and dissociation reactions on Fe(100) surface were studied using first principle calculations and molecular dynamics (MD) simulations, and results were compared with available experimental data. The study includes formaldehyde, formyl radical (HCO), and CO adsorption and dissociation energy calculations on the surface, adsorbate vibrational frequency calculations, density of states analysis of clean and adsorbed surfaces, complete potential energy diagram construction from formaldehyde to atomic carbon (C), hydrogen (H), and oxygen (O), simulation of formaldehyde adsorption and dissociation reaction on the surface using reactive force field, ReaxFF MD, and reaction rate calculations of adsorbates using transition state theory (TST). Formaldehyde and HCO were adsorbed most strongly at the hollow (fourfold) site. Adsorption energies ranged from -22.9 to -33.9 kcal/mol for formaldehyde, and from -44.3 to -66.3 kcal/mol for HCO, depending on adsorption sites and molecular direction. The dissociation energies were investigated for the dissociation paths: formaldehyde → HCO + H, HCO → H + CO, and CO → C + O, and the calculated energies were 11.0, 4.1, and 26.3 kcal/mol, respectively. ReaxFF MD simulation results were compared with experimental surface analysis using high resolution electron energy loss spectrometry (HREELS) and TST based reaction rates. ReaxFF simulation showed less reactivity than HREELS observation at 310 and 523 K. ReaxFF simulation showed more reactivity than the TST based rate for formaldehyde dissociation and less reactivity than TST based rate for HCO dissociation at 523 K. TST-based rates are consistent with HREELS observation. © 2013 Wiley Periodicals, Inc.

  14. PubChemQC Project: A Large-Scale First-Principles Electronic Structure Database for Data-Driven Chemistry.

    Science.gov (United States)

    Nakata, Maho; Shimazaki, Tomomi

    2017-06-26

    Large-scale molecular databases play an essential role in the investigation of various subjects such as the development of organic materials, in silico drug design, and data-driven studies with machine learning. We have developed a large-scale quantum chemistry database based on first-principles methods. Our database currently contains the ground-state electronic structures of 3 million molecules based on density functional theory (DFT) at the B3LYP/6-31G* level, and we successively calculated 10 low-lying excited states of over 2 million molecules via time-dependent DFT with the B3LYP functional and the 6-31+G* basis set. To select the molecules calculated in our project, we referred to the PubChem Project, which was used as the source of the molecular structures in short strings using the InChI and SMILES representations. Accordingly, we have named our quantum chemistry database project "PubChemQC" ( http://pubchemqc.riken.jp/ ) and placed it in the public domain. In this paper, we show the fundamental features of the PubChemQC database and discuss the techniques used to construct the data set for large-scale quantum chemistry calculations. We also present a machine learning approach to predict the electronic structure of molecules as an example to demonstrate the suitability of the large-scale quantum chemistry database.

  15. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    Science.gov (United States)

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  16. First Principles Study of Double Photoionization of H2 UsingExterior Complex Scaling

    Energy Technology Data Exchange (ETDEWEB)

    Rescigno, Thomas N.; Vanroose, Wim; Horner, Daniel A.; Martin,Fernando; McCurdy, C. William

    2006-07-21

    Exterior complex scaling provides a practical path forfirst-principles studies of atomic and molecular ionizationproblemssince it avoids explicit enforcement of asymptotic boundary conditionsfor 3-body Coulomb breakup. We have used the method of exterior complexscaling, implemented with both the discrete variable representation andB-splines, to obtain the first-order wave function for molecular hydrogencorresponding to a single photon having been absorbed by a correlatedinitial state. These wave functions are used to construct convergedtriple differential cross sections for double photoionization of alignedH2 molecules.

  17. A unified electrostatic and cavitation model for first-principles molecular dynamics in solution

    OpenAIRE

    Scherlis, Damian A.; Fattebert, Jean-Luc; Gygi, Francois; Cococcioni, Matteo; Marzari, Nicola

    2005-01-01

    The electrostatic continuum solvent model developed by Fattebert and Gygi is combined with a first-principles formulation of the cavitation energy based on a natural quantum-mechanical definition for the surface of a solute. Despite its simplicity, the cavitation contribution calculated by this approach is found to be in remarkable agreement with that obtained by more complex algorithms relying on a large set of parameters. Our model allows for very efficient Car-Parrinello simulations of fin...

  18. Molecular dynamics of polarizable point dipole models for molten NaI. Comparison with first principles simulations

    Directory of Open Access Journals (Sweden)

    Trullàs J.

    2011-05-01

    Full Text Available Molecular dynamics simulations of molten NaI at 995 K have been carried out using polarizable ion models based on rigid ion pair potentials to which the anion induced dipole polarization is added. The polarization is added in such a way that point dipoles are induced on the anions by both local electric field and deformation short-range damping interactions that oppose the electrically induced dipole moments. The structure and self-diffusion results are compared with those obtained by Galamba and Costa Cabral using first principles Hellmann-Feynman molecular dynamics simulations and using classical molecular dynamics of a shell model which allows only the iodide polarization

  19. First principles investigations of electronic structure and transport properties of graphitic structures and single molecular junctions

    Science.gov (United States)

    Owens, Jonathan R.

    In this work, we first present two powerful methods for understanding the electronic, structural, conducting, and energetic properties of nano-materials: density functional theory (DFT) and quantum transport. The basics of the theory and background of both methods are discussed thoroughly. After establishing a firm foundation, we turn our attention to using these tools to solve practical problems, often in collaboration with experimental colleagues. The first two projects pertain to nitrogen doping in graphene nanoribbons (GNRs). We study nitrogen doping in two different schema: concentration-based (N_x-doped) and structural based (N_2. {AA}-doped). Concentration based doping is explored in the context of experimental measurements of IV curves on GNRs with differing dopant concentrations. These results show a shift towards semi-conducting behavior with an increase in dopant concentration. We combine first principles calculations (DFT) and transport calculations in the Landauer formalism to compute the density-of-states (DOS) and transport curves for various dopant concentrations (0.46%, 1.39%, 1.89%, and 2.31%), which corroborate the experimental observations. The N_2. {AA}-doped GNR study was inspired by experimental observation of an atomically precise nitrogen doping scheme in bulk graphene. Experimental STM images, combined with simulated STM images, revealed that the majority (80%) of doping sites consist of nitrogen atoms on neighboring sites of the same sublattice (A) in graphene, hence N_2. {AA} doping. We examine this doping scheme applied to zigzag and armchair GNRs under different orientations of the dopants. We present spin-resolved charge densities, energetics, transport, DOS, and simulated STM images for all four systems studied. Our results show the possibility of spin-filtered devices and the STM images provide an aid in helping experimentalist identify the dopant patterns, if these GNRs are fabricated. We next venture to explain different observed

  20. A unified electrostatic and cavitation model for first-principles molecular dynamics in solution

    Energy Technology Data Exchange (ETDEWEB)

    Scherlis, D A; Fattebert, J; Gygi, F; Cococcioni, M; Marzari, N

    2005-11-14

    The electrostatic continuum solvent model developed by Fattebert and Gygi is combined with a first-principles formulation of the cavitation energy based on a natural quantum-mechanical definition for the surface of a solute. Despite its simplicity, the cavitation contribution calculated by this approach is found to be in remarkable agreement with that obtained by more complex algorithms relying on a large set of parameters. The model allows for very efficient Car-Parrinello simulations of finite or extended systems in solution, and demonstrates a level of accuracy as good as that of established quantum-chemistry continuum solvent methods. They apply this approach to the study of tetracyanoethylene dimers in dichloromethane, providing valuable structural and dynamical insights on the dimerization phenomenon.

  1. First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems.

    Science.gov (United States)

    Behler, Jörg

    2017-10-09

    Modern simulation techniques have reached a level of maturity which allows a wide range of problems in chemistry and materials science to be addressed. Unfortunately, the application of first principles methods with predictive power is still limited to rather small systems, and despite the rapid evolution of computer hardware no fundamental change in this situation can be expected. Consequently, the development of more efficient but equally reliable atomistic potentials to reach an atomic level understanding of complex systems has received considerable attention in recent years. A promising new development has been the introduction of machine learning (ML) methods to describe the atomic interactions. Once trained with electronic structure data, ML potentials can accelerate computer simulations by several orders of magnitude, while preserving quantum mechanical accuracy. This Review considers the methodology of an important class of ML potentials that employs artificial neural networks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. First-principles studies on electronic properties of Oligo-p-phenylene molecular device

    Science.gov (United States)

    Nagarajan, V.; Chandiramouli, R.

    2018-01-01

    The electronic properties of Oligo-p-phenylene molecular device are studied through density functional theory (DFT) in combination with non-equilibrium Green's function (NEGF). The electronic transport properties of Oligo-p-phenylene molecular device are investigated in terms of I-V characteristics, transmission spectrum and total density of states (TDOS). The TDOS gets modified with the number of phenyl units present in the device and also the applied bias voltage influence Oligo-p-phenylene molecular device. The density of charge along Oligo-p-phenylene molecular device is observed in both the conduction band and in the valence band upon increasing bias voltage. The transmission spectrum of Oligo-p-phenylene molecular device provides the insights on the transition of electrons across various energy intervals. The results of the present work clearly show that Oligo-p-phenylene molecular device can be utilized as negative differential resistance (NDR) device and its NDR property can be fine-tuned with the bias voltage and also by the number of phenyl units.

  3. Polymorphism and Elastic Response of Molecular Materials from First Principles: How Hard Can it Be?

    Science.gov (United States)

    Reilly, Anthony; Tkatchenko, Alexandre

    2014-03-01

    Molecular materials are of great fundamental and applied importance in science and industry, with numerous applications in pharmaceuticals, electronics, sensing, and catalysis. A key challenge for theory has been the prediction of their stability, polymorphism and response to perturbations. While pairwise models of van der Waals (vdW) interactions have improved the ability of density functional theory (DFT) to model these systems, substantial quantitative and even qualitative failures remain. In this contribution we show how a many-body description of vdW interactions can dramatically improve the accuracy of DFT for molecular materials, yielding quantitative description of stabilities and polymorphism for these challenging systems. Moreover, the role of many-body vdW interactions goes beyond stabilities to response properties. In particular, we have studied the elastic properties of a series of molecular crystals, finding that many-body vdW interactions can account for up to 30% of the elastic response, leading to quantitative and qualitative changes in elastic behavior. We will illustrate these crucial effects with the challenging case of the polymorphs of aspirin, leading to a better understanding of the conflicting experimental and theoretical studies of this system.

  4. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.

    Science.gov (United States)

    Beran, Gregory J O; Hartman, Joshua D; Heit, Yonaton N

    2016-11-15

    Molecular crystals occur widely in pharmaceuticals, foods, explosives, organic semiconductors, and many other applications. Thanks to substantial progress in electronic structure modeling of molecular crystals, attention is now shifting from basic crystal structure prediction and lattice energy modeling toward the accurate prediction of experimentally observable properties at finite temperatures and pressures. This Account discusses how fragment-based electronic structure methods can be used to model a variety of experimentally relevant molecular crystal properties. First, it describes the coupling of fragment electronic structure models with quasi-harmonic techniques for modeling the thermal expansion of molecular crystals, and what effects this expansion has on thermochemical and mechanical properties. Excellent agreement with experiment is demonstrated for the molar volume, sublimation enthalpy, entropy, and free energy, and the bulk modulus of phase I carbon dioxide when large basis second-order Møller-Plesset perturbation theory (MP2) or coupled cluster theories (CCSD(T)) are used. In addition, physical insight is offered into how neglect of thermal expansion affects these properties. Zero-point vibrational motion leads to an appreciable expansion in the molar volume; in carbon dioxide, it accounts for around 30% of the overall volume expansion between the electronic structure energy minimum and the molar volume at the sublimation point. In addition, because thermal expansion typically weakens the intermolecular interactions, neglecting thermal expansion artificially stabilizes the solid and causes the sublimation enthalpy to be too large at higher temperatures. Thermal expansion also frequently weakens the lower-frequency lattice phonon modes; neglecting thermal expansion causes the entropy of sublimation to be overestimated. Interestingly, the sublimation free energy is less significantly affected by neglecting thermal expansion because the systematic

  5. Scaling theory put into practice: First-principles modeling of transport in doped silicon nanowires

    DEFF Research Database (Denmark)

    Markussen, Troels; Rurali, R.; Jauho, Antti-Pekka

    2007-01-01

    We combine the ideas of scaling theory and universal conductance fluctuations with density-functional theory to analyze the conductance properties of doped silicon nanowires. Specifically, we study the crossover from ballistic to diffusive transport in boron or phosphorus doped Si nanowires...

  6. Large-Scale Computations Leading to a First-Principles Approach to Nuclear Structure

    Energy Technology Data Exchange (ETDEWEB)

    Ormand, W E; Navratil, P

    2003-08-18

    We report on large-scale applications of the ab initio, no-core shell model with the primary goal of achieving an accurate description of nuclear structure from the fundamental inter-nucleon interactions. In particular, we show that realistic two-nucleon interactions are inadequate to describe the low-lying structure of {sup 10}B, and that realistic three-nucleon interactions are essential.

  7. Ion association in AlCl3 aqueous solutions from constrained first-principles molecular dynamics.

    Science.gov (United States)

    Cauët, Emilie; Bogatko, Stuart A; Bylaska, Eric J; Weare, John H

    2012-10-15

    The Car-Parrinello-based molecular dynamics (CPMD) method was used to investigate the ion-pairing behavior between Cl(-) and Al(3+) ions in an aqueous AlCl(3) solution containing 63 water molecules. A series of constrained simulations was carried out at 300 K for up to 16 ps each, with the internuclear separation (r(Al-Cl)) between the Al(3+) ion and one of the Cl(-) ions held constant. The calculated potential of mean force (PMF) of the Al(3+)-Cl(-) ion pair shows a global minimum at r(Al-Cl) = 2.3 Å corresponding to a contact ion pair (CIP). Two local minima assigned to solvent-separated ion pairs (SSIPs) are identified at r(Al-Cl) = 4.4 and 6.0 Å. The positions of the free energy minima coincide with the hydration-shell intervals of the Al(3+) cation, suggesting that the Cl(-) ion is inclined to reside in regions with low concentrations of water molecules, that is, between the first and second hydration shells of Al(3+) and between the second shell and the bulk. A detailed analysis of the solvent structure around the Al(3+) and Cl(-) ions as a function of r(Al-Cl) is presented. The results are compared to structural data from X-ray measurements and unconstrained CPMD simulations of single Al(3+) and Cl(-) ions and AlCl(3) solutions. The dipole moments of the water molecules in the first and second hydration shells of Al(3+) and in the bulk region and those of Cl(-) ions were calculated as a function of r(Al-Cl). Major changes in the electronic structure of the system were found to result from the removal of Cl(-) from the first hydration shell of the Al(3+) cation. Finally, two unconstrained CPMD simulations of aqueous AlCl(3) solutions corresponding to CIP and SSIP configurations were performed (17 ps, 300 K). Only minor structural changes were observed in these systems, confirming their stability.

  8. Concerted hydrogen-bond dynamics in the transport mechanism of the hydrated proton: a first-principles molecular dynamics study.

    Science.gov (United States)

    Berkelbach, Timothy C; Lee, Hee-Seung; Tuckerman, Mark E

    2009-12-04

    First-principles molecular dynamics calculations performed in a fully converged basis set are used to reveal new details about the mechanism of the anomalous proton-transport process in water, a fundamental question dating back over 200 years. By separating actual structural diffusion from simple rattling events, wherein a proton shuttles forth and back in a hydrogen bond, it is found that the former are driven by a concerted mechanism in which hydronium begins to accept a hydrogen bond from a donor water molecule while the proton-receiving water molecule simultaneously loses one of its acceptor hydrogen bonds. The kinetics of the process are found to be in good agreement with recent experiments.

  9. Biased interface between solid ion conductor LiBH{sub 4} and lithium metal: A first principles molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Ikeshoji, Tamio [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568 (Japan); Ando, Yasunobu; Otani, Minoru; Tsuchida, Eiji [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568 (Japan); Takagi, Shigeyuki; Matsuo, Motoaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2013-09-23

    We use first-principles molecular dynamics to study the electrochemical solid-solid interface between lithium metal and lithium electrolyte LiBH{sub 4}. An external bias is applied by using an effective screening medium. We observe large polarization in the LiBH{sub 4}, because the lithium cations in LiBH{sub 4} are shifted more on one side of the double-well potential of Li{sup +}. This results in a large potential drop in the interface region and a large double-layer capacity corresponding to ca. 70 μF/cm{sup 2}. H-coordination to the Li atoms plays an important role in the charge-transfer reaction and ion transfer.

  10. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials

    Directory of Open Access Journals (Sweden)

    Roman V. Tsyshevsky

    2016-02-01

    Full Text Available This review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our own first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.

  11. Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations

    Science.gov (United States)

    Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei

    2017-02-01

    Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiCxO6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young’s modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young’s modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions.

  12. Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China); Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Beijing 102249 (China); Chen, Changfeng, E-mail: chen_c_f@163.com [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China); Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Beijing 102249 (China); Yu, Haobo [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China); Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Beijing 102249 (China); Lu, Guiwu [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China)

    2017-01-15

    Highlights: • The structures of water compact layer on Pt(111) at different temperature were calculated. • The feature of chemical bond between water molecules and Pt (111) surface was discussed with temperature increased. • Temperature dependence of electrical strengths and capacitances of compact layer on Pt (111) surface was calculated. - Abstract: Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The O−H bonds of more water molecules point toward the Pt surface to form Pt−H covalent bonds with increasing temperature, which weaken the corresponding O−H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm{sup 2}, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.

  13. Protection of DNA against low-energy electrons by amino acids: a first-principles molecular dynamics study.

    Science.gov (United States)

    Gu, Bin; Smyth, Maeve; Kohanoff, Jorge

    2014-11-28

    Using first-principles molecular dynamics simulations, we have investigated the notion that amino acids can play a protective role when DNA is exposed to excess electrons produced by ionizing radiation. In this study we focus on the interaction of glycine with the DNA nucleobase thymine. We studied thymine-glycine dimers and a condensed phase model consisting of one thymine molecule solvated in amorphous glycine. Our results show that the amino acid acts as a protective agent for the nucleobase in two ways. If the excess electron is initially captured by the thymine, then a proton is transferred in a barrier-less way from a neighboring hydrogen-bonded glycine. This stabilizes the excess electron by reducing the net partial charge on the thymine. In the second mechanism the excess electron is captured by a glycine, which acts as a electron scavenger that prevents electron localization in DNA. Both these mechanisms introduce obstacles to further reactions of the excess electron within a DNA strand, e.g. by raising the free energy barrier associated with strand breaks.

  14. Copper(II) adsorption on the kaolinite(001) surface: Insights from first-principles calculations and molecular dynamics simulations

    Science.gov (United States)

    Kong, Xiang-Ping; Wang, Juan

    2016-12-01

    The adsorption behavior of Cu(II) on the basal hydroxylated kaolinite(001) surface in aqueous environment was investigated by first-principles calculations and molecular dynamics simulations. Structures of possible monodentate and bidentate inner-sphere adsorption complexes of Cu(II) were examined, and the charge transfer and bonding mechanism were analyzed. Combining the binding energy of complex, the radial distribution function of Cu(II) with oxygen and the extended X-ray absorption fine structure data, monodentate complex on site of surface oxygen with ;upright; hydrogen and bidentate complex on site of two oxygens (one with ;upright; hydrogen and one with ;lying; hydrogen) of single Al center have been found to be the major adsorption species of Cu(II). Both adsorption species are four-coordinated with a square planar geometry. The distribution of surface hydroxyls with ;lying; hydrogen around Cu(II) plays a key role in the structure and stability of adsorption complex. Upon the Mulliken population analysis and partial density of states, charge transfer occurs with Cu(II) accepting some electrons from both surface oxygens and aqua oxygens, and the bonding Cu 3d-O 2p state filling is primarily responsible for the strong covalent interaction of Cu(II) with surface oxygen.

  15. Large Scale Screening of Low Cost Ferritic Steel Designs For Advanced Ultra Supercritical Boiler Using First Principles Methods

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Lizhi [Tennessee State Univ. Nashville, TN (United States)

    2016-11-29

    Advanced Ultra Supercritical Boiler (AUSC) requires materials that can operate in corrosive environment at temperature and pressure as high as 760°C (or 1400°F) and 5000psi, respectively, while at the same time maintain good ductility at low temperature. We develop automated simulation software tools to enable fast large scale screening studies of candidate designs. While direct evaluation of creep rupture strength and ductility are currently not feasible, properties such as energy, elastic constants, surface energy, interface energy, and stack fault energy can be used to assess their relative ductility and creeping strength. We implemented software to automate the complex calculations to minimize human inputs in the tedious screening studies which involve model structures generation, settings for first principles calculations, results analysis and reporting. The software developed in the project and library of computed mechanical properties of phases found in ferritic steels, many are complex solid solutions estimated for the first time, will certainly help the development of low cost ferritic steel for AUSC.

  16. Full-Scale Model of Subionospheric VLF Signal Propagation Based on First-Principles Charged Particle Transport Calculations

    Science.gov (United States)

    Kouznetsov, A.; Cully, C. M.; Knudsen, D. J.

    2016-12-01

    Changes in D-Region ionization caused by energetic particle precipitation are monitored by the Array for Broadband Observations of VLF/ELF Emissions (ABOVE) - a network of receivers deployed across Western Canada. The observed amplitudes and phases of subionospheric-propagating VLF signals from distant artificial transmitters depend sensitively on the free electron population created by precipitation of energetic charged particles. Those include both primary (electrons, protons and heavier ions) and secondary (cascades of ionized particles and electromagnetic radiation) components. We have designed and implemented a full-scale model to predict the received VLF signals based on first-principle charged particle transport calculations coupled to the Long Wavelength Propagation Capability (LWPC) software. Calculations of ionization rates and free electron densities are based on MCNP-6 (a general-purpose Monte Carlo N- Particle) software taking advantage of its capability of coupled neutron/photon/electron transport and novel library of cross-sections for low-energetic electron and photon interactions with matter. Cosmic ray calculations of background ionization are based on source spectra obtained both from PAMELA direct Cosmic Rays spectra measurements and based on the recently-implemented MCNP 6 galactic cosmic-ray source, scaled using our (Calgary) neutron monitor measurement results. Conversion from calculated fluxes (MCNP F4 tallies) to ionization rates for low-energy electrons are based on the total ionization cross-sections for oxygen and nitrogen molecules from the National Institute of Standard and Technology. We use our model to explore the complexity of the physical processes affecting VLF propagation.

  17. First-Principle Framework for Total Charging Energies in Electrocatalytic Materials and Charge-Responsive Molecular Binding at Gas-Surface Interfaces.

    Science.gov (United States)

    Tan, Xin; Tahini, Hassan A; Seal, Prasenjit; Smith, Sean C

    2016-05-04

    Heterogeneous charge-responsive molecular binding to electrocatalytic materials has been predicted in several recent works. This phenomenon offers the possibility of using voltage to manipulate the strength of the binding interaction with the target gas molecule and thereby circumvent thermochemistry constraints, which inhibit achieving both efficient binding and facile release of important targets such as CO2 and H2. Stability analysis of such charge-induced molecular adsorption has been beyond the reach of existing first-principle approaches. Here, we draw on concepts from semiconductor physics and density functional theory to develop a first principle theoretical approach that allows calculation of the change in total energy of the supercell due to charging. Coupled with the calculated adsorption energy of gas molecules at any given charge, this allows a complete description of the energetics of the charge-induced molecular adsorption process. Using CO2 molecular adsorption onto negatively charged h-BN (wide-gap semiconductor) and g-C4N3 (half metal) as example cases, our analysis reveals that - while adsorption is exothermic after charge is introduced - the overall adsorption processes are not intrinsically spontaneous due to the energetic cost of charging the materials. The energies needed to overcome the barriers of these processes are 2.10 and 0.43 eV for h-BN and g-C4N3, respectively. This first principle approach opens up new pathways for a more complete description of charge-induced and electrocatalytic processes.

  18. Systematic Molecular Design of Ketone Derivatives of Aromatic Molecules for Lithium-Ion Batteries: First-Principles DFT Modeling.

    Science.gov (United States)

    Park, Jong Hoo; Liu, Tianyuan; Kim, Ki Chul; Lee, Seung Woo; Jang, Seung Soon

    2017-04-10

    The thermodynamic and electrochemical redox properties for a set of ketone derivatives of phenalenyl and anthracene have been investigated to assess their potential application for positive electrode materials in rechargeable lithium-ion batteries. Using first-principles DFT, it was found that 1) the thermodynamic stabilities of ketone derivatives are strongly dependent on the distribution of the carbonyl groups and 2) the redox potential is increased when increasing the number of the incorporated carbonyl groups. The highest values are 3.93 V versus Li/Li+ for the phenalenyl derivatives and 3.82 V versus Li/Li+ for the anthracene derivatives. It is further highlighted that the redox potential of an organic molecule is also strongly correlated with its spin state in the thermodynamically stable form. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. First-principles molecular dynamics study for average structure and oxygen diffusivity at high temperature in cubic Bi2O3.

    Science.gov (United States)

    Seko, Atsuto; Koyama, Yukinori; Matsumoto, Akifumi; Tanaka, Isao

    2012-11-28

    Bismuth oxide, Bi(2)O(3), has a cubic structure (δ-phase) at high temperature. High oxygen conductivity of δ-Bi(2)O(3) should be closely related to disordering of the oxygen sublattice. In order to reconstruct the disordered structure in the crystal using first-principles molecular dynamics (FPMD), a sufficiently long simulation time is essentially required. In this study, the FPMD simulation up to 1 ns is performed with special interest given to the convergence of the average structure and the oxygen diffusivity with respect to the simulation time. The obtained average structure and the oxygen diffusivity are in good agreement with those obtained by experimental analysis.

  20. First and second one-​electron reduction of lumiflavin in water - A first principles molecular dynamics study

    NARCIS (Netherlands)

    Kılıç, M.; Ensing, B.

    2013-01-01

    Flavins are ubiquitously found in nature as cofactors in proteins that regulate electron and proton transfer reactions. The electron and proton affinities of flavins are modulated by their molecular environment. Using density functional theory based molecular dynamics simulations, we have studied

  1. A perfect wetting of Mg monolayer on Ag(111) under atomic scale investigation: First principles calculations, scanning tunneling microscopy, and Auger spectroscopy

    Science.gov (United States)

    Migaou, Amani; Sarpi, Brice; Guiltat, Mathilde; Payen, Kevin; Daineche, Rachid; Landa, Georges; Vizzini, Sébastien; Hémeryck, Anne

    2016-05-01

    First principles calculations, scanning tunneling microscopy, and Auger spectroscopy experiments of the adsorption of Mg on Ag(111) substrate are conducted. This detailed study reveals that an atomic scale controlled deposition of a metallic Mg monolayer perfectly wets the silver substrate without any alloy formation at the interface at room temperature. A liquid-like behavior of the Mg species on the Ag substrate is highlighted as no dot formation is observed when coverage increases. Finally a layer-by-layer growth mode of Mg on Ag(111) can be predicted, thanks to density functional theory calculations as observed experimentally.

  2. New Insights into the Structure of the Vapor/Water Interface from Large-Scale First-Principles Simulations.

    Science.gov (United States)

    Kühne, Thomas D; Pascal, Tod A; Kaxiras, Efthimios; Jung, Yousung

    2011-01-20

    We present extensive ab initio simulations of the molecular arrangements at the vapor/water interface, which provide valuable insights into the interface structure. In particular, the simulations address the controversy of whether there is a significant amount of nondonor configurations at this prototypical interface, using a novel Car-Parrinello-like ab initio molecular dynamics approach. The interface is modeled by a system of 384 water molecules for 125 ps in a two-dimensional periodic slab, the most extensive ab initio molecular dynamics simulation to date. In contrast to previous theoretical simulations and X-ray absorption spectroscopy, but consistent with sum-frequency generation experiments, we observe no evidence for a significant occurrence of acceptor-only species at the vapor/water interface. Besides a distinct surface relaxation effect, we find that only the topmost layers of the interface obey structural order.

  3. Combination of first-principles molecular dynamics and XANES simulations for LiCoO2-electrolyte interfacial reactions in a lithium-ion battery

    Science.gov (United States)

    Tamura, Tomoyuki; Kohyama, Masanori; Ogata, Shuji

    2017-07-01

    We performed a first-principles molecular dynamics (FPMD) simulation of the interfacial reactions between a LiCoO2 electrode and a liquid ethylene carbonate (EC) electrolyte. For configurations during the FPMD simulation, we also performed first-principles Co K-edge x-ray absorption near-edge structure (XANES) simulations, which can properly reproduce the bulk and surface spectra of LiCoO2. We observed strong absorption of an EC molecule on the LiCoO2 {110} surface, involving ring opening of the molecule, bond formation between oxygen atoms in the molecule and surface Co ions, and emission of one surface Li ion, while all the surface Co ions remain Co3 +. The surface Co ions having the bond with an oxygen atom in the molecule showed remarkable changes in simulated K-edge spectra which are similar to those of the in situ observation under electrolyte soaking [D. Takamatsu et al., Angew. Chem., Int. Ed. 51, 11597 (2012), 10.1002/anie.201203910]. Thus, the local environmental changes of surface Co ions due to the reactions with an EC molecule can explain the experimental spectrum changes.

  4. Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol

    CERN Document Server

    Rossi, Mariana; Ceriotti, Michele

    2016-01-01

    Molecular crystals often exist in multiple competing polymorphs, showing significantly different physico-chemical properties. Computational crystal structure prediction is key to interpret and guide the search for the most stable or useful form: A real challenge due to the combinatorial search space, and the complex interplay of subtle effects that work together to determine the relative stability of different structures. Here we take a comprehensive approach based on different flavors of thermodynamic integration in order to estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects. We take the two main stable forms of paracetamol as a paradigmatic example. We find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our analysis highlights the many challenge...

  5. Electric conductance of a mechanically strained molecular junction from first principles: Crucial role of structural relaxation and conformation sampling

    Science.gov (United States)

    Nguyen, Huu Chuong; Szyja, Bartłomiej M.; Doltsinis, Nikos L.

    2014-09-01

    Density functional theory (DFT) based molecular dynamics simulations have been performed of a 1,4-benzenedithiol molecule attached to two gold electrodes. To model the mechanical manipulation in typical break junction and atomic force microscopy experiments, the distance between two electrodes was incrementally increased up to the rupture point. For each pulling distance, the electric conductance was calculated using the DFT nonequilibrium Green's-function approach for a statistically relevant sample of configurations extracted from the simulation. With increasing mechanical strain, the formation of monoatomic gold wires is observed. The conductance decreases by three orders of magnitude as the initial twofold coordination of the thiol sulfur to the gold is reduced to a single S-Au bond at each electrode and the order in the electrodes is destroyed. Independent of the pulling distance, the conductance was found to fluctuate by at least two orders of magnitude depending on the instantaneous junction geometry.

  6. Thermodynamics of nano-scale precipitate-strengthened Fe-Cu and Al-transition-metal systems from first-principles calculations

    Science.gov (United States)

    Liu, Zhe

    The thermodynamic properties of two nano-scale precipitate-strengthened alloys, Fe-Cu and Al-TM(=Ti, Zr and Hf) systems, are investigated within framework of first-principles thermodynamics methods. In particular, thermodynamic properties of the metastable precipitate phases are calculated, where direct experimental measurements are not available. Atomic volumes, magnetic moments, mixing energies and elastic properties of bcc Fe1-xCux solid solutions are studied by first-principles calculations based on the cluster expansion (CE) framework. We introduce a generalization of the CE technique for the calculation of concentration-dependent elastic moduli in disordered phase. Calculated mixing energies, atomic volumes and magnetic moments agree well with measurements for metastable alloys prepared through non-equilibrium processing techniques. The variations of the bulk modulus B, shear moduli C44 and C', with respect to copper concentration are calculated for the disordered bcc phase. While the B and C44 are positive for all concentrations, C' is positive only for Cu concentrations less than 50 atomic%. The implications of present results are discussed in relation to the observed metastability of bcc Fe-Cu alloys, and the strengthening mechanism of nanoscale bcc precipitates in an alpha-Fe matrix. Vibrational entropy, which is often omitted in first-principles phase-diagram calculations, has been shown to be an essential contribution in the phase stability of many Al-based alloys. In this work, we study the effect of lattice vibrations on the solubility limit for Al-TM(=Ti, Zr and Hf) systems. We propose a transferable force constant approach (TFC), in which the relations between bond force constants, bond length and TM composition are assumed to be transferable among different structures, to substantially reduce the heavy computational expense associated with first-principles lattice dynamics calculations. Our results demonstrate that the TFC can predict the

  7. Challenges in first-principles NPT molecular dynamics of soft porous crystals: A case study on MIL-53(Ga)

    Science.gov (United States)

    Haigis, Volker; Belkhodja, Yacine; Coudert, François-Xavier; Vuilleumier, Rodolphe; Boutin, Anne

    2014-08-01

    Soft porous crystals present a challenge to molecular dynamics simulations with flexible size and shape of the simulation cell (i.e., in the NPT ensemble), since their framework responds very sensitively to small external stimuli. Hence, all interactions have to be described very accurately in order to obtain correct equilibrium structures. Here, we report a methodological study on the nanoporous metal-organic framework MIL-53(Ga), which undergoes a large-amplitude transition between a narrow- and a large-pore phase upon a change in temperature. Since this system has not been investigated by density functional theory (DFT)-based NPT simulations so far, we carefully check the convergence of the stress tensor with respect to computational parameters. Furthermore, we demonstrate the importance of dispersion interactions and test two different ways of incorporating them into the DFT framework. As a result, we propose two computational schemes which describe accurately the narrow- and the large-pore phase of the material, respectively. These schemes can be used in future work on the delicate interplay between adsorption in the nanopores and structural flexibility of the host material.

  8. Hydrogen purification performance of a nanoporous hexagonal boron nitride membrane: molecular dynamics and first-principle simulations.

    Science.gov (United States)

    Darvish Ganji, Masoud; Dodangeh, Razieh

    2017-05-17

    Membranes have attracted much attention for the efficient separation of gas mixtures, due to their specific structural and unique properties. In this work, density functional theory (DFT) and molecular dynamic (MD) simulations have been employed to evaluate the performance of nanoporous hexagonal boron nitride (h-BN) monolayers for hydrogen purification. Various porous membranes were designed, and full structural relaxation was carried out by using DFT calculations and then MD simulations to investigate the H2 purification performance of the nanoporous h-BN membranes. It was found that the selectivity for H2 gas over N2 gas was highly sensitive to the type and width of the pores. The h-BN membrane containing pores with short and long sides both of about 3 Å (pore 1B-3N) demonstrated optimal selectivity for H2 molecules, while the permeability of the pore 5B-5N + 4H membrane (short side of about 4.4 Å) was much higher than that of other counterparts. Furthermore, DFT calculations were performed to validate the MD simulation observations as well as to explain the selectivity performance of the most desirable pore membrane. We demonstrated that the 1B-3N pore is a far superior membrane to other counterparts and exhibits an excellent potential for applications in hydrogen purification, clean energy combustion, and the design of novel membranes for gas separation.

  9. GPU-Accelerated Large-Scale Electronic Structure Theory on Titan with a First-Principles All-Electron Code

    Science.gov (United States)

    Huhn, William Paul; Lange, Björn; Yu, Victor; Blum, Volker; Lee, Seyong; Yoon, Mina

    Density-functional theory has been well established as the dominant quantum-mechanical computational method in the materials community. Large accurate simulations become very challenging on small to mid-scale computers and require high-performance compute platforms to succeed. GPU acceleration is one promising approach. In this talk, we present a first implementation of all-electron density-functional theory in the FHI-aims code for massively parallel GPU-based platforms. Special attention is paid to the update of the density and to the integration of the Hamiltonian and overlap matrices, realized in a domain decomposition scheme on non-uniform grids. The initial implementation scales well across nodes on ORNL's Titan Cray XK7 supercomputer (8 to 64 nodes, 16 MPI ranks/node) and shows an overall speed up in runtime due to utilization of the K20X Tesla GPUs on each Titan node of 1.4x, with the charge density update showing a speed up of 2x. Further acceleration opportunities will be discussed. Work supported by the LDRD Program of ORNL managed by UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  10. Oxygen and hydroxyl adsorption on MS{sub 2} (M = Mo, W, Hf) monolayers: a first-principles molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Iordanidou, K.; Houssa, M.; Afanas' ev, V.V.; Stesmans, A. [Department of Physics and Astronomy, University of Leuven (Belgium); Pourtois, G. [IMEC, Leuven (Belgium)

    2016-11-15

    In this paper, we study the oxygen and hydroxyl adsorption on both pristine and S deficient MS{sub 2} (M = Mo, W, Hf) monolayers, using first-principles molecular dynamics calculations. Our simulations reveal that single-layer HfS{sub 2} suffers severely from oxidation, which results in the formation of strong Hf-O bonds, likely degrading the transport properties of the material. Oxygen adsorption on S deficient monolayers acts as a passivation mechanism, both ''structurally'' by saturating the dangling bonds of neighboring metal atoms and ''electronically'' by removing the S vacancy induced gap states. Hydroxyl adsorption on pristine monolayers generates spin-polarized gap states, and for HfS{sub 2} in particular, causes the Fermi level pinning close to the conduction band edge. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Anharmonic enhancement of superconductivity in metallic molecular Cmca  -  4 hydrogen at high pressure: a first-principles study.

    Science.gov (United States)

    Borinaga, Miguel; Riego, P; Leonardo, A; Calandra, Matteo; Mauri, Francesco; Bergara, Aitor; Errea, Ion

    2016-12-14

    First-principles calculations based on density-functional theory including anharmonicity within the variational stochastic self-consistent harmonic approximation are applied to understand how the quantum character of the proton affects the candidate metallic molecular Cmca  -  4 structure of hydrogen in the 400-450 GPa pressure range, where metallization of hydrogen is expected to occur. Anharmonic effects, which become crucial due to the zero-point motion, have a large impact on the hydrogen molecules by increasing the intramolecular distance by approximately a 6%. This induces two new electron pockets at the Fermi surface opening new scattering channels for the electron-phonon interaction. Consequently, the electron-phonon coupling constant and the superconducting critical temperature are approximately doubled by anharmonicity and Cmca  -  4 hydrogen becomes a superconductor above 200 K in all the studied pressure range. Contrary to many superconducting hydrides, where anharmoncity tends to lower the superconducting critical temperature, our results show that it can enhance superconductivity in molecular hydrogen.

  12. First-principles study of electronic structure and charge transport at PTCDA molecular layers on Ag(111) and Al(111) electrodes

    Science.gov (United States)

    Ohto, Tatsuhiko; Yamashita, Koichi; Nakamura, Hisao

    2011-07-01

    We performed first-principles transport calculations of the contact consisting of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) molecular layers and metal electrodes using the nonequilibrium Green's function method combined with the density functional theory. To analyze roles of organic/metal interfacial states for transport, we examined two kinds of electrodes: Ag(111) and Al(111). By quantitative evaluation of the coupling strength between PTCDA molecular orbitals and electrodes, we found the creation of the Shockley-type state at the interface of PTCDA and Ag(111). In contrast, the Al(111) surface formed a strong chemical bond with PTCDA. A clear Shockley-type state was not created, and an ohmic bias voltage (V) and electric current (I) behavior was found for contacts consisting of thin PTCDA layers and Al(111) electrodes. We also predicted that further stacking of PTCDA layers will make I-V characteristics more Schottky-like for both Ag and Al electrodes, regardless the different microscopic mechanism.

  13. A First-Principles Molecular Dynamics Study of the Solvation Shell Structure, Vibrational Spectra, Polarity, and Dynamics around a Nitrate Ion in Aqueous Solution.

    Science.gov (United States)

    Yadav, Sushma; Choudhary, Ashu; Chandra, Amalendu

    2017-09-28

    A first-principles molecular dynamics study is presented for the structural, dynamical, vibrational, and dipolar properties of the solvation shell of a nitrate ion in deuterated water. A detailed description of the anisotropic structure of the solvation shell is presented through calculations of various structural distributions in different conical shells around the perpendicular axis of the ion. The nitrate ion-water dimer potential energies are also calculated for many different orientations of water. The average vibrational stretch frequency of OD modes in the solvation shell is found to be higher than that of other OD modes in the bulk, which signifies a weakening of hydrogen bonds in the hydration shell. A splitting of the NO stretch frequencies and an associated fast spectral diffusion of the solute are also observed in the current study. The dynamics of rotation and hydrogen bond relaxation are found to be faster in the hydration shell than that in the bulk water. The residence time of water in the hydration shell is, however, found to be rather long. The nitrate ion is found to have a dipole moment of 0.9 D in water which can be attributed to its fluctuating interactions with the surrounding water.

  14. Adsorption studies of trimethyl amine and n-butyl amine vapors on stanene nanotube molecular device - A first-principles study

    Science.gov (United States)

    Bhuvaneswari, R.; Nagarajan, V.; Chandiramouli, R.

    2018-02-01

    The stanene nanotube is designed and used for the detection of trimethyl amine (TMA) and n-butyl amine (n-BA) vapors, which is investigated using first-principles study. The electronic properties of bare stanene nanotube and the adsorption properties of TMA and n-BA molecules are studied using density functional theory with non-equilibrium Green's function. Moreover, the device density of states shows the shift in the peak maxima upon adsorption of TMA and n-BA molecules on to the stanene nanotube. The variation in the flow of electron is noticed upon adsorption of TMA and n-BA molecules in the transmission spectrum of stanene nanotube. I-V characteristics clearly confirm the variation in the current upon adsorption of TMA and n-BA molecules. The findings of the study clearly suggest that the stanene nanotube molecular device can be used for the detection of trace levels of TMA and n-BA molecules present in the atmosphere.

  15. A comprehensive picture in the view of atomic scale on piezoelectricity of ZnO tunnel junctions: The first principles simulation

    Directory of Open Access Journals (Sweden)

    Genghong Zhang

    2016-06-01

    Full Text Available Piezoelectricity is closely related with the performance and application of piezoelectric devices. It is a crucial issue to understand its detailed fundamental for designing functional devices with more peculiar performances. Basing on the first principles simulations, the ZnO piezoelectric tunnel junction is taken as an example to systematically investigate its piezoelectricity (including the piezopotential energy, piezoelectric field, piezoelectric polarization and piezocharge and explore their correlation. The comprehensive picture of the piezoelectricity in the ZnO tunnel junction is revealed at atomic scale and it is verified to be the intrinsic characteristic of ZnO barrier, independent of its terminated surface but dependent on its c axis orientation and the applied strain. In the case of the ZnO c axis pointing from right to left, an in-plane compressive strain will induce piezocharges (and a piezopotential energy drop with positive and negative signs (negative and positive signs emerging respectively at the left and right terminated surfaces of the ZnO barrier. Meanwhile a piezoelectric polarization (and a piezoelectric field pointing from right to left (from left to right are also induced throughout the ZnO barrier. All these piezoelectric physical quantities would reverse when the applied strain switches from compressive to tensile. This study provides an atomic level insight into the fundamental behavior of the piezoelectricity of the piezoelectric tunnel junction and should have very useful information for future designs of piezoelectric devices.

  16. Shape and catalytic mechanism of RuO{sub 2} particles at CO oxidation reaction conditions. First-principles based multi-scale modeling

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Karsten [TU Muenchen (Germany). Lehrstuhl fuer Theoretische Chemie

    2016-11-01

    For model catalyst studies on low-index single-crystal surfaces close agreement between detailed measurements and quantitative microkinetic modeling can increasingly be achieved. However, for 'real' catalyst particles, such structure-morphology-activity relationships are only scarcely established. This is prototypically reflected by the situation for RuO{sub 2}, as a most active catalyst for CO oxidation. Here, existing first-principles kinetic modeling is restricted to just one facet, namely the RuO{sub 2}(110) surface, which is not able to fully account for activity data obtained from polycrystalline RuO{sub 2} powder catalysts. The overarching objective of this project was correspondingly to close this gap and demonstrate that similarly close agreement as for individual single-crystal model catalysts can also be achieved for catalyst particles. Specifically, we addressed experiments where an intact RuO{sub 2} bulk structure is conserved, and establish the atomic-scale structure and reactivity of other RuO{sub 2} low-index facets under the gas-phase conditions characteristic for catalytic CO oxidation.

  17. Exploring the time-scale of photo-initiated interfacial electron transfer through first-principles interpretation of ultrafast X-ray spectroscopy (Presentation Recording)

    Science.gov (United States)

    Prendergast, David; Pemmaraju, Sri Chaitanya Das

    2015-09-01

    With the advent of X-ray free electron lasers and table-top high-harmonic-generation X-ray sources, we can now explore changes in electronic structure on ultrafast time scales -- at or less than 1ps. Transient X-ray spectroscopy of this kind provides a direct probe of relevant electronic levels related to photoinitiated processes and associated interfacial electron transfer as the initial step in solar energy conversion. However, the interpretation of such spectra is typically fraught with difficulty, especially since we rarely have access to spectral standards for nonequilibrium states. To this end, direct first-principles simulations of X-ray absorption spectra can provide the necessary connection between measurements and reliable models of the atomic and electronic structure. We present examples of modeling excited states of materials interfaces relevant to solar harvesting and their corresponding X-ray spectra in either photoemission or absorption modalities. In this way, we can establish particular electron transfer mechanisms to reveal detailed working principles of materials systems in solar applications and provide insight for improved efficiency.

  18. TS-1 from First Principles

    Science.gov (United States)

    Gamba, Aldo; Tabacchi, Gloria; Fois, Ettore

    2009-09-01

    First principles studies on periodic TS-1 models at Ti content corresponding to 1.35% and 2.7% in weight of TiO2 are presented. The problem of Ti preferential siting is addressed by using realistic models corresponding to the TS-1 unit cell [TiSi95O192] and adopting for the first time a periodic DFT approach, thus providing an energy scale for Ti in the different crystallographic sites in nondefective TS-1. The structure with Ti in site T3 is the most stable, followed by T4 (+0.3 kcal/mol); the less stable structure, corresponding to Ti in T1, is 5.6 kcal/mol higher in energy. The work has been extended to investigate models with two Ti's per unit cell [Ti2Si94O192] (2.7%). The possible existence of Ti-O-Ti bridges, formed by two corner-sharing TiO4 tetrahedra, is discussed. By using cluster models cut from the optimized periodic DFT structures, both vibrational (DFT) and electronic excitation spectra (TDDFT) have been calculated and favorably compared with the experimental data available on TS-1. Interesting features emerged from excitation spectra: (i) Isolated tetrahedral Ti sites show a Beer-Lambert behavior, with absorption intensity proportional to concentration. Such a behavior is gradually lost when two Ti's occupy sites close to each other. (ii) The UV-vis absorption in the 200-250 nm region can be associated with transitions from occupied states delocalized on the framework oxygens to empty d states localized on Ti. Such extended-states-to-local-states transitions may help the interpretation of the photovoltaic activity recently detected in Ti zeolites.

  19. Can Excited State Electronic Coherence Be Tuned via Molecular Structural Modification? A First-Principles Quantum Electronic Dynamics Study of Pyrazolate-Bridged Pt(II) Dimers

    Energy Technology Data Exchange (ETDEWEB)

    Lingerfelt, David B.; Lestrange, Patrick J.; Radler, Joseph J.; Brown-Xu, Samantha E.; Kim, Pyosang; Castellano, Felix N.; Chen, Lin X.; Li, Xiaosong

    2017-02-24

    Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal’s anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are in balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.

  20. Can Excited State Electronic Coherence Be Tuned via Molecular Structural Modification? A First-Principles Quantum Electronic Dynamics Study of Pyrazolate-Bridged Pt(II) Dimers.

    Science.gov (United States)

    Lingerfelt, David B; Lestrange, Patrick J; Radler, Joseph J; Brown-Xu, Samantha E; Kim, Pyosang; Castellano, Felix N; Chen, Lin X; Li, Xiaosong

    2017-03-09

    Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal's anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are in balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.

  1. Simulation of Young’s moduli for hexagonal ZnO [0 0 0 1]-oriented nanowires: first principles and molecular mechanical calculations

    Science.gov (United States)

    Bandura, Andrei V.; Evarestov, Robert A.; Lukyanov, Sergey I.; Piskunov, Sergei; Zhukovskii, Yuri F.

    2017-08-01

    Morphologically reproducible wurtzite-structured zinc oxide nanowires (ZnO NWs) can be synthesized by different methods. Since ZnO NWs have been found to possess piezoelectricity, a comprehensive study of their mechanical properties, e.g. deformations caused by external compression or stretching, is one of the actual tasks of this paper. We have calculated wurtzite-structured [0 0 0 1]-oriented ZnO NWs whose diameters have been varied within 1-5 nm and 1-20 nm ranges when using either ab initio (hybrid DFT-LCAO) or force-field (molecular mechanical) methods, respectively (the minimum diameter d NW of experimentally synthesized NWs has been estimated on average to be ~20 nm). When using both chosen calculation approaches, the values of Young’s moduli determined for the mentioned ranges of NW diameters have been found to be qualitatively compatible (168-169 GPa for 5 nm NW thickness), whereas results of molecular mechanical simulations on Y NW for 20 nm-thick NWs (160-162 GPa) have been qualitatively comparable with those experimentally measured along the [0 0 0 1] direction of NW loading. In all the cases, a gradual increase of the NW diameter has resulted in an asymptotic decrease of Young’s modulus consequently approaching that (Y b) of wurtzite-structured ZnO bulk along its [0 0 0 1] axis. The novelty of this study is that we combine the computation methods of quantum chemistry and molecular mechanics, while the majority of previous studies with the same aim have focused on the application of different classical molecular dynamical methods.

  2. Time-dependent first-principles approaches to PV materials

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiyuki [Nanosystem Research Institute, AIST, Central 2, 1-1-1, Umezono, Tsukuba, 305-8568 (Japan)

    2013-12-10

    Computational scheme for designing photovoltaic (PV) materials is presented. First-principles electron dynamics of photo-excitation and subsequent electron-hole splitting is performed based on the time-dependent density functional theory. Photo-induced enhancement of dipole moment was observed in a polar crystal and a donor-acceptor molecular pair. These experiences will pave a way to design PV material from first-principles simulations.

  3. Small Atomic Orbital Basis Set First-Principles Quantum Chemical Methods for Large Molecular and Periodic Systems: A Critical Analysis of Error Sources.

    Science.gov (United States)

    Sure, Rebecca; Brandenburg, Jan Gerit; Grimme, Stefan

    2016-04-01

    In quantum chemical computations the combination of Hartree-Fock or a density functional theory (DFT) approximation with relatively small atomic orbital basis sets of double-zeta quality is still widely used, for example, in the popular B3LYP/6-31G* approach. In this Review, we critically analyze the two main sources of error in such computations, that is, the basis set superposition error on the one hand and the missing London dispersion interactions on the other. We review various strategies to correct those errors and present exemplary calculations on mainly noncovalently bound systems of widely varying size. Energies and geometries of small dimers, large supramolecular complexes, and molecular crystals are covered. We conclude that it is not justified to rely on fortunate error compensation, as the main inconsistencies can be cured by modern correction schemes which clearly outperform the plain mean-field methods.

  4. First-principles studies of solid halogens under pressure: scaling rules for properties among I sub 2 , Br sub 2 and Cl sub 2

    CERN Document Server

    Mukose, K; Miyagi, H; Yamaguchi, K

    2002-01-01

    We have theoretically studied the properties of solid iodine, bromine and chlorine under pressure, by employing the full-potential linear muffin-tin orbital method within the local density approximation (LDA). Furthermore, in this paper we study bromine by the use of the generalized gradient approximation (GGA) and compare the results with those obtained using LDA. We examine the pressure dependence of the frequencies of Raman-active A sub g modes using the frozen-phonon method. We also examine the scaling rules and find that they hold for these band-theoretical results.

  5. [UO2(NH3)5]Br2·NH3: synthesis, crystal structure, and speciation in liquid ammonia solution by first-principles molecular dynamics simulations.

    Science.gov (United States)

    Woidy, Patrick; Bühl, Michael; Kraus, Florian

    2015-04-28

    Pentaammine dioxido uranium(VI) dibromide ammonia (1/1), [UO2(NH3)5]Br2·NH3, was synthesized in the form of yellow crystals by the reaction of uranyl bromide, UO2Br2, with dry liquid ammonia. The compound crystallizes orthorhombic in space group Cmcm and is isotypic to [UO2(NH3)5]Cl2·NH3 with a = 13.2499(2), b = 10.5536(1), c = 8.9126(1) Å, V = 1246.29(3) Å(3) and Z = 4 at 123 K. The UO2(2+) cation is coordinated by five ammine ligands and the coordination polyhedron can be best described as pentagonal bipyramid. Car-Parrinello molecular dynamics simulations are reported for [UO2(NH3)5](2+) in the gas phase and in liquid NH3 solution (using the BLYP density functional). According to free-energy simulations, solvation by ammonia has only a small effect on the uranyl-NH3 bond strength.

  6. Structure and Ionic Conductivity of Li2S-P2S5 Glass Electrolytes Simulated with First-Principles Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Takeshi eBaba

    2016-06-01

    Full Text Available Lithium thiophosphate-based materials are attractive as solid electrolytes in all-solid-state lithium batteries because glass or glass-ceramic structures of these materials are associated with very high conductivity. In this work, we modeled lithium thiophosphates with amorphous structures and investigated Li+ mobilities by using molecular dynamics calculations based on density functional theory (DFT-MD. The structures of xLi2S-(100 - xP2S5 (x = 67, 70, 75, and 80 were created by randomly identifying appropriate compositions of Li+, PS43-, P2S74-, and S2- and then annealing them with DFT-MD calculations. Calculated relative stabilities of the amorphous structures with x = 67, 70, and 75 relative to crystals with the same compositions were 0.04, 0.12, and 0.16 kJ/g, respectively. The implication is that these amorphous structures are metastable. There was good agreement between calculated and experimental structure factors determined from X-ray scattering. The differences between the structure factors of amorphous structures were small, except for the first sharp diffraction peak, which was affected by the environment between Li and S atoms. Li+ diffusion coefficients obtained from DFT-MD calculations at various temperatures for picosecond simulation times were on the order of 10-3 - 10-5 Angstrom2/ps. Ionic conductivities evaluated by the Nernst-Einstein relationship at 298.15 K were on the order of 10-5 S/cm. The ionic conductivity of the amorphous structure with x = 75 was the highest among the amorphous structures because there was a balance between the number density and diffusibility of Li+. The simulations also suggested that isolated S atoms suppress Li+ migration.

  7. Cyclic Voltammograms from First Principles

    DEFF Research Database (Denmark)

    Karlberg, Gustav; Jaramillo, Thomas; Skulason, Egill

    2007-01-01

    for the simple case of electroadsorption and desorption of H. In the following we derive the cyclic voltammogram for H adsorption and desorption on Pt(111) and Pt(100) based solely on density functional theory calculations and standard molecular tables. The method will also be extended to include the potential...

  8. Accurate Thermal Conductivities from First Principles

    Science.gov (United States)

    Carbogno, Christian

    2015-03-01

    In spite of significant research efforts, a first-principles determination of the thermal conductivity at high temperatures has remained elusive. On the one hand, Boltzmann transport techniques that include anharmonic effects in the nuclear dynamics only perturbatively become inaccurate or inapplicable under such conditions. On the other hand, non-equilibrium molecular dynamics (MD) methods suffer from enormous finite-size artifacts in the computationally feasible supercells, which prevent an accurate extrapolation to the bulk limit of the thermal conductivity. In this work, we overcome this limitation by performing ab initio MD simulations in thermodynamic equilibrium that account for all orders of anharmonicity. The thermal conductivity is then assessed from the auto-correlation function of the heat flux using the Green-Kubo formalism. Foremost, we discuss the fundamental theory underlying a first-principles definition of the heat flux using the virial theorem. We validate our approach and in particular the techniques developed to overcome finite time and size effects, e.g., by inspecting silicon, the thermal conductivity of which is particularly challenging to converge. Furthermore, we use this framework to investigate the thermal conductivity of ZrO2, which is known for its high degree of anharmonicity. Our calculations shed light on the heat resistance mechanism active in this material, which eventually allows us to discuss how the thermal conductivity can be controlled by doping and co-doping. This work has been performed in collaboration with R. Ramprasad (University of Connecticut), C. G. Levi and C. G. Van de Walle (University of California Santa Barbara).

  9. Iron diffusion from first principles calculations

    Science.gov (United States)

    Wann, E.; Ammann, M. W.; Vocadlo, L.; Wood, I. G.; Lord, O. T.; Brodholt, J. P.; Dobson, D. P.

    2013-12-01

    The cores of Earth and other terrestrial planets are made up largely of iron1 and it is therefore very important to understand iron's physical properties. Chemical diffusion is one such property and is central to many processes, such as crystal growth, and viscosity. Debate still surrounds the explanation for the seismologically observed anisotropy of the inner core2, and hypotheses include convection3, anisotropic growth4 and dendritic growth5, all of which depend on diffusion. In addition to this, the main deformation mechanism at the inner-outer core boundary is believed to be diffusion creep6. It is clear, therefore, that to gain a comprehensive understanding of the core, a thorough understanding of diffusion is necessary. The extremely high pressures and temperatures of the Earth's core make experiments at these conditions a challenge. Low-temperature and low-pressure experimental data must be extrapolated across a very wide gap to reach the relevant conditions, resulting in very poorly constrained values for diffusivity and viscosity. In addition to these dangers of extrapolation, preliminary results show that magnetisation plays a major role in the activation energies for diffusion at low pressures therefore creating a break down in homologous scaling to high pressures. First principles calculations provide a means of investigating diffusivity at core conditions, have already been shown to be in very good agreement with experiments7, and will certainly provide a better estimate for diffusivity than extrapolation. Here, we present first principles simulations of self-diffusion in solid iron for the FCC, BCC and HCP structures at core conditions in addition to low-temperature and low-pressure calculations relevant to experimental data. 1. Birch, F. Density and composition of mantle and core. Journal of Geophysical Research 69, 4377-4388 (1964). 2. Irving, J. C. E. & Deuss, A. Hemispherical structure in inner core velocity anisotropy. Journal of Geophysical

  10. Exciton multiplication from first principles.

    Science.gov (United States)

    Jaeger, Heather M; Hyeon-Deuk, Kim; Prezhdo, Oleg V

    2013-06-18

    -phonon energy relaxation. Multiple excitons are generated through impact ionization within picoseconds. The basis of exciton multiplication in quantum dots is the collective result of photoexcitation, dephasing, and nonadiabatic evolution. Each process is characterized by a distinct time-scale, and the overall multiple exciton generation dynamics is complete by about 10 ps. Without relying on semiempirical parameters, we computed quantum mechanical probabilities of multiple excitons for small model systems. Because exciton correlations and coherences are microscopic, quantum properties, results for small model systems can be extrapolated to larger, realistic quantum dots.

  11. First-principles molecular dynamics investigation of thermal and mechanical stability of the TiN(001)/AlN and ZrN(001)/AlN heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchenko, V.I., E-mail: ivash@ipms.kiev.ua [Institute of Problems of Material Science, National Academy of Science of Ukraine, Krzhyzhanosky str. 3, 03142 Kyiv (Ukraine); Veprek, S., E-mail: stan.veprek@lrz.tum.de [Department of Chemistry, Technical University Munich, Lichtenbergstrasse 4, D-85747 Garching (Germany); Turchi, P.E.A. [Lawrence Livermore National Laboratory (L-352), P.O. Box 808, Livermore, CA 94551 (United States); Shevchenko, V.I. [Institute of Problems of Material Science, National Academy of Science of Ukraine, Krzhyzhanosky str. 3, 03142 Kyiv (Ukraine); Leszczynski, J. [Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, MS 39217 (United States); Gorb, L. [Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, MS 39217 (United States); U.S. Army ERDC, Vicksburg, MS 39180 (United States); Hill, F. [U.S. Army ERDC, Vicksburg, MS 39180 (United States)

    2014-08-01

    First-principles quantum molecular dynamics investigations of TiN(001)/AlN and ZrN(001)/AlN heterostructures with one and two monolayers (1 ML and 2 ML) of AlN interfacial layers were carried out in the temperature range of 0–1400 K with subsequent static relaxation. It is shown that the epitaxially stabilized cubic B1-AlN interfacial layers are preserved in all TiN(001)/AlN heterostructures over the whole temperature range. In the ZrN(001)/AlN heterostructures, the B1-AlN(001) interfacial layer exists at 0 K, but it transforms into a distorted one at 10 K consisting of tetrahedral AlN{sub 4}, octahedral AlN{sub 6}, and AlN{sub 5} units. The thermal stability of the interfaces was investigated by studying the phonon dynamic stability of the B1-AlN phase with different lattice parameters. The calculations showed that the B1-AlN interface should be unstable in ZrN(001)/AlN heterostructures and nanocomposites, and in those based on transition metal nitrides with lattice parameters larger than 4.4 Å. Electronic band structure calculations showed that energy gap forms around the Fermi energy for all interfaces. The formation of the interfacial AlN layer in TiN and ZrN crystals reduces their ideal tensile and shear strengths. Upon tensile load, decohesion occurs between Ti (Zr) and N atoms adjacent to the 1 ML AlN interfacial layer, whereas in the case of 2 ML AlN it occurs inside the TiN and ZrN slabs. The experimentally reported strength enhancement in the TiN/AlN and ZrN/AlN heterostructures is attributed to impeding effect of the interfacial layer on the plastic flow. - Highlights: • First-principles quantum molecular dynamics studies were conducted. • TiN- and ZrN-based heterostructures with one and two AlN interfacial layers. • Stability and structural transformation between 0 and 1400 K have been calculated. • Stress–strain relationships and ideal strengths determined. • Systems which may form stable superhard heterostructures are identified.

  12. High Pressure Hydrogen from First Principles

    Science.gov (United States)

    Morales, M. A.

    2014-12-01

    Typical approximations employed in first-principles simulations of high-pressure hydrogen involve the neglect of nuclear quantum effects (NQE) and the approximate treatment of electronic exchange and correlation, typically through a density functional theory (DFT) formulation. In this talk I'll present a detailed analysis of the influence of these approximations on the phase diagram of high-pressure hydrogen, with the goal of identifying the predictive capabilities of current methods and, at the same time, making accurate predictions in this important regime. We use a path integral formulation combined with density functional theory, which allows us to incorporate NQEs in a direct and controllable way. In addition, we use state-of-the-art quantum Monte Carlo calculations to benchmark the accuracy of more approximate mean-field electronic structure calculations based on DFT, and we use GW and hybrid DFT to calculate the optical properties of the solid and liquid phases near metallization. We present accurate predictions of the metal-insulator transition on the solid, including structural and optical properties of the molecular phase. This work was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by LDRD Grant No. 13-LW-004.

  13. Toward control of the metal-organic interfacial electronic structure in molecular electronics: a first-principles study on self-assembled monolayers of pi-conjugated molecules on noble metals.

    Science.gov (United States)

    Heimel, Georg; Romaner, Lorenz; Zojer, Egbert; Brédas, Jean-Luc

    2007-04-01

    Self-assembled monolayers (SAMs) of organic molecules provide an important tool to tune the work function of electrodes in plastic electronics and significantly improve device performance. Also, the energetic alignment of the frontier molecular orbitals in the SAM with the Fermi energy of a metal electrode dominates charge transport in single-molecule devices. On the basis of first-principles calculations on SAMs of pi-conjugated molecules on noble metals, we provide a detailed description of the mechanisms that give rise to and intrinsically link these interfacial phenomena at the atomic level. The docking chemistry on the metal side of the SAM determines the level alignment, while chemical modifications on the far side provide an additional, independent handle to modify the substrate work function; both aspects can be tuned over several eV. The comprehensive picture established in this work provides valuable guidelines for controlling charge-carrier injection in organic electronics and current-voltage characteristics in single-molecule devices.

  14. First-principles quantum molecular calculations of structural and mechanical properties of TiN/SiN{sub x} heterostructures, and the achievable hardness of the nc-TiN/SiN{sub x} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchenko, V.I., E-mail: ivash@ipms.kiev.ua [Institute of Problems of Material Science, National Academy of Science of Ukraine, Krzhyzhanosky Str. 3, 03142 Kyiv (Ukraine); Veprek, S., E-mail: stan.veprek@lrz.tum.de [Department of Chemistry, Technical University Munich, Lichtenbergstrasse 4, D-85747 Garching (Germany); Argon, A.S. [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Turchi, P.E.A. [Lawrence Livermore National Laboratory (L-352), P.O. Box 808, Livermore, CA 94551 (United States); Gorb, L. [Badger Technical Services, LLC, Vicksburg, MS 39180 (United States); U.S. Army ERDC, Vicksburg, MS 39180 (United States); Hill, F. [U.S. Army ERDC, Vicksburg, MS 39180 (United States); Leszczynski, J. [Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, MS 39217 (United States)

    2015-03-02

    TiN/SiN{sub x} heterostructures with one monolayer of the interfacial SiN{sub x} have been investigated in the framework of first-principles molecular dynamics calculations in the temperature range of 0 to 1400 K with subsequent static relaxation. The atomic configurations, thermal stability and stress–strain relations have been calculated. Among the heterostructures studied, only the TiN(111)/SiN/TiN(111) and TiN(111)/Si{sub 2}N{sub 3}/TiN(111) ones are thermally stable. Upon tensile load, decohesion occurs between the Ti−N bonds adjacent to the SiN{sub x} interfacial layer for TiN(001)/SiN/TiN(001) and TiN(111)/Si{sub 2}N{sub 3}/TiN(111) heterostructures, and inside the TiN slab for TiN(001)/Si{sub 3}N{sub 4}/TiN(001) and TiN(110)/SiN/TiN(110) ones. Upon shear, failure occurs in TiN near the interfaces in all the heterostructures, except for the TiN(001)/Si{sub 3}N{sub 4}/TiN(001) one, for which the plastic flow occurs inside the TiN slab. Based on these results we estimate the maximum achievable hardness of nc-TiN/Si{sub 3}N{sub 4} nanocomposites free of impurities to be about 170 GPa. - Highlights: • Interface stability in TiN/SiN{sub x} heterostructures at T ≤ 1400 K is studied by quantum molecular dynamics. • Ideal decohesion and shear strengths of the heterostructures have been calculated. • Achievable hardness of nc-TiN/Si{sub 3}N{sub 4}-like nanocomposites of about 170 GPa is calculated. • Experimentally achieved lower hardness is limited by flaws, such as oxygen impurities.

  15. First principles pharmacokinetic modeling: A quantitative study on Cyclosporin

    DEFF Research Database (Denmark)

    Mošat', Andrej; Lueshen, Eric; Heitzig, Martina

    2013-01-01

    renal and hepatic clearances, elimination half-life, and mass transfer coefficients, to establish drug biodistribution dynamics in all organs and tissues. This multi-scale model satisfies first principles and conservation of mass, species and momentum.Prediction of organ drug bioaccumulation...

  16. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: multi-center molecular Ornstein-Zernike self-consistent field approach.

    Science.gov (United States)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-07

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl(-) + CH3Cl → ClCH3 + Cl(-)) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  17. First-principles simulation of supercooled liquid alloys

    Energy Technology Data Exchange (ETDEWEB)

    Widom, M; Ganesh, P; Kazimirov, S; Louca, D; Mihalkovic, M [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States)], E-mail: widom@andrew.cmu.edu

    2008-03-19

    Accurate simulation of multicomponent alloys demands a first-principles approach because empirical potentials become increasingly inaccurate and difficult to develop with each additional constituent element. In contrast, the computational difficulty of simulating an alloy from first principles remains essentially independent of the number of elements. However, equilibration times increase with the number of elements, regardless of the choice of interaction, owing to the need for longer-range diffusion to adequately sample configuration space. The difficulty is exacerbated at low temperatures because of the rapid decline of diffusion constants. Here we discuss the application of replica exchange molecular dynamics to aid equilibration of supercooled alloys, and we also mention the possibility of Hamiltonian exchange molecular dynamics to accelerate equilibration at high temperatures.

  18. Photoelasticity of crystalline and amorphous silica from first principles

    OpenAIRE

    Donadio, D.; Bernasconi, M.; Tassone, F.

    2003-01-01

    Based on density-functional perturbation theory we have computed from first principles the photoelastic tensor of few crystalline phases of silica at normal conditions and high pressure (quartz, $\\alpha$-cristobalite, $\\beta$-cristobalite) and of models of amorphous silica (containig up to 162 atoms), obtained by quenching from the melt in combined classical and Car-Parrinello molecular dynamics simulations. The computational framework has also been checked on the photoelastic tensor of cryst...

  19. First-principle simulations of electronic structure in semicrystalline polyethylene

    Science.gov (United States)

    Moyassari, A.; Unge, M.; Hedenqvist, M. S.; Gedde, U. W.; Nilsson, F.

    2017-05-01

    In order to increase our fundamental knowledge about high-voltage cable insulation materials, realistic polyethylene (PE) structures, generated with a novel molecular modeling strategy, have been analyzed using first principle electronic structure simulations. The PE structures were constructed by first generating atomistic PE configurations with an off-lattice Monte Carlo method and then equilibrating the structures at the desired temperature and pressure using molecular dynamics simulations. Semicrystalline, fully crystalline and fully amorphous PE, in some cases including crosslinks and short-chain branches, were analyzed. The modeled PE had a structure in agreement with established experimental data. Linear-scaling density functional theory (LS-DFT) was used to examine the electronic structure (e.g., spatial distribution of molecular orbitals, bandgaps and mobility edges) on all the materials, whereas conventional DFT was used to validate the LS-DFT results on small systems. When hybrid functionals were used, the simulated bandgaps were close to the experimental values. The localization of valence and conduction band states was demonstrated. The localized states in the conduction band were primarily found in the free volume (result of gauche conformations) present in the amorphous regions. For branched and crosslinked structures, the localized electronic states closest to the valence band edge were positioned at branches and crosslinks, respectively. At 0 K, the activation energy for transport was lower for holes than for electrons. However, at room temperature, the effective activation energy was very low (˜0.1 eV) for both holes and electrons, which indicates that the mobility will be relatively high even below the mobility edges and suggests that charge carriers can be hot carriers above the mobility edges in the presence of a high electrical field.

  20. Corrosion protection properties and interfacial adhesion mechanism of an epoxy/polyamide coating applied on the steel surface decorated with cerium oxide nanofilm: Complementary experimental, molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods

    Science.gov (United States)

    Bahlakeh, Ghasem; Ramezanzadeh, Bahram; Saeb, Mohammad Reza; Terryn, Herman; Ghaffari, Mehdi

    2017-10-01

    The effect of cerium oxide treatment on the corrosion protection properties and interfacial interaction of steel/epoxy was studied by electrochemical impedance spectroscopy, (EIS) classical molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods X-ray photoelectron spectroscopy (XPS) was used to verify the chemical composition of the Ce film deposited on the steel. To probe the role of the curing agent in epoxy adsorption, computations were compared for an epoxy, aminoamide and aminoamide modified epoxy. Moreover, to study the influence of water on interfacial interactions the MD simulations were executed for poly (aminoamide)-cured epoxy resin in contact with the different crystallographic cerium dioxide (ceria, CeO2) surfaces including (100), (110), and (111) in the presence of water molecules. It was found that aminoamide-cured epoxy material was strongly adhered to all types of CeO2 substrates, so that binding to ceria surfaces followed the decreasing order CeO2 (111) > CeO2 (100) > CeO2 (110) in both dry and wet environments. Calculation of interaction energies noticed an enhanced adhesion to metal surface due to aminoamide curing of epoxy resin; where facets (100) and (111) revealed electrostatic and Lewis acid-base interactions, while an additional hydrogen bonding interaction was identified for CeO2 (110). Overall, MD simulations suggested decrement of adhesion to CeO2 in wet environment compared to dry conditions. Additionally, contact angle, pull-off test, cathodic delamination and salt spray analyses were used to confirm the simulation results. The experimental results in line with modeling results revealed that Ce layer deposited on steel enhanced substrate surface free energy, work of adhesion, and interfacial adhesion strength of the epoxy coating. Furthermore, decrement of adhesion of epoxy to CeO2 in presence of water was affirmed by experimental results. EIS results revealed remarkable enhancement of the corrosion

  1. Ferroelectric Phase Transitions from First Principles

    CERN Document Server

    Rabe, K M

    1995-01-01

    An effective Hamiltonian for the ferroelectric transition in $PbTiO_3$ is constructed from first-principles density-functional-theory total-energy and linear-response calculations through the use of a localized, symmetrized basis set of ``lattice Wannier functions.'' Preliminary results of Monte Carlo simulations for this system show a first-order cubic-tetragonal transition at 660 K. The involvement of the Pb atom in the lattice instability and the coupling of local distortions to strain are found to be particularly important in producing the behavior characteristic of the $PbTiO_3$ transition. A tentative explanation for the presence of local distortions experimentally observed above $T_c$ is suggested. Further applications of this method to a variety of systems and structures are proposed for first-principles study of finite-temperature structural properties in individual materials.

  2. First principles calculations for litiated manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Benedek, R; Prasad, R; Thackeray, M; Wills, J M; Yang, L H

    1998-12-22

    First principles calculations using the local-spin-density-functional theory are presented of densities of electronic states for MnO, LiMnO{sub 2} in the monoclinic and orthorhombic structures, cubic LiMn{sub 2}O{sub 4} spinel, and {lambda}-MnO{sub 2} (delithiated spinel), all in antiferromagnetic spin configurations. The changes in energy spectra as the Mn oxidation state varies between 2+ and 4+ are illustrated. Preliminary calculations for Co-doped LiMnO{sub 2} are presented, and the destabilization of a monoclinic relative to a rhombohedral structure is discussed.

  3. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  4. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  5. A First-Principles Study of Zinc Oxide Honeycomb Structures

    OpenAIRE

    Topsakal, M.; Cahangirov, S.; Bekaroglu, E.; Ciraci, S.

    2009-01-01

    We present a first-principles study of the atomic, electronic, and magnetic properties of two-dimensional (2D), single and bilayer ZnO in honeycomb structure and its armchair and zigzag nanoribbons. In order to reveal the dimensionality effects, our study includes also bulk ZnO in wurtzite, zincblende, and hexagonal structures. The stability of 2D ZnO, its nanoribbons and flakes are analyzed by phonon frequency, as well as by finite temperature ab initio molecular-dynamics calculations. 2D Zn...

  6. Primordial Black Holes from First Principles (Overview)

    Science.gov (United States)

    Lam, Casey; Bloomfield, Jolyon; Moss, Zander; Russell, Megan; Face, Stephen; Guth, Alan

    2017-01-01

    Given a power spectrum from inflation, our goal is to calculate, from first principles, the number density and mass spectrum of primordial black holes that form in the early universe. Previously, these have been calculated using the Press- Schechter formalism and some demonstrably dubious rules of thumb regarding predictions of black hole collapse. Instead, we use Monte Carlo integration methods to sample field configurations from a power spectrum combined with numerical relativity simulations to obtain a more accurate picture of primordial black hole formation. We demonstrate how this can be applied for both Gaussian perturbations and the more interesting (for primordial black holes) theory of hybrid inflation. One of the tools that we employ is a variant of the BBKS formalism for computing the statistics of density peaks in the early universe. We discuss the issue of overcounting due to subpeaks that can arise from this approach (the ``cloud-in-cloud'' problem). MIT UROP Office- Paul E. Gray (1954) Endowed Fund.

  7. Arsenic carbide monolayer: First principles prediction

    Science.gov (United States)

    Naseri, Mosayeb

    2017-11-01

    Using the first principles calculation, a new pentagonal indirect band gap semiconductor namely arsenic carbide monolayer (As2C) is predicted. The calculated cohesive energy of -5.69 eV/atom the thermodynamic stability of the predicted monolayer. Furthermore, the kinetic stability of the monolayer is examined by phonon dispersion calculation, where the absence of imaginary modes and high value of maximum phonon frequency confirms the high dynamic stability of the proposed monolayer. Investigating in the electronic properties of the As2C monolayer indicates that it is a semiconductor with an indirect band gap of 1.62 eV. Analyzing the optical properties of the As2C monolayer imply that the monolayer has high UV light absorption, however, it has an almost zero absorption in visible region of electromagnetic spectra. The specific electronic and optical properties imply that As2C monolayer may be used in new generation of nano-optoelectronic technology design.

  8. Amorphous WO3: a first-principles approach : a first-principles approach

    NARCIS (Netherlands)

    Wijs, G.A. de; Groot, R.A. de

    2001-01-01

    Results of first-principles calculations on the structure and electronic structure of amorphous WO3 are presented. The effect of non-stoichiometry is investigated. In particular, we discuss the pairing of W5+ species in oxygen-deficient films resulting in deep in-gap states and its possible

  9. Safeguards First Principle Initiative (SFPI) Cost Model

    Energy Technology Data Exchange (ETDEWEB)

    Mary Alice Price

    2010-07-11

    The Nevada Test Site (NTS) began operating Material Control and Accountability (MC&A) under the Safeguards First Principle Initiative (SFPI), a risk-based and cost-effective program, in December 2006. The NTS SFPI Comprehensive Assessment of Safeguards Systems (COMPASS) Model is made up of specific elements (MC&A plan, graded safeguards, accounting systems, measurements, containment, surveillance, physical inventories, shipper/receiver differences, assessments/performance tests) and various sub-elements, which are each assigned effectiveness and contribution factors that when weighted and rated reflect the health of the MC&A program. The MC&A Cost Model, using an Excel workbook, calculates budget and/or actual costs using these same elements/sub-elements resulting in total costs and effectiveness costs per element/sub-element. These calculations allow management to identify how costs are distributed for each element/sub-element. The Cost Model, as part of the SFPI program review process, enables management to determine if spending is appropriate for each element/sub-element.

  10. THERMODYNAMIC MODELING AND FIRST-PRINCIPLES CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P; Abrikosov, I; Burton, B; Fries, S; Grimvall, G; Kaufman, L; Korzhavyi, P; Manga, R; Ohno, M; Pisch, A; Scott, A; Zhang, W

    2005-12-15

    The increased application of quantum mechanical-based methodologies to the study of alloy stability has required a re-assessment of the field. The focus is mainly on inorganic materials in the solid state. In a first part, after a brief overview of the so-called ab initio methods with their approximations, constraints, and limitations, recommendations are made for a good usage of first-principles codes with a set of qualifiers. Examples are given to illustrate the power and the limitations of ab initio codes. However, despite the ''success'' of these methodologies, thermodynamics of complex multi-component alloys, as used in engineering applications, requires a more versatile approach presently afforded within CALPHAD. Hence, in a second part, the links that presently exist between ab initio methodologies, experiments, and CALPHAD approach are examined with illustrations. Finally, the issues of dynamical instability and of the role of lattice vibrations that still constitute the subject of ample discussions within the CALPHAD community are revisited in the light of the current knowledge with a set of recommendations.

  11. Metal decorated graphdiyne: A first principle study

    Science.gov (United States)

    Nayebi, Payman; Zaminpayma, Esmaeil

    2017-09-01

    In this work, we performed first principles calculations based on self-consistent charge density functional tight-binding to investigate mechanical and electronic properties of the optimized graphdiyne sheet, nanoribbons and transition metal decorated with Ag, Fe and Co atoms in the different sites. Then we calculated electronic properties of the graphdiyne sheet under uniaxial elastic strain in two different crystal directions. It is shown that the carbon bond length values for the graphdiyne structure are agreeable with experimental and other theoretical values. Our results show that the charge transferred to the graphdiyne from Ag and Fe atoms but to the Co decorated charge transferred to the Co atom from the graphdiyne. From the results, it can be seen that the graphdiyne is a direct semiconductor with doubly degenerated for both the valence band maximum and the conduction band minimum in the 6C hole site. Also, by Metal decorated of the graphdiyne, the structures become also direct semiconductor for the Ag decorated and indirect for Co and Fe decorated for the 6C- hole, top and bridge sites while the structure have metallic behavior for the 18C- hole site. Our results from the band structure of the GDY nanoribbons with the size of N = 1, 2, 3 and 4, indicate that all of them are nonzero band gaps at the Γ point. It can be seen that the energy gap decreases with increasing of nanoribbons size. Finally, we found that the gap energy increase with applying strain and also the structure remain direct semiconductor.

  12. First-principles electrostatic potentials for reliable alignment at interfaces and defects

    Science.gov (United States)

    Sundararaman, Ravishankar; Ping, Yuan

    2017-03-01

    The alignment of electrostatic potential between different atomic configurations is necessary for first-principles calculations of band offsets across interfaces and formation energies of charged defects. However, strong oscillations of this potential at the atomic scale make alignment challenging, especially when atomic geometries change considerably from bulk to the vicinity of defects and interfaces. We introduce a method to suppress these strong oscillations by eliminating the deep wells in the potential at each atom. We demonstrate that this method considerably improves the system-size convergence of a wide range of first-principles predictions that depend on the alignment of electrostatic potentials, including band offsets at solid-liquid interfaces, and formation energies of charged vacancies in solids and at solid surfaces in vacuum. Finally, we use this method in conjunction with continuum solvation theories to investigate energetics of charged vacancies at solid-liquid interfaces. We find that for the example of an NaCl (001) surface in water, solvation reduces the formation energy of charged vacancies by 0.5 eV: calculation of this important effect was previously impractical due to the computational cost in molecular-dynamics methods.

  13. Unconventional Current Scaling and Edge Effects for Charge Transport through Molecular Clusters

    DEFF Research Database (Denmark)

    Obersteiner, Veronika; Huhs, Georg; Papior, Nick Rübner

    2017-01-01

    -size islands. On the basis of first-principles charge-transport simulations, we explain why the scaling of the conductivity of a junction has to be highly non-linear in the number of molecules it contains. Moreover, transport through molecular clusters is found to be highly inhomogeneous with pronounced edge...... effects determined by molecules in locally different electrostatic environments. These effects are most pronounced for comparably small clusters, but electrostatic considerations show that they prevail also for more extended systems....

  14. Uranium phase diagram from first principles

    Science.gov (United States)

    Yanilkin, Alexey; Kruglov, Ivan; Migdal, Kirill; Oganov, Artem; Pokatashkin, Pavel; Sergeev, Oleg

    2017-06-01

    The work is devoted to the investigation of uranium phase diagram up to pressure of 1 TPa and temperature of 15 kK based on density functional theory. First of all the comparison of pseudopotential and full potential calculations is carried out for different uranium phases. In the second step, phase diagram at zero temperature is investigated by means of program USPEX and pseudopotential calculations. Stable and metastable structures with close energies are selected. In order to obtain phase diagram at finite temperatures the preliminary selection of stable phases is made by free energy calculation based on small displacement method. For remaining candidates the accurate values of free energy are obtained by means of thermodynamic integration method (TIM). For this purpose quantum molecular dynamics are carried out at different volumes and temperatures. Interatomic potentials based machine learning are developed in order to consider large systems and long times for TIM. The potentials reproduce the free energy with the accuracy 1-5 meV/atom, which is sufficient for prediction of phase transitions. The equilibrium curves of different phases are obtained based on free energies. Melting curve is calculated by modified Z-method with developed potential.

  15. First Principles Investigation of Hydrogen Physical Adsorption on Graphynes' layers

    CERN Document Server

    Bartolomei, Massimiliano; Giorgi, Giacomo

    2015-01-01

    Graphynes are 2D porous structures deriving from graphene featuring triangular and regularly distributed subnanometer pores, which may be exploited to host small gaseous species. First principles adsorption energies of molecular hydrogen (H2) on graphene, graphdiyne and graphtriyne molecular prototypes are obtained at the MP2C level of theory. First, a single layer is investigated and it is found that graphynes are more suited than graphene for H2 physical adsorption since they provide larger binding energies at equilibrium distances much closer to the 2D plane. In particular, for graphtriyne a flat minimum located right in the geometric center of the pore is identified. A novel graphite composed of graphtriyne stacked sheets is then proposed and an estimation of its 3D arrangement is obtained at the DFT level of theory. In contrast to pristine graphite this new carbon material allow both H2 intercalation and out-of-plane diffusion by exploiting the larger volume provided by its nanopores. Related H2 binding ...

  16. The high pressure structure and equation of state of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) up to 20 GPa: X-ray diffraction measurements and first principles molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Stavrou, Elissaios, E-mail: stavrou1@llnl.gov; Riad Manaa, M., E-mail: manaa1@llnl.gov; Zaug, Joseph M.; Kuo, I-Feng W.; Pagoria, Philip F.; Crowhurst, Jonathan C.; Armstrong, Michael R. [Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, P.O. Box 808 L-350, Livermore, California 94550 (United States); Kalkan, Bora [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); Advanced Materials Research Laboratory, Department of Physics Engineering, Hacettepe University 06800, Beytepe, Ankara (Turkey)

    2015-10-14

    Recent theoretical studies of 2,6-diamino-3,5-dinitropyrazine-1-oxide (C{sub 4}H{sub 4}N{sub 6}O{sub 5} Lawrence Livermore Molecule No. 105, LLM-105) report unreacted high pressure equations of state that include several structural phase transitions, between 8 and 50 GPa, while one published experimental study reports equation of state (EOS) data up to a pressure of 6 GPa with no observed transition. Here we report the results of a synchrotron-based X-ray diffraction study and also ambient temperature isobaric-isothermal atomistic molecular dynamics simulations of LLM-105 up to 20 GPa. We find that the ambient pressure phase remains stable up to 20 GPa; there is no indication of a pressure induced phase transition. We do find a prominent decrease in b-axis compressibility starting at approximately 13 GPa and attribute the stiffening to a critical length where inter-sheet distance becomes similar to the intermolecular distance within individual sheets. The ambient temperature isothermal equation of state was determined through refinements of measured X-ray diffraction patterns. The pressure-volume data were fit using various EOS models to yield bulk moduli with corresponding pressure derivatives. We find very good agreement between the experimental and theoretically derived EOS.

  17. The high pressure structure and equation of state of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) up to 20 GPa: X-ray diffraction measurements and first principles molecular dynamics simulations

    Science.gov (United States)

    Stavrou, Elissaios; Riad Manaa, M.; Zaug, Joseph M.; Kuo, I.-Feng W.; Pagoria, Philip F.; Kalkan, Bora; Crowhurst, Jonathan C.; Armstrong, Michael R.

    2015-10-01

    Recent theoretical studies of 2,6-diamino-3,5-dinitropyrazine-1-oxide (C4H4N6O5 Lawrence Livermore Molecule No. 105, LLM-105) report unreacted high pressure equations of state that include several structural phase transitions, between 8 and 50 GPa, while one published experimental study reports equation of state (EOS) data up to a pressure of 6 GPa with no observed transition. Here we report the results of a synchrotron-based X-ray diffraction study and also ambient temperature isobaric-isothermal atomistic molecular dynamics simulations of LLM-105 up to 20 GPa. We find that the ambient pressure phase remains stable up to 20 GPa; there is no indication of a pressure induced phase transition. We do find a prominent decrease in b-axis compressibility starting at approximately 13 GPa and attribute the stiffening to a critical length where inter-sheet distance becomes similar to the intermolecular distance within individual sheets. The ambient temperature isothermal equation of state was determined through refinements of measured X-ray diffraction patterns. The pressure-volume data were fit using various EOS models to yield bulk moduli with corresponding pressure derivatives. We find very good agreement between the experimental and theoretically derived EOS.

  18. Materials corrosion and protection from first principles

    Science.gov (United States)

    Johnson, Donald F.

    suggests that alloying Fe with Si can be an effective means to limit uptake of these elements into steel. Spallation of protective layers on jet engine turbine blades is a problem that arises during thermal cycling. An alternative thermal barrier coating system involving MoSi2 is considered and calculations predict strong adhesion at the MoSi2/Ni interface. The interfacial bonding structure reveals a mixture of metallic and covalent cross-interface bonds. The adhesion energy is similar across all three MoSi2 facets studied. Upon exposure to oxygen, this MoSi2 alloy will form a strongly adhered oxide scale, which in turn may strongly adhere the heat shield material (yttria-stabilized zirconia), thereby potentially extending the lifetime of the barrier coating. Lastly, the interaction of hydrogen isotopes (fusion fuel) with tungsten (a proposed fusion reactor wall material) is examined. Exothermic dissociative adsorption is predicted, along with endothermic absorption and dissolution. Surface-to-subsurface diffusion energy barriers for H incorporation into bulk W are large and the corresponding outward diffusion barriers are very small. In bulk W, deep energetic traps (trapping multiple H atoms) are predicted at vacancy defects. Thus, under high neutron fluxes that will produce vacancies in W, H are predicted to collect at these vacancies. In turn, locally high concentrations of H at such vacancies will enhance decohesion of bulk W, consistent with observed blistering under deuterium implantation. Limiting vacancy formation may be key to the survival of W as a fusion reactor wall material.

  19. A first-principles approach to finite temperature elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Wang, J J; Zhang, H; Manga, V R; Shang, S L; Chen, L-Q; Liu, Z-K [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-06-09

    A first-principles approach to calculating the elastic stiffness coefficients at finite temperatures was proposed. It is based on the assumption that the temperature dependence of elastic stiffness coefficients mainly results from volume change as a function of temperature; it combines the first-principles calculations of elastic constants at 0 K and the first-principles phonon theory of thermal expansion. Its applications to elastic constants of Al, Cu, Ni, Mo, Ta, NiAl, and Ni{sub 3}Al from 0 K up to their respective melting points show excellent agreement between the predicted values and existing experimental measurements.

  20. Predicting catalysis: understanding ammonia synthesis from first-principles calculations.

    Science.gov (United States)

    Hellman, A; Baerends, E J; Biczysko, M; Bligaard, T; Christensen, C H; Clary, D C; Dahl, S; van Harrevelt, R; Honkala, K; Jonsson, H; Kroes, G J; Luppi, M; Manthe, U; Nørskov, J K; Olsen, R A; Rossmeisl, J; Skúlason, E; Tautermann, C S; Varandas, A J C; Vincent, J K

    2006-09-14

    Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state theory with or without tunneling corrections, and quantum dynamics) to a range of relevant elementary reaction steps, such as N(2) dissociation, H(2) dissociation, and hydrogenation of the intermediate reactants. A complete kinetic model based on the most relevant elementary steps can be established for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations. Furthermore, our studies provide new insight into several related fields, for instance, gas-phase and electrochemical ammonia synthesis. The success of predicting the outcome of a catalytic reaction from first-principles calculations supports our point of view that, in the future, theory will be a fully integrated tool in the search for the next generation of catalysts.

  1. Exact results and open questions in first principle functional RG

    Science.gov (United States)

    Le Doussal, Pierre

    2010-01-01

    Some aspects of the functional RG (FRG) approach to pinned elastic manifolds (of internal dimension d) at finite temperature T > 0 are reviewed and reexamined in this much expanded version of Le Doussal (2006) [67]. The particle limit d = 0 provides a test for the theory: there the FRG is equivalent to the decaying Burgers equation, with viscosity ν ˜ T-both being formally irrelevant. An outstanding question in FRG, i.e. how temperature regularizes the otherwise singular flow of T = 0 FRG, maps to the viscous layer regularization of inertial range Burgers turbulence (i.e. to the construction of the inviscid limit). Analogy between Kolmogorov scaling and FRG cumulant scaling is discussed. First, multi-loop FRG corrections are examined and the direct loop expansion at T > 0 is shown to fail already in d = 0, a hierarchy of ERG equations being then required (introduced in Balents and Le Doussal (2005) [36]). Next we prove that the FRG function R( u) and higher cumulants defined from the field theory can be obtained for any d from moments of a renormalized potential defined in an sliding harmonic well. This allows to measure the fixed point function R( u) in numerics and experiments. In d = 0 the beta function (of the inviscid limit) is obtained from first principles to four loop. For Sinai model (uncorrelated Burgers initial velocities) the ERG hierarchy can be solved and the exact function R( u) is obtained. Connections to exact solutions for the statistics of shocks in Burgers and to ballistic aggregation are detailed. A relation is established between the size distribution of shocks and the one for droplets. A droplet solution to the ERG functional hierarchy is found for any d, and the form of R( u) in the thermal boundary layer is related to droplet probabilities. These being known for the d = 0 Sinai model the function R( u) is obtained there at any T. Consistency of the ɛ=4-d expansion in one and two loop FRG is studied from first principles, and connected to

  2. ELECTRON-ION CORRELATION IN LIQUID-METALS FROM FIRST PRINCIPLES - LIQUID MG AND LIQUID PI

    NARCIS (Netherlands)

    DEWIJS, GA; PASTORE, G; SELLONI, A; VANDERLUGT, W

    1995-01-01

    We present a theoretical determination of electron-ion pair correlation functions g(ie) in liquid Mg and liquid Bi, two systems with widely different electronic and cohesive properties. Our calculations are based on first-principles molecular-dynamics simulations, which provide an accurate and

  3. Interaction of H2 with a Double-Walled Armchair Nanotube by First-Principles Calculations

    NARCIS (Netherlands)

    Costanzo, F.; Ensing, B.; Scipioni, R.; Ancilotto, F.; Silvestrelli, P.L.

    2014-01-01

    We have studied, by first-principles methods, the interaction of molecular hydrogen with a double-walled (2,10) carbon nanotube (DWCNT). This combination of the smallest possible diameter for the inner nanotube with a significantly larger outer tube allows for substantial space between the nanotube

  4. First-principles structural design of superhard materials

    Science.gov (United States)

    Zhang, Xinxin; Wang, Yanchao; Lv, Jian; Zhu, Chunye; Li, Qian; Zhang, Miao; Li, Quan; Ma, Yanming

    2013-03-01

    We reported a developed methodology to design superhard materials for given chemical systems under external conditions (here, pressure). The new approach is based on the CALYPSO algorithm and requires only the chemical compositions to predict the hardness vs. energy map, from which the energetically preferable superhard structures are readily accessible. In contrast to the traditional ground state structure prediction method where the total energy was solely used as the fitness function, here we adopted hardness as the fitness function in combination with the first-principles calculation to construct the hardness vs. energy map by seeking a proper balance between hardness and energy for a better mechanical description of given chemical systems. To allow a universal calculation on the hardness for the predicted structure, we have improved the earlier hardness model based on bond strength by applying the Laplacian matrix to account for the highly anisotropic and molecular systems. We benchmarked our approach in typical superhard systems, such as elemental carbon, binary B-N, and ternary B-C-N compounds. Nearly all the experimentally known and most of the earlier theoretical superhard structures have been successfully reproduced. The results suggested that our approach is reliable and can be widely applied into design of new superhard materials.

  5. First-principles study of water on Cu (110) surface

    Science.gov (United States)

    Ren, Jun; Meng, Sheng

    2009-03-01

    The persistent demand for cheaper and high efficient catalysts in industrial chemical synthesis, such as ammonia, and in novel energy applications, hydrogen generation and purification in fuel cells motivated us to study the fundamental interaction involved in water-Cu system, with an intension to examine Cu as a possible competitive candidate for cheaper catalysts. Water structure and dissociation kinetics on a model open metal surface: Cu (110), have been investigated in detail based on first-principles electronic structure calculations. We revealed that in both monomer and overlayer forms, water adsorbs molecularly, with a high tendency for diffusion and/or desorption rather than dissociation on clean surfaces at low temperature. With the increase of the water coverage on the Cu (110) surface, the H-bond pattern lowers the dissociation barrier efficiently. More importantly, if the water molecule is dissociated, the hydrogen atoms can diffuse freely along the [110] direction, which is very useful in the hydrogen collection. In addition, we extended to study water on other noble metal (110) surfaces. The result confirms that Cu (110) is the borderline between intact and dissociative adsorption, differing in energy by only 0.08 eV. This may lead to promising applications in hydrogen generation and fuel cells.

  6. First-Principles, Physically Motivated Force Field for the Ionic Liquid [BMIM][BF4].

    Science.gov (United States)

    Choi, Eunsong; McDaniel, Jesse G; Schmidt, J R; Yethiraj, Arun

    2014-08-07

    Molecular simulations play an important role in establishing structure-property relations in complex fluids such as room-temperature ionic liquids. Classical force fields are the starting point when large systems or long times are of interest. These force fields must be not only accurate but also transferable. In this work, we report a physically motivated force field for the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) based on symmetry-adapted perturbation theory. The predictions (from molecular dynamics simulations) of the liquid density, enthalpy of vaporization, diffusion coefficients, viscosity, and conductivity are in excellent agreement with experiment, with no adjustable parameters. The explicit energy decomposition inherent in the force field enables a quantitative analysis of the important physical interactions in these systems. We find that polarization is crucial and there is little evidence of charge transfer. We also argue that the often used procedure of scaling down charges in molecular simulations of ionic liquids is unphysical for [BMIM][BF4]. Because all intermolecular interactions in the force field are parametrized from first-principles, we anticipate good transferability to other ionic liquid systems and physical conditions.

  7. FIRST-PRINCIPLES MOLECULAR-DYNAMICS SIMULATION OF LIQUID CSPB

    NARCIS (Netherlands)

    DEWIJS, GA; PASTORE, G; SELLONI, A; VANDERLUGT, W

    1995-01-01

    Many alkali-post-transition group IV alloy systems exhibit clearly defined equiatomic compounds together with a pronounced intermediate range ordering, indicated by a first sharp diffraction peak at approximate to 0.9 Angstrom(-1) These phenomena have been explained assuming that tetrahedral group

  8. A First-Principle Kinetic Theory of Meteor Plasma Formation

    Science.gov (United States)

    Dimant, Yakov; Oppenheim, Meers

    2015-11-01

    Every second millions of tiny meteoroids hit the Earth from space, vast majority too small to observe visually. However, radars detect the plasma they generate and use the collected data to characterize the incoming meteoroids and the atmosphere in which they disintegrate. This diagnostics requires a detailed quantitative understanding of formation of the meteor plasma. Fast-descending meteoroids become detectable to radars after they heat due to collisions with atmospheric molecules sufficiently and start ablating. The ablated material then collides into atmospheric molecules and forms plasma around the meteoroid. Reflection of radar pulses from this plasma produces a localized signal called a head echo. Using first principles, we have developed a consistent collisional kinetic theory of the near-meteoroid plasma. This theory shows that the meteoroid plasma develops over a length-scale close to the ion mean free path with a non-Maxwellian velocity distribution. The spatial distribution of the plasma density shows significant deviations from a Gaussian law usually employed in head-echo modeling. This analytical model will serve as a basis for more accurate quantitative interpretation of the head echo radar measurements. Work supported by NSF Grant 1244842.

  9. Insights into the ammonia synthesis from first-principles

    DEFF Research Database (Denmark)

    Hellmann, A.; Honkala, Johanna Karoliina; Remediakis, Ioannis

    2006-01-01

    -properties, such as apparent activation energies and reaction orders, are calculated from the first-principles model. Our analysis shows that the reaction order of N-2 is unity under all considered conditions, whereas the reaction orders of H-2 and NH3 depend on reaction conditions. (c) 2006 Elsevier B.V. All rights reserved.......A new set of measurements is used to further test a recently published first-principles model for the ammonia (NH3) synthesis on an unpromoted Ru-based catalyst. A direct comparison shows an overall good agreement in NH3 productivity between the model and the experiment. In addition, macro...

  10. Prediction on technetium triboride from first-principles calculations

    Science.gov (United States)

    Miao, Xiaojia; Xing, Wandong; Meng, Fanyan; Yu, Rong

    2017-02-01

    Taking the Tc-B binary system as an example, here we report the first-principles prediction on new phases of technetium borides, TcB3, which has an unprecedented stoichiometry. Crystal structures, phase stability, electronic properties and mechanical properties of TcB3 have been investigated using first-principles calculations. The hexagonal P 6 bar m 2 structure (No.187) TcB3 with a high value of hardness (29 GPa) is energetically stable against decomposition into other compounds under pressures above 4 GPa, indicating that TcB3 can be synthesized above this pressure.

  11. Novel magneto-electric multiferroics from first-principles calculations

    Science.gov (United States)

    Varignon, Julien; Bristowe, Nicholas C.; Bousquet, Éric; Ghosez, Philippe

    2015-03-01

    Interest in first-principles calculations within the multiferroic community has been rapidly on the rise over the last decade. Initially considered as a powerful support to explain experimentally observed behaviours, the trend has evolved and, nowadays, density functional theory calculations have become also an essential predicting tool for identifying original rules to achieve multiferroism and design new magneto-electric compounds. This chapter aims at highlighting the key advances in the field of multiferroics, to which first-principles methods have contributed significantly. The essential theoretical developments that made this research possible are also briefly presented.

  12. Towards first principles modeling of electrochemical electrode-electrolyte interfaces

    DEFF Research Database (Denmark)

    Nielsen, Malte; Björketun, Mårten; Hansen, Martin Hangaard

    2015-01-01

    We present a mini-perspective on the development of first principles modeling of electrochemical interfaces. We show that none of the existing methods deal with all the thermodynamic constraints that the electrochemical environment imposes on the structure of the interface. We present two...

  13. First principles modeling of magnetic random access memory devices (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Butler, W.H.; Zhang, X.; Schulthess, T.C.; Nicholson, D.M.; Oparin, A.B. [Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); MacLaren, J.M. [Department of Physics, Tulane University, New Orleans, Louisiana 70018 (United States)

    1999-04-01

    Giant magnetoresistance (GMR) and spin-dependent tunneling may be used to make magnetic random access memory devices. We have applied first-principles based electronic structure techniques to understand these effects and in the case of GMR to model the transport properties of the devices. {copyright} {ital 1999 American Institute of Physics.}

  14. FIRST PRINCIPLES DERIVATION OF A STRESS FUNCTION FOR ...

    African Journals Online (AJOL)

    In this work, a stress function is derived from first principles to describe the behaviour of three dimensional axially symmetric elasticity problems involving linear elastic, isotropic homogeneous materials. In the process, the fifteen governing partial differential equations of linear isotropic elasticity were reduced to the solution ...

  15. first principles derivation of a stress function for axially symmetric

    African Journals Online (AJOL)

    HOD

    In this work, a stress function is derived from first principles to describe the behaviour of three dimensional axially symmetric elasticity problems involving linear elastic, isotropic homogeneous materials. In the process, the fifteen governing partial differential equations of linear isotropic elasticity were reduced to the solution ...

  16. Alternative First Principle Approach for Determination of Elements of ...

    African Journals Online (AJOL)

    Stiffness coefficients which in essence are elements of stiffness matrix of a uniform beam element are derived in this work from first principles using elastic curve equation and initial value method. The obtained initial value solution enables exact values of stiffness coefficients, fixed end moments and shears as well as ...

  17. First-principles electronic-band calculations on organic conductors

    Directory of Open Access Journals (Sweden)

    Shoji Ishibashi

    2009-01-01

    Full Text Available Predicting electronic-band structures is a key issue in understanding the properties of materials or in materials design. In this review article, application examples of first-principles calculations, which are not based on adjustable empirical parameters, to study electronic structures of organic conductors are described.

  18. First-principles scattering matrices for spin transport

    NARCIS (Netherlands)

    Xia, K.; Zwierzycki, M.; Talanana, M.; Bauer, G.E.W.; Kelly, Paul J.

    2006-01-01

    Details are presented of an efficient formalism for calculating transmission and reflection matrices from first principles in layered materials. Within the framework of spin density functional theory and using tight-binding muffin-tin orbitals, scattering matrices are determined by matching the wave

  19. PECASE - First Principles Modeling of Mechanics and Chemistry of Materials

    Science.gov (United States)

    2013-01-18

    at the atomistic and electronic- structure levels. Also, electrochemistry coupled with mechanics dictates the microstructural evolution and service...life of many materials, and underlies problems such as stress- corrosion cracking and battery cyclability. While atomistic and first-principles modeling...electrochemical tests: in situ TEM experiments and modeling - Electrochemistry coupled with mechanics dictates the microstructural evolution and

  20. FIRST-PRINCIPLES APPROACHES TO THE STRUCTURE AND REACTIVITY OF ATMOSPHERICALLY RELEVANT AQUESOUS INTERFACES

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, C; Kuo, I W

    2005-06-08

    successfully applied to studying the complex problems put forth by atmospheric chemists. To date, the majority of the molecular models of atmospherically relevant interfaces have been comprised of two genres of molecular models. The first is based on empirical interaction potentials. The use of an empirical interaction potential suffers from at least two shortcomings. First, empirical potentials are usually fit to reproduce bulk thermodynamic states, or gas phase spectroscopic data. Thus, without the explicit inclusion of charge transfer, it is not at all obvious that empirical potentials can faithfully reproduce the structure at a solid-vapor, or liquid-vapor interface where charge rearrangement is known to occur (see section 5). One solution is the empirical inclusion of polarization effects. These models are certainly an improvement, but still cannot offer insight into charge transfer processes and are usually difficult to parameterize. The other shortcoming of empirical models is that, in general, they cannot describe bond-making/breaking events, i.e. chemistry. In order to address chemistry one has to consider an ab initio (to be referred to as first-principles throughout the remaining text) approach to molecular modeling that explicitly treats the electronic degrees of freedom. First-principles modeling also give a direct link to spectroscopic data and chemistry, but at a large computational cost. The bottle-neck associated with first-principles modeling is usually determined by the level of electronic structure theory that one chooses to study a particular problem. High-level first-principles approaches, such as MP2, provide accurate representation of the electronic degrees of freedom but are only computationally tractable when applied to small system sizes (i.e. 10s of atoms). Nevertheless, this type of modeling has been extremely useful in deducing reaction mechanisms of atmospherically relevant chemistry that will be discussed in this review (see section 4). However

  1. Diffusion in thorium carbide: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM–CNEA, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina)

    2015-12-15

    The prediction of the behavior of Th compounds under irradiation is an important issue for the upcoming Generation-IV nuclear reactors. The study of self-diffusion and hetero-diffusion is a central key to fulfill this goal. As a first approach, we obtained, by means of first-principles methods, migration and activation energies of Th and C atoms self-diffusion and diffusion of He atoms in ThC. We also calculate diffusion coefficients as a function of temperature. - Highlights: • Diffusion in thorium carbide by means of first-principles calculations is studied. • The most favorable migration event is a C atom moving through a C-vacancy aided path. • Calculated C atoms diffusion coefficients agree very well with the experimental data. • For He, the energetically most favorable migration path is through Th-vacancies.

  2. User Authorization at the Molecular Scale.

    Science.gov (United States)

    Lustgarten, Omer; Motiei, Leila; Margulies, David

    2017-07-05

    Electronic user authorization systems help us maintain our privacy in many aspects of everyday life. However, the increasing difficulty to secure access and/or information digitally has inspired chemists to devise alternative, molecular approaches, in which users are identified by chemical means. The potential advantages of using molecular user authentication systems over conventional electronic devices are their versatility and unusual operating principles, which complicate replicating and, consequently, breaking into molecular security devices. Their molecular scale is another unique property that enables hiding such systems and, consequently, applying steganography as an additional layer of protection. Although the area of molecular-based user authorization is still in its infancy, the development of various molecular keypad locks and, more recently, a password-protected molecular cryptographic machine, indicate the possibility of protecting information at the molecular scale. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hafnium binary alloys from experiments and first principles

    OpenAIRE

    Levy, Ohad; Hart, Gus L. W.; Curtarolo, Stefano

    2009-01-01

    Despite the increasing importance of hafnium in numerous technological applications, experimental and computational data on its binary alloys is sparse. In particular, data is scant on those binary systems believed to be phase separating. We performed a comprehensive study of 44 hafnium binary systems with alkali metals, alkaline earths, transition metals and metals, using high-throughput first principles calculations. These computations predict novel unsuspected compounds in six binary syste...

  4. Thermal Transport in Novel Semiconductors and Nanomaterials from First Principles

    Science.gov (United States)

    2016-03-29

    borophene , a new boron-based 2D crystal that has been recently fabricated. Below, the detailed accomplishments of this research project are described...2D system, large errors in the thermal conductivity can occur. We have illustrated this for the case of borophene , a boron-based 2D material, as...discussed in project 4 below. 4) Ab initio study of phonon thermal transport in graphene and borophene We have performed first principles calculations

  5. Mechanical responses of borophene sheets: A first-principles study

    OpenAIRE

    Mortazavi, B; Rahaman, O; Dianat, A; Rabczuk, T

    2017-01-01

    Recent experimental advances for the fabrication of various borophene sheets introduced new structures with a wide prospect of applications. Borophene is the boron atoms analogue of graphene. Borophene exhibits various structural polymorphs all of which are metallic. In this work, we employed first-principles density functional theory calculations to investigate the mechanical properties of five different single-layer borophene sheets. In particular, we analyzed the effect of loading directio...

  6. Spin filtering in transition-metal phthalocyanine molecules from first principles

    Science.gov (United States)

    Niu, Li; Wang, Huan; Bai, Lina; Rong, Ximing; Liu, Xiaojie; Li, Hua; Yin, Haitao

    2017-08-01

    Using first-principles calculations based on density functional theory and the nonequilibrium Green's function formalism, we studied the spin transport through metal-phthalocyanine (MPc, M=Ni, Fe, Co, Mn, Cr) molecules connected to aurum nanowire electrodes. We found that the MnPc, FePc, and CrPc molecular devices exhibit a perfect spin filtering effect compared to CoPc and NiPc. Moreover, negative differential resistance appears in FePc molecular devices. The transmission coefficients at different bias voltages were further presented to understand this phenomenon. These results would be useful in designing devices for future nanotechnology.

  7. First-Principles View on Photoelectrochemistry: Water-Splitting as Case Study

    Directory of Open Access Journals (Sweden)

    Anders Hellman

    2017-06-01

    Full Text Available Photoelectrochemistry is truly an interdisciplinary field; a natural nexus between chemistry and physics. In short, photoelectrochemistry can be divided into three sub-processes, namely (i the creation of electron-hole pairs by light absorption; (ii separation/transport on the charge carriers and finally (iii the water splitting reaction. The challenge is to understand all three processes on a microscopic scale and, perhaps even more importantly, how to combine the processes in an optimal way. This review will highlight some first-principles insights to the above sub-processes, in~particular as they occur using metal oxides. Based on these insights, challenges and future directions of first-principles methods in the field of photoelectrochemistry will be discussed.

  8. First-principles prediction of liquid/liquid interfacial tension

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Bennetzen, M.V.; Klamt, A.

    2014-01-01

    The interfacial tension between two liquids is the free energy per unit surface area required to create that interface. Interfacial tension is a determining factor for two-phase liquid behavior in a wide variety of systems ranging from water flooding in oil recovery processes and remediation...... of groundwater aquifers contaminated by chlorinated solvents to drug delivery and a host of industrial processes. Here, we present a model for predicting interfacial tension from first principles using density functional theory calculations. Our model requires no experimental input and is applicable to liquid...

  9. Electronic structure and ionicity of actinide oxides from first principles

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, which...... for AO2 and A2O3 is found to follow the stoichiometry, namely, corresponding to A4+ ions in the dioxide and A3+ ions in the sesquioxides. In contrast, the A2+ ionic configuration is not favorable in the monoxides, which therefore become metallic. The energetics of the oxidation and reduction...

  10. Engineering drawing from first principles using AutoCAD

    CERN Document Server

    Maguire, Dennis E

    1998-01-01

    Engineering Drawing From First Principles is a guide to good draughting for students of engineering who need to learn how to produce technically accurate and detailed designs to British and International Standards. Written by Dennis Maguire, an experienced author and City and Guilds chief examiner, this text is designed for use on Further Education and University courses where a basic understanding of draughtsmanship and CAD is necessary. Although not written as an AutoCAD tutor, the book will be a useful introduction to good CAD practice.Part of the Revision and Self-Assessmen

  11. First-principles study of Frenkel pair recombination in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shi-Yao; Jin, Shuo, E-mail: jinshuo@buaa.edu.cn; Li, Yu-Hao; Zhou, Hong-Bo; Zhang, Ying; Lu, Guang-Hong

    2017-02-15

    The recombination of one Frenkel pair in tungsten has been investigated through first-principles simulation. Two different recombination types have been identified: instantaneous and thermally activated. The small recombination barriers for thermally activated recombination cases indicate that recombination can occur easily with a slightly increased temperature. For both of the two recombination types, recombination occurs through the self-interstitial atom moving towards the vacancy. The recombination process can be direct or through replacement sequences, depending on the vertical distance between the vacancy and the 〈1 1 1〉 line of self-interstitial atom pair.

  12. First-principles study of Frenkel pair recombination in tungsten

    Science.gov (United States)

    Qin, Shi-Yao; Jin, Shuo; Li, Yu-Hao; Zhou, Hong-Bo; Zhang, Ying; Lu, Guang-Hong

    2017-02-01

    The recombination of one Frenkel pair in tungsten has been investigated through first-principles simulation. Two different recombination types have been identified: instantaneous and thermally activated. The small recombination barriers for thermally activated recombination cases indicate that recombination can occur easily with a slightly increased temperature. For both of the two recombination types, recombination occurs through the self-interstitial atom moving towards the vacancy. The recombination process can be direct or through replacement sequences, depending on the vertical distance between the vacancy and the line of self-interstitial atom pair.

  13. First principle study of PEO-AgI polymer systems

    Science.gov (United States)

    Rao, B. Keshav; Verma, Mohan L.

    2017-07-01

    First principle calculations based on density functional theory is performed to analyze cation (Ag+) conductivity in polyethylene oxide (PEO) based systems. The relaxed polymer structures are simulated, bond lengths and the charge density distributions around interacting atoms provides the strong bonding nature between higher electro-negative oxygen and silver atoms. Projected density of states and density of states explain s-p hybridization between orbitals, to increase in cation concentration in polymer systems, to reduce in the forbidden energy gap and to increase the ionic conductivity due to gradual increase the number of dispersing AgI molecules in polymer systems.

  14. Silicon adsorption in defective carbon nanotubes: a first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L B da [Departamento de Fisica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Fagan, Solange B [Area de Ciencias Naturais e Tecnologicas, Centro Universitario Franciscano, 97010-032, Santa Maria, RS (Brazil); Mota, R [Departamento de Fisica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Fazzio, A [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil)

    2006-08-28

    The electronic and structural properties of an (8, 0) single-walled carbon nanotube (SWNT) with a single vacancy and interacting with a Si atom are studied using first principles calculations based on the density-functional theory. Initially, the Si atom is positioned in the site above the vacancy, with its position fixed until the nanotube geometry is fully relaxed. After that, the Si atom approaches the tube and it is shown that one C atom is displaced outwards forming a bump. The final configuration, as well as each step of the process, is studied in detail and the resulting band structures and the total charge densities are systematically analysed.

  15. Comparative study of Ti and Ni clusters from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B; Lee, G W

    2007-08-20

    Icosahedral clusters in Ti and Ni are studied with first-principles density functional calculations. We find significant distortion on the Ti icosahedron caused by the strong interaction between surface atoms on the icosahedron but not between the center atom and surface atoms, whereas no such distortion is observed on Ni clusters. In addition, distortion becomes more severe when atoms are added to the Ti13 cluster resulting in short bonds. Such distorted icosahedra having short bonds are essentially to explain the structure factor of Ti liquid obtained in experiment.

  16. First principles pseudopotential calculations on aluminum and aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, J.W.; Chetty, N.; Marr, R.B.; Narasimhan, S.; Pasciak, J.E.; Peierls, R.F.; Weinert, M.

    1993-12-31

    Recent advances in computational techniques have led to the possibility of performing first principles calculations of the energetics of alloy formation on systems involving several hundred atoms. This includes impurity concentrations in the 1% range as well as realistic models of disordered materials (including liquids), vacancies, and grain boundaries. The new techniques involve the use of soft, fully nonlocal pseudopotentials, iterative diagonalization, and parallel computing algorithms. This approach has been pioneered by Car and Parrinello. Here the authors give a review of recent results using parallel and serial algorithms on metallic systems including liquid aluminum and liquid sodium, and also new results on vacancies in aluminum and on aluminum-magnesium alloys.

  17. Electrical properties of improper ferroelectrics from first principles

    OpenAIRE

    Stengel, Massimiliano; Fennie, Craig J.; Ghosez, Philippe

    2012-01-01

    We study the interplay of structural and polar distortions in hexagonal YMnO3 and short-period PbTiO3/SrTiO3 superlattices by means of first-principles calculations at constrained electric displacement field D. We find that in YMnO3 the tilts of the oxygen polyhedra produce a robustly polar ground state, which persists at any choice of the electrical boundary conditions. Conversely, in PTO/STO the antiferrodistortive instabilities alone do not break inversion symmetry, and open-circuit bundar...

  18. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications

    Science.gov (United States)

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Boehly, T. R.; Epstein, R.; McCrory, R. L.; Skupsky, S.

    2014-09-01

    Accurate knowledge of the optical properties of a warm dense deuterium-tritium (DT) mixture is important for reliable design of inertial confinement fusion (ICF) implosions using radiation-hydrodynamics simulations. The opacity of a warm dense DT shell essentially determines how much radiation from hot coronal plasmas can be deposited in the DT fuel of an imploding capsule. Even for the simplest species of hydrogen, the accurate calculation of their opacities remains a challenge in the warm-dense matter regime because strong-coupling and quantum effects play an important role in such plasmas. With quantum-molecular-dynamics (QMD) simulations, we have derived a first-principles opacity table (FPOT) of deuterium (and the DT mixture by mass scaling) for a wide range of densities from ρD=0.5 to 673.518g/cm3 and temperatures from T=5000K up to the Fermi temperature TF for each density. Compared with results from the astrophysics opacity table (AOT) currently used in our hydrocodes, the FPOT of deuterium from our QMD calculations has shown a significant increase in opacity for strongly coupled and degenerate plasma conditions by a factor of 3-100 in the ICF-relevant photon-energy range. As conditions approach those of classical plasma, the opacity from the FPOT converges to the corresponding values of the AOT. By implementing the FPOT of deuterium and the DT mixture into our hydrocodes, we have performed radiation-hydrodynamics simulations for low-adiabat cryogenic DT implosions on the OMEGA laser and for direct-drive-ignition designs for the National Ignition Facility. The simulation results using the FPOT show that the target performance (in terms of neutron yield and energy gain) could vary from ˜10% up to a factor of ˜2 depending on the adiabat of the imploding DT capsule; the lower the adiabat, the more variation is seen in the prediction of target performance when compared to the AOT modeling.

  19. First-Principles Vibrational Electron Energy Loss Spectroscopy of β -Guanine

    Science.gov (United States)

    Radtke, G.; Taverna, D.; Lazzeri, M.; Balan, E.

    2017-07-01

    A general approach to model vibrational electron energy loss spectra obtained using an electron beam positioned away from the specimen is presented. The energy-loss probability of the fast electron is evaluated using first-principles quantum mechanical calculations (density functional theory) of the dielectric response of the specimen. The validity of the method is assessed using recently measured anhydrous β -guanine, an important molecular solid used by animals to produce structural colors. The good agreement between theory and experiments lays the basis for a quantitative interpretation of this spectroscopy in complex systems.

  20. The first-principles study of oscillating rectifying performance in nanoribbon-chain-carbon nanotube junctions

    Science.gov (United States)

    Qiu, Ming; Liew, K. M.

    2013-05-01

    Electronic transport properties of armchair graphene nanoribbon and capped carbon nanotube junctions, covalently bridged by carbon atomic chains with different numbers of carbon atoms, are investigated. The first-principles calculations based on non-equilibrium Green's functions with the density-functional theory show that their I-V characteristics display odd-even effects and rectifying behaviors show obvious oscillations, namely, different bond patterns for even- and odd-numbered carbon chains affect the contact bonds, charge transfer, density of states, evolutions of molecular orbitals, and rectifying performance.

  1. Quantum theory from first principles an informational approach

    CERN Document Server

    D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2017-01-01

    Quantum theory is the soul of theoretical physics. It is not just a theory of specific physical systems, but rather a new framework with universal applicability. This book shows how we can reconstruct the theory from six information-theoretical principles, by rebuilding the quantum rules from the bottom up. Step by step, the reader will learn how to master the counterintuitive aspects of the quantum world, and how to efficiently reconstruct quantum information protocols from first principles. Using intuitive graphical notation to represent equations, and with shorter and more efficient derivations, the theory can be understood and assimilated with exceptional ease. Offering a radically new perspective on the field, the book contains an efficient course of quantum theory and quantum information for undergraduates. The book is aimed at researchers, professionals, and students in physics, computer science and philosophy, as well as the curious outsider seeking a deeper understanding of the theory.

  2. Multiphysics modeling using COMSOL a first principles approach

    CERN Document Server

    Pryor, Roger W

    2011-01-01

    Multiphysics Modeling Using COMSOL rapidly introduces the senior level undergraduate, graduate or professional scientist or engineer to the art and science of computerized modeling for physical systems and devices. It offers a step-by-step modeling methodology through examples that are linked to the Fundamental Laws of Physics through a First Principles Analysis approach. The text explores a breadth of multiphysics models in coordinate systems that range from 1D to 3D and introduces the readers to the numerical analysis modeling techniques employed in the COMSOL Multiphysics software. After readers have built and run the examples, they will have a much firmer understanding of the concepts, skills, and benefits acquired from the use of computerized modeling techniques to solve their current technological problems and to explore new areas of application for their particular technological areas of interest.

  3. Elastic and piezoresistive properties of nickel carbides from first principles

    Science.gov (United States)

    Kelling, Jeffrey; Zahn, Peter; Schuster, Jörg; Gemming, Sibylle

    2017-01-01

    The nickel-carbon system has received increased attention over the past years due to the relevance of nickel as a catalyst for carbon nanotube and graphene growth, where nickel carbide intermediates may be involved or carbide interface layers form in the end. Nickel-carbon composite thin films comprising Ni3C are especially interesting in mechanical sensing applications. Due to the metastability of nickel carbides, formation conditions and the coupling between mechanical and electrical properties are not yet well understood. Using first-principles electronic structure methods, we calculated the elastic properties of Ni3C ,Ni2C , and NiC , as well as changes in electronic properties under mechanical strain. We observe that the electronic density of states around the Fermi level does not change under the considered strains of up to 1%, which correspond to stresses up to 3 GPa . Relative changes in conductivity of Ni3C range up to maximum values of about 10%.

  4. First-principles modeling of magnetic misfit interfaces

    KAUST Repository

    Grytsiuk, Sergii

    2013-08-16

    We investigate the structural and magnetic properties of interfaces with large lattice mismatch, choosing Pt/Co and Au/Co as prototypes. For our first-principles calculations, we reduce the lattice mismatch to 0.2% by constructing Moiré supercells. Our results show that the roughness and atomic density, and thus the magnetic properties, depend strongly on the substrate and thickness of the Co slab. An increasing thickness leads to the formation of a Co transition layer at the interface, especially for Pt/Co due to strong Pt-Co interaction. A Moiré supercell with a transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces.

  5. First-principles simulations of electrostatic interactions between dust grains

    CERN Document Server

    Itou, Hotaka; Hoshino, Masahiro

    2014-01-01

    We investigated the electrostatic interaction between two identical dust grains of an infinite mass immersed in homogeneous plasma by employing first-principles N-body simulations combined with the Ewald method. We specifically tested the possibility of an attractive force due to overlapping Debye spheres (ODSs), as was suggested by Resendes et al. (1998). Our simulation results demonstrate that the electrostatic interaction is repulsive and even stronger than the standard Yukawa potential. We showed that the measured electric field acting on the grain is highly consistent with a model electrostatic potential around a single isolated grain that takes into account a correction due to the orbital motion limited theory. Our result is qualitatively consistent with the counterargument suggested by Markes and Williams (2000), indicating the absence of the ODS attractive force.

  6. Point defects in thorium nitride: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2016-11-15

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  7. First-principles study of point defects in thorium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, (1033) Buenos Aires (Argentina); Jaroszewicz, S. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, (1033) Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina)

    2014-11-15

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors’ knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure.

  8. Electronic Structures of Silicene Doped with Galium: First Principle study

    Directory of Open Access Journals (Sweden)

    Pamungkas Mauludi Ariesto

    2015-01-01

    Full Text Available Following the success of graphene which possesses unique and superior properties, 2D material other than graphene become centre of interest of material scientists.Silicene, which has the same crystal structure as graphene but consist of silicon atoms rather than carbon become intriguing material due to domination of silicon as main material of electronic component. It is common to enhance electronic properties of semiconductor by adding dopant atoms. The electronic properties of Silicene doped with Gallium are investigated using first principle calculation based on density functional theory (DFT.Ga doping changes character of silicene from semimetal to conductor except silicene with Ga doping on S-site (Ga atom substitutes one Si atom which lead to semiconductor.

  9. The first principle calculation of two-dimensional Dirac materials

    Science.gov (United States)

    Lu, Jin

    2017-12-01

    As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.

  10. First-principles prediction of high-entropy-alloy stability

    Science.gov (United States)

    Feng, Rui; Liaw, Peter K.; Gao, Michael C.; Widom, Michael

    2017-11-01

    High entropy alloys (HEAs) are multicomponent compounds whose high configurational entropy allows them to solidify into a single phase, with a simple crystal lattice structure. Some HEAs exhibit desirable properties, such as high specific strength, ductility, and corrosion resistance, while challenging the scientist to make confident predictions in the face of multiple competing phases. We demonstrate phase stability in the multicomponent alloy system of Cr-Mo-Nb-V, for which some of its binary subsystems are subject to phase separation and complex intermetallic-phase formation. Our first-principles calculation of free energy predicts that the configurational entropy stabilizes a single body-centered cubic (BCC) phase from T = 1700 K up to melting, while precipitation of a complex intermetallic is favored at lower temperatures. We form the compound experimentally and confirm that it develops as a single BCC phase from the melt, but that it transforms reversibly at lower temperatures.

  11. Surface energies of AlN allotropes from first principles

    Science.gov (United States)

    Holec, David; Mayrhofer, Paul H.

    2012-01-01

    In this letter we present first-principles calculations of the surface energies of rock-salt (B1), zinc-blende (B3) and wurtzite (B4) AlN allotropes. Of several low-index facets, the highest energies are obtained for monoatomic surfaces (i.e. of only either Al or N atoms): γ{111}B1=410meV/Å2,γ{100}B3=346meV/Å2,γ{111}B3=360meV/Å2 and γ{0001}B4=365meV/Å2. The difference between Al- and N-terminated surfaces in these cases is less then 20 meV/Å2. The stoichiometric facets have energies lower by 100 meV/Å2 or more. The obtained trends could be rationalized by a simple nearest-neighbour broken-bond model. PMID:23471418

  12. First Principles Investigations of Technologically and Environmentally Important Nano-structured Materials and Devices

    Science.gov (United States)

    Paul, Sujata

    In the course of my PhD I have worked on a broad range of problems using simulations from first principles: from catalysis and chemical reactions at surfaces and on nanostructures, characterization of carbon-based systems and devices, and surface and interface physics. My research activities focused on the application of ab-initio electronic structure techniques to the theoretical study of important aspects of the physics and chemistry of materials for energy and environmental applications and nano-electronic devices. A common theme of my research is the computational study of chemical reactions of environmentally important molecules (CO, CO2) using high performance simulations. In particular, my principal aim was to design novel nano-structured functional catalytic surfaces and interfaces for environmentally relevant remediation and recycling reactions, with particular attention to the management of carbon dioxide. We have studied the carbon-mediated partial sequestration and selective oxidation of carbon monoxide (CO), both in the presence and absence of hydrogen, on graphitic edges. Using first-principles calculations we have studied several reactions of CO with carbon nanostructures, where the active sites can be regenerated by the deposition of carbon decomposed from the reactant (CO) to make the reactions self-sustained. Using statistical mechanics, we have also studied the conditions under which the conversion of CO to graphene and carbon dioxide is thermodynamically favorable, both in the presence and in the absence of hydrogen. These results are a first step toward the development of processes for the carbon-mediated partial sequestration and selective oxidation of CO in a hydrogen atmosphere. We have elucidated the atomic scale mechanisms of activation and reduction of carbon dioxide on specifically designed catalytic surfaces via the rational manipulation of the surface properties that can be achieved by combining transition metal thin films on oxide

  13. Fundamental limits on transparency: first-principles calculations of absorption

    Science.gov (United States)

    Peelaers, Hartwin

    2013-03-01

    Transparent conducting oxides (TCOs) are a technologically important class of materials with applications ranging from solar cells, displays, smart windows, and touch screens to light-emitting diodes. TCOs combine high conductivity, provided by a high concentration of electrons in the conduction band, with transparency in the visible region of the spectrum. The requirement of transparency is usually tied to the band gap being sufficiently large to prevent absorption of visible photons. This is a necessary but not sufficient condition: indeed, the high concentration of free carriers can also lead to optical absorption by excitation of electrons to higher conduction-band states. A fundamental understanding of the factors that limit transparency in TCOs is essential for further progress in materials and applications. The Drude theory is widely used, but it is phenomenological in nature and tends to work poorly at shorter wavelengths, where band-structure effects are important. First-principles calculations have been performed, but were limited to direct transitions; as we show in the present work, indirect transitions assisted by phonons or defects actually dominate. Our calculations are the first to address indirect free-carrier absorption in a TCO completely from first principles. We present results for SnO2, but the methodology is general and is also being applied to ZnO and In2O3. The calculations provide not just quantitative results but also deeper insights in the mechanisms that govern absorption processes in different wavelength regimes, which is essential for engineering improved materials to be used in more efficient devices. For SnO2, we find that absorption is modest in the visible, and much stronger in the ultraviolet and infrared. Work performed in collaboration with E. Kioupakis and C.G. Van de Walle, and supported by DOE, NSF, and BAEF.

  14. First-principles linear response description of the spin Nernst effect

    Science.gov (United States)

    Wimmer, S.; Ködderitzsch, D.; Chadova, K.; Ebert, H.

    2013-11-01

    A first-principles description of the spin Nernst effect, denoting the occurrence of a transverse spin current due to a temperature gradient, is presented. The approach, based on an extension to the Kubo-Středa equation for spin transport, supplies in particular the formal basis for investigations of diluted as well as concentrated alloys. Results for corresponding applications to the alloy system AuxCu1-x give the intrinsic and extrinsic contributions to the relevant transport coefficients. Using scaling laws allows in addition splitting the extrinsic contribution into its skew scattering and side-jump parts.

  15. Interactions between low energy electrons and DNA: a perspective from first-principles simulations

    Science.gov (United States)

    Kohanoff, Jorge; McAllister, Maeve; Tribello, Gareth A.; Gu, Bin

    2017-09-01

    studying these phenomena. Hence, a special place in this Topical Review is occupied by our recent first-principles molecular dynamics simulations that address the issue of how the environment favours or prevents LEEs from causing damage to DNA. We finish by summarising the conclusions achieved so far, and by suggesting a number of possible directions for further study.

  16. New approaches for first-principles modelling of inelastic transport in nanoscale semiconductor devices with thousands of atoms

    DEFF Research Database (Denmark)

    Gunst, Tue; Brandbyge, Mads; Palsgaard, Mattias Lau Nøhr

    2017-01-01

    We present two different methods which both enable large-scale first-principles device simulations including electron-phonon coupling (EPC). The methods are based on Density Functional Theory and Nonequilibrium Greens Functions (DFT- NEGF) calculations of electron transport. The inelastic current...

  17. Intrinsic and extrinsic spin-orbit torques from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Geranton, Guillaume

    2017-09-01

    This thesis attempts to shed light on the microscopic mechanisms underlying the current-induced magnetic torques in ferromagnetic heterostructures. We have developed first principles methods aiming at the accurate and effcient calculation of the so-called spin-orbit torques (SOTs) in magnetic thin films. The emphasis of this work is on the impurity-driven extrinsic SOTs. The main part of this thesis is dedicated to the development of a formalism for the calculation of the SOTs within the Korringa-Kohn-Rostoker (KKR) method. The impurity-induced transitions rates are obtained from first principles and their effect on transport properties is treated within the Boltzmann formalism. The developed formalism provides a mean to compute the SOTs beyond the conventional constant relaxation time approximation. We first apply our formalism to the investigation of FePt/Pt and Co/Cu bilayers in the presence of defects and impurities. Our results hint at a crucial dependence of the torque on the type of disorder present in the films, which we explain by a complex interplay of several competing Fermi surface contributions to the SOT. Astonishingly, specific defect distributions or doping elements lead respectively to an increase or a sign change of the torque, which can not be explained on the basis of simple models. We also compute the intrinsic SOT induced by electrical and thermal currents within the full potential linearized augmented plane-wave method. Motivated by recent experimental works, we then investigate the microscopic origin of the SOT in a Ag{sub 2}Bi-terminated Ag film grown on ferromagnetic Fe(110). We find that the torque in that system can not be explained solely by the spin-orbit coupling in the Ag{sub 2}Bi alloy, and instead results from the spin-orbit coupling in all regions of the film.Finally, we predict a large SOT in Fe/Ge bilayers and suggest that semiconductor substrates might be a promising alternative to heavy metals for the development of SOT

  18. First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures

    Energy Technology Data Exchange (ETDEWEB)

    Sandip Mazumder; Ju Li

    2010-06-30

    The inability to remove heat efficiently is currently one of the stumbling blocks toward further miniaturization and advancement of electronic, optoelectronic, and micro-electro-mechanical devices. In order to formulate better heat removal strategies and designs, it is first necessary to understand the fundamental mechanisms of heat transport in semiconductor thin films. Modeling techniques, based on first principles, can play the crucial role of filling gaps in our understanding by revealing information that experiments are incapable of. Heat conduction in crystalline semiconductor films occurs by lattice vibrations that result in the propagation of quanta of energy called phonons. If the mean free path of the traveling phonons is larger than the film thickness, thermodynamic equilibrium ceases to exist, and thus, the Fourier law of heat conduction is invalid. In this scenario, bulk thermal conductivity values, which are experimentally determined by inversion of the Fourier law itself, cannot be used for analysis. The Boltzmann Transport Equation (BTE) is a powerful tool to treat non-equilibrium heat transport in thin films. The BTE describes the evolution of the number density (or energy) distribution for phonons as a result of transport (or drift) and inter-phonon collisions. Drift causes the phonon energy distribution to deviate from equilibrium, while collisions tend to restore equilibrium. Prior to solution of the BTE, it is necessary to compute the lifetimes (or scattering rates) for phonons of all wave-vector and polarization. The lifetime of a phonon is the net result of its collisions with other phonons, which in turn is governed by the conservation of energy and momentum during the underlying collision processes. This research project contributed to the state-of-the-art in two ways: (1) by developing and demonstrating a calibration-free simple methodology to compute intrinsic phonon scattering (Normal and Umklapp processes) time scales with the inclusion

  19. Oxygen transport in ceria: a first-principles study

    Science.gov (United States)

    Sergei, Simak

    2012-02-01

    Ceria (CeO2) is an important material for environmentally benign applications, ranging from solid-oxide fuel cells (SOFC) to oxygen storage [1-2]. The key characteristic needed to be improved is the mobility of oxygen ions. Optimization of ionic transport in ceria has been the topic of many studies. In particular, it has been discovered how the ionic conductivity in ceria might be improved by choosing the proper kind and concentration of dopants [3]. In this presentation we will approach the problem from a different direction by adjusting structural parameters of ceria via the change of external conditions. A systematic first-principles study of the energy landscape and kinetics of reduced ceria as a function of external parameters reveals a physically transparent way to improve oxygen transport in ceria. [4pt] [1] N. Skorodumova, S. Simak, B. Lundqvist, I. Abrikosov, and B. Johansson, Physical Review Letters 89, 14 (2002). [0pt] [2] A. Trovarelli, in Catalysis by Ceria and related materials (Imperial College Press, London, 2002). [0pt] [3] D. A. Andersson, S. I. Simak, N. V. Skorodumova, I. A.Abrikosov, and B. Johansson, Proceedings of the National Academy of Sciences of the United States of America 103, 3518 (2006).

  20. First-principles calculations for point defects in solids

    Science.gov (United States)

    Freysoldt, Christoph; Grabowski, Blazej; Hickel, Tilmann; Neugebauer, Jörg; Kresse, Georg; Janotti, Anderson; Van de Walle, Chris G.

    2014-01-01

    Point defects and impurities strongly affect the physical properties of materials and have a decisive impact on their performance in applications. First-principles calculations have emerged as a powerful approach that complements experiments and can serve as a predictive tool in the identification and characterization of defects. The theoretical modeling of point defects in crystalline materials by means of electronic-structure calculations, with an emphasis on approaches based on density functional theory (DFT), is reviewed. A general thermodynamic formalism is laid down to investigate the physical properties of point defects independent of the materials class (semiconductors, insulators, and metals), indicating how the relevant thermodynamic quantities, such as formation energy, entropy, and excess volume, can be obtained from electronic structure calculations. Practical aspects such as the supercell approach and efficient strategies to extrapolate to the isolated-defect or dilute limit are discussed. Recent advances in tractable approximations to the exchange-correlation functional (DFT +U, hybrid functionals) and approaches beyond DFT are highlighted. These advances have largely removed the long-standing uncertainty of defect formation energies in semiconductors and insulators due to the failure of standard DFT to reproduce band gaps. Two case studies illustrate how such calculations provide new insight into the physics and role of point defects in real materials.

  1. First principles study of lithium insertion in bulk silicon

    KAUST Repository

    Wan, Wenhui

    2010-09-23

    Si is an important anode material for the next generation of Li ion batteries. Here the energetics and dynamics of Li atoms in bulk Si have been studied at different Li concentrations on the basis of first principles calculations. It is found that Li prefers to occupy an interstitial site as a shallow donor rather than a substitutional site. The most stable position is the tetrahedral (Td) site. The diffusion of a Li atom in the Si lattice is through a Td-Hex-Td trajectory, where the Hex site is the hexagonal transition site with an energy barrier of 0.58 eV. We have also systematically studied the local structural transition of a LixSi alloy with x varying from 0 to 0.25. At low doping concentration (x = 0-0.125), Li atoms prefer to be separated from each other, resulting in a homogeneous doping distribution. Starting from x = 0.125, Li atoms tend to form clusters induced by a lattice distortion with frequent breaking and reforming of Si-Si bonds. When x ≥ 0.1875, Li atoms will break some Si-Si bonds permanently, which results in dangling bonds. These dangling bonds create negatively charged zones, which is the main driving force for Li atom clustering at high doping concentration. © 2010 IOP Publishing Ltd.

  2. Incorporation of water in pyrope: a first principles study

    Science.gov (United States)

    Manga, V. R.; Mookherjee, M.; Muralidharan, K.

    2014-12-01

    Pyrope (Mg3Al2Si3O12) rich garnet is the most important secondary mineral phase with volume fractions ranging between 20 % in the shallow upper mantle to 40 % in the lower part of upper mantle. The volume fractions of garnet in subducted oceanic crusts are as high as 80 %. However, our understanding of the incorporation of water in garnet as proton defect is rather limited. Experimental studies conducted at pressures and temperatures relevant to the deep lower mantle have resulted in wide range of water contents ranging between 0 wt % to ~ 0.8 wt %. In a pyriolyte composition representative of the upper mantle, unlike olivine (Mg2SiO4), which remains largely iso-chemical upon compression, garnet undergoes solid solution with pyroxene (MgSiO3) and as a result there is a continuous evolution of the chemistry of garnet as a function of pressure. This complicates the analysis of proton defects using conventional thermodynamics expressing water solubility as a function of water fugacity, oxide activity, and activation volume. To circumvent this issue, we use first principles simulations to explore the relative energetics of the formation of protons in Mg, Al, and Si sites. Preliminary results at ambient conditions indicate positive enthalpy changes for the proton defects in all the sites, with silicon site being the most favorable. We intend to explore the effect of pressure and temperature on the defect formation energies. Acknowledgement- MM is supported by the US National Science Foundation grant (EAR-1250477).

  3. First-principle studies on the Li-Te system

    Science.gov (United States)

    Wang, Youchun; Tian, Fubo; Li, Da; Duan, Defang; Liu, Yunxian; Liu, Bingbing; Zhou, Qiang; Cui, Tian

    2017-01-01

    First-principle evolutionary calculation was performed to search for all probable stable lithium tellurium compounds. In addition to the well-known structures of Fm-3m Li2Te and Pnma Li2Te, several novel structures, including those of P4/nmm Li2Te, Imma Li8Te2, and C2/m Li9Te2, were determined under high pressure. The transformation sequence of Li2Te induced by pressure was presented as follows. The phase transition occurred at 7.5 GPa while transforming from Fm-3m phase to Pnma structure, then transformed to P4/nmm phase at 14 GPa. P4/nmm Li2Te can remain stable at least up to 140 GPa. Li8Te2 and Li9Te2 were stable at 8-120 GPa and 80-120 GPa, respectively. Interestingly, Li8Te2 and Li9Te2 were predicted to be metallic under high pressure, Li2Te would metalize on compression. P4/nmm Li2Te is likely a super ionic conductor due to the special characteristic. Metallic P4/nmm Li2Te may be a candidate mixed conductor material under extreme pressure. Charge transfer was studied using Bader charge analysis. Charge transferred from Li to Te, and the relative debilitated ionicity between Li and Te atoms existed at high pressure.

  4. Mechanical responses of borophene sheets: a first-principles study

    Science.gov (United States)

    Mortazavi, Bohayra; Rahaman, Obaidur; Dianat, Arezoo; Rabczuk, Timon

    Recent experimental advances for the fabrication of various borophene sheets introduced new structures with a wide prospect of applications. Borophene is the boron atoms analogue of graphene. Borophene exhibits various structural polymorphs all of which are metallic. In this work, we employed first-principles density functional theory calculations to investigate the mechanical properties of five different single-layer borophene sheets. In particular, we analyzed the effect of loading direction and point vacancy on the mechanical response of borophene. Moreover, we compared the thermal stabilities of the considered borophene systems. Based on the results of our modelling, borophene films depending on the atomic configurations and the loading direction can yield remarkable elastic modulus in the range of 163-382 GPa.nm and high ultimate tensile strength from 13.5 GPa.nm to around 22.8 GPa.nm at the corresponding strain from 0.1 to 0.21. Our study reveals the remarkable mechanical characteristics of borophene films.

  5. Lattice thermal conductivity of borophene from first principle calculation

    Science.gov (United States)

    Xiao, Huaping; Cao, Wei; Ouyang, Tao; Guo, Sumei; He, Chaoyu; Zhong, Jianxin

    2017-04-01

    The phonon transport property is a foundation of understanding a material and predicting the potential application in mirco/nano devices. In this paper, the thermal transport property of borophene is investigated by combining first-principle calculations and phonon Boltzmann transport equation. At room temperature, the lattice thermal conductivity of borophene is found to be about 14.34 W/mK (error is about 3%), which is much smaller than that of graphene (about 3500 W/mK). The contributions from different phonon modes are qualified, and some phonon modes with high frequency abnormally play critical role on the thermal transport of borophene. This is quite different from the traditional understanding that thermal transport is usually largely contributed by the low frequency acoustic phonon modes for most of suspended 2D materials. Detailed analysis further reveals that the scattering between the out-of-plane flexural acoustic mode (FA) and other modes likes FA + FA/TA/LA/OP ↔ TA/LA/OP is the predominant phonon process channel. Finally the vibrational characteristic of some typical phonon modes and mean free path distribution of different phonon modes are also presented in this work. Our results shed light on the fundamental phonon transport properties of borophene, and foreshow the potential application for thermal management community.

  6. First-principles prediction of disordering tendencies in complex oxides

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chao [Los Alamos National Laboratory; Stanek, Christopher R [Los Alamos National Laboratory; Sickafus, Kurt E [Los Alamos National Laboratory; Uberuaga, Blas P [Los Alamos National Laboratory

    2008-01-01

    The disordering tendencies of a series of zirconate (A{sub 2}Zr{sub 2}O{sub 7}) , hafnate (A{sub 2}Hf{sub 2}O{sub 7}), titanate (A{sub 2}Ti{sub 2}O{sub 7}), and stannate (A{sub 2} Sn{sub 2}O{sub 7}) pyrochlores are predicted in this study using first-principles total energy calculations. To model the disordered (A{sub 1/2}B{sub 1/2})(O{sub 7/8}/V{sub 1/8}){sub 2} fluorite structure, we have developed an 88-atom two-sublattice special quasirandom structure (SQS) that closely reproduces the most important near-neighbor intra-sublattice and inter-sublattice pair correlation functions of the random alloy. From the calculated disordering energies, the order-disorder transition temperatures of those pyrochlores are further predicted and our results agree well with the existing experimental phase diagrams. It is clearly demonstrated that both size and electronic effects play an important role in determining the disordering tendencies of pyrochlore compounds.

  7. Thermophysical properties of paramagnetic Fe from first principles

    Science.gov (United States)

    Ehteshami, Hossein; Korzhavyi, Pavel A.

    2017-12-01

    A computationally efficient, yet general, free-energy modeling scheme is developed based on first-principles calculations. Finite-temperature disorder associated with the fast (electronic and magnetic) degrees of freedom is directly included in the electronic structure calculations, whereas the vibrational free energy is evaluated by a proposed model that uses elastic constants to calculate average sound velocity of the quasiharmonic Debye model. The proposed scheme is tested by calculating the lattice parameter, heat capacity, and single-crystal elastic constants of α -, γ -, and δ -iron as functions of temperature in the range 1000-1800 K. The calculations accurately reproduce the well-established experimental data on thermal expansion and heat capacity of γ - and δ -iron. Electronic and magnetic excitations are shown to account for about 20% of the heat capacity for the two phases. Nonphonon contributions to thermal expansion are 12% and 10% for α - and δ -Fe and about 30% for γ -Fe. The elastic properties predicted by the model are in good agreement with those obtained in previous theoretical treatments of paramagnetic phases of iron, as well as with the bulk moduli derived from isothermal compressibility measurements [N. Tsujino et al., Earth Planet. Sci. Lett. 375, 244 (2013), 10.1016/j.epsl.2013.05.040]. Less agreement is found between theoretically calculated and experimentally derived single-crystal elastic constants of γ - and δ -iron.

  8. Electrostatic engineering of strained ferroelectric perovskites from first principles

    Science.gov (United States)

    Cazorla, Claudio; Stengel, Massimiliano

    2015-12-01

    Design of novel artificial materials based on ferroelectric perovskites relies on the basic principles of electrostatic coupling and in-plane lattice matching. These rules state that the out-of-plane component of the electric displacement field and the in-plane components of the strain are preserved across a layered superlattice, provided that certain growth conditions are respected. Intense research is currently directed at optimizing materials functionalities based on these guidelines, often with remarkable success. Such principles, however, are of limited practical use unless one disposes of reliable data on how a given material behaves under arbitrary electrical and mechanical boundary conditions. Here we demonstrate, by focusing on the prototypical ferroelectrics PbTiO3 and BiFeO3 as test cases, how such information can be calculated from first principles in a systematic and efficient way. In particular, we construct a series of two-dimensional maps that describe the behavior of either compound (e.g., concerning the ferroelectric polarization and antiferrodistortive instabilities) at any conceivable choice of the in-plane lattice parameter, a , and out-of-plane electric displacement, D . In addition to being of immediate practical applicability to superlattice design, our results bring new insight into the complex interplay of competing degrees of freedom in perovskite materials and reveal some notable instances where the behavior of these materials depart from what naively is expected.

  9. Accurate line intensities of methane from first-principles calculations

    Science.gov (United States)

    Nikitin, Andrei V.; Rey, Michael; Tyuterev, Vladimir G.

    2017-10-01

    In this work, we report first-principle theoretical predictions of methane spectral line intensities that are competitive with (and complementary to) the best laboratory measurements. A detailed comparison with the most accurate data shows that discrepancies in integrated polyad intensities are in the range of 0.4%-2.3%. This corresponds to estimations of the best available accuracy in laboratory Fourier Transform spectra measurements for this quantity. For relatively isolated strong lines the individual intensity deviations are in the same range. A comparison with the most precise laser measurements of the multiplet intensities in the 2ν3 band gives an agreement within the experimental error margins (about 1%). This is achieved for the first time for five-atomic molecules. In the Supplementary Material we provide the lists of theoretical intensities at 269 K for over 5000 strongest transitions in the range below 6166 cm-1. The advantage of the described method is that this offers a possibility to generate fully assigned exhaustive line lists at various temperature conditions. Extensive calculations up to 12,000 cm-1 including high-T predictions will be made freely available through the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru) that contains ab initio born line lists and provides a user-friendly graphical interface for a fast simulation of the absorption cross-sections and radiance.

  10. A Fortran program for calculating electron or hole mobility in disordered semiconductors from first-principles

    Science.gov (United States)

    Li, Zi; Zhang, Xu; Lu, Gang

    2011-12-01

    A Fortran program is developed to calculate charge carrier (electron or hole) mobility in disordered semiconductors from first-principles. The method is based on non-adiabatic ab initio molecular dynamics and static master equation, treating dynamic and static disorder on the same footing. We have applied the method to calculate the hole mobility in disordered poly(3-hexylthiophene) conjugated polymers as a function of temperature and electric field and obtained excellent agreements with experimental results. The program could be used to explore structure-mobility relation in disordered semiconducting polymers/organic semiconductors and aid rational design of these materials. Program summaryProgram title: FPMu Catalogue identifier: AEJV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 788 580 No. of bytes in distributed program, including test data, etc.: 8 433 024 Distribution format: tar.gz Programming language: Fortran 90 Computer: Any architecture with a Fortran 90 compiler Operating system: Linux, Windows RAM: Proportional to the system size, in our example, 1.2 GB Classification: 7.9 Nature of problem: Determine carrier mobility from first-principles in disordered semiconductors as a function of temperature, electric field and carrier concentration. Solution method: Iteratively solve master equation with carrier state energy and transition rates determined from first-principles. Restrictions: Mobility for disordered semiconductors where the carrier wave-functions are localized and the carrier transport is due to phonon-assisted hopping mechanism. Running time: Depending on the system size (about an hour for the example here).

  11. Density and Compressibility of Liquid Water and Ice from First-Principles Simulations with Hybrid Functionals.

    Science.gov (United States)

    Gaiduk, Alex P; Gygi, François; Galli, Giulia

    2015-08-06

    We determined the equilibrium density and compressibility of water and ice from first-principles molecular dynamics simulations using gradient-corrected (PBE) and hybrid (PBE0) functionals. Both functionals predicted the density of ice to be larger than that of water, by 15 (PBE) and 35% (PBE0). The PBE0 functional yielded a lower density of both ice and water with respect to PBE, leading to better agreement with experiment for ice but not for liquid water. Approximate inclusion of dispersion interactions on computed molecular-dynamics trajectories led to a substantial improvement of the PBE0 results for the density of liquid water, which, however, resulted to be slightly lower than that of ice.

  12. First principle evaluation of the chiroptical activity of the di-phenyl-diazene derivatives

    Science.gov (United States)

    Benassi, Enrico; Corni, Stefano

    2012-09-01

    Azobenzene (di-phenyl-diazene) is well-known as a photoisomerisable molecule and has been widely studied as a molecular photoswitcher. Molecular rods, where di-phenyl arms are bound to the diazene moiety, have been also synthesized. In this article we explore by first principle density functional theory calculations the chiroptical properties (electronic circular dichroism spectra, ECD) of azobenzene and its homologues with polyphenyl arms. In particular, we demonstrate that for molecules in the cis configuration the intrinsic chirality of the distorted cis diazene group dominates the ECD response, while for trans species the non-planarity of the polyphenyl arms induces peaks in the ECD spectrum. Finally, the possibility of obtaining a light-controlled chiral switch by proper functionalization is also speculated.

  13. First-principle, structure-based prediction of hepatic metabolic clearance values in human.

    Science.gov (United States)

    Li, Haiyan; Sun, Jin; Sui, Xiaofan; Liu, Jianfang; Yan, Zhongtian; Liu, Xiaohong; Sun, Yinghua; He, Zhonggui

    2009-04-01

    The first-principle, quantitative structure-hepatic clearance relationship for 50 drugs was constructed based on selected molecular descriptors calculated by TSAR software. The R(2) of the predicted and observed hepatic clearance for the training set (n=36) and test set (n=13) were 0.85 and 0.73, respectively. The average fold error (AFE) of the in silico model was 1.28 (n=50). The prediction accuracy of in silico model was superior to in vitro hepatocytes' model in literature (n=50, AFE=2.55). It is attractive to predict human hepatic clearance based on molecular descriptors merely. The structure-based model can be used as an efficient tool in the rapid identification of hepatic clearance of new drug candidates in drug discovery.

  14. Signatures of nonadiabatic O2 dissociation at Al(111): First-principles fewest-switches study

    Science.gov (United States)

    Carbogno, Christian; Behler, Jörg; Reuter, Karsten; Groß, Axel

    2010-01-01

    Recently, spin selection rules have been invoked to explain the discrepancy between measured and calculated adsorption probabilities of molecular oxygen reacting with Al(111). In this work, we inspect the impact of nonadiabatic spin transitions on the dynamics of this system from first principles. For this purpose, the motion on two distinct potential-energy surfaces associated to different spin configurations and possible transitions between them are inspected by means of the fewest-switches algorithm. Within this framework, we especially focus on the influence of such spin transitions on observables accessible to molecular-beam experiments. On this basis, we suggest experimental setups that can validate the occurrence of such transitions and discuss their feasibility.

  15. A First Principles Density-Functional Calculation of the Electronic and Vibrational Structure of the Key Melanin Monomers

    CERN Document Server

    Powell, B J; Bernstein, N; Brake, K; McKenzie, Ross H; Meredith, P; Pederson, M R

    2016-01-01

    We report first principles density functional calculations for hydroquinone (HQ), indolequinone (IQ) and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of bio-macromolecules with important biological functions (including photoprotection) and with potential for certain bioengineering applications. We have used the DeltaSCF (difference of self consistent fields) method to study the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), Delta_HL. We show that Delta_HL is similar in IQ and SQ but approximately twice as large in HQ. This may have important implications for our understanding of the observed broad band optical absorption of the eumelanins. The possibility of using this difference in Delta_HL to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules ...

  16. Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designsa)

    Science.gov (United States)

    Hu, S. X.; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S.; Collins, L. A.; Kress, J. D.; Militzer, B.

    2015-05-01

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium-tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF "path" to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κQMD), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ˜2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP-based properties of DT

  17. Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs

    Energy Technology Data Exchange (ETDEWEB)

    Hu, S. X., E-mail: shu@lle.rochester.edu; Goncharov, V. N.; Boehly, T. R.; McCrory, R. L.; Skupsky, S. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Collins, L. A.; Kress, J. D. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Militzer, B. [Department of Earth and Planetary Science and Department of Astronomy, University of California, Berkeley, California 94720 (United States)

    2015-05-15

    A comprehensive knowledge of the properties of high-energy-density plasmas is crucial to understanding and designing low-adiabat, inertial confinement fusion (ICF) implosions through hydrodynamic simulations. Warm-dense-matter (WDM) conditions are routinely accessed by low-adiabat ICF implosions, in which strong coupling and electron degeneracy often play an important role in determining the properties of warm dense plasmas. The WDM properties of deuterium–tritium (DT) mixtures and ablator materials, such as the equation of state, thermal conductivity, opacity, and stopping power, were usually estimated by models in hydro-codes used for ICF simulations. In these models, many-body and quantum effects were only approximately taken into account in the WMD regime. Moreover, the self-consistency among these models was often missing. To examine the accuracy of these models, we have systematically calculated the static, transport, and optical properties of warm dense DT plasmas, using first-principles (FP) methods over a wide range of densities and temperatures that cover the ICF “path” to ignition. These FP methods include the path-integral Monte Carlo (PIMC) and quantum-molecular dynamics (QMD) simulations, which treat electrons with many-body quantum theory. The first-principles equation-of-state table, thermal conductivities (κ{sub QMD}), and first principles opacity table of DT have been self-consistently derived from the combined PIMC and QMD calculations. They have been compared with the typical models, and their effects to ICF simulations have been separately examined in previous publications. In this paper, we focus on their combined effects to ICF implosions through hydro-simulations using these FP-based properties of DT in comparison with the usual model simulations. We found that the predictions of ICF neutron yield could change by up to a factor of ∼2.5; the lower the adiabat of DT capsules, the more variations in hydro-simulations. The FP

  18. First Principles Design of Non-Centrosymmetric Metal Oxides

    Science.gov (United States)

    Young, Joshua Aaron

    The lack of an inversion center in a material's crystal structure can result in many useful material properties, such as ferroelectricity, piezoelectricity and non-linear optical behavior. Recently, the desire for low power, high efficiency electronic devices has spurred increased interest in these phenomena, especially ferroelectricity, as well as their coupling to other material properties. By studying and understanding the fundamental structure-property relationships present in non-centrosymmetric materials, it is possible to purposefully engineer new compounds with the desired "acentric" qualities through crystal engineering. The families of ABO3 perovskite and ABO2.5 perovskite-derived brownmillerite oxides are ideal for such studies due to their wide range of possible chemistries, as well as ground states that are highly tunable owing to strong electron-lattice coupling. Furthermore, control over the B-O-B bond angles through epitaxial strain or chemical substitution allows for the rapid development of new emergent properties. In this dissertation, I formulate the crystal-chemistry criteria necessary to design functional non-centrosymmetric oxides using first-principles density functional theory calculations. Recently, chemically ordered (AA')B2O 6 oxides have been shown to display a new form of rotation-induced ferroelectric polarizations. I now extend this property-design methodology to alternative compositions and crystal classes and show it is possible to induce a host of new phenomena. This dissertation will address: 1) the formulation of predictive models allowing for a priori design of polar oxides, 2) the optimization of properties exhibited by these materials through chemical substitution and cation ordering, and 3) the use of strain to control the stability of new phases. Completion of this work has led to a deeper understanding of how atomic structural features determine the physical properties of oxides, as well as the successful elucidation of

  19. Risk reduction and the privatization option: First principles

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, D.J.; Jones, D.W.; Russell, M. [Joint Inst. for Energy and Environment, Knoxville, TN (United States); Cummings, R.C.; Valdez, G. [Georgia State Univ., Atlanta, GA (United States); Duemmer, C.L. [Hull, Duemmer and Garland (United States)

    1997-06-25

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) faces a challenging mission. To increase efficiency, EM is undertaking a number of highly innovative initiatives--two of which are of particular importance to the present study. One is the 2006 Plan, a planning and budgeting process that seeks to convert the clean-up program from a temporally and fiscally open-ended endeavor to a strictly bounded one, with firm commitments over a decade-long horizon. The second is a major overhauling of the management and contracting practices that define the relationship between the Department and the private sector, aimed at cost reduction by increasing firms` responsibilities and profit opportunities and reducing DOE`s direct participation in management practices and decisions. The goal of this paper is to provide an independent perspective on how EM should create new management practices to deal with private sector partners that are motivated by financial incentives. It seeks to ground this perspective in real world concerns--the background of the clean-up effort, the very difficult technical challenges it faces, the very real threats to environment, health and safety that have now been juxtaposed with financial drivers, and the constraints imposed by government`s unique business practices and public responsibilities. The approach is to raise issues through application of first principles. The paper is targeted at the EM policy officer who must implement the joint visions of the 2006 plan and privatization within the context of the tradeoff between terminal risk reduction and interim risk management.

  20. Ionization potentials of semiconductors from first-principles.

    Science.gov (United States)

    Jiang, Hong; Shen, Yu-Chen

    2013-10-28

    The ionization potential is the key to determine the absolute positions of valence and conduction bands of a semiconductor with respect to the vacuum level, which play a crucial role in physical and chemical properties of surfaces and interfaces. In spite of its far-reaching significance, theoretical determination of ionization potentials has not attained as much attention as that of band gaps. In this work, a set of prototypical semiconductors are considered to establish the performance of the state-of-the-art first-principles approaches. We have shown that in general Kohn-Sham density functional theory with local density approximation or generalized gradient approximation (LDA/GGA) significantly underestimates the ionization potentials of semiconductors. When the quasi-particle correction from many-body perturbation theory in the GW approximation is taken into account, the agreement between theory and experiment can be greatly improved. We have made a critical comparison between two GW correction schemes, one taking into account the GW correction to the valence band maximum (VBM) of the bulk system, and the other based on the assumption that the LDA/GGA gives correct band gap center (BGC). Our study shows that the VBM scheme is better founded theoretically and leads to closer agreement with experiment practically than the BGC scheme. For semiconductors with shallow semicore states, for which the band gaps from the GW approach also exhibit significant errors, there is still significant discrepancy between GW and experiment, indicating the necessity to go beyond the standard GW approach for these materials.

  1. A digitally reconstructed radiograph algorithm calculated from first principles

    Science.gov (United States)

    Staub, David; Murphy, Martin J.

    2013-01-01

    Purpose: To develop an algorithm for computing realistic digitally reconstructed radiographs (DRRs) that match real cone-beam CT (CBCT) projections with no artificial adjustments. Methods: The authors used measured attenuation data from cone-beam CT projection radiographs of different materials to obtain a function to convert CT number to linear attenuation coefficient (LAC). The effects of scatter, beam hardening, and veiling glare were first removed from the attenuation data. Using this conversion function the authors calculated the line integral of LAC through a CT along rays connecting the radiation source and detector pixels with a ray-tracing algorithm, producing raw DRRs. The effects of scatter, beam hardening, and veiling glare were then included in the DRRs through postprocessing. Results: The authors compared actual CBCT projections to DRRs produced with all corrections (scatter, beam hardening, and veiling glare) and to uncorrected DRRs. Algorithm accuracy was assessed through visual comparison of projections and DRRs, pixel intensity comparisons, intensity histogram comparisons, and correlation plots of DRR-to-projection pixel intensities. In general, the fully corrected algorithm provided a small but nontrivial improvement in accuracy over the uncorrected algorithm. The authors also investigated both measurement- and computation-based methods for determining the beam hardening correction, and found the computation-based method to be superior, as it accounted for nonuniform bowtie filter thickness. The authors benchmarked the algorithm for speed and found that it produced DRRs in about 0.35 s for full detector and CT resolution at a ray step-size of 0.5 mm. Conclusions: The authors have demonstrated a DRR algorithm calculated from first principles that accounts for scatter, beam hardening, and veiling glare in order to produce accurate DRRs. The algorithm is computationally efficient, making it a good candidate for iterative CT reconstruction techniques

  2. First-principles equation of state and electronic properties of warm dense oxygen

    Science.gov (United States)

    Zhang, Shuai; Driver, Kevin; Soubiran, François; Militzer, Burkhard

    We perform all-electron path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD) calculations to explore warm dense matter states of oxygen. Our simulations cover a wide density-temperature range of 1-100 g cm⌃{ -3}and 10⌃4-10⌃9 K. By combining results from PIMC and DFT-MD, we are able to compute pressures and internal energies from first-principles at all temperatures and provide a coherent equation of state. We compare our first-principles calculations with analytic equations of state, which tend to agree for temperatures above 8 x 10⌃6 K. Pair-correlation functions and the electronic density of states reveal an evolving plasma structure and ionization process that is driven by temperature and density. As we increase the density at constant temperature, we find that the ionization fraction of the 1s state decreases while the other electronic states move towards the continuum. Finally, the computed shock Hugoniot curves show an increase in compression as the first and second shells are ionized. This work is funded by the DOE (DE-SC0010517).

  3. Waltzing of a helium pair in tungsten: Migration barrier and trajectory revealed from first-principles

    Directory of Open Access Journals (Sweden)

    J. G. Niu

    2014-06-01

    Full Text Available Despite well documented first-principles theoretical determination of the low migration energy (0.06 eV of a single He in tungsten, fully quantum mechanical calculations on the migration of a He pair still present a challenge due to the complexity of its trajectory. By identifying the six most stable configurations of the He pair in W and decomposing its motion into rotational, translational, and rotational-translational routines, we are able to determine its migration barrier and trajectory. Our density functional theory calculations demonstrate a He pair has three modes of motion: a close or open circular two-dimensional motion in (100 plane with an energy barrier of 0.30 eV, a snaking motion along [001] direction with a barrier of 0.30 eV, and a twisted-ladder motion along [010] direction with the two He swinging in the plane (100 and a barrier of 0.31 eV. The graceful associative movements of a He pair are related to the chemical-bonding-like He-He interaction being much stronger than its migration barrier in W. The excellent agreement with available experimental measurements (0.24–0.32 eV on He migration makes our first-principles result a solid input to obtain accurate He-W interatomic potentials in molecular dynamics simulations.

  4. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications.

    Science.gov (United States)

    Hu, S X; Collins, L A; Goncharov, V N; Boehly, T R; Epstein, R; McCrory, R L; Skupsky, S

    2014-09-01

    Accurate knowledge of the optical properties of a warm dense deuterium-tritium (DT) mixture is important for reliable design of inertial confinement fusion (ICF) implosions using radiation-hydrodynamics simulations. The opacity of a warm dense DT shell essentially determines how much radiation from hot coronal plasmas can be deposited in the DT fuel of an imploding capsule. Even for the simplest species of hydrogen, the accurate calculation of their opacities remains a challenge in the warm-dense matter regime because strong-coupling and quantum effects play an important role in such plasmas. With quantum-molecular-dynamics (QMD) simulations, we have derived a first-principles opacity table (FPOT) of deuterium (and the DT mixture by mass scaling) for a wide range of densities from ρ(D)=0.5 to 673.518g/cm(3) and temperatures from T=5000K up to the Fermi temperature T(F) for each density. Compared with results from the astrophysics opacity table (AOT) currently used in our hydrocodes, the FPOT of deuterium from our QMD calculations has shown a significant increase in opacity for strongly coupled and degenerate plasma conditions by a factor of 3-100 in the ICF-relevant photon-energy range. As conditions approach those of classical plasma, the opacity from the FPOT converges to the corresponding values of the AOT. By implementing the FPOT of deuterium and the DT mixture into our hydrocodes, we have performed radiation-hydrodynamics simulations for low-adiabat cryogenic DT implosions on the OMEGA laser and for direct-drive-ignition designs for the National Ignition Facility. The simulation results using the FPOT show that the target performance (in terms of neutron yield and energy gain) could vary from ∼10% up to a factor of ∼2 depending on the adiabat of the imploding DT capsule; the lower the adiabat, the more variation is seen in the prediction of target performance when compared to the AOT modeling.

  5. First-principles investigation of armchair stanene nanoribbons

    Science.gov (United States)

    Fadaie, M.; Shahtahmassebi, N.; Roknabad, M. R.; Gulseren, O.

    2018-01-01

    In this study, we systematically investigated the structural, electronic and optical properties of armchair stanene nanoribbons (ASNRs) by using the first-principles calculations. First, we performed full geometry optimization calculations on various finite width ASNRs where all the edge Sn atoms are saturated by hydrogen atoms. The buckled honeycomb structure of two dimensional (2D) stanene is preserved, however the bond length between the edge Sn atoms is shortened to 2.77 Å compared to the remaining bonds with 2.82 Å length. The electronic properties of these nanoribbons strongly depend on their ribbon width. In general, band gap opens and increases with decreasing nanoribbon width indicating the quantum confinement effect. Consequently, the band gap values vary from a few meV exhibiting low-gap semiconductor (quasi-metallic) behavior to ∼0.4-0.5 eV showing moderate semiconductor character. Furthermore, the band gap values are categorized into three groups according to modulo 3 of integer ribbon width N which is the number of Sn atoms along the width. In order to investigate the optical properties, we calculated the complex dielectric function and absorption spectra of ASNRs, they are similar to the one of 2D stanene. For light polarized along ASNRs, in general, largest peaks appear around 0.5 eV and 4.0 eV in the imaginary part of dielectric functions, and there are several smaller peaks between them. These major peaks redshifts, slightly to the lower energies of incident light with increasing nanoribbon width. On the other hand, for light polarized perpendicular to the ribbon, there is a small peak around 1.6 eV, then, there is a band formed from several peaks from 5 eV to ∼7.5 eV, and the second one from 8 eV to ∼9.5 eV. Moreover, the peak positions hardly move with varying nanoribbon width, which indicates that quantum confinement effect is not playing an essential role on the optical properties of armchair stanene nanoribbons. In addition, our

  6. First-principles modelling of materials: From polythiophene to phosphorene

    Science.gov (United States)

    Ziletti, Angelo

    As a result of the computing power provided by the current technology, computational methods now play an important role in modeling and designing materials at the nanoscale. The focus of this dissertation is two-fold: first, new computational methods to model nanoscale transport are introduced, then state-of-the-art tools based on density functional theory are employed to explore the properties of phosphorene, a novel low dimensional material with great potential for applications in nanotechnology. A Wannier function description of the electron density is combined with a generalized Slater-Koster interpolation technique, enabling the introduction of a new computational method for constructing first-principles model Hamiltonians for electron and hole transport that maintain the density functional theory accuracy at a fraction of the computational cost. As a proof of concept, this new approach is applied to model polythiophene, a polymer ubiquitous in organic photovoltaic devices. A new low dimensional material, phosphorene - a single layer of black phosphorous - the phosphorous analogue of graphene was first isolated in early 2014 and has attracted considerable attention. It is a semiconductor with a sizable band gap, which makes it a perfect candidate for ultrathin transistors. Multi-layer phosphorene transistors have already achieved the highest hole mobility of any two-dimensional material apart from graphene. Phosphorene is prone to oxidation, which can lead to degradation of electrical properties, and eventually structural breakdown. The calculations reported here are some of the first to explore this oxidation and reveal that different types of oxygen defects are readily introduced in the phosphorene lattice, creating electron traps in some situations. These traps are responsible for the non-ambipolar behavior observed by experimental collaborators in air-exposed few-layer black phosphorus devices. Calculation results predict that air exposure of phosphorene

  7. First principle calculation of {sup 5}{sub {lambda}}He

    Energy Technology Data Exchange (ETDEWEB)

    Nemura, Hidekatsu; Akaishi, Yoshinori [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Suzuki, Yasuyuki [Niigata Univ., Faculty of Science, Niigata (Japan)

    2003-01-01

    A bound state solution of {sup 5}{sub {lambda}}He was obtained for the first time from the first principle calculation using NSC97f (S) potential which includes noncentral component such as {lambda}N-{sigma}N channel coupling and tensor forces. This result suggests us to change the concept regarding {sup 5}{sub {lambda}}He as {alpha} + {lambda}. In this paper, the role of the {lambda}-{sigma} coupling for the formation of the bound state and the outline of the calculation are described. For NN interaction G3RS potential is used and for YN interaction D2 and SC97e(S) potentials are used. All of them reproduce the experimental coupling energies of s-shell hypernuclei in the calculation. The probabilistic variational method is used to calculate the energies. From the result of the calculation of D2 and SC97e(S) potentials as the YN interaction it is shown clearly that the key point to understand overall energy levels of the s-shell hypernuclei is {lambda}N-{sigma}N coupling and above all the important role of the {sigma} degree of freedom in {sup 5}{sub {lambda}}He. The result with D2 potential supports the conventional picture that {lambda} particle is weakly coupled to the strongly coupled {sup 4}He. In this case, the result seems to be explained by the effect that {lambda}N-{sigma}N coupling is strongly suppressed in {sup 5}{sub {lambda}}He. On the other hand, the result of SC97e(S) potential shows completely different feature from the viewpoint of {sigma} channel coupling, although the difference from D2 potential is not large as far as the value of the coupling energy B{sub A} is concerned. The essential point in this case is that {lambda}N-{sigma}N coupling by tensor force strongly influences in {sup 5}{sub {lambda}}He to cause rearrangement of {sup 4}He and change its internal energy. The difference between the results from SC97e(S) and D2 potentials may be reflecting the differences on the deeper levels of nuclear forces, model space etc. in the region of

  8. First principles evaluation of the photocatalytic properties of cuprous oxide

    Science.gov (United States)

    Bendavid, Leah Isseroff

    Cuprous oxide (Cu2O) is a semiconductor attractive for use as a photocatalyst in renewable fuel production, but has thus far exhibited low efficiencies in solar energy technologies. A thorough understanding of its photocatalytically relevant properties is needed to develop improved cuprous oxide-based photocatalysts. This dissertation uses first principles calculations founded in quantum mechanics to study the physical, optical, electronic, and chemical properties of cuprous oxide and to optimize its performance in solar energy applications. The key properties that affect efficiency include electronic excitations, the band gap, band edge positions, charge transport, defect trap states, catalyst stability, and surface chemistry. The band gap of Cu 2O, which defines the efficiency of solar energy absorption, is first calculated with hybrid density functional theory (DFT) followed by a single GW perturbation. We also design methods to calculate optical excitations using embedded correlated wavefunction theory. The low-index surfaces are characterized using DFT+U, where we identify the (111) surface as the most stable. This surface is employed in the derivation of the band edges of Cu2O, which demonstrate that Cu2O can provide the thermodynamic overpotential needed to drive water splitting and the reduction of CO2 to methanol. We also identify the adsorption mechanisms of weakly physisorbed CO2 and the more strongly adsorbed H2O on the Cu2O(111) surface. Effective charge transport is needed so that photoexcited carriers can reach the surface active sites prior to recombination. We study electron and hole transport in Cu2O using the small polaron model, and show that its localized description is inappropriate for carrier transport, which is better modeled using band theory. We then use an approach founded in band theory to analyze the cause of intrinsic trap states, which promote carrier recombination. We conclude that doping with Li can prevent trap state formation and

  9. Magnetic phases at the molecular scale: the case of cylindrical Co nanoparticles

    Science.gov (United States)

    Díaz, Pablo; Vogel, Eugenio E.; Munoz, Francisco

    2017-06-01

    The magnetic phases of cobalt nanocylinders at the molecular scale have been studied by means of density functional theory together with micromagnetism. Diameters of the objects are under 1 nm. The magnetic phases resulting from first-principle calculations are far from obvious and quite different from both semiclassical results and extrapolations from what is measured for larger objects. These differences reinforce the importance of the quantum mechanical approach for small nanoscopic particles. One of the main results reported here is precisely the unexpected order in the last filled orbitals, which produce objects with alternating magnetic properties as the length of the cylinder increases. The resulting anisotropy is not obvious. The vortex phase is washed out due to the aspect ratio of the systems and the strength of the exchange constants for Co. Nevertheless, we do a pedagogical experiment by turning gradually down the exchange constants to investigate the kind of vortex states which are hidden underneath the ferromagnetic phases.

  10. First-principles calculation of mechanical properties of Si <001> nanowires and comparison to nanomechanical theory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B; Rudd, R E

    2006-10-19

    We report the results of first-principles density functional theory calculations of the Young's modulus and other mechanical properties of hydrogen-passivated Si {l_angle}001{r_angle} nanowires. The nanowires are taken to have predominantly {l_brace}100{r_brace}surfaces, with small {l_brace}110{r_brace} facets according to the Wulff shape. The Young's modulus, the equilibrium length and the constrained residual stress of a series of prismatic beams of differing sizes are found to have size dependences that scale like the surface area to volume ratio for all but the smallest beam. The results are compared with a continuum model and the results of classical atomistic calculations based on an empirical potential. We attribute the size dependence to specific physical structures and interactions. In particular, the hydrogen interactions on the surface and the charge density variations within the beam are quantified and used both to parameterize the continuum model and to account for the discrepancies between the two models and the first-principles results.

  11. A genetic algorithm for first principles global structure optimization of supported nano structures

    Energy Technology Data Exchange (ETDEWEB)

    Vilhelmsen, Lasse B.; Hammer, Bjørk, E-mail: hammer@phys.au.dk [Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark)

    2014-07-28

    We present a newly developed publicly available genetic algorithm (GA) for global structure optimisation within atomic scale modeling. The GA is focused on optimizations using first principles calculations, but it works equally well with empirical potentials. The implementation is described and benchmarked through a detailed statistical analysis employing averages across many independent runs of the GA. This analysis focuses on the practical use of GA’s with a description of optimal parameters to use. New results for the adsorption of M{sub 8} clusters (M = Ru, Rh, Pd, Ag, Pt, Au) on the stoichiometric rutile TiO{sub 2}(110) surface are presented showing the power of automated structure prediction and highlighting the diversity of metal cluster geometries at the atomic scale.

  12. A genetic algorithm for first principles global structure optimization of supported nano structures.

    Science.gov (United States)

    Vilhelmsen, Lasse B; Hammer, Bjørk

    2014-07-28

    We present a newly developed publicly available genetic algorithm (GA) for global structure optimisation within atomic scale modeling. The GA is focused on optimizations using first principles calculations, but it works equally well with empirical potentials. The implementation is described and benchmarked through a detailed statistical analysis employing averages across many independent runs of the GA. This analysis focuses on the practical use of GA's with a description of optimal parameters to use. New results for the adsorption of M8 clusters (M = Ru, Rh, Pd, Ag, Pt, Au) on the stoichiometric rutile TiO2(110) surface are presented showing the power of automated structure prediction and highlighting the diversity of metal cluster geometries at the atomic scale.

  13. Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles

    Science.gov (United States)

    Raya-Moreno, Martí; Aramberri, Hugo; Seijas-Bellido, Juan Antonio; Cartoixà, Xavier; Rurali, Riccardo

    2017-07-01

    We calculate the thermal conductivity, κ, of the recently synthesized hexagonal diamond (lonsdaleite) Si using first-principles calculations and solving the Boltzmann Transport Equation. We find values of κ which are around 40% lower than in the common cubic diamond polytype of Si. The trend is similar for [111] Si nanowires, with reductions of the thermal conductivity that are even larger than in the bulk in some diameter range. The Raman active modes are identified, and the role of mid-frequency optical phonons that arise as a consequence of the reduced symmetry of the hexagonal lattice is discussed. We also show briefly that popular classic potentials used in molecular dynamics might not be suited to describe hexagonal polytypes, discussing the case of the Tersoff potential.

  14. First-principles study of the amorphization of stishovite by isotropic volume expansion

    Science.gov (United States)

    Misawa, Masaaki; Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    Simple synthesis of ceramics with high hardness and high toughness from Earth-abundant materials is one of the most important issues in materials science. Nishiyama et al. synthesized nano-crystalline stishovite with extremely high toughness and high hardness via compression and decompression of silica, and proposed fracture-induced amorphization mechanisms for the toughning. Furthermore, it was shown that the toughening mechanisms are effective even in nanoscale order. Our first-principles molecular dynamics simulations have shown rapid amorphization of stishovite within picoseconds under increasing volume, thus substantiating the proposed amorphization mechanisms. Furthermore, we have calculated the critical stress, energy difference, and energy barrier for the crystalline-to-amorphous structural transition.

  15. Acceleration of orbital-free first principles calculation with graphics processing unit GPU

    Science.gov (United States)

    Aoki, M.; Tomono, H.; Iitaka, T.; Tsumuraya, K.

    2010-03-01

    Computational material design requires efficient algorithms and high-speed computers for calculating and predicting material properties. The orbital-free first principles calculation (OF-FPC) method, which is a tool for calculating and designing material properties, is an O(N) method and is suitable for large-scaled systems. The stagnation in the development of CPU devices with high mobility of electron carriers has driven the development of parallel computing and the production of CPU devices with finer spaced wiring. We, for the first time, propose another method to accelerate the computation using Graphics Processing Unit (GPU). The implementation of the Fast Fourier Transform (CUFFT) library that uses GPU, into our in-house OF-FPC code, reduces the computation time to half of that of the CPU.

  16. FInal Report: First Principles Modeling of Mechanisms Underlying Scintillator Non-Proportionality

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sadigh, Babak [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhou, Fei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-01

    This final report presents work carried out on the project “First Principles Modeling of Mechanisms Underlying Scintillator Non-Proportionality” at Lawrence Livermore National Laboratory during 2013-2015. The scope of the work was to further the physical understanding of the microscopic mechanisms behind scintillator nonproportionality that effectively limits the achievable detector resolution. Thereby, crucial quantitative data for these processes as input to large-scale simulation codes has been provided. In particular, this project was divided into three tasks: (i) Quantum mechanical rates of non-radiative quenching, (ii) The thermodynamics of point defects and dopants, and (iii) Formation and migration of self-trapped polarons. The progress and results of each of these subtasks are detailed.

  17. Interlayer Structures and Dynamics of Arsenate and Arsenite Intercalated Layered Double Hydroxides: A First Principles Study

    National Research Council Canada - National Science Library

    Yingchun Zhang; Xiandong Liu; Chi Zhang; Mengjia He; Xiancai Lu

    2017-01-01

    In this study, by using first principles simulation techniques, we explored the basal spacings, interlayer structures, and dynamics of arsenite and arsenate intercalated Layered double hydroxides (LDHs...

  18. Partial Molar Volumes of Aqua Ions from First Principles.

    Science.gov (United States)

    Wiktor, Julia; Bruneval, Fabien; Pasquarello, Alfredo

    2017-08-08

    Partial molar volumes of ions in water solution are calculated through pressures obtained from ab initio molecular dynamics simulations. The correct definition of pressure in charged systems subject to periodic boundary conditions requires access to the variation of the electrostatic potential upon a change of volume. We develop a scheme for calculating such a variation in liquid systems by setting up an interface between regions of different density. This also allows us to determine the absolute deformation potentials for the band edges of liquid water. With the properly defined pressures, we obtain partial molar volumes of a series of aqua ions in very good agreement with experimental values.

  19. First-principles theory of hydrogen diffusion in aluminum.

    Science.gov (United States)

    Gunaydin, Hakan; Barabash, Sergey V; Houk, K N; Ozoliņs, V

    2008-08-15

    Ab initio molecular dynamics simulations are used to obtain the activation enthalpy and preexponential factor for the lattice diffusion of hydrogen in aluminum between the temperatures 650 and 850 K: DeltaH double dagger=0.12+/-0.02 eV and D0=1.8 x 10(-7)m2/s. Vacancies are found to significantly decrease the apparent diffusivity due to their ability to bind one, two, or even six hydrogen atoms, causing a strong composition dependence and non-Arrhenius behavior of the effective diffusion coefficient.

  20. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations

    DEFF Research Database (Denmark)

    Hellmann, A.; Baerends, E.J.; Biczysko, M.

    2006-01-01

    theory with or without tunneling corrections, and quantum dynamics) to a range of relevant elementary reaction steps, such as N(2) dissociation, H(2) dissociation, and hydrogenation of the intermediate reactants. A complete kinetic model based on the most relevant elementary steps can be established...... for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations......Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state...

  1. Predicting Catalysis: Understanding Ammonia Synthesis from First-Principles Calculations

    OpenAIRE

    Hellman, A.; Baerends, E. J.; Biczysko, M.; Bligaard, T.; Christensen, C. H.; Clary, D. C.; Dahl, S.; Harrevelt, R. van; Honkala, K.; Jonsson, H.; Kroes, G. J.; Luppi, M.; Manthe, U.; Nørskov, J. K.; Olsen, R. A.

    2006-01-01

    Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state theory with or without tunneling corrections, and quantum dynamics) to a range of relevant elementary reaction steps, such as N2 dissociation, H2 dissociation, and hydrogenation of the intermediate rea...

  2. First-Principles Investigation of Li Intercalation Kinetics in Phospho-Olivines

    Science.gov (United States)

    Malik, Rahul

    This thesis focuses broadly on characterizing and understanding the Li intercalation mechanism in phospho-olivines, namely LiFePO 4 and Li(Fe,Mn)PO4, using first-principles calculations. Currently Li-ion battery technology is critically relied upon for the operation of electrified vehicles, but further improvements mainly in cathode performance are required to ensure widespread adoption, which in itself requires learning from existing commercial cathode chemistries. LiFePO4 is presently used in commercial Li-ion batteries, known for its rapid charge and discharge capability but with underwhelming energy density. This motivates the three central research efforts presented herein. First, we investigate the modified phase diagram and electrochemical properties of mixed olivines, such as Li(Fe,Mn)PO4, which offer improved theoretical energy density over LiFePO4 (due to the higher redox voltage associated with Mn2+/Mn3+). The Lix(Fe1-yMny)PO4 phase diagram is constructed by Monte Carlo simulation on a cluster expansion Hamiltonian parametrized by first-principles determined energies. Deviations from the equilibrium phase behavior and voltages of pure LiFePO4 and LiMnPO 4 are analyzed and discussed to good agreement with experimental observations. Second, we address why LiFePO4 exhibits superior rate performance strictly when the active particle size is brought down to the nano-scale. By considering the presence of immobile point defects residing in the 1D Li diffusion path, specifically by calculating from first principles both defect formation energies and Li migration barriers in the vicinity of likely defects, the Li diffusivity is recalculated and is found to strongly vary with particle size. At small particle sizes, the contribution from defects is small, and fast 1D Li diffusion is accessible. However, at larger particle sizes (microm scale and above) the contribution from defects is much larger. Not only is Li transport impeded, but it is also less anisotropic in

  3. Atomistic magnetization dynamics in nanostructures based on first principles calculations: application to Co nanoislands on Cu(111).

    Science.gov (United States)

    Böttcher, D; Ernst, A; Henk, J

    2011-07-27

    The magnetization dynamics of Co nanoislands on Cu(111) is studied on the atomic scale by means of the stochastic Landau-Lifshitz-Gilbert equation. The exchange and anisotropy constants of the spin Hamiltonian are computed from first principles. We focus on hysteresis loops and magnetic switching in dependence on temperature, island size, and strength of an external magnetic field. The magnetic switching of nanoislands whose magnetization is reversed on the sub-nanosecond time scale is found consistent with the Stoner-Wohlfarth theory. We separate the superparamagnetic from the ferromagnetic regime and provide evidence that nanodomains can exist at least on a sub-picosecond time scale.

  4. Thermodynamic functions of molecular conformations of (2-fluoro-2-phenyl-1-ethyl)ammonium ion and (2-hydroxy-2-phenyl-1-ethyl)ammonium ion as models for protonated noradrenaline and adrenaline: first-principles computational study of conformations and thermodynamic functions for the noradrenaline and adrenaline models.

    Science.gov (United States)

    Lee, DongJin R; Galant, Natalie J; Wang, Hui; Mucsi, Zoltan; Setiadi, David H; Viskolcz, Bela; Csizmadia, Imre G

    2009-03-19

    This paper reports the structural and thermodynamic consequences of substitution of the OH group by the isoelectronic F-atom in the case of the adrenaline family of molecules. The conformational landscapes were explored for the two enantiomeric forms of N-protonated-beta-fluoro-beta-phenyl-ethylamine, also called (2-fluoro-2-phenyl-1-ethyl)-ammonium ion (Model 1) and that of N-protonated-beta-hydroxy-beta-phenyl-ethylamine, also referred to as (2-hydroxy-2-phenyl-1-ethyl)-ammonium (Model 2) models of noradrenaline and adrenaline molecules. These full conformational studies were carried out by first principles of quantum mechanical computations at the B3LYP/6-31G(d,p) and G3MP2B3 levels of theory, using the Gaussian03 program. Also, frequency calculations of the stable structures were performed at the B3LYP/6-31G(d,p), and G3MP2B3 levels of theory. The thermodynamic functions (U, H, S, and G) of the various stable conformations of the title compounds were calculated at these levels of theory for the R and S stereoisomers. Relative values of the thermodynamic functions have been calculated with respect of the chosen reference conformers in which all relevant dihedral angles assumed anti orientation for the Model 1 and Model 2. Through the combination of both point and axis chirality, the enantiomeric and diastereomeric relationships of the six structures for each molecule investigated were established. Intramolecular hydrogen bonding interactions have been studied by the atoms in molecules (AIM) analysis of the electron density. The aromaticity of phenyl group has been determined by a selective hydrogenation protocol. The pattern of the extent of aromacity, due intramolecular interactions, varies very little between the two models studied.

  5. Application of Merrill's First Principles of Instruction in a Museum Education Context

    Science.gov (United States)

    Nelson, Kari Ross

    2015-01-01

    In an effort to support a solid grounding in educational theory within the field of museum education, three texts considered essential reading for museum educators were surveyed for correlations with Merrill's First Principles of Instruction, an influential work in the field of instructional design. Each of five First Principles were found to be…

  6. First-principles consistent description of monoxides FeO, CoO and NiO

    Energy Technology Data Exchange (ETDEWEB)

    Radwanski, R.J. [Institute of Physics, Pedagogical University, 30-084 Krakow (Poland); Center of Solid State Physics, Snt Filip 5, 31-150 Cracow (Poland)], E-mail: sfradwan@cyf-kr.edu.pl; Ropka, Z. [Institute of Physics, Pedagogical University, 30-084 Cracow (Poland)

    2008-04-01

    We provide a first-principles consistent description of monoxides FeO, CoO and NiO, which reconciles their insulating ground state and strong magnetism. We work in the strongly correlated crystal-field approach for 3d electrons with forbidden charge fluctuations. From first-principles calculations we have evaluated the dominant octupolar term A{sub 4}{sup 0}=+265Ka{sub B}{sup 4} (FeO), which defines the real potential in the atomic scale. We have reproduced values for the magnetic moment and its direction in the distorted NaCl structure. For all these antiferromagnetic monoxides we have found a substantial orbital magnetic moment of 0.5-1.0{mu}{sub B}.

  7. A Mutation Model from First Principles of the Genetic Code.

    Science.gov (United States)

    Thorvaldsen, Steinar

    2016-01-01

    The paper presents a neutral Codons Probability Mutations (CPM) model of molecular evolution and genetic decay of an organism. The CPM model uses a Markov process with a 20-dimensional state space of probability distributions over amino acids. The transition matrix of the Markov process includes the mutation rate and those single point mutations compatible with the genetic code. This is an alternative to the standard Point Accepted Mutation (PAM) and BLOcks of amino acid SUbstitution Matrix (BLOSUM). Genetic decay is quantified as a similarity between the amino acid distribution of proteins from a (group of) species on one hand, and the equilibrium distribution of the Markov chain on the other. Amino acid data for the eukaryote, bacterium, and archaea families are used to illustrate how both the CPM and PAM models predict their genetic decay towards the equilibrium value of 1. A family of bacteria is studied in more detail. It is found that warm environment organisms on average have a higher degree of genetic decay compared to those species that live in cold environments. The paper addresses a new codon-based approach to quantify genetic decay due to single point mutations compatible with the genetic code. The present work may be seen as a first approach to use codon-based Markov models to study how genetic entropy increases with time in an effectively neutral biological regime. Various extensions of the model are also discussed.

  8. First Principles Calculations of Electronic Excitations in 2D Materials

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm

    -thin electronics and high efficiency solar cells. Contrary to many other nano-materials, methods for large scale fabrication and patterning have already been demonstrated and the first real technological applications have already be showcased. Still the technology is very young and the number of well-studied 2D...... mechanics methods. One of these methods, Density Functional Theory (DFT), has been very successful at determining structural properties of 2D materials. It is however well-known that it less accurate when it comes to predicting the energy levels of excited states that are important in order to determine...... electronic transport, optical and chemical properties. On the other hand it has shown to be a great starting point for a systematic pertubation theory approach to obtain the so-called quasiparticle spectrum. In the GW approximation one considers the considers the potential from a charged excitation...

  9. First principles crystal engineering of nonlinear optical materials. I. Prototypical case of urea

    Science.gov (United States)

    Masunov, Artëm E.; Tannu, Arman; Dyakov, Alexander A.; Matveeva, Anastasia D.; Freidzon, Alexandra Ya.; Odinokov, Alexey V.; Bagaturyants, Alexander A.

    2017-06-01

    The crystalline materials with nonlinear optical (NLO) properties are critically important for several technological applications, including nanophotonic and second harmonic generation devices. Urea is often considered to be a standard NLO material, due to the combination of non-centrosymmetric crystal packing and capacity for intramolecular charge transfer. Various approaches to crystal engineering of non-centrosymmetric molecular materials were reported in the literature. Here we propose using global lattice energy minimization to predict the crystal packing from the first principles. We developed a methodology that includes the following: (1) parameter derivation for polarizable force field AMOEBA; (2) local minimizations of crystal structures with these parameters, combined with the evolutionary algorithm for a global minimum search, implemented in program USPEX; (3) filtering out duplicate polymorphs produced; (4) reoptimization and final ranking based on density functional theory (DFT) with many-body dispersion (MBD) correction; and (5) prediction of the second-order susceptibility tensor by finite field approach. This methodology was applied to predict virtual urea polymorphs. After filtering based on packing similarity, only two distinct packing modes were predicted: one experimental and one hypothetical. DFT + MBD ranking established non-centrosymmetric crystal packing as the global minimum, in agreement with the experiment. Finite field approach was used to predict nonlinear susceptibility, and H-bonding was found to account for a 2.5-fold increase in molecular hyperpolarizability to the bulk value.

  10. First-Principles Prediction of Densities of Amorphous Materials: The Case of Amorphous Silicon

    Science.gov (United States)

    Furukawa, Yoritaka; Matsushita, Yu-ichiro

    2018-02-01

    A novel approach to predict the atomic densities of amorphous materials is explored on the basis of Car-Parrinello molecular dynamics (CPMD) in density functional theory. Despite the determination of the atomic density of matter being crucial in understanding its physical properties, no first-principles method has ever been proposed for amorphous materials until now. We have extended the conventional method for crystalline materials in a natural manner and pointed out the importance of the canonical ensemble of the total energy in the determination of the atomic densities of amorphous materials. To take into account the canonical distribution of the total energy, we generate multiple amorphous structures with several different volumes by CPMD simulations and average the total energies at each volume. The density is then determined as the one that minimizes the averaged total energy. In this study, this approach is implemented for amorphous silicon (a-Si) to demonstrate its validity, and we have determined the density of a-Si to be 4.1% lower and its bulk modulus to be 28 GPa smaller than those of the crystal, which are in good agreement with experiments. We have also confirmed that generating samples through classical molecular dynamics simulations produces a comparable result. The findings suggest that the presented method is applicable to other amorphous systems, including those for which experimental knowledge is lacking.

  11. Electronic Structure of Cu(tmdt2 Studied with First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Kiyoyuki Terakura

    2012-08-01

    Full Text Available We have studied the electronic structure of Cu(tmdt2, a material related to single-component molecular conductors, by first-principles calculations. The total energy calculations for several different magnetic configurations show that there is strong antiferromagnetic (AFM exchange coupling along the crystal a-axis. The electronic structures are analyzed in terms of the molecular orbitals near the Fermi level of isolated Cu(tmdt2 molecule. This analysis reveals that the system is characterized by the half-filled pdσ(− band whose intermolecular hopping integrals have strong one-dimensionality along the crystal a-axis. As the exchange splitting of the band is larger than the band width, the basic mechanism of the AFM exchange coupling is the superexchange. It will also be shown that two more ligand orbitals which are fairly insensitive to magnetism are located near the Fermi level. Because of the presence of these orbitals, the present calculation predicts that Cu(tmdt2 is metallic even in its AFM state, being inconsistent with the available experiment. Some comments will be made on the difference between Cu(tmdt2 and Cu(dmdt2.

  12. First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications

    Science.gov (United States)

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Kress, J. D.; McCrory, R. L.; Skupsky, S.

    2016-04-01

    Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations of the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm3 and T = 15 625 to 500 000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a "Saha-type" model as a function of the CH plasma density and temperature, which gives an increasing ionization as the CH density increases even at low temperatures (T hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic deuterium-tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted ˜20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.

  13. Large scale ab initio molecular dynamics using the OpenAtom software

    Science.gov (United States)

    Ismail-Beigi, Sohrab; Mandal, Subhasish; Kim, Minjung; Mikida, Eric; Bohm, Eric; Jindal, Prateek; Jain, Nikhil; Kale, Laxmikant; Martyna, Glenn

    First principles molecular dynamics approaches permit one to simulate dynamic and time-dependent phenomena in physics, chemistry, and materials science without the use of empirical potentials or ad hoc assumptions about the interatomic interactions since they describe electrons, nuclei and their interactions explicitly. We describe our collaborative efforts in developing and enhancing the OpenAtom open source ab initio density functional software package based on plane waves and pseudopotentials (http://charm.cs.uiuc.edu/OpenAtom/). OpenAtom takes advantage of the Charm++ parallel framework. We present parallel scaling results on a large metal organic framework (MOF) material of scientific and potential technological interest for hydrogen storage. In the process, we highlight the capabilities of the software which include molecular dynamics (Car-Parrinello or Born-Oppenheimer), k-points, spin, path integral beads for quantum nuclear effects, and parallel tempering for exploration of complex phase spaces. Particular efforts have been made to ensure that the different capabilities interoperate in various combinations with high performance and scaling. Comparison to other available open source software will also be assessed. This collaboration is supported NSF SI2-SSI Grant ACI-1339804.

  14. Design of symmetric TIM barrel proteins from first principles.

    Science.gov (United States)

    Nagarajan, Deepesh; Deka, Geeta; Rao, Megha

    2015-08-12

    Computational protein design is a rapidly maturing field within structural biology, with the goal of designing proteins with custom structures and functions. Such proteins could find widespread medical and industrial applications. Here, we have adapted algorithms from the Rosetta software suite to design much larger proteins, based on ideal geometric and topological criteria. Furthermore, we have developed techniques to incorporate symmetry into designed structures. For our first design attempt, we targeted the (α/β)8 TIM barrel scaffold. We gained novel insights into TIM barrel folding mechanisms from studying natural TIM barrel structures, and from analyzing previous TIM barrel design attempts. Computational protein design and analysis was performed using the Rosetta software suite and custom scripts. Genes encoding all designed proteins were synthesized and cloned on the pET20-b vector. Standard circular dichroism and gel chromatographic experiments were performed to determine protein biophysical characteristics. 1D NMR and 2D HSQC experiments were performed to determine protein structural characteristics. Extensive protein design simulations coupled with ab initio modeling yielded several all-atom models of ideal, 4-fold symmetric TIM barrels. Four such models were experimentally characterized. The best designed structure (Symmetrin-1) contained a polar, histidine-rich pore, forming an extensive hydrogen bonding network. Symmetrin-1 was easily expressed and readily soluble. It showed circular dichroism spectra characteristic of well-folded alpha/beta proteins. Temperature melting experiments revealed cooperative and reversible unfolding, with a Tm of 44 °C and a Gibbs free energy of unfolding (ΔG°) of 8.0 kJ/mol. Urea denaturing experiments confirmed these observations, revealing a Cm of 1.6 M and a ΔG° of 8.3 kJ/mol. Symmetrin-1 adopted a monomeric conformation, with an apparent molecular weight of 32.12 kDa, and displayed well resolved 1D-NMR spectra

  15. High P-T experiments and first principles calculations of the diffusion of Si, O, Cr in liquid iron

    Science.gov (United States)

    Posner, Esther; Rubie, David C.; Frost, Daniel J.; Vlček, Vojtěch; Steinle-Neumann, Gerd

    2016-04-01

    Diffusion transport properties of molten iron and iron alloys at high pressures and temperatures are important for understanding large-scale geodynamic processes and thermochemical evolution of planetary interiors, such as the time and length scales of metal-silicate equilibration during core formation and chemical exchange across core-mantle boundaries during cooling. The density of the Earth's outer core is ˜10% too low to be composed of pure Fe-Ni and is assumed to contain significant concentrations of light elements, such as Si, S, O, and/or C, in addition to siderophile transition metals (V, Cr, Mn, W) which are depleted in the Earth's mantle relative to chondrites. The chemical diffusivity of light and siderophile elements in liquid iron under P -T conditions of the Earth's core and its formation are therefore required to constrain the composition and potential chemical stratification of planetary cores, in addition to the kinetics of chemical buoyancy from inner core crystallization that partially drives the geodynamo. In order to better understand the effects of pressure and temperature on Si, O, and Cr diffusion in liquid iron, we have conducted (1) chemical diffusion-couple experiments combined with numerical modeling of diffusion profiles to account for non-isothermal annealing, and (2) first principles molecular dynamic (FP-MD) calculations from ambient pressure to 135 GPa and 2200-5500 K. Experimental diffusion couples comprised of highly polished cylindrical disks of 99.97% Fe and metallic Fe alloy were contained within an MgO capsule and annealed within the P -T range 1873-2653 K and 1-18 GPa using a multi-anvil apparatus. A series of experiments are conducted at each pressure using variable heating rates, final quench temperatures (Tf), and time duration at Tf. Recovered capsules were cut and polished parallel to the axis of the cylindrical sample and measured using EMPA 10 μm-step line scans. To extend our dataset to P -T conditions of the Earth

  16. A first principles study of the oxidation energetics and kinetics of realgar

    Science.gov (United States)

    Renock, Devon; Becker, Udo

    2010-08-01

    Quantum-mechanical calculations allow resolving and quantifying in detail important aspects of reaction mechanisms such as spin transitions and oxygen dissociation that can be the major rate-limiting steps in redox processes on sulfide and oxide surfaces. In addition, this knowledge can help experimentalists in setting up the framework of rate equations that can be used to describe the kinetics of, e.g., oxidation processes. The unique molecular crystal structure of realgar, As 4S 4 clusters held together by van der Waals bonds, allows for a convenient quantum-mechanical (q.m.) cluster approach to investigate the thermodynamics and kinetic pathways of oxidation. The interaction of As 4S 4 clusters with oxygen and co-adsorbed ions provides a model system for understanding the molecular-scale processes that underpin empirically-derived rate expressions, and provides clues to the oxidation mechanisms of other sulfides and oxides. Two activated processes are shown to dominate the kinetics of oxidation by molecular oxygen: (i) a paramagnetic 3O to diamagnetic 1O spin transition and (ii) oxygen dissociation on the surface, in that order. The activation energies for the spin transition and O 2 dissociation step were determined to be 1.1 eV (106 kJ/mol) and 0.9 eV (87 kJ/mol), respectively, if molecular oxygen is the only reactant on the surface. In the case of As 4S 4, q.m. calculations reveal that 3O transfers its spin to the cluster and forms a low-spin, peroxo intermediate on the surface before dissociating. The adsorption of a hydroxide ion on the surface proximate to the 3O adsorption site changes the adsorption mechanism by lowering the activation energy barriers for both the spin transition (0.30 eV/29 kJ/mol) and the O 2 dissociation step (0.72 eV/69 kJ/mol). Thus, while spin transition is rate limiting for oxidation with O 2 alone, dissociation becomes the rate-limiting step for oxidation with co-adsorption of OH -. First-principles, periodic calculations of the

  17. First Principles Study on the Interaction Mechanisms of Water Molecules on TiO₂ Nanotubes.

    Science.gov (United States)

    Dai, Jianhong; Song, Yan

    2016-12-16

    The adsorption properties of water molecules on TiO₂ nanotubes (TiO₂NT) and the interaction mechanisms between water molecules are studied by first principles calculations. The adsorption preferences of water molecules in molecular or dissociated states on clean and H-terminated TiO₂NT are evaluated. Adsorption of OH clusters on (0, 6) and (9, 0) TiO₂ nanotubes are first studied. The smallest adsorption energies are -1.163 eV and -1.383 eV, respectively, by examining five different adsorption sites on each type of tube. Eight and six adsorption sites were considered for OH adsorbtion on the H terminated (0, 6) and (9, 0) nanotubes. Water molecules are reformed with the smallest adsorption energy of -4.796 eV on the former and of -5.013 eV on the latter nanotube, respectively. For the adsorption of a single water molecule on TiO₂NT, the molecular state shows the strongest adsorption preference with an adsorption energy of -0.660 eV. The adsorption of multiple (two and three) water molecules on TiO₂NT is also studied. The calculated results show that the interactions between water molecules greatly affect their adsorption properties. Competition occurs between the molecular and dissociated states. The electronic structures are calculated to clarify the interaction mechanisms between water molecules and TiO₂NT. The bonding interactions between H from water and oxygen from TiO₂NT may be the reason for the dissociation of water on TiO₂NT.

  18. First Principles Study on the Interaction Mechanisms of Water Molecules on TiO2 Nanotubes

    Science.gov (United States)

    Dai, Jianhong; Song, Yan

    2016-01-01

    The adsorption properties of water molecules on TiO2 nanotubes (TiO2NT) and the interaction mechanisms between water molecules are studied by first principles calculations. The adsorption preferences of water molecules in molecular or dissociated states on clean and H-terminated TiO2NT are evaluated. Adsorption of OH clusters on (0, 6) and (9, 0) TiO2 nanotubes are first studied. The smallest adsorption energies are −1.163 eV and −1.383 eV, respectively, by examining five different adsorption sites on each type of tube. Eight and six adsorption sites were considered for OH adsorbtion on the H terminated (0, 6) and (9, 0) nanotubes. Water molecules are reformed with the smallest adsorption energy of −4.796 eV on the former and of −5.013 eV on the latter nanotube, respectively. For the adsorption of a single water molecule on TiO2NT, the molecular state shows the strongest adsorption preference with an adsorption energy of −0.660 eV. The adsorption of multiple (two and three) water molecules on TiO2NT is also studied. The calculated results show that the interactions between water molecules greatly affect their adsorption properties. Competition occurs between the molecular and dissociated states. The electronic structures are calculated to clarify the interaction mechanisms between water molecules and TiO2NT. The bonding interactions between H from water and oxygen from TiO2NT may be the reason for the dissociation of water on TiO2NT. PMID:28774138

  19. Flexible molecular-scale electronic devices.

    Science.gov (United States)

    Park, Sungjun; Wang, Gunuk; Cho, Byungjin; Kim, Yonghun; Song, Sunghoon; Ji, Yongsung; Yoon, Myung-Han; Lee, Takhee

    2012-06-03

    Flexible materials and devices could be exploited in light-emitting diodes, electronic circuits, memory devices, sensors, displays, solar cells and bioelectronic devices. Nanoscale elements such as thin films, nanowires, nanotubes and nanoparticles can also be incorporated into the active films of mechanically flexible devices. Large-area devices containing extremely thin films of molecular materials represent the ultimate scaling of flexible devices based on organic materials, but the influence of bending and twisting on the electrical and mechanical stability of such devices has never been examined. Here, we report the fabrication and characterization of two-terminal electronic devices based on self-assembled monolayers of alkyl or aromatic thiol molecules on flexible substrates. We find that the charge transport characteristics of the devices remain stable under severe bending conditions (radius ≤ 1 mm) and a large number of repetitive bending cycles (≥1,000). The devices also remain reliable in various bending configurations, including twisted and helical structures.

  20. A first principles study on the CVD graphene growth on copper surfaces: A carbon atom incorporation to graphene edges

    Science.gov (United States)

    Tajima, Nobuo; Kaneko, Tomoaki; Nara, Jun; Ohno, Takahisa

    2016-11-01

    Carbon atom reactions in the chemical vapor deposition (CVD) processes for graphene production on copper surfaces have been studied by first principles molecular dynamics (MD) simulations at a typical CVD growth temperature. This study focuses on the processes of a carbon atom incorporation to graphene edges. The energy barriers of these carbon atom incorporation reactions have been calculated as ~ 1 eV, which are comparable or slightly larger than the barriers of carbon atom dimerization. We have also found that the surface copper atoms form step like structures to terminate the carbon dangling bonds at graphene edges, which are markedly different from the graphene-copper interactions observed in static calculations.

  1. Effect of metal doping on structural characteristics of amorphous carbon system: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaowei; Zhang, Dong [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Lee, Kwang-Ryeol, E-mail: krlee@kist.re.kr [Computational Science Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-05-31

    First-principles calculation was performed to investigate the effect of metal doping on the structural characteristics of amorphous carbon system, and the 3d transition metals (TM) were particularly selected as representative case. Results showed that the total energy in TM–C systems caused by distorting the bond angles was reduced distinctly for comparison with that in C–C system. Further electronic structure revealed that as the 3d electrons of doped TM increased, the bond characteristic of highest occupied molecular orbital changed from bonding (Sc, Ti) to nonbonding (V, Cr, Mn, Fe) and finally to antibonding (Co, Ni, Cu) between the TM and C atoms. Meanwhile, the TM–C bond presented a mixture of the covalent and ionic characters. The decrease of strength and directionality of TM–C bonds resulted in the total energy change upon bond angle distortion, which demonstrated that the bond characteristics played an important role in reducing residual stress of TM-doped amorphous carbon systems. - Highlights: • The bond characteristics as 3d electrons changed from bonding, nonbonding to antibonding. • The TM–C bond was a mixture of covalent and ionic characters. • Reduced strength and directionality of TM–C bond led to small distortion energy change. • The weak TM–C bond accounted for the reduced compressive stress caused by TM.

  2. Structure of hydrophobic hydration of benzene and hexafluorobenzene from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Allesch, M; Schwegler, E; Galli, G

    2006-10-23

    We report on the aqueous hydration of benzene and hexafluorobenzene, as obtained by carrying out extensive (>100 ps) first principles molecular dynamics simulations. Our results show that benzene and hexafluorobenzene do not behave as ordinary hydrophobic solutes, but rather present two distinct regions, one equatorial and the other axial, that exhibit different solvation properties. While in both cases the equatorial regions behave as typical hydrophobic solutes, the solvation properties of the axial regions depend strongly on the nature of the {pi}-water interaction. In particular, {pi}-hydrogen and {pi}-lone pair interactions are found to dominate in benzene and hexafluorobenzene, respectively, which leads to substantially different orientations of water near the two solutes. We present atomic and electronic structure results (in terms of Maximally Localized Wannier Functions) providing a microscopic description of benzene- and hexafluorobenzene-water interfaces, as well as a comparative study of the two solutes. Our results point at the importance of an accurate description of interfacial water in order to characterize hydration properties of apolar molecules, as these are strongly influenced by subtle charge rearrangements and dipole moment redistributions in interfacial regions.

  3. First-principles Equations of State and Shock Hugoniots of First- and Second-Row Plasmas

    Science.gov (United States)

    Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard

    A first-principles methodology for studying high energy density physics and warm dense matter is important for the stewardship of plasma science and guiding inertial confinement fusion experiments. In order to address this challenge, we have been developing the capability of path integral Monte Carlo (PIMC) for studying dense plasmas comprised of increasingly heavy elements, including nitrogen, oxygen, and neon. In recent work, we have extended PIMC methodology beyond the free-particle node approximation by implementing localized nodal surfaces capable of describing bound plasma states in second-row elements, such as silicon. We combine results from PIMC with results from density functional theory molecular dynamics (DFT-MD) calculations to produce a coherent equation of state that bridges the entire WDM regime. Analysis of pair-correlation functions and the electronic density of states reveals an evolving plasma structure and ionization process that is driven by temperature and pressure. We also compute shock Hugoniot curves for a wide range of initial densities, which generally reveal an increase in compression as the second and first shells are ionized. This work is funded by the NSF/DOE Partnership in Basic Plasma Science and Engineering (DE-SC0010517).

  4. First-Principles Equation of State and Shock Compression of Warm Dense Aluminum and Hydrocarbons

    Science.gov (United States)

    Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard

    2017-10-01

    Theoretical studies of warm dense plasmas are a key component of progress in fusion science, defense science, and astrophysics programs. Path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD), two state-of-the-art, first-principles, electronic-structure simulation methods, provide a consistent description of plasmas over a wide range of density and temperature conditions. Here, we combine high-temperature PIMC data with lower-temperature DFT-MD data to compute coherent equations of state (EOS) for aluminum and hydrocarbon plasmas. Subsequently, we derive shock Hugoniot curves from these EOSs and extract the temperature-density evolution of plasma structure and ionization behavior from pair-correlation function analyses. Since PIMC and DFT-MD accurately treat effects of atomic shell structure, we find compression maxima along Hugoniot curves attributed to K-shell and L-shell ionization, which provide a benchmark for widely-used EOS tables, such as SESAME and LEOS, and more efficient models. LLNL-ABS-734424. Funding provided by the DOE (DE-SC0010517) and in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computational resources provided by Blue Waters (NSF ACI1640776) and NERSC. K. Driver's and S. Zhang's current address is Lawrence Livermore Natl. Lab, Livermore, CA, 94550, USA.

  5. First-Principles Simulations and Shock-Hugoniot Calculations of Warm Dense Neon

    Science.gov (United States)

    Driver, K. P.; Militzer, B.

    2014-12-01

    All-electron path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD) simulations provide a consistent, first-principles investigation of warm, dense neon plasmas in the density-temperature range of 1-15 g/cm3 and 104-108 K. At high temperatures, DFT-MD becomes intractable because of too many partially occupied bands, while at lower temperatures, PIMC is intractable because of approximations to fermion nodes. In combination, PIMC and DFT-MD pressures and internal energies provide a coherent equation of state with a region of overlap in which the two methods cross-validate each other. Pair-correlation functions at various temperatures and densities provide details of the plasma structure and the temperature-driven ionization process. The electronic density of states of neon shows that a gap persists for the highest density-temperature conditions studied here with DFT-MD. Finally, the computed shock Hugoniot curves show an increase in compression as the first and second shells are ionized. Funding provided by the NSF (DE-SC0010517). Computational resources provided by the National Center for Atmospheric Research.

  6. First-principles calculation of electronic energy level alignment at electrochemical interfaces

    Science.gov (United States)

    Azar, Yavar T.; Payami, Mahmoud

    2017-08-01

    Energy level alignment at solid-solvent interfaces is an important step in determining the properties of electrochemical systems. The positions of conduction and valence band edges of a semiconductor are affected by its environment. In this study, using first-principles DFT calculation, we have determined the level shifts of the semiconductors TiO2 and ZnO at the interfaces with MeCN and DMF solvent molecules. The level shifts of semiconductor are obtained using the potential difference between the clean and exposed surfaces of asymmetric slabs. In this work, neglecting the effects of present ions in the electrolyte solution, we have shown that the solvent molecules give rise to an up-shift for the levels, and the amount of this shift varies with coverage. It is also shown that the shapes of density of states do not change sensibly near the gap. Molecular dynamics simulations of the interface have shown that at room temperatures the semiconductor surface is not fully covered by the solvent molecules, and one must use intermediate values in an static calculations.

  7. First-principles determination of the K-conductivity pathways in KAlO2

    KAUST Repository

    Peskov, Maxim

    2015-04-30

    Investigation of novel fast ion-conducting materials requires an accurate description of the ionic diffusion. The tiling method proposed by Blatov and coworkers, based on geometric characteristics, is a viable alternative to molecular dynamics simulations, allowing us to build models of the pathway system in crystal structures; however, the reliability is limited. Using first-principles simulations, we calculate the potential barriers of the ionic migration between voids in the structure of KAlO2 with local framework distortions and compare the results with those of the tiling method. We estimate the potential barriers for complex ion-conducting channels including several hopping distances. The effect of Coulomb interaction between charge carriers located in adjacent pathways on the potential barriers is discussed, and the effects of the framework flexibility are analyzed. Quantitative results on the potential barriers of ionic diffusion in a crystal structure and its dependence on the shape of the channels are important for assessing the potential of a specific compound. © 2015 American Chemical Society.

  8. Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles

    Science.gov (United States)

    Wang, Xuelong; Xiao, Ruijuan; Li, Hong; Chen, Liquan

    2017-05-01

    Through first-principles calculations and crystal structure prediction techniques, we identify a new layered oxysulfide LiAlSO in orthorhombic structure as a novel lithium superionic conductor. Two kinds of stacking sequences of layers of AlS2O2 are found in different temperature ranges. Phonon and molecular dynamics simulations verify their dynamic stabilities, and wide band gaps up to 5.6 eV are found by electronic structure calculations. The lithium migration energy barrier simulations reveal the collective interstitial-host ion "kick-off" hopping mode with barriers lower than 50 meV as the dominating conduction mechanism for LiAlSO, indicating it to be a promising solid-state electrolyte in lithium secondary batteries with fast ionic conductivity and a wide electrochemical window. This is a first attempt in which the lithium superionic conductors are designed by the crystal structure prediction method and may help explore other mixed-anion battery materials.

  9. Infrared radiative properties of alumina up to the melting point: A first-principles study

    Science.gov (United States)

    Yang, J. Y.; Xu, M.; Liu, L. H.

    2016-11-01

    The high thermal emission of alumina dominates the radiative heat transfer of rocket exhaust plume. Yet numerous experimental measurements on radiative properties of alumina at high temperatures vary considerably from each other and cannot provide physical insight into the underlying mechanism. In this work, the ab initio molecular dynamics (AIMD) method and ab initio parameterized Drude model are combined to predict the radiative properties of alumina for temperatures up to 2327 K (the melting point) in the spectral range 1-12 μm. Contributed by different microscopic processes, the optical absorption of alumina in the spectral range 1-4 and 4-12 μm is described by two distinct methods. In the spectral range 4-12 μm, the multi-phonon process mainly contributes to optical absorption and can be simulated by the AIMD method based on the linear response theory. While in the spectral range 1-4 μm, the optical absorption is mainly caused by intrinsic carriers and can be effectively described by the ab initio parameterized Drude model. The first-principles calculations can successfully predict the infrared radiative properties of alumina at high temperatures and well reproduce the literature experiments. Moreover, the theoretical simulations verify that alumina can retain its semiconducting character even in the liquid phase and there emerges sharp increase in the near-infrared optical absorption of alumina upon melting.

  10. Low-pressure metastable phase of single-bonded polymeric nitrogen from a helical structure motif and first-principles calculations

    Science.gov (United States)

    Zahariev, F.; Hooper, J.; Alavi, S.; Zhang, F.; Woo, T. K.

    2007-04-01

    Recognition of helical structural motifs in the experimentally observed cubic gauche (CG) crystal lattice has led to the discovery of a single-bonded nonlayered nitrogen structure that we have named chaired web (CW). First-principles density functional theory calculations reveal that CW, which was originally identified at high pressures, possesses metastability at ambient conditions as well. The metastability is demonstrated by both high-quality phonon dispersion calculations and finite-temperature first-principles molecular dynamics simulations. In addition, the CW phase is thermodynamically more stable than the CG phase in the ambient pressure regime.

  11. First Principles Simulations fo the Supercritical Behavior of Ore Forming Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Weare, John H

    2013-04-19

    Abstract of Selected Research Progress: I. First-principles simulation of solvation structure and deprotonation reactions of ore forming metal ions in very nonideal solutions: Advances in algorithms and computational performance achieved in this grant period have allowed the atomic level dynamical simulation of complex nanoscale materials using interparticle forces calculated directly from an accurate density functional solution to the electronic Schr dinger equation (ab-initio molecular dynamics, AIMD). Focus of this program was on the prediction and analysis of the properties of environmentally important ions in aqueous solutions. AIMD methods have provided chemical interpretations of these very complex systems with an unprecedented level of accuracy and detail. The structure of the solvation region neighboring a highly charged metal ion (e.g., 3+) in an aqueous solution is very different from that of bulk water. The many-body behaviors (polarization, charge transfer, etc.) of the ion-water and water-water interactions in this region are difficult to capture with conventional empirical potentials. However, a large numbers of waters (up to 128 waters) are required to fully describe chemical events in the extended hydrations shells and long simulation times are needed to reliably sample the system. Taken together this makes simulation at the 1st principles level a very large computational problem. Our AIMD simulation results using these methods agree with the measured octahedral structure of the 1st solvation shell of Al3+ at the 1st shell boundary and a calculated radius of 1.937 (exp. 1.9). Our calculated average 2nd shell radius agrees remarkably well with the measured radius, 4.093 calculated vs. the measured value of 4.0-4.15 . Less can be experimentally determined about the structure of the 2nd shell. Our simulations show that this shell contains roughly 12 water molecules, which are trigonally coordinated to the 1st shell waters. This structure cannot be

  12. A glimpse of fluid turbulence from the molecular scale

    KAUST Repository

    Komatsu, Teruhisa S.

    2014-08-01

    Large-scale molecular dynamics (MD) simulations of freely decaying turbulence in three-dimensional space are reported. Fluid components are defined from the microscopic states by eliminating thermal components from the coarse-grained fields. The energy spectrum of the fluid components is observed to scale reasonably well according to Kolmogorov scaling determined from the energy dissipation rate and the viscosity of the fluid, even though the Kolmogorov length is of the order of the molecular scale. © 2014 The Authors.

  13. Unified First-Principle Analysis Of Ultraintense Laser-Matter Interactions: Theory, Computation and Experiments

    Science.gov (United States)

    2017-03-29

    AFRL-AFOSR-VA-TR-2017-0072 Unified first-principle analysis of ultraintense laser-matter interactions: Theory , computation and Experiments Pavel...From - To) 30 Sep 2012 to 30 Nov 2016 4. TITLE AND SUBTITLE Unified first-principle analysis of ultraintense laser-matter interactions: Theory ...under this program include 3 papers in PRL, 1 paper in Nature Photonics, and 2 papers in Nature Communications . We are currently in the process of

  14. First-principles design of nanostructured hybrid photovoltaics based on layered transition metal phosphates.

    Science.gov (United States)

    Lentz, Levi C; Kolpak, Alexie M

    2017-04-28

    The performance of bulk organic and hybrid organic-inorganic heterojunction photovoltaics is often limited by high carrier recombination arising from strongly bound excitons and low carrier mobility. Structuring materials to minimize the length scales required for exciton separation and carrier collection is therefore a promising approach for improving efficiency. In this work, first-principles computations are employed to design and characterize a new class of photovoltaic materials composed of layered transition metal phosphates (TMPs) covalently bound to organic absorber molecules to form nanostructured superlattices. Using a combination of transition metal substitution and organic functionalization, the electronic structure of these materials is systematically tuned to design a new hybrid photovoltaic material predicted to exhibit very low recombination due to the presence of a local electric field and spatially isolated, high mobility, two-dimensional electron and hole conducting channels. Furthermore, this material is predicted to have a large open-circuit voltage of 1.7 V. This work suggests that hybrid TMPs constitute an interesting class of materials for further investigation in the search for achieving high efficiency, high power, and low cost photo Zirconium phosphate was chosen, in part, due to previous experiment voltaics.

  15. Calculation of the band structure parameter in silicon nanowires using first principle analytical method

    Science.gov (United States)

    Amanullah, Mohamed Jamal Bin; Adam, Tijjani; Dhahi, Th S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.

    2017-09-01

    Silicon is the most important material in semiconductor industry. As nano-devices shrink in size, the conventional understanding of electronic devices are no longer applicable as quantum effects start to play an important role for the behavior of the device. At the same time, when structures are approaching atomic scale, the precise fabrication by photo-lithographic techniques, for example, are not even applicable. Very often, the fabrication of regular structures rely on self-assembly is susceptible to fluctuations. Therefore, a deeper understanding to exploit the quantum behavior of nano-devices and precise control of building nano-structures are highly desired. Thus, genetic algorithm based on first principle analysis to optimize silicon nanowires electron and elastic properties is proposed. One nanometer (1nm) surface reconstruction by using genetic algorithm combined with ab-initio calculation is proposed. The SiNWs behavior to quasi-direct band gap transition with the decrease size and the band gap properties under different electrical voltage will be determined.

  16. Current Challenges in the First Principle Quantitative Modelling of the Lower Hybrid Current Drive in Tokamaks

    Directory of Open Access Journals (Sweden)

    Peysson Y.

    2017-01-01

    Full Text Available The Lower Hybrid (LH wave is widely used in existing tokamaks for tailoring current density profile or extending pulse duration to steady-state regimes. Its high efficiency makes it particularly attractive for a fusion reactor, leading to consider it for this purpose in ITER tokamak. Nevertheless, if basics of the LH wave in tokamak plasma are well known, quantitative modeling of experimental observations based on first principles remains a highly challenging exercise, despite considerable numerical efforts achieved so far. In this context, a rigorous methodology must be carried out in the simulations to identify the minimum number of physical mechanisms that must be considered to reproduce experimental shot to shot observations and also scalings (density, power spectrum. Based on recent simulations carried out for EAST, Alcator C-Mod and Tore Supra tokamaks, the state of the art in LH modeling is reviewed. The capability of fast electron bremsstrahlung, internal inductance li and LH driven current at zero loop voltage to constrain all together LH simulations is discussed, as well as the needs of further improvements (diagnostics, codes, LH model, for robust interpretative and predictive simulations.

  17. First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes

    KAUST Repository

    Chen, X.

    2012-03-26

    Rapid and cost-effective DNA sequencing at the single nucleotide level might be achieved by measuring a transverse electronic current as single-stranded DNA is pulled through a nanometer-sized pore. In order to enhance the electronic coupling between the nucleotides and the electrodes and hence the current signals, we employ a pair of single-walled close-ended (6,6) carbon nanotubes (CNTs) as electrodes. We then investigate the electron transport properties of nucleotides sandwiched between such electrodes by using first-principles quantum transport theory. In particular, we consider the extreme case where the separation between the electrodes is the smallest possible that still allows the DNA translocation. The benzene-like ring at the end cap of the CNT can strongly couple with the nucleobases and therefore it can both reduce conformational fluctuations and significantly improve the conductance. As such, when the electrodes are closely spaced, the nucleobases can pass through only with their base plane parallel to the plane of CNT end caps. The optimal molecular configurations, at which the nucleotides strongly couple to the CNTs, and which yield the largest transmission, are first identified. These correspond approximately to the lowest energy configurations. Then the electronic structures and the electron transport of these optimal configurations are analyzed. The typical tunneling currents are of the order of 50 nA for voltages up to 1 V. At higher bias, where resonant transport through the molecular states is possible, the current is of the order of several μA. Below 1 V, the currents associated to the different nucleotides are consistently distinguishable, with adenine having the largest current, guanine the second largest, cytosine the third and, finally, thymine the smallest. We further calculate the transmission coefficient profiles as the nucleotides are dragged along the DNA translocation path and investigate the effects of configurational variations

  18. A first principles theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous ionic solutions: D2O in hydration shells of Cl(-) ions.

    Science.gov (United States)

    Mallik, Bhabani S; Semparithi, A; Chandra, Amalendu

    2008-11-21

    A theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous ionic solutions is presented from first principles without employing any empirical potential models. The present calculations are based on ab initio molecular dynamics for trajectory generation and wavelet analysis of the simulated trajectories for time dependent frequency calculations. Results are obtained for two different deuterated aqueous solutions: the first one is a relatively dilute solution of a single Cl(-) ion and the second one is a concentrated solution of NaCl ( approximately 3M) dissolved in liquid D(2)O. It is found that the frequencies of OD bonds in the anion hydration shell, i.e., those which are hydrogen bonded to the chloride ion, have a higher stretch frequency than those in the bulk water. Also, on average, the frequencies of hydration shell OD modes are found to increase with increase in the anion-water hydrogen bond distance. On the dynamical side, when the vibrational spectral diffusion is calculated exclusively for the hydration shell water molecules in the first solution, the dynamics reveals three time scales: a short-time relaxation ( approximately 200 fs) corresponding to the dynamics of intact ion-water hydrogen bonds, a slower relaxation ( approximately 3 ps) corresponding to the lifetimes of chloride ion-water hydrogen bonds, and another longer-time constant ( approximately 20 ps) corresponding to the escape dynamics of water from the anion hydration shell. Existence of such three time scales for hydration shell water molecules was also reported earlier for water containing a single iodide ion using classical molecular dynamics [B. Nigro et al., J. Phys. Chem. A 110, 11237 (2006)]. Hence, the present study confirms the basic results of this earlier work using a different methodology. However, when the vibrational spectral diffusion is calculated over all the OD modes, only two time scales of approximately 150 fs and approximately 2.7 ps are

  19. A first principles atmospheric propagation & characterization tool: the laser environmental effects definition and reference (LEEDR)

    Science.gov (United States)

    Fiorino, Steven T.; Bartell, Richard J.; Krizo, Matthew J.; Caylor, Gregory L.; Moore, Kenneth P.; Harris, Thomas R.; Cusumano, Salvatore J.

    2008-02-01

    The Air Force Institute of Technology Center for Directed Energy (AFIT/CDE) has developed a first principles atmospheric propagation and characterization model called the Laser Environmental Effects Definition and Reference or LEEDR. This package enables the creation of profiles of temperature, pressure, water vapor content, optical turbulence, and atmospheric particulates and hydrometeors as they relate to line-by-line layer extinction coefficient magnitude at wavelengths from the UV to the RF. Worldwide seasonal, diurnal, and geographical variability in these parameters is accessed from probability density function (PDF) databases using a variety of recently available resources to include the Extreme and Percentile Environmental Reference Tables (ExPERT), the Master Database for Optical Turbulence Research in Support of the Airborne Laser, and the Global Aerosol Data Set (GADS). GADS provides aerosol constituent number densities on a 5° x 5° grid worldwide. ExPERT mapping software allows the LEEDR operator to choose from specific site or regional upper air data to characterize correlated molecular absorption, aerosol absorption and scattering by percentile. The integration of the Surface Marine Gridded Climatology database, the Advanced Navy Aerosol Model (ANAM), and the Navy Surface Layer Optical Turbulence (NSLOT) model provides worldwide coverage over all ocean regions on a 1° x 1° grid. Molecular scattering is computed based on Rayleigh theory. Molecular absorption effects are computed for the top 13 absorbing species using line strength information from the HITRAN 2004 database in conjunction with a community standard molecular absorption continuum code. Aerosol scattering and absorption are computed with the Wiscombe Mie model. Each atmospheric particulate/hydrometeor is evaluated based on its wavelength-dependent forward and off-axis scattering characteristics and absorption effects on laser energy delivered at any wavelength from 0.355 μm to 8.6 m

  20. Towards Rectifying Performance at the Molecular Scale.

    Science.gov (United States)

    Zhang, Guang-Ping; Xie, Zhen; Song, Yang; Hu, Gui-Chao; Wang, Chuan-Kui

    2017-10-24

    Molecular diode, proposed by Mark Ratner and Arieh Aviram in 1974, is the first single-molecule device investigated in molecular electronics. As a fundamental device in an electric circuit, molecular diode has attracted an enduring and extensive focus during the past decades. In this review, the theoretical and experimental progresses of both charge-based and spin-based molecular diodes are summarized. For the charge-based molecular diodes, the rectifying properties originated from asymmetric molecules including D-σ-A, D-π-A, D-A, and σ-π type compounds, asymmetric electrodes, asymmetric nanoribbons, and their combination are analyzed. Correspondingly, the rectification mechanisms are discussed in detail. Furthermore, a series of strategies for modulating rectification performance is figured out. Discussion on concept of molecular spin diode is also involved based on a magnetic co-oligomer. At the same time, the intrinsic mechanism as well as the modulation of the spin-current rectification performance is introduced. Finally, several crucial issues that need to be addressed in the future are given.

  1. Concurrent triple-scale simulation of molecular liquids

    Science.gov (United States)

    Delgado-Buscalioni, Rafael; Kremer, Kurt; Praprotnik, Matej

    2008-03-01

    We present a triple-scale simulation of a molecular liquid, in which the atomistic, coarse-grained, and continuum descriptions of the liquid are concurrently coupled. The presented multiscale approach, which covers the length scales ranging from the micro- to macroscale, is a combination of two dual-scale models: a particle-based adaptive resolution scheme (AdResS), which couples the atomic and mesoscopic scales, and a hybrid continuum-molecular dynamics scheme (HybridMD). The combined AdResS-HybridMD scheme successfully sorts out the problem of large molecule insertion in the hybrid particle-continuum simulations of molecular liquids. The combined model is shown to correctly describe the hydrodynamics within a hybrid particle-continuum framework. The presented approach opens up the possibility to perform efficient grand-canonical molecular dynamics simulations of truly open molecular liquid systems.

  2. First-principles calculation of electronic energy level alignment at electrochemical interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Yavar T.; Payami, Mahmoud, E-mail: mpayami@aeoi.org.ir

    2017-08-01

    Highlights: • Using DFT calculation, level shifts of TiO{sub 2} and ZnO at the interfaces with MeCN and DMF are determined. • Level shifts are obtained using potential difference between the surfaces of asymmetric slabs. • Solvent molecules give an up-shift to the levels that varies with coverage. • MD simulations show that at room temperatures the surface is not fully covered by the solvent molecules. - Abstract: Energy level alignment at solid–solvent interfaces is an important step in determining the properties of electrochemical systems. The positions of conduction and valence band edges of a semiconductor are affected by its environment. In this study, using first-principles DFT calculation, we have determined the level shifts of the semiconductors TiO{sub 2} and ZnO at the interfaces with MeCN and DMF solvent molecules. The level shifts of semiconductor are obtained using the potential difference between the clean and exposed surfaces of asymmetric slabs. In this work, neglecting the effects of present ions in the electrolyte solution, we have shown that the solvent molecules give rise to an up-shift for the levels, and the amount of this shift varies with coverage. It is also shown that the shapes of density of states do not change sensibly near the gap. Molecular dynamics simulations of the interface have shown that at room temperatures the semiconductor surface is not fully covered by the solvent molecules, and one must use intermediate values in an static calculations.

  3. Communication: Towards first principles theory of relaxation in supercooled liquids formulated in terms of cooperative motion.

    Science.gov (United States)

    Freed, Karl F

    2014-10-14

    A general theory of the long time, low temperature dynamics of glass-forming fluids remains elusive despite the almost 20 years since the famous pronouncement by the Nobel Laureate P. W. Anderson, "The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition" [Science 267, 1615 (1995)]. While recent work indicates that Adam-Gibbs theory (AGT) provides a framework for computing the structural relaxation time of supercooled fluids and for analyzing the properties of the cooperatively rearranging dynamical strings observed in low temperature molecular dynamics simulations, the heuristic nature of AGT has impeded general acceptance due to the lack of a first principles derivation [G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965)]. This deficiency is rectified here by a statistical mechanical derivation of AGT that uses transition state theory and the assumption that the transition state is composed of elementary excitations of a string-like form. The strings are assumed to form in equilibrium with the mobile particles in the fluid. Hence, transition state theory requires the strings to be in mutual equilibrium and thus to have the size distribution of a self-assembling system, in accord with the simulations and analyses of Douglas and co-workers. The average relaxation rate is computed as a grand canonical ensemble average over all string sizes, and use of the previously determined relation between configurational entropy and the average cluster size in several model equilibrium self-associating systems produces the AGT expression in a manner enabling further extensions and more fundamental tests of the assumptions.

  4. First-principles calculation of adsorption of shale gas on CaCO3 (100) surfaces.

    Science.gov (United States)

    Luo, Qiang; Pan, Yikun; Guo, Ping; Wang, Zhouhua; Wei, Na; Sun, Pengfei; Liu, Yuxiao

    2017-06-16

    To demonstrate the adsorption strength of shale gas to calcium carbonate in shale matrix, the adsorption of shale gas on CaCO3 (100) surfaces was studied using the first-principles method, which is based on the density functional theory (DFT). The structures and electronic properties of CH4, C2H6, CO2 and N2 molecules were calculated by the generalized gradient approximation (GGA), for a coverage of 1 monolayer (ML). Under the same conditions, the density of states (DOS) of CaCO3 (100) surfaces before and after the adsorption of shale gas molecules at high-symmetry adsorption sites were compared. The results showed that the adsorption energies of CH4, C2H6, CO2 and N2 on CaCO3 (100) surfaces were between 0.2683 eV and -0.7388 eV. When a CH4 molecule was adsorbed at a hollow site and its 2 hydrogen atoms were parallel to the long diagonal (H3) on the CaCO3 (100) surface, it had the most stable adsorption, and the adsorption energy was only -0.4160 eV. The change of adsorption energy of CH4 was no more than 0.0535 eV. Compared with the DOS distribution of CH4 before adsorption, it shifted to the left overall after adsorption. At the same time, the partial density of states (PDOS) curves of CaCO3 (100) surfaces before and after adsorption basically overlapped. This work showed that the adsorption effect of shale gas on calcium carbonate is very weak, and the adsorption is physisorption at the molecular level.

  5. Structural, mechanical, and electronic properties of novel thiophene-based electroactive materials and devices from first-principles

    Science.gov (United States)

    Scherlis, Damian; Swager, Timothy; Hunter, Ian; Marzari, Nicola

    2004-03-01

    The properties of a novel class of thiophene-based electroactuating polymers are explored using a combination of first-principles molecular dynamics and high-level quantum chemistry approaches. Electronic-structure simulations highlight the role that passive mechanical components (such as calixarene crowns) and electroactive components (oligothiophenes) have in determining the response properties of the material. Accurate, correlated-electron descriptions of the ground state were needed in view of the wide discrepancies between DFT results at the LDA and GGA level. Our calculations provide quantitative insight in the actuation mechanism following oxidation, and in the role of different charged states and solvation environments in determining stability, stacking, and actuating strength. Such microscopic understanding is essential in the design and improvement of thiophene-based nanodevices, and can lead to the proposal of novel active molecular architectures.

  6. Using continuous time stochastic modelling and nonparametric statistics to improve the quality of first principles models

    DEFF Research Database (Denmark)

    A methodology is presented that combines modelling based on first principles and data based modelling into a modelling cycle that facilitates fast decision-making based on statistical methods. A strong feature of this methodology is that given a first principles model along with process data......, the corresponding modelling cycle model of the given system for a given purpose. A computer-aided tool, which integrates the elements of the modelling cycle, is also presented, and an example is given of modelling a fed-batch bioreactor....

  7. Data set for diffusion coefficients of alloying elements in dilute Mg alloys from first-principles

    Directory of Open Access Journals (Sweden)

    Bi-Cheng Zhou

    2015-12-01

    Full Text Available Diffusion coefficients of alloying elements in Mg are critical for the development of new Mg alloys for lightweight applications. Here we present the data set of the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp Mg calculated from first-principles calculations based on density functional theory (DFT by combining transition state theory and an 8-frequency model. Benchmark for the DFT calculations and systematic comparison with experimental diffusion data are also presented. The data set refers to “Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study” by Zhou et al. [1].

  8. Accelerating the discovery of hidden two-dimensional magnets using machine learning and first principle calculations

    Science.gov (United States)

    Miyazato, Itsuki; Tanaka, Yuzuru; Takahashi, Keisuke

    2018-02-01

    Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.

  9. Expanding the scale of molecular biophysics.

    Science.gov (United States)

    Levine, Herbert

    2016-10-07

    Here, I argue that some of the secrets of complex biological function rely on assemblies of many heterogeneous proteins that together enable sophisticated sensing and actuating processes. Evolution seems to delight in making these structures and in continually elaborating upon their capabilities. Developing tools that can go beyond the few protein limit, both on the experimental frontier and from a theoretical, conceptual framework, should be an extremely high priority for the next generation of molecular biophysicists.

  10. Anomalous behavior of the semiconducting gap in WO3 from first-principles calculations

    NARCIS (Netherlands)

    Wijs, G.A. de; Boer, P.K. de; Groot, R.A. de; Kresse, G.

    1999-01-01

    Several crystal structures of tungsten trioxide have been studied with a first-principles pseudopotential method. The electronic band gap increases significantly with the distortion of the octahedra that are the building blocks of the various crystal structures. Moreover, the tilting of the

  11. Lithium trapping by excess oxygen in WO3 : A first-principles study

    NARCIS (Netherlands)

    Wijs, G.A. de; Groot, R.A. de

    2000-01-01

    The process of lithium trapping by excess oxygen atoms in both crystalline and amorphous WO3 is studied by first-principles calculations. In both materials, the excess oxygen is incorporated in the bonding network by a peroxide-type bond. In both c-WO3 and a-WO3, breaking of this bond makes oxygen

  12. Electro-optic response of metal halide : A first-principles study

    Indian Academy of Sciences (India)

    Amreen Bano

    2017-07-08

    Jul 8, 2017 ... the key properties required for device models that under- pin their utility in optical and optoelectronics. 2. Computational details. The first-principles ... polarization vector of the electric field, M is the dipole matrix,i and j are the initial and final states respectively, fi is the Fermi distribution function for the ith ...

  13. Course-Level Implementation of First Principles, Goal Orientations, and Cognitive Engagement: A Multilevel Mediation Model

    Science.gov (United States)

    Lee, Sunghye; Koszalka, Tiffany A.

    2016-01-01

    The First Principles of Instruction (FPI) represent ideologies found in most instructional design theories and models. Few attempts, however, have been made to empirically test the relationship of these FPI to instructional outcomes. This study addresses whether the degree to which FPI are implemented in courses makes a difference to student…

  14. Origin of current-induced forces in an atomic gold wire: A first-principles study

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy Philip

    2003-01-01

    We address the microscopic origin of the current-induced forces by analyzing results of first principles density functional calculations of atomic gold wires connected to two gold electrodes with different electrochemical potentials. We find that current induced forces are closely related...

  15. Valley Hall effect in disordered monolayer MoS2 from first principles

    DEFF Research Database (Denmark)

    Olsen, Thomas; Souza, Ivo

    2015-01-01

    ("unfolding") the Berry curvature from the folded Brillouin zone of the disordered supercell onto the normal Brillouin zone of the pristine crystal, and then averaging over several realizations of disorder. We use this scheme to study from first principles the effect of sulfur vacancies on the valley Hall...

  16. Gd impurities effect on Co2CrSi alloy: first-principle calculations

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... Abstract. First-principle calculations have been performed to study Gd impurities doping effect on the physical properties of the Heusler half-metallic ferromagnet Co2CrSi using the density functional theory in the local spin density approximation with an additional Hubbard correlation term for the rare-earth ...

  17. First-Principles Petascale Simulations for Predicting Deflagration to Detonation Transition in Hydrogen-Oxygen Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Khokhlov, Alexei [Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics. Enrico Fermi Inst.; Austin, Joanna [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Bacon, C. [Univ. of Illinois, Urbana, IL (United States). Dept. of Aerospace Engineering

    2015-03-02

    Hydrogen has emerged as an important fuel across a range of industries as a means of achieving energy independence and to reduce emissions. DDT and the resulting detonation waves in hydrogen-oxygen can have especially catastrophic consequences in a variety of industrial and energy producing settings related to hydrogen. First-principles numerical simulations of flame acceleration and DDT are required for an in-depth understanding of the phenomena and facilitating design of safe hydrogen systems. The goals of this project were (1) to develop first-principles petascale reactive flow Navier-Stokes simulation code for predicting gaseous high-speed combustion and detonation (HSCD) phenomena and (2) demonstrate feasibility of first-principles simulations of rapid flame acceleration and deflagration-to-detonation transition (DDT) in stoichiometric hydrogen-oxygen mixture (2H2 + O2). The goals of the project have been accomplished. We have developed a novel numerical simulation code, named HSCD, for performing first-principles direct numerical simulations of high-speed hydrogen combustion. We carried out a series of validating numerical simulations of inert and reactive shock reflection experiments in shock tubes. We then performed a pilot numerical simulation of flame acceleration in a long pipe. The simulation showed the transition of the rapidly accelerating flame into a detonation. The DDT simulations were performed using BG/Q Mira at the Argonne National Laboratory, currently the fourth fastest super-computer in the world.

  18. First-principles calculation of nonlinear optical responses by Wannier interpolation

    Science.gov (United States)

    Wang, Chong; Liu, Xiaoyu; Kang, Lei; Gu, Bing-Lin; Xu, Yong; Duan, Wenhui

    2017-09-01

    Various nonlinear optical (NLO) responses, like shift current and second harmonic generation (SHG), are revealed to be closely related to topological quantities involving the Berry connection and Berry curvature. First-principles prediction of NLO responses is of great importance to fundamental research and device design, but efficient computational methods are still lacking. The main challenge is that the calculations require a very dense k -point sampling that is computationally expensive and a proper treatment of the gauge problem for topological quantities. Here we present a Wannier interpolation method for first-principles calculation of NLO responses, which overcomes the challenge. This method interpolates physical quantities accurately for any desired k point with little computational cost and constructs a smooth gauge by the perturbation theory. To demonstrate the method, we study shift current of monolayer GeS and WS2 as well as SHG of bulk GaAs, getting good agreements with previous results. We show that the traditional sum rule method converges slowly with the number of bands, whereas the perturbation way does not. Moreover, our method is easily adapted to build tight-binding models for the following theoretical investigations. Last but not least, the method is compatible with most first-principles approaches, including density functional theory and beyond. With these advantages, Wannier interpolation is a promising method for first-principles studies of NLO phenomena.

  19. The dynamic behaviour of the cricket ear predicted from first principles

    DEFF Research Database (Denmark)

    van Leeuwen, Johan L; Michelsen, Axel; Larsen, Ole Næsbye

    2008-01-01

    for long distance calls by crickets) and 15 kHz (used for close-range courtship calls). These predictions correspond very closely to sensitivity measurements with laser vibrometry that show that the cricket hearing systems is tuned to the predominant calling frequencies. Thus, we have derived the dynamics...... of the system from first principles....

  20. First principles dynamic modeling and multivariable control of a cryogenic distillation process

    NARCIS (Netherlands)

    Betlem, B.H.L.; Roffel, B.; de Ruijter, J.A.F.

    2000-01-01

    In order to investigate the feasibility of constrained multivariable control of a heat-integrated cryogenic distillation process, a rigorous first principles dynamic model was developed and tested against a limited number of experiments. It was found that the process variables showed a large amount

  1. First principles studies of extrinsic and intrinsic defects in boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-10-01

    Full Text Available -1 Journal of Nanoscience and Nanotechnology 2012/ Vol. 12, 7807?7814 First Principles Studies of Extrinsic and Intrinsic Defects in Boron Nitride Nanotubes M. G. Mashapa 1, 2, ?, N. Chetty1, and S. Sinha Ray2, 3 1Physics Department, University...

  2. Real-space method for first-principles electron transport calculations: Self-energy terms of electrodes for large systems

    Science.gov (United States)

    Ono, Tomoya; Tsukamoto, Shigeru

    2016-01-01

    We present a fast and stable numerical technique to obtain the self-energy terms of electrodes for first-principles electron transport calculations. Although first-principles calculations based on the real-space finite-difference method are advantageous for execution on massively parallel computers, large-scale transport calculations are hampered by the computational cost and numerical instability of the computation of the self-energy terms. Using the orthogonal complement vectors of the space spanned by the generalized Bloch waves that actually contribute to transport phenomena, the computational accuracy of transport properties is significantly improved with a moderate computational cost. To demonstrate the efficiency of the present technique, the electron transport properties of a Stone-Wales (SW) defect in graphene and silicene are examined. The resonance scattering of the SW defect is observed in the conductance spectrum of silicene since the σ* state of silicene lies near the Fermi energy. In addition, we found that one conduction channel is sensitive to a defect near the Fermi energy, while the other channel is hardly affected. This characteristic behavior of the conduction channels is interpreted in terms of the bonding network between the bilattices of the honeycomb structure in the formation of the SW defect. The present technique enables us to distinguish the different behaviors of the two conduction channels in graphene and silicene owing to its excellent accuracy.

  3. First-Principles Monte-Carlo Simulation of Homogeneous Condensation in Atomic and Molecular Plumes

    Science.gov (United States)

    2009-06-01

    3745 Distribution A : Approved for public release; distribution unlimited 53S.A. Losev , S.O. Macheret, B.V. Potapkin, G.G. Chernyi, Physical and...other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a ...theory is used in this work to analyze non-equilibrium homogeneous condensation of argon and water. The present model uses a recombination-reaction

  4. A simplified implementation of van der Waals density functionals for first-principles molecular dynamics applications

    Science.gov (United States)

    Wu, Jun; Gygi, François

    2012-06-01

    We present a simplified implementation of the non-local van der Waals correlation functional introduced by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and reformulated by Román-Pérez et al. [Phys. Rev. Lett. 103, 096102 (2009)]. The proposed numerical approach removes the logarithmic singularity of the kernel function. Complete expressions of the self-consistent correlation potential and of the stress tensor are given. Combined with various choices of exchange functionals, five versions of van der Waals density functionals are implemented. Applications to the computation of the interaction energy of the benzene-water complex and to the computation of the equilibrium cell parameters of the benzene crystal are presented. As an example of crystal structure calculation involving a mixture of hydrogen bonding and dispersion interactions, we compute the equilibrium structure of two polymorphs of aspirin (2-acetoxybenzoic acid, C9H8O4) in the P21/c monoclinic structure.

  5. Towards A Predictive First Principles Understanding Of Molecular Adsorption On Graphene

    Science.gov (United States)

    2016-10-05

    UNIVERSITY COLLEGE LONDON Final Report 10/05/2016 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOE...COLLEGE LONDON GOWER STREET LONDON , WC1E 6BT GB 8.  PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES...density functional theory , ab initio methods 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF ABSTRACT SAR 18.  NUMBER OF PAGES   11   19a.  NAME OF

  6. Fermi resonance in CO2: Mode assignment and quantum nuclear effects from first principles molecular dynamics

    Science.gov (United States)

    Basire, Marie; Mouhat, Félix; Fraux, Guillaume; Bordage, Amélie; Hazemann, Jean-Louis; Louvel, Marion; Spezia, Riccardo; Bonella, Sara; Vuilleumier, Rodolphe

    2017-04-01

    Vibrational spectroscopy is a fundamental tool to investigate local atomic arrangements and the effect of the environment, provided that the spectral features can be correctly assigned. This can be challenging in experiments and simulations when double peaks are present because they can have different origins. Fermi dyads are a common class of such doublets, stemming from the resonance of the fundamental excitation of a mode with the overtone of another. We present a new, efficient approach to unambiguously characterize Fermi resonances in density functional theory (DFT) based simulations of condensed phase systems. With it, the spectral features can be assigned and the two resonating modes identified. We also show how data from DFT simulations employing classical nuclear dynamics can be post-processed and combined with a perturbative quantum treatment at a finite temperature to include analytically thermal quantum nuclear effects. The inclusion of these effects is crucial to correct some of the qualitative failures of the Newtonian dynamics simulations at a low temperature such as, in particular, the behavior of the frequency splitting of the Fermi dyad. We show, by comparing with experimental data for the paradigmatic case of supercritical CO2, that these thermal quantum effects can be substantial even at ambient conditions and that our scheme provides an accurate and computationally convenient approach to account for them.

  7. Interfacial oxide growth at silicon/high-k oxide interfaces: First principles modeling of the Si–HfO[sub 2] interface

    OpenAIRE

    Hakala, M. H.; Foster, Adam S.; Gavartin, J. L.; Havu, P.; Puska, Martti J.; Nieminen, Risto M.

    2006-01-01

    We have performed first principles calculations to investigate the structure and electronic properties of several different Si–HfOx interfaces. The atomic structure has been obtained by growing HfOx layer by layer on top of the Si(100) surface and repeatedly annealing the structure using ab initio molecular dynamics. The interfaces are characterized via their geometric and electronic properties, and also using electron transport calculations implementing a finite element based Green’s functio...

  8. First principles study of methane decomposition on B5 step-edge type site of Ru surface

    Science.gov (United States)

    Lacdao Arevalo, Ryan; Meñez Aspera, Susan; Sison Escaño, Mary Clare; Nakanishi, Hiroshi; Kasai, Hideaki

    2017-05-01

    Many chemical reactions that produce a wide range of hydrocarbons and alcohols involve the breaking of C-H bonds in methane. In this paper, we analyzed the decomposition of this molecule on the B5 step-edge type site of Ru surface using first principles calculations based on dispersion-corrected density functional theory. Methane was found to be weakly adsorbed on the surface, characterized by the hybridization of its sp states with Ru-d xz,yz,zz states. Dissociative adsorption is energetically preferred over molecular methane adsorption, resulting in CH fragment. CH is strongly adsorbed on the surface due to the prevalence of low-energy sp-d bonding interaction over the electron-unoccupied anti-bonding states. This highly stable CH requires higher activation barrier for C-H bond cleavage than CH4.

  9. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications.

    Science.gov (United States)

    Hu, S X; Collins, L A; Boehly, T R; Kress, J D; Goncharov, V N; Skupsky, S

    2014-04-01

    Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ∼20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the

  10. First-principles quantum mechanical investigations: Catalytic reactions of furfural on Pd(111) and at the water/Pd(111) interface

    Science.gov (United States)

    Xue, Wenhua

    Bio-oils have drawn more and more attention from scientists as a promising new clean, cheap energy source. One of the most interesting relevant issues is the effect of catalysts on the catalytic reactions that are used for producing bio-oils. Furfural, as a very important intermediate during these reactions, has attracted significant studies. However, the effect of catalysts, including particularly the liquid/solid interface formed by a metal catalyst and liquid water, in the catalytic reactions involving furfural still remains elusive. In this research, we performed ab initio molecular dynamics simulations and first-principles density-functional theory calculations to investigate the atomic-scale mechanisms of catalytic hydrogenation of furfural on the palladium surface and at the liquid/state interface formed by the palladium surface and liquid water. We studied all the possible mechanisms that lead to formation of furfuryl alcohol (FOL), formation of tetrahydrofurfural (THFAL), and formation of tetrahydrofurfurfuryl alcohol (THFOL). We found that liquid water plays a significant role in the hydrogenation reactions. During the reaction in the presence of water and the palladium catalyst, in particular, water directly participates in the hydrogenation of the aldehyde group of furfural and facilitates the formation of FOL by reducing the activation energy. Our calculations show that water provides hydrogen for the hydrogenation of the aldehyde group, and at the same time, a pre-existing hydrogen atom, which is resulted from dissociation of molecular hydrogen (experimentally, molecular hydrogen is always supplied for hydrogenation) on the palladium surface, is bonded to water, making the water molecule intact in structure. In the absence of water, on the other hand, formation of FOL and THFAL on the palladium surface involves almost the same energy barriers, suggesting a comparable selectivity. Overall, as water reduces the activation energy for the formation of FOL

  11. First-principles investigation of the structural and electronic properties of self-assemblies of functional molecules on graphene

    Science.gov (United States)

    Quesne-Turin, Ambroise; Touzeau, Jeremy; Dappe, Yannick J.; Diawara, Boubakar; Maurel, François; Seydou, Mahamadou

    2017-05-01

    Graphene-based two-dimensional materials have attracted an increasing attention these last years. Among them, the system formed by molecular adsorption on, aim of modifying the conductivity of graphene and make it semiconducting, is of particular interest. We use here hierarchical first-principles simulations to investigate the energetic and electronic properties of an electron-donor, melamine, and an acceptor, NaphtaleneTetraCarboxylic DiImide (NTCDI), and the assembly of their complexes on graphene surface. In particular, the van der Waals-corrected density functional theory (DFT) method is used to compute the interaction and adsorption energies during assembly. The effect of dispersion interactions on both geometries and energies is investigated. Depending on the surface coverage and the molecular organization, there is a significant local deformation of the graphene surface. Self-assembly is driven by the competition between hydrogen bonds in the building blocks and their adsorption on the surface. The dispersion contribution accounts significantly in both intermolecular and adsorption energies. The electron transfer mechanism and density of states (DOS) calculations show the electron-donor and acceptor characters of melamine and NTCDI, respectively. Molecular adsorption affects differently the energy levels around the Fermi level differently, leading to band gap opening. These results provide information about the new materials obtained by controlling molecular assembly on graphene.

  12. First-principles prediction of thermodynamics and ordering in metallic alloys

    Science.gov (United States)

    Zarkevich, Nikolai Andreevich

    Cluster expansions are increasingly used for multi-scale simulations combining first-principles electronic-structure calculations and Monte Carlo methods to predict thermodynamic properties of alloys. A cluster expansion is a basis set expansion in terms of lattice geometrical objects (clusters) and the effective cluster interactions; it can be exact and infinite, but is tractable only if truncated. Yet until now a truncation procedure was not well-defined and did not guarantee a reliable truncated cluster expansion. We present a methodology for the optimal truncation of a cluster expansion basis set that leads to reliable thermodynamics. Then we exemplify its use in calculating quantitative thermodynamic properties of the fcc Ni3V, and show good agreement to experiment. Next we study the short- and long- range chemical ordering in the bulk hcp Ag2Al using the Monte Carlo method based on a canonical (fixed-composition) cluster expansion. Our results provide the structural and thermodynamic properties of Ag2Al, with good agreement to experimental short-range order data. We explain the discrepancy between the Ag2Al structures proposed from the X-ray scattering on bulk Ag2Al and from the high-resolution transmission electron microscopy (TEM) experiment on the hcp gamma precipitates. We also discuss the influence of the Al:Ag2Al interface, coherency strain, and off stoichiometric disorder on the structure of metastable Ag 2Al gamma' nano-precipitates in an fcc Al matrix. We show that gamma' precipitates are off-stoichiometric and predict a new metastable AgAl structure that reproduces the observed TEM image. After that we construct a grand-canonical cluster expansion for the hcp Al-Ag and perform ground-state search and Monte Carlo simulations to determine the metastable hcp Ag-Al phase diagram. We predict a new equilibrium hcp AgAl ground state with zero-energy domain boundary defects. From thermodynamic results, we discuss the precipitate structure and composition in

  13. Development of Universal Virtual Spectrscope for Opto-Electronics Research:. First Principles Software Replacing Dielectric Constant Measurements

    Science.gov (United States)

    Hamada, T.; Yamamoto, T.; Momida, H.; Uda, T.; Ohno, T.; Tajima, N.; Hasaka, S.; Inoue, M.; Kobaysahi, N.

    2006-06-01

    We have developed a first principles software, universal virtual spectroscope for opto-electronics research (UVSOR), which can calculate dielectric functions of materials at atomistic levels on the basis of the density functional pseudopotential method in the frequency range from the static to ultra-violet region. The UVSOR can calculate separately electronic and lattice components of the dielectric function, by using the random phase approximation and the Berry phase polarization theory, respectively. This makes the UVSOR unique "virtual spectroscope" on computer, covering all frequencies interested in materials science; i. e., radio, Tera-Hz, infrared, visible, and ultra-violet frequencies. Since the UVSOR can quantitatively calculate the dielectric constant of materials, it is quite effective for studying new dielectrics such as high-k and low-k materials discussed in nano-scale semiconductor technologies. The UVSOR is free software and can be downloaded from our web site: .

  14. Dispersion correction derived from first principles for density functional theory and Hartree-Fock theory.

    Science.gov (United States)

    Guidez, Emilie B; Gordon, Mark S

    2015-03-12

    The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.

  15. Thermodynamics of the hexagonal close-packed iron-nitrogen system from first-principles

    DEFF Research Database (Denmark)

    Bakkedal, Morten Bjørn

    is assumed fixed.The models are developed entirely from first-principles calculations based on fundamen-tal quantum mechanical calculation through the density functional theory approach with the atomic numbers and crystal structures as the only input parameters. A complete thermody-namic description should......First-principles thermodynamic models are developed for the hexagonal close-packed ε-Fe-N system. The system can be considered as a hexagonal close-packed host lattice of iron atoms and with the nitrogen atoms residing on a sublattice formed by the octahedral interstices. The iron host lattice...... to hexagonal systems and a numerically tractable extended equation of state is developed to describe thermody-namic equilibrium properties at finite temperature.The model is applied to ε-Fe3N specifically. Through the versatility of the model, equi-librium lattice parameters, the bulk modulus, and the thermal...

  16. Energetics and phase diagrams of Fe-Cr and Co-Cr systems from first principles

    Directory of Open Access Journals (Sweden)

    Vreštzál J.

    2002-01-01

    Full Text Available The first principles computations of the total energies of complex phases have been addressed recently. The structural energy differences, calculated by FLAPW (Full potential augmented plane wave method, enable us to utilize a more complete physical information about total energy of intermetallic phases and to propose a new model for their thermodynamic description. Our approach is based on the two-sublattice model, similarly as for solid solution phases, but the structural energy differences for end-members in the metastable or unstable structures are obtained by means of first-principles electronic structure calculations. Phase diagrams of Fe-Cr and Co-Cr systems containing the intermetallic sigma-phase (5 inequivalent lattice sites, 30 atoms in repeat cell are described here as an example of application of our new model.

  17. First-principles study of electron transport through monatomic Al and Na wires

    DEFF Research Database (Denmark)

    Kobayashi, Nobuhiko; Brandbyge, Mads; Tsukada, Masaru

    2000-01-01

    We present first-principles calculations of electron transport, in particular, the conduction channels of monatomic Al and Na atom wires bridged between metallic jellium electrodes. The electronic structures are calculated by the first-principles recursion-transfer matrix method, and the conduction...... channels are investigated using the eigenchannel decomposition (ECD) of the conductance, the local density of states (LDOS), and the current density. The ECD is different from the conventional decomposition of atomic orbitals, and the study of decomposed electronic structures is shown to be effective...... in clarifying the details of transport through atomic wires. We show channel transmissions, channel resolved LDOS, and channel resolved current density, and elucidate the number of conduction channels, the relation between atomic orbitals and the channels, and their dependency on the geometry of the atomic wire...

  18. Methane Oxidation over PdO(101) Revealed by First-Principles Kinetic Modeling.

    Science.gov (United States)

    Van den Bossche, Maxime; Grönbeck, Henrik

    2015-09-23

    The catalytic oxidation of methane to carbon dioxide and water over PdO(101) is investigated with first-principles based microkinetic modeling. Extensive exploration of the reaction landscape allows for determination of preferred pathways at different reaction conditions. The predicted kinetic behavior is in good agreement with a range of experimental findings including reaction orders in methane, water, and oxygen as well as apparent activation energies. The results consolidate the role of the PdO(101) surface in the activity of PdO catalysts and offer starting points for computational design of materials with improved catalytic activity. Moreover, the study demonstrates the predictive power of first-principles based kinetic modeling for oxide surfaces when hybrid functionals are applied in conjugation with kinetic models that go beyond the mean-field approximation.

  19. High pressure structural changes in aluminium triiodide: A first principles study

    Science.gov (United States)

    Majumdar, Arnab; Klug, Dennis D.; Yao, Yansun

    2016-03-01

    First principles calculations identified a phase transition in aluminium triiodide (AlI3) and predicted its physical and spectroscopic properties under high pressure conditions. A high pressure monoclinic phase is predicted to exist above 1.3 GPa accompanied with a coordination change of aluminium resulting from a transformation from the ambient pressure 4-coordinated primitive monoclinic phase with space group P21/c to the monoclinic 6-coordinated structure with space group C2/m. Density functional phonon calculations predicted its dynamical and mechanical stability. Infrared effective charge intensities and Raman scattering tensors were obtained to characterize its spectroscopic properties. First-principles metadynamics simulations were employed to reconstruct this phase transition and provide the mechanism details for energetically favourable path from the ambient pressure P21/c structure to the predicted C2/m structure.

  20. Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles

    Science.gov (United States)

    Hellman, A.; Honkala, K.; Remediakis, I. N.; Logadóttir, Á.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K.

    2009-06-01

    A recently published first-principles model for the ammonia synthesis on an unpromoted Ru-based catalyst is extended to also describe ammonia decomposition. In addition, further analysis concerning trends in ammonia productivity, surface conditions during the reaction, and macro-properties, such as apparent activation energies and reaction orders are provided. All observed trends in activity are captured by the model and the absolute value of ammonia synthesis/decomposition productivity is predicted to within a factor of 1-100 depending on the experimental conditions. Moreover it is shown: (i) that small changes in the relative adsorption potential energies are sufficient to get a quantitative agreement between theory and experiment ( Appendix A) and (ii) that it is possible to reproduce results from the first-principles model by a simple micro-kinetic model ( Appendix B).

  1. Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles

    DEFF Research Database (Denmark)

    Hellman, A.; Honkala, Johanna Karoliina; Remediakis, Ioannis

    2009-01-01

    A recently published first-principles model for the ammonia synthesis on an unpromoted Ru-based catalyst is extended to also describe ammonia decomposition. In addition, further analysis concerning trends in ammonia productivity, surface conditions during the reaction, and macro......-properties, such as apparent activation energies and reaction orders are provided. All observed trends in activity are captured by the model and the absolute value of ammonia synthesis/decomposition productivity is predicted to within a factor of 1-100 depending on the experimental conditions. Moreover it is shown: (i......) that small changes in the relative adsorption potential energies are sufficient to get a quantitative agreement between theory and experiment (Appendix A) and (ii) that it is possible to reproduce results from the first-principles model by a simple micro-kinetic model (Appendix B)....

  2. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nielson, Weston [Univ. of California, Los Angeles, CA (United States); Xia, Yi [Univ. of California, Los Angeles, CA (United States); Ozoliņš, Vidvuds [Univ. of California, Los Angeles, CA (United States)

    2014-10-01

    First-principles prediction of lattice thermal conductivity κL of strongly anharmonic crystals is a long-standing challenge in solid-state physics. Making use of recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics. Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Nonintuitively, high accuracy is achieved when the model is trained on first-principles forces in quasirandom atomic configurations. The method is demonstrated for Si, NaCl, and Cu12Sb4S13, an earth-abundant thermoelectric with strong phonon-phonon interactions that limit the room-temperature κL to values near the amorphous limit.

  3. Properties of Single-Layer Boron Sheets: First-Principle Study through MatCloud Platform

    Science.gov (United States)

    Wang, Zong-Guo; Yang, Xiao-Yu; Qin, Shao-Jing; Wang, Chui-Lin

    2017-07-01

    Electronic structures in two kinds of boron structures are investigated by the first-principle density functional theory (DFT) calculations. One structure is from theoretical prediction, and the other is from experimental investigation. Binding energy calculations suggest that the boron structure designed from theory is more stable than that made by experiment. Elastic constants calculations show that both structures are mechanically stable. The electronic structure results show that the theoretical designed structure exhibits semi-metal behavior, while the other structure exhibits metallic character. No magnetic phenomenal is discovered from them. All the calculations are carried out by the first principles calculation through the MatCloud platform, which is developed by our research group. Supported by National Natural Science Foundation of China under Grant No. 11547177

  4. Ordered Phases in Cu2NiZn: A First-Principles Monte Carlo Study

    DEFF Research Database (Denmark)

    Simak, S.I.; Ruban, Andrei; Abrikosov, I.A.

    1998-01-01

    Monte Carlo simulations based on effective interactions obtained from first-principles calculations reveal the existence of three ordered phases in ternary Cu2NiZn: (i) "modified"-L1(0) (0-600 K), (ii) L1(2) (600-850 K), and (iii) L1(0) (850-1200 K). This is in contrast to the generally accepted...

  5. First-principles method for high-$Q$ photonic crystal cavity mode calculations

    CERN Document Server

    Mahmoodian, Sahand; Poulton, Christopher G; Dossou, Kokou B; Botten, Lindsay C; McPhedran, Ross C; de Sterke, C Martijn

    2012-01-01

    We present a first-principles theory to compute radiation properties of ultra-high quality factor photonic crystal (PC) cavities using a basis of bound PC waveguide states. This method is used to compute the far-field radiation pattern and quality factor of cavity modes $\\sim 100$ times more rapidly than conventional finite-difference time domain methods. Our method provides a simple rule for engineering the PC cavity far-field radiation pattern in high $Q$ cavities.

  6. First-principles electronic theory of non-collinear magnetic order in transition-metal nanowires

    OpenAIRE

    Tanveer, Muhammad

    2014-01-01

    The structural, electronic and magnetic properties of one-dimensional 3d transition-metal (TM) monoatomic chains having linear, zigzag and ladder geometries are investigated in the frame-work of first-principles density-functional theory. The stability of long-range magnetic order along the nanowires is determined by computing the corresponding frozen-magnon dispersion relations as a function of the 'spin-wave' vector q. First, we show that the ground-state magnetic orders...

  7. Toward Computational Design of High-Efficiency Photovoltaics from First-Principles

    Science.gov (United States)

    2016-08-15

    Dynamic disorder and configuration entropy can provide energetic and entropy driving force for the charge separation. Charge separation efficiency ...Toward Computational Design of High- Efficiency Photovoltaics from First-Principles The objectives of the project are three-fold: (1) Development of...physical quantities and materials parameters controlling the efficiency of the solar cells and translating the understanding to a set of materials design

  8. First-principles study of the electrical and lattice thermal transport in monolayer and bilayer graphene

    OpenAIRE

    D'Souza, Ransell; Mukherjee, Sugata

    2017-01-01

    We report the transport properties of monolayer and bilayer graphene from first principles calculations and Boltzmann transport theory (BTE). Our resistivity studies on monolayer graphene show Bloch-Gr${\\rm \\ddot{u}}$neisen behavior in a certain range of chemical potentials. By substituting boron nitride in place of a carbon dimer of graphene, we predict a twofold increase in the Seebeck coefficient. A similar increase in the Seebeck coefficient for bilayer graphene under the influence of a s...

  9. First principles total energy study of NbCr{sub 2} + V Laves phase ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Ormeci, A. [Koc Univ., Istanbul (Turkey); Chen, S.P.; Wills, J.M.; Albers, R.C. [Los Alamos National Lab., NM (United States)

    1999-04-01

    The C15 NbCr{sub 2} + V Laves phase ternary system is studied by using a first-principles, self-consistent, full-potential total energy method. Equilibrium lattice parameters, cohesive energies, density of states and formation energies of substitutional defects are calculated. Results of all these calculations show that in the C15 NbCr{sub 2} + V compounds, V atoms substitute Cr atoms only.

  10. A first-principles study of gas molecule adsorption on borophene

    OpenAIRE

    Tingting Liu; Yuhong Chen; Meiling Zhang; Lihua Yuan; Cairong Zhang; Jing Wang; Jiajia Fan

    2017-01-01

    Borophene, a new two-dimensional material, was recently synthesized. The unique anisotropic structure and excellent properties of borophene have attracted considerable research interest. This paper presents a first-principles study of the adsorption of gas molecules (CO, CO2, NH3, NO, NO2 and CH4) on borophene. The adsorption configurations, adsorption energies and electronic properties of the gas molecules absorpted on borophene are determined, and the mechanisms of the interactions between ...

  11. Electronic, optical, and thermodynamic properties of borophene from first-principle calculations

    OpenAIRE

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Zhang, Rongjun; Zhu, Heyuan

    2016-01-01

    Borophene (two-dimensional boron sheet) is a new type of two-dimensional material, which was recently grown successfully on single crystal Ag substrates. In this paper, we investigate the electronic structure and bonding characteristics of borophene by first-principle calculations. The band structure of borophene shows highly anisotropic metallic behaviour. The obtained optical properties of borophene exhibit strong anisotropy as well. The combination of high optical transparency and high ele...

  12. First principles predictions of intrinsic defects in aluminum arsenide, AlAs : numerical supplement.

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter Andrew

    2012-04-01

    This Report presents numerical tables summarizing properties of intrinsic defects in aluminum arsenide, AlAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz, 'First principles predictions of intrinsic defects in Aluminum Arsenide, AlAs', Materials Research Society Symposia Proceedings 1370 (2011; SAND2011-2436C), and intended for use as reference tables for a defect physics package in device models.

  13. First-Principles Prediction of Phononic Thermal Conductivity of Silicene: a Comparison with Graphene

    OpenAIRE

    Gu, Xiaokun; Yang, Ronggui

    2014-01-01

    There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scatte...

  14. First Principles Calculation of the Damping and Quasielastic Mode of DHCP-Pr

    DEFF Research Database (Denmark)

    Yang, D.; Lindgård, Per-Anker

    1979-01-01

    Starting with the interaction between the conduction and 4f electrons and taking the single-ion levels of Pr to be a singlet and a doublet, we have derived the dynamical susceptibility for dhcp Pr with Mori's memory function formalism [1]. The dynamics of the electron hole relaxation reflects...... of the Fermi surface. The result of first principles calculations using RAPW energy bands for quasielastic mode is, however, too small comparing to the experimental observations [2]....

  15. Adsorption of CO molecules on doped graphene: A first-principles study

    OpenAIRE

    Weidong Wang; Yuxiang Zhang; Cuili Shen; Yang Chai

    2016-01-01

    As a typical kinds of toxic gases, CO plays an important role in environmental monitoring, control of chemical processes, space missions, agricultural and medical applications. Graphene is considered a potential candidate of gases sensor, so the adsorption of CO molecules on various graphene, including pristine graphene, Nitrogen-doped graphene (N-doped graphene) and Aluminum-doped graphene (Al-doped graphene), are studied by using first-principles calculations. The optimal configurations, ad...

  16. Biomolecular adsorption at aqueous silver interfaces: first-principles calculations, polarizable force-field simulations, and comparisons with gold.

    Science.gov (United States)

    Hughes, Zak E; Wright, Louise B; Walsh, Tiffany R

    2013-10-29

    The molecular simulation of biomolecules adsorbed at noble metal interfaces can assist in the development of bionanotechnology applications. In line with advances in polarizable force fields for adsorption at aqueous gold interfaces, there is scope for developing a similar force field for silver. One way to accomplish this is via the generation of in vacuo adsorption energies calculated using first-principles approaches for a wide range of different but biologically relevant small molecules, including water. Here, we present such first-principles data for a comprehensive range of bio-organic molecules obtained from plane-wave density functional theory calculations using the vdW-DF functional. As reported previously for the gold force field, GolP-CHARMM (Wright, L. B.; Rodger, P. M.; Corni, S.; Walsh, T. R. GolP-CHARMM: first-principles based force-fields for the interaction of proteins with Au(111) and Au(100). J. Chem. Theory Comput. 2013, 9, 1616-1630), we have used these data to construct a a new force field, AgP-CHARMM, suitable for the simulation of biomolecules at the aqueous Ag(111) and Ag(100) interfaces. This force field is derived to be consistent with GolP-CHARMM such that adsorption on Ag and Au can be compared on an equal footing. Our force fields are used to evaluate the water overlayer stability on both silver and gold, finding good agreement with known behaviors. We also calculate and compare the structuring (spatial and orientational) of liquid water adsorbed at both silver and gold. Finally, we report the adsorption free energy of a range of amino acids at both the Au(111) and Ag(111) aqueous interfaces, calculated using metadynamics. Stronger adsorption on gold was noted in most cases, with the exception being the carboxylate group present in aspartic acid. Our findings also indicate differences in the binding free energy profile between silver and gold for some amino acids, notably for His and Arg. Our analysis suggests that the relatively

  17. Accelerated materials design of fast oxygen ionic conductors based on first principles calculations

    Science.gov (United States)

    He, Xingfeng; Mo, Yifei

    Over the past decades, significant research efforts have been dedicated to seeking fast oxygen ion conductor materials, which have important technological applications in electrochemical devices such as solid oxide fuel cells, oxygen separation membranes, and sensors. Recently, Na0.5Bi0.5TiO3 (NBT) was reported as a new family of fast oxygen ionic conductor. We will present our first principles computation study aims to understand the O diffusion mechanisms in the NBT material and to design this material with enhanced oxygen ionic conductivity. Using the NBT materials as an example, we demonstrate the computation capability to evaluate the phase stability, chemical stability, and ionic diffusion of the ionic conductor materials. We reveal the effects of local atomistic configurations and dopants on oxygen diffusion and identify the intrinsic limiting factors in increasing the ionic conductivity of the NBT materials. Novel doping strategies were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm-1 at 900 K compared to the experimental Mg doped compositions. Our results provide new avenues for the future design of the NBT materials and demonstrate the accelerated design of new ionic conductor materials based on first principles techniques. This computation methodology and workflow can be applied to the materials design of any (e.g. Li +, Na +) fast ion-conducting materials.

  18. Foundations of Quantum Mechanics: Derivation of a dissipative Schrödinger equation from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, L.A.; Olavo, L.S.F., E-mail: olavolsf@gmail.com

    2017-05-15

    Dissipation in Quantum Mechanics took some time to become a robust field of investigation after the birth of the field. The main issue hindering developments in the field is that the Quantization process was always tightly connected to the Hamiltonian formulation of Classical Mechanics. In this paper we present a quantization process that does not depend upon the Hamiltonian formulation of Classical Mechanics (although still departs from Classical Mechanics) and thus overcome the problem of finding, from first principles, a completely general Schrödinger equation encompassing dissipation. This generalized process of quantization is shown to be nothing but an extension of a more restricted version that is shown to produce the Schrödinger equation for Hamiltonian systems from first principles (even for Hamiltonian velocity dependent potential). - Highlights: • A Quantization process independent of the Hamiltonian formulation of quantum Mechanics is proposed. • This quantization method is applied to dissipative or absorptive systems. • A Dissipative Schrödinger equation is derived from first principles.

  19. Accurate First-Principles Spectra Predictions for Planetological and Astrophysical Applications at Various T-Conditions

    Science.gov (United States)

    Rey, M.; Nikitin, A. V.; Tyuterev, V.

    2014-06-01

    Knowledge of near infrared intensities of rovibrational transitions of polyatomic molecules is essential for the modeling of various planetary atmospheres, brown dwarfs and for other astrophysical applications 1,2,3. For example, to analyze exoplanets, atmospheric models have been developed, thus making the need to provide accurate spectroscopic data. Consequently, the spectral characterization of such planetary objects relies on the necessity of having adequate and reliable molecular data in extreme conditions (temperature, optical path length, pressure). On the other hand, in the modeling of astrophysical opacities, millions of lines are generally involved and the line-by-line extraction is clearly not feasible in laboratory measurements. It is thus suggested that this large amount of data could be interpreted only by reliable theoretical predictions. There exists essentially two theoretical approaches for the computation and prediction of spectra. The first one is based on empirically-fitted effective spectroscopic models. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. They do not yet reach the spectroscopic accuracy stricto sensu but implicitly account for all intramolecular interactions including resonance couplings in a wide spectral range. The final aim of this work is to provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on three necessary ingredients which are (i) accurate intramolecular potential energy surface and dipole moment surface components well-defined in a large range of vibrational displacements and (ii) efficient computational methods combined with suitable choices of coordinates to account for molecular symmetry properties and to achieve a good numerical

  20. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  1. Thermodynamic properties of paramagnetic α - and β -Mn from first principles: The effect of transverse spin fluctuations

    Science.gov (United States)

    Ehteshami, Hossein; Korzhavyi, Pavel A.

    2017-12-01

    First-principles-based thermodynamic modeling of cubic α and β phases of Mn represent a challenge due to their structural complexity and the necessity of simultaneous treatment of several types of disorder (electronic, magnetic, and vibrational) that have very different characteristic time scales. Here we employ mean-field theoretical models to describe the different types of disorder and then we connect each layer of theory to the others using the adiabatic principle of separating faster and slower degrees of freedom. The slowest (vibrational) degrees of freedom are treated using the Moruzzi, Janak, and Schwarz formalism [Phys. Rev. B 37, 790 (1988), 10.1103/PhysRevB.37.790] of the Debye-Grüneisen model parametrized based on the first-principles calculated equation of state which includes the free-energy contributions due to the fast (electronic and magnetic) degrees of freedom via the Fermi-Dirac distribution function and a mean-field theory of transverse spin fluctuations. The magnetic contribution due to transverse spin fluctuations has been computed self-consistently within the disordered local moment picture of the paramagnetic state. The obtained results for thermodynamic properties such as lattice parameter, linear thermal expansion coefficient, and heat capacity of both phases show a good agreement with available experimental data. We also tested the assumption about the nature (localized versus delocalized) of magnetic moment on site IV in α -Mn and site I in β -Mn on the thermodynamic properties of these two phases. Similar to the findings of experimental studies, we conclude that magnetic moment on site IV in α -Mn is not of a localized character. However, a similar analysis suggests that the magnetic moment of site I in β -Mn should be treated as localized.

  2. A rack-and-pinion device at the molecular scale

    Science.gov (United States)

    Chiaravalloti, Franco; Gross, Leo; Rieder, Karl-Heinz; Stojkovic, Sladjana M.; Gourdon, André; Joachim, Christian; Moresco, Francesca

    2007-01-01

    Molecular machines, and in particular molecular motors with synthetic molecular structures and fuelled by external light, voltage or chemical conversions, have recently been reported. Most of these experiments are carried out in solution with a large ensemble of molecules and without access to one molecule at a time, a key point for future use of single molecular machines with an atomic scale precision. Therefore, to experiment on a single molecule-machine, this molecule has to be adsorbed on a surface, imaged and manipulated with the tip of a scanning tunnelling microscope (STM). A few experiments of this type have described molecular mechanisms in which a rotational movement of a single molecule is involved. However, until now, only uncontrolled rotations or indirect signatures of a rotation have been reported. In this work, we present a molecular rack-and-pinion device for which an STM tip drives a single pinion molecule at low temperature. The pinion is a 1.8-nm-diameter molecule functioning as a six-toothed wheel interlocked at the edge of a self-assembled molecular island acting as a rack. We monitor the rotation of the pinion molecule tooth by tooth along the rack by a chemical tag attached to one of its cogs.

  3. High performance computing equipment for environmental remediation modeling and first principles simulation of materials properties. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Glimm, J.; Lindquist, W.B.

    1994-08-01

    A 56-node Intel Paragon parallel computer was purchased with major support provided by this grant, and installed in July, 1993, in the Center for Scientific Computing, Department of Applied Mathematics and Statistics, SUNY - Stony Brook. The targeted research funded by this proposal consists of work to support the Stony Brook and Brookhaven National Laboratory contributions to the Partnership in Computational Science (PICS) program; namely environmental remediation modeling of ground water transport, Car-Parrinello first principles molecular dynamics calculations, and the supporting development of the parallelized VolVis graphics package. Research accomplishments to date for this targeted research is discussed in {section}2. This computer has also enabled or enhanced many other projects conducted both by the Center for Scientific Computing and by the Department of Applied Mathematics and Statistics. These other projects include two- and three-dimensional gas dynamics using front tracking, other molecular dynamics applications, kidney modeling, and global optimization techniques applied to DNA-protein interactions. Technical summaries of these additional projects are presented in {section}3. The targeted research includes users from the Departments of Applied Mathematics and Computer Science at SUNY - Stony Brook, as well as staff scientists from the Departments of Physics and Applied Sciences at Brookhaven National Laboratory. The additional projects involve university faculty from the above departments as well as the Departments of Physics and Chemistry. Regular users of this machine currently include 10 faculty members, 8 postdoctoral fellows, more that 12 PhD students and approximately 8 staff members from BNL.

  4. Modelling of the electronic and ferroelectric properties of trichloroacetamide using Monte Carlo and first-principles calculations

    Directory of Open Access Journals (Sweden)

    Yaxuan Cai

    2017-06-01

    Full Text Available The electronic structure and ferroelectric mechanism of trichloroacetamide were studied using first principles calculations and density functional theory within the generalized gradient approximation. Using both Bader charge and electron deformation density, large molecular spontaneous polarization is found to originate from the charge transfer cause by the strong “push-pull” effect of electron-releasing interacting with electron-withdrawing groups. The intermolecular hydrogen bonds, NH⋯O, produce dipole moments in adjacent molecules to be aligned with each other. They also reduce the potential energy of the molecular chain threaded by hydrogen bonds. Due to the symmetric crystalline properties, however, the polarization of trichloroacetamide is mostly compensated and therefore small. Using the Berry Phase method, the spontaneous polarization of trichloroacetamide was simulated, and good agreement with the experimental values was found. Considering the polarization characteristics of trichloroacetamide, we constructed a one-dimensional ferroelectric Hamiltonian model to calculate the ferroelectric properties of TCAA. Using the Hamiltonian model, the thermal properties and ferroelectricity of trichloroacetamide were studied using the Monte Carlo method, and the Tc value was calculated.

  5. First principles design of a core bioenergetic transmembrane electron transfer protein

    Science.gov (United States)

    Goparaju, Geetha; Fry, Bryan A.; Chobot, Sarah E.; Wiedman, Gregory; Moser, Christopher C.; Dutton, P. Leslie; Discher, Bohdana M.

    2016-01-01

    Here we describe the design, E. coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. PMID:26672896

  6. Simulation of inelastic electronic tunneling spectra of adsorbates from first principles

    Science.gov (United States)

    Ren, Hao; Yang, Jinlong; Luo, Yi

    2009-04-01

    We present first-principles simulations for inelastic electron tunneling spectra of molecules adsorbed on metal surface as measured in scanning tunneling microscopy experiments. Both elastic and inelastic tunneling processes are modeled in terms of Tersoff-Hamann approximation with a full vibration analysis at density functional theory levels. The calculated spectra of carbon oxide and acetylene molecules adsorbed on Cu(100) surface have well reproduced their experimental counterparts. The inelastic electron tunneling images of the observable vibration modes have been provided. The performance of gradient-corrected density functional is compared with that of local density functional.

  7. Simulation of inelastic electronic tunneling spectra of adsorbates from first principles.

    Science.gov (United States)

    Ren, Hao; Yang, Jinlong; Luo, Yi

    2009-04-07

    We present first-principles simulations for inelastic electron tunneling spectra of molecules adsorbed on metal surface as measured in scanning tunneling microscopy experiments. Both elastic and inelastic tunneling processes are modeled in terms of Tersoff-Hamann approximation with a full vibration analysis at density functional theory levels. The calculated spectra of carbon oxide and acetylene molecules adsorbed on Cu(100) surface have well reproduced their experimental counterparts. The inelastic electron tunneling images of the observable vibration modes have been provided. The performance of gradient-corrected density functional is compared with that of local density functional.

  8. Strain induced phase transitions in silicene bilayers: a first principles and tight-binding study

    Directory of Open Access Journals (Sweden)

    Chao Lian

    2013-05-01

    Full Text Available Using first principles and tight-binding calculations, we have investigated the structures of silicene bilayers under the isotropic tensile strain. We find that (i the strain induce several barrierless phase transitions. (ii After the phase transitions, the bilayer structures become planar, similar with the AA-stacking graphene bilayers, but combined with the strong covalent interlayer bonds. The tight-binding results demonstrate that this silicene bilayer is characterized by intralayer sp2 hybridization and the interlayer sp1 hybridization. (iii The electronic properties of the silicene bilayers change from semiconducting to metallic with the increase of strain.

  9. A first principles investigation of the electronic structure of actinide oxides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Zdzislawa

    2010-01-01

    The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations using the selfinteraction corrected local spin-density approximation. Our study reveals a strong link between preferred oxidation number...... and degree of localization. The ionic nature of the actinide oxides emerges from the fact that those oxides where the ground state is calculated to be metallic do not exist in nature, as the corresponding delocalized f-states favour the accommodation of additional O atoms into the crystal lattice....

  10. Stability, electronic and thermodynamic properties of aluminene from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Junhui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Yu, Niannian [School of Science, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Xue, Kanhao, E-mail: xkh@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Miao, Xiangshui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2017-07-01

    Highlights: • We have predicted two NEW stable phases of atomic layer aluminum, buckled and 8-Pmmn aluminene. • We have revealed the electronic structures and bonding characteristics of aluminene. • Thermodynamic properties of aluminene were investigated based on phonon properties. - Abstract: Using first-principles calculations based on density functional theory (DFT), we have investigated the structure stability and electronic properties of both buckled and 8-Pmmn phase aluminene. Phonon dispersion analysis reveals that the buckled and 8-Pmmn aluminene are dynamically stable. The band structure shows that both the buckled and 8-Pmmn aluminene exhibit metallic behavior. Finally, the thermodynamic properties are investigated based on phonon properties.

  11. Piezoelectric, Mechanical and Acoustic Properties of KNaNbOF5 from First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Han Han

    2015-12-01

    Full Text Available Recently, a noncentrosymmetric crystal, KNaNbOF5, has attracted attention due to its potential to present piezoelectric properties. Although α- and β-KNaNbOF5 are similar in their stoichiometries, their structural frameworks, and their synthetic routes, the two phases exhibit very different properties. This paper presents, from first-principles calculations, comparative studies of the structural, electronic, piezoelectric, and elastic properties of the α and the β phase of the material. Based on the Christoffel equation, the slowness surface of the acoustic waves is obtained to describe its acoustic prosperities. These results may benefit further applications of KNaNbOF5.

  12. Elastic properties of Ca-based metallic glasses predicted by first-principles simulations

    Energy Technology Data Exchange (ETDEWEB)

    Widom, M.; Sauerwine, B.; Cheung, A.M.; Poon, S.J.; Tong, P.; Louca, D.; Shiflet, G.J. (CM); (UV)

    2012-07-11

    First-principles simulations of Ca-based metallic glass-forming alloys yield sample amorphous structures whose structures can be compared to experiment and whose properties can be analyzed. In an effort to understand and control ductility, we investigate the elastic moduli. Calculated Poisson ratios depend strongly on alloying elements in a manner that correlates with ionicity (charge transfer). Consequently, we predict that alloying Ca with Mg and Zn should result in relatively ductile glasses compared to alloying with Ag, Cu, or Al. Experimental observations validate these predictions.

  13. Optical characteristic study of monolayer VS2 based on first-principles calculations

    Science.gov (United States)

    Ding, Zhiyuan; Peng, Junhao; Xie, Xing; Hu, Jianwei; Yang, Hanqi; Wu, Fugen; Dong, Huafeng

    2017-10-01

    Monolayer VS2 has two common stable phases, 2H-phase and 1T-phase. Based on first-principles calculations, we studied the optical properties of 2D-VS2, including their dielectric functions, absorption coefficients, refraction indexes and energy loss functions. Also, we fully analyzed the relationship between the electronic structure and the optical characteristics of 2D-VS2. We found that the differences of density of states are the fundamental reasons for the differences of the two phase optical absorption behavior.

  14. First-principles Exploration of Ferromagnetic and Ferroelectric Double-perovskite Transition-metal Oxides

    OpenAIRE

    Uratani, Yoshitaka; Shishidou, Tatsuya; Ishii, Fumiyuki; Oguchi, Tamio

    2006-01-01

    Possible ferromagnetic and ferroelectric phases are explored for bismuth transition-metal oxides with doubleperovskite structure A2BB0O6 on the basis of first-principles calculations within the local spin-density approximation (LSDA) and generalized gradient approximation (GGA). It is found that a lattice instability of the cubic to a non-centrosymmetric phase always happens in the all cases of lead and bismuth perovskite oxides with the 3d transition-metal ions at the B site. Placing bismuth...

  15. First-principles study on the electronic structure and optical properties of CrSi2

    Science.gov (United States)

    Zhou, Shiyun; Xie, Quan; Yan, Wanjun; Chen, Qian

    2009-01-01

    Using the first principle methods based on the plane-wave pseudo-potential theory, band structure, density of states and optical properties of CrSi2 were studied. The calculation of band structure shows that CrSi2 is an indirect semiconductor whose band gap is 0.353 eV. Density of states is mainly composed of 3d electron of Cr and 3p electron of Si. Dielectric function, refractive index, reflectivity, and absorption coefficient of CrSi2 are also calculated. The calculation results of optical properties are in agreement with the experiments.

  16. First-principle study on the electronic structure of stressed CrSi2

    Science.gov (United States)

    Zhou, Shiyun; Xie, Quan; Yan, Wanjun; Chen, Qian

    2009-01-01

    The electronic structure of stressed CrSi2 was calculated using the first-principle methods based on plane-wave pseudo-potential theory. The calculated results showed that, under the uniaxial compression, the energy level of CrSi2 shifted toward high energy and its energy gap became wider with the increasing uniaxial stress, while the gap became narrower under the negative uniaxial stress. When the negative uniaxial stress was up to -18.5 GPa, CrSi2 was converted into a direct-gap semiconductor with the band gap of 0.32 eV.

  17. A first-principles study of group IV and VI atoms doped blue phosphorene

    Science.gov (United States)

    Bai, Ruimin; Chen, Zheng; Gou, Manman; Zhang, Yixin

    2018-02-01

    Using first-principles calculations, we have systematically investigated the structural, electronic and magnetic properties of blue phosphorene doped by group IV and VI atoms, including C, Si, Ge, Sn, O, S, Se and Te. All the doped systems are energetically stable. Only C, Si, Ge and O-substituted systems show the characteristics of spin polarization and the magnetic moments are all 1.0 μB. Moreover, we found that C, Si, Ge and O doped systems are indirect bandgap semiconductors, while Sn, S, Se and Te doped systems present metallic property. These results show that blue phosphorene can be used prospectively in optoelectronic and spintronic devices.

  18. First-principles theory of inelastic currents in a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Hu, Ben Yu-Kuang; Thirstrup, C.

    1998-01-01

    A first-principles theory of inelastic tunneling between a model probe tip and an atom adsorbed on a surface is presented, extending the elastic tunneling theory of Tersoff and Hamann. The inelastic current is proportional to the change in the local density of states at the center of the tip due...... to the addition of the adsorbate. We use the theory to investigate the vibrational heating of an adsorbate below a scanning tunneling microscopy tip. We calculate the desorption rate of PI from Si(100)-H(2 X 1) as a function of the sample bias and tunnel current, and find excellent a,agreement with recent...

  19. First principles calculations of oxygen adsorption on the UN(0 0 1) surface

    Science.gov (United States)

    Zhukovskii, Yu. F.; Bocharov, D.; Kotomin, E. A.; Evarestov, R. A.; Bandura, A. V.

    2009-01-01

    Fabrication, handling and disposal of nuclear fuel materials require comprehensive knowledge of their surface morphology and reactivity. Due to unavoidable contact with air components (even at low partial pressures), UN samples contain considerable amount of oxygen impurities affecting fuel properties. In this study we focus on reactivity of the energetically most stable (0 0 1) substrate of uranium nitride towards the atomic oxygen as one of initial stages for further UN oxidation. The basic properties of O atoms adsorbed on the UN(0 0 1) surface are simulated here combining the two first principles calculation methods based on the plane wave basis set and that of the localized orbitals.

  20. First Principles Calculations of Oxygen Adsorption on the UN(001) Surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovskii, Yuri F.; Bocharov, Dmitry; Kotomin, Eugene Alexej; Evarestov, Robert; Bandura, A. V.

    2009-01-01

    Fabrication, handling and disposal of nuclear fuel materials require comprehensive knowledge of their surface morphology and reactivity. Due to unavoidable contact with air components (even at low partial pressures), UN samples contain considerable amount of oxygen impurities affecting fuel properties. In this study we focus on reactivity of the energetically most stable (001) substrate of uranium nitride towards the atomic oxygen as one of initial stages for further UN oxidation. The basic properties of O atoms adsorbed on the UN(001) surface are simulated here combining the two first principles calculation methods based on the plane wave basis set and that of the localized orbitals.

  1. A comparative first-principles study of structural and electronic properties among memantine, amantadine and rimantadine

    Science.gov (United States)

    Middleton, Kirsten; Zhang, G. P.; Nichols, Michael R.; George, Thomas F.

    2012-05-01

    Memantine, amantadine and rimantadine are structurally derived from the same diamondoid, adamantane. These derivatives demonstrate therapeutic efficacy in human diseases: memantine for Alzheimer's disease and amantadine and rimantadine for influenza. In order to better understand some of the properties that distinguish these three compounds, we conduct first-principles calculations on their structure and electronic properties. Our results indicate that protonation has a significant effect on the dipole moment, where the dipole moment in protonated memantine is over eight times larger than in the deprotonated form.

  2. Pressure induced novel compounds in the Hf-O system from first-principles calculations

    OpenAIRE

    Zhang, Jin; Oganov, Artem R.; Li, Xinfeng; Xue, Kan-Hao; Wang, Zhenhai; Dong, Huafeng

    2015-01-01

    Using first-principles evolutionary simulations, we have systematically investigated phase stability in the Hf-O system at pressure up to 120 GPa. New compounds Hf5O2, Hf3O2, HfO and HfO3 are discovered to be thermodynamically stable at certain pressure ranges and a new stable high-pressure phase is found for Hf2O with space group Pnnm and anti-CaCl2-type structure. Both P62m-HfO and P4m2-Hf2O3 show semimetallic character. Pnnm-HfO3 shows interesting structure, simultaneously containing oxide...

  3. First principles calculations of the ground state properties and structural phase transformation in YN

    CERN Document Server

    Mancera, L; Takeuchi, N

    2003-01-01

    We have studied the structural and electronic properties of YN in rock salt (sodium chloride), caesium chloride, zinc blende and wurtzite structures using first-principles total energy calculations. Rock salt is the calculated ground state structure with a = 4.93 A, B sub 0 = 157 GPa. The experimental lattice constant is a = 4.877 A. There is an additional local minimum in the wurtzite structure with total energy 0.28 eV/unit cell higher. At high pressure (approx 138 GPa), our calculations predict a phase transformation from a NaCl to a CsCl structure.

  4. Control-Oriented First Principles-Based Model of a Diesel Generator

    DEFF Research Database (Denmark)

    Knudsen, Jesper Viese; Bendtsen, Jan Dimon; Andersen, Palle

    2016-01-01

    This paper presents the development of a control-oriented tenth-order nonlinear model of a diesel driven generator set, using first principles modeling. The model provides physical system insight, while keeping the complexity at a level where it can be a tool for future design of improved automatic...... generation control (AGC), by including important nonlinearities of the machine. The nonlinearities are, as would be expected for a generator, primarily of bilinear nature. Validation of the model is done with measurements on a 60 kVA/48 kW diesel driven generator set in island operation during steps...

  5. First-principles theory of van der Waals forces between macroscopic bodies.

    Science.gov (United States)

    Yannopapas, Vassilios; Vitanov, Nikolay V

    2007-09-21

    We present a first-principles method for the determination of the van der Waals interactions for a collection of finite-sized macroscopic bodies. The method is based on fluctuational electrodynamics and a rigorous multiple-scattering method for the electromagnetic field. As such, the method takes fully into account retardation, many-body, multipolar, and near-fields effects. By application of the method to the case of two metallic nanoparticles, we demonstrate the breakdown of the standard 1/r(2) distance law as the van der Waals force decays exponentially with distance when the nanoparticles are too close or too far apart.

  6. First-Principle and Experimental Study of a Gadolinium-Praseodymium-Cobalt Pseudobinary Intermetallic Compound

    Directory of Open Access Journals (Sweden)

    Jon Goldsby

    2015-01-01

    Full Text Available First-principles methods were used to determine the magnetic state of a simulated cobalt-based binary alloy (Gd,PrCo17 along with its corresponding lattice parameters and density. The resulting composition was fabricated using two methods arc-melting and induction-melting and compared with the calculated values. The induction-melted samples showed greater homogeneity and successfully produced the R2Co17 structure. Calculated values qualitatively predict ferromagnetic behavior and lattice parameters to be within a low percent. The development of magnetic alloys with the assistance of computational methods promises faster development of new functional materials.

  7. From First Principles: The Application of Quantum Mechanics to Complex Molecules and Solvated Systems

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Mark A. [Iowa State Univ., Ames, IA (United States)

    2001-12-31

    The major title of this dissertation, 'From first principles,' is a phase often heard in the study of thermodynamics and quantum mechanics. These words embody a powerful idea in the physical sciences; namely, that it is possible to distill the complexities of nature into a set of simple, well defined mathematical laws from which specific relations can then be derived . In thermodynamics, these fundamental laws are immediately familiar to the physical scientist by their numerical order: the First, Second and Third Laws. However, the subject of the present volume is quantum mechanics-specifically, non-relativistic quantum mechanics, which is appropriate for most systems of chemical interest.

  8. Atom-scale molecular interactions in lipid raft mixtures

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Hyvönen, Marja T; Vattulainen, Ilpo

    2009-01-01

    We review the relationship between molecular interactions and the properties of lipid environments. A specific focus is given on bilayers which contain sphingomyelin (SM) and sterols due to their essential role for the formation of lipid rafts. The discussion is based on recent atom-scale molecular....... As a particularly intriguing example of this, the lateral pressure profiles of raft-like and non-raft systems indicate that the lipid composition of membrane domains may have a major impact on membrane protein activation....

  9. Design and Properties Prediction of AMCO3F by First-Principles Calculations.

    Science.gov (United States)

    Tian, Meng; Gao, Yurui; Ouyang, Chuying; Wang, Zhaoxiang; Chen, Liquan

    2017-04-19

    Computer simulation accelerates the rate of identification and application of new materials. To search for new materials to meet the increasing demands of secondary batteries with higher energy density, the properties of some transition-metal fluorocarbonates ([CO3F]3-) were simulated in this work as cathode materials for Li- and Na-ion batteries based on first-principles calculations. These materials were designed by substituting the K+ ions in KCuCO3F with Li+ or Na+ ions and the Cu2+ ions with transition-metal ions such as Fe2+, Co2+, Ni2+, and Mn2+ ions, respectively. The phase stability, electronic conductivity, ionic diffusion, and electrochemical potential of these materials were calculated by first-principles calculations. After taking comprehensive consideration of the kinetic and thermodynamic properties, LiCoCO3F and LiFeCO3F are believed to be promising novel cathode materials in all of the calculated AMCO3F (A = Li and Na; M = Fe, Mn, Co, and Ni). These results will help the design and discovery of new materials for secondary batteries.

  10. Astrophysical reaction rates from a symmetry-informed first-principles perspective

    Science.gov (United States)

    Dreyfuss, Alison; Launey, Kristina; Baker, Robert; Draayer, Jerry; Dytrych, Tomas

    2017-01-01

    With a view toward a new unified formalism for studying bound and continuum states in nuclei, to understand stellar nucleosynthesis from a fully ab initio perspective, we studied the nature of surface α-clustering in 20Ne by considering the overlap of symplectic states with cluster-like states. We compute the spectroscopic amplitudes and factors, α-decay width, and absolute resonance strength - characterizing major contributions to the astrophysical reaction rate through a low-lying 1- resonant state in 20Ne. As a next step, we consider a fully microscopic treatment for the n+4 He system, based on the successful first-principles No-Core Shell Model/Resonating Group Method (NCSM/RGM) for light nuclei, but with the capability to reach intermediate-mass nuclei. The new model takes advantage of the symmetry-based concept central to the Symmetry-Adapted No-Core Shell Model (SA-NCSM) to reduce computational complexity in physically-informed and methodical way, with sights toward first-principles calculations of rates for important astrophysical reactions, such as the 23 Al(p , γ) 24 Si reaction, believed to have a strong influence on X-ray burst light curves. Supported by the U.S. NSF (OCI-0904874, ACI -1516338) and the U.S. DOE (DE-SC0005248), and benefitted from computing resources provided by Blue Waters and the LSU Center for Computation & Technology.

  11. First-principles method to study defect properties in semiconductor nanostructures

    Science.gov (United States)

    Partoens, Bart; Amini, Mozhgan; Schoeters, Bob; Saniz, Rolando; Lamoen, Dirk; CMT-EMAT Collaboration

    2014-03-01

    The standard theoretical approach to examine the deep or shallow nature of defects in bulk crystals is through first-principles calculations of their (neutral and charged) formation energies. The character of a defect in a nanostructure might differ from its character in the bulk material and may vary with its position in the nanostructure. However, the standard method cannot be transferred directly to nanostructures. In calculations for a charged defect, a uniform background charge is considered. While this is well-defined for bulk calculations, the total energy of a charged nanostructure depends on the vacuum width. Therefore, total energies of charged nanostructures cannot be used to calculate defect formation energies. Here we propose a solution to this problem and present a first-principles method to determine formation energies for defects in different charge states in a nanostructure, together with the transition levels. As example, we focus on VO in ZnO slabs and SiGa in GaAs slabs. Their preferential position as function of the distance to the surface is determined, together with the evolution of their optical and thermal ionization energies. This new method allows to study the character of a wide range of intrinsic and extrinsic defects in nanostructures.

  12. First-principles calculations, experimental study, and thermodynamic modeling of the Al-Co-Cr system.

    Directory of Open Access Journals (Sweden)

    Xuan L Liu

    Full Text Available The phase relations and thermodynamic properties of the condensed Al-Co-Cr ternary alloy system are investigated using first-principles calculations based on density functional theory (DFT and phase-equilibria experiments that led to X-ray diffraction (XRD and electron probe micro-analysis (EPMA measurements. A thermodynamic description is developed by means of the calculations of phase diagrams (CALPHAD method using experimental and computational data from the present work and the literature. Emphasis is placed on modeling the bcc-A2, B2, fcc-γ, and tetragonal-σ phases in the temperature range of 1173 to 1623 K. Liquid, bcc-A2 and fcc-γ phases are modeled using substitutional solution descriptions. First-principles special quasirandom structures (SQS calculations predict a large bcc-A2 (disordered/B2 (ordered miscibility gap, in agreement with experiments. A partitioning model is then used for the A2/B2 phase to effectively describe the order-disorder transitions. The critically assessed thermodynamic description describes all phase equilibria data well. A2/B2 transitions are also shown to agree well with previous experimental findings.

  13. Predicting oxygen vacancy non-stoichiometric concentration in perovskites from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Heng [Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States); Shin, Yongwoo [Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States); Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Yu, Yang; Cetin, Deniz [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Ludwig, Karl [Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Department of Physics, Boston University, Boston, MA 02215 (United States); Pal, Uday; Basu, Soumendra N.; Gopalan, Srikanth [Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States); Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States); Lin, Xi, E-mail: linx@bu.edu [Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States); Division of Materials Science and Engineering, Boston University, Brookline, MA 02446 (United States)

    2014-12-30

    Highlights: • Prediction of materials properties from first principles. • Oxygen vacancy non-stoichiometric concentration transition between the surface and bulk phases. • Controlled defect concentrations via materials design. - Abstract: Formation of oxygen vacancies by introducing various mixed-valent cation dopants is a common practice to improve the cathode performance in solid oxide fuel cells. A computational procedure is developed in this work to predict the equilibrium oxygen vacancy non-stoichiometric concentrations at experimentally relevant temperatures and oxygen partial pressures for both bulk and surface oxide phases. The calculations are based on the first-principles density functional theory and a constrained free-energy functional. Quantitative agreements are found by direct comparisons to the thermogravimetry and solid electrolyte coulometry measurements for the strontium-doped lanthanum cobalt iron oxides at different compositions. Our results indicate that the oxygen vacancies are energetically stabilized at surfaces for all temperatures and all oxygen partial pressures, while such surface stabilization effects become stronger at higher temperatures and lower oxygen partial pressures.

  14. Self-diffusion and macroscopic diffusion of hydrogen in amorphous metals from first-principles calculations.

    Science.gov (United States)

    Hao, Shiqiang; Sholl, David S

    2009-06-28

    Diffusion of interstitial hydrogen plays a key role in potential uses for amorphous metals as membranes for hydrogen purification. We show how first principles-based methods can be used to characterize diffusion of interstitial H in amorphous metals using amorphous Fe(3)B as an example. Net transport of interstitial H is governed by the transport diffusion coefficient that appears in Fick's law. This diffusion coefficient is strongly dependent on the interstitial concentration, and is not equal to the self-diffusion coefficient except at dilute interstitial concentrations. Under conditions of practical interest, the concentrations of interstitial H in amorphous metals are nondilute so methods to determine the transport diffusion coefficient must be used if net mass transport is to be described. We show how kinetic Monte Carlo simulations of interstitial H diffusion that use rates derived from first-principles calculations can be used to assess both self- and transport diffusion coefficients of H in amorphous metals. These methods will be helpful in efforts to screen amorphous metal alloys as potential membranes for hydrogen purification.

  15. First-Principles Calculations of Thermoelectric Properties of IV–VI Chalcogenides 2D Materials

    Directory of Open Access Journals (Sweden)

    J. O. Morales-Ferreiro

    2017-12-01

    Full Text Available A first-principles study using density functional theory and Boltzmann transport theory has been performed to evaluate the thermoelectric (TE properties of a series of single-layer 2D materials. The compounds studied are SnSe, SnS, GeS, GeSe, SnSe2, and SnS2, all of which belong to the IV–VI chalcogenides family. The first four compounds have orthorhombic crystal structures, and the last two have hexagonal crystal structures. Solving a semi-empirical Boltzmann transport model through the BoltzTraP software, we compute the electrical properties, including Seebeck coefficient, electrical conductivity, power factor, and the electronic thermal conductivity, at three doping levels corresponding to 300 K carrier concentrations of 1018, 1019, and 1020 cm−3. The spin orbit coupling effect on these properties is evaluated and is found not to influence the results significantly. First-principles lattice dynamics combined with the iterative solution of phonon Boltzmann transport equations are used to compute the lattice thermal conductivity of these materials. It is found that these materials have narrow band gaps in the range of 0.75–1.58 eV. Based on the highest values of figure-of-merit ZT of all the materials studied, we notice that the best TE material at the temperature range studied here (300–800 K is SnSe.

  16. First-principles analysis of X-ray magnetic circular dichroism for transition metal complex oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ikeno, Hidekazu, E-mail: h-ikeno@21c.osakafu-u.ac.jp [Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan)

    2016-10-14

    X-ray magnetic circular dichroism (XMCD) is widely used for the characterization of magnetism of materials. However, information from XMCD related to the atomic, electronic, and magnetic structures is not fully utilized due to the lack of reliable theoretical tools for spectral analysis. In this work, the first-principles configuration interaction (CI) calculations for X-ray absorption spectra developed by the author were extended for the calculation of XMCD, where the Zeeman energy was taken into the Hamiltonian of the CI to mimic magnetic polarization in the solid state. This technique was applied to interpret the L{sub 2,3} XMCD from 3d transition metal complex oxides, such as NiFe{sub 2}O{sub 4} and FeTiO{sub 3}. The experimental XMCD spectra were quantitatively reproduced using this method. The oxidation states as well as the magnetic ordering between transition metal ions on crystallographically different sites in NiFe{sub 2}O{sub 4} can be unambiguously determined. A first-principles analysis of XMCD in FeTiO{sub 3} revealed the presence of Fe{sup 3+} and Ti{sup 3+} ions, which indicates that the charge transfer from Fe to Ti ions occurs. The origin of magnetic polarization of Ti ions in FeTiO{sub 3} was also discussed.

  17. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions.

    Science.gov (United States)

    Hu, S X; Collins, L A; Goncharov, V N; Kress, J D; McCrory, R L; Skupsky, S

    2015-10-01

    Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. With first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (ρ=0.1to100g/cm(3) and T=1000 to 4,000,000 K). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic target implosions on OMEGA using the FPEOS table of CH have predicted ∼30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ∼5% reduction in implosion velocity that is caused by the ∼10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered light from ICF implosions.

  18. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures.

    Science.gov (United States)

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-21

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m(-2) K(-1) which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices.

  19. Refraction indices of spatially nonuniform magnetic systems and nanostructures from the first principles

    Science.gov (United States)

    Pozhar, Liudmila A.

    2010-05-01

    An equilibrium two-time temperature Green's function (TTGF)-based, quantum statistical mechanical approach has been used to derive from the first principles an explicit expression for the tensor of "local" refraction indices of spatially nonuniform systems in weak external electromagnetic (EM) fields in the linear approximation with regard to the field magnitudes. Written in terms of the TTGF-based, first-principle tensorial dielectric and magnetic susceptibilities, the obtained formula for the local tensor of refraction indices (TRI) is applicable to any system, including individual nanoscale objects, such as quantum dots and wires, magnetic nanostructures, composite materials, or spatially nonuniform, bulk magnetic materials. An explicit expression for the space-time Fourier transform (STFT) of the dielectric susceptibility tensor used in TRI is derived in terms of STFTs of the charge density—charge density TTGFs, while the corresponding STFT of the magnetic susceptibility tensor also includes STFTs of the microcurrent—microcurrent TTGFs. The STFTs of the equilibrium TTGFs featuring in the susceptibilities, and thus necessary to calculate TRI, can be obtained by equilibrium quantum statistical mechanical means, modeling and simulations, or from experimental data. Two TRI regimes of significant interest for applications that can be realized in spatially inhomogeneous magnetic systems have been identified.

  20. Excitons and Davydov splitting in sexithiophene from first-principles many-body Green's function theory.

    Science.gov (United States)

    Leng, Xia; Yin, Huabing; Liang, Dongmei; Ma, Yuchen

    2015-09-21

    Organic semiconductors have promising and broad applications in optoelectronics. Understanding their electronic excited states is important to help us control their spectroscopic properties and performance of devices. There have been a large amount of experimental investigations on spectroscopies of organic semiconductors, but theoretical calculation from first principles on this respect is still limited. Here, we use density functional theory (DFT) and many-body Green's function theory, which includes the GW method and Bethe-Salpeter equation, to study the electronic excited-state properties and spectroscopies of one prototypical organic semiconductor, sexithiophene. The exciton energies of sexithiophene in both the gas and bulk crystalline phases are very sensitive to the exchange-correlation functionals used in DFT for ground-state structure relaxation. We investigated the influence of dynamical screening in the electron-hole interaction on exciton energies, which is found to be very pronounced for triplet excitons and has to be taken into account in first principles calculations. In the sexithiophene single crystal, the energy of the lowest triplet exciton is close to half the energy of the lowest singlet one. While lower-energy singlet and triplet excitons are intramolecular Frenkel excitons, higher-energy excitons are of intermolecular charge-transfer type. The calculated optical absorption spectra and Davydov splitting are in good agreement with experiments.

  1. Probing the surface structure of hydroxyapatite using NMR spectroscopy and first principles calculations.

    Science.gov (United States)

    Chappell, Helen; Duer, Melinda; Groom, Nicholas; Pickard, Chris; Bristowe, Paul

    2008-01-28

    The surface characteristics of hydroxyapatite (HA) are probed using a combination of NMR spectroscopy and first principles calculations. The NMR spectrum is taken from a bone sample and the first principles calculations are performed using a plane-wave density functional approach within the pseudopotential approximation. The computational work focuses on the (100) and (200) surfaces, which exhibit a representative range of phosphate, hydroxyl and cation bonding geometries. The shielding tensors for the 31P, 1H and 17O nuclei are calculated from the relaxed surface structures using an extension of the projector augmented-wave method. The calculated 31P chemical shifts for the surface slab are found to be significantly different from the bulk crystal and are consistent with the NMR data from bone and also synthetically prepared nanocrystalline samples of HA. Rotational relaxations of the surface phosphate ions and the sub-surface displacement of other nearby ions are identified as causing the main differences. The investigation points to further calculations of other crystallographic surfaces and highlights the potential of using NMR with ab initio modelling to fully describe the surface structure and chemistry of HA, which is essential for understanding its reactivity with the surrounding organic matrix.

  2. Magnetism, microstructure and First Principles calculations of atomized and annealed Ni{sub 3}Al

    Energy Technology Data Exchange (ETDEWEB)

    García-Escorial, A., E-mail: age@cenim.csic.es [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Crespo, P.; Hernando, A. [Instituto de Magnetismo Aplicado, IMA-UCM, P.O. Box 155, 28230 Madrid (Spain); Lieblich, M. [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Marín, P.; Velasco, V. [Instituto de Magnetismo Aplicado, IMA-UCM, P.O. Box 155, 28230 Madrid (Spain); Ynduráin, F. [Dpto. de Física de la Materia Condensada, UAM, Cantoblanco, 28049 Madrid (Spain)

    2014-12-05

    Highlights: • The microstructure and order of as-atomized Ni{sub 3}Al powder change with annealing. • The change of the magnetic properties shows the influence of the chemical order. • First Principles calculations show the effect of the density of states to the order. - Abstract: In this work Ni{sub 3}Al powder particles obtained by atomization were characterized magnetically and microstructurally in as-atomized state and after annealing. Upon annealing the X-ray diffraction patterns show a noticeable increase of the signal of the ordered phase γ′-Ni{sub 3}Al, L1{sub 2}, phase and the microstructure evolves from a lamellar and dendrite to a large grain microstructure. The Curie temperature of the as-atomized powder particles is 85 K and decreases after annealing down to 50 K. First Principles calculations were carried out to correlate the experimental observations with local order of Ni and Al atoms and illustrate the importance of the local order in the density of states at the Fermi level, showing how the magnetic moment depends on the Ni and Al atomic position.

  3. Diffusion Behaviors of Hydrogen Isotopes in Incoloy 800H: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Hongyu Chen

    2017-01-01

    Full Text Available Incoloy 800H is one of the main stainless steel materials used in steam generators with High Temperature Reactor Pebble-bed Modules (HTR-PM. In this study, the diffusion behaviors of hydrogen isotopes in Incoloy 800H were investigated with first-principle calculations. Numerical results reveal that the starting and ending positions of the diffusion process are the two adjacent and most stable octahedral sites surrounded by Fe atoms and Ni atoms, and the diffusion follows an indirect path via the metastable tetrahedral sites and octahedral sites surrounded by Fe atoms and Cr atoms. The diffusion activation energies of hydrogen (H, deuterium (D, and tritium (T in Incoloy 800H are investigated by first-principles calculations with the same approximate value of Q=0.757 eV; the diffusion coefficient frequency factors are also obtained with values of D0=1.56×10-6, 1.10×10-6, and 8.99×10-7 (m2/s for H, D, and T, respectively. Furthermore, the theoretical results are compared with the experimental data, and it is found that both are in agreement with each other. These results are very helpful for understanding the diffusion behaviors of hydrogen isotopes in Incoloy 800H and can be used to guide the tritium source term analysis of secondary circuits in HTR-PM, which are first studied from a microperspective.

  4. Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations.

    Science.gov (United States)

    Liu, Gang; Wang, Haifeng; Gao, Yan; Zhou, Jian; Wang, Hui

    2017-01-25

    Borophene (boron sheet) as a new type of two-dimensional (2D) material was grown successfully recently. Unfortunately, the structural stability of freestanding borophene is still an open issue. Theoretical research has found that full hydrogenation can remove such instability, and the product is called borophane. In this paper, using first-principles calculations we investigate the lattice dynamics and thermal transport properties of borophane. The intrinsic lattice thermal conductivity and the relaxation time of borophane are investigated by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations. We find that the intrinsic lattice thermal conductivity of borophane is anisotropic, as the higher value (along the zigzag direction) is about two times of the lower one (along the armchair direction). The contributions of phonon branches to the lattice thermal conductivities along different directions are evaluated. It is found that both the anisotropy of thermal conductivity and the different phonon branches which dominate the thermal transport along different directions are decided by the group velocity and the relaxation time of phonons with very low frequency. In addition, the size dependence of thermal conductivity is investigated using cumulative thermal conductivity. The underlying physical mechanisms of these unique properties are also discussed in this paper.

  5. Surface Reactivity of Li2MnO3: First-Principles and Experimental Study.

    Science.gov (United States)

    Quesne-Turin, Ambroise; Flahaut, Delphine; Croguennec, Laurence; Vallverdu, Germain; Allouche, Joachim; Charles-Blin, Youn; Chotard, Jean-Noël; Ménétrier, Michel; Baraille, Isabelle

    2017-12-20

    This article deals with the surface reactivity of (001)-oriented Li 2 MnO 3 crystals investigated from a multitechnique approach combining material synthesis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy, Auger electron spectroscopy, and first-principles calculations. Li 2 MnO 3 is considered as a model compound suitable to go further in the understanding of the role of tetravalent manganese atoms in the surface reactivity of layered lithium oxides. The knowledge of the surface properties of such materials is essential to understand the mechanisms involved in parasitic phenomena responsible for early aging or poor storage performances of lithium-ion batteries. The surface reactivity was probed through the adsorption of SO 2 gas molecules on large Li 2 MnO 3 crystals to be able to focus the XPS beam on the top of the (001) surface. A chemical mapping and XPS characterization of the material before and after SO 2 adsorption show in particular that the adsorption is homogeneous at the micro- and nanoscale and involves Mn reduction, whereas first-principles calculations on a slab model of the surface allow us to conclude that the most energetically favorable species formed is a sulfate with charge transfer implying reduction of Mn.

  6. First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites.

    Science.gov (United States)

    Fang, Hanjun; Kamakoti, Preeti; Ravikovitch, Peter I; Aronson, Matthew; Paur, Charanjit; Sholl, David S

    2013-08-21

    The development of accurate force fields is vital for predicting adsorption in porous materials. Previously, we introduced a first principles-based transferable force field for CO2 adsorption in siliceous zeolites (Fang et al., J. Phys. Chem. C, 2012, 116, 10692). In this study, we extend our approach to CO2 adsorption in cationic zeolites which possess more complex structures. Na-exchanged zeolites are chosen for demonstrating the approach. These methods account for several structural complexities including Al distribution, cation positions and cation mobility, all of which are important for predicting adsorption. The simulation results are validated with high-resolution experimental measurements of isotherms and microcalorimetric heats of adsorption on well-characterized materials. The choice of first-principles method has a significant influence on the ability of force fields to accurately describe CO2-zeolite interactions. The PBE-D2 derived force field, which performed well for CO2 adsorption in siliceous zeolites, does not do so for Na-exchanged zeolites; the PBE-D2 method overestimates CO2 adsorption energies on multi-cation sites that are common in cationic zeolites with low Si/Al ratios. In contrast, a force field derived from the DFT/CC method performed well. Agreement was obtained between simulation and experiment not only for LTA-4A on which the force field fitting is based, but for other two common adsorbents, NaX and NaY.

  7. First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. Karl Johnson

    2011-05-20

    The objective of this project is to complement experimental efforts of MHoCE partners by using state-of-the-art theory and modeling to study the structure, thermodynamics, and kinetics of hydrogen storage materials. Specific goals include prediction of the heats of formation and other thermodynamic properties of alloys from first principles methods, identification of new alloys that can be tested experimentally, calculation of surface and energetic properties of nanoparticles, and calculation of kinetics involved with hydrogenation and dehydrogenation processes. Discovery of new metal hydrides with enhanced properties compared with existing materials is a critical need for the Metal Hydride Center of Excellence. New materials discovery can be aided by the use of first principles (ab initio) computational modeling in two ways: (1) The properties, including mechanisms, of existing materials can be better elucidated through a combined modeling/experimental approach. (2) The thermodynamic properties of novel materials that have not been made can, in many cases, be quickly screened with ab initio methods. We have used state-of-the-art computational techniques to explore millions of possible reaction conditions consisting of different element spaces, compositions, and temperatures. We have identified potentially promising single- and multi-step reactions that can be explored experimentally.

  8. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions

    Science.gov (United States)

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Kress, J. D.; McCrory, R. L.; Skupsky, S.

    2015-10-01

    Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. With first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (ρ =0.1 to 100 g /cm3 and T =1000 to 4 000 000 K ). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic target implosions on OMEGA using the FPEOS table of CH have predicted ˜30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ˜5% reduction in implosion velocity that is caused by the ˜10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered light from ICF implosions.

  9. Aerosol Health Effects from Molecular to Global Scales.

    Science.gov (United States)

    Shiraiwa, Manabu; Ueda, Kayo; Pozzer, Andrea; Lammel, Gerhard; Kampf, Christopher J; Fushimi, Akihiro; Enami, Shinichi; Arangio, Andrea M; Fröhlich-Nowoisky, Janine; Fujitani, Yuji; Furuyama, Akiko; Lakey, Pascale S J; Lelieveld, Jos; Lucas, Kurt; Morino, Yu; Pöschl, Ulrich; Takahama, Satoshi; Takami, Akinori; Tong, Haijie; Weber, Bettina; Yoshino, Ayako; Sato, Kei

    2017-12-05

    Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.

  10. Energetic basis for the molecular-scale organization of bone

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jinhui; Battle, Keith C.; Pan, Haihua; Salter, E. Alan; Chien, Yung-Ching; Wierzbicki, Andrzej; De Yoreo, James J.

    2014-12-24

    The remarkable properties of bone derive from a highly organized arrangement of co-aligned nm-scale apatite platelets within a fibrillar collagen matrix. The origin of this arrangement is poorly understood and the crystal structures of hydroxyapatite (HAP) and the non-mineralized collagen fibrils alone do not provide an explanation. Moreover, little is known about collagen-apatite interaction energies, which should strongly influence both the molecular-scale organization and the resulting mechanical properties of the composite. We investigated collagen-mineral interactions by combining dynamic force spectroscopy (DFS) measurements of binding energies with molecular dynamics (MD) simulations of binding and AFM observations of collagen adsorption on single crystals of calcium phosphate for four mineral phases of potential importance in bone formation. In all cases, we observe a strong preferential orientation of collagen binding, but comparison between the observed orientations and TEM analyses native tissues shows only calcium-deficient apatite (CDAP) provides an interface with collagen that is consistent with both. MD simulations predict preferred collagen orientations that agree with observations and results from both MD and DFS reveal large values for the binding energy due to multiple binding sites. These findings reconcile apparent contradictions inherent in a hydroxyapatite or carbonated apatite (CAP) model of bone mineral and provide an energetic rationale for the molecular scale organization of bone.

  11. First principles calculation of material properties of group IV elements and III-V compounds

    Science.gov (United States)

    Malone, Brad Dean

    This thesis presents first principles calculations on the properties of group IV elements and group III-V compounds. It includes investigations into what structure a material is likely to form in, and given that structure, what are its electronic, optical, and lattice dynamical properties as well as what are the properties of defects that might be introduced into the sample. The thesis is divided as follows: • Chapter 1 contains some of the conceptual foundations used in the present work. These involve the major approximations which allow us to approach the problem of systems with huge numbers of interacting electrons and atomic cores. • Then, in Chapter 2, we discuss one of the major limitations to the DFT formalism introduced in Chapter 1, namely its inability to predict the quasiparticle spectra of materials and in particular the band gap of a semiconductor. We introduce a Green's function approach to the electron self-energy Sigma known as the GW approximation and use it to compute the quasiparticle band structures of a number of group IV and III-V semiconductors. • In Chapter 3 we present a first-principles study of a number of high-pressure metastable phases of Si with tetrahedral bonding. The phases studied include all experimentally determined phases that result from decompression from the metallic beta-Sn phase, specifically the BC8 (Si-III), hexagonal diamond (Si-IV), and R8 (Si-XII). In addition to these, we also study the hypothetical ST12 structure found upon decompression from beta-Sn in germanium. • Our attention is then turned to the first principles calculations of optical properties in Chapter 4. The Bethe-Salpeter equation is then solved to obtain the optical spectrum of this material including electron-hole interactions. The calculated optical spectrum is compared with experimental data for other forms of silicon commonly used in photovoltaic devices, namely the cubic, polycrystalline, and amorphous forms. • In Chapter 5 we present

  12. AELAS: Automatic ELAStic property derivations via high-throughput first-principles computation

    Science.gov (United States)

    Zhang, S. H.; Zhang, R. F.

    2017-11-01

    The elastic properties are fundamental and important for crystalline materials as they relate to other mechanical properties, various thermodynamic qualities as well as some critical physical properties. However, a complete set of experimentally determined elastic properties is only available for a small subset of known materials, and an automatic scheme for the derivations of elastic properties that is adapted to high-throughput computation is much demanding. In this paper, we present the AELAS code, an automated program for calculating second-order elastic constants of both two-dimensional and three-dimensional single crystal materials with any symmetry, which is designed mainly for high-throughput first-principles computation. Other derivations of general elastic properties such as Young's, bulk and shear moduli as well as Poisson's ratio of polycrystal materials, Pugh ratio, Cauchy pressure, elastic anisotropy and elastic stability criterion, are also implemented in this code. The implementation of the code has been critically validated by a lot of evaluations and tests on a broad class of materials including two-dimensional and three-dimensional materials, providing its efficiency and capability for high-throughput screening of specific materials with targeted mechanical properties. Program Files doi:http://dx.doi.org/10.17632/f8fwg4j9tw.1 Licensing provisions: BSD 3-Clause Programming language: Fortran Nature of problem: To automate the calculations of second-order elastic constants and the derivations of other elastic properties for two-dimensional and three-dimensional materials with any symmetry via high-throughput first-principles computation. Solution method: The space-group number is firstly determined by the SPGLIB code [1] and the structure is then redefined to unit cell with IEEE-format [2]. Secondly, based on the determined space group number, a set of distortion modes is automatically specified and the distorted structure files are generated

  13. Adsorption mechanism of H2O molecule on the Li4SiO4 (0 1 0) surface from first principles

    Science.gov (United States)

    Kong, Xianggang; Yu, You; Ma, Shenggui; Gao, Tao; Xiao, Chengjian; Chen, Xiaojun

    2018-01-01

    The adsorption and dissociation behaviors of molecular H2O on the Li4SiO4 (0 1 0) surface have been systematically studied by first-principles calculations. It is found that the adsorbed H2O molecule mainly interacts with the O and Li atoms of the surface, that is, H atom bonds with O atoms of the surface while O atom bonds with the surface Li atoms due to the hydrogen bond effect. According to the different adsorption energies and vibrational frequencies of H2O, different adsorption types can be classified. These results may explain the origin of multiple desorption peaks in TDS experiments.

  14. Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Libo; Zhou, Gang, E-mail: gzhou@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2016-04-14

    The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO{sub 2} is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximate to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.

  15. Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation

    Science.gov (United States)

    Dri, Fernando L.; Shang, ShunLi; Hector, Louis G., Jr.; Saxe, Paul; Liu, Zi-Kui; Moon, Robert J.; Zavattieri, Pablo D.

    2014-12-01

    Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500 K) of the monoclinic cellulose Iβ lattice parameters, constant pressure heat capacity, Cp, entropy, S, enthalpy, H, the linear thermal expansion components, ξi, and components of the isentropic and isothermal (single crystal) elastic stiffness matrices, CijS (T) and CijT (T) , respectively. Thermodynamic quantities from phonon calculations computed with DFT and the supercell method provided necessary inputs to compute the temperature dependence of cellulose Iβ properties via the quasi-harmonic approach. The notable exceptions were the thermal conductivity components, λi (the prediction of which has proven to be problematic for insulators using DFT) for which the reverse, non-equilibrium molecular dynamics approach with a force field was applied. The extent to which anisotropy of Young's modulus and Poisson's ratio is temperature-dependent was explored in terms of the variations of each with respect to crystallographic directions and preferred planes containing specific bonding characteristics (as revealed quantitatively from phonon force constants for each atomic pair, and qualitatively from charge density difference contours). Comparisons of the predicted quantities with available experimental data revealed reasonable agreement up to 500 K. Computed properties were interpreted in terms of the cellulose Iβ structure and bonding interactions.

  16. A First-Principles Study of the Interaction of Aspirin with Nitrogen-Doped TiO2 Anatase Nanoparticles

    Directory of Open Access Journals (Sweden)

    Amirali Abbasi

    2016-10-01

    Full Text Available Objective(s: First-principles calculations have been carried out to investigate the interaction of aspirin molecule with nitrogen-doped TiO2 anatase nanoparticles using the density functional theory method in order to fully exploit the biosensing capabilities of TiO2 particles. Methods: For this purpose, we have mainly studied the adsorption of the aspirin molecule on the fivefold coordinated titanium atom site of the TiO2 nanoparticles because of the more reactivity of this site in comparison with the other sits. The complex systems consisting of the aspirin molecule positioned toward the undoped and nitrogen-doped nanoparticles have been relaxed geometrically. Results: The obtained results include structural parameters such as bond lengths and energetic of the systems. The electronic structure and its variations resulting from the adsorption process, including the density of states, molecular orbitals and the Mulliken charge transfer analysis have been discussed. We found that the adsorption of aspirin molecule on the nitrogen-doped TiO2 nanoparticles is energetically more favorable than the adsorption on the undoped ones. Conclusions: These results thus provide a theoretical basis and overall understanding on the interaction of TiO2 nanoparticles with aspirin molecule for applications in modeling of efficient nanomedicine carriers, biosensors and drug delivery purposes.

  17. First-principles study of the Pd–Si system and Pd(001)/SiC(001) hetero-structure

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P.E.A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ivashchenko, V.I. [National Academy of Sciences of Ukraine (NASU), Kiev (Ukraine)

    2014-11-01

    First-principles molecular dynamics simulations of the Pd(001)/3C–SiC(001) nano-layered structure were carried out at different temperatures ranging from 300 to 2100 K. Various PdSi (Pnma, Fm3m, P6m2, Pm3m), Pd2Si (P6⁻2m, P63/mmc, P3m1, P3⁻1m) and Pd3Si (Pnma, P6322, Pm3m, I4/mmm) structures under pressure were studied to identify the structure of the Pd/Si and Pd/C interfaces in the Pd/SiC systems at high temperatures. It was found that a large atomic mixing at the Pd/Si interface occurred at 1500–1800 K, whereas the Pd/C interface remained sharp even at the highest temperature of 2100 K. At the Pd/C interface, voids and a graphite-like clustering were detected. Palladium and silicon atoms interact at the Pd/Si interface to mostly form C22-Pd2Si and D011-Pd3Si fragments, in agreement with experiment.

  18. Cooperative Magnetism in Crystalline N-Aryl-Substituted Verdazyl Radicals: First-Principles Predictions and Experimental Results.

    Science.gov (United States)

    Eusterwiemann, Steffen; Dresselhaus, Thomas; Doerenkamp, Carsten; Janka, Oliver; Niehaus, Oliver; Massolle, Anja; Daniliuc, Constantin G; Eckert, Hellmut; Pöttgen, Rainer; Neugebauer, Johannes; Studer, Armido

    2017-05-02

    We report on a series of eight diaryl-6-oxo-verdazyl radicals containing a tert-butyl group at the C(3) position with regard to their crystal structure and magnetic properties by means of magnetic susceptibility measurements in combination with quantum chemical calculations using a first-principles bottom-up approach. The latter method allows for a qualitative prediction and detailed analysis of the correlation between the solid-state architecture and magnetic properties. Although the perturbation in the molecular structure by varying the substituent on the N-aryl ring may appear small, the effects upon the structural parameters controlling intermolecular magnetic coupling interactions are strong, resulting in a wide spectrum of cooperative magnetic behavior. The non-substituted 1,5-diphenyl-tert-butyl-6-oxo-verdazyl radical features a ferromagnetic one-dimensional spin ladder type magnetic network-an extremely rarely observed phenomenon for verdazyl radicals. By varying substituents at the phenyl group, different non-isostructural compounds were obtained with widely different magnetic motifs ranging from linear and zigzag one-dimensional chains to potentially two-dimensional networks, from which we predict magnetic susceptibility data that are in qualitative agreement with experiments and reveal a large sensitivity to packing effects of the molecules. The present study advances the fundamental understanding between solid-state structure and magnetism in organically based radical systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications.

    Science.gov (United States)

    Hermann, Jan; DiStasio, Robert A; Tkatchenko, Alexandre

    2017-03-22

    Noncovalent van der Waals (vdW) or dispersion forces are ubiquitous in nature and influence the structure, stability, dynamics, and function of molecules and materials throughout chemistry, biology, physics, and materials science. These forces are quantum mechanical in origin and arise from electrostatic interactions between fluctuations in the electronic charge density. Here, we explore the conceptual and mathematical ingredients required for an exact treatment of vdW interactions, and present a systematic and unified framework for classifying the current first-principles vdW methods based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem (namely the Rutgers-Chalmers vdW-DF, Vydrov-Van Voorhis (VV), exchange-hole dipole moment (XDM), Tkatchenko-Scheffler (TS), many-body dispersion (MBD), and random-phase approximation (RPA) approaches). Particular attention is paid to the intriguing nature of many-body vdW interactions, whose fundamental relevance has recently been highlighted in several landmark experiments. The performance of these models in predicting binding energetics as well as structural, electronic, and thermodynamic properties is connected with the theoretical concepts and provides a numerical summary of the state-of-the-art in the field. We conclude with a roadmap of the conceptual, methodological, practical, and numerical challenges that remain in obtaining a universally applicable and truly predictive vdW method for realistic molecular systems and materials.

  20. Surface structures of L10-MnGa (001) by scanning tunneling microscopy and first-principles theory

    Science.gov (United States)

    Corbett, J. P.; Guerrero-Sanchez, J.; Richard, A. L.; Ingram, D. C.; Takeuchi, N.; Smith, A. R.

    2017-11-01

    We report on the surface reconstructions of L10-ordered MnGa (001) thin films grown by molecular beam epitaxy on a 50 nm Mn3N2 (001) layer freshly grown on a magnesium oxide (001) substrate. Scanning tunneling microscopy, Auger electron spectroscopy, and reflection high energy electron diffraction are combined with first-principles density functional theory calculations to determine the reconstructions of the L10-ordered MnGa (001) surface. We find two lowest energy reconstructions of the MnGa (001) face: a 1 × 1 Ga-terminated structure and a 1 × 2 structure with a Mn replacing a Ga in the 1 × 1 Ga-terminated surface. The 1 × 2 reconstruction forms a row structure along [100]. The manganese:gallium stoichiometry within the surface based on theoretical modeling is in good agreement with experiment. Magnetic moment calculations for the two lowest energy structures reveal important surface and bulk effects leading to oscillatory total magnetization for ultra-thin MnGa (001) films.

  1. Optoelectronic and magnetic properties of Mn-doped indium tin oxide: A first-principles study

    Science.gov (United States)

    Nath Tripathi, Madhvendra; Saeed Bahramy, Mohammad; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-10-01

    The manganese doped indium tin oxide (ITO) has integrated magnetics, electronics, and optical properties for next generation multifunctional devices. Our first-principles density functional theory (DFT) calculations show that the manganese atom replaces b-site indium atom, located at the second coordination shell of the interstitial oxygen in ITO. It is also found that both anti-ferromagnetic and ferromagnetic behaviors are realizable. The calculated magnetic moment of 3.95μB/Mn as well as the high transmittance of ˜80% for a 150 nm thin film of Mn doped ITO is in good agreement with the experimental data. The inclusion of on-site Coulomb repulsion corrections via DFT + U methods turns out to improve the optical behavior of the system. The optical behaviors of this system reveal its suitability for the magneto-opto-electronic applications.

  2. First principles design of a core bioenergetic transmembrane electron-transfer protein.

    Science.gov (United States)

    Goparaju, Geetha; Fry, Bryan A; Chobot, Sarah E; Wiedman, Gregory; Moser, Christopher C; Leslie Dutton, P; Discher, Bohdana M

    2016-05-01

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. First-principles study of the alkali earth metal atoms adsorption on graphene

    Science.gov (United States)

    Sun, Minglei; Tang, Wencheng; Ren, Qingqiang; Wang, Sake; JinYu; Du, Yanhui; Zhang, Yajun

    2015-11-01

    Geometries, electronic structures, and magnetic properties for alkali earth metal atoms absorbed graphene have been studied by first-principle calculations. For Be and Mg atoms, the interactions between the adatom and graphene are weak van der Waals interactions. In comparison, Ca, Sr and Ba atoms adsorption on graphene exhibits strong ionic bonding with graphene. We found that these atoms bond to graphene at the hollow site with a significant binding energy and large electron transfer. It is intriguing that these adatoms may induce important changes in both the electronic and magnetic properties of graphene. Semimetal graphene becomes metallic and magnetic due to n-type doping. Detailed analysis shows that the s orbitals of these adatoms should be responsible for the arising of the magnetic moment. We believe that our results are suitable for experimental exploration and useful for graphene-based nanoelectronic and data storage.

  4. Atomic bonding and electrical potential at metal/oxide interfaces, a first principle study

    Science.gov (United States)

    Tea, Eric; Huang, Jianqiu; Li, Guanchen; Hin, Celine

    2017-03-01

    A number of electronic devices involve metal/oxide interfaces in their structure where the oxide layer plays the role of electrical insulator. As the downscaling of devices continues, the oxide thickness can spread over only a few atomic layers, making the role of interfaces prominent on its insulating properties. The prototypical Al/SiO2 metal/oxide interface is investigated using first principle calculations, and the effect of the interfacial atomic bonding is evidenced. It is shown that the interface bonding configuration critically dictates the mechanical and electronic properties of the interface. Oxygen atoms are found to better delimit the oxide boundaries than cations. Interfacial cation-metal bonds allow the metal potential to leak inside the oxide layer, without atomic diffusion, leading to a virtual oxide thinning.

  5. Thermodynamic description of the Al-Cu-Yb ternary system supported by first-principles calculations

    Directory of Open Access Journals (Sweden)

    Huang G.

    2016-01-01

    Full Text Available Phase relationships of the ternary Al-Cu-Yb system have been assessed using a combination of CALPHAD method and first principles calculations. A self-consistent thermodynamic parameter was established based on the experimental and theoretical information. Most of the binary intermetallic phases, except Al3Yb, Al2Yb, Cu2Yb and Cu5Yb, were assumed to be zero solubility in the ternary system. Based on the experimental data, eight ternary intermetallic compounds were taken into consideration in this system. Among them, three were treated as line compounds with large homogeneity ranges for Al and Cu. The others were treated as stoichiometric compounds. The calculated phase diagrams were in agreement with available experimental and theoretical data.

  6. First-principles studies of the optical properties of carbon nanohoops

    Science.gov (United States)

    Bhattacharjee, Joydeep; Neaton, Jeffrey B.

    2009-03-01

    First proposed 70 years ago, cycloparaphenylenes -- cyclic aromatic molecules that are the shortest possible segment of an armchair nanotube -- have been only recently synthesized [1]. Using first-principles density functional theory and a Bethe-Salpter equation approach, we study structural, electronic, and optical properties of this novel class of materials, coined ``carbon nanohoops.'' Remarkably, we find, in agreement with experiments, that smaller hoops have smaller optical absorption gaps. This counterintuitive trend, opposite to that expected from ordinary quantum confinement, reflects a large increase in electron-hole interaction strength with decreasing hoop diameter. The diameter dependence of this interaction is thoroughly explored for several nanohoops, compared with an acyclic series, and discussed in the context of possible applications. [1] R. Jasti, J. Bhattacharjee, J. B. Neaton, and C. R.Bertozzi, submitted (2008).

  7. Lithium halide monolayers: Structural, electronic and optical properties by first principles study

    Science.gov (United States)

    Safari, Mandana; Maskaneh, Pegah; Moghadam, Atousa Dashti; Jalilian, Jaafar

    2016-09-01

    Using first principle study, we investigate the structural, electronic and optical properties of lithium halide monolayers (LiF, LiCl, LiBr). In contrast to graphene and other graphene-like structures that form hexagonal rings in plane, these compounds can form and stabilize in cubic shape interestingly. The type of band structure in these insulators is identified as indirect type and ionic nature of their bonds are illustrated as well. The optical properties demonstrate extremely transparent feature for them as a result of wide band gap in the visible range; also their electron transitions are indicated for achieving a better vision on the absorption mechanism in these kinds of monolayers.

  8. Establishing the limits of efficiency of perovskite solar cells from first principles modeling

    Science.gov (United States)

    Grånäs, Oscar; Vinichenko, Dmitry; Kaxiras, Efthimios

    2016-11-01

    The recent surge in research on metal-halide-perovskite solar cells has led to a seven-fold increase of efficiency, from ~3% in early devices to over 22% in research prototypes. Oft-cited reasons for this increase are: (i) a carrier diffusion length reaching hundreds of microns; (ii) a low exciton binding energy; and (iii) a high optical absorption coefficient. These hybrid organic-inorganic materials span a large chemical space with the perovskite structure. Here, using first-principles calculations and thermodynamic modelling, we establish that, given the range of band-gaps of the metal-halide-perovskites, the theoretical maximum efficiency limit is in the range of ~25-27%. Our conclusions are based on the effect of level alignment between the perovskite absorber layer and carrier-transporting materials on the performance of the solar cell as a whole. Our results provide a useful framework for experimental searches toward more efficient devices.

  9. Machine Learning methods in fitting first-principles total energies for substitutionally disordered solid

    Science.gov (United States)

    Gao, Qin; Yao, Sanxi; Widom, Michael

    2015-03-01

    Density functional theory (DFT) provides an accurate and first-principles description of solid structures and total energies. However, it is highly time-consuming to calculate structures with hundreds of atoms in the unit cell and almost not possible to calculate thousands of atoms. We apply and adapt machine learning algorithms, including compressive sensing, support vector regression and artificial neural networks to fit the DFT total energies of substitutionally disordered boron carbide. The nonparametric kernel method is also included in our models. Our fitted total energy model reproduces the DFT energies with prediction error of around 1 meV/atom. The assumptions of these machine learning models and applications of the fitted total energies will also be discussed. Financial support from McWilliams Fellowship and the ONR-MURI under the Grant No. N00014-11-1-0678 is gratefully acknowledged.

  10. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-03-01

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. These results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  11. First-principles study of coronene adsorption on hexagonal boron nitride substrate

    Science.gov (United States)

    Nishida, Yasutaka; Yoshida, Takashi; Ifuku, Ryota; Sakai, Tadashi

    2017-10-01

    The adsorption energy of coronene on hexagonal boron nitride (h-BN) substrate has been calculated using the first-principles calculation with van der Waals interaction. As a benchmark for validating our computational calculations, the adsorption energy of coronene on graphene was also calculated. Our calculations indicate that the adsorption energy of the AB-stacked configuration of coronene on h-BN, where N-atom is located below the center of coronene, is slightly larger than the adsorption energy of that on graphene substrate, and consequently the AB-stacked coronene on h-BN can be pinned to a specific in-plane rotation angle at room temperature. A simple explanation of the stable coronene configuration is provided in terms of the repulsive interaction with substrates.

  12. Stability and Strength of Atomically Thin Borophene from First Principles Calculations

    CERN Document Server

    Peng, Bo; Shao, Hezhu; Ning, Zeyu; Xu, Yuanfeng; Lu, Hongliang; Zhang, David Wei; Zhu, Heyuan

    2016-01-01

    A new two-dimensional (2D) material, borophene (2D boron sheet), has been grown successfully recently on single crystal Ag substrates by two parallel experiments [Mannix \\textit{et al., Science}, 2015, \\textbf{350}, 1513] [Feng \\textit{et al., Nature Chemistry}, 2016, \\textbf{advance online publication}]. Three main structures have been proposed ($\\beta_{12}$, $\\chi_3$ and striped borophene). However, the stability of three structures is still in debate. Using first principles calculations, we examine the dynamical, thermodynamical and mechanical stability of $\\beta_{12}$, $\\chi_3$ and striped borophene. Free-standing $\\beta_{12}$ and $\\chi_3$ borophene is dynamically, thermodynamically, and mechanically stable, while striped borophene is dynamically and thermodynamically unstable due to high stiffness along $a$ direction. The origin of high stiffness and high instability in striped borophene along $a$ direction can both be attributed to strong directional bonding. This work provides a benchmark for examining...

  13. First-principles study of the electrical and lattice thermal transport in monolayer and bilayer graphene

    Science.gov (United States)

    D'Souza, Ransell; Mukherjee, Sugata

    2017-02-01

    We report the transport properties of monolayer and bilayer graphene from first-principles calculations and Boltzmann transport theory (BTE). Our resistivity studies on monolayer graphene show Bloch-Grüneisen behavior in a certain range of chemical potentials. By substituting boron nitride in place of a carbon dimer of graphene, we predict a twofold increase in the Seebeck coefficient. A similar increase in the Seebeck coefficient for bilayer graphene under the influence of a small electric field ˜0.3 eV has been observed in our calculations. Graphene with impurities shows a systematic decrease of electrical conductivity and mobility. We have also calculated the lattice thermal conductivities of monolayer graphene and bilayer graphene using phonon BTE which show excellent agreement with experimental data available in the temperature range 300-700 K.

  14. Novel phases of lithium-aluminum binaries from first-principles structural search.

    Science.gov (United States)

    Sarmiento-Pérez, Rafael; Cerqueira, Tiago F T; Valencia-Jaime, Irais; Amsler, Maximilian; Goedecker, Stefan; Romero, Aldo H; Botti, Silvana; Marques, Miguel A L

    2015-01-14

    Intermetallic Li-Al compounds are on the one hand key materials for light-weight engineering, and on the other hand, they have been proposed for high-capacity electrodes for Li batteries. We determine from first-principles the phase diagram of Li-Al binary crystals using the minima hopping structural prediction method. Beside reproducing the experimentally reported phases (LiAl, Li3Al2, Li9Al4, LiAl3, and Li2Al), we unveil a structural variety larger than expected by discovering six unreported binary phases likely to be thermodynamically stable. Finally, we discuss the behavior of the elastic constants and of the electric potential profile of all Li-Al stable compounds as a function of their stoichiometry.

  15. Polytypism in ZnS, ZnSe, and ZnTe: First-principles study

    KAUST Repository

    Boutaiba, F.

    2014-06-23

    We report results of first-principles calculations based on the projector augmented wave (PAW) method to explore the structural, thermodynamic, and electronic properties of cubic (3C) and hexagonal (6H, 4H, and 2H) polytypes of II-VI compounds: ZnS, ZnSe, and ZnTe. We find that the different bond stacking in II-VI polytypes remarkably influences the resulting physical properties. Furthermore, the degree of hexagonality is found to be useful to understand both the ground-state properties and the electronic structure of these compounds. The resulting lattice parameters, energetic stability, and characteristic band energies are in good agreement with available experimental data. Trends with hexagonality of the polytype are investigated.

  16. First principles DFT investigation of yttrium-doped graphene: Electronic structure and hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Desnavi, Sameerah, E-mail: sameerah-desnavi@zhcet.ac.in [Department of Electronic Engineering, ZHCET, Aligarh Muslim University, Aligarh-202002 (India); Chakraborty, Brahmananda; Ramaniah, Lavanya M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    The electronic structure and hydrogen storage capability of Yttrium-doped grapheme has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site of the hexagonal ring with a binding energy of 1.40 eV. Doping by Y makes the system metallic and magnetic with a magnetic moment of 2.11 μ{sub B}. Y decorated graphene can adsorb up to four hydrogen molecules with an average binding energy of 0.415 eV. All the hydrogen atoms are physisorbed with an average desorption temperature of 530.44 K. The Y atoms can be placed only in alternate hexagons, which imply a wt% of 6.17, close to the DoE criterion for hydrogen storage materials. Thus, this system is potential hydrogen storage medium with 100% recycling capability.

  17. First-principles investigation of high pressure Pbca phase of carbon mononitride

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qun, E-mail: weiaqun@163.com [School of Physics and Optoelectronic Engineering, Xidian University, 710071 Xi' an (China); Zhang, Meiguang [Department of Physics and Information Technology, Baoji University of Arts and Sciences, 721016 Baoji (China); Yan, Haiyan [College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, 721013 Baoji (China)

    2016-09-16

    A theoretical investigations on the stability, mechanical and electronic properties of Pbca-CN was performed by using first principle calculations. According to our calculations, Pbca-CN exhibits a large elastic anisotropy. The further mechanical calculations demonstrated that Pbca-CN shows high elastic moduli. Young's modulus of Pbca-CN is found to reach a maximum along [001] direction and a minimum along [100] direction. The ideal tensile and shear strength at large strains of Pbca-CN are also examined. The ideal shear strength along the weakest (100)[010] slip system is about 20 GPa, which shows Pbca-CN is not an intrinsic superhard material. - Highlights: • Pbca-CN is stable up to at least 100 GPa. • Pbca-CN exhibits a large elastic anisotropy. • Pbca-CN is an ultra-incompressible material. • The ideal strength calculations show that Pbca-CN is not an intrinsic superhard material.

  18. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui

    2013-07-17

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  19. First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals

    KAUST Repository

    Mei, Jun

    2012-07-24

    By using the k•p method, we propose a first-principles theory to study the linear dispersions in phononic and photonic crystals. The theory reveals that only those linear dispersions created by doubly degenerate states can be described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of -π. Linear dispersions created by triply degenerate states cannot be mapped into the Dirac Hamiltonian and carry no Berry phase, and, therefore should be called Dirac-like cones. Our theory is capable of predicting accurately the linear slopes of Dirac and Dirac-like cones at various symmetry points in a Brillouin zone, independent of frequency and lattice structure. © 2012 American Physical Society.

  20. Electronic structure of carbon doped boron nitride nanotubes: a first-principles study.

    Science.gov (United States)

    Kahaly, Mousumi Upadhyay; Waghmare, Umesh V

    2008-08-01

    We determine atomic and electronic structures of arm-chair and zigzag boron nitride nanotubes (BN-NTs) of different diameters using first-principles pseudopotential-based density functional theory calculations. We find that the structure of BN-NTs in bundled form is slightly different from that of the isolated BN-NTs, reflecting on the inter-tube interactions. Effects of carbon doping on the electronic structure of (5,5) and (5,0) BN-NTs are determined: carbon substitution either at B-site, being energetically very stable, or at N-site can yield magnetically polarized semiconducting state, whereas carbon substitution at neighbouring B and N sites yields a non-magnetic insulating structure.

  1. Theoretical characterization of layered silica nanostructures from first-principles prediction

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongcai; Xi, Zexiao; Zhao, Mingwen, E-mail: zmw@sdu.edu.cn

    2014-10-03

    Using first-principles calculations, we study the structural, mechanical and electronic properties of the layered silica nanostructures built on base of silica bilayers consisting of four- and six-membered Si–O ring (4 MR and 6 MR) units. These silica nanostructures have high stability and good flexibility comparable to graphene and can serve as a promising precursor for the fabrication of well-ordered silica nanotubes. The porous structure and wide band gap of the silica nanomaterials may find applications in gas separation, slow-release microcapsules, and catalyst supports. - Highlights: • SiO{sub 2} nanosheets with four and six Si–O rings have high stability and good feasibility. • SiO{sub 2} nanotubes can be formed by rolling up SiO{sub 2} nanosheet with low strain energy. • Both SiO{sub 2} nanosheets and nanotubes are insulators independent of chirality.

  2. Solute/impurity diffusivities in bcc Fe: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chong [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Fu, Jie; Li, Ruihuan [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Zhang, Pengbo [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Zhao, Jijun, E-mail: zhaojj@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Dong, Chuang [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2014-12-15

    Chinese low activation martensitic steel (CLAM) has been designed with decreased W content and increased Ta content to improve performance. We performed first-principles calculations to investigate the diffusion properties of solute element (Cr, W, Mn, V, Ta) and C diffusion with a nearby solute element inside bcc Fe. The self-diffusion coefficients and solute diffusion coefficients in Fe host were derived using the nine-frequency model. A relatively lower diffusivity was observed for W in paramagnetic state, implying enriched W concentration inside Fe host. The solute atom interacts strongly with C impurity, depending on the interatomic distance. According to our calculations, formation of Ta carbide precipitates is energetically preferred by trapping C impurity around Ta atom. Our theoretical results are helpful for investigating the evolution of microstructure of steels for engineering applications.

  3. Phase transition and electronic properties of SbI3: First-principles calculations

    Science.gov (United States)

    Sun, Xiao-Xiao; Li, Cong; Hou, Qing-Yu; Zhang, Yue

    2017-06-01

    We have performed the first-principles pseudopotential calculations to investigate the structural phase transition and electronic properties of SbI3 considering several possible phases as a function of pressure from 0 GPa to 100 GPa. Our calculations show that this material undertakes a structural transformation from the R-3 phase to high-pressure P21/c phase at about 6.5 GPa with a relative volume collapse of 4.3%. We also have investigated the elastic properties and energy band structure of SbI3 under hydrostatic pressure. The calculation suggests that the R-3 phase is a semiconductor with an indirect band gap of about 2.16 eV at 0 Gpa. Under the influence of pressure, we have found that high-pressure P21/c phase has transformed to metal at about 55 GPa.

  4. First-Principles Study of Lithium and Sodium Atoms Intercalation in Fluorinated Graphite

    Directory of Open Access Journals (Sweden)

    Fengya Rao

    2015-06-01

    Full Text Available The structure evolution of fluorinated graphite (CFx upon the Li/Na intercalation has been studied by first-principles calculations. The Li/Na adsorption on single CF layer and intercalated into bulk CF have been calculated. The better cycling performance of Na intercalation into the CF cathode, comparing to that of Li intercalation, is attributed to the different strength and characteristics of the Li-F and Na-F interactions. The interactions between Li and F are stronger and more localized than those between Na and F. The strong and localized Coulomb attraction between Li and F atoms breaks the C−F bonds and pulls the F atoms away, and graphene sheets are formed upon Li intercalation.

  5. First-principles calculations on thermodynamic properties of BaTiO3 rhombohedral phase.

    Science.gov (United States)

    Bandura, Andrei V; Evarestov, Robert A

    2012-07-05

    The calculations based on the linear combination of atomic orbitals have been performed for the low-temperature phase of BaTiO(3) crystal. Structural and electronic properties, as well as phonon frequencies were obtained using hybrid PBE0 exchange-correlation functional. The calculated frequencies and total energies at different volumes have been used to determine the equation of state and thermal contribution to the Helmholtz free energy within the quasiharmonic approximation. For the first time, the bulk modulus, volume thermal expansion coefficient, heat capacity, and Grüneisen parameters in BaTiO(3) rhombohedral phase have been estimated at zero pressure and temperatures form 0 to 200 K, based on the results of first-principles calculations. Empirical equation has been proposed to reproduce the temperature dependence of the calculated quantities. The agreement between the theoretical and experimental thermodynamic properties was found to be satisfactory. Copyright © 2012 Wiley Periodicals, Inc.

  6. Nonlinear Elasticity of Borocarbide Superconductor YNi2B2C: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2017-01-01

    Full Text Available First-principles calculations combined with homogeneous deformation methods are used to investigate the second- and third-order elastic constants of YNi2B2C with tetragonal structure. The predicted lattice constants and second-order elastic constants of YNi2B2C agree well with the available data. The effective second-order elastic constants are obtained from the second- and third-order elastic constants for YNi2B2C. Based on the effective second-order elastic constants, Pugh’s modulus ratio, Poisson’s ratio, and Vickers hardness of YNi2B2C under high pressure are further investigated. It is shown that the ductility of YNi2B2C increases with increasing pressure.

  7. Discovery of Novel Oxides Using Machine Learning and First-Principles Calculations

    Science.gov (United States)

    Emery, Antoine; Ward, Logan; Wolverton, Chris

    Oxide materials are used for a variety of technologically relevant applications such as solid oxide fuel cell, water splitting and transparent conductors. Up until now, mostly binary and simple ternary oxides have been carefully synthesized and characterized. As a result, there are opportunities to discover new, more complex and more efficient materials for numerous applications. As the number of possible compounds is prohibitively large to explore entirely experimentally or via first-principles calculations, we use machine learning to reduce the number of compositions to be calculated via more costly methods such as density functional theory (DFT). We show that this approach reduces significantly the time spent calculating unstable compounds, allowing the exploration of larger structures and wider chemical spaces. The machine learning-aided DFT approach presented in this work also showcases a reliable framework enabling the acceleration of materials discovery.

  8. First-principles determination of the Raman fingerprint of rhombohedral graphite

    Science.gov (United States)

    Torche, Abderrezak; Mauri, Francesco; Charlier, Jean-Christophe; Calandra, Matteo

    2017-09-01

    Multilayer graphene with rhombohedral stacking is a promising carbon phase possibly displaying correlated states like magnetism or superconductivity due to the occurrence of a flat surface band at the Fermi level. Recently, flakes of thickness up to 17 layers were tentatively attributed to ABC sequences although the Raman fingerprint of rhombohedral multilayer graphene is currently unknown and the 2D resonant Raman spectrum of Bernal graphite is not understood. We provide a first principles description of the 2D Raman peak in three and four layers graphene (all stackings) as well as in Bernal, rhombohedral, and an alternation of Bernal and rhombohedral graphite. We give practical prescriptions to identify long range sequences of ABC multilayer graphene. Our work is a prerequisite to experimental nondestructive identification and synthesis of rhombohedral graphite.

  9. Tailoring graphene magnetism by zigzag triangular holes: A first-principles thermodynamics study

    Directory of Open Access Journals (Sweden)

    Muhammad Ejaz Khan

    2016-03-01

    Full Text Available We discuss the thermodynamic stability and magnetic property of zigzag triangular holes (ZTHs in graphene based on the results of first-principles density functional theory calculations. We find that ZTHs with hydrogen-passivated edges in mixed sp2/sp3 configurations (z211 could be readily available at experimental thermodynamic conditions, but ZTHs with 100% sp2 hydrogen-passivation (z1 could be limitedly available at high temperature and ultra-high vacuum conditions. Graphene magnetization near the ZTHs strongly depends on the type and the size of the triangles. While metallic z1 ZTHs exhibit characteristic edge magnetism due to the same-sublattice engineering, semiconducting z211 ZTHs do show characteristic corner magnetism when the size is small <2 nm. Our findings could be useful for experimentally tailoring metal-free carbon magnetism by simply fabricating triangular holes in graphene.

  10. The Interface between Gd and Monolayer MoS2: A First-Principles Study

    KAUST Repository

    Zhang, Xuejing

    2014-12-08

    We analyze the electronic structure of interfaces between two-, four- and six-layer Gd(0001) and monolayer MoS2 by first-principles calculations. Strong chemical bonds shift the Fermi energy of MoS2 upwards into the conduction band. At the surface and interface the Gd f states shift to lower energy and new surface/interface Gd d states appear at the Fermi energy, which are strongly hybridized with the Mo 4d states and thus lead to a high spin-polarization (ferromagnetically ordered Mo magnetic moments of 0.15 μB). Gd therefore is an interesting candidate for spin injection into monolayer MoS2.

  11. Electronic structure, lattice energies and Born exponents for alkali halides from first principles

    Directory of Open Access Journals (Sweden)

    C. R. Gopikrishnan

    2012-03-01

    Full Text Available First principles calculations based on DFT have been performed on crystals of halides (X = F, Cl, Br and I of alkali metals (M = Li, Na, K, Rb and Cs. The calculated lattice energies (U0 are in good agreement with the experimental lattice enthalpies. A new exact formalism is proposed to determine the Born exponent (n for ionic solids. The values of the Born exponent calculated through this ab-initio technique is in good agreement with previous empirically derived results. Band Structure calculations reveal that these compounds are wide-gap insulators that explains their optical transparency. Projected density of states (PDOS calculations reveal that alkali halides with small cations and large anions, have small band gaps due to charge transfer from X → M. This explains the onset of covalency in ionic solids, which is popularly known as the Fajans Rule.

  12. Elastic stability and optical property under pressure of TiN phases: by first principles study

    Science.gov (United States)

    Eslam, Farzaneh Ghafari; Boochani, Arash; Babaeipour, Manuchehr; Khodadadi, Jabbar

    2017-11-01

    The electronic and optical properties of the rock-salt, CsCl-type, zinc-blende and wurtzite phases of TiN have been calculated by First-Principles study for relaxed and under pressure conditions. Calculations are based on the density functional theory and full potential augmented plane waves method by Generalized Gradient Approximation. The optical transitions in zero pressure are derived from the density of states and dielectric function. In addition, various optical characters, such as reflectivity, refraction and extinction indices, under positive and negative pressures are compared and contrasted. It is found that all mentioned phases of TiN are elastically stable and exhibit a rising trend in their plasmonic frequencies by increasing the pressure imposed on.

  13. Effect of hydrostatic pressure on structural and electronic properties of TGS crystals (first-principle calculations

    Directory of Open Access Journals (Sweden)

    B.Andriyevsky

    2007-01-01

    Full Text Available First principle calculations of the effect of hydrostatic pressure on the structural and electronic parameters of TGS crystals have been carried out within the framework of density functional theory using the CASTEP code. The volume dependence of total electronic energy E(V of the crystal unit cell satisfies the third-order Birch-Murnaghan isothermal equation of state. For the pressure range of -5...5 GPa, the bulk modulus was found to be equal to K=45 ± 5 GPa. The relative pressure changes of the unit cell parameters were found to be linear in the range of -5...5 GPa. Crossing of the pressure dependencies of enthalpy corresponding to the ferroelectric and non-ferroelectric phases at P=7.7 GPa testifies to the probable pressure induced phase transition in TGS crystal.

  14. Vacancy Ordering In Co3AlCx Alloys: A First Principles Study

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chao [Los Alamos National Laboratory

    2008-01-01

    Ordering of structural vacancies in non-stoichiometric Co{sub 3}AlC{sub x} alloys has been studied using a combination of first-principles total energy calculations, a cluster expansion technique, and Monte-Carlo simulations. In the proximity of the experimental1y observed composition of x {approx} 0.59, our exhaustive ground state search yields two stable vacancy-ordered structures: a cubic Co{sub 3}AlC{sub 0.5} phase and a trigonal Co{sub 3}AlC{sub 0.667} phase. By performing finite-temperature Monte-Carlo simulations, the order-disorder transition temperatures of Co{sub 3}AlC{sub 0.5} and CO{sub 3}AlC{sub 0.667} are predicted to be {approx}1925K and {approx}1630K, respectively.

  15. First-principles study of Co3(Al,W) alloys using special quasirandom structures

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chao [Los Alamos National Laboratory

    2008-01-01

    We have developed 32-atom special quasi-random structures (SQSs) to model the substitutionally random pseudo-binary A3(B0.5C0.5) alloys in L12, D019, and D03 crystal structures, respectively. First-principles SQS calculations are performed to examine the phase stability of the recently identified L12-Co3Al0.5W0.5 compound in the Co-Al-W ternary system. By computing total energy as a function of applied strain, the single-crystal elastic constants of L12-Co3Al0.5W0.5 are also predicted and our results show excellent agreement with recent experimental measurements.

  16. Jump rates for surface diffusion of large molecules from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2015-04-21

    We apply a recently developed stochastic model for the surface diffusion of large molecules to calculate jump rates for 9,10-dithioanthracene on a Cu(111) surface. The necessary input parameters for the stochastic model are calculated from first principles using density functional theory (DFT). We find that the inclusion of van der Waals corrections to the DFT energies is critical to obtain good agreement with experimental results for the adsorption geometry and energy barrier for diffusion. The predictions for jump rates in our model are in excellent agreement with measured values and show a marked improvement over transition state theory (TST). We find that the jump rate prefactor is reduced by an order of magnitude from the TST estimate due to frictional damping resulting from energy exchange with surface phonons, as well as a rotational mode of the diffusing molecule.

  17. Electronic properties of tantalum pentoxide polymorphs from first-principles calculations

    Science.gov (United States)

    Lee, J.; Lu, W.; Kioupakis, E.

    2014-11-01

    Tantalum pentoxide (Ta2O5) is extensively studied for its attractive properties in dielectric films, anti-reflection coatings, and resistive switching memory. Although various crystalline structures of tantalum pentoxide have been reported, its structural, electronic, and optical properties still remain a subject of research. We investigate the electronic and optical properties of crystalline and amorphous Ta2O5 structures using first-principles calculations based on density functional theory and the GW method. The calculated band gaps of the crystalline structures are too small to explain the experimental measurements, but the amorphous structure exhibits a strong exciton binding energy and an optical band gap (˜4 eV) in agreement with experiment. We determine the atomic orbitals that constitute the conduction band for each polymorph and analyze the dependence of the band gap on the atomic geometry. Our results establish the connection between the underlying structure and the electronic and optical properties of Ta2O5.

  18. Energy band modulation of graphane by hydrogen-vacancy chains: A first-principles study

    Directory of Open Access Journals (Sweden)

    Bi-Ru Wu

    2014-08-01

    Full Text Available We investigated a variety of configurations of hydrogen-vacancy chains in graphane by first-principles density functional calculation. We found that graphane with two zigzag H-vacancy chains segregated by one or more H chain is generally a nonmagnetic conductor or has a negligible band gap. However, the same structure is turned into a semiconductor and generates a magnetic moment if either one or both of the vacancy chains are blocked by isolated H atoms. If H-vacancy chains are continuously distributed, the structure is similar to a zigzag graphene nanoribbon embedded in graphane. It was also found that the embedded zigzag graphene nanoribbon is antiferromagnetic, and isolated H atoms left in the 2-chain nanoribbon can tune the band gap and generate net magnetic moments. Similar effects are also obtained if bare carbon atoms are present outside the nanoribbon. These results are useful for designing graphene-based nanoelectronic circuits.

  19. First-principles study of gas adsorption on γ-graphyne

    Science.gov (United States)

    Zhang, Peng; Song, Quan; Zhuang, Jun; Ning, Xi-Jing

    2017-12-01

    Inspired by recent successes in the development of graphene-based gas sensors capable of single gas molecule detection, we investigate the adsorption of gas molecules (NO, NO2, NH3, CO, SO2 and H2S) on γ-graphyne which has an energy gap of 0.49 eV via first-principle calculations. The results show that the adsorption of NO (or NO2) at an adsorption density of above 2% (or 4%) can change the graphyne from semiconductor to semimetal or metal, while the other molecules have little effect on the energy gap, suggesting that γ-graphyne can be used as sensitive sensor for selectively detecting NO2 or NO molecules.

  20. Theoretical prediction of novel two-dimensional planar aluminum nitride allotropes: first principles calculations

    Science.gov (United States)

    Kazempour, Behnam; Safari, E. Keshavarz; Rostami, R.

    2018-03-01

    This paper uses first principles calculations based on density functional theory to predict the possibility or ability to synthesize two-dimensional planar allotropes of aluminum nitride, as well as study their structural and electronic properties. The investigated systems include six allotropes in which the atoms of aluminum and nitrogen participate in chemical bonds with sp 2 and sp 1 + sp 2 hybridization. After the structural relaxation, all these allotropes—despite being less stable than the graphene-like aluminum nitride allotrope—still retain their original structure. The degree of structural stability of these allotropes depends on the hybridization of the constituent atoms and the number density of atoms per unit cell. Regardless of the structure type and the hybridization of the atoms, all these allotropes are semiconductors; however, the amount and type of energy gap varies for different structures.

  1. First Principles Study of Electronic and Magnetic Properties of Co-Doped Armchair Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Biao Li

    2015-01-01

    Full Text Available Using the first principles calculations, we have studied the atomic and electronic structures of single Co atom incorporated with divacancy in armchair graphene nanoribbon (AGNR. Our calculated results show that the Co atom embedded in AGNR gives rise to significant impacts on the band structures and the FM spin configuration is the ground state. The presence of the Co doping could introduce magnetic properties. The calculated results revealed the arising of spin gapless semiconductor characteristics with doping near the edge in both ferromagnetic (FM and antiferromagnetic (AFM magnetic configurations, suggesting the robustness for potential application of spintronics. Moreover, the electronic structures of the Co-doped AGNRs are strongly dependent on the doping sites and the edge configurations.

  2. Enhanced superconductivity by strain and carrier-doping in borophene: A first principles prediction

    Science.gov (United States)

    Xiao, R. C.; Shao, D. F.; Lu, W. J.; Lv, H. Y.; Li, J. Y.; Sun, Y. P.

    2016-09-01

    By first principles calculations, we predict that the recently prepared borophene is a pristine two-dimensional monolayer superconductor in which the superconductivity can be significantly enhanced by strain and charge carrier doping. The intrinsic metallic ground state with high density of states at Fermi energy and strong Fermi surface nesting lead to sizeable electron-phonon coupling, making the freestanding borophene superconduct with Tc close to 19.0 K. The tensile strain can increase the Tc to 27.4 K, while the hole doping can notably increase Tc to 34.8 K. The results indicate that the borophene grown on substrates with large lattice parameters or under photoexcitation can show enhanced superconductivity with Tc far above the liquid hydrogen temperature of 20.3 K, which will largely broaden the applications of such promising material.

  3. First-Principles Study on the Stability and STM Image of Borophene

    Science.gov (United States)

    Luo, Zhifen; Fan, Xiaoli; An, Yurong

    2017-08-01

    Very recently, borophene (atomic-thin two-dimensional boron sheet) has been successfully synthesized on the Ag(111) surface by deposition. Two kinds of structures were found. However, the identification of the monolayer boron sheets grown on the metal substrate, as well as the stability of different 2D boron sheets, is controversial. By performing the first-principles calculations, present study investigates the atomic structure, stability, and electronic properties of the most possible boron sheets grown on metal surface, namely, buckled triangular, β12, and χ3 types of crystal lattice. Our result shows that all the three freestanding sheets are thermodynamically unstable and all are metallic. On the other hand, our result indicates the Ag(111) substrate stabilize these sheets. Additionally, our simulated STM images of these monoatomic-thin boron sheets on Ag(111) surface reproduce the experiment observations well and clearly identify the as-grown boron sheets.

  4. Exploring the charge localization and band gap opening of borophene: a first-principles study.

    Science.gov (United States)

    Kistanov, Andrey A; Cai, Yongqing; Zhou, Kun; Srikanth, Narasimalu; Dmitriev, Sergey V; Zhang, Yong-Wei

    2018-01-18

    Recently synthesized two-dimensional (2D) boron, borophene, exhibits a novel metallic behavior rooted in the s-p orbital hybridization, distinctively different from other 2D materials such as sulfides/selenides and semi-metallic graphene. This unique feature of borophene implies new routes for charge delocalization and band gap opening. Herein, using first-principles calculations, we explore the routes to localize the carriers and open the band gap of borophene via chemical functionalization, ribbon construction, and defect engineering. The metallicity of borophene is found to be remarkably robust against H- and F-functionalization and the presence of vacancies. Interestingly, a strong odd-even oscillation of the electronic structure with width is revealed for H-functionalized borophene nanoribbons, while an ultra-high work function (∼7.83 eV) is found for the F-functionalized borophene due to its strong charge transfer to the atomic adsorbates.

  5. Elastic constants and thermophysical properties of Al-Mg-Si alloys from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fenglian; Guo, Fei; Chen, Hongmei; Tao, Xiaoma [Ministry of Education, Guangxi Univ., Nanning (China). Key Lab. of New Processing Technology for Nonferrous Metals and Materials; Ouyang, Yifang [Ministry of Education, Guangxi Univ., Nanning (China). Key Lab. of New Processing Technology for Nonferrous Metals and Materials; Central South Univ., Changsha (China). State Key Lab. of Powder Metallurgy; Feng, Yuanping [National Univ. of Singapore (Singapore). Dept. of Physics; Du, Yong [Central South Univ., Changsha (China). State Key Lab. of Powder Metallurgy

    2010-11-15

    The lattice constants and elastic constants for Al-Mg-Si alloys have been calculated by using first-principles total energy calculations within the generalized gradient approximation. The calculated results are in good agreement with available experimental and theoretical results. The polycrystalline shear modulus, Young's modulus and Poisson's ratio are also estimated from the calculated single crystalline elastic constants. The Young's modulus and shear modulus increase following the precipitation sequence in Al-Mg-Si. The Debye sound velocity, Debye temperature, Grueneisen constant, heat capacity and linear coefficients of thermal expansion are predicted for the considered Al-Mg-Si alloys based on the Debye-Grueneisen model. The calculated values of Mg{sub 2}Si agree well with the previous experimental and theoretical results. (orig.)

  6. Near-infrared radiation absorption properties of covellite (CuS using first-principles calculations

    Directory of Open Access Journals (Sweden)

    Lihua Xiao

    2016-08-01

    Full Text Available First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR absorption of covellite (CuS. The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS as a NIR absorbing material. Our results show that covellite (CuS exhibits NIR absorption due to its metal-like plasma oscillation in the NIR range.

  7. First-principle Studies on Ferromagnetism of Fe-doped AlN Diluted Magnetic Semiconductors

    Directory of Open Access Journals (Sweden)

    Honglei WU

    2016-11-01

    Full Text Available We have studied the electronic structures and magnetic properties of Fe-doped AlN by first-principles calculations within density functional theory. The calculated results show that AlN crystals doped by double Fe atoms display ferromagnetic properties, and the total magnetic moment is 10.0 µB per 72-atom supercell (3 × 3 × 2. The calculated energy differences between the antiferromagnetic (AFM and ferromagnetic (FM phases are 207 meV, which means FM state is a stable state. It is also found that the 3d-states of Fe dopants and the 2p-states of N atoms bonding to Fe dopants are the main contributors to the density of states at the Fermi level.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.10750

  8. Nanoparticle shapes by using Wulff constructions and first-principles calculations

    Directory of Open Access Journals (Sweden)

    Georgios D. Barmparis

    2015-02-01

    Full Text Available Background: The majority of complex and advanced materials contain nanoparticles. The properties of these materials depend crucially on the size and shape of these nanoparticles. Wulff construction offers a simple method of predicting the equilibrium shape of nanoparticles given the surface energies of the material.Results: We review the mathematical formulation and the main applications of Wulff construction during the last two decades. We then focus to three recent extensions: active sites of metal nanoparticles for heterogeneous catalysis, ligand-protected nanoparticles generated as colloidal suspensions and nanoparticles of complex metal hydrides for hydrogen storage.Conclusion: Wulff construction, in particular when linked to first-principles calculations, is a powerful tool for the analysis and prediction of the shapes of nanoparticles and tailor the properties of shape-inducing species.

  9. Real-time capable first principle based modelling of tokamak turbulent transport

    CERN Document Server

    Breton, S; Felici, F; Imbeaux, F; Aniel, T; Artaud, J F; Baiocchi, B; Bourdelle, C; Camenen, Y; Garcia, J

    2015-01-01

    A real-time capable core turbulence tokamak transport model is developed. This model is constructed from the regularized nonlinear regression of quasilinear gyrokinetic transport code output. The regression is performed with a multilayer perceptron neural network. The transport code input for the neural network training set consists of five dimensions, and is limited to adiabatic electrons. The neural network model successfully reproduces transport fluxes predicted by the original quasilinear model, while gaining five orders of magnitude in computation time. The model is implemented in a real-time capable tokamak simulator, and simulates a 300s ITER discharge in 10s. This proof-of-principle for regression based transport models anticipates a significant widening of input space dimensionality and physics realism for future training sets. This aims to provide unprecedented computational speed coupled with first-principle based physics for real-time control and integrated modelling applications.

  10. Properties of half-Heusler compounds TaIrGe by using first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wei, JunHong [Henan Normal University, College of Physics and Information Engineering, Xinxiang, Henan (China); Henan Institute of Science and Technology, School of Mechanical and Electrical Engineering, Xinxiang, Henan (China); Wang, Guangtao [Henan Normal University, College of Physics and Information Engineering, Xinxiang, Henan (China)

    2017-05-15

    The electronic structures, optical and thermoelectric properties of ternary half-Heusler compound TaIrGe were investigated by using the first-principles and Boltzmann transport theory. Spin-orbit coupling (SOC) removed the degeneracy of VBM, and then decreased the Seebeck coefficients and power factor. From the compressive to tensile strain, the band gap gradually increases from 0.96 to 1.11 eV, accompanied by the absorption coefficient peak red-shift. The effective mass (m{sup *}{sub DOS}) of VBM and CBM gradually increases from the compressive to tensile strain, which enhances the Seebeck coefficient and power factor. Our results indicate that the electronic structures, optical and thermoelectric properties of TaIrGe can be effectively tuned by the strain and TaIrGe can be used as an important photoelectric and thermoelectric material in the future. (orig.)

  11. Dissolution, diffusion and permeation behavior of hydrogen in vanadium: a first-principles investigation.

    Science.gov (United States)

    Luo, Jian; Zhou, Hong-Bo; Liu, Yue-Lin; Gui, Li-Jiang; Jin, Shuo; Zhang, Ying; Lu, Guang-Hong

    2011-04-06

    Employing a first-principles method, we have studied the stability, diffusivity, and permeation properties of hydrogen (H) and its isotopes in bcc vanadium (V). A single H atom is found to favor the tetrahedral interstitial site (TIS) in V. The charge density distribution exhibits a strong interaction between H and its neighbor V atoms. Analysis of DOS and Bader charge reveals that the occupation number of H-induced low energy states is directly associated with the stability of H in V. Further, H is shown to diffuse between the neighboring TISs with a diffusion barrier of 0.07 eV. Diffusion coefficients and permeabilities of H isotopes in V are estimated with empirical theory. At a typical temperature of 800 K, the diffusion coefficient and the permeability of H are 2.48 × 10(-4) cm(2) s(-1) and 2.19 × 10(-9) mol m(-1) s(-1) Pa(- 1/2), respectively.

  12. Electronic and optical properties of new multifunctional materials via half-substituted hematite: First principles calculations

    KAUST Repository

    Yang, Hua

    2012-01-01

    Electronic structure and optical properties of α-FeMO 3 systems (M = Sc, Ti, V, Cr, Cu, Cd or In) have been investigated using first principles calculations. All of the FeMO 3 systems have a large net magnetic moment. The ground state of pure α-Fe 2O 3 is an antiferromagnetic insulator. For M = Cu or Cd, the systems are half-metallic. Strong absorption in the visible region can be observed in the Cu and Cd-doped systems. Systems with M = Sc, Ti, V, Cr or In are not half-metallic and are insulators. The strongest peaks shift toward shorter wavelengths in the absorption spectra. It is concluded that transition metal doping can modify the electronic structure and optical properties of α-FeMO 3 systems. This journal is © 2012 The Royal Society of Chemistry.

  13. Quantum Chemistry of Solids The LCAO First Principles Treatment of Crystals

    CERN Document Server

    Evarestov, Robert A

    2007-01-01

    Quantum Chemistry of Solids delivers a comprehensive account of the main features and possibilities of LCAO methods for the first principles calculations of electronic structure of periodic systems. The first part describes the basic theory underlying the LCAO methods applied to periodic systems and the use of wave-function-based (Hartree-Fock), density-based (DFT) and hybrid hamiltonians. The translation and site symmetry consideration is included to establish connection between k-space solid-state physics and real-space quantum chemistry methods in the framework of cyclic model of an infinite crystal. The inclusion of electron correlation effects for periodic systems is considered on the basis of localized crystalline orbitals. The possibilities of LCAO methods for chemical bonding analysis in periodic systems are discussed. The second part deals with the applications of LCAO methods for calculations of bulk crystal properties, including magnetic ordering and crystal structure optimization. The discussion o...

  14. First-principles study of thermoelectric transport properties of monolayer gallium chalcogenides

    Science.gov (United States)

    Ge, Xu-Jin; Qin, Dan; Yao, Kai-Lun; Lü, Jing-Tao

    2017-10-01

    Through first-principles calculations, we study the thermoelectric transport properties of monolayer gallium chalcogenides GaX with X being S, Se or Te. We show that, the Mexican-hat-shaped dispersion near the valence band maximum, absent in the bulk, effectively enhances their thermoelectric performance. We analyze these results using a simple model Hamiltonian, and show that it can be understood as an effective one-dimensional band structure emerging from these two-dimensional materials. These results support recent proposals of using low-dimensional electronic band in high-dimensional materials in the search of new high-performance thermoelectric materials. Moreover, for n-doping, we find that strain engineering could be an efficient way of tuning the position of conduction band minimum and the corresponding thermoelectric performance.

  15. First-principles calculation for point defects in Li2Ti2O4

    Science.gov (United States)

    Liu, Yuxiang; Lian, Jie; Yang, Xiulun; Zhao, Minglin; Shi, Yujun; Song, Haonan; Dai, Kai

    2017-10-01

    Based on the first-principles method, we theoretically investigate the effect of point defects on the electrical properties of Li2Ti2O4. The single Li vacancy (V Li), Ti vacancy (V Ti), O vacancy (V O), Li antisite (LiTi) and Ti antisite (TiLi) are inserted into Li2Ti2O4, respectively. Calculated electronic structures indicate that defects have an obvious influence on the Ti-O hybridization near the Fermi level. This hybridization plays a major role in the charging and discharging operation, so various defects can alter batteries’ average voltages and energy densities. These results provide practical guidance to develop Li2Ti2O4 used as batteries.

  16. Elasticity of iron-bearing olivine polymorphs investigated by first principles

    Science.gov (United States)

    Núñez Valdez, Maribel; Yu, Yonggang; Wentzcovitch, Renata

    2011-03-01

    We calculate by first principles the effect of iron on the high pressure-temperature elasticity of olivine polymorphs: α -phase (olivine), β -phase (wadsleyite) and γ -phase (ringwoodite), the major constituents of the Earth's upper mantle and transition zone (TZ). We combine the LDA, the quasiharmonic approximation, and a model vibrational density of states for the solid solution to calculate the full elastic tensor Cij , bulk (K) and shear (G) moduli of (Mg 0.875 Fe 0.125)2 Si O4 . Comparison with experimental data at ambient conditions validates our results. In the pressure and temperature range of the upper mantle and TZ we study single crystal wave propagation anisotropy and polarization anisotropy in aggregates with preferred orientation. Research supported by NSF EAR-1019853 and EAR-0810272. Computations were performed at the Minnesota Supercomputing Institute.

  17. First principles based proximity effect of superconductor-normal metal heterostructures.

    Science.gov (United States)

    Csire, Gábor; Cserti, József; Újfalussy, Balázs

    2016-12-14

    In this paper we study the proximity effect in superconductor-normal metal heterostructures based on first principles calculations with treating the pairing potential as an adjustable parameter. The superconducting order parameter (anomalous density) is obtained from the Green-function by solving the Kohn-Sham-Bogoliubov-de Gennes equations with the Screened Korringa-Kohn-Rostoker method. The results are interpreted for an Au/Nb(0 0 1) system. The layer resolved anomalous spectral function is also obtained which is closely related to the superconducting order parameter. We find that the anomalous spectral function has the fingerprint of the Andreev scattering process and it is connected to the electron-hole ratio of the quasiparticle states. We also show that the proximity effect can be understood via the anomalous spectral function.

  18. First-principles studies of HF molecule adsorption on intrinsic graphene and Al-doped graphene

    Science.gov (United States)

    Sun, Yuanyuan; Chen, Li; Zhang, Feiwu; Li, Daoyong; Pan, Hongzhe; Ye, Jun

    2010-10-01

    In the search for a high-sensitivity sensor for HF gas, the adsorption of HF molecules on both intrinsic and Al-doped graphene sheets is studied by first-principles calculations. We find that the adsorption mechanisms of HF molecules are different for intrinsic graphene and Al-doped graphene. Al-doped graphene has higher adsorption energy and shorter connecting distance to the HF molecule than intrinsic graphene. The calculated net electron transfers, electronic density difference images and densities of states give evidence that the adsorption of HF molecules on Al-doped graphene is by chemisorption, while there is weak physisorption on intrinsic graphene. Therefore, Al-doped graphene can be expected to have applications as a novel sensor for the detection of HF gas. The HF molecules adsorbed on Al-doped graphene material can be reactivated by applying an external electric field of 0.013 a.u.

  19. First principles study on the hydrophilic and conductive graphene doped with Al atoms.

    Science.gov (United States)

    Jiang, Q G; Ao, Z M; Jiang, Q

    2013-07-14

    The effect of the Al dopant on the dissociative adsorption of a H2O molecule on graphene is investigated using first principles calculations. It is found that doping Al into graphene can facilitate the dissociative adsorption of H2O molecules. The dissociative energy barrier is reduced from 3.609 eV on pristine graphene to 0.456 eV on Al-doped graphene and the reaction releases an energy of 0.413 eV, which indicates a smooth dissociative adsorption on Al-doped graphene at room temperature. In addition, the dissociative adsorption of H2O molecules can convert the Al-doped graphene from hydrophobic to hydrophilic while obtaining conductive graphene with doping concentration higher than 5.56%. This hydrophilic and conductive graphene has potential applications in supercapacitors and biomaterial supports.

  20. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures

    Science.gov (United States)

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-01

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m-2 K-1 which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices.This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the

  1. First-principles data-driven discovery of transition metal oxides for artificial photosynthesis

    Science.gov (United States)

    Yan, Qimin

    We develop a first-principles data-driven approach for rapid identification of transition metal oxide (TMO) light absorbers and photocatalysts for artificial photosynthesis using the Materials Project. Initially focusing on Cr, V, and Mn-based ternary TMOs in the database, we design a broadly-applicable multiple-layer screening workflow automating density functional theory (DFT) and hybrid functional calculations of bulk and surface electronic and magnetic structures. We further assess the electrochemical stability of TMOs in aqueous environments from computed Pourbaix diagrams. Several promising earth-abundant low band-gap TMO compounds with desirable band edge energies and electrochemical stability are identified by our computational efforts and then synergistically evaluated using high-throughput synthesis and photoelectrochemical screening techniques by our experimental collaborators at Caltech. Our joint theory-experiment effort has successfully identified new earth-abundant copper and manganese vanadate complex oxides that meet highly demanding requirements for photoanodes, substantially expanding the known space of such materials. By integrating theory and experiment, we validate our approach and develop important new insights into structure-property relationships for TMOs for oxygen evolution photocatalysts, paving the way for use of first-principles data-driven techniques in future applications. This work is supported by the Materials Project Predictive Modeling Center and the Joint Center for Artificial Photosynthesis through the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. Computational resources also provided by the Department of Energy through the National Energy Supercomputing Center.

  2. First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene

    Science.gov (United States)

    Gu, Xiaokun; Yang, Ronggui

    2015-01-01

    There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicene shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ˜10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides.

  3. First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Xiaokun; Yang, Ronggui, E-mail: Ronggui.Yang@Colorado.Edu [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2015-01-14

    There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicene shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ∼10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides.

  4. Prediction of A2BX4 metal-chalcogenide compounds via first-principles thermodynamics

    Science.gov (United States)

    Zhang, X.; Stevanović, V.; d'Avezac, M.; Lany, S.; Zunger, Alex

    2012-07-01

    Current compilations of previously documented inorganic compounds reveal a significant number of materials that are not listed. Focusing on the A2BX4 metal-chalcogenide group with A and B atoms being either main group elements or only one of them being a 3d transition metal, a total of 255 are reported, whereas 429 chemically reasonable A2BX4 are unreported. We have applied first-principles thermodynamics based on density functional methodology, predicting that about 100 of the 429 unreported A2BX4 metal-chalcogenides are likely to be stable. These include 14 oxides, 34 sulfides, 28 selenides, and 24 tellurides that are predicted here to be energetically stable with respect to decomposition into any combination of elemental, binary, and ternary competing phases. We provide the lowest-energy crystal structures of the predicted A2BX4 compounds, as well as the next few energetically higher metastable structures. Such predictions are carried out via direct first-principles calculations of candidate structure types and confirmed for a few compounds using the global space-group optimization (GSGO) search method. In some cases, uncommon oxidation states and/or coordination environments are found for elements in the stable A2BX4 compounds predicted here. We estimated the growth conditions in terms of temperature and partial pressure of the reactants from extensive thermodynamic stability analysis, and found dozens of compounds that might be grown at normal synthesis conditions. Attempts at synthesis of the stable A2BX4 compounds predicted here are called for.

  5. Atomic scale structures of interfaces between kaolinite edges and water

    NARCIS (Netherlands)

    Liu, X.; Lu, X.; Wang, R.; Meijer, E.J.; Zhou, H.; He, H.

    2012-01-01

    This paper reports the atomic scale structures of kaolinite edge surfaces in contact with water. The commonly occurring edge surfaces are investigated (i.e. (0 1 0) and (1 1 0)) by using first principles molecular dynamics (FPMD) technique. For (1 1 0)-type edge surface, there are two different

  6. First-Principles DFT Studies of the Vibrational Properties of Germanene Nanoflakes

    Science.gov (United States)

    Richardson, Steven; Peroparde, Borja; Andrade, Xavier; Aspuru-Guzik, AláN.

    The germanium analogue of graphene, germanene, is a potentially new atomically thin quantum material which theory predicts will possess unique transport and optoelectronic properties. Recently, there have been a number of experimental efforts to successfully grow two-dimensional films of germanene on noble metal substrates using molecular beam epitaxy. In addition to this top-down approach of synthesizing large scale films of germanene, we would like to focus on a bottom-up approach where nanoflakes of germanene could be used as molecular seeds or precursors to grow large films of two-dimensional germanene. A knowledge of their infrared and Raman spectra will be critical for characterizing these germanene nanoflakes in future experiments. In this work we used density-functional theory (DFT) to compute the vibrational spectra of a selected number of lower order germanene nanoflakes (e.g. hexagermabenzene, germa-naphthalene, germa-anthracene, germa-phenanthrene, germa-pyrene, germa-tetracene, and germa-pentacene). Our DFT studies also reveal that these germanene nanoflakes are vibrationally stable with buckling of these molecules from their normal two-dimensional planar forms which exist in graphene nanoflakes. This research is supported by NSF Grant No. DMR-1231319.

  7. First-Principles Investigation of Electronic Properties in Sodium-Ion Electrolytes for Solid-State Battery Materials

    Science.gov (United States)

    Rush, Larry E., Jr.

    This thesis mainly focuses on characterizing and understanding the electronic properties of sodium-ion electrolytes using first-principles calculations. The core of these calculations is built upon a functional understanding of the relationship between quantum mechanics and the crystalline geometries that contribute to unique properties of materials such as diffusion mechanisms of ions within solid-state materials, conductivity, and ground state structures. The goal of this body of work is to understand how this relationship can give us insight into materials that might have use in an emerging field within battery technology. Sodium-ion solid-state batteries are an auspicious technology because nature has provided us with widely distributed precursor materials in such a way that removes geopolitical constraints in its construction and distribution. This is extremely important to individuals (and a collection of individuals) who want to expedite the wide use of clean and renewable energy from a societal perspective. An example is Morocco's initiative to generate 52% of its total energy consumption from clean and renewable energy sources to eliminate dependencies on foreign countries to supply energy resources. Sodium-ion solid-state batteries are an inexpensive option for large-scale grid storage, so this could play a role in providing a cost-effective option for Morocco. The challenging part is to sift through the large chemical space of sodium-ion solid-state electrolytes to find optimal materials for battery technology, and that is what motivates this body of work.

  8. A first-principles polarized Raman method for determining whether a uniform region of a sample is crystalline or isotropic.

    Science.gov (United States)

    Weisman, Andrew L; DuBay, Kateri H; Willets, Katherine A; Friesner, Richard A

    2014-12-14

    Previous methods for determining whether a uniform region of a sample is crystalline or isotropic-what we call the "state of internal orientation" S-require a priori knowledge of properties of the purely crystalline and purely isotropic states. In addition, these methods can be ambiguous in their determination of state S for particular materials and, for a given material, the spectral methods can be ambiguous when using particular peaks. Using first-principles Raman theory, we have discovered a simple, non-resonance, polarized Raman method for determining the state S that requires no information a priori and will work unambiguously for any material using any vibrational mode. Similar to the concept behind "magic angle spinning" in NMR, we have found that for a special set of incident/analyzed polarizations and scattering angle, the dependence of the Raman modulation depth M on the sample composition-and, for crystalline regions, the unit cell orientation-falls out completely, leaving dependence on only whether the region is crystalline (M = 1) or isotropic (M = 0). Further, upon scanning between homogeneous regions or domains within a heterogeneous sample, our signal M is a clear detector of the region boundaries, so that when combined with methods for determining the orientations of the crystalline domains, our method can be used to completely characterize the molecular structure of an entire heterogeneous sample to a very high certainty. Interestingly, our method can also be used to determine when a given mode is vibrationally degenerate. While simulations on realistic terthiophene systems are included to illustrate our findings, our method should apply to any type of material, including thin films, molecular crystals, and semiconductors. Finally, our discovery of these relationships required derivations of Raman intensity formulas that are at least as general as any we have found, and herein we present our comprehensive formulas for both the crystalline and

  9. Parallel MicPIC for first-principle analysis of light-matter interactions in solids

    Science.gov (United States)

    Varin, Charles; Bart, Graeme; Peltz, Christian; Fennel, Thomas; Brabec, Thomas

    2014-05-01

    One of the main challenges in modeling laser-driven plasma physics is to properly resolve microscopic and macroscopic phenomena at the same time. For example, to resolve the propagation of a near-infrared pulse in a solid-density plasma, it is necessary to cover about four to five orders of magnitude in space--from Å to μm--to resolve both the atomic collision processes and light propagation. Here, traditional tools like molecular dynamics (MD) and particle-in-cell (PIC) fall short. With MD, light propagation is neglected. With PIC, microscopic interactions are limited to small-angle binary collisions, which restricts its use to the weakly coupled (low density) regime. To overcome the limitations of MD and PIC, we developed the MicPIC approach. It is actually being optimized for large-scale computations to effectively allow tracking 1010 particles with atomic-scale resolution, along with light propagation. Moreover, custom physical models are being integrated into MicPIC to include on the atomic level the different ionization channels (single and multiphoton ionization, tunnel ionization, and electron impact ionization) and the atomic polarization due to bound electrons. This promises new insight into the physics of strong-field light-matter interactions in solids.

  10. A self-consistent first-principle based approach to model carrier mobility in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Meded, Velimir; Friederich, Pascal; Symalla, Franz; Neumann, Tobias; Danilov, Denis; Wenzel, Wolfgang [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2015-12-31

    Transport through thin organic amorphous films, utilized in OLEDs and OPVs, has been a challenge to model by using ab-initio methods. Charge carrier mobility depends strongly on the disorder strength and reorganization energy, both of which are significantly affected by the details in environment of each molecule. Here we present a multi-scale approach to describe carrier mobility in which the materials morphology is generated using DEPOSIT, a Monte Carlo based atomistic simulation approach, or, alternatively by molecular dynamics calculations performed with GROMACS. From this morphology we extract the material specific hopping rates, as well as the on-site energies using a fully self-consistent embedding approach to compute the electronic structure parameters, which are then used in an analytic expression for the carrier mobility. We apply this strategy to compute the carrier mobility for a set of widely studied molecules and obtain good agreement between experiment and theory varying over several orders of magnitude in the mobility without any freely adjustable parameters. The work focuses on the quantum mechanical step of the multi-scale workflow, explains the concept along with the recently published workflow optimization, which combines density functional with semi-empirical tight binding approaches. This is followed by discussion on the analytic formula and its agreement with established percolation fits as well as kinetic Monte Carlo numerical approaches. Finally, we skatch an unified multi-disciplinary approach that integrates materials science simulation and high performance computing, developed within EU project MMM@HPC.

  11. First principles calculations for liquids and solids using maximally localized Wannier functions

    Science.gov (United States)

    Swartz, Charles W., VI

    The field of condensed matter computational physics has seen an explosion of applicability over the last 50+ years. Since the very first calculations with ENIAC and MANIAC the field has continued to pushed the boundaries of what is possible; from the first large-scale molecular dynamics simulation, to the implementation of Density Functional Theory and large scale Car-Parrinello molecular dynamics, to million-core turbulence calculations by Standford. These milestones represent not only technological advances but theoretical breakthroughs and algorithmic improvements as well. The work in this thesis was completed in the hopes of furthering such advancement, even by a small fraction. Here we will focus mainly on the calculation of electronic and structural properties of solids and liquids, where we shall implement a wide range of novel approaches that are both computational efficient and physically enlightening. To this end we routinely will work with maximally localized Wannier functions (MLWFs) which have recently seen a revival in mainstream scientific literature. MLWFs present us with interesting opportunity to calculate a localized orbital within the planewave formalism of atomistic simulations. Such a localization will prove to be invaluable in the construction of layer-based superlattice models, linear scaling hybrid functional schemes and model quasiparticle calculations. In the first application of MLWF we will look at modeling functional piezoelectricity in superlattices. Based on the locality principle of insulating superlattices, we apply the method of Wu et al to the piezoelectric strains of individual layers under iifixed displacement field. For a superlattice of arbitrary stacking sequence an accurate model is acquired for predicting piezoelectricity. By applying the model in the superlattices where ferroelectric and antiferrodistortive modes are in competition, functional piezoelectricity can be achieved. A strong nonlinear effect is observed and can

  12. Structure-property relationships of curved aromatic materials from first principles.

    Science.gov (United States)

    Zoppi, Laura; Martin-Samos, Layla; Baldridge, Kim K

    2014-11-18

    CONSPECTUS: Considerable effort in the past decade has been extended toward achieving computationally affordable theoretical methods for accurate prediction of the structure and properties of materials. Theoretical predictions of solids began decades ago, but only recently have solid-state quantum techniques become sufficiently reliable to be routinely chosen for investigation of solids as quantum chemistry techniques are for isolated molecules. Of great interest are ab initio predictive theories for solids that can provide atomic scale insights into properties of bulk materials, interfaces, and nanostructures. Adaption of the quantum chemical framework is challenging in that no single theory exists that provides prediction of all observables for every material type. However, through a combination of interdisciplinary efforts, a richly textured and substantive portfolio of methods is developing, which promise quantitative predictions of materials and device properties as well as associated performance analysis. Particularly relevant for device applications are organic semiconductors (OSC), with electrical conductivity between that of insulators and that of metals. Semiconducting small molecules, such as aromatic hydrocarbons, tend to have high polarizabilities, small band-gaps, and delocalized π electrons that support mobile charge carriers. Most importantly, the special nature of optical excitations in the form of a bound electron-hole pairs (excitons) holds significant promise for use in devices, such as organic light emitting diodes (OLEDs), organic photovoltaics (OPVs), and molecular nanojunctions. Added morphological features, such as curvature in aromatic hydrocarbon structure, can further confine the electronic states in one or more directions leading to additional physical phenomena in materials. Such structures offer exploration of a wealth of phenomenology as a function of their environment, particularly due to the ability to tune their electronic

  13. Probing single nanometer-scale pores with polymeric molecular rulers

    Science.gov (United States)

    Henrickson, Sarah E.; DiMarzio, Edmund A.; Wang, Qian; Stanford, Vincent M.; Kasianowicz, John J.

    2010-04-01

    We previously demonstrated that individual molecules of single-stranded DNA can be driven electrophoretically through a single Staphylococcus aureus α-hemolysin ion channel. Polynucleotides thread through the channel as extended chains and the polymer-induced ionic current blockades exhibit stable modes during the interactions. We show here that polynucleotides can be used to probe structural features of the α-hemolysin channel itself. Specifically, both the pore length and channel aperture profile can be estimated. The results are consistent with the channel crystal structure and suggest that polymer-based "molecular rulers" may prove useful in deducing the structures of nanometer-scale pores in general.

  14. Theoretical studies of aluminum and aluminide alloys using CALPHAD and first-principles approach

    Science.gov (United States)

    Jiang, Chao

    Heat-treatable aluminum alloys have been widely used in the automobile and aerospace industries as structural materials due to their light weight and high strength. To study the age-hardening process in heat-treatable aluminum alloys, the Gibbs energies of the strengthening metastable phases, e.g. theta ' and theta″, are critical. However, those data are not included in the existing thermodynamic databases for aluminum alloys due to the semi-empirical nature of the CALPHAD approach. In the present study, the thermodynamics of the Al-Cu system, the pivotal age-hardening system, is remodeled using a combined CALPHAD and first-principles approach. The formation enthalpies and vibrational formation entropies of the stable and metastable phases in the Al-Cu system are provided by first-principles calculations. Special Quasirandom Structures (SQS's) are applied to model the substitutionally random fee and bee alloys. SQS's for binary bee alloys are developed and tested in the present study. Finally, a self-consistent thermodynamic description of the Al-Cu system including the two metastable theta″ and theta' phases is obtained. During welding of heat-treatable aluminum alloys, a detrimental phenomenon called constitutional liquation, i.e. the local eutectic melting of second-phase particles in a matrix at temperatures above the eutectic temperature but below the solidus of the alloy, may occur in the heat-affected zone (HAZ). In the present study, diffusion code DICTRA coupled with realistic thermodynamic and kinetic databases is used to simulate the constitutional liquation in the model Al-Cu system. The simulated results are in quantitative agreement with experiments. The critical heating rate to avoid constitutional liquation is also determined through computer simulations. Besides the heat-treatable aluminum alloys, intermetallic compounds based on transition metal aluminides, e.g. NiAl and FeAl, are also promising candidates for the next-generation of high

  15. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Michael I., E-mail: michael.i.mishchenko@nasa.gov [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Dlugach, Janna M. [Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Zabolotny Str., 03680, Kyiv (Ukraine); Yurkin, Maxim A. [Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, Institutskaya str. 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova 2, 630090 Novosibirsk (Russian Federation); Bi, Lei [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Cairns, Brian [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Liu, Li [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Columbia University, 2880 Broadway, New York, NY 10025 (United States); Panetta, R. Lee [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Travis, Larry D. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Yang, Ping [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Zakharova, Nadezhda T. [Trinnovim LLC, 2880 Broadway, New York, NY 10025 (United States)

    2016-05-16

    of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

  16. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.

    Science.gov (United States)

    Meng, Ying Shirley; Arroyo-de Dompablo, M Elena

    2013-05-21

    To meet the increasing demands of energy storage, particularly for transportation applications such as plug-in hybrid electric vehicles, researchers will need to develop improved lithium-ion battery electrode materials that exhibit high energy density, high power, better safety, and longer cycle life. The acceleration of materials discovery, synthesis, and optimization will benefit from the combination of both experimental and computational methods. First principles (ab Initio) computational methods have been widely used in materials science and can play an important role in accelerating the development and optimization of new energy storage materials. These methods can prescreen previously unknown compounds and can explain complex phenomena observed with these compounds. Intercalation compounds, where Li(+) ions insert into the host structure without causing significant rearrangement of the original structure, have served as the workhorse for lithium ion rechargeable battery electrodes. Intercalation compounds will also facilitate the development of new battery chemistries such as sodium-ion batteries. During the electrochemical discharge reaction process, the intercalating species travel from the negative to the positive electrode, driving the transition metal ion in the positive electrode to a lower oxidation state, which delivers useful current. Many materials properties change as a function of the intercalating species concentrations (at different state of charge). Therefore, researchers will need to understand and control these dynamic changes to optimize the electrochemical performance of the cell. In this Account, we focus on first-principles computational investigations toward understanding, controlling, and improving the intrinsic properties of five well known high energy density Li intercalation electrode materials: layered oxides (LiMO2), spinel oxides (LiM2O4), olivine phosphates (LiMPO4), silicates-Li2MSiO4, and the tavorite-LiM(XO4)F (M = 3d

  17. Dissolution, diffusion and permeation behavior of hydrogen in vanadium: a first-principles investigation

    Energy Technology Data Exchange (ETDEWEB)

    Luo Jian; Zhou Hongbo; Gui Lijiang; Jin Shuo; Zhang Ying; Lu Guanghong [Department of Physics, Beihang University, Beijing 100191 (China); Liu Yuelin, E-mail: LGH@buaa.edu.cn [Department of Physics, Yantai University, Yantai 264005 (China)

    2011-04-06

    Employing a first-principles method, we have studied the stability, diffusivity, and permeation properties of hydrogen (H) and its isotopes in bcc vanadium (V). A single H atom is found to favor the tetrahedral interstitial site (TIS) in V. The charge density distribution exhibits a strong interaction between H and its neighbor V atoms. Analysis of DOS and Bader charge reveals that the occupation number of H-induced low energy states is directly associated with the stability of H in V. Further, H is shown to diffuse between the neighboring TISs with a diffusion barrier of 0.07 eV. Diffusion coefficients and permeabilities of H isotopes in V are estimated with empirical theory. At a typical temperature of 800 K, the diffusion coefficient and the permeability of H are 2.48 x 10{sup -4} cm{sup 2} s{sup -1} and 2.19 x 10{sup -9} mol m{sup -1} s{sup -1} Pa{sup -1/2}, respectively.

  18. First-principles and model simulation of all-optical spin reversal

    Science.gov (United States)

    Zhang, G. P.; Babyak, Z.; Xue, Y.; Bai, Y. H.; George, Thomas F.

    2017-10-01

    All-optical spin switching is a potential trailblazer for information storage and communication at an unprecedented fast rate free of magnetic fields. However, the current wisdom is largely based on semiempirical models of effective magnetic fields and heat pulses, so it is difficult to provide high-speed design protocols for actual devices. Here, we carry out a massively parallel first-principles and model calculation for 13 spin systems and magnetic layers, free of any effective field, to establish a simpler and alternative paradigm of laser-induced ultrafast spin reversal and to point out a path to a full-integrated photospintronic device. It is the interplay of the optical selection rule and sublattice spin orderings that underlines seemingly irreconcilable helicity-dependent and -independent switchings. Using realistic experimental parameters, we predict that strong ferrimagnets, in particular, Laves phase C15 rare-earth alloys, meet the telecommunication energy requirement of 10 fJ, thus allowing a cost-effective subpicosecond laser to switch spin in the gigahertz region.

  19. First-principles calculations of BC{sub 4}N nanostructures: stability and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, A.; Azevedo, S. [Universidade Federal da Paraiba, CCEN, Departamento de Fisica, Joao Pessoa, PB (Brazil); Machado, M. [Universidade Federal de Pelotas, Departamento de Fisica, Pelotas, RS (Brazil); Kaschny, J.R. [Instituto Federal da Bahia-Campus Vitoria da Conquista, Vitoria da Conquista, BA (Brazil)

    2012-07-15

    In this work, we apply first-principles methods to investigate the stability and electronic structure of BC{sub 4}N nanostructures which were constructed from hexagonal graphite layers where substitutional nitrogen and boron atoms are placed at specific sites. These layers were rolled up to form zigzag and armchair nanotubes, with diameters varying from 7 to 12 A, or cut and bent to form nanocones, with 60 and 120 disclination angles. The calculation results indicate that the most stable structures are the ones which maximize the number of B-N and C-C bonds. It is found that the zigzag nanotubes are more stable than the armchair ones, where the strain energy decreases with increasing tube diameter D, following a 1/D {sup 2} law. The results show that the 60 disclination nanocones are the most stable ones. Additionally, the calculated electronic properties indicate a semiconducting behavior for all calculated structures, which is intermediate to the typical behaviors found for hexagonal boron nitride and graphene. (orig.)

  20. First-principles study on native point defects of cubic cuprite Ag2O

    Science.gov (United States)

    Yin, Yuan; Chen, Guangde; Duan, Xiangyang; Ye, Honggang; Jin, Wentao; Zhu, Youzhang; Wu, Yelong

    2016-12-01

    Using the first-principles calculations, we have systematically investigated the atomic configurations, electronic structures, formation energies and transition energies of native point defects in cuprite Ag2O. Under the conditions of Ag-rich, we find that the oxygen vacancy (VO) and the oxygen interstitial (Oi) have the lowest formation energies in p-type and n-type conditions, respectively. Silver vacancy (VAg) acts as a shallow acceptor, which has high formation energy in p-type sample. Oxygen anti-site (OAg) is the most stable state and acts as an acceptor-type point defect in the O-rich conditions. Ag interstitial (Agi) is a shallow donor, which can be formed easily in the Ag-rich conditions. Moreover, we study the band offsets of heterojunction between Ag2O in cuprite structure and ZnO, GaN, and AlN in the wurtzite structure. These results would provide guidance for the experimental studies of point defects in cuprite Ag2O.

  1. Conformational effects on hydrazine and OH coadsorption on Ni(111): A first-principles investigation

    Science.gov (United States)

    Agusta, Mohammad Kemal; Purwoko, Prasetiyo Hadi; Saputro, Adhitya Gandaryus; Fathurrahman, Fadjar; Dipojono, Hermawan K.; Diño, Wilson Agerico

    2017-10-01

    Using first-principles Density Functional Theory calculations, we investigated coadsorption of hydrazine (N2H4) and OH on Ni(111) surface. Two types of N2H4 conformations: anti and cis-conformer, with coadsorbed OH on several high symmetry sites on Ni(111) surface were studied. We found that coadsorption with cis-conformer N2H4 significantly modifies OH site preferences while such modification is less profound for coadsorption with anti-conformer N2H4. On the other way around, the cis-confomer N2H4 coadsorption becomes more stable due to the pressence of OH. We identified the electrostatic attractive dipole interaction between the coadsorbed species as the underlying mechanism for the stabilization. This electrostatic interaction is particularly strong for cis-conformer N2H4 due to its large dipole moment. We also found Nsbnd H bond elongation for cis-conformer N2H4 coadsorption with OH due to the interaction between accumulated charge in OH with the H atom of N2H4. Therefore, it can be inferred that coadsorption with OH promotes the dehydrogenation reaction of N2H4 via stabilization of cis-confomer N2H4.

  2. First-principles study of nanotubes within the tetragonal, hexagonal and dodecagonal cycle structures

    Science.gov (United States)

    BabaeiPour, M.; Safari, E. Keshavarz; Shokri, A. A.

    2017-02-01

    A systematic study has been done on the structural and electronic properties of carbon, boron nitride and aluminum nitride nanotubes with structure consisting of periodically distributed tetragonal (T ≡A2X2), hexagonal (H ≡A3X3) and dodecagonal (D ≡A6X6) (AX=C2, BN, AlN) cycles. The method has been performed using first-principles calculations based on density functional theory (DFT). The optimized lattice parameters, density of state (DOS) curves and band structure of THD-NTs are obtained for (3, 0) and (0, 2) types. Our calculation results indicate that carbon nanotubes of these types (THD-CNTs) behave as a metallic, but the boron nitride nanotubes (THD-BNNTs) (with a band gap of around 4 eV) as well as aluminum nitride nanotubes (THD-AlNNTs) (with a band gap of around 2.6 eV) behave as an semiconductor. The inequality in number of atoms in different directions is affected on structures and diameters of nanotubes and their walls curvature.

  3. Thermochemistry of imidazolium-based ionic liquids: experiment and first-principles calculations.

    Science.gov (United States)

    Verevkin, Sergey P; Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Heintz, Andreas; Muzny, Chris D; Frenkel, Michael

    2010-12-07

    In this work the molar enthalpy of formation of the ionic liquid 1-ethyl-3-methylimidazolium dicyanoamide in the gaseous phase [C(2)MIM][N(CN)(2)] was measured by means of combustion calorimetry and enthalpy of vaporization using transpiration. Available, but scarce, primary experimental results on enthalpies of formation of imidazolium based ionic liquids with the cation [C(n)MIM] (where n = 2 and 4) and anions [N(CN)(2)], [NO(3)] and [NTf(2)] were collected and checked for consistency using a group additivity procedure. First-principles calculations of the enthalpies of formation in the gaseous phase for the ionic liquids with the common cation [C(n)MIM] (where n = 2 and 4) and with the anions [N(CN)(2)], [NO(3)], [NTf(2)], [Cl], [BF(4)] and [PF(6)] have been performed using the G3MP2 theory. It has been established that the gaseous phase enthalpies of formation of these ionic liquids obey the group additivity rules.

  4. Possible martensitic transformation in Heusler alloy Mn{sub 2}PdSn from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L., E-mail: author.fenglin@tyut.edu.cn [Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Computational Condensed Matter Physics Laboratory, Department of Physics, Taiyuan University of Technology, Taiyuan 030024 (China); Feng, X. [Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Computational Condensed Matter Physics Laboratory, Department of Physics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, E.K.; Wang, W.H.; Wu, G.H. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, J.F.; Zhang, W.X. [Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Computational Condensed Matter Physics Laboratory, Department of Physics, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-12-01

    The tetragonal distortion, electronic structure and magnetic property of Mn{sub 2}PdSn have been systematically investigated by first-principles calculations. The results indicate that the total energy of tetragonal martensitic phase is lower than cubic austenitic phase for Mn{sub 2}PdSn. The corresponding c/a ratio and energy difference are 1.23 and 41.62 meV/f.u., respectively. This suggests that there is a great possibility for martensitic transformation to occur in Mn{sub 2}PdSn with temperature decreasing. The electronic structure shows that there are sharp DOS peaks originating from p–d hybridization in the vicinity of Fermi level in the cubic phase. And these peaks disappear or become more flat in the martensitic phase. - Highlights: • The martensitic transformation is prone to occur with temperature decreasing in Mn{sub 2}PdSn. • Electronic structure and magnetic property of Mn{sub 2}PdSn are investigated. • Both the austenitic and martensitic phases of Mn{sub 2}PdSn are ferrimagnetic.

  5. Mechanical, dynamical and thermodynamic properties of Al-3wt%Mg from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rong [Chongqing Jiaotong Univ., Chongqing (China). College of Materials Science and Engineering; Tang, Bin [Chongqing City Management College, Chongqing (China). Inst. of Finance and Trade; Gao, Tao [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics

    2017-09-01

    The mechanical, dynamical and thermodynamic properties of Al-3wt%Mg have been investigated using the first-principles method. The calculated structural parameter is in good agreement with previous works. Results for the elastic modulus, stress-strain relationships, ideal tensile and shear strengths are presented. Al-3wt%Mg is found to have larger moduli and higher strengths than Al, which is consistent with its exploitation in Al precipitate-hardening mechanisms. The partial density of states (PDOS) show that the partly covalent-like bonding through Al p-Mg s hybridization is the origin of excellent mechanical properties of Al-3wt%Mg. The phonon dispersion curves indicate that Al-3wt%Mg is dynamically stable at ambient pressure and 0 K. Furthermore, the Helmholtz free energy ΔF, the entropy S, the constant-volume specific heat C{sub V} and the phonon contribution to the internal energy ΔE are predicted using the phonon density of states. We expect that our work can provide useful guidance to help with the performance of Al-3wt%Mg.

  6. Influence of Re Concentration on the Mechanical Properties of Tungsten Borides from First-Principles Calculations

    Science.gov (United States)

    Pan, Yong; Lin, Yuanhua

    2017-10-01

    Tungsten borides are promising high-temperature materials. However, the structure and hardening mechanisms of tungsten boride are still great challenges. To solve the problems, we apply the first-principles method to study the structure of WB3 and explore the influence of alloying element Re on the mechanical properties of WB3. The calculated Vickers hardness of WB3 is 39.1 GPa. We further find that a low concentration of Re can improve the hardness of WB3, which is in good agreement with the experimental result. However, the hardness and elastic properties of WB3 decrease gradually with increasing Re concentration. The calculated results show that the structure and hardness of WB3 are attributed to the B-B hexagonal prism. A high concentration of Re weakens the charge interaction between the B-B atoms, and reduces the mechanical properties of WB3. Therefore, we can adjust the alloy concentration to improve the Vickers hardness of transition metal borides.

  7. Intrinsic point defects in inorganic perovskite CsPbI3 from first-principles prediction

    Science.gov (United States)

    Li, Yifan; Zhang, Chenhui; Zhang, Xixiang; Huang, Dan; Shen, Qian; Cheng, Yingchun; Huang, Wei

    2017-10-01

    Cubic inorganic perovskite CsPbI3 is a direct bandgap semiconductor, which is promising for optoelectronic applications, such as solar cells, light emitting diodes, and lasers. The intrinsic defects in semiconductors play crucial roles in determining carrier conductivity, the efficiency of carrier recombination, and so on. However, the thermodynamic stability and intrinsic defect physics are still unclear for cubic CsPbI3. By using the first-principles calculations, we study the thermodynamic process and find out that the window for CsPbI3 growth is quite narrow and the concentration of Cs is important for cubic CsPbI3 growth. Under Pb-rich conditions, VPb and VI can pin the Fermi energy in the middle of the bandgap, which results in a low carrier concentration. Under Pb-poor conditions, VPb is the dominant defect and the material has a high concentration of hole carriers with a long lifetime. Our present work gives an insight view of the defect physics of cubic CsPbI3 and will be beneficial for optoelectronic applications based on cubic CsPbI3 and other analogous inorganic perovskites.

  8. Point defects and composition in hexagonal group-III nitride monolayers: A first-principles calculation

    Science.gov (United States)

    Gao, Han; Ye, Han; Yu, Zhongyuan; Zhang, Yunzhen; Liu, Yumin; Li, Yinfeng

    2017-12-01

    In this paper, we systematically investigate the structural, electronic and magnetic properties of hexagonal group-III nitride monolayers with point defects and alloying on the basis of first-principles calculations. Six typical point defects including three vacancies and three antisites are modeled in pure AlN, GaN and InN monolayers. The defect-induced modifications of band gaps and magnetic properties are demonstrated. The vacancy of nitrogen, with lowest formation energy, metalizes the semiconducting nitride monolayers. The defects losing single group-III atom introduce net magnetic moment to the systems, while others maintain non-magnetic. For ordered alloy monolayers, the AlGaN and InGaN systems are taken into consideration. The compositional variation is achieved by atomic substitution in supercells with different sizes. We find that the lattice constant and cohesive energy follow good linear relation with concentration while a slight bowing effect is observed for the band gap. These results provide a development in defective and alloy nitride monolayers and extend the potential applications.

  9. First Principles Based Simulation of Reaction-Induced Phase Transition in Hydrogen Storage and Other Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Qingfeng [Southern Illinois Univ., Carbondale, IL (United States)

    2014-08-31

    This major part of this proposal is simulating hydrogen interactions in the complex metal hydrides. Over the period of DOE BES support, key achievements include (i) Predicted TiAl3Hx as a precursor state for forming TiAl3 through analyzing the Ti-doped NaAlH4 and demonstrated its catalytic role for hydrogen release; (ii) Explored the possibility of forming similar complex structures with other 3d transition metals in NaAlH4 as well as the impact of such complex structures on hydrogen release/uptake; (iii) Demonstrated the role of TiAl3 in hydriding process; (iv) Predicted a new phase of NaAlH4 that links to Na3AlH6 using first-principles metadynamics; (v) Examined support effect on hydrogen release from supported/encapsulated NaAlH4; and (vi) Expanded research scope beyond hydrogen storage. The success of our research is documented by the peer-reviewed publications.

  10. Phonon transport in Na2He at high pressure from a first-principles study

    Science.gov (United States)

    Guo, San-Dong; Zhang, Ai-Xia

    2017-04-01

    Phonon transport of recently fabricated Na2He at high pressure is investigated from a combination of first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation. The calculated room-temperature lattice thermal conductivity is 149.19 W m-1 K-1, which is very close to that of Si. It is found that low-frequency optical modes comprise 16% of the lattice thermal conductivity, while high-frequency optical modes have negligible contribution. The high lattice thermal conductivity is due to large group velocities, small Grüneisen parameters, and long phonon lifetimes. The size effects on lattice thermal conductivity are considered by cumulative thermal conductivity with respect to the phonon mean free path. To significantly reduce the lattice thermal conductivity, the characteristic length smaller than 100 nm is required and can reach a decrease of 36%. These results may be useful to understand thermal transport processes that occur inside giant planets.

  11. Proton trapping and diffusion in SiO 2 thin films: a first-principles study

    Science.gov (United States)

    Zhang, Qiming; Tang, Shaoping; Wallace, Robert M.

    2001-03-01

    The behavior of mobile protons at the Si/SiO 2 interface has drawn substantial interest since it was found to play the critical role in a proposed non-volatile memory device based on Si/SiO 2/Si structures. We have investigated the bonding and diffusion properties of a proton at the interface by a first-principles local density cluster total energy approach. A 73-atom cluster model is used to simulate the Si/SiO 2 interface that is constructed from β-cristobalite SiO 2 on the Si(0 0 1) surface. In agreement with previous calculations of protons in bulk Si, the SiSi bond center is found to be a stable site for a proton on the Si side of the Si/SiO 2 interface. On the SiO 2 side, the proton is found to bond with O atoms. Furthermore, it is found that the binding energy of protonoxygen bond decreases as the proton penetrates into the oxide. Thus, an energy well is formed which confines protons in silicon oxide region in a Si/SiO 2/Si structure. The calculated diffusion barrier for proton hopping between the neighboring binding sites is 0.73 eV in LDA and 1.15 eV in GGA, in good agreement with the experimental activation energy.

  12. Proton trapping at the Si/SiO2 interface studied by first-principles method

    Science.gov (United States)

    Zhang, Qiming; Tang, Shaoping; Wallace, R. M.; Archer, L.

    1998-03-01

    The behavior of mobile protons at the Si/SiO2 interface has drawn substantial interests since it was found to play the critical role in a proposed non-volatile memory device based on Si/SiO_2/Si structures(K. Vanheusden et al.), Nature 386, 587 (1997). We have investigated the bonding and diffusion properties of a proton at the interface by first-principles local density cluster total energy approach (DMol). A 73 atom cluster model is used to simulate the Si/SiO2 interface which is constructed from beta-cristobalite SiO2 on Si(001) surface. In agreement with previous calculation of proton in bulk Si, the Si-Si bond center is found to be a stable site for proton on the Si side. On the SiO2 side, proton is found to bond with O atoms. The energy for the proton at corresponding binding sites decreases while the proton penetrate into the oxide, forming an energy well which confines protons in oxide in a Si/SiO_2/Si structure. The diffusion barrier for a proton hopping between the neighboring binding sites is 0.73 eV, in good agreement with the experimental activation energy ( 0.8 eV)^1.

  13. First-principles screening of structural properties of intermetallic compounds on martensitic transformation

    Science.gov (United States)

    Lee, Joohwi; Ikeda, Yuji; Tanaka, Isao

    2017-11-01

    Martensitic transformation with good structural compatibility between parent and martensitic phases are required for shape memory alloys (SMAs) in terms of functional stability. In this study, first-principles-based materials screening is systematically performed to investigate the intermetallic compounds with the martensitic phases by focusing on energetic and dynamical stabilities as well as structural compatibility with the parent phase. The B2, D03, and L21 crystal structures are considered as the parent phases, and the 2H and 6M structures are considered as the martensitic phases. In total, 3384 binary and 3243 ternary alloys with stoichiometric composition ratios are investigated. It is found that 187 alloys survive after the screening. Some of the surviving alloys are constituted by the chemical elements already widely used in SMAs, but other various metallic elements are also found in the surviving alloys. The energetic stability of the surviving alloys is further analyzed by comparison with the data in Materials Project Database (MPD) to examine the alloys whose martensitic structures may cause further phase separation or transition to the other structures.

  14. Magnetic properties of NI-doped ZnS: First-principles study

    Science.gov (United States)

    Xie, Hai-Qing; Tang, Li-Jun; Tang, Jun-Long; Peng, Ping

    2015-03-01

    A systematic investigation on magnetism and spin-resolved electronic properties in Ni-doped ZnS systems was performed by using the first principle plane-wave pseudo potential method. The formation energy calculation implied that Ni-doped ZnS could be realized experimentally at room temperature and ferromagnetic state was ground state in Ni-doped ZnS. Electronic structures showed Ni-doped ZnS supercell was p-type half-metallic ferromagnetic (FM) semiconductor with a total magnetic moment of 2.0 μB per Ni. Due to the neighboring S atoms around doped Ni atoms mediating the magnetic coupling by p-d hybridization, the long distance FM coupling in Ni-doped ZnS was achieved. Furthermore, high dopant concentration and not obvious clustering effect could be obtained in Ni-doped ZnS. These results imply that Ni-doped ZnS could be a promising dilute magnetic semiconductor for application in spintronic devices.

  15. First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres

    Science.gov (United States)

    Alkauskas, Audrius; Buckley, Bob B.; Awschalom, David D.; Van de Walle, Chris G.

    2014-07-01

    In this work we present theoretical calculations and analysis of the vibronic structure of the spin-triplet optical transition in diamond nitrogen-vacancy (NV) centres. The electronic structure of the defect is described using accurate first-principles methods based on hybrid functionals. We devise a computational methodology to determine the coupling between electrons and phonons during an optical transition in the dilute limit. As a result, our approach yields a smooth spectral function of electron-phonon coupling and includes both quasi-localized and bulk phonons on equal footings. The luminescence lineshape is determined via the generating function approach. We obtain a highly accurate description of the luminescence band, including all key parameters such as the Huang-Rhys factor, the Debye-Waller factor, and the frequency of the dominant phonon mode. More importantly, our work provides insight into the vibrational structure of NV centres, in particular the role of local modes and vibrational resonances. In particular, we find that the pronounced mode at 65 meV is a vibrational resonance, and we quantify localization properties of this mode. These excellent results for the benchmark diamond (NV) centre provide confidence that the procedure can be applied to other defects, including alternative systems that are being considered for applications in quantum information processing.

  16. First-principles study of properties of Mn{sub 2}ZnMg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wei Xiaoping; Chu Shibing; Mao Geyong; Deng Hong; Lei Tao [Department of Physics, LanZhou University, Lanzhou 730000 (China); Hu Xianru, E-mail: huxianru@lzu.edu.cn [Department of Physics, LanZhou University, Lanzhou 730000 (China)

    2011-09-15

    We investigate the electronic structures and magnetic properties of Mn{sub 2}ZnMg compound with Hg{sub 2}CuTi-type structure using first-principles full-potential local orbital minimum basis calculations. Based on the analysis on the electronic structures, it is demonstrated that the compound is half-metallic antiferromagnet and the compound is favorable to form Hg{sub 2}CuTi-type structure instead of the conventional L2{sub 1} one. The complicated hybridization among the p and d states dominates mainly the origin of the gap. The Fermi level (E{sub F}) shifts slightly with the lattice parameter changed. Spin-orbit coupling hardly reduces the degree of spin polarization of the density of states at the Fermi level. - Highlights: > The current investigation presents that the Mn{sub 2}ZnMg in CuHg{sub 2}Ti-type structure shows half-metallic antiferromagnetic states. > The origin of the gap is ascribed mainly to the complicated hybridization among the p and d states. > Changing lattice parameter within a certain range do not change the half-metallic properties. > Spin-orbit coupling hardly reduces the degree of spin polarization of the density of states at the Fermi level.

  17. Intrinsic point defects in inorganic perovskite CsPbI3 from first-principles prediction

    KAUST Repository

    Li, Yifan

    2017-10-19

    Cubic inorganic perovskite CsPbI3 is a direct bandgap semiconductor, which is promising for optoelectronic applications, such as solar cells, light emitting diodes, and lasers. The intrinsic defects in semiconductors play crucial roles in determining carrier conductivity, the efficiency of carrier recombination, and so on. However, the thermodynamic stability and intrinsic defect physics are still unclear for cubic CsPbI3. By using the first-principles calculations, we study the thermodynamic process and find out that the window for CsPbI3 growth is quite narrow and the concentration of Cs is important for cubic CsPbI3 growth. Under Pb-rich conditions, VPb and VI can pin the Fermi energy in the middle of the bandgap, which results in a low carrier concentration. Under Pb-poor conditions, VPb is the dominant defect and the material has a high concentration of hole carriers with a long lifetime. Our present work gives an insight view of the defect physics of cubic CsPbI3 and will be beneficial for optoelectronic applications based on cubic CsPbI3 and other analogous inorganic perovskites.

  18. Electronic and Optical Properties of Two-Dimensional GaN from First-Principles.

    Science.gov (United States)

    Sanders, Nocona; Bayerl, Dylan; Shi, Guangsha; Mengle, Kelsey A; Kioupakis, Emmanouil

    2017-11-07

    Gallium nitride (GaN) is an important commercial semiconductor for solid-state lighting applications. Atomically thin GaN, a recently synthesized two-dimensional material, is of particular interest because the extreme quantum confinement enables additional control of its light-emitting properties. We performed first-principles calculations based on density functional and many-body perturbation theory to investigate the electronic, optical, and excitonic properties of monolayer and bilayer two-dimensional (2D) GaN as a function of strain. Our results demonstrate that light emission from monolayer 2D GaN is blueshifted into the deep ultraviolet range, which is promising for sterilization and water-purification applications. Light emission from bilayer 2D GaN occurs at a similar wavelength to its bulk counterpart due to the cancellation of the effect of quantum confinement on the optical gap by the quantum-confined Stark shift. Polarized light emission at room temperature is possible via uniaxial in-plane strain, which is desirable for energy-efficient display applications. We compare the electronic and optical properties of freestanding two-dimensional GaN to atomically thin GaN wells embedded within AlN barriers in order to understand how the functional properties are influenced by the presence of barriers. Our results provide microscopic understanding of the electronic and optical characteristics of GaN at the few-layer regime.

  19. First Principles Prediction of Structure, Structure Selectivity, and Thermodynamic Stability under Realistic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ceder, Gerbrand [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials and Engineering

    2018-01-28

    Novel materials are often the enabler for new energy technologies. In ab-initio computational materials science, method are developed to predict the behavior of materials starting from the laws of physics, so that properties can be predicted before compounds have to be synthesized and tested. As such, a virtual materials laboratory can be constructed, saving time and money. The objectives of this program were to develop first-principles theory to predict the structure and thermodynamic stability of materials. Since its inception the program focused on the development of the cluster expansion to deal with the increased complexity of complex oxides. This research led to the incorporation of vibrational degrees of freedom in ab-initio thermodynamics, developed methods for multi-component cluster expansions, included the explicit configurational degrees of freedom of localized electrons, developed the formalism for stability in aqueous environments, and culminated in the first ever approach to produce exact ground state predictions of the cluster expansion. Many of these methods have been disseminated to the larger theory community through the Materials Project, pymatgen software, or individual codes. We summarize three of the main accomplishments.

  20. Self-healing monovacancy in low-buckled silicene studied by first-principles calculations

    Science.gov (United States)

    Li, Rui; Han, Yang; Hu, Ting; Dong, Jinming; Kawazoe, Y.

    2014-07-01

    A new type of monovacancy (MV), MV-1, with a planelike sp3 hybridization at its defect core has been found in two-dimensional (2D) low-buckled silicene by using the first-principles study, which has never been found to exist stably in the 2D single-layer nanostructures, including other previously studied graphene, h-BN sheets, and single-layer MoS2. In addition, other two possible monovacancies (MV-2 and MV-3) with higher energies have also been found to exist in 2D low-buckled silicene. More importantly, it is found that the new type MV-1 is the most stable ground structure among the three possible MVs. And the high-energy MV-3 is unstable, easily decaying into MV-1, but metastable MV-2 could coexist with MV-1 at low temperatures less than 10 K. The diffusion coefficient of MV-1 is calculated to be 2.3×10-5cm2/s, much higher than that of the MV in graphene. Finally, electronic structures of the defective silicene with MV-1 and MV-2 are calculated, showing both of them are metallic.

  1. Strain field of the monovacancy in silicene: First-principles study

    Science.gov (United States)

    Li, Rui; Liu, Zhongli; Ma, Wenqiang; Tan, Yonggang

    2016-05-01

    The in-plane strain fields of single-vacancy silicene with different monovacancy (MV) concentrations, as well as the corresponding electronic band structures, are investigated by using the first-principle calculations. Firstly the self-healing MV is found to be the most stable ground structure in silicene, which is different from the other 2D hexagonal honeycomb materials, e.g. graphene, h-BN. In the isolated MV center, the bonds along the pentagons are compressed, creating a compress field, and those close to the distorted hexagons are stretched, creating a stretch field. As the MV concentration increasing, the interacted compress field tends to corrugate the defected silicene, while the interacted stretch field impacts little on the low-buckled structure. Especially, the corrugation presents in those supercells with small MV concentration, just as the (4, 5), (4, 6), (4, 7), (4, 8) supercells. The corrugations approach zero at both low and high MV concentrations, and the (4, 6) supercell with a MV concentration of about 0.021, has a peak value of 3.23Å. The electronic calculations show that the linear dispersion at Γ point in pristine silicene is broken by the lower lattice symmetry of the self-healing MV reconstruction, which translates it into metal as well.

  2. First-Principles Calculations of Current-Induced Spin-Transfer Torques in Magnetic Domain Walls

    Science.gov (United States)

    Tang, Ling; Xu, Zhijun; Yang, Zejin

    2013-05-01

    Current-induced spin-transfer torques (STTs) have been studied in Fe, Co and Ni domain walls (DWs) by the method based on the first-principles noncollinear calculations of scattering wavefunctions expanded in the tight-binding linearized muffin-tin orbital (TB-LMTO) basis. The results show that the out-of-plane component of nonadiabatic STT in Fe DW has localized form, which is in contrast to the typical nonlocal oscillating nonadiabatic torques obtained in Co and Ni DWs. Meanwhile, the degree of nonadiabaticity in STT is also much greater for Fe DW. Further, our results demonstrate that compared to the well-known first-order nonadiabatic STT, the torque in the third-order spatial derivative of local spin can better describe the distribution of localized nonadiabatic STT in Fe DW. The dynamics of local spin driven by this third-order torques in Fe DW have been investigated by the Landau-Lifshitz-Gilbert (LLG) equation. The calculated results show that with the same amplitude of STTs the DW velocity induced by this third-order term is about half of the wall speed for the case of the first-order nonadiabatic STT.

  3. First-principles prediction of Tl/SiC for valleytronics

    KAUST Repository

    Xu, Zhen

    2017-09-22

    Recently, monolayer Tl on a Si or Ge substrate has been proposed for potential valleytronic systems. However, the band gaps of these systems are less than 0.1 eV, which is too small to be applied because an electric field or magnetic doping will reduce the band gaps further for the systems to become metallic. Here, we investigate SiC as an alternative substrate. By first-principles calculations we demonstrate that monolayer Tl can be grown on SiC. There are two valleys around the K/K′ points and the Berry curvature shows that the two valleys are inequivalent, indicating valley pseudospin. Moreover, due to the larger band gap of SiC (3.3 eV), the band gap of the Tl/SiC system is 0.6 eV, which is large enough for valley manipulation. Furthermore, we demonstrate that Cr doping can achieve valley polarization. Our study shows that the Tl/SiC system is promising for valleytronic applications.

  4. Stress reduction behavior in metal-incorporated amorphous carbon films: first-principles approach

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J-H; Ahn, H-S; Lee, S-C; Lee, K-R [Future Technology Research Division, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of)

    2006-01-01

    The stress reduction behavior in metal-incorporated amorphous carbon films was investigated by the first-principle calculation. We calculated the total energy of the system with changes in bond angles between the incorporated metal (Ti, Mo, Cr, W, Ag, Au, Al, Si, etc) and the carbon atoms by using DMOL{sup 3}computational software package. The four carbon atoms are arranged as a tetrahedron, with a carbon or metal atom at the center. The total energy increased substantially as the bond angle deviated from the equilibrium value when a carbon atom is located at the tetrahedron center. However, with a replacement by a metal atom at the center of the tetrahedron, the increase in the total energy due to the distortion in bond angle was significantly reduced. The pivotal action of the metal atoms dissolved in the carbon matrix would be more significant when noble metals having filled d-shells are incorporated compared to the transition metals having unfilled d-shells. These atoms have a weak and more isotropic bond with carbon atoms as confirmed by the electron density distribution.

  5. First principles calculation of elastic and magnetic properties of Cr-based full-Heusler alloys

    Science.gov (United States)

    Aly, Samy H.; Shabara, Reham M.

    2014-06-01

    We present an ab-initio study of the elastic and magnetic properties of Cr-based full-Heusler alloys within the first-principles density functional theory. The lattice constant, magnetic moment, bulk modulus and density of states are calculated using the full-potential nonorthogonal local-orbital minimum basis (FPLO) code in the Generalized Gradient Approximation (GGA) scheme. Only the two alloys Co2CrSi and Fe2CrSi are half-metallic with energy gaps of 0.88 and 0.55 eV in the spin-down channel respectively. We have predicted the metallicity state for Fe2CrSb, Ni2CrIn, Cu2CrIn, and Cu2CrSi alloys. Fe2CrSb shows a strong pressure dependent, e.g. exhibits metallicity at zero pressure and turns into a half-metal at P≥10 GPa. The total and partial magnetic moments of these alloys were studied under higher pressure, e.g. in Co2CrIn, the total magnetic moment is almost unchanged under higher pressure up to 500 GPa.

  6. Magnetism in assembled and supported silicon endohedral cages: First-principles electronic structure calculations

    Science.gov (United States)

    Robles, R.; Khanna, S. N.

    2009-09-01

    First principles electronic structure calculations on a free CrSi12 cluster, a (CrSi12)2 dimer, and CrSi12 clusters supported on Si(111) surfaces have been carried out within a gradient corrected density functional formalism using a supercell approach. The ground state of CrSi12 is a Cr centered hexagonal biprism of Si atoms in which the Cr spin moment is completely quenched. As two CrSi12 motifs are brought together, they form different composite units depending on initial direction of approach and, in most cases, the composite cluster is found to have a net spin moment. Cluster assemblies obtained by depositing CrSi12 motifs on a Si(111) surface exhibit similar finite spin moments for several initial directions of approach. An analysis of the electronic states shows that the origin of the magnetic moment lies in those Cr d -states that do not mix with silicon sp states. The studies suggest the possibility of forming silicon-based magnetic semiconductors through such assemblies.

  7. Diffusion Mechanisms of Ag atom in ZnO crystal: A First Principles Study

    Science.gov (United States)

    Masoumi, Saeed; Noori, Amirreza; Nadimi, Ebrahim

    2017-12-01

    Zinc oxide (ZnO) is currently under intensive investigation, as a result of its various applications in micro, nano and optoelectronics. However, a stable and reproducible p-type doping of ZnO is still a main challenging issue. Group IB elements such as Au, Cu and Ag, are promising candidates for p-type doping. Particularly, Ag atoms has been shown to be able to easily diffuse through the crystal structure of ZnO and lead to the p-type doping of the host crystal. However, the current understanding of Ag defects and their mobility in the ZnO crystal is still not fully explored. In this work, we report the results of our first-principles calculations based on density functional theory for Ag defects, particularly the interstitial and substitutional defects in ZnO crystal. Defect formation energies are calculated in different charged states as a function of Fermi energy in order to clarify the p-type behaviour of Ag-doped ZnO. We also investigate the diffusion behaviour and migration paths of Ag in ZnO crystal in the framework of density functional theory applying climbing image (CI) nudged elastic band method (NEB).

  8. Point defects in hexagonal germanium carbide monolayer: A first-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Ersan, Fatih [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Gökçe, Aytaç Gürhan [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Department of Physics, Dokuz Eylül University, 35160 İzmir (Turkey); Aktürk, Ethem, E-mail: ethem.akturk@adu.edu.tr [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey)

    2016-12-15

    Highlights: • Semiconductor GeC turns into metal by introducing a carbon vacancy. • Semiconductor GeC becomes half-metal by a single Ge vacancy. • Band gap value of GeC system can be tuned in the range of 0.308–1.738 eV by antisite or Stone–Wales defects. - Abstract: On the basis of first-principles plane-wave calculations, we investigated the electronic and magnetic properties of various point defects including single Ge and C vacancies, Ge + C divacancy, Ge↔C antisites and the Stone–Wales (SW) defects in a GeC monolayer. We found that various periodic vacancy defects in GeC single layer give rise to crucial effects on the electronic and magnetic properties. The band gaps of GeC monolayer vary significantly from 0.308 eV to 1.738 eV due to the presence of antisites and Stone–Wales defects. While nonmagnetic ground state of semiconducting GeC turns into metal by introducing a carbon vacancy, it becomes half-metal by a single Ge vacancy with high magnetization (4 μ{sub B}) value per supercell. All the vacancy types have zero net magnetic moments, except single Ge vacancy.

  9. Adsorption of alkali and alkaline-earth metal atoms on stanene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Yelda; Ersan, Fatih [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Gökoğlu, Gökhan [Department of Physics, Karabük University, 78050 Karabük (Turkey); Aktürk, Olcay Üzengi [Department of Electrical & Electronics Engineering, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey); Aktürk, Ethem, E-mail: ethem.akturk@adu.edu.tr [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey)

    2016-09-01

    This paper presents a study on the adsorption of alkali and alkaline-earth metal atoms on single-layer stanene with different levels of coverage using first-principles plane wave calculations within spin-polarized density functional theory. The most favorable adsorption site for alkali atoms (Li, Na, K) were found to be the hollow site similar to other group IV single-layers, but the case of alkaline-earths on stanene is different from silicene and germanene. Whereas Mg and Ca are bound to stanene at hollow site, the bridge site is found to be energetically favorable for Be adatom. All adsorbed atoms are positively charged due to the charge transfer from adatom to stanene single-layer. The semimetallic bare stanene become metallic except for Be adsorption. The Beryllium adsorption give rise to non-magnetic semiconducting ground state. Our results illustrate that stanene has a reactive and functionalizable surface similar to graphene or silicene. - Highlights: • Alkali and alkaline-earth metal atoms form stronger bonds with stanene compared to other group IV monolayers. • Semi-metallic stanene becomes nonmagnetic metal for Li, Na, K, Mg, and Ca atoms adsorption. • Semi-metallic stanene becomes nonmagnetic semiconductor with 94 meV band gap for Be atom adsorption.

  10. Effects of alloying elements on elastic properties of Al by first-principles calculations

    Directory of Open Access Journals (Sweden)

    Wang J.

    2014-01-01

    Full Text Available The effects of alloying elements (Co, Cu, Fe, Ge, Hf, Mg, Mn, Ni, Si, Sr, Ti, V, Y, Zn, and Zr on elastic properties of Al have been investigated using first-principles calculations within the generalized gradient approximation. A supercell consisting of 31 Al atoms and one solute atom is used. A good agreement is obtained between calculated and available experimental data. Lattice parameters of the studied Al alloys are found to be depended on atomic radii of solute atoms. The elastic properties of polycrystalline aggregates including bulk modulus (B, shear modulus (G, Young’s modulus (E, and the B/G ratio are also determined based on the calculated elastic constants (cij’s. It is found that the bulk modulus of Al alloys decreases with increasing volume due to the addition of alloying elements and the bulk modulus is also related to the total molar volume (Vm and electron density (nAl31x with the relationship of nAl31x=1.0594+0.0207√B/Vm. These results are of relevance to tailor the properties of Al alloys.

  11. Structure of naturally hydrated ferrihydrite revealed through neutron diffraction and first-principles modeling

    Science.gov (United States)

    Chappell, Helen F.; Thom, William; Bowron, Daniel T.; Faria, Nuno; Hasnip, Philip J.; Powell, Jonathan J.

    2017-08-01

    Ferrihydrite, with a ``two-line'' x-ray diffraction pattern (2L-Fh), is the most amorphous of the iron oxides and is ubiquitous in both terrestrial and aquatic environments. It also plays a central role in the regulation and metabolism of iron in bacteria, algae, higher plants, and animals, including humans. In this study, we present a single-phase model for ferrihydrite that unifies existing analytical data while adhering to fundamental chemical principles. The primary particle is small (20-50 Å) and has a dynamic and variably hydrated surface, which negates long-range order; collectively, these features have hampered complete characterization and frustrated our understanding of the mineral's reactivity and chemical/biochemical function. Near and intermediate range neutron diffraction (NIMROD) and first-principles density functional theory (DFT) were employed in this study to generate and interpret high-resolution data of naturally hydrated, synthetic 2L-Fh at standard temperature. The structural optimization overcomes transgressions of coordination chemistry inherent within previously proposed structures, to produce a robust and unambiguous single-phase model.

  12. First principles calculations of interlayer exchange coupling in bcc Fe/Cu/Fe structures

    Energy Technology Data Exchange (ETDEWEB)

    Kowalewski, M.; Heninrich, B. [Simon Fraser Univ., Burnaby, British Columbia (Canada); Schulthess, T.C.; Butler, W.H. [Oak Ridge National Lab., TN (United States)

    1998-01-01

    The authors report on theoretical calculations of interlayer exchange coupling between two Fe layers separated by a modified Cu spacer. These calculations were motivated by experimental investigations of similar structures by the SFU group. The multilayer structures of interest have the general form: Fe/Cu(k)/Fe and Fe/Cu(m)/X(1)/Cu(n)/Fe where X indicates one AL (atomic layer) of foreign atoms X (Cr, Ag, or Fe) and k, m, n represent the number of atomic layers of Cu. The purpose of the experimental and theoretical work was to determine the effect of modifying the pure Cu spacer by replacing the central Cu atomic layer with the atomic layer of foreign atoms X. The first principles calculation were performed using the Layer Korringa-Kohn-Rostoker (LKKR) method. The theoretical thickness dependence of the exchange coupling between two semi-infinite Fe layers was calculated for pure Cu spacer thicknesses in the range of 0 < k < 16. The effect of the foreign atoms X on the exchange coupling was investigated using the structure with 9 AL Cu spacer as a reference sample. The calculated changes in the exchange coupling are in qualitative agreement with experiment.

  13. Negative thermal expansion properties in tetragonal NbPO5 from the first principles studies

    Directory of Open Access Journals (Sweden)

    Tao Li

    2017-03-01

    Full Text Available By using the first-principles calculations based on density functional theory combined with quasi-harmonic approximation, we have studied the geometric structural, thermal properties, and the negative thermal expansion (NTE properties of tetrahedral NbPO5. The variations of cell parameter and cell volume of tetrahedral NbPO5 with temperature show that it displays NTE behavior in the range of 473-800 K along a-axis and the corresponding average coefficient of thermal expansion (CTE is approximately -0.766 ×10−6 K−1, while the c cell parameter and the cell volume display positive thermal expansion behaviors. These results are in consistent well with the experiment observations. Further vibrational modes analysis, together with Grüneisen parameters calculations, revealed that the transverse vibration of O corner atoms accompanying the rocking motions of corner-shared NbO6 octahedron and PO4 tetrahedron dominate the negative thermal properties of tetrahedral NbPO5. Our findings will provide an understanding for the underlying mechanisms of the NTE in oxides materials.

  14. A model-based approach to monitor complex road-vehicle interactions through first principles

    Science.gov (United States)

    Chakravarty, T.; Srinivasarengan, K.; Roy, S.; Bilal, S.; Balamuralidhar, P.

    2013-02-01

    The increasing availability of portable computing devices and their interaction with physical systems ask for designing compact models and simulations to understand and characterize such interactions. For instance, monitoring a road's grade using accelerometer stationed inside a moving ground vehicle is an emerging trend in city administration. Typically the focus has largely been to develop algorithms to articulate meaning from that. But, the experimentation cannot provide with an exhaustive analysis of all scenarios and the characteristics of them. We propose an approach of modeling these interactions of physical systems with gadgets through first principles, in a compact manner to focus on limited number of interactions. We derive an approach to model the vehicle interaction with a pothole on a road, a specific case, but allowing for selectable car parameters like natural damped frequency, tire size etc, thus generalizing it. Different road profiles are also created to represent rough road with sharp irregularities. These act as excitation to the moving vehicle and the interaction is computed to determine the vertical/ lateral vibration of the system i.e vehicle with sensors using joint time-frequency signal analysis methods. The simulation is compared with experimental data for validation. We show some directions as to how simulation of such models can reveal different characteristics of the interaction through analysis of their frequency spectrum. It is envisioned that the proposed models will get enriched further as and when large data set of real life data is captured and appropriate sensitivity analysis is done.

  15. First-principles study of the elastic and thermodynamic properties of thorium hydrides at high pressure

    Science.gov (United States)

    Xiao-Lin, Zhang; Yuan-Yuan, Wu; Xiao-Hong, Shao; Yong, Lu; Ping, Zhang

    2016-05-01

    The high pressure behaviors of Th4H15 and ThH2 are investigated by using the first-principles calculations based on the density functional theory (DFT). From the energy-volume relations, the bct phase of ThH2 is more stable than the fcc phase at ambient conditions. At high pressure, the bct ThH2 and bcc Th4H15 phases are more brittle than they are at ambient pressure from the calculated elastic constants and the Poisson ratio. The thermodynamic stability of the bct phase ThH2 is determined from the calculated phonon dispersion. In the pressure domain of interest, the phonon dispersions of bcc Th4H15 and bct ThH2 are positive, indicating the dynamical stability of these two phases, while the fcc ThH2 is unstable. The thermodynamic properties including the lattice vibration energy, entropy, and specific heat are predicted for these stable phases. The vibrational free energy decreases with the increase of the temperature, and the entropy and the heat capacity are proportional to the temperature and inversely proportional to the pressure. As the pressure increases, the resistance to the external pressure is strengthened for Th4H15 and ThH2. Project supported by the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China.

  16. BaTiO3-based nanolayers and nanotubes: first-principles calculations.

    Science.gov (United States)

    Evarestov, Robert A; Bandura, Andrei V; Kuruch, Dmitrii D

    2013-01-30

    The first-principles calculations using hybrid exchange-correlation functional and localized atomic basis set are performed for BaTiO(3) (BTO) nanolayers and nanotubes (NTs) with the structure optimization. Both the cubic and the ferroelectric BTO phases are used for the nanolayers and NTs modeling. It follows from the calculations that nanolayers of the different ferroelectric BTO phases have the practically identical surface energies and are more stable than nanolayers of the cubic phase. Thin nanosheets composed of three or more dense layers of (0 1 0) and (0 1 1[overline]) faces preserve the ferroelectric displacements inherent to the initial bulk phase. The structure and stability of BTO single-wall NTs depends on the original bulk crystal phase and a wall thickness. The majority of the considered NTs with the low formation and strain energies has the mirror plane perpendicular to the tube axis and therefore cannot exhibit ferroelectricity. The NTs folded from (0 1 1[overline]) layers may show antiferroelectric arrangement of Ti-O bonds. Comparison of stability of the BTO-based and SrTiO(3)-based NTs shows that the former are more stable than the latter. Copyright © 2012 Wiley Periodicals, Inc.

  17. Physical properties of the tetragonal CuMnAs: A first-principles study

    Science.gov (United States)

    Máca, F.; Kudrnovský, J.; Drchal, V.; Carva, K.; Baláž, P.; Turek, I.

    2017-09-01

    Electronic, magnetic, and transport properties of the antiferromagnetic (AFM) CuMnAs alloy with tetragonal structure, promising for the AFM spintronics, are studied from first principles using the Vienna ab initio simulation package. We investigate the site occupation of sublattices and the lattice parameters of three competing phases. We analyze the factors that determine which of the three conceivable structures will prevail. We then estimate formation energies of possible defects for the experimentally prepared lattice structure. MnCu and CuMn antisites as well as Mn ↔Cu swaps and vacancies on Mn or Cu sublattices were identified as possible candidates for defects in CuMnAs. We find that the interactions of the growing thin film with the substrate and with vacuum as well as the electron correlations are important for the phase stability while the effect of defects is weak. In the next step, using the tight-binding linear muffin-tin orbital method for the experimental structure, we estimate transport properties for systems containing defects with low formation energies. Finally, we determine the exchange interactions and estimate the Néel temperature of the AFM-CuMnAs alloy using the Monte Carlo approach. A good agreement of the calculated resistivity and Néel temperature with experimental data makes it possible to draw conclusions concerning the competing phases.

  18. First-principles investigation of Fe-doped MgSiO{sub 3}-ilmenite

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids, E-mail: arvids@utpl.edu.ec [Grupo de Fisicoquimica de Materiales, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Rivera, Krupskaya [Grupo de Fisicoquimica de Materiales, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Escuela de Geologia y Minas, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Pinto, Henry P. [Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Jackson State University, Jackson, Mississippi 39217-0510 (United States)

    2012-06-15

    First principles density functional theory and generalised gradient approximation (GGA) have been exploited to investigate Fe-doped ilmenite-type MgSiO{sub 3} mineral. Strong electron correlation effects not included in a density-functional formalism are described by a Hubbard-type on-site Coulomb repulsion (the DFT+U approach). Microstructure of equilibrium geometries, electronic band structures as well as magnetic properties are computed and discussed in detail. Hartree-Fock methodology is used as an extra tool to study optical properties of the same system. For equilibrium state of the doped mineral we find zigzag-type atomic rearrangements around the Fe impurity. The inclusion of correlation effects leads to an improved description of the electronic properties. In particular, it is discovered that Fe incorporation produces local energy levels within the band-gap of the material. Using {Delta}SCF method optical absorption energies are found to be equal to 2.2 and 2.6 eV leading to light absorption at longer wavelengths compared to the undoped MgSiO{sub 3}. Our results provide evidence on the occurrence of local magnetic moment in the region surrounding iron dopant. According to the outcomes, the Fe Rightwards-Double-Arrow Mg reaction can be described as substitutionally labile with Fe{sup 2+} complex being found in the high-spin state at low pressure MgSiO{sub 3}-ilmenite conditions.

  19. Native defects in bulk and monolayer MoS2 from first principles

    Science.gov (United States)

    Komsa, Hannu-Pekka; Krasheninnikov, Arkady V.

    2015-03-01

    We present an extensive first-principles study of a large set of native defects in MoS2 in order to find out the types and concentrations of the most important defects in this system. The calculations are carried out for both bulk and monolayer forms of MoS2, which allows us to study how defect properties change between these two limiting cases. We consider single- and few-atom vacancies, antisites, adatoms on monolayer, and interstitials between layers in the bulk material. We calculate the formation energies of neutral and charged defects, determine the charge transition levels, and from these self-consistently assess the concentration of defects at thermal equilibrium as well as the resulting positions of the Fermi level. The chemical potential values corresponding to different growth conditions are carefully accounted for, and for all values of chemical potentials relevant to the growth of MoS2, the S vacancies are found to be the most abundant defects. However, they are acceptors and cannot be the cause of the often observed n -type doping. At the same time, Re impurities, which are often present in natural MoS2 samples, naturally provide good n -type doping behavior. We also calculate migration barriers for adatoms and interstitials and discuss how they can affect the growth process.

  20. Alloying InAs and InP nanowires for optoelectronic applications: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Toniolo, Giuliano R.; Anversa, Jonas [Departamento de Fisica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Santos, Cláudia L. dos [Área de Ciências Tecnológicas, Centro Universitário Franciscano, 97010-032, Santa Maria, RS (Brazil); Piquini, Paulo, E-mail: paulo.piquini@ufsm.br [Departamento de Fisica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil)

    2014-08-01

    The capability of nanowires to relieve the stress introduced by lattice mismatching through radial relaxation opens the possibility to search for devices for optoelectronic applications. However, there are difficulties to fabricate, and therefore to explore the properties of nanowires with narrow diameters. Here we apply first principles calculations to study the electronic and optical properties of narrow InAs{sub 1−x}P{sub x} nanowires. Our results show that the absorption threshold can be pushed to near-ultraviolet region, and suggests that arrays of these nanowires with different diameters and compositions could be used as devices acting from the mid-infrared to the near-ultraviolet region. - Highlights: • The optical properties of InAsP alloy nanowires were studied using DFT calculations. • The variation of band edges and band offsets with composition were determined. • The dependence of the optical absorption with alloy composition was settled. • The onset for optical absorption is suggested to be pushed to the UV region.