WorldWideScience

Sample records for scaled particle theory

  1. Wave-particle duality through an extended model of the scale relativity theory

    International Nuclear Information System (INIS)

    Ioannou, P D; Nica, P; Agop, M; Paun, V; Vizureanu, P

    2008-01-01

    Considering that the chaotic effect of associated wave packet on the particle itself results in movements on the fractal (continuous and non-differentiable) curves of fractal dimension D F , wave-particle duality through an extension of the scale relativity theory is given. It results through an equation of motion for the complex speed field, that in a fractal fluid, the convection, dissipation and dispersion are reciprocally compensating at any scale (differentiable or non-differentiable). From here, for an irrotational movement, a generalized Schroedinger equation is obtained. The absence of dispersion implies a generalized Navier-Stokes type equation, whereas, for the irrotational movement and the fractal dimension, D F = 2, the usual Schroedinger equation results. The absence of dissipation implies a generalized Korteweg-de Vries type equation. In such conjecture, at the differentiable scale, the duality is achieved through the flowing regimes of the fractal fluid, i.e. the wave character by means of the non-quasi-autonomous flowing regime and the particle character by means of the quasi-autonomous flowing regime. These flowing regimes are separated by '0.7 structure'. At the non-differentiable scale, a fractal potential acts as an energy accumulator and controls through the coherence the duality. The correspondence between the differentiable and non-differentiable scales implies a Cantor space-time. Moreover, the wave-particle duality implies at any scale a fractal.

  2. Elementary particle theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1984-12-01

    The present state of the art in elementary particle theory is reviewed. Topics include quantum electrodynamics, weak interactions, electroweak unification, quantum chromodynamics, and grand unified theories. 113 references

  3. Particle theory and cosmology

    International Nuclear Information System (INIS)

    Gaisser, T.K.; Shafi, Q.; Barr, S.M.; Seckel, D.; Rusjan, E.; Fletcher, R.S.

    1991-01-01

    This report discusses research of professor at Bartol research institute in the following general areas: particle phenomenology and non-accelerator physics; particle physics and cosmology; theories with higher symmetry; and particle astrophysics and cosmology

  4. Salting out of methane by sodium chloride: A scaled particle theory study.

    Science.gov (United States)

    Graziano, Giuseppe

    2008-08-28

    The salting out of methane by adding NaCl to water at 25 degrees C and 1 atm is investigated by calculating the work of cavity creation by means of scaled particle theory and the methane-solvent energy of attraction. The latter quantity changes to little extent on passing from pure water to an aqueous 4M NaCl solution, whereas the magnitude of the work of cavity creation increases significantly, accounting for the salting out effect. There is quantitative agreement between the experimental values of the hydration Gibbs energy and the calculated ones. The behavior of the work of cavity creation is due to the increase in the volume packing density of NaCl solutions, since the average effective molecular diameter does not change, being always 2.80 A. The same approach allows the rationalization of the difference in methane salting out along the alkali chloride series. These results indicate that, fixed the aqueous solution density, the solubility of nonpolar species is mainly determined by the effective diameter of solvent molecules and the corresponding volume packing density. There is no need to take into account the H-bond rearrangement because it is characterized by an almost complete enthalpy-entropy compensation.

  5. Scaling theory of tunneling diffusion of a heavy particle interacting with phonons

    Science.gov (United States)

    Itai, K.

    1988-05-01

    The author discusses motion of a heavy particle in a d-dimensional lattice interacting with phonons by different couplings. The models discussed are characterized by the dimension (d) and the set of two indices (λ,ν) which specify the momentum dependence of the dispersion of phonon energy (ω~kν) and of the particle-phonon coupling (~kλ). Scaling equations are derived by eliminating the short-time behavior in a renormalization-group scheme using Feynman's path-integral method, and the technique developed by Anderson, Yuval, and Hamann for the Kondo problem. The scaling equations show that the particle is localized in the strict sense when (2λ+d+2)/ν2. In the marginal case, i.e., (2λ+d+2)/ν=2, localization occurs for couplings larger than a critical value. This marginal case shows Ohmic dissipation and is a close analogy to the Caldeira-Leggett model for macroscopic quantum tunneling and the hopping models of Schmid's type. For large-enough (2λ+d+2)/ν, the particle is considered practically localized, but the origin of the localization is quite different from that for (2λ+d+2)/ν<=2. .AE

  6. Henry's Constants of Persistent Organic Pollutants by a Group-Contribution Method Based on Scaled-Particle Theory.

    Science.gov (United States)

    Razdan, Neil K; Koshy, David M; Prausnitz, John M

    2017-11-07

    A group-contribution method based on scaled-particle theory was developed to predict Henry's constants for six families of persistent organic pollutants: polychlorinated benzenes, polychlorinated biphenyls, polychlorinated dibenzodioxins, polychlorinated dibenzofurans, polychlorinated naphthalenes, and polybrominated diphenyl ethers. The group-contribution model uses limited experimental data to obtain group-interaction parameters for an easy-to-use method to predict Henry's constants for systems where reliable experimental data are scarce. By using group-interaction parameters obtained from data reduction, scaled-particle theory gives the partial molar Gibbs energy of dissolution, Δg̅ 2 , allowing calculation of Henry's constant, H 2 , for more than 700 organic pollutants. The average deviation between predicted values of log H 2 and experiment is 4%. Application of an approximate van't Hoff equation gives the temperature dependence of Henry's constants for polychlorinated biphenyls, polychlorinated naphthalenes, and polybrominated diphenyl ethers in the environmentally relevant range 0-40 °C.

  7. Physics on all scales. Scalar-tensor theories of quantum gravity in particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Henz, Tobias

    2016-05-10

    In this thesis, we investigate dilaton quantum gravity using a functional renormalization group approach. We derive and discuss flow equations both in the background field approximation and using a vertex expansion as well as solve the fixed point equations globally to show how realistic gravity, connecting ultraviolet and infrared physics, can be realized on a pure fixed point trajectory by virtue of spontaneous breaking of scale invariance. The emerging physical system features a dynamically generated moving Planck scale resembling the Newton coupling as well as slow roll inflation with an exponentially decreasing effective cosmological constant that vanishes completely in the infrared. The moving Planck scale might make quantum gravity experimentally accessible at a different energy scale than previously believed. We therefore not only provide further evidence for the existence of a consistent quantum theory of gravity based on general relativity, but also offer potential solutions towards the hierarchy and cosmological constant problems, thereby opening up exciting opportunities for further research.

  8. Elementary particle theory

    CERN Document Server

    Stefanovich, Eugene

    2018-01-01

    This book introduces notation, terminology, and basic ideas of relativistic quantum theories. The discussion proceeds systematically from the principle of relativity and postulates of quantum logics to the construction of Poincaré invariant few-particle models of interaction and scattering. It is the first of three volumes formulating a consistent relativistic quantum theory of interacting charged particles.

  9. Isotropic-nematic transition in a mixture of hard spheres and hard spherocylinders: scaled particle theory description

    Directory of Open Access Journals (Sweden)

    M.F. Holovko

    2017-12-01

    Full Text Available The scaled particle theory is developed for the description of thermodynamical properties of a mixture of hard spheres and hard spherocylinders. Analytical expressions for free energy, pressure and chemical potentials are derived. From the minimization of free energy, a nonlinear integral equation for the orientational singlet distribution function is formulated. An isotropic-nematic phase transition in this mixture is investigated from the bifurcation analysis of this equation. It is shown that with an increase of concentration of hard spheres, the total packing fraction of a mixture on phase boundaries slightly increases. The obtained results are compared with computer simulations data.

  10. Theory of particle interactions

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Shirkov, D.V.

    1986-01-01

    Development and modern state of the theory of elementary particle interactions is described. The main aim of the paper is to give a picture of quantum field theory development in the form easily available for physicists not occupied in this field of science. Besides the outline of chronological development of main representations, the description of renormalization and renorm-groups, gauge theories, models of electro-weak interactions and quantum chromodynamics, the latest investigations related to joining all interactions and supersymmetries is given

  11. Research in particle theory

    International Nuclear Information System (INIS)

    Mansouri, F.; Suranyi, P; Wijewardhana, L.C.R.

    1991-10-01

    In the test particle approximation, the scattering amplitude for two-particle scattering in (2+1)-dimensional Chern-Simons-Witten gravity and supergravity was computed and compared to the corresponding metric solutions. The formalism was then extended to the exact gauge theoretic treatment of the two-particle scattering problem and compared to 't Hooft's results from the metric approach. We have studied dynamical symmetry breaking in 2+1 dimensional field theories. We have analyzed strong Extended Technicolor (ETC) models where the ETC coupling is close to a critical value. There are effective scalar fields in each of the theories. We have worked our how such scalar particles can be produced and how they decay. The φ 4 field theory was investigated in the Schrodinger representation. The critical behavior was extracted in an arbitrary number of dimensions in second order of a systematic truncation approximation. The correlation exponent agrees with known values within a few percent

  12. The Least Particle Theory

    Science.gov (United States)

    Hartsock, Robert

    2011-10-01

    The Least Particle Theory states that the universe was cast as a great sea of energy. MaX Planck declared a quantum of energy to be the least value in the universe. We declare the quantum of energy to be the least particle in the universe. Stephen Hawking declared quantum mechanics to be of no value in todays gross mechanics. That's like saying the number 1 has no place in mathematics.

  13. Partial molar volume of n-alcohols at infinite dilution in water calculated by means of scaled particle theory.

    Science.gov (United States)

    Graziano, Giuseppe

    2006-04-07

    The partial molar volume of n-alcohols at infinite dilution in water is smaller than the molar volume in the neat liquid phase. It is shown that the formula for the partial molar volume at infinite dilution obtained from the scaled particle theory equation of state for binary hard sphere mixtures is able to reproduce in a satisfactory manner the experimental data over a large temperature range. This finding implies that the packing effects play the fundamental role in determining the partial molar volume at infinite dilution in water also for solutes, such as n-alcohols, forming H bonds with water molecules. Since the packing effects in water are largely related to the small size of its molecules, the latter feature is the ultimate cause of the decrease in partial molar volume associated with the hydrophobic effect.

  14. Research in particle theory

    International Nuclear Information System (INIS)

    Mansouri, F.; Suranyi, P.; Wijewardhana, L.C.R.; Witten, L.

    1990-10-01

    A 2+1 dimensional deSitter Chern-Simons theory has been constructed and shown to be consistent. Wilson loop variables have been computed and shown to close under Poisson bracket operation for N = 2 Poincare supergravity. It has also been shown that there are two equivalent pictures of describing two particle scattering in 2+1 dimensional gravity theory, which are related by multivalued gauge transformations. We have generalized the Jackiw-Johnson sumrule, relating Goldstone boson decay constants to the dynamical masses of fermions, to an arbitrary symmetry group. We have analyzed dynamical parity breaking in 2+1 dimensional 4-fermi theories. Finally, we have found the partition function for a system of free parabosons and parafermions of order two. 53 refs

  15. Research in particle theory

    International Nuclear Information System (INIS)

    Mansouri, F.; Suranyi, P.; Wijewardhana, L.C.R.

    1992-10-01

    Dynamics of 2+1 dimensional gravity is analyzed by coupling matter to Chern Simons Witten action in two ways and obtaining the exact gravity Hamiltonian for each case. 't Hoot's Hamiltonian is obtained as an approximation. The notion of space-time emerges in the very end as a broken phase of the gauge theory. We have studied the patterns of discrete and continuous symmetry breaking in 2+1 dimensional field theories. We formulate our analysis in terms of effective composite scalar field theories. Point-like sources in the Chern-Simons theory of gravity in 2+1 dimensions are described by their Poincare' charges. We have obtained exact solutions of the constraints of Chern-Simons theory with an arbitrary number of isolated point sources in relative motion. We then showed how the space-time metric is constructed. A reorganized perturbation expansion with a propagator of soft infrared behavior has been used to study the critical behavior of the mass gap. The condition of relativistic covariance fixes the form of the soft propagator. Approximants to the correlation critical exponent were obtained in two loop order for the two and three dimensional theories. We proposed a new model of QED exhibiting two phases and a Majorana mass spectrum of single particle states. The model has a new source of coupling constant renormalization which opposes screening and suggests the model may confine. Assuming that the bound states of e + e - essentially obey a Majorana spectrum, we obtained a consistent fit of the GSI peaks as well as predicting new peaks and their spin assignments

  16. The solvation radius of silicate melts based on the solubility of noble gases and scaled particle theory

    International Nuclear Information System (INIS)

    Ottonello, Giulio; Richet, Pascal

    2014-01-01

    The existing solubility data on noble gases in high-temperature silicate melts have been analyzed in terms of Scaling Particle Theory coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM). After a preliminary analysis of the role of the contracted Gaussian basis sets and theory level in reproducing appropriate static dipole polarizabilities in a vacuum, we have shown that the procedure returns Henry's law constants consistent with the values experimentally observed in water and benzene at T = 25 °C and P = 1 bar for the first four elements of the series. The static dielectric constant (ε) of the investigated silicate melts and its optical counterpart (ε ∞ ) were then resolved through the application of a modified form of the Clausius-Mossotti relation. Argon has been adopted as a probe to depict its high-T solubility in melts through an appropriate choice of the solvent diameter σ s , along the guidelines already used in the past for simple media such as water or benzene. The σ s obtained was consistent with a simple functional form based on the molecular volume of the solvent. The solubility calculations were then extended to He, Ne, and Kr, whose dispersive and repulsive coefficients are available from theory and we have shown that their ab initio Henry's constants at high T reproduce the observed increase with the static polarizability of the series element with reasonable accuracy. At room temperature (T = 25 °C) the calculated Henry's constants of He, Ne, Ar, and Kr in the various silicate media predict higher solubilities than simple extrapolations (i.e., Arrhenius plots) based on high-T experiments and give rise to smooth trends not appreciably affected by the static polarizabilities of the solutes. The present investigation opens new perspectives on a wider application of PCM theory which can be extended to materials of great industrial interest at the core of

  17. The solvation radius of silicate melts based on the solubility of noble gases and scaled particle theory

    Energy Technology Data Exchange (ETDEWEB)

    Ottonello, Giulio, E-mail: giotto@dipteris.unige.it [DISTAV, Università di Genova, Corso Europa 26, 16132 Genova (Italy); Richet, Pascal [Institut de Physique du Globe, Rue Jussieu 2, 75005 Paris (France)

    2014-01-28

    The existing solubility data on noble gases in high-temperature silicate melts have been analyzed in terms of Scaling Particle Theory coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM). After a preliminary analysis of the role of the contracted Gaussian basis sets and theory level in reproducing appropriate static dipole polarizabilities in a vacuum, we have shown that the procedure returns Henry's law constants consistent with the values experimentally observed in water and benzene at T = 25 °C and P = 1 bar for the first four elements of the series. The static dielectric constant (ε) of the investigated silicate melts and its optical counterpart (ε{sup ∞}) were then resolved through the application of a modified form of the Clausius-Mossotti relation. Argon has been adopted as a probe to depict its high-T solubility in melts through an appropriate choice of the solvent diameter σ{sub s}, along the guidelines already used in the past for simple media such as water or benzene. The σ{sub s} obtained was consistent with a simple functional form based on the molecular volume of the solvent. The solubility calculations were then extended to He, Ne, and Kr, whose dispersive and repulsive coefficients are available from theory and we have shown that their ab initio Henry's constants at high T reproduce the observed increase with the static polarizability of the series element with reasonable accuracy. At room temperature (T = 25 °C) the calculated Henry's constants of He, Ne, Ar, and Kr in the various silicate media predict higher solubilities than simple extrapolations (i.e., Arrhenius plots) based on high-T experiments and give rise to smooth trends not appreciably affected by the static polarizabilities of the solutes. The present investigation opens new perspectives on a wider application of PCM theory which can be extended to materials of great

  18. The solvation radius of silicate melts based on the solubility of noble gases and scaled particle theory.

    Science.gov (United States)

    Ottonello, Giulio; Richet, Pascal

    2014-01-28

    The existing solubility data on noble gases in high-temperature silicate melts have been analyzed in terms of Scaling Particle Theory coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM). After a preliminary analysis of the role of the contracted Gaussian basis sets and theory level in reproducing appropriate static dipole polarizabilities in a vacuum, we have shown that the procedure returns Henry's law constants consistent with the values experimentally observed in water and benzene at T = 25 °C and P = 1 bar for the first four elements of the series. The static dielectric constant (ɛ) of the investigated silicate melts and its optical counterpart (ɛ(∞)) were then resolved through the application of a modified form of the Clausius-Mossotti relation. Argon has been adopted as a probe to depict its high-T solubility in melts through an appropriate choice of the solvent diameter σs, along the guidelines already used in the past for simple media such as water or benzene. The σs obtained was consistent with a simple functional form based on the molecular volume of the solvent. The solubility calculations were then extended to He, Ne, and Kr, whose dispersive and repulsive coefficients are available from theory and we have shown that their ab initio Henry's constants at high T reproduce the observed increase with the static polarizability of the series element with reasonable accuracy. At room temperature (T = 25 °C) the calculated Henry's constants of He, Ne, Ar, and Kr in the various silicate media predict higher solubilities than simple extrapolations (i.e., Arrhenius plots) based on high-T experiments and give rise to smooth trends not appreciably affected by the static polarizabilities of the solutes. The present investigation opens new perspectives on a wider application of PCM theory which can be extended to materials of great industrial interest at the core of

  19. Problems in particle theory

    International Nuclear Information System (INIS)

    Adler, S.L.; Wilczek, F.

    1993-11-01

    Areas of emphasis include acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, quaternionic generalizations of complex quantum mechanics and field theory, application of the renormalization group to the QCD phase transition, the quantum Hall effect, and black holes. Other work involved string theory, statistical properties of energy levels in integrable quantum systems, baryon asymmetry and the electroweak phase transition, anisotropies of the cosmic microwave background, and theory of superconductors

  20. Particle structure of gauge theories

    International Nuclear Information System (INIS)

    Fredenhagen, K.

    1985-11-01

    The implications of the principles of quantum field theory for the particle structure of gauge theories are discussed. The general structure which emerges is compared with that of the Z 2 Higgs model on a lattice. The discussion leads to several confinement criteria for gauge theories with matter fields. (orig.)

  1. Gauge theory and elementary particles

    International Nuclear Information System (INIS)

    Zwirn, H.

    1982-01-01

    The present orientation of particle physics, founded on local gauge invariance theories and spontaneous symmetry breaking is described in a simple formalism. The application of these ideas to the latest theories describing electromagnetic and weak interactions (Glashow, Weinberg, Salam models) and strong interactions, quantum chromodynamics, is presented so as to give a general picture of the mechanisms subtending these theories [fr

  2. Problems in particle theory

    International Nuclear Information System (INIS)

    Adler, S.L.; Wilczek, F.

    1992-11-01

    Members of the Institute have worked on a number of problems including the following: acceleration algorithms for the Monte Carlo analysis of lattice field, and gauge and spin theories, based on changes of variables specific to lattices of dimension 2 ell ; construction of quaternionic generalizations of complex quantum mechanics and field theory; wave functions for paired Hall states; black hole quantum mechanics; generalized target-space duality in curved string backgrounds; gauge symnmetry algebra of the N = 2 string; two-dimensional quantum gravity and associated string theories; organizing principles from which the signal processing of neural networks in the retina and cortex can be deduced; integrable systems of KdV type; and a theory for Kondo insulators

  3. The Particle Theory of Matter

    Science.gov (United States)

    Widick, Paul R.

    1969-01-01

    Described are activities that are designed to help elementary children understand the possibility of the particle theory of matter. Children work with beads, marbles, B-B shot and sand; by mixing these materials and others they are led to see that it is highly possible for the existence of particles which are not visible. (BR)

  4. The theory of particle interactions

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Shirkov, D.V.

    1991-01-01

    The Theory of Particle Interactions introduces students and physicists to the chronological development, concepts, main methods, and results of modern quantum field theory -- the most fundamental, abstract, and mathematical branch of theoretical physics. Belokurov and Shirkov, two prominent Soviet theoretical physicists, carefully describe the many facets of modern quantum theory including: renormalization theory and renormalization group; gauge theories and spontaneous symmetry breaking; the electroweak interaction theory and quantum chromodynamics; the schemes of the unification of the fundamental interactions; and super-symmetry and super-strings. The authors use a minimum of mathematical concepts and equations in describing the historical development, the current status, and the role of quantum field theory in modern theoretical physics. Because readers will be able to comprehend the main concepts of modern quantum theory without having to master its rather difficult apparatus, The Theory of Particle Interactions is ideal for those who seek a conceptual understanding of the subject. Students, physicists, mathematicians, and theoreticians involved in astrophysics, cosmology, and nuclear physics, as well as those interested in the philosophy and history of natural sciences will find The Theory of Particle Interactions invaluable and an important addition to their reading list

  5. The apparent irreversibility of particle creation: A study of time scales and of the mechanisms responsible for entropy production in quantum field theory

    International Nuclear Information System (INIS)

    Rau, J.

    1993-01-01

    In the presence of strong gravitational, electromagnetic or other gauge fields, particle-antiparticle pairs are created out of the vacuum. Creation processes of this type are responsible for, e.g., hadron production in heavy ion collisions or the radiation of black holes. They lead to an increase in entropy, thus contributing to the thermalization of the system under consideration. This suggests that particle creation in strong fields is an irreversible process. Key issues to be addressed are: (1) under which conditions particle creation is indeed irreversible, and how this can be reconciled with the time-reversal invariance of the underlying microscopic dynamics: (ii) if-and if so, how-particle creation can be described within the framework of a theory of nonequilibrium processes: (iii) how the associated entropy is defined; and (iv) how particle creation can be incorporated into a kinetic equation that also accounts for subsequent acceleration and collisions. These issues are studied by means of the projection method. After a comprehensive introduction to that method, it is applied to a simple model from quantum electrodynamics which incorporates acceleration, collisions, and pair creation due to the Schwinger mechanism. For this model, the author obtains: (1) the complete set of time scales, which furnishes a precise mathematical criterion for the irreversibility of particle creation; (2) the associated relevant entropy to which the H-theorem applies; and (3) a generalization of the quantum Boltzmann equation which includes a source term derived from first principles

  6. Hadron particle theory

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1995-05-01

    Radiation therapy with ''hadrons'' (protons, neutrons, pions, ions) has accrued a 55-year track record, with by now over 30,000 patients having received treatments with one of these particles. Very good, and in some cases spectacular results are leading to growth in the field in specific well-defined directions. The most noted contributor to success has been the ability to better define and control the radiation field produced with these particles, to increase the dose delivered to the treatment volume while achieving a high degree of sparing of normal tissue. An additional benefit is the highly-ionizing, character of certain beams, leading to creater cell-killing potential for tumor lines that have historically been very resistant to radiation treatments. Until recently these treatments have been delivered in laboratories and research centers whose primary, or original mission was physics research. With maturity in the field has come both the desire to provide beam facilities more accessible to the clinical setting, of a hospital, as well as achieving, highly-efficient, reliable and economical accelerator and beam-delivery systems that can make maximum advantage of the physical characteristics of these particle beams. Considerable work in technology development is now leading, to the implementation of many of these ideas, and a new generation of clinically-oriented facilities is beginning to appear. We will discuss both the physical, clinical and technological considerations that are driving these designs, as well as highlighting, specific examples of new facilities that are either now treating, patients or that will be doing so in the near future

  7. Particle physics and gauge theories

    International Nuclear Information System (INIS)

    Morel, A.

    1985-01-01

    These notes are intended to help readers not familiar with particle physics in entering the domain of gauge field theory applied to the so-called standard model of strong and electroweak interactions. The introduction is considerably enlarged in order to give non specialists a general overview of present days ''elementary'' particle physics. The Glashow-Salam-Weinberg model is then treated, with the details which its unquestioned successes deserve, most probably for a long time. Finally SU(5) is presented as a prototype of these developments of particle physics which aim at a unification of all forces. Although its intrinsic theoretical difficulties and the non-observation of a sizable proton decay rate do not qualify this model as a realistic one, it has many of the properties expected from a ''good'' unified theory. In particular, it allows one to study interesting connections between particle physics and cosmology. 35 refs.

  8. Covariantized matrix theory for D-particles

    Energy Technology Data Exchange (ETDEWEB)

    Yoneya, Tamiaki [Institute of Physics, The University of Tokyo,3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); School of Graduate Studies, The Open University of Japan,2-11 Wakaba, Mihama-ku, Chiba 261-8586 (Japan)

    2016-06-09

    We reformulate the Matrix theory of D-particles in a manifestly Lorentz-covariant fashion in the sense of 11 dimesnional flat Minkowski space-time, from the viewpoint of the so-called DLCQ interpretation of the light-front Matrix theory. The theory is characterized by various symmetry properties including higher gauge symmetries, which contain the usual SU(N) symmetry as a special case and are extended from the structure naturally appearing in association with a discretized version of Nambu’s 3-bracket. The theory is scale invariant, and the emergence of the 11 dimensional gravitational length, or M-theory scale, is interpreted as a consequence of a breaking of the scaling symmetry through a super-selection rule. In the light-front gauge with the DLCQ compactification of 11 dimensions, the theory reduces to the usual light-front formulation. In the time-like gauge with the ordinary M-theory spatial compactification, it reduces to a non-Abelian Born-Infeld-like theory, which in the limit of large N becomes equivalent with the original BFSS theory.

  9. Particle accelerators test cosmological theory

    International Nuclear Information System (INIS)

    Schramm, D.N.; Steigman, G.

    1988-01-01

    Over the past decade two subfields of science, cosmology and elementary-particle physics, have become married in a symbiotic relationship that has produced a number of exciting offspring. These offspring are beginning to yield insights on the creation of spacetime and matter at epochs as early as 10 to the minus 43 to 10 to the minus 35 second after the birth of the universe in the primordial explosion known as the big bang. Important clues to the nature of the big bang itself may even come from a theory currently under development, known as the ultimate theory of everything (T.E.O.). A T.E.O. would describe all the interactions among the fundamental particles in a single bold stroke. Now that cosmology ahs begun to make predictions about elementary-particle physics, it has become conceivable that those cosmological predictions could be checked with carefully controlled accelerator experiments. It has taken more than 10 years for accelerators to reach the point where they can do the appropriate experiments, but the experiments are now in fact in progress. The preliminary results confirm the predictions of cosmology. The cosmological prediction the authors have been concerned with pertains to setting limits on the number of fundamental particles of matter. It appears that there are 12 fundamental particles, as well as their corresponding antiparticles. Six of the fundamental particles are quarks. The other six are leptons. The 12 particles are grouped in three families, each family consisting of four members. Cosmology suggests there must be a finite number of families and, further limits the possible range of to small values: only three or at most four families exist. 7 figs

  10. Theories of higher spin particles

    International Nuclear Information System (INIS)

    Akshay, Y.S.; Sudarshan, Ananth

    2015-01-01

    One of the aims of theoretical physics is to understand the fundamental constituents of Nature and the interactions between them. The Standard Model of particle physics is currently our best description of Nature. It has been phenomenally successful in describing physics upto energy scales of a few hundred GeV. The SM contains matter particles (fermions), force carriers or mediators and the Higgs (bosons). The fermionic particles that make up all the visible matter around us are the leptons (electron, muon, tau, their respective neutrinos) and quarks (up, down, top, bottom, charm and strange). The force carriers of the SM mediate three of the four fundamental forces in Nature. The photon (γ) mediates the electromagnetic force, the W+,W-,Z mediate the weak force and the gluons (g) mediate the strong force. The Higgs boson plays an important role in the generation of masses for various particles

  11. Scaled particle theory for a hard spherocylinder fluid in a disordered porous medium: Carnahan-Starling and Parsons-Lee corrections

    Directory of Open Access Journals (Sweden)

    M.F. Holovko

    2018-03-01

    Full Text Available The scaled particle theory (SPT approximation is applied for the study of the influence of a porous medium on the isotropic-nematic transition in a hard spherocylinder fluid. Two new approaches are developed in order to improve the description in the case of small lengths of spherocylinders. In one of them, the so-called SPT-CS-PL approach, the Carnahan-Starling (CS correction is introduced to improve the description of thermodynamic properties of the fluid, while the Parsons-Lee (PL correction is introduced to improve the orientational ordering. The second approach, the so-called SPT-PL approach, is connected with generalization of the PL theory to anisotropic fluids in disordered porous media. The phase diagram is obtained from the bifurcation analysis of a nonlinear integral equation for the singlet distribution function and from the thermodynamic equilibrium conditions. The results obtained are compared with computer simulation data. Both ways and both approaches considerably improve the description in the case of spherocylinder fluids with smaller spherocylinder lengths. We did not find any significant differences between the results of the two developed approaches. We found that the bifurcation analysis slightly overestimates and the thermodynamical analysis underestimates the predictions of the computer simulation data. A porous medium shifts the phase diagram to smaller densities of the fluid and does not change the type of the transition.

  12. Vanishing cosmological constant in elementary particles theory

    International Nuclear Information System (INIS)

    Pisano, F.; Tonasse, M.D.

    1997-01-01

    The quest of a vanishing cosmological constant is considered in the simplest anomaly-free chiral gauge extension of the electroweak standard model where the new physics is limited to a well defined additional flavordynamics above the Fermi scale, namely up to a few TeVs by matching the gauge coupling constants at the electroweak scale, and with an extended Higgs structure. In contrast to the electroweak standard model, it is shown how the extended scalar sector of the theory allows a vanishing or a very small cosmological constant. the details of the cancellation mechanism are presented. At accessible energies the theory is indistinguishable from the standard model of elementary particles and it is in agreement with all existing data. (author). 32 refs

  13. Department of Particle Theory - Overview

    International Nuclear Information System (INIS)

    Jezabek, M.

    1999-01-01

    Full text: Research performed at the Department of Particle Theory is devoted to fundamental particles and their interactions. These studies are closely related to the current and future high energy experiments at e + e - and hadron-hadron colliders: LEP, TESLA, Tevatron and LHC. The papers reported below cover a wide range of particle physics from neutrino masses and oscillations to processes involving heavy particles like gauge and Higgs bosons or the top quark. An evidence of neutrino oscillations observed by the SuperKamiokande Collaboration was the most spectacular discovery of the year 1998. In a theoretical investigation performed at our department a relation has been found between the so called see-saw mechanism and the bi-maximal neutrino mixing. Since many years a very important and labour-consuming part of the research activities is related to precision tests of the Standard Model. In the last year successful runs of LEP2 stimulated an impressive progress in theoretical description of processes with two- and four-fermion final states in electron-positron annihilation. It is worth stressing that the results of the calculations have been distributed in the form of the computer programs (Monte Carlo and other types) which serve as an indispensable tool in the analysis of the experimental data. Although the whole scientific program is a natural continuation of the activities started earlier a few results obtained in the last year should be mentioned: Publication of the four-fermion Monte Carlo program KORALW for high energy e + e - colliders; Development of the exponentiation scheme at the spin amplitude level and studies of the anomalous couplings for the e + e - → f (anti)f (nγ) processes; Relation between QCD static potentials in momentum and position spaces, and its consequences for bottom and top quark pair production and spectroscopy; Participation in the preparation of the physics program of the pp experiments on LHC collider particularly for Higgs

  14. Particle Bed Reactor scaling relationships

    International Nuclear Information System (INIS)

    Slovik, G.; Araj, K.; Horn, F.L.; Ludewig, H.; Benenati, R.

    1987-01-01

    Scaling relationships for Particle Bed Reactors (PBRs) are discussed. The particular applications are short duration systems, i.e., for propulsion or burst power. Particle Bed Reactors can use a wide selection of different moderators and reflectors and be designed for such a wide range of power and bed power densities. Additional design considerations include the effect of varying the number of fuel elements, outlet Mach number in hot gas channel, etc. All of these variables and options result in a wide range of reactor weights and performance. Extremely light weight reactors (approximately 1 kg/MW) are possible with the appropriate choice of moderator/reflector and power density. Such systems are very attractive for propulsion systems where parasitic weight has to be minimized

  15. Finite size scaling theory

    International Nuclear Information System (INIS)

    Rittenberg, V.

    1983-01-01

    Fischer's finite-size scaling describes the cross over from the singular behaviour of thermodynamic quantities at the critical point to the analytic behaviour of the finite system. Recent extensions of the method--transfer matrix technique, and the Hamiltonian formalism--are discussed in this paper. The method is presented, with equations deriving scaling function, critical temperature, and exponent v. As an application of the method, a 3-states Hamiltonian with Z 3 global symmetry is studied. Diagonalization of the Hamiltonian for finite chains allows one to estimate the critical exponents, and also to discover new phase transitions at lower temperatures. The critical points lambda, and indices v estimated for finite-scaling are given

  16. Investigations in Elementary Particle Theory

    Energy Technology Data Exchange (ETDEWEB)

    Weiler, Thomas J. [Vanderbilt Univ., Nashville, TN (United States); Kephart, Thomas W. [Vanderbilt Univ., Nashville, TN (United States); Scherrer, Robert J. [Vanderbilt Univ., Nashville, TN (United States)

    2014-07-02

    The research interests of our three Co-PI’s complement each other very well. Kephart works mainly on models of particle unification in four or higher dimensions, on aspects of gravity such as inflation, black-holes, and the very early Universe, and on applications of knot theory and topology to various physical systems (including gluon dynamics). Scherrer works mainly on aspects of the intermediate-aged Universe, including dark matter and dark energy, and particle physics in the early Universe. Weiler works mainly on neutrino physics, dark matter signatures, and extreme particle-astrophysics in the late Universe, including origins of the highest-energy cosmic-rays and gamma-rays, and the future potential of neutrino astrophysics. Kephart and Weiler have lately devoted some research attention to the LHC and its reach for probing physics beyond the Standard Model. During the 3-year funding period, our grant supported one postdoc (Chiu Man Ho) and partially supported two students, Peter Denton and Lingjun Fu. Chiu Man collaborated with all three of the Co-PI’s during the 3-year funding period and published 16 refereed papers. Chiu Man has gone on to a postdoc with Steve Hsu at Michigan State University. Denton and Fu will both receive their PhDs during the 2014-15 academic year. The total number of our papers published in refereed journals by the three co-PIs during the period of this grant (2011-present) is 54. The total number of talks given by the group members during this time period, including seminars, colloquia, and conference presentations, is 47. Some details of the accomplishments of our DOE funded researchers during the grant period include Weiler being named a Simons Fellow in 2013. He presented an invited TEDx talk in 2012. His paper on closed timelike curves (2013) garnered a great deal of national publicity. Scherrer’s paper on the “little rip” (2011) fostered a new area of cosmological research, and the name “little rip” has now entered

  17. Particles, fields and quantum theory

    International Nuclear Information System (INIS)

    Bongaarts, P.J.M.

    1982-01-01

    The author gives an introduction to the development of gauge theories of the fundamental interactions. Starting from classical mechanics and quantum mechanics the development of quantum electrodynamics and non-abelian gauge theories is described. (HSI)

  18. Gauge theories in particle physics

    International Nuclear Information System (INIS)

    Aitchison, I.J.R.; Hey, A.J.G.

    1982-01-01

    The first theory, quantum electrodynamics (QED) is known to give a successful account of electromagnetic interactions. Weak and strong interactions are described by gauge theories which are generalisations of QED. The electro-weak gauge theory of Glashow Salam and Weinberg unites electromagnetic and weak interactions. Quantum chromodynamics (QCD) is the gauge theory of strong interactions. This approach to these theories, designed for the non-specialist, is based on a straightforward generalisation of non-relativistic quantum-mechanical perturbation theory to the relativistic case, leading to an intuitive introduction to Feynman graphs. Spontaneously broken-or 'hidden'-symmetries are given particular attention, with the physics of hidden gauge invariance and the role of the vacuum (essential to the unified theories) being illustrated by an extended but elementary discussion of the non-relativistic example of superconductivity. Throughout, emphasis is placed both on realistic calculations and on physical understanding. (author)

  19. Gauge Theories of Vector Particles

    Science.gov (United States)

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  20. BRST field theory of relativistic particles

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1992-01-01

    A generalization of BRST field theory is presented, based on wave operators for the fields constructed out of, but different from the BRST operator. The authors discuss their quantization, gauge fixing and the derivation of propagators. It is shown, that the generalized theories are relevant to relativistic particle theories in the Brink-Di Vecchia-Howe-Polyakov (BDHP) formulation, and argue that the same phenomenon holds in string theories. In particular it is shown, that the naive BRST formulation of the BDHP theory leads to trivial quantum field theories with vanishing correlation functions. (author). 22 refs

  1. Particle production in higher derivative theory

    Indian Academy of Sciences (India)

    Lemaitre–Robertson–Walker cosmological model during the early stages of the universe is analysed in the framework of higher derivative theory. The universe has been considered as an open thermodynamic system where particle production ...

  2. Theory of elementary particles. Proceedings

    International Nuclear Information System (INIS)

    Luest, D.; Weigt, G.

    1994-03-01

    These proceedings contain most of the invited talks ans short communications presented at the named symposium. These concern developments in field theory in connection with string models, grand unification, and quantum gravity. See hints under the relevant topics. (HSI)

  3. Theory of hot particle stability

    International Nuclear Information System (INIS)

    Berk, H.L.; Wong, H.V.; Tsang, K.T.

    1986-10-01

    The investigation of stabilization of hot particle drift reversed systems to low frequency modes has been extended to arbitrary hot beta, β/sub H/ for systems that have unfavorable field line curvature. We consider steep profile equilibria where the thickness of the pressure drop, Δ, is less than plasma radius, r/sub p/. The analysis describes layer modes which have mΔ/r/sub p/ 2/3. When robust stability conditions are fulfilled, the hot particles will have their axial bounce frequency less than their grad-B drift frequency. This allows for a low bounce frequency expansion to describe the axial dependence of the magnetic compressional response

  4. Valencia 93: The summary of particle theory

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1994-07-01

    The International School on Cosmological Dark Matter held in Valencia in the fall of 1993 was devoted to the interplay of cosmology and particle physics, with the obvious emphasis on the Dark Matter issue. Here I present the expanded version of my summary talk regarding the particle physics theory part of the School. (author). 13 refs

  5. SCALE Sensitivity Calculations Using Contributon Theory

    International Nuclear Information System (INIS)

    Rearden, Bradley T.; Perfetti, Chris; Williams, Mark L.; Petrie, Lester M. Jr.

    2010-01-01

    The SCALE TSUNAMI-3D sensitivity and uncertainty analysis sequence computes the sensitivity of k-eff to each constituent multigroup cross section using adjoint techniques with the KENO Monte Carlo codes. A new technique to simultaneously obtain the product of the forward and adjoint angular flux moments within a single Monte Carlo calculation has been developed and implemented in the SCALE TSUNAMI-3D analysis sequence. A new concept in Monte Carlo theory has been developed for this work, an eigenvalue contributon estimator, which is an extension of previously developed fixed-source contributon estimators. A contributon is a particle for which the forward solution is accumulated, and its importance to the response, which is equivalent to the adjoint solution, is simultaneously accumulated. Thus, the contributon is a particle coupled with its contribution to the response, in this case k-eff. As implemented in SCALE, the contributon provides the importance of a particle exiting at any energy or direction for each location, energy and direction at which the forward flux solution is sampled. Although currently implemented for eigenvalue calculations in multigroup mode in KENO, this technique is directly applicable to continuous-energy calculations for many other responses such as fixed-source sensitivity analysis and quantification of reactor kinetics parameters. This paper provides the physical bases of eigenvalue contributon theory, provides details of implementation into TSUNAMI-3D, and provides results of sample calculations.

  6. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    1989-01-01

    The Syracuse High Energy Theory group has continued to make significant contributions to many areas. Many novel aspects of Chern-Simons terms and effective Lagrangians were investigated. Various interesting aspects of quantum gravity and string theory were explored. Gauge models of elementary particles were studied in depth. The investigations of QCD at finite temperatures and multiply connected configuration spaces continued. 24 refs

  7. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    International Nuclear Information System (INIS)

    Kim, Y. E.

    2013-01-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system. (author)

  8. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    Science.gov (United States)

    Kim, Y. E.

    2013-03-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.

  9. Relativistic three-particle theory

    International Nuclear Information System (INIS)

    Hochauser, S.

    1979-01-01

    In keeping with recent developments in experimental nuclear physics, a formalism is developed to treat interactions between three relativistic nuclear particles. The concept of unitarity and a simple form of analyticity are used to construct coupled, integral, Faddeev-type equations and, with the help of analytic separable potentials, these are cast in simple, one-dimensional form. Energy-dependent potentials are introduced so as to take into account the sign-change of some phase shifts in the nucleon-nucleon interaction and parameters for these potentials are obtained. With regard to the success of such local potentials as the Yukawa potential, a recently developed method for expanding these in separable form is discussed. Finally, a new method for the numerical integration of the Faddeev equations along the real axis is introduced, thus avoiding the traditional need for contour rotations into the complex plane. (author)

  10. Twistor theory a particle-physicist attitude

    International Nuclear Information System (INIS)

    Perjes, Z.

    1979-07-01

    Particle models in twistor theory are reviewed, starting with an introduction into the kinematical-twistor formalism which describes massive particles in Minkowski space-time. The internal transformations of constituent twistors are then discussed. The quantization rules available from a study of twistor scattering situations are used to construct quantum models of fundamental particles. The theory allows the introduction of an internal space with a Kaehlerian metric where hadron structure is described by ''spherical'' states of bound constituents. It is conjectured that the spectrum of successive families of hadrons might approach an accumulation point in energy. Above this threshold energy, the Kaehlerian analog of ionization could occur wherein the zero-mass constituents (twistors) of the particle break free. (author)

  11. Particle bed reactor scaling relationships

    Science.gov (United States)

    Slovik, G.; Araj, K.; Horn, F. L.; Ludewig, H.; Benenati, R.

    The Particle Bed Reactor (PBR) concept can be used in several applications both as part of a power generating system or as a direct propulsion unit. In order to carry out optimization studies of systems involving a PBR, it is necessary to know the variation of the critical mass with pertinent system parameters such as weight, size, power level and thrust level. A parametric study is presented for all the practical combinations of fuel and moderating material. The PBR is described, the practical combinations of materials and dimensions are discussed, and an example is presented.

  12. Particle production in higher derivative theory

    Indian Academy of Sciences (India)

    Cosmological models; particle production; higher derivative theory of gravitation. PACS No. 98.80. 1. ... is of singular models where the cosmic expansion is driven by the big-bang impulse; all ... According to Gibbs integrability condition, one cannot independently specify an equa- .... [3] B Hartle and S W Hawking Phys. Rev.

  13. On three-particle scattering theory

    International Nuclear Information System (INIS)

    Kuz'michev, V.E.

    1977-01-01

    The approach proposed earlier by the author to three-particle scattering theory is discussed. This approach may prove to be useful for studying certain problems in the physics of few-nucleon systems. The corresponding equations for the partial components of the amplitudes and the potentials are obtained in the N-d scattering case

  14. Introduction to the supersymmetry theories of particles

    International Nuclear Information System (INIS)

    Fayet, P.

    We present the motivations for a supersymmetry relating bosons and fermions, and we show how the supersymmetry algebra can be naturally introduced. We study supersymmetric field theories: super Yukawa model, and gauge theories. We show how supersymmetry relates massive gauge bosons such as the W +- and Z, and Higgs bosons. We discuss spontaneous supersymmetry breaking, and its special features. We also define a new invariance R, related with a conserved quantum number carried by the supersymmetry generators. We apply these ideas to elementary particles. This leads to new particles such as spin 0 leptons and quarks, photino and gluinos; their properties are discussed in detail. We also introduce gravitation (supergravity) and we study the properties of the gravitino. Finally we comment on supersymmetric grand unified theories [fr

  15. Renormalization and scaling behaviour of eikonal perturbation theories. [Eikonal approximation

    Energy Technology Data Exchange (ETDEWEB)

    Din, A M [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Institutionen foer Teoretisk Fysik; Nielsen, N K [Aarhus Univ. (Denmark)

    1975-01-04

    Some observations on the renormalization and scaling behaviour of the charged-particle propagator in scalar quantum electrodynamics, in the ordinary eikonal approximation as well as in the eikonal perturbation theory, are reported. The conclusions indicate that scaling behaviour is not realized in the simple sense.

  16. Scaling Theory of Polyelectrolyte Nanogels

    Science.gov (United States)

    Qu, Li-Jian

    2017-08-01

    The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. Supported by China Earthquake Administration under Grant No. 20150112 and National Natural Science Foundation of China under Grant No. 21504014

  17. Scaling Theory of Polyelectrolyte Nanogels

    International Nuclear Information System (INIS)

    Qu Li-Jian

    2017-01-01

    The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. (paper)

  18. Path integral for relativistic particle theory

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Gitman, D.M.; Shvartsman, Sh.M.

    1990-06-01

    An action for a relativistic spinning particle interacting with external electromagnetic field is considered in reparametrization and local supergauge invariant form. It is shown that various path integral representations derived for the causal Green function correspond to the different forms of the relativistic particle action. The analogy of the path integral derived with the Lagrangian path integral of the field theory is discussed. It is shown that to obtain the causal propagator, the integration over the null mode of the Lagrangian multiplier corresponding to the reparametrization invariance, has to be performed in the (0,+infinity) limits. (author). 23 refs

  19. Perspectives of Penrose theory in particle physics

    International Nuclear Information System (INIS)

    Perjes, Z.

    1976-09-01

    Existing results and some conjectures in the flat-space twistor approach to fundamental particles are reviewed. A consice introduction into the twistor description of dynamical systems with rest-mass is given (both classical and quantum). The Hamiltonian structure inherent to the angular momentum twistor is analyzed. The following discussion outlines the properties of n-twistor systems, the Penrose classification of particles, the Isup(10)SU(3) group and the problem of its twistor representations. Finally, speculative arguments are propounded as to the possible bearings of hadronic quark model to twistor theory. (Sz.N.Z.)

  20. Gyrokinetic theory for particle and energy transport in fusion plasmas

    Science.gov (United States)

    Falessi, Matteo Valerio; Zonca, Fulvio

    2018-03-01

    A set of equations is derived describing the macroscopic transport of particles and energy in a thermonuclear plasma on the energy confinement time. The equations thus derived allow studying collisional and turbulent transport self-consistently, retaining the effect of magnetic field geometry without postulating any scale separation between the reference state and fluctuations. Previously, assuming scale separation, transport equations have been derived from kinetic equations by means of multiple-scale perturbation analysis and spatio-temporal averaging. In this work, the evolution equations for the moments of the distribution function are obtained following the standard approach; meanwhile, gyrokinetic theory has been used to explicitly express the fluctuation induced fluxes. In this way, equations for the transport of particles and energy up to the transport time scale can be derived using standard first order gyrokinetics.

  1. Dynamical theory of anomalous particle transport

    International Nuclear Information System (INIS)

    Meiss, J.D.; Cary, J.R.; Escande, D.F.; MacKay, R.S.; Percival, I.C.; Tennyson, J.L.

    1985-01-01

    The quasi-linear theory of transport applies only in a restricted parameter range, which does not necessarily correspond to experimental conditions. Theories are developed which extend transport calculations to the regimes of marginal stochasticity and strong turbulence. Near the stochastic threshold the description of transport involves the leakage through destroyed invariant surfaces, and the dynamical scaling theory is used to obtain a universal form for transport coefficients. In the strong-turbulence regime, there is an adiabatic invariant which is preserved except near separatrices. Breakdown of this invariant leads to a new form for the diffusion coefficient. (author)

  2. Microscopic theory of particle-vibration coupling

    Energy Technology Data Exchange (ETDEWEB)

    Colo, Gianluca; Bortignon, Pier Francesco [Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sez. di Milano, via Celoria 16, 20133 Milano (Italy); Sagawa, Hiroyuki [Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560 (Japan); Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van, E-mail: colo@mi.infn.it [Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex (France)

    2011-09-16

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  3. Microscopic theory of particle-vibration coupling

    International Nuclear Information System (INIS)

    Colo, Gianluca; Bortignon, Pier Francesco; Sagawa, Hiroyuki; Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van

    2011-01-01

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  4. Advanced concepts in particle and field theory

    CERN Document Server

    Hübsch, Tristan

    2015-01-01

    Uniting the usually distinct areas of particle physics and quantum field theory, gravity and general relativity, this expansive and comprehensive textbook of fundamental and theoretical physics describes the quest to consolidate the basic building blocks of nature, by journeying through contemporary discoveries in the field, and analysing elementary particles and their interactions. Designed for advanced undergraduates and graduate students and abounding in worked examples and detailed derivations, as well as including historical anecdotes and philosophical and methodological perspectives, this textbook provides students with a unified understanding of all matter at the fundamental level. Topics range from gauge principles, particle decay and scattering cross-sections, the Higgs mechanism and mass generation, to spacetime geometries and supersymmetry. By combining historically separate areas of study and presenting them in a logically consistent manner, students will appreciate the underlying similarities and...

  5. Inflation, large scale structure and particle physics

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences ... Hybrid inflation; Higgs scalar field; structure formation; curvation. ... We then discuss a particle physics model of supersymmetric hybrid inflation at the intermediate scale in which ... May 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board ...

  6. Lattice gauge calculation in particle theory

    International Nuclear Information System (INIS)

    Barkai, D.; Moriarty, K.J.M.; Rebbi, C.; Brookhaven National Lab., Upton, NY

    1985-01-01

    There are many problems in particle physics which cannot be treated analytically, but are amenable to numcerical solution using today's most powerful computers. Prominent among such problems are those encountered in the theory of strong interactions, where the resolution of fundamental issues such as demonstrating quark confinement or evaluating hadronic structure is rooted in a successful description of the behaviour of a very large number of dynamical variables in non-linear interaction. This paper briefly outlines the mathematical problems met in the formulation of the quantum field theory for strong interactions, the motivation for numerical methods of resolution and the algorithms which are currently being used. Such algorithms require very large amounts of memory and computation and, because of their organized structure, are ideally suited for implementation on mainframes with vectorized architecture. While the details of the actual implementation will be coverd in other contributions to this conference, this paper will present an account of the most important physics results obtained up to now and will conclude with a survey of open problems in particle theory which could be solved numerically in the near future. (orig.)

  7. Lattice gauge calculation in particle theory

    International Nuclear Information System (INIS)

    Barkai, D.; Moriarity, K.J.M.; Rebbi, C.

    1985-01-01

    There are many problems in particle physics which cannot be treated analytically, but are amenable to numerical solution using today's most powerful computers. Prominent among such problems are those encountered in the theory of strong interactions, where the resolution of fundamental issues such as demonstrating quark confinement or evaluating hadronic structure is rooted in a successful description of the behavior of a very large number of dynamical variables in non-linear interaction. This paper briefly outlines the mathematical problems met in the formulation of the quantum field theory for strong interactions, the motivation for numerical methods of resolution and the algorithms which are currently being used. Such algorithms require very large amounts of memory and computation and, because of their organized structure, are ideally suited for implementation on mainframes with vectorized architecture. While the details of the actual implementation will be covered in other contributions to this conference, this paper will present an account of the most important physics results obtained up to now and will conclude with a survey of open problems in particle theory which could be solved numerically in the near future

  8. Lattice gauge calculation in particle theory

    Energy Technology Data Exchange (ETDEWEB)

    Barkai, D [Control Data Corp., Fort Collins, CO (USA); Moriarty, K J.M. [Dalhousie Univ., Halifax, Nova Scotia (Canada). Inst. for Computational Studies; Rebbi, C [European Organization for Nuclear Research, Geneva (Switzerland); Brookhaven National Lab., Upton, NY (USA). Physics Dept.)

    1985-05-01

    There are many problems in particle physics which cannot be treated analytically, but are amenable to numcerical solution using today's most powerful computers. Prominent among such problems are those encountered in the theory of strong interactions, where the resolution of fundamental issues such as demonstrating quark confinement or evaluating hadronic structure is rooted in a successful description of the behaviour of a very large number of dynamical variables in non-linear interaction. This paper briefly outlines the mathematical problems met in the formulation of the quantum field theory for strong interactions, the motivation for numerical methods of resolution and the algorithms which are currently being used. Such algorithms require very large amounts of memory and computation and, because of their organized structure, are ideally suited for implementation on mainframes with vectorized architecture. While the details of the actual implementation will be coverd in other contributions to this conference, this paper will present an account of the most important physics results obtained up to now and will conclude with a survey of open problems in particle theory which could be solved numerically in the near future.

  9. Scale solutions and coupling constant in electrodynamics of vector particles

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Boos, E.E.; Kurennoy, S.S.

    1980-01-01

    A new approach in nonrenormalizable gauge theories is studied, the electrodynamics of vector particles being taken as an example. One and two-loop approximations in Schwinger-Dyson set of equations are considered with account for conditions imposed by gauge invariance. It is shown, that solutions with scale asymptotics can occur in this case but only for a particular value of coupling constant. This value in solutions obtained is close to the value of the fine structure constant α=1/137

  10. Scaling of cluster growth for coagulating active particles

    Science.gov (United States)

    Cremer, Peet; Löwen, Hartmut

    2014-02-01

    Cluster growth in a coagulating system of active particles (such as microswimmers in a solvent) is studied by theory and simulation. In contrast to passive systems, the net velocity of a cluster can have various scalings dependent on the propulsion mechanism and alignment of individual particles. Additionally, the persistence length of the cluster trajectory typically increases with size. As a consequence, a growing cluster collects neighboring particles in a very efficient way and thus amplifies its growth further. This results in unusual large growth exponents for the scaling of the cluster size with time and, for certain conditions, even leads to "explosive" cluster growth where the cluster becomes macroscopic in a finite amount of time.

  11. Particle versus field structure in conformal quantum field theories

    International Nuclear Information System (INIS)

    Schroer, Bert

    2000-06-01

    I show that a particle structure in conformal field theory is incompatible with interactions. As a substitute one has particle-like excitations whose interpolating fields have in addition to their canonical dimension an anomalous contribution. The spectra of anomalous dimension is given in terms of the Lorentz invariant quadratic invariant (compact mass operator) of a conformal generator R μ with pure discrete spectrum. The perturbative reading of R o as a Hamiltonian in its own right, associated with an action in a functional integral setting naturally leads to the Ad S formulation. The formal service role of Ad S in order to access C QFT by a standard perturbative formalism (without being forced to understand first massive theories and then taking their scale-invariant limit) vastly increases the realm of conventionally accessible 4-dim. C QFT beyond those for which one had to use Lagrangians with supersymmetry in order to have a vanishing Beta-function. (author)

  12. Testing particle filters on convective scale dynamics

    Science.gov (United States)

    Haslehner, Mylene; Craig, George. C.; Janjic, Tijana

    2014-05-01

    Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical

  13. Scale-by-scale contributions to Lagrangian particle acceleration

    Science.gov (United States)

    Lalescu, Cristian C.; Wilczek, Michael

    2017-11-01

    Fluctuations on a wide range of scales in both space and time are characteristic of turbulence. Lagrangian particles, advected by the flow, probe these fluctuations along their trajectories. In an effort to isolate the influence of the different scales on Lagrangian statistics, we employ direct numerical simulations (DNS) combined with a filtering approach. Specifically, we study the acceleration statistics of tracers advected in filtered fields to characterize the smallest temporal scales of the flow. Emphasis is put on the acceleration variance as a function of filter scale, along with the scaling properties of the relevant terms of the Navier-Stokes equations. We furthermore discuss scaling ranges for higher-order moments of the tracer acceleration, as well as the influence of the choice of filter on the results. Starting from the Lagrangian tracer acceleration as the short time limit of the Lagrangian velocity increment, we also quantify the influence of filtering on Lagrangian intermittency. Our work complements existing experimental results on intermittency and accelerations of finite-sized, neutrally-buoyant particles: for the passive tracers used in our DNS, feedback effects are neglected such that the spatial averaging effect is cleanly isolated.

  14. Research program in elementary particle theory. Progress report, 1984

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Dicus, D.A.

    1984-04-01

    Research progress is reported on the following topics: gauge theory and monopole physics; supersymmetry and proton decay; strong interactions and model of particles; quantum rotator and spectrum generating group models of particles; geometric foundations of particle physics and optics; and application of particle physics to astrophysics. The titles of DOE reports are listed, and research histories of the scientific staff of the Center for Particle Theory are included

  15. The number of elementary particles in a fractal M-theory of 11.2360667977 dimensions

    International Nuclear Information System (INIS)

    He, J.-H.

    2007-01-01

    It is generally accepted that there are 60 experimentally found particles. The standard model strongly predicts two more hypothetical particles, the Higgs and the graviton. This paper reveals other possible scenario for predicting 69 particles at different energy scales in 11+φ 3 fractal dimensions of a fractal M theory, where φ=(5-1)/2. A modified Newton's law is suggested to experimentally verify our predictions at extremely small quantum scales. The modified Newton's law is in harmony with Heisenberg's uncertainty principle

  16. Pseudo-classical theory of Majorana-Weyl particle

    International Nuclear Information System (INIS)

    Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.

    1996-01-01

    A pseudo-classical theory of Weyl particle in the space-time dimensions D = 2 n is constructed. The canonical quantization of that pseudo-classical theory is carried out and it results in the theory of the D = 2 n dimensional Weyl particle in the Foldy-Wouthuysen representation. 28 refs

  17. Theory of conductivity of chiral particles

    International Nuclear Information System (INIS)

    Kailasvuori, Janik; Šopík, Břetislav; Trushin, Maxim

    2013-01-01

    In this methodology focused paper we scrutinize the application of the band-coherent Boltzmann equation approach to calculating the conductivity of chiral particles. As the ideal testing ground we use the two-band kinetic Hamiltonian with an N-fold chiral twist that arises in a low-energy description of charge carriers in rhombohedrally stacked multilayer graphene. To understand the role of chirality in the conductivity of such particles we also consider the artificial model with the chiral winding number decoupled from the power of the dispersion. We first utilize the approximate but analytically solvable band-coherent Boltzmann approach including the ill-understood principal value terms that are a byproduct of several quantum many-body theory derivations of Boltzmann collision integrals. Further on, we employ the finite-size Kubo formula with the exact diagonalization of the total Hamiltonian perturbed by disorder. Finally, we compare several choices of Ansatz in the derivation of the Boltzmann equation according to the qualitative agreement between the Boltzmann and Kubo conductivities. We find that the best agreement can be reached in the approach where the principal value terms in the collision integral are absent. (paper)

  18. Wigner particle theory and local quantum physics

    International Nuclear Information System (INIS)

    Fassarella, Lucio; Schroer, Bert

    2002-01-01

    Wigner's irreducible positive energy representations of the Poincare group are often used to give additional justifications for the Lagrangian quantization formalism of standard QFT. Here we study another more recent aspect. We explain in this paper modular concepts by which we are able to construct the local operator algebras for all standard positive energy representations directly without going through field coordinations. In this way the artificial emphasis on Lagrangian field coordinates is avoided from the very beginning. These new concepts allow to treat also those cases of 'exceptional' Wigner representations associated with anyons and the famous Wigner spin tower which have remained inaccessible to Lagrangian quantization. Together with the d=1+1 factorizing models (whose modular construction has been studied previously), they form an interesting family of theories with a rich vacuum-polarization structure (but no on shell real particle creation) to which the modular methods can be applied for their explicit construction. We explain and illustrate the algebraic strategy of this construction. We also comment on possibilities of formulating the Wigner theory in a setting of a noncommutativity. (author)

  19. Wigner particle theory and local quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Fassarella, Lucio; Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: fassarel@cbpf.br; schroer@cbpf.br

    2002-01-01

    Wigner's irreducible positive energy representations of the Poincare group are often used to give additional justifications for the Lagrangian quantization formalism of standard QFT. Here we study another more recent aspect. We explain in this paper modular concepts by which we are able to construct the local operator algebras for all standard positive energy representations directly without going through field coordinations. In this way the artificial emphasis on Lagrangian field coordinates is avoided from the very beginning. These new concepts allow to treat also those cases of 'exceptional' Wigner representations associated with anyons and the famous Wigner spin tower which have remained inaccessible to Lagrangian quantization. Together with the d=1+1 factorizing models (whose modular construction has been studied previously), they form an interesting family of theories with a rich vacuum-polarization structure (but no on shell real particle creation) to which the modular methods can be applied for their explicit construction. We explain and illustrate the algebraic strategy of this construction. We also comment on possibilities of formulating the Wigner theory in a setting of a noncommutativity. (author)

  20. Scaling of Theory-of-Mind Tasks

    Science.gov (United States)

    Wellman, Henry M.; Liu, David

    2004-01-01

    Two studies address the sequence of understandings evident in preschoolers' developing theory of mind. The first, preliminary study provides a meta-analysis of research comparing different types of mental state understandings (e.g., desires vs. beliefs, ignorance vs. false belief). The second, primary study tests a theory-of-mind scale for…

  1. Research program in elementary-particle theory, 1981. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1981-01-01

    Progress is reported for research in the physics of ultra high energies and cosmology, the phenomenology of particle physics, composite models of particles and quantum field theory, quantum mechanics, geometric formulations, fiber bundles, and other algebraic models

  2. Scaling during capillary thinning of particle-laden drops

    Science.gov (United States)

    Thete, Sumeet; Wagoner, Brayden; Basaran, Osman

    2017-11-01

    A fundamental understanding of drop formation is crucial in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, the about-to-form drop is connected to the fluid hanging from the nozzle via a thinning filament. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids using theory, simulations, and experiments. In some of the applications however, the forming drop and hence the thinning filament may contain solid particles. The thinning dynamics of such particle-laden filaments differs radically from that of particle-free filaments. Moreover, our understanding of filament thinning in the former case is poor compared to that in the latter case despite the growing interest in pinch-off of particle-laden filaments. In this work, we go beyond similar studies and experimentally explore the impact of solid particles on filament thinning by measuring both the radial and axial scalings in the neck region. The results are summarized in terms of a phase diagram of capillary thinning of particle-laden filaments.

  3. Chemical theory and modelling through density across length scales

    International Nuclear Information System (INIS)

    Ghosh, Swapan K.

    2016-01-01

    One of the concepts that has played a major role in the conceptual as well as computational developments covering all the length scales of interest in a number of areas of chemistry, physics, chemical engineering and materials science is the concept of single-particle density. Density functional theory has been a versatile tool for the description of many-particle systems across length scales. Thus, in the microscopic length scale, an electron density based description has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. Density concept has been used in the form of single particle number density in the intermediate mesoscopic length scale to obtain an appropriate picture of the equilibrium and dynamical processes, dealing with a wide class of problems involving interfacial science and soft condensed matter. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related property density functions has been found to be quite appropriate. The basic ideas underlying the versatile uses of the concept of density in the theory and modelling of materials and phenomena, as visualized across length scales, along with selected illustrative applications to some recent areas of research on hydrogen energy, soft matter, nucleation phenomena, isotope separation, and separation of mixture in condensed phase, will form the subject matter of the talk. (author)

  4. Quantum field theory of point particles and strings

    CERN Document Server

    Hatfield, Brian

    1992-01-01

    The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.

  5. Massive neutral particles on heterotic string theory

    International Nuclear Information System (INIS)

    Olivares, Marco; Villanueva, J.R.

    2013-01-01

    The motion of massive particles in the background of a charged black hole in heterotic string theory, which is characterized by a parameter α, is studied in detail in this paper. Since it is possible to write this space-time in the Einstein frame, we perform a quantitative analysis of the time-like geodesics by means of the standard Lagrange procedure. Thus, we obtain and solve a set of differential equations and then we describe the orbits in terms of the elliptic p-Weierstrass function. Also, by making an elementary derivation developed by Cornbleet (Am. J. Phys. 61(7):650-651, 1993) we obtain the correction to the angle of advance of perihelion to first order in α, and thus, by comparing with Mercury's data we give an estimation for the value of this parameter, which yields an heterotic solar charge Q s un ≅ 0.728 [Km]=0.493 M s un. Therefore, in addition to the study on null geodesics performed by Fernando (Phys. Rev. D 85:024033, 2012), this work completes the geodesic structure for this class of space-time. (orig.)

  6. Massive neutral particles on heterotic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, Marco [Pontificia Universidad de Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Villanueva, J.R. [Universidad de Valparaiso, Departamento de Fisica y Astronomia, Valparaiso (Chile); Centro de Astrofisica de Valparaiso, Valparaiso (Chile)

    2013-12-15

    The motion of massive particles in the background of a charged black hole in heterotic string theory, which is characterized by a parameter {alpha}, is studied in detail in this paper. Since it is possible to write this space-time in the Einstein frame, we perform a quantitative analysis of the time-like geodesics by means of the standard Lagrange procedure. Thus, we obtain and solve a set of differential equations and then we describe the orbits in terms of the elliptic p-Weierstrass function. Also, by making an elementary derivation developed by Cornbleet (Am. J. Phys. 61(7):650-651, 1993) we obtain the correction to the angle of advance of perihelion to first order in {alpha}, and thus, by comparing with Mercury's data we give an estimation for the value of this parameter, which yields an heterotic solar charge Q{sub s}un {approx_equal} 0.728 [Km]=0.493 M{sub s}un. Therefore, in addition to the study on null geodesics performed by Fernando (Phys. Rev. D 85:024033, 2012), this work completes the geodesic structure for this class of space-time. (orig.)

  7. Progress in elementary particle theory, 1950-1964

    International Nuclear Information System (INIS)

    Gell-Mann, M.

    1989-01-01

    This final chapter of the book lists advances in elementary particle theory from 1950 to 1964 in an order of progressive understanding of ideas rather than chronologically. Starting with quantum field theory and the important discoveries within it, the author explains the connections and items missing in this decade, but understood later. The second part of the chapter takes the same pattern, but deals with basic interactions (strong, electromagnetic, weak and gravitational) and elementary particles, including quarks. By 1985, theory had developed to such a degree that it was hoped that the long-sought-after unified field theory of all elementary particles and interactions of nature might be close at hand. (UK)

  8. Mathematical theories of classical particle channeling in perfect crystals

    International Nuclear Information System (INIS)

    Dumas, H. Scott

    2005-01-01

    We present an overview of our work on rigorous mathematical theories of channeling for highly energetic positive particles moving in classical perfect crystal potentials. Developed over the last two decades, these theories include: (i) a comprehensive, highly mathematical theory based on Nekhoroshev's theorem which embraces both axial and planar channeling as well as certain non-channeling particle motions (ii) a theory of axial channeling for relativistic particles based on a single-phase averaging method for ordinary differential equations and (iii) a theory of planar channeling for relativistic particles based on a two-phase averaging method for ordinary differential equations. Here we touch briefly on (i) and (ii), then focus on (iii). Together these theories place Lindhard's continuum model approximations on a firm mathematical foundation, and should serve as the starting point for more refined mathematical treatments of channeling

  9. Finite size scaling and lattice gauge theory

    International Nuclear Information System (INIS)

    Berg, B.A.

    1986-01-01

    Finite size (Fisher) scaling is investigated for four dimensional SU(2) and SU(3) lattice gauge theories without quarks. It allows to disentangle violations of (asymptotic) scaling and finite volume corrections. Mass spectrum, string tension, deconfinement temperature and lattice β-function are considered. For appropriate volumes, Monte Carlo investigations seem to be able to control the finite volume continuum limit. Contact is made with Luescher's small volume expansion and possibly also with the asymptotic large volume behavior. 41 refs., 19 figs

  10. A scale distortion theory of anchoring.

    Science.gov (United States)

    Frederick, Shane W; Mochon, Daniel

    2012-02-01

    We propose that anchoring is often best interpreted as a scaling effect--that the anchor changes how the response scale is used, not how the focal stimulus is perceived. Of importance, we maintain that this holds true even for so-called objective scales (e.g., pounds, calories, meters, etc.). In support of this theory of scale distortion, we show that prior exposure to a numeric standard changes respondents' use of that specific response scale but does not generalize to conceptually affiliated judgments rendered on similar scales. Our findings highlight the necessity of distinguishing response language effects from representational effects in places where the need for that distinction has often been assumed away.

  11. Uses of solid state analogies in elementary particle theory

    International Nuclear Information System (INIS)

    Anderson, P.W.

    1976-01-01

    The solid state background of some of the modern ideas of field theory is reviewed, and additional examples of model situations in solid state or many-body theory which may have relevance to fundamental theories of elementary particles are adduced

  12. Scaling in the sine-Gordon theory

    International Nuclear Information System (INIS)

    Ben-Abraham, S.I.

    1976-01-01

    It is shown that both the classical and the quantum sine-Gordon theory depend on a single scaling parameter and therefore the coupling constant cannot be freely chosen. To introduce a meaningful coupling constant it is proposed to include higher Fourier terms in the sine-Gordon potential. The two term case is exactly solvable. (Auth.)

  13. Test-particle motion in Einstein's unified field theory. I. General theory and application to neutral test particles

    International Nuclear Information System (INIS)

    Johnson, C.R.

    1985-01-01

    We develop a method for finding the exact equations of structure and motion of multipole test particles in Einstein's unified field theory: the theory of the nonsymmetric field. The method is also applicable to Einstein's gravitational theory. Particles are represented by singularities in the field. The method is covariant at each step of the analysis. We also apply the method and find both in Einstein's unified field theory and in Einstein's gravitational theory the equations of structure and motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In the case of Einstein's gravitational theory the results are the well-known equations of structure and motion of a neutral pole-dipole test particle in a given background gravitational field. In the case of Einstein's unified field theory the results are the same, providing we identify a certain symmetric second-rank tensor field appearing in Einstein's theory with the metric and gravitational field. We therefore discover not only the equations of structure and motion of a neutral test particle in Einstein's unified field theory, but we also discover what field in Einstein's theory plays the role of metric and gravitational field

  14. Model building with a dynamical volume element in gravity, particle theory and theories of extended object

    International Nuclear Information System (INIS)

    Guendelman, E.

    2004-01-01

    Full Text:The Volume Element of Space Time can be considered as a geometrical object which can be independent of the metric. The use in the action of a volume element which is metric independent leads to the appearance of a measure of integration which is metric independent. This can be applied to all known generally coordinate invariant theories, we will discuss three very important cases: 1. 4-D theories describing gravity and matter fields, 2. Parametrization invariant theories of extended objects and 3. Higher dimensional theories including gravity and matter fields. In case 1, a large number of new effects appear: (i) spontaneous breaking of scale invariance associated to integration of degrees of freedom related to the measure, (ii) under normal particle physics laboratory conditions fermions split into three families, but when matter is highly diluted, neutrinos increase their mass and become suitable candidates for dark matter, (iii) cosmic coincidence between dark energy and dark matter is natural, (iv) quintessence scenarios with automatic decoupling of the quintessence scalar to ordinary matter, but not dark matter are obtained (2) For theories or extended objects, the use of a measure of integration independent of the metric leads to (i) dynamical tension, (ii) string models of non abelian confinement (iii) The possibility of new Weyl invariant light-like branes (WTT.L branes). These Will branes dynamically adjust themselves to sit at black hole horizons and in the context of higher dimensional theories can provide examples of massless 4-D particles with nontrivial Kaluza Klein quantum numbers, (3) In Bronx and Kaluza Klein scenarios, the use of a measure independent of the metric makes it possible to construct naturally models where only the extra dimensions get curved and the 4-D observable space-time remain flat

  15. Task A: Theory of elementary particles

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Soper, D.E.

    1992-01-01

    Brief summaries of work are given in the following areas: grandunification, properties of neutrinos, rare decays of heavy quarks, jet production in hadron collisions (theory, structure, two-jet cross section, null-plane field theory), neutrino physics, and QCD calculations of annihilation of e + e - into hadrons

  16. Quantum field theory and the internal states of elementary particles

    CSIR Research Space (South Africa)

    Greben, JM

    2011-01-01

    Full Text Available A new application of quantum field theory is developed that gives a description of the internal dynamics of dressed elementary particles and predicts their masses. The fermionic and bosonic quantum fields are treated as interdependent fields...

  17. Renormalization and operator product expansion in theories with massless particles

    International Nuclear Information System (INIS)

    Anikin, S.A.; Smirnov, V.A.

    1985-01-01

    Renormalization procedure in theories including massless particles is presented. With the help of counterterm formalism the operator product expansion for arbitrary composite fields is derived. The coefficient functions are explicitly expressed in terms of certain Green's functions. (author)

  18. When is quasi-linear theory exact. [particle acceleration

    Science.gov (United States)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  19. Electrodynamics in scale-covariant gravity theory

    International Nuclear Information System (INIS)

    Mansfield, V.N.; Malin, S.

    1980-01-01

    Utilizing the inherent scale-invariance of Maxwell's Equations, classical electrodynamics is incorporated into the theory of scale-invariant gravity. In this incorporation the gravitational constant G is shown to transform like β -2 (β is the gauge function), the generalized Lorentz Force Law is derived, the electric charge is shown to be invariant under gauge transformation, and matter creation is shown to be a necessity. In all nontrivial gauges a modified version of QED is obtained. The deviation from standard QED, however, is shown to be beyond the range of experimental detection when G α β -2 . (orig.)

  20. General algebraic theory of identical particle scattering

    International Nuclear Information System (INIS)

    Bencze, G.; Redish, E.F.

    1978-01-01

    We consider the nonrelativistic N-body scattering problem for a system of particles in which some subsets of the particles are identical. We demonstrate how the particle identity can be included in a general class of linear integral equations for scattering operators or components of scattering operators. The Yakubovskii, Yakubovskii--Narodestkii, Rosenberg, and Bencze--Redish--Sloan equations are included in this class. Algebraic methods are used which rely on the properties of the symmetry group of the system. Operators depending only on physically distinguishable labels are introduced and linear integral equations for them are derived. This procedure maximally reduces the number of coupled equations while retaining the connectivity properties of the original equations

  1. Quantum theory of many-particle systems

    CERN Document Server

    Fetter, Alexander L

    2003-01-01

    ""Singlemindedly devoted to its job of educating potential many-particle theorists…deserves to become the standard text in the field."" - Physics Today""The most comprehensive textbook yet published in its field and every postgraduate student or teacher in this field should own or have access to a copy."" - EndeavorA self-contained, unified treatment of nonrelativistic many-particle systems, this text offers a solid introduction to procedures in a manner that enables students to adopt techniques for their own use. Its discussions of formalism and applications move easily between general theo

  2. Relativistic scattering theory of charged spinless particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Hannemann, M.

    1986-01-01

    In the context of relativistic quantum mechanics the scattering is discussed of two and three charged spinless particles. The corresponding transition operators are shown to satisfy four-dimensional Lippmann-Schwinger and eight-dimensional Faddeev-type equations, respectively. A simplified model of two particles with Coulomb interaction can be solved exactly. Calculations have been made of (i) the partial wave S-matrix from which the bound state spectrum has been extracted; the latter agrees with a fourth-order result of Schwinger; (ii) the full scattering amplitude which in the weak-field limit coincides with the expression derived by Fried et al. from eikonalized QED. (author)

  3. Gaussian-3 theory using scaled energies

    International Nuclear Information System (INIS)

    Curtiss, Larry A.; Raghavachari, Krishnan; Redfern, Paul C.; Pople, John A.

    2000-01-01

    A modification of Guassian-3 (G3) theory using multiplicative scale factors, instead of the additive higher level correction, is presented. In this method, referred to as G3S, the correlation energy is scaled by five parameters and the Hartree-Fock energy by one parameter. The six parameters are fitted to the G2/97 test set of 299 energies and the resulting mean absolute deviation from experiment is 0.99 kcal/mol compared to 1.01 kcal/mol for G3 theory. The G3S method has the advantage compared to G3 theory in that it can be used for studying potential energy surfaces where the products and reactants have a different number of paired electrons. In addition, versions of the computationally less intensive G3(MP3) and G3(MP2) methods that use scaled energies are also presented. These methods, referred to as G3S(MP3) and G3S(MP2), have mean absolute deviations of 1.16 and 1.35 kcal/mol, respectively. (c) 2000 American Institute of Physics

  4. Review of the particle scattering theory in rocket technique application

    International Nuclear Information System (INIS)

    Wang Fuheng; Ma Fang

    1990-01-01

    Three calculation methods of scattering cross section have been discussed. Particle scattering theory and its concrete calculation, existing problems and further development have been also studied. The developement of theoretical aspects of particles scattering in rocket exhaust plume was concerned in this paper

  5. Research program in elementary-particle theory, 1983. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1983-08-01

    Progress is reviewed on the following topics: physics of ultra high energies and cosmology; phenomenology of particle physics; quantum field theory, supersymmetry and models of particles; and geometric formulations and algebraic models. Recent DOE reports resulting from the contract are listed

  6. Research program in elementary-particle theory, 1983. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E C.G.; Ne& #x27; eman, Y

    1983-08-01

    Progress is reviewed on the following topics: physics of ultra high energies and cosmology; phenomenology of particle physics; quantum field theory, supersymmetry and models of particles; and geometric formulations and algebraic models. Recent DOE reports resulting from the contract are listed. (WHK)

  7. Particle theory and intense hadron facilities

    International Nuclear Information System (INIS)

    Ng, J.N.

    1989-05-01

    A brief overview of particle physics that can be done at an intense hadron facility (IHF) is given. The emphasis is placed on testing the standard model, light Higgs boson searches and CP violation, which are areas an IHF can do especially well

  8. Research program in elementary particle theory, 1980. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1980-01-01

    Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification

  9. Research program in elementary particle theory, 1980. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E. C.G.; Ne' eman, Y.

    1980-01-01

    Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification. (GHT)

  10. Large-scale assembly of colloidal particles

    Science.gov (United States)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  11. Fundamental theories of waves and particles formulated without classical mass

    Science.gov (United States)

    Fry, J. L.; Musielak, Z. E.

    2010-12-01

    Quantum and classical mechanics are two conceptually and mathematically different theories of physics, and yet they do use the same concept of classical mass that was originally introduced by Newton in his formulation of the laws of dynamics. In this paper, physical consequences of using the classical mass by both theories are explored, and a novel approach that allows formulating fundamental (Galilean invariant) theories of waves and particles without formally introducing the classical mass is presented. In this new formulation, the theories depend only on one common parameter called 'wave mass', which is deduced from experiments for selected elementary particles and for the classical mass of one kilogram. It is shown that quantum theory with the wave mass is independent of the Planck constant and that higher accuracy of performing calculations can be attained by such theory. Natural units in connection with the presented approach are also discussed and justification beyond dimensional analysis is given for the particular choice of such units.

  12. Deep inelastic scaling in nuclear and particle physics

    International Nuclear Information System (INIS)

    West, G.B.

    1988-01-01

    These lectures are intended to be a pedagogical introduction to some of the ideas and concepts concerning scaling phenomena which arise in nuclear and particle physics. Topics discussed are: classical scaling and dimensional analysis; non-relativistic treatment; dynamics and scaling; y-scaling; and relativistic treatment (QCD). 22 refs., 16 figs

  13. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Rosenzweig, C.; Schechter, J.; Wali, K.C.

    1992-01-01

    In this paper we give a brief account of the work of the group during the past year. The topics covered here include (1) Effective Lagrangians and Solitons; (2) Chern-Simons and Conformal Field Theories; (3) Spin and Statistics; (4) The Standard Model and Beyond; (5) Non-Abelian Monopoles; (6) The Inflationary Universe; (7) The Hubbard Model, and (8) Miscellaneous

  14. Statistical theory of correlations in random packings of hard particles.

    Science.gov (United States)

    Jin, Yuliang; Puckett, James G; Makse, Hernán A

    2014-05-01

    A random packing of hard particles represents a fundamental model for granular matter. Despite its importance, analytical modeling of random packings remains difficult due to the existence of strong correlations which preclude the development of a simple theory. Here, we take inspiration from liquid theories for the n-particle angular correlation function to develop a formalism of random packings of hard particles from the bottom up. A progressive expansion into a shell of particles converges in the large layer limit under a Kirkwood-like approximation of higher-order correlations. We apply the formalism to hard disks and predict the density of two-dimensional random close packing (RCP), ϕ(rcp) = 0.85 ± 0.01, and random loose packing (RLP), ϕ(rlp) = 0.67 ± 0.01. Our theory also predicts a phase diagram and angular correlation functions that are in good agreement with experimental and numerical data.

  15. Characterization of particle states in relativistic classical quantum theory

    International Nuclear Information System (INIS)

    Horwitz, L.P.; Rabin, Y.

    1977-02-01

    Classical and quantum relativistic mechanics are studied. The notion of a ''particle'' is defined in the classical case and the interpretation of mechanics in space-time is clarified. These notions are carried over to the quantum theory, as much as possible. The relation between the results of Feyman's path integral approach and the theory of Horwitz and Piron is discussed. The ''particle'' interpretation is shown to imply an asymptotic condition for scattering. A general method of constructing the dynamical mass spectrum of composite ''particle'' states is discussed. An interference experiment is proposed to affirm the interpretation and applicability of Stueckelberg type wave functions for actual physical phenomena. Some discussion of the relation of this relativistic quantum theory to Feynman's approach to quantum field theory is also given

  16. Probing the frontiers of particle physics with tabletop-scale experiments.

    Science.gov (United States)

    DeMille, David; Doyle, John M; Sushkov, Alexander O

    2017-09-08

    The field of particle physics is in a peculiar state. The standard model of particle theory successfully describes every fundamental particle and force observed in laboratories, yet fails to explain properties of the universe such as the existence of dark matter, the amount of dark energy, and the preponderance of matter over antimatter. Huge experiments, of increasing scale and cost, continue to search for new particles and forces that might explain these phenomena. However, these frontiers also are explored in certain smaller, laboratory-scale "tabletop" experiments. This approach uses precision measurement techniques and devices from atomic, quantum, and condensed-matter physics to detect tiny signals due to new particles or forces. Discoveries in fundamental physics may well come first from small-scale experiments of this type. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Theory of intense beams of charged particles

    CERN Document Server

    Hawkes, Peter W

    2011-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. * Contributions from leading international scholars and industry experts * Discusses hot topic areas and presents current and future research trends * Invaluable reference and guide for physicists, engineers and mathematicians.

  18. The mode coupling theory in the FDR-preserving field theory of interacting Brownian particles

    International Nuclear Information System (INIS)

    Kim, Bongsoo; Kawasaki, Kyozi

    2007-01-01

    We develop a renormalized perturbation theory for the dynamics of interacting Brownian particles, which preserves the fluctuation-dissipation relation order by order. We then show that the resulting one-loop theory gives a closed equation for the density correlation function, which is identical with that in the standard mode coupling theory. (fast track communication)

  19. Large scale particle image velocimetry with helium filled soap bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Bosbach, Johannes; Kuehn, Matthias; Wagner, Claus [German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Goettingen (Germany)

    2009-03-15

    The application of particle image velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of computational fluid dynamics simulations. (orig.)

  20. Large scale particle image velocimetry with helium filled soap bubbles

    Science.gov (United States)

    Bosbach, Johannes; Kühn, Matthias; Wagner, Claus

    2009-03-01

    The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.

  1. Particle production in higher derivative theory

    Indian Academy of Sciences (India)

    gravity which have attracted attention in studies of the early universe [1–4]. The infla- ... Attractive features of these models are that they provide a mechanism to generate the small scale .... where N¼ is an integration constant. Equation (15) ...

  2. Relativistic mechanics of two interacting particles and bilocal theory

    International Nuclear Information System (INIS)

    Takabayasi, Takehiko

    1975-01-01

    New relativistic mechanics of two-particle system is set forth, where the two constituent particles are interacting by an arbitrary (central) action-at-a-distance. The fundamental equations are presented in a form covariant under general transformation of parameters parametrizing the world lines of constituent particles. The theory represents the proper relativistic generalization of the usual Newtonian mechanics in the sense that it tends in the non-relativistic (and weak interaction) limit to the usual mechanics of two particles moving under a corresponding non-relativistic potential. For the analysis of theory it is convenient to choose a certain particular gauge (i.e., parametrization) fixed by two gauge relations. This brings the theory to a canonical formalism accompanied by two weak equations, and in this gauge quantization can be performed. The result verifies that the relativistic quantum mechanics for two particles interacting by an action-at-a-distance is just represented by a bilocal wave equation and a subsidiary condition, with the clarification of its correspondence-theoretical foundation and internal dynamics. As an example the case of Hooke-type force is illustrated, where the internal motions are elliptic oscillations in the center-of-mass frame. Its quantum theory just reproduces the original form of bilocal theory giving bound states lying on a straightly rising trajectory and on its daughter trajectories. (auth.)

  3. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Rosenzweig, C.; Schechter, J.; Wali, K.C.

    1990-01-01

    Discussed in this paper is a brief account of the research work of the principal investigators and their co-workers during the past few years. The topics covered include: Topology in Physics; Skyrme Model; High Temperature Superconductivity; fractional statistics, and generalized spin statistics theorem; QCD as a dual chromomagnetic superconductor; confinement and string picture in QCD; quark gluon plasmas; cosmic strings; effective Lagrangians for QCD; ''proton spin,'' ''strange content'' and related topics; physical basis of the Skyrme model; gauge theories and weak interactions; grand unification; Universal ''see saw mechanism''; abelian and non-abelian interactions of a test string

  4. Density Functional Theory and Materials Modeling at Atomistic Length Scales

    Directory of Open Access Journals (Sweden)

    Swapan K. Ghosh

    2002-04-01

    Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.

  5. Asymptotic kinetic theory of magnetized plasmas: quasi-particle concept

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Zagorodny, A.H.

    2004-01-01

    The asymptotic kinetic theory of magnetized plasmas is elaborated within the context of general statistical approach and asymptotic methods, developed by M. Krylov and M. Bohol'ubov, for linear and non-linear dynamic systems with a rapidly rotating phase. The quasi-particles are introduced already on the microscopic level. Asymptotic expansions enable to close the description for slow processes, and to relate consistently particles and guiding centres to quasi-particles. The kinetic equation for quasi-particles is derived. It makes a basis for the reduced description of slow collective phenomena in the medium. The kinetic equation for quasi-particles takes into account self-consistent interaction fields, quasi-particle collisions and collective-fluctuation-induced relaxation of quasi-particle distribution function. The relationships between the distribution functions for particles, guiding centres and quasi-particles are derived taking into account fluctuations, which can be especially important in turbulent states. In this way macroscopic (statistical) particle properties can be obtained from those of quasi-particles in the general case of non-equilibrium. (authors)

  6. On the character of scale symmetry breaking in gauge theories

    International Nuclear Information System (INIS)

    Gusijnin, V.P.; Kushnir, V.A.; Miransky, V.A.

    1988-01-01

    The problem of scale symmetry breaking in gauge theories is discussed. It is shown that the phenomenon of spontaneous breaking of scale symmetry in gauge theories is incompatible with the PCAAC dynamics. 12 refs

  7. Entanglement in Quantum Field Theory: particle mixing and oscillations

    International Nuclear Information System (INIS)

    Blasone, M; Dell'Anno, F; De Siena, S; Illuminati, F

    2013-01-01

    The phenomena of particle mixing and flavor oscillations in elementary particle physics are associated with multi-mode entanglement of single-particle states. We show that, in the framework of quantum field theory, these phenomena exhibit a fine structure of quantum correlations, as multi-mode multi-particle entanglement appears. Indeed, the presence of anti-particles adds further degrees of freedom, thus providing nontrivial contributions both to flavor entanglement and, more generally, to multi-partite entanglement. By using the global entanglement measure, based on the linear entropies associated with all the possible bipartitions, we analyze the entanglement in the multiparticle states of two-flavor neutrinos and anti-neutrinos. A direct comparison with the instance of the quantum mechanical Pontecorvo single-particle states is also performed.

  8. Experimental signature of scaling violation implied by field theories

    International Nuclear Information System (INIS)

    Tung, W.

    1975-01-01

    Renormalizable field theories are found to predict a surprisingly specific pattern of scaling violation in deep inelastic scattering. Comparison with experiments is discussed. The feasibility of distinguishing asymptotically free field theories from conventional field theories is evaluated

  9. Elementary particle theory in Japan, 1930-1960

    International Nuclear Information System (INIS)

    Brown, L.M.; Kawabe, Rokuo; Konuma, Michiji; Maki, Ziro

    1991-01-01

    The present volume consists of the combined proceedings of two Japan-USA Collaborative Workshops, organized to explore historical developments of particle theory in Japan during the period 1930-1960, i.e., the three decades that include the birth and development of Meson Theory. The first phase of workshops was held during September 1978-July 1979 and the second during July 1984-September 1985. The original versions of these proceedings were published informally; namely, the former was distributed as a series of preprints of the Yukawa Institute (then called RIFP) entitled 'Particle Physics in Japan, 1930-50 Vol. I, II' (RIFP-407 and -408, September 1980); the latter was issued in the form of camera-ready printing from Yukawa Hall Archival Library (YHAL) in May 1988, under the title 'Elementary Particle Theory in Japan, 1935-1960'. Only a small number of copies were printed for both sets of proceedings due to financial limitations of the project. (author)

  10. Problems in particle theory. Technical report - 1993--1994

    International Nuclear Information System (INIS)

    Adler, S.L.; Wilczek, F.

    1994-10-01

    This report is a progress report on the work of two principal investigators in the broad area of particle physics theory, covering their personal work, that of their coworkers, and their proposed work for the future. One author has worked in the past on various topics in field theory and particle physics, among them current algebras, the physics of neutrino induced reactions, quantum electrodynamics (including strong magnetic field processes), the theory of the axial-vector current anomaly, topics in quantum gravity, and nonlinear models for quark confinement. While much of his work has been analytical, all of the projects listed above (except for the work on gravity) had phases which required considerable computer work as well. Over the next several years, he proposes to continue or initiate research on the following problems: (1) Acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, and more generally, new research in computational neuroscience and pattern recognition. (2) Construction of quaternionic generalizations of complex quantum mechanics and field theory, and their application to composite models of quarks and leptons, and to the problem of unifying quantum theories of matter with general relativity. One author has worked on problems in exotic quantum statistics and its applications to condensed matter systems. His work has also continued on the quantum theory of black holes. This has evolved toward understanding properties of quantum field theory and string theory in incomplete regions of flat space

  11. Scaling theory for the quasideterministic limit of continuous bifurcations.

    Science.gov (United States)

    Kessler, David A; Shnerb, Nadav M

    2012-05-01

    Deterministic rate equations are widely used in the study of stochastic, interacting particles systems. This approach assumes that the inherent noise, associated with the discreteness of the elementary constituents, may be neglected when the number of particles N is large. Accordingly, it fails close to the extinction transition, when the amplitude of stochastic fluctuations is comparable with the size of the population. Here we present a general scaling theory of the transition regime for spatially extended systems. We demonstrate this through a detailed study of two fundamental models for out-of-equilibrium phase transitions: the Susceptible-Infected-Susceptible (SIS) that belongs to the directed percolation equivalence class and the Susceptible-Infected-Recovered (SIR) model belonging to the dynamic percolation class. Implementing the Ginzburg criteria we show that the width of the fluctuation-dominated region scales like N^{-κ}, where N is the number of individuals per site and κ=2/(d_{u}-d), d_{u} is the upper critical dimension. Other exponents that control the approach to the deterministic limit are shown to be calculable once κ is known. The theory is extended to include the corrections to the front velocity above the transition. It is supported by the results of extensive numerical simulations for systems of various dimensionalities.

  12. Quantum theory of relativistic charged particles in external fields

    International Nuclear Information System (INIS)

    Ruijsenaars, S.N.M.

    1976-01-01

    A study was made on external field theories in which the quantized field corresponds to relativistic elementary particles with non-zero rest mass. These particles are assumed to be charged, thus they have distinct antiparticles. The thesis consists of two parts. The first tries to accommodate the general features of theories of relativistic charged particles in external fields. Spin and dynamics in particular are not specified. In the second part, the results are applied to charged spin-1/2 and spin-0 particles, the dynamics of which are given by the Dirac resp. Klein-Gordon equation. The greater emphasis is on external fields which are rapidly decreasing, infinitely differentiable functions of space-time, but also considers time-independent fields. External fields, other than electromagnetic fields are also considered, e.g. scalar fields

  13. Motivating quantum field theory: the boosted particle in a box

    International Nuclear Information System (INIS)

    Vutha, Amar C

    2013-01-01

    It is a maxim often stated, yet rarely illustrated, that the combination of special relativity and quantum mechanics necessarily leads to quantum field theory. An elementary illustration is provided using the familiar particle in a box, boosted to relativistic speeds. It is shown that quantum fluctuations of momentum lead to energy fluctuations, which are inexplicable without a framework that endows the vacuum with dynamical degrees of freedom and allows particle creation/annihilation. (letters and comments)

  14. Theories of Variable Mass Particles and Low Energy Nuclear Phenomena

    Science.gov (United States)

    Davidson, Mark

    2014-02-01

    Variable particle masses have sometimes been invoked to explain observed anomalies in low energy nuclear reactions (LENR). Such behavior has never been observed directly, and is not considered possible in theoretical nuclear physics. Nevertheless, there are covariant off-mass-shell theories of relativistic particle dynamics, based on works by Fock, Stueckelberg, Feynman, Greenberger, Horwitz, and others. We review some of these and we also consider virtual particles that arise in conventional Feynman diagrams in relativistic field theories. Effective Lagrangian models incorporating variable mass particle theories might be useful in describing anomalous nuclear reactions by combining mass shifts together with resonant tunneling and other effects. A detailed model for resonant fusion in a deuterium molecule with off-shell deuterons and electrons is presented as an example. Experimental means of observing such off-shell behavior directly, if it exists, is proposed and described. Brief explanations for elemental transmutation and formation of micro-craters are also given, and an alternative mechanism for the mass shift in the Widom-Larsen theory is presented. If variable mass theories were to find experimental support from LENR, then they would undoubtedly have important implications for the foundations of quantum mechanics, and practical applications may arise.

  15. Test-particle motion in Einstein's unified field theory. III. Magnetic monopoles and charged particles

    International Nuclear Information System (INIS)

    Johnson, C.R.

    1986-01-01

    In a previous paper (paper I), we developed a method for finding the exact equations of structure and motion of multipole test particles in Einstein's unified field theory: the theory of the nonsymmetric field. In that paper we also applied the method and found in Einstein's unified field theory the equations of structure and motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In a second paper (paper II), we applied the method and found in Einstein's unified field theory the exact equations of structure and motion of charged test particles possessing no magnetic monopole moments. In the present paper (paper III), we apply the method and find in Einstein's unified field theory the exact equations of structure and motion of charged test particles possessing magnetic monopole moments. It follows from the form of these equations of structure and motion that in general in Einstein's unified field theory a test particle possessing a magnetic monopole moment in a background electromagnetic field must also possess spin

  16. Power functional theory for the dynamic test particle limit

    International Nuclear Information System (INIS)

    Brader, Joseph M; Schmidt, Matthias

    2015-01-01

    For classical Brownian systems both in and out of equilibrium we extend the power functional formalism of Schmidt and Brader (2013 J. Chem. Phys. 138 214101) to mixtures of different types of particles. We apply the framework to develop an exact dynamical test particle theory for the self and distinct parts of the van Hove function, which characterize tagged and collective particle motion. The memory functions that induce non-Markovian dynamics are related to functional derivatives of the excess (over ideal) free power dissipation functional. The method offers an alternative to the recently found nonequilibrium Ornstein–Zernike relation for dynamic pair correlation functions. (paper)

  17. Relativistic local quantum field theory for m=0 particles

    International Nuclear Information System (INIS)

    Morales Villasevil, A.

    1965-01-01

    A method is introduced ta deal with relativistic quantum field theory for particles with m=0. Two mappings I and J, giving rise respectively to particle and anti particle states, are defined between a test space and the physical Hilbert space. The intrinsic field operator is then defined as the minimal causal linear combinations of operators belonging to the annihilation-creation algebra associated to the germ and antigerm parts of the element. Local elements are introduced as improper test elements and local field operators are constructed in the same way as the intrinsic ones. Commutation rules are given. (Author) 17 refs

  18. Light scattering by nonspherical particles theory, measurements, and applications

    CERN Document Server

    Mishchenko, Michael I; Travis, Larry D

    1999-01-01

    There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid part

  19. Scaling and the inclusive semileptonic decays of charmed particles

    International Nuclear Information System (INIS)

    Pham, X.Y.; Nabavi, R.P.

    1977-01-01

    A general formula describing the semileptonic decay of charmed particles is written in terms of structure functions. A procedure is proposed to estimate semileptonic decay widths by supposing that these structure functions may be averaged by their scaling limits

  20. Effective field theory of thermal Casimir interactions between anisotropic particles.

    Science.gov (United States)

    Haussman, Robert C; Deserno, Markus

    2014-06-01

    We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.

  1. Understanding bulk behavior of particulate materials from particle scale simulations

    Science.gov (United States)

    Deng, Xiaoliang

    Particulate materials play an increasingly significant role in various industries, such as pharmaceutical manufacturing, food, mining, and civil engineering. The objective of this research is to better understand bulk behaviors of particulate materials from particle scale simulations. Packing properties of assembly of particles are investigated first, focusing on the effects of particle size, surface energy, and aspect ratio on the coordination number, porosity, and packing structures. The simulation results show that particle sizes, surface energy, and aspect ratio all influence the porosity of packing to various degrees. The heterogeneous force networks within particle assembly under external compressive loading are investigated as well. The results show that coarse-coarse contacts dominate the strong network and coarse-fine contacts dominate the total network. Next, DEM models are developed to simulate the particle dynamics inside a conical screen mill (comil) and magnetically assisted impaction mixer (MAIM), both are important particle processing devices. For comil, the mean residence time (MRT), spatial distribution of particles, along with the collision dynamics between particles as well as particle and vessel geometries are examined as a function of the various operating parameters such as impeller speed, screen hole size, open area, and feed rate. The simulation results can help better understand dry coating experimental results using comil. For MAIM system, the magnetic force is incorporated into the contact model, allowing to describe the interactions between magnets. The simulation results reveal the connections between homogeneity of mixture and particle scale variables such as size of magnets and surface energy of non-magnets. In particular, at the fixed mass ratio of magnets to non-magnets and surface energy the smaller magnets lead to better homogeneity of mixing, which is in good agreement with previously published experimental results. Last but not

  2. A new formulation of the effective theory for heavy particles

    International Nuclear Information System (INIS)

    Aglietti, U.; Capitani, S.

    1994-01-01

    We derive the effective theories for heavy particles with a functional integral approach by integrating away the states with high velocity and with high virtuality. This formulation is non-perturbative and has a close connection with the Wilson renormalization group transformation. The fixed point hamiltonian of our transformation coincides with the static hamiltonian and irrelevant operators can be identified with the usual 1/M corrections to the static theory. No matching condition has to be imposed between the full and the static theory operators with our approach. The values of the matching constants come out as a dynamical effect of the renormalization group flow. ((orig.))

  3. An effective strong-coupling theory of composite particles in UV-domain

    Science.gov (United States)

    Xue, She-Sheng

    2017-05-01

    We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ 0, W + W -, Z 0 Z 0 and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into W W , W Z and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.

  4. An effective strong-coupling theory of composite particles in UV-domain

    Energy Technology Data Exchange (ETDEWEB)

    Xue, She-Sheng [ICRANet,Piazzale della Repubblica 10, 10-65122, Pescara (Italy); Physics Department, Sapienza University of Rome,Piazzale Aldo Moro 5, 00185 Roma (Italy)

    2017-05-29

    We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ{sup 0}, W{sup +}W{sup −}, Z{sup 0}Z{sup 0} and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into WW, WZ and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.

  5. Research program in elementary-particle theory. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1982-08-01

    This progress report of the Center for Particle Theory of the University of Texas at Austin reviews the work done over the past year and is part of the renewal proposal for the period from January 1, 1983 to December 31, 1983

  6. Linear kinetic theory and particle transport in stochastic mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Pomraning, G.C. [Univ. of California, Los Angeles, CA (United States)

    1995-12-31

    We consider the formulation of linear transport and kinetic theory describing energy and particle flow in a random mixture of two or more immiscible materials. Following an introduction, we summarize early and fundamental work in this area, and we conclude with a brief discussion of recent results.

  7. Inflationary perturbations in no-scale theories

    Energy Technology Data Exchange (ETDEWEB)

    Salvio, Alberto [CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-04-15

    We study the inflationary perturbations in general (classically) scale-invariant theories. Such scenario is motivated by the hierarchy problem and provides natural inflationary potentials and dark matter candidates. We analyse in detail all sectors (the scalar, vector and tensor perturbations) giving general formulae for the potentially observable power spectra, as well as for the curvature spectral index n{sub s} and the tensor-to-scalar ratio r. We show that the conserved Hamiltonian for all perturbations does not feature negative energies even in the presence of the Weyl-squared term if the appropriate quantisation is performed and argue that this term does not lead to phenomenological problems at least in some relevant setups. The general formulae are then applied to a concrete no-scale model, which includes the Higgs and a scalar, ''the planckion'', whose vacuum expectation value generates the Planck mass. Inflation can be triggered by a combination of the planckion and the Starobinsky scalar and we show that no tension with observations is present even in the case of pure planckion inflation, if the coefficient of the Weyl-squared term is large enough. In general, even quadratic inflation is allowed in this case. Moreover, the Weyl-squared term leads to an isocurvature mode, which currently satisfies the observational bounds, but it may be detectable with future experiments. (orig.)

  8. Unified theory of interspecific allometric scaling

    International Nuclear Information System (INIS)

    Silva, Jafferson K L da; Barbosa, Lauro A; Silva, Paulo Roberto

    2007-01-01

    A general simple theory for the interspecific allometric scaling is developed in the d + 1-dimensional space (d biological lengths and a physiological time) of metabolic states of organisms. It is assumed that natural selection shaped the metabolic states in such a way that the mass and energy d + 1-densities are size-invariant quantities (independent of body mass). The different metabolic states (basal and maximum) are described by considering that the biological lengths and the physiological time are related by different transport processes of energy and mass. In the basal metabolism, transportation occurs by ballistic and diffusion processes. In d = 3, the 3/4 law occurs if the ballistic movement is the dominant process, while the 2/3 law appears when both transport processes are equivalent. Accelerated movement during the biological time is related to the maximum aerobic sustained metabolism, which is characterized by the scaling exponent 2d/(2d + 1) (6/7 in d = 3). The results are in good agreement with empirical data and a verifiable empirical prediction about the aorta blood velocity in maximum metabolic rate conditions is made. (fast track communication)

  9. Spinning particle approach to higher spin field theory

    International Nuclear Information System (INIS)

    Corradini, Olindo

    2011-01-01

    We shortly review on the connection between higher-spin gauge field theories and supersymmetric spinning particle models. In such approach the higher spin equations of motion are linked to the first-class constraint algebra associated with the quantization of particle models. Here we consider a class of spinning particle models characterized by local O(N)-extended supersymmetry since these models are known to provide an alternative approach to the geometric formulation of higher spin field theory. We describe the canonical quantization of the models in curved target space and discuss the obstructions that appear in presence of an arbitrarily curved background. We then point out the special role that conformally flat spaces appear to have in such models and present a derivation of the higher-spin curvatures for maximally symmetric spaces.

  10. Schur indices, BPS particles, and Argyres-Douglas theories

    International Nuclear Information System (INIS)

    Córdova, Clay; Shao, Shu-Heng

    2016-01-01

    We conjecture a precise relationship between the Schur limit of the superconformal index of four-dimensional N=2 field theories, which counts local operators, and the spectrum of BPS particles on the Coulomb branch. We verify this conjecture for the special case of free field theories, N=2 QED, and SU(2) gauge theory coupled to fundamental matter. Assuming the validity of our proposal, we compute the Schur index of all Argyres-Douglas theories. Our answers match expectations from the connection of Schur operators with two-dimensional chiral algebras. Based on our results we propose that the chiral algebra of the generalized Argyres-Douglas theory (A_k_−_1,A_N_−_1) with k and N coprime, is the vacuum sector of the (k,k+N)W_k minimal model, and that the Schur index is the associated vacuum character.

  11. Green's functions for theories with massless particles (in perturbation theory). [Growth properties, momentum space, mass renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P [European Organization for Nuclear Research, Geneva (Switzerland); Seneor, R [European Organization for Nuclear Research, Geneva (Switzerland); Ecole Polytechnique, 75 - Paris (France). Centre de Physique Theorique)

    1975-01-01

    With the method of perturbative renormalization developed by Epstein and Glaser it is shown that Green's functions exist for theories with massless particles such as Q.E.D. and lambda:PHI/sup 2n/ theories. Growth properties are given in momentum space. In the case of Q.E.D., it is also shown that one can perform the physical mass renormalization.

  12. Minimal supersymmetric grand unified theory: Symmetry breaking and the particle spectrum

    International Nuclear Information System (INIS)

    Bajc, Borut; Melfo, Alejandra; Senjanovic, Goran; Vissani, Francesco

    2004-01-01

    We discuss in detail the symmetry breaking and related issues in the minimal renormalizable supersymmetric grand unified theory. We find all the possible patterns of symmetry breaking, compute the associated particle spectrum and study its impact on the physical scales of the theory. In particular, the complete mass matrices of the SU(2) doublets and the color triplets are computed in connection with the doublet-triplet splitting and the d=5 proton decay. We explicitly construct the two light Higgs doublets as a function of the Higgs superpotential parameters. This provides a framework for the analysis of phenomenological implications of the theory, to be carried out in a second paper

  13. Story of the string theory. From hadrons to Planck scale

    International Nuclear Information System (INIS)

    Petropoulos, P.M.

    2010-01-01

    Originally the string theory was devised to describe the scattering between hadron particles but was quickly put aside by the success of the quantum chromodynamics. Now string theory appears in the quantum gravity theory and has been involved in almost all attempts to define a physics beyond the standard model and to unify basic interactions. (A.C.)

  14. Hamiltonian theory of wave and particle in quantum mechanics 2. Hamilton-Jacobi theory and particle back-reaction

    International Nuclear Information System (INIS)

    Holland, P.

    2001-01-01

    Pursuing the Hamiltonian formulation of the De Broglie-Bohm (deBB) theory presented in the preceding paper, the Hamilton-Jacobi (HJ) theory of the wave-particle system is developed. It is shown how to derive a HJ equation for the particle, which enables trajectories to be computed algebraically using Jacobi's method. Using Liouville's equation in the HJ representation it was found the restriction on the Jacobi solutions which implies the quantal distribution. This gives a first method for interpreting the deBB theory in HJ terms. A second method proceeds via an explicit solution of the field+particle HJ equation. Both methods imply that the quantum phase may be interpreted as an incomplete integral. Using these results and those of the first paper it is shown how Schroedinger's equation can be represented in Liouvilian terms, and vice versa. The general theory of canonical transformations that represent quantum unitary transformations is given, and it is shown in principle how the trajectory theory may be expressed in other quantum representations. Using the solution found for the total HJ equation, an explicit solution for the additional field containing a term representing the particle back-reaction is found. The conservation of energy and momentum in the model is established, and weak form of the action-reaction principle is shown to hold. Alternative forms for the Hamiltonian are explored and it is shown that, within this theoretical context, the deBB theory is not unique. The theory potentially provides an alternative way of obtaining the classical limit

  15. Monte Carlo parametric importance sampling with particle tracks scaling

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.

    1981-01-01

    A method for Monte Carlo importance sampling with parametric dependence is proposed. It depends upon obtaining over a single stage the overall functional dependence of the variance on the importance function parameter over a broad range of its values. Results corresponding to minimum variance are adopted and others rejected. The proposed method is applied to the finite slab penetration problem. When the exponential transformation is used, our method involves scaling of the generated particle tracks, and is a new application of Morton's method of similar trajectories. The method constitutes a generalization of Spanier's multistage importance sampling method, obtained by proper weighting over a single stage the curves he obtains over several stages, and preserves the statistical correlations between histories. It represents an extension of a theory by Frolov and Chentsov on Monte Carlo calculations of smooth curves to surfaces and to importance sampling calculations. By the proposed method, it seems possible to systematically arrive at minimum variance results and to avoid the infinite variances and effective biases sometimes observed in this type of calculation. (orig.) [de

  16. Model of cosmology and particle physics at an intermediate scale

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Di Clemente, V.; King, S. F.

    2005-01-01

    We propose a model of cosmology and particle physics in which all relevant scales arise in a natural way from an intermediate string scale. We are led to assign the string scale to the intermediate scale M * ∼10 13 GeV by four independent pieces of physics: electroweak symmetry breaking; the μ parameter; the axion scale; and the neutrino mass scale. The model involves hybrid inflation with the waterfall field N being responsible for generating the μ term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The large scale structure of the Universe is generated by the lightest right-handed sneutrino playing the role of a coupled curvaton. We show that the correct curvature perturbations may be successfully generated providing the lightest right-handed neutrino is weakly coupled in the seesaw mechanism, consistent with sequential dominance

  17. Test-particle motion in the nonsymmetric gravitation theory

    Science.gov (United States)

    Moffat, J. W.

    1987-06-01

    A derivation of the motion of test particles in the nonsymmetric gravitational theory (NGT) is given using the field equations in the presence of matter. The motion of the particle is governed by the Christoffel symbols, which are formed from the symmetric part of the fundamental tensor gμν, as well as by a tensorial piece determined by the skew part of the contracted curvature tensor Rμν. Given the energy-momentum tensor for a perfect fluid and the definition of a test particle in the NGT, the equations of motion follow from the conservation laws. The tensorial piece in the equations of motion describes a new force in nature that acts on the conserved charge in a body. Particles that carry this new charge do not follow geodesic world lines in the NGT, whereas photons do satisfy geodesic equations of motion and the equivalence principle of general relativity. Astronomical predictions, based on the exact static, spherically symmetric solution of the field equations in a vacuum and the test-particle equations of motion, are derived in detail. The maximally extended coordinates that remove the event-horizon singularities in the static, spherically symmetric solution are presented. It is shown how an inward radially falling test particle can be prevented from forming an event horizon for a value greater than a specified critical value of the source charge. If a test particle does fall through an event horizon, then it must continue to fall until it reaches the singularity at r=0.

  18. Theory of resistive magnetohydrodynamic instabilities excited by energetic trapped particles in large-size tokamaks

    International Nuclear Information System (INIS)

    Biglari, H.

    1987-01-01

    A theory describing excitation of resistive magnetohydrodynamic instabilities due to a population of energetic particles, trapped in region of adverse curvature on energetic particles, trapped in region of adverse curvature in tokamaks, is presented. Theory's principal motivation is observation that high magnetic-field strengths and large geometric dimensions characteristic of present-generation thermonuclear fusion devices, places them in a frequency regime whereby processional drift frequency of auxiliary hot-ion species, in order of magnitude, falls below a typical inverse resistive interchange time scale, so that inclusion of resistive dissipation effects becomes important. Destabilization of the resistive internal kink mode by these suprathermal particles is first investigated. Using variational techniques, a generalized dispersion relation governing such modes, which recovers ideal theory in its appropriate limit, is derived and analyzed using Nyquist-diagrammatic techniques. An important implication of theory for present-generation fusion devices is that they will be stable to fishbone activity. Interaction of energetic particles with resistive interchange-ballooning modes is taken up. A population of hot particles, deeply trapped on adverse curvature side in tokamaks, can resonantly destabilize resistive interchange mode, which is stable in their absence because of favorable average curvature. Both modes are different from their usual resistive magnetohydrodynamic counterparts in their destabilization mechanism

  19. Visualization of acoustic particle interaction and agglomeration: Theory evaluation

    International Nuclear Information System (INIS)

    Hoffmann, T.L.; Koopmann, G.H.

    1997-01-01

    In this paper experimentally observed trajectories of particles undergoing acoustically induced interaction and agglomeration processes are compared to and validated with numerically generated trajectories based on existing agglomeration theories. Models for orthokinetic, scattering, mutual radiation pressure, and hydrodynamic particle interaction are considered in the analysis. The characteristic features of the classical orthokinetic agglomeration hypothesis, such as collision processes and agglomerations due to the relative entrainment motion, are not observed in the digital images. The measured entrainment rates of the particles are found to be consistently lower than the theoretically predicted values. Some of the experiments reveal certain characteristics which may possibly be related to mutual scattering interaction. The study's most significant discovery is the so-called tuning fork agglomeration [T. L. Hoffmann and G. H. Koopmann, J. Acoust. Soc. Am. 99, 2130 endash 2141 (1996)]. It is shown that this phenomenon contradicts the theories for mutual scattering interaction and mutual radiation pressure interaction, but agrees with the acoustic wake effect model in its intrinsic feature of attraction between particles aligned along the acoustic axis. A model by Dianov et al. [Sov. Phys. Acoust. 13 (3), 314 endash 319 (1968)] is used to describe this effect based on asymmetric flow fields around particles under Oseen flow conditions. It is concluded that this model is consistent with the general characteristics of the tuning fork agglomerations, but lacks certain refinements with respect to accurate quantification of the effect. copyright 1997 Acoustical Society of America

  20. On a connection between the VAK, knot theory and El Naschie's theory of the mass spectrum of the high energy elementary particles

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2004-01-01

    In the present work we give an introduction to the ε (∞) Cantorian space-time theory. In this theory every particle can be interpreted as a scaling of another particle. Some particles are a scaling of the proton and are expressed in terms of phi and α-bar 0 . Following the VAK suggestion of El Naschie, the limit sets of Kleinian groups are Cantor sets with Hausdorff dimension phi or a derivative of phi such as 1/phi, 1/phi 2 , 1/phi 3 , etc. Consequently and using ε (∞) theory, the mass spectrum of elementary particles may be found from the limit set of the Moebius-Klein geometry of quantum space-time as a function of the golden mean phi=(}5-1)/2=0.618033989 as discussed recently by Datta (see Chaos, Solitons and Fractals 17 (2003) 621-630)

  1. On a connection between the VAK, knot theory and El Naschie's theory of the mass spectrum of the high energy elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Marek-Crnjac, L

    2004-02-01

    In the present work we give an introduction to the {epsilon}{sup ({infinity}}{sup )} Cantorian space-time theory. In this theory every particle can be interpreted as a scaling of another particle. Some particles are a scaling of the proton and are expressed in terms of phi and {alpha}-bar{sub 0}. Following the VAK suggestion of El Naschie, the limit sets of Kleinian groups are Cantor sets with Hausdorff dimension phi or a derivative of phi such as 1/phi, 1/phi{sup 2}, 1/phi{sup 3}, etc. Consequently and using {epsilon}{sup ({infinity}}{sup )} theory, the mass spectrum of elementary particles may be found from the limit set of the Moebius-Klein geometry of quantum space-time as a function of the golden mean phi=({r_brace}5-1)/2=0.618033989 as discussed recently by Datta (see Chaos, Solitons and Fractals 17 (2003) 621-630)

  2. Gravitational theory in atomic scale units in Dirac cosmology

    International Nuclear Information System (INIS)

    Davidson, W.

    1984-01-01

    The implication of Dirac's large numbers hypothesis (LNH) that there are two cosmological space-time metrics, gravitational (E) and atomic (A), is used to formulate the gravitational laws for a general mass system in atomic scale units within such a cosmology. The gravitational laws are illustrated in application to the case of a single spherical mass immersed in the smoothed out expanding universe. The condition is determined for such a metric to apply approximately just outside a typical member of a cosmic distribution of such masses. Conversely, the condition is given when the influence of the universe as a whole can be neglected outside such a mass. In the latter situation, which applies in particular to stars, a Schwarzschild-type metric is derived which incorporates variable G in accordance with the LNH. The dynamics of freely moving particles and photons in such a metric are examined according to the theory and observational tests are formulated. (author)

  3. The Higgs particle and higher-dimensional theories

    International Nuclear Information System (INIS)

    Lim, C. S.

    2014-01-01

    In spite of the great success of LHC experiments, we do not know whether the discovered “standard model-like” Higgs particle is really what the standard model predicts, or a particle that some new physics has in its low-energy effective theory. Also, the long-standing problems concerning the property of the Higgs and its interactions are still there, and we still do not have any conclusive argument on the origin of the Higgs itself. In this article we focus on higher-dimensional theories as new physics. First we give a brief review of their representative scenarios and closely related 4D scenarios. Among them, we mainly discuss two interesting possibilities of the origin of the Higgs: the Higgs as a gauge boson and the Higgs as a (pseudo) Nambu–Goldstone boson. Next, we argue that theories of new physics are divided into two categories, i.e., theories with normal Higgs interactions and those with anomalous Higgs interactions. Interestingly, both the candidates for the origin of the Higgs mentioned above predict characteristic “anomalous” Higgs interactions, such as the deviation of the Yukawa couplings from the standard model predictions. Such deviations can hopefully be investigated by precision tests of Higgs interactions at the planned ILC experiment. Also discussed is the main decay mode of the Higgs, H→γγ. Again, theories belonging to different categories are known to predict remarkably different new physics contributions to this important process

  4. Statistical quasi-particle theory for open quantum systems

    Science.gov (United States)

    Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2018-04-01

    This paper presents a comprehensive account on the recently developed dissipaton-equation-of-motion (DEOM) theory. This is a statistical quasi-particle theory for quantum dissipative dynamics. It accurately describes the influence of bulk environments, with a few number of quasi-particles, the dissipatons. The novel dissipaton algebra is then followed, which readily bridges the Schrödinger equation to the DEOM theory. As a fundamental theory of quantum mechanics in open systems, DEOM characterizes both the stationary and dynamic properties of system-and-bath interferences. It treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that could be experimentally measurable. Examples are the linear or nonlinear Fano interferences and the Herzberg-Teller vibronic couplings in optical spectroscopies. This review covers the DEOM construction, the underlying dissipaton algebra and theorems, the physical meanings of dynamical variables, the possible identifications of dissipatons, and some recent advancements in efficient DEOM evaluations on various problems. The relations of the present theory to other nonperturbative methods are also critically presented.

  5. Improved theory of collisionless particle motion in stellarators

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1983-01-01

    A theory of particle motion in stellarators is developed which, in contrast to previous work, is both realistic enough to account for collisionless detrapping, yet simple enough that most features of the orbits can be expressed in analytic, reasonably simple formulas. From the study of detrapping, a systematic, complete classification of possible orbit types emerges. The theory is valid for a class of stellarator configurations which contains the standard model traditionally envisaged, as well as somewhat more complex configurations recently found to have favorable transport properties. The reasons for the differences in transport between configurations are elucidated

  6. Gauge theories in particle physics a practical introduction

    CERN Document Server

    Aitchison, Ian J R

    2013-01-01

    The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories included in the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. In the first volume, a new chapter on Lorentz transformations and discrete symmetries presents a simple treatment of Lorentz transformations of Dirac spinors. Along with updating experimental results, this edition also introduces Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics. Covering much of the experimental progress made in the last ten years, the second volume remains focused on the two non-Abelian quantum gauge field...

  7. Theory of the Thermal Diffusion of Microgel Particles in Highly Compressed Suspensions

    Science.gov (United States)

    Sokoloff, Jeffrey; Maloney, Craig; Ciamarra, Massimo; Bi, Dapeng

    One amazing property of microgel colloids is the ability of the particles to thermally diffuse, even when they are compressed to a volume well below their swollen state volume, despite the fact that they are surrounded by and pressed against other particles. A glass transition is expected to occur when the colloid is sufficiently compressed for diffusion to cease. It is proposed that the diffusion is due to the ability of the highly compressed particles to change shape with little cost in free energy. It will be shown that most of the free energy required to compress microgel particles is due to osmotic pressure resulting from either counterions or monomers inside of the gel, which depends on the particle's volume. There is still, however, a cost in free energy due to polymer elasticity when particles undergo the distortions necessary for them to move around each other as they diffuse through the compressed colloid, even if it occurs at constant volume. Using a scaling theory based on simple models for the linking of polymers belonging to the microgel particles, we examine the conditions under which the cost in free energy needed for a particle to diffuse is smaller than or comparable to thermal energy, which is a necessary condition for particle diffusion. Based on our scaling theory, we predict that thermally activated diffusion should be possible when the mean number of links along the axis along which a distortion occurs is much larger than N 1 / 5, where Nis the mean number of monomers in a polymer chain connecting two links in the gel.

  8. A gauge field theory of fermionic continuous-spin particles

    Energy Technology Data Exchange (ETDEWEB)

    Bekaert, X., E-mail: xavier.bekaert@lmpt.univ-tours.fr [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis Poisson, Université François Rabelais, Parc de Grandmont, 37200 Tours (France); B.W. Lee Center for Fields, Gravity and Strings, Institute for Basic Science, Daejeon (Korea, Republic of); Najafizadeh, M., E-mail: mnajafizadeh@gmail.com [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis Poisson, Université François Rabelais, Parc de Grandmont, 37200 Tours (France); Department of Physics, Faculty of Sciences, University of Kurdistan, 66177-15177 Sanandaj (Iran, Islamic Republic of); Setare, M.R., E-mail: rezakord@ipm.ir [Department of Physics, Faculty of Sciences, University of Kurdistan, 66177-15177 Sanandaj (Iran, Islamic Republic of)

    2016-09-10

    In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.

  9. A gauge field theory of fermionic continuous-spin particles

    International Nuclear Information System (INIS)

    Bekaert, X.; Najafizadeh, M.; Setare, M.R.

    2016-01-01

    In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.

  10. True many-particle scattering theory in oscillator representation

    International Nuclear Information System (INIS)

    Smirnov, Yu.F.; Shirokov, A.M.

    1988-01-01

    The scattering theory in oscillator representation in case of true multiparticle scattering (TMS) is generalized. All necessary expressions to construct a wave function of several particles system in a discrete or continuous spectra at TMS approximation are obtained. Essential advantage of the method suggested lies in the fact that the most difficult part: construction and diagonolization of the Hamiltonian cutted matrix is to be carried out only once, and then the wave function can be calculated at any designed energy. 23 refs

  11. Burnout of pulverized biomass particles in large scale boiler - Single particle model approach

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero [VTT Technical Research Centre of Finland, Box 1603, 40101 Jyvaeskylae (Finland); Soerensen, Lasse Holst [ReaTech/ReAddit, Frederiksborgsveij 399, Niels Bohr, DK-4000 Roskilde (Denmark); Clausen, Soennik [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Berg, Mogens [ENERGI E2 A/S, A.C. Meyers Vaenge 9, DK-2450 Copenhagen SV (Denmark)

    2010-05-15

    Burning of coal and biomass particles are studied and compared by measurements in an entrained flow reactor and by modelling. The results are applied to study the burning of pulverized biomass in a large scale utility boiler originally planned for coal. A simplified single particle approach, where the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner location and the trajectories of the particles might be optimised to maximise the residence time and burnout. (author)

  12. The Ising model in the scaling limit as model for the description of elementary particles

    International Nuclear Information System (INIS)

    Weinzierl, W.

    1981-01-01

    In this thesis a possible way is stepped over which starts from the derivation of a quantum field theory from simplest statistical degrees of freedom, as for instance in a two-level system. On a model theory, the Ising model in (1+1) dimensions the idea is explained. In this model theory two particle-interpretable quantum fields arise which can be constructed by a basic field which parametrizes the local dynamics in a simplest way. This so called proliferation is further examined. For the proliferation of the basic field a conserved quantity, a kind of parity is necessary. The stability of both particle fields is a consequence of this conservation law. For the identification of the ''particle-interpretable'' fields the propagators of the order and disorder parameter field are calculated and discussed. An effective Hamiltonian in this particle fields is calculated. As further aspect of this transition from the statistical system to quantum field theory the dimensional transmutation and the closely to this connected mass renormalization is examined. The relation between spin systems in the critical region and fermionic field theories is explained. Thereby it results that certain fermionic degrees of freedom of the spin system vanish in the scaling limit. The ''macroscopically'' relevant degrees of freedom constitute a relativistic Majorana field. (orig./HSI) [de

  13. Particle, superparticle, superstring and new approach to twistor theory

    International Nuclear Information System (INIS)

    Eisenberg, Y.

    1990-10-01

    A new approach to twistor theory is proposed. The approach is based on certain reformulations of the classical massless particle and superparticle in terms of twistors. The first quantization of these systems leads to a full classification of all the free 4D field theories. The extension of one of this systems to the interacting case leads to a reformulation of the standard Dirac-Yang-Mills field equations in terms of gauge potential which fulfills certain curvatureless conditions in a generalized space (Minkowski+twistor). These conditions are a consequence of integrability conditions of an overdetermined system of linear equations whose vector field is composed from the components of the Dirac field and the Yang-Mills field strength. The twistorial reformulation allows us to gauge away all the ordinary space-time variables. By this procedure we obtain a description of the usual free massless field theories in terms of pure twistor space. These systems are invariant under an infinite dimensional algebra, which contains the two dimensional conformal algebera as a subalgebra. We propose this systems as candidates to a generalization of the notion of two-dimensional conformal field theories to four dimensions. Alternatively, we introduce an extension of the pure twistorial point particle to a two dimensional object, i.e. a pure twistorial string. (author)

  14. The theory of accelerated particles in AVF cyclotrons

    International Nuclear Information System (INIS)

    Schulte, W.M.

    1978-01-01

    This thesis deals with the study of the motion of accelerated charged particles in an AVF cyclotron. This study has been done on behalf of the VICKSI- project of the Hahn-Meitner-Institut in West Berlin. A new theory is developed which facilitates an accurate description of the influence of the acceleration on the motion in the median plane of a cyclotron. The theory is applied to systems with 1 or 2 Dee electrodes, the frequency of the accelerating voltage being equal to the revolution frequency of the particles or a higher harmonic of this frequency. It turned out that the betatron oscillations in the radial phase space may be disturbed considerably as a result of the acceleration. In the theory the author makes use of the Hamilton formalism. After a number of canonical transformations a Hamilton function was found, in which the most important effects show themselves clearly. The corresponding equations of motion can be solved very quickly with the help of a simple computer program. The results of this theory are in agreement with those of extensive numerical orbit integration programmes. In this thesis attention is also devoted to the centering of the beam in the VICKSI cyclotron just after injection, the possibility to obtain single-turn extraction and the interpretation of the high frequency phase measurements. (Auth.)

  15. Combining theory and observations. A sample study of the interplay between cosmology and particle physics

    International Nuclear Information System (INIS)

    Kulkarni, Suchita C.

    2011-01-01

    We look at various methods of exploring the connection between particle physics and cosmology. We focus on various aspects of dark matter analysis. We begin with the smallest scales and look at collider phenomenology first. We discuss how the analysis of CP-properties of particles within Supersymmetry, one of the most accepted theories giving us a dark matter candidate. For this matter we take a specific case of the CP-violation in the super-partner of the tau lepton, the stau. Going slightly more towards astroparticle physics, we next study can the dark matter in the Universe be semi-relativistic. Thus, we use our prior knowledge of the cosmic scale properties of dark matter to draw implications for particle physics. In the next step, we look at large scales and examine the evolution of relationship between dark matter haloes and the background dark matter density fields. We use methods similar to field theory techniques of particle physics to understand this evolution of mapping. (orig.)

  16. Combining theory and observations. A sample study of the interplay between cosmology and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Suchita C.

    2011-08-08

    We look at various methods of exploring the connection between particle physics and cosmology. We focus on various aspects of dark matter analysis. We begin with the smallest scales and look at collider phenomenology first. We discuss how the analysis of CP-properties of particles within Supersymmetry, one of the most accepted theories giving us a dark matter candidate. For this matter we take a specific case of the CP-violation in the super-partner of the tau lepton, the stau. Going slightly more towards astroparticle physics, we next study can the dark matter in the Universe be semi-relativistic. Thus, we use our prior knowledge of the cosmic scale properties of dark matter to draw implications for particle physics. In the next step, we look at large scales and examine the evolution of relationship between dark matter haloes and the background dark matter density fields. We use methods similar to field theory techniques of particle physics to understand this evolution of mapping. (orig.)

  17. Remarks on a gauge theory for continuous spin particles

    Energy Technology Data Exchange (ETDEWEB)

    Rivelles, Victor O. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil)

    2017-07-15

    We discuss in a systematic way the gauge theory for a continuous spin particle proposed by Schuster and Toro. We show that it is naturally formulated in a cotangent bundle over Minkowski spacetime where the gauge field depends on the spacetime coordinate x{sup μ} and on a covector η{sub μ}. We discuss how fields can be expanded in η{sub μ} in different ways and how these expansions are related to each other. The field equation has a derivative of a Dirac delta function with support on the η-hyperboloid η{sup 2} + 1 = 0 and we show how it restricts the dynamics of the gauge field to the η-hyperboloid and its first neighbourhood. We then show that on-shell the field carries one single irreducible unitary representation of the Poincare group for a continuous spin particle. We also show how the field can be used to build a set of covariant equations found by Wigner describing the wave function of one-particle states for a continuous spin particle. Finally we show that it is not possible to couple minimally a continuous spin particle to a background abelian gauge field, and we make some comments about the coupling to gravity. (orig.)

  18. Simulating Biomass Fast Pyrolysis at the Single Particle Scale

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, Peter [National Renewable Energy Laboratory (NREL); Wiggins, Gavin [ORNL; Daw, C Stuart [ORNL; Jakes, Joseph E. [U.S. Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA

    2017-07-01

    Simulating fast pyrolysis at the scale of single particles allows for the investigation of the impacts of feedstock-specific parameters such as particle size, shape, and species of origin. For this reason particle-scale modeling has emerged as an important tool for understanding how variations in feedstock properties affect the outcomes of pyrolysis processes. The origins of feedstock properties are largely dictated by the composition and hierarchical structure of biomass, from the microstructural porosity to the external morphology of milled particles. These properties may be accounted for in simulations of fast pyrolysis by several different computational approaches depending on the level of structural and chemical complexity included in the model. The predictive utility of particle-scale simulations of fast pyrolysis can still be enhanced substantially by advancements in several areas. Most notably, considerable progress would be facilitated by the development of pyrolysis kinetic schemes that are decoupled from transport phenomena, predict product evolution from whole-biomass with increased chemical speciation, and are still tractable with present-day computational resources.

  19. Test-particle motion in the nonsymmetric gravitation theory

    International Nuclear Information System (INIS)

    Moffat, J.W.

    1987-01-01

    A derivation of the motion of test particles in the nonsymmetric gravitational theory (NGT) is given using the field equations in the presence of matter. The motion of the particle is governed by the Christoffel symbols, which are formed from the symmetric part of the fundamental tensor g/sub μ//sub ν/, as well as by a tensorial piece determined by the skew part of the contracted curvature tensor R/sub μ//sub ν/. Given the energy-momentum tensor for a perfect fluid and the definition of a test particle in the NGT, the equations of motion follow from the conservation laws. The tensorial piece in the equations of motion describes a new force in nature that acts on the conserved charge in a body. Particles that carry this new charge do not follow geodesic world lines in the NGT, whereas photons do satisfy geodesic equations of motion and the equivalence principle of general relativity. Astronomical predictions, based on the exact static, spherically symmetric solution of the field equations in a vacuum and the test-particle equations of motion, are derived in detail. The maximally extended coordinates that remove the event-horizon singularities in the static, spherically symmetric solution are presented. It is shown how an inward radially falling test particle can be prevented from forming an event horizon for a value greater than a specified critical value of the source charge. If a test particle does fall through an event horizon, then it must continue to fall until it reaches the singularity at r = 0

  20. The large scale microwave background anisotropy in decaying particle cosmology

    International Nuclear Information System (INIS)

    Panek, M.

    1987-06-01

    We investigate the large-scale anisotropy of the microwave background radiation in cosmological models with decaying particles. The observed value of the quadrupole moment combined with other constraints gives an upper limit on the redshift of the decay z/sub d/ < 3-5. 12 refs., 2 figs

  1. Large scale particle simulations in a virtual memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Million, R.; Wagner, J.S.; Tajima, T.

    1983-01-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceeds the computer core size. The required address space is automatically mapped onto slow disc memory the the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Assesses to slow memory significantly reduce the excecution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time. (orig.)

  2. On the scaling limits in the Euclidean (quantum) field theory

    International Nuclear Information System (INIS)

    Gielerak, R.

    1983-01-01

    The author studies the concept of scaling limits in the context of the constructive field theory. He finds that the domain of attraction of a free massless Euclidean scalar field in the two-dimensional space time contains almost all Euclidean self-interacting models of quantum fields so far constructed. The renormalized scaling limit of the Wick polynomials of several self-interacting Euclidean field theory models are shown to be the same as in the free field theory. (Auth.)

  3. Comparison of relativity theories with observer-independent scales of both velocity and length/mass

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Benedetti, Dario; D'Andrea, Francesco; Procaccini, Andrea

    2003-01-01

    We consider the two most studied proposals of relativity theories with observer-independent scales of both velocity and length/mass: the one discussed by Amelino-Camelia as an illustrative example for the original proposal (Preprint gr-qc/0012051) of theories with two relativistic invariants, and an alternative more recently proposed by Magueijo and Smolin (Preprint hep-th/0112090). We show that these two relativistic theories are much more closely connected than it would appear on the basis of a naive analysis of their original formulations. In particular, in spite of adopting a rather different formal description of the deformed boost generators, they end up assigning the same dependence of momentum on rapidity, which can be described as the core feature of these relativistic theories. We show that this observation can be used to clarify the concepts of particle mass, particle velocity and energy-momentum conservation rules in these theories with two relativistic invariants

  4. One-particle reducibility in effective scattering theory

    International Nuclear Information System (INIS)

    Vereshagin, V.

    2016-01-01

    To construct the reasonable renormalization scheme suitable for the effective theories one needs to resolve the “problem of couplings” because the number of free parameters in a theory should be finite. Otherwise the theory would loose its predictive power. In the case of effective theory already the first step on this way shows the necessity to solve the above-mentioned problem for the 1-loop 2-leg function traditionally called self energy. In contrast to the customary renormalizable models the corresponding Feynman graph demonstrates divergencies that require introducing of an infinite number of prescriptions. In the recent paper [1] it has been shown that the way out of this difficulty requires the revision of the notion of one-particle reducibility. The point is that in effective scattering theory one can introduce two different notions: the graphic reducibility and the analytic one. Below we explain the main ideas of the paper [1] and recall some notions and definitions introduced earlier in [2] and [3

  5. Nonlinear theory of diffusive acceleration of particles by shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Malkov, M.A. [University of California at San Diego, La Jolla, CA (United States)]. E-mail: mmalkov@ucsd.edu; Drury, L. O' C. [Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2 (Ireland)

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data. (author)

  6. Mokken scale analysis : Between the Guttman scale and parametric item response theory

    NARCIS (Netherlands)

    van Schuur, Wijbrandt H.

    2003-01-01

    This article introduces a model of ordinal unidimensional measurement known as Mokken scale analysis. Mokken scaling is based on principles of Item Response Theory (IRT) that originated in the Guttman scale. I compare the Mokken model with both Classical Test Theory (reliability or factor analysis)

  7. Theories of extended objects and composite models of particles

    International Nuclear Information System (INIS)

    Barut, A.O.

    1992-05-01

    The goal of the relativistic theory of extended objects is to predict and correlate the experimentally observed mass spectra, form factors, inelastic transitions, polarizabilities, structure functions of particles from different probes (photons, neutrinos, electrons), and eventually, the break-up, pair production of the system, and scattering of extended objects among themselves. The internal structure may be classified by the nature and number of the internal variables: discrete (fundamental particles), finite number of continuous variables (bound systems), infinite number of continuous variables (p-membranes or localized fields). The algebraic group theoretical S-matrix approach allows us to formulate all the above properties in a unified manner. Different structures are then characterized by different specific parameters. (author). Refs, 4 figs, 1 tab

  8. Scaling of charged particle multiplicity distributions in relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Ahamd, N.; Hushnud; Azmi, M.D.; Zafar, M.; Irfan, M.; Khan, M.M.; Tufail, A.

    2011-01-01

    Validity of KNO scaling in hadron-hadron and hadron-nucleus collisions has been tested by several workers. Multiplicity distributions for p-emulsion interactions are found to be consistent with the KNO scaling hypothesis for pp collisions. The applicability of the scaling law was extended to FNAL energies by earlier workers. Slattery has shown that KNO scaling hypothesis is in fine agreement with the data for pp interactions over a wide range of incident energies. An attempt, is, therefore, made to examine the scaling hypothesis using multiplicity distributions of particles produced in 3.7A GeV/c 16 O-, 4.5A GeV/c and 14.5A GeV/c 28 Si - nucleus interactions

  9. Scaling laws for particle growth in plasma reactors

    International Nuclear Information System (INIS)

    Lemons, D.S.; Keinigs, R.K.; Winske, D.; Jones, M.E.

    1996-01-01

    We quantify a model which incorporates observed features of contaminant particle growth in plasma processing reactors. According to the model, large open-quote open-quote predator close-quote close-quote particles grow by adsorbing smaller, typically neutral, open-quote open-quote prey close-quote close-quote protoparticles. The latter are supplied by an assumed constant mass injection of contaminant material. Scaling laws and quantitative predictions compare favorably with published experimental results. copyright 1996 American Institute of Physics

  10. Critical behavior in continuous dimension, ε∞ theory and particle physics

    International Nuclear Information System (INIS)

    Goldfain, Ervin

    2008-01-01

    Bringing closure to the host of open questions posed by the current standard model for particle physics (SM) continues to be a major challenge for the theoretical physics community. Despite years of multiple research efforts, a consistent and comprehensive understanding of standard model parameters is missing. Our work suggests that critical dynamics of the renormalization group flow provides valuable insights into most of the unresolved issues surrounding SM. We report that the dynamics of the renormalization group flow and the topological approach of El Naschie's ε ∞ theory are viewpoints that share a common foundation. The paper concludes with a brief overview of future developments and integration efforts

  11. BPS ZN string tensions, sine law and Casimir scaling, and integrable field theories

    International Nuclear Information System (INIS)

    Kneipp, Marco A. C.

    2007-01-01

    We consider a Yang-Mills-Higgs theory with spontaneous symmetry breaking of the gauge group G→U(1) r →C G , with C G being the center of G. We study two vacua solutions of the theory which produce this symmetry breaking. We show that for one of these vacua, the theory in the Coulomb phase has the mass spectrum of particles and monopoles which is exactly the same as the mass spectrum of particles and solitons of two-dimensional affine Toda field theory, for suitable coupling constants. That result holds also for N=4 super Yang-Mills theories. On the other hand, in the Higgs phase, we show that for each of the two vacua the ratio of the tensions of the BPS Z N strings satisfy either the Casimir scaling or the sine law scaling for G=SU(N). These results are extended to other gauge groups: for the Casimir scaling, the ratios of the tensions are equal to the ratios of the quadratic Casimir constant of specific representations; for the sine law scaling, the tensions are proportional to the components of the left Perron-Frobenius eigenvector of Cartan matrix K ij and the ratios of tensions are equal to the ratios of the soliton masses of affine Toda field theories

  12. Research program in elementary particle theory. Progress report, 1975--1976

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1976-01-01

    Research on particle theory is summarized including field theory models, phenomenological applications of field theory, strong interactions, the algebraic approach to weak and electromagnetic interactions, and superdense matter. A list of reports is also included

  13. Research program in elementary particle theory. Progress report, 1975--1976. [Summaries of research activities

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E.C.G.; Ne' eman, Y.

    1976-01-01

    Research on particle theory is summarized including field theory models, phenomenological applications of field theory, strong interactions, the algebraic approach to weak and electromagnetic interactions, and superdense matter. A list of reports is also included. (JFP)

  14. Developments in the theory of trapped particle pressure gradient driven turbulence in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Diamond, P.H.; Biglari, H.; Gang, F.Y.

    1991-01-01

    Recent advances in the theory of trapped particle pressure gradient driven turbulence are summarized. A novel theory of trapped ion convective cell turbulence is presented. It is shown that non-linear transfer to small scales occurs, and that saturation levels are not unphysically large, as previously thought. As the virulent saturation mechanism of ion Compton scattering is shown to result in weak turbulence at higher frequencies, it is thus likely that trapped ion convective cells are the major agent of tokamak transport. Fluid like trapped electron modes at short wavelengths (k θ ρ i > 1) are shown to drive an inward particle pinch. The characteristics of convective cell turbulence in flat density discharges are described, as is the stability of dissipative trapped electron modes in stellarators, with flexible magnetic field structure. The role of cross-correlations in the dynamics of multifield models of drift wave turbulence is discussed. (author). 32 refs, 8 figs, 1 tab

  15. Particle connectedness and cluster formation in sequential depositions of particles: integral-equation theory.

    Science.gov (United States)

    Danwanichakul, Panu; Glandt, Eduardo D

    2004-11-15

    We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.

  16. Theory of flotation of small and medium-size particles

    Science.gov (United States)

    Derjaguin, B. V.; Dukhin, S. S.

    1993-08-01

    The paper describes a theory of flotation of small and medium-size particles less than 50μ in radius) when their precipitation on a bubble surface depends more on surface forces than on inertia forces, and deformation of the bubble due to collisions with the particles may be neglected. The approach of the mineral particle to the bubble surface is regarded as taking place in three stages corresponding to movement of the particles through zones 1, 2 and 3. Zone 3 is a liquid wetting layer of such thickness that a positive or negative disjoining pressure arises in this intervening layer between the particle and the bubble. By zone 2 is meant the diffusional boundary layer of the bubble. In zone 1, which comprises the entire liquid outside zone 2, there are no surface forces. Precipitation of the particles is calculated by considering the forces acting in zones 1, 2 and 3. The particles move through zone 1 under the action of gravity and inertia. Analysis of the movement of the particles under the action of these forces gives the critical particle size, below which contact with the bubble surface is impossible, if the surface forces acting in zones 2 and 3 be neglected. The forces acting in zone 2 are ‘diffusio-phoretic’ forces due to the concentration gradient in the diffusional boundary layer. The concentration and electric field intensity distribution in zone 2 is calculated, taking into account ion diffusion to the deformed bubble surface. An examination is made of the ‘equilibrium’ surface forces acting in zone 3 independent of whether the bubble is at rest or in motion. These forces, which determine the behaviour of the thin wetting intervening layer between the bubble and the mineral particle and the height of the force barrier against its rupture, may be represented as results of the disjoining pressure forces acting on various parts of the film. The main components of the disjoining pressure are van der Waals forces, forces of an iono

  17. Large Scale Brownian Dynamics of Confined Suspensions of Rigid Particles

    Science.gov (United States)

    Donev, Aleksandar; Sprinkle, Brennan; Balboa, Florencio; Patankar, Neelesh

    2017-11-01

    We introduce new numerical methods for simulating the dynamics of passive and active Brownian colloidal suspensions of particles of arbitrary shape sedimented near a bottom wall. The methods also apply for periodic (bulk) suspensions. Our methods scale linearly in the number of particles, and enable previously unprecedented simulations of tens to hundreds of thousands of particles. We demonstrate the accuracy and efficiency of our methods on a suspension of boomerang-shaped colloids. We also model recent experiments on active dynamics of uniform suspensions of spherical microrollers. This work was supported in part by the National Science Foundation under award DMS-1418706, and by the U.S. Department of Energy under award DE-SC0008271.

  18. Non-Abelian gauge field theory in scale relativity

    International Nuclear Information System (INIS)

    Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry

    2006-01-01

    Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description

  19. Trap-size scaling in confined-particle systems at quantum transitions

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore

    2010-01-01

    We develop a trap-size scaling theory for trapped particle systems at quantum transitions. As a theoretical laboratory, we consider a quantum XY chain in an external transverse field acting as a trap for the spinless fermions of its quadratic Hamiltonian representation. We discuss trap-size scaling at the Mott insulator to superfluid transition in the Bose-Hubbard model. We present exact and accurate numerical results for the XY chain and for the low-density Mott transition in the hard-core limit of the one-dimensional Bose-Hubbard model. Our results are relevant for systems of cold atomic gases in optical lattices.

  20. The physics of musical scales: Theory and experiment

    Science.gov (United States)

    Durfee, Dallin S.; Colton, John S.

    2015-10-01

    The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.

  1. Theory and Validity of Life Satisfaction Scales

    Science.gov (United States)

    Diener, Ed; Inglehart, Ronald; Tay, Louis

    2013-01-01

    National accounts of subjective well-being are being considered and adopted by nations. In order to be useful for policy deliberations, the measures of life satisfaction must be psychometrically sound. The reliability, validity, and sensitivity to change of life satisfaction measures are reviewed. The scales are stable under unchanging conditions,…

  2. Large scale Brownian dynamics of confined suspensions of rigid particles

    Science.gov (United States)

    Sprinkle, Brennan; Balboa Usabiaga, Florencio; Patankar, Neelesh A.; Donev, Aleksandar

    2017-12-01

    We introduce methods for large-scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method [F. Balboa Usabiaga et al., Commun. Appl. Math. Comput. Sci. 11(2), 217-296 (2016)] at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and its "square" root are available for the given boundary conditions. These kernel operations can be computed with near linear scaling for periodic domains using the positively split Ewald method. Here we study particles partially confined by gravity above a no-slip bottom wall using a graphical processing unit implementation of the mobility matrix-vector product, combined with a preconditioned Lanczos iteration for generating Brownian displacements. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large-scale simulations, an Euler-Maruyama traction scheme and a trapezoidal slip scheme, which minimize the number of mobility problems to be solved per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang-shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in dense suspensions of confined microrollers, whose

  3. A quantization scheme for scale-invariant pure gauge theories

    International Nuclear Information System (INIS)

    Hortacsu, M.

    1988-01-01

    A scheme is suggested for the quantization of the recently proposed scale-invariant gauge theories in higher dimensions. The model is minimally coupled to a spinor field. Regularization algorithms are proposed. (orig.)

  4. Classical Noether theory with application to the linearly damped particle

    International Nuclear Information System (INIS)

    Leone, Raphaël; Gourieux, Thierry

    2015-01-01

    This paper provides a modern presentation of Noether’s theory in the realm of classical dynamics, with application to the problem of a particle submitted to both a potential and a linear dissipation. After a review of the close relationships between Noether symmetries and first integrals, we investigate the variational point symmetries of the Lagrangian introduced by Bateman, Caldirola and Kanai. This analysis leads to the determination of all the time-independent potentials allowing such symmetries, in the one-dimensional and the radial cases. Then we develop a symmetry-based transformation of Lagrangians into autonomous others, and apply it to our problem. To be complete, we enlarge the study to Lie point symmetries which we associate logically to the Noether ones. Finally, we succinctly address the issue of a ‘weakened’ Noether’s theory, in connection with ‘on-flows’ symmetries and non-local constant of motions, because it has a direct physical interpretation in our specific problem. Since the Lagrangian we use gives rise to simple calculations, we hope that this work will be of didactic interest to graduate students, and give teaching material as well as food for thought for physicists regarding Noether’s theory and the recent developments around the idea of symmetry in classical mechanics. (paper)

  5. Astrophysical tests of scale-covariant gravity theories

    International Nuclear Information System (INIS)

    Mansfield, V.N.; Malin, S.

    1980-01-01

    Starting from the most general form of the conservation laws in scale-covariant gravitation theory, a conservation of energy equation appropriate for stars is derived. Applications to white dwarfs and neutron stars reveal serious difficulties for some choices of gauge that have been frequently employed in the literature on scale-covariant gravity. We also show how to restrict some of the possible gauges that result from theories which are independent of the Large Numbers Hypothesis

  6. Symmetry breaking in superstring theories: applications in cosmology and particle physics

    International Nuclear Information System (INIS)

    Catelin-Julien, T.

    2008-10-01

    This thesis is devoted to the study of some applications of superstring theory in cosmology and in particle physics. The unifying principle of our work is the stringy spontaneous (super)symmetry breaking mechanism. Our manuscript starts with a general overview of string theory, where the emphasis is put on the aspects that will be important throughout our work. We introduce then our first work, in which we exhibit a new symmetry of the vacua of N = 1 heterotic string theory, exchanging the vectorial and spinorial representations of the grand unified gauge group. In a second part, we consider stringy cosmological evolutions, at non-zero temperature and in the presence of a supersymmetry breaking scale. We also give arguments for a stabilization of the compactification moduli. (author)

  7. Graph-based linear scaling electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Germann, Timothy C.; Bock, Nicolas [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mniszewski, Susan M.; Mohd-Yusof, Jamal; Wall, Michael E.; Djidjev, Hristo [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rubensson, Emanuel H. [Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala (Sweden)

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  8. Another scheme for quantization of scale invariant gauge theories

    International Nuclear Information System (INIS)

    Hortacsu, M.

    1987-10-01

    A new scheme is proposed for the quantization of scale invariant gauge theories for all even dimensions when they are minimally coupled to a spinor field. A cut-off procedure suggests an algorithm which may regularize the theory. (author). 10 refs

  9. Challenges for Large Scale Structure Theory

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will describe some of the outstanding questions in Cosmology where answers could be provided by observations of the Large Scale Structure of the Universe at late times.I will discuss some of the theoretical challenges which will have to be overcome to extract this information from the observations. I will describe some of the theoretical tools that might be useful to achieve this goal. 

  10. Scaling anomalies in Kaluza-Klein theory

    International Nuclear Information System (INIS)

    Delbourgo, R.; Thompson, G.; Weber, R.O.

    1987-01-01

    The effect of Pauli interactions on the scaling anomaly is to add F/sup 4/, (∂F)/sup 2/ and m/sup 2/F/sup 2/ terms to the trace of the stress-tensor at one loop level, such terms being connected with renormalization. However, when the sum over all modes is taken, these extra contributions vanish upon zeta-function regularisation

  11. Scaling theory of drying in porous media

    International Nuclear Information System (INIS)

    Tsimpanogiannis, I.N.; Yortsos, Y.C.; Poulou, S.; Kanellopoulos, N.; Stubos, A.K.

    1999-01-01

    Concepts of immiscible displacements in porous media driven by mass transfer are utilized to model drying of porous media. Visualization experiments of drying in two-dimensional glass micromodels are conducted to identify pore-scale mechanisms. Then, a pore network approach is used to analyze the advancing drying front. It is shown that in a porous medium, capillarity induces a flow that effectively limits the extent of the front, which would otherwise be of the percolation type, to a finite width. In conjuction with the predictions of a macroscale stable front, obtained from a linear stability analysis, the process is shown to be equivalent to invasion percolation in a stabilizing gradient. A power-law scaling relation of the front width with a diffusion-based capillary number is also obtained. This capillary number reflects the fact that drying is controlled by diffusion in contrast to external drainage. The scaling exponent predicted is compatible with the experimental results of Shaw [Phys Rev. Lett. 59, 1671 (1987)]. A framework for a continuum description of the upstream drying regimes is also developed. copyright 1999 The American Physical Society

  12. Nonperturbative scale anomaly and composite operators in gauge field theories

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miranskij, V.A.

    1987-01-01

    In non-asymptotically free gauge theories with a non-trivial ultraviolet fixed point scale symmetry breaking (the scale anomaly) caused by the nonperturbative PCAC dynamics is studied. In the two-loop approximation the analytical expression for the gluon condensate is obtained. It is shown that the form of the anomaly depends on the type of the phase of a theory to which it relates. The hypothesis about the soft behaviour at small distances of composite operators in such theories is confirmed. 14 refs.; 1 fig

  13. Particle-laden flow from geophysical to Kolmogorov scales

    CERN Document Server

    Clercx, Herman; Uijttewaal, Wim

    2007-01-01

    The dispersion of particles in a flow is of central importance in various geophysical and environmental problems. The spreading of aerosols and soot in the air, the growth and dispersion of plankton blooms in seas and oceans, or the transport of sediment in rivers, estuaries and coastal regions are striking examples. These problems are characterized by strong nonlinear coupling between several dynamical mechanisms. As a result, processes on widely different length and time scales are simultaneously of importance. The multiscale nature of this challenging field motivated the EUROMECH colloquium on particle-laden flow that was held at the University of Twente in 2006. This book contains a selection of the papers that were presented.

  14. Neoclassical theory of electromagnetic interactions a single theory for macroscopic and microscopic scales

    CERN Document Server

    Babin, Anatoli

    2016-01-01

    In this monograph, the authors present their recently developed theory of electromagnetic interactions. This neoclassical approach extends the classical electromagnetic theory down to atomic scales and allows the explanation of various non-classical phenomena in the same framework. While the classical Maxwell–Lorentz electromagnetism theory succeeds in describing the physical reality at macroscopic scales, it struggles at atomic scales. Here, quantum mechanics traditionally takes over to describe non-classical phenomena such as the hydrogen spectrum and de Broglie waves. By means of modifying the classical theory, the approach presented here is able to consistently explain quantum-mechanical effects, and while similar to quantum mechanics in some respects, this neoclassical theory also differs markedly from it. In particular, the newly developed framework omits probabilistic interpretations of the wave function and features a new fundamental spatial scale which, at the size of the free electron, is much lar...

  15. Jamming of soft particles: geometry, mechanics, scaling and isostaticity

    International Nuclear Information System (INIS)

    Van Hecke, M

    2010-01-01

    Amorphous materials as diverse as foams, emulsions, colloidal suspensions and granular media can jam into a rigid, disordered state where they withstand finite shear stresses before yielding. Here we review the current understanding of the transition to jamming and the nature of the jammed state for disordered packings of particles that act through repulsive contact interactions and are at zero temperature and zero shear stress. We first discuss the breakdown of affine assumptions that underlies the rich mechanics near jamming. We then extensively discuss jamming of frictionless soft spheres. At the jamming point, these systems are marginally stable (isostatic) in the sense of constraint counting, and many geometric and mechanical properties scale with distance to this jamming point. Finally, we discuss current explorations of jamming of frictional and non-spherical (ellipsoidal) particles. Both friction and asphericity tune the contact number at jamming away from the isostatic limit, but in opposite directions. This allows one to disentangle the distance to jamming and the distance to isostaticity. The picture that emerges is that most quantities are governed by the contact number and scale with the distance to isostaticity, while the contact number itself scales with the distance to jamming. (topical review)

  16. Jamming of soft particles: geometry, mechanics, scaling and isostaticity

    Energy Technology Data Exchange (ETDEWEB)

    Van Hecke, M, E-mail: mvhecke@physics.leidenuniv.n [Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden (Netherlands)

    2010-01-27

    Amorphous materials as diverse as foams, emulsions, colloidal suspensions and granular media can jam into a rigid, disordered state where they withstand finite shear stresses before yielding. Here we review the current understanding of the transition to jamming and the nature of the jammed state for disordered packings of particles that act through repulsive contact interactions and are at zero temperature and zero shear stress. We first discuss the breakdown of affine assumptions that underlies the rich mechanics near jamming. We then extensively discuss jamming of frictionless soft spheres. At the jamming point, these systems are marginally stable (isostatic) in the sense of constraint counting, and many geometric and mechanical properties scale with distance to this jamming point. Finally, we discuss current explorations of jamming of frictional and non-spherical (ellipsoidal) particles. Both friction and asphericity tune the contact number at jamming away from the isostatic limit, but in opposite directions. This allows one to disentangle the distance to jamming and the distance to isostaticity. The picture that emerges is that most quantities are governed by the contact number and scale with the distance to isostaticity, while the contact number itself scales with the distance to jamming. (topical review)

  17. Renormalization Group Theory of Bolgiano Scaling in Boussinesq Turbulence

    Science.gov (United States)

    Rubinstein, Robert

    1994-01-01

    Bolgiano scaling in Boussinesq turbulence is analyzed using the Yakhot-Orszag renormalization group. For this purpose, an isotropic model is introduced. Scaling exponents are calculated by forcing the temperature equation so that the temperature variance flux is constant in the inertial range. Universal amplitudes associated with the scaling laws are computed by expanding about a logarithmic theory. Connections between this formalism and the direct interaction approximation are discussed. It is suggested that the Yakhot-Orszag theory yields a lowest order approximate solution of a regularized direct interaction approximation which can be corrected by a simple iterative procedure.

  18. Scaling theory of quantum resistance distributions in disordered systems

    International Nuclear Information System (INIS)

    Jayannavar, A.M.

    1991-01-01

    The large scale distribution of quantum Ohmic resistance of a disorderd one-dimensional conductor is derived explicitly. It is shown that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder single parameter scaling consistent with existing theoretical treatments is recovered. (author). 33 refs., 4 figs

  19. Scaling theory of quantum resistance distributions in disordered systems

    International Nuclear Information System (INIS)

    Jayannavar, A.M.

    1990-05-01

    We have derived explicitly, the large scale distribution of quantum Ohmic resistance of a disordered one-dimensional conductor. We show that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder we recover single parameter scaling, consistent with existing theoretical treatments. (author). 32 refs, 4 figs

  20. Scaling algebras and renormalization group in algebraic quantum field theory

    International Nuclear Information System (INIS)

    Buchholz, D.; Verch, R.

    1995-01-01

    For any given algebra of local observables in Minkowski space an associated scaling algebra is constructed on which renormalization group (scaling) transformations act in a canonical manner. The method can be carried over to arbitrary spacetime manifolds and provides a framework for the systematic analysis of the short distance properties of local quantum field theories. It is shown that every theory has a (possibly non-unique) scaling limit which can be classified according to its classical or quantum nature. Dilation invariant theories are stable under the action of the renormalization group. Within this framework the problem of wedge (Bisognano-Wichmann) duality in the scaling limit is discussed and some of its physical implications are outlined. (orig.)

  1. Little string theory from double-scaling limits of field theories

    International Nuclear Information System (INIS)

    Ling, Henry; Shieh, H.-H.; Anders, Greg van

    2007-01-01

    We show that little string theory on S 5 can be obtained as double-scaling limits of the maximally supersymmetric Yang-Mills theories on R x S 2 and R x S 3 /Z k . By matching the gauge theory parameters with those in the dual supergravity solutions found by Lin and Maldacena, we determine the limits in the gauge theories that correspond to decoupling of NS5-brane degrees of freedom. We find that for the theory on R x S 2 , the 't Hooft coupling must be scaled like ln 3 N, and on R x S 3 /Z k , like ln 2 N. Accordingly, taking these limits in these field theories gives Lagrangian definitions of little string theory on S 5

  2. Multiple time-scale methods in particle simulations of plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1985-01-01

    This paper surveys recent advances in the application of multiple time-scale methods to particle simulation of collective phenomena in plasmas. These methods dramatically improve the efficiency of simulating low-frequency kinetic behavior by allowing the use of a large timestep, while retaining accuracy. The numerical schemes surveyed provide selective damping of unwanted high-frequency waves and preserve numerical stability in a variety of physics models: electrostatic, magneto-inductive, Darwin and fully electromagnetic. The paper reviews hybrid simulation models, the implicitmoment-equation method, the direct implicit method, orbit averaging, and subcycling

  3. Theory of finite-entanglement scaling at one-dimensional quantum critical points.

    Science.gov (United States)

    Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E

    2009-06-26

    Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.

  4. Resummation and renormalization in effective theories of particle physics

    CERN Document Server

    Jakovac, Antal

    2015-01-01

    Effective models of strong and electroweak interactions are extensively applied in particle physics phenomenology, and in many instances can compete with large-scale numerical simulations of Standard Model physics. These contexts include but are not limited to providing indications for phase transitions and the nature of elementary excitations of strong and electroweak matter. A precondition for obtaining high-precision predictions is the application of some advanced functional techniques to the effective models, where the sensitivity of the results to the accurate choice of the input parameters is under control and the insensitivity to the actual choice of ultraviolet regulators is ensured. The credibility of such attempts ultimately requires a clean renormalization procedure and an error estimation due to a necessary truncation in the resummation procedure. In this concise primer we discuss systematically and in sufficient technical depth the features of a number of approximate methods, as applied to vario...

  5. Application of particle-mesh Ewald summation to ONIOM theory

    International Nuclear Information System (INIS)

    Kobayashi, Osamu; Nanbu, Shinkoh

    2015-01-01

    Highlights: • Particle-mesh Ewald sum is extended to ONIOM scheme. • Non-adiabatic MD simulation in solution is performed. • The behavior of excited (Z)-penta-2,4-dieniminium cation in methanol is simulated. • The difference between gas phase and solution is predicted. - Abstract: We extended a particle mesh Ewald (PME) summation method to the ONIOM (our Own N-layered Integrated molecular Orbitals and molecular Mechanics) scheme (PME-ONIOM) to validate the simulation in solution. This took the form of a nonadiabatic ab initio molecular dynamics (MD) simulation in which the Zhu-Nakamura trajectory surface hopping (ZN-TSH) method was performed for the photoisomerization of a (Z)-penta-2,4-dieniminium cation (protonated Schiff base, PSB3) electronically excited to the S 1 state in a methanol solution. We also calculated a nonadiabatic ab initio MD simulation with only minimum image convention (MI-ONIOM). The lifetime determined by PME-ONIOM-MD was 3.483 ps. The MI-ONIOM-MD lifetime of 0.4642 ps was much shorter than those of PME-ONIOM-MD and the experimentally determined excited state lifetime. The difference eminently illustrated the accurate treatment of the long-range solvation effect, which destines the electronically excited PSB3 for staying in S 1 at the pico-second or the femto-second time scale.

  6. Interaction of energetic particles with large and small scale instabilities

    International Nuclear Information System (INIS)

    Guenter, S.; Conway, G.; Graca, S. da; Fahrbach, H.-U.; Forest, C.; Munoz, M. Garcia; Hauff, T.; Hobirk, J.; Igochine, V.; Jenko, F.; Lackner, K.; Lauber, P.; McCarthy, P.; Maraschek, M.; Martin, P.; Poli, E.; Sassenberg, K.; Strumberger, E.; Tardini, G.; Wolfrum, E.; Zohm, H.

    2007-01-01

    Beyond a certain heating power, measured and predicted distributions of neutral beam injection (NBI) driven currents deviate from each other even in the absence of MHD instabilities. The most reasonable explanation is a redistribution of fast NBI ions on a time scale smaller than the current redistribution time. The hypothesis of a redistribution of fast ions by background turbulence is discussed. Direct numerical simulation of fast test particles in a given field of electrostatic turbulence indicates that for reasonable parameters fast and thermal particle diffusion can indeed be similar. High quality plasma edge density profiles on ASDEX Upgrade and the recent extension of the reflectometry system allow for a direct comparison of observed TAE eigenfunctions with theoretical ones as obtained with the linear, gyrokinetic, global stability code LIGKA. These comparisons support the hypothesis of TAE-frequency crossing the continuum at the plasma edge in ASDEX Upgrade H-mode discharges. A new fast ion loss detector with 1 MHz time resolution allows frequency and phase resolved correlation between the observed losses and low frequency magnetic perturbations such as TAE modes and rotating magnetic islands. Whereas losses caused by TAE modes are known to be due to resonances in velocity space, by modelling the particle drift orbits we were able to explain losses caused by magnetic islands as due to island formation and stochasticity in the drift orbits

  7. Quasi-linear theory and transport theory. [particle acceleration in interplanetary medium

    Science.gov (United States)

    Smith, Charles W.

    1992-01-01

    The theory of energetic particle scattering by magnetostatic fluctuations is reviewed in so far as it fails to produce the rigidity-independent mean-free-paths observed. Basic aspects of interplanetary magnetic field fluctuations are reviewed with emphasis placed on the existence of dissipation range spectra at high wavenumbers. These spectra are then incorporated into existing theories for resonant magnetostatic scattering and are shown to yield infinite mean-free-paths. Nonresonant scattering in the form of magnetic mirroring is examined and offered as a partial solution to the magnetostatic problem. In the process, mean-free-paths are obtained in good agreement with observations in the interplanetary medium at 1 AU and upstream of planetary bow shocks.

  8. Perturbation theory instead of large scale shell model calculations

    International Nuclear Information System (INIS)

    Feldmeier, H.; Mankos, P.

    1977-01-01

    Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de

  9. Scaling theory of depinning in the Sneppen model

    International Nuclear Information System (INIS)

    Maslov, S.; Paczuski, M.

    1994-01-01

    We develop a scaling theory for the critical depinning behavior of the Sneppen interface model [Phys. Rev. Lett. 69, 3539 (1992)]. This theory is based on a ''gap'' equation that describes the self-organization process to a critical state of the depinning transition. All of the critical exponents can be expressed in terms of two independent exponents, ν parallel (d) and ν perpendicular (d), characterizing the divergence of the parallel and perpendicular correlation lengths as the interface approaches its dynamical attractor

  10. Theory of electrostatics and electrokinetics of soft particles

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ohshima

    2009-01-01

    Full Text Available We investigate theoretically the electrostatics and electrokinetics of a soft particle, i.e. a hard particle covered with an ion-penetrable surface layer of polyelectrolytes. The electric properties of soft particles in an electrolyte solution, which differ from those of hard particles, are essentially determined by the Donnan potential in the surface layer. In particular, the Donnan potential plays an essential role in the electrostatics and electrokinetics of soft particles. Furthermore, the concept of zeta potential, which is important in the electrokinetics of hard particles, loses its physical meaning in the electrokinetics of soft particles. In this review, we discuss the potential distribution around a soft particle, the electrostatic interaction between two soft particles, and the motion of a soft particle in an electric field.

  11. Higgs mass scales and matter-antimatter oscillations in grand unified theories

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1982-01-01

    A general discussion of mass scales in grand unified theories is presented, with special emphasis on Higgs scalars which mediate neutron-antineutron (n-anti n) and hydrogen-antihydrogen (H-anti H) oscillations. It is shown that the analogue of survival hypothesis for fermions naturally makes such particles superheavy, thus leading to unobservable lifetimes. If this hypothesis is relaxed, an interesting possibility of potentially observable n-anti n and H-anti H transitions, mutually related arises in the context of SU(5) theory with spontaneously broken B-L symmetry

  12. Large-scale structure in the universe: Theory vs observations

    International Nuclear Information System (INIS)

    Kashlinsky, A.; Jones, B.J.T.

    1990-01-01

    A variety of observations constrain models of the origin of large scale cosmic structures. We review here the elements of current theories and comment in detail on which of the current observational data provide the principal constraints. We point out that enough observational data have accumulated to constrain (and perhaps determine) the power spectrum of primordial density fluctuations over a very large range of scales. We discuss the theories in the light of observational data and focus on the potential of future observations in providing even (and ever) tighter constraints. (orig.)

  13. Nature of Microscopic Black Holes and Gravity in Theories with Particle Species

    CERN Document Server

    Dvali, Gia

    2010-01-01

    Relying solely on unitarity and the consistency with large-distance black hole physics, we derive model-independent properties of the microscopic black holes and of short-distance gravity in theories with N particle species. In this class of theories black holes can be as light as M_{Planck}/\\sqrt{N} and be produced in particle collisions above this energy. We show, that the micro black holes must come in the same variety as the species do, although their label is not associated with any conserved charge measurable at large distances. In contrast with big Schwarzschildian ones, the evaporation of the smallest black holes is maximally undemocratic and is biased in favor of particular species. With an increasing mass the democracy characteristic to the usual macro black holes is gradually regained. The lowest possible mass above which black holes become Einsteinian is \\sqrt{N} M_{Planck}. This fact uncovers the new fundamental scale (below the quantum gravity scale) above which gravity changes classically, and ...

  14. Detailed examination of 'standard elementary particle theories' based on measurement with Tristan

    International Nuclear Information System (INIS)

    Kamae, Tsuneyoshi

    1989-01-01

    The report discusses possible approaches to detailed analysis of 'standard elementary particle theories' on the basis of measurements made with Tristan. The first section of the report addresses major elementary particles involved in the 'standard theories'. The nature of the gauge particles, leptons, quarks and Higgs particle are briefly outlined. The Higgs particle and top quark have not been discovered, though the Higgs particle is essential in the Weiberg-Salam theory. Another important issue in this field is the cause of the collapse of the CP symmetry. The second section deals with problems which arise in universalizing the concept of the 'standard theories'. What are required to solve these problems include the discovery of supersymmetric particles, discovery of conflicts in the 'standard theories', and accurate determination of fundamental constants used in the 'standard theories' by various different methods. The third and fourth sections address the Weinberg-Salam theory and quantum chromodynamics (QCD). There are four essential parameters for the 'standard theories', three of which are associated with the W-S theory. The mass of the W and Z bosons measured in proton-antiproton collision experiments is compared with that determined by applying the W-S theory to electron-positron experiments. For QCD, it is essential to determine the lambda constant. (N.K.)

  15. Nonequilibrium mode-coupling theory for dense active systems of self-propelled particles.

    Science.gov (United States)

    Nandi, Saroj Kumar; Gov, Nir S

    2017-10-25

    The physics of active systems of self-propelled particles, in the regime of a dense liquid state, is an open puzzle of great current interest, both for statistical physics and because such systems appear in many biological contexts. We develop a nonequilibrium mode-coupling theory (MCT) for such systems, where activity is included as a colored noise with the particles having a self-propulsion force f 0 and a persistence time τ p . Using the extended MCT and a generalized fluctuation-dissipation theorem, we calculate the effective temperature T eff of the active fluid. The nonequilibrium nature of the systems is manifested through a time-dependent T eff that approaches a constant in the long-time limit, which depends on the activity parameters f 0 and τ p . We find, phenomenologically, that this long-time limit is captured by the potential energy of a single, trapped active particle (STAP). Through a scaling analysis close to the MCT glass transition point, we show that τ α , the α-relaxation time, behaves as τ α ∼ f 0 -2γ , where γ = 1.74 is the MCT exponent for the passive system. τ α may increase or decrease as a function of τ p depending on the type of active force correlations, but the behavior is always governed by the same value of the exponent γ. Comparison with the numerical solution of the nonequilibrium MCT and simulation results give excellent agreement with scaling analysis.

  16. Black Carbon Absorption at the Global Scale Is Affected by Particle-Scale Diversity in Composition

    Science.gov (United States)

    Fierce, Laura; Bond, Tami C.; Bauer, Susanne E.; Mena, Francisco; Riemer, Nicole

    2016-01-01

    Atmospheric black carbon (BC) exerts a strong, but uncertain, warming effect on the climate. BC that is coated with non-absorbing material absorbs more strongly than the same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement (E(sub abs)) is not well constrained. Modelling studies and laboratory measurements have found stronger absorption enhancement than has been observed in the atmosphere. Here, using a particle-resolved aerosol model to simulate diverse BC populations, we show that absorption is overestimated by as much as a factor of two if diversity is neglected and population-averaged composition is assumed across all BC-containing particles. If, instead, composition diversity is resolved, we find E(sub abs) = 1 - 1.5 at low relative humidity, consistent with ambient observations. This study offers not only an explanation for the discrepancy between modelled and observed absorption enhancement, but also demonstrates how particle-scale simulations can be used to develop relationships for global-scale models.

  17. Proceedings of the 5. Jorge Andre Swieca Summer School Field Theory and Particle Physics

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Gomes, M.; Santoro, A.

    1989-01-01

    Lectures on quantum field theories and particle physics are presented. The part of quantum field theories contains: constrained dynamics; Schroedinger representation in field theory; application of this representation to quantum fields in a Robertson-Walker space-time; Berry connection; problem of construction and classification of conformal field theories; lattice models; two-dimensional S matrices and conformal field theory for unifying perspective of Yang-Baxter algebras; parasupersymmetric quantum mechanics; introduction to string field theory; three dimensional gravity and two-dimensional parafermionic model. The part of particle physics contains: collider physics; strong interactions and use of strings in strong interactions. (M.C.K.)

  18. Research program in elementary particle theory: Progress report, January 1, 1987-December 1987

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Dicus, D.A.

    1987-08-01

    Progress is reported in the areas of: strings and gauge theories, mathematical physics and quantum optics, high energy physics phenomenology, quantum chromodynamic sum rules, and application of particle physics to astrophysics. Titles of DOE reports resulting from this research are listed, and the research histories of the scientific staff of the Center for Particle Theory are given

  19. Prediction of beauty particle masses with the heavy quark effective theory

    International Nuclear Information System (INIS)

    Aglietti, U.

    1992-01-01

    Using symmetry properties of the static theory for heavy quarks, the spectrum of beauty particles is predicted in terms of the spectrum of charmed particles. A simple technique for cancelling spin dependent corrections to the static theory is explained and systematically applied. (orig.)

  20. The evolving Planck mass in classically scale-invariant theories

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H. [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia)

    2017-04-05

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.

  1. Characterizing Sources of Uncertainty in Item Response Theory Scale Scores

    Science.gov (United States)

    Yang, Ji Seung; Hansen, Mark; Cai, Li

    2012-01-01

    Traditional estimators of item response theory scale scores ignore uncertainty carried over from the item calibration process, which can lead to incorrect estimates of the standard errors of measurement (SEMs). Here, the authors review a variety of approaches that have been applied to this problem and compare them on the basis of their statistical…

  2. The evolving Planck mass in classically scale-invariant theories

    Science.gov (United States)

    Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.

    2017-04-01

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.

  3. Scale transformation and massless limit in neutral-vector field theory. [Gauge transformation unified theory

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, R; Takahashi, Y; Yokoyama, K

    1975-01-01

    In a wide class of neutral vector field theories, in which massive and massless fields are described in a unified way and a unique massless limit exists to quantum electrodynamics in covariant gauges, the commutability of the scale transformation and the massless limit is examined. It is shown that there occurs no anomaly with respect to the assignment for scale dimensions of relevant fields. Connection of scale transformation and gauge transformation is also discussed.

  4. Divergence of perturbation theory in large scale structures

    Science.gov (United States)

    Pajer, Enrico; van der Woude, Drian

    2018-05-01

    We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.

  5. Scaling theory and the classification of phase transitions

    International Nuclear Information System (INIS)

    Hilfer, R.

    1992-01-01

    In this paper, the recent classification theory for phase transitions and its relation with the foundations of statistical physics is reviewed. First it is outlined how Ehrenfests classification scheme can be generalized into a general thermodynamic classification theory for phase transitions. The classification theory implies scaling and multiscaling thereby eliminating the need to postulate the scaling hypothesis as a fourth law of thermodynamics. The new classification has also led to the discovery and distinction of nonequilibrium transitions within equilibrium statistical physics. Nonequilibrium phase transitions are distinguished from equilibrium transitions by orders less than unity and by the fact the equilibrium thermodynamics and statistical mechanics become inapplicable at the critical point. The latter fact requires a change in the Gibbs assumption underlying the canonical and grandcanonical ensembles in order to recover the thermodynamic description in the critical limit

  6. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  7. Multiple spatial scaling and the weak-coupling approximation. I. General formulation and equilibrium theory

    Energy Technology Data Exchange (ETDEWEB)

    Kleinsmith, P E [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1976-04-01

    Multiple spatial scaling is incorporated in a modified form of the Bogoliubov plasma cluster expansion; then this proposed reformulation of the plasma weak-coupling approximation is used to derive, from the BBGKY Hierarchy, a decoupled set of equations for the one-and two-particle distribution functions in the limit as the plasma parameter goes to zero. Because the reformulated cluster expansion permits retention of essential two-particle collisional information in the limiting equations, while simultaneously retaining the well-established Debye-scale relative ordering of the correlation functions, decoupling of the Hierarchy is accomplished without introduction of the divergence problems encountered in the Bogoliubov theory, as is indicated by an exact solution of the limiting equations for the equilibrium case. To establish additional links with existing plasma equilibrium theories, the two-particle equilibrium correlation function is used to calculate the interaction energy and the equation of state. The limiting equation for the equilibrium three-particle correlation function is then developed, and a formal solution is obtained.

  8. Scaling of theory-of-mind understandings in Chinese children.

    Science.gov (United States)

    Wellman, Henry M; Fang, Fuxi; Liu, David; Zhu, Liqi; Liu, Guoxiong

    2006-12-01

    Prior research demonstrates that understanding of theory of mind develops at different paces in children raised in different cultures. Are these differences simply differences in timing, or do they represent different patterns of cultural learning? That is, to what extent are sequences of theory-of-mind understanding universal, and to what extent are they culture-specific? We addressed these questions by using a theory-of-mind scale to examine performance of 140 Chinese children living in Beijing and to compare their performance with that of 135 English-speaking children living in the United States and Australia. Results reveal a common sequence of understanding, as well as sociocultural differences in children's developing theories of mind.

  9. Sequential Progressions in a Theory of Mind Scale: Longitudinal Perspectives

    Science.gov (United States)

    Wellman, Henry M.; Fuxi, Fang; Peterson, Candida C.

    2011-01-01

    Consecutive re-testings of 92 U.S. preschoolers (n = 30), Chinese preschoolers (n = 31), and deaf children (n = 31) examined whether the sequences of development apparent in cross-sectional results with a theory-of-mind scale also appeared in longitudinal assessment. Longitudinal data confirmed that theory-of-mind progressions apparent in cross-sectional scaling data also characterized longitudinal sequences of understanding for individual children. The match between cross-sectional and longitudinal sequences appeared for children who exhibit different progressions across cultures (U.S. vs. China) and for children with substantial delays (deaf children of hearing parents). Moreover, greater scale distances reflected larger longitudinal age differences. PMID:21428982

  10. Particle swarm optimization with scale-free interactions.

    Directory of Open Access Journals (Sweden)

    Chen Liu

    Full Text Available The particle swarm optimization (PSO algorithm, in which individuals collaborate with their interacted neighbors like bird flocking to search for the optima, has been successfully applied in a wide range of fields pertaining to searching and convergence. Here we employ the scale-free network to represent the inter-individual interactions in the population, named SF-PSO. In contrast to the traditional PSO with fully-connected topology or regular topology, the scale-free topology used in SF-PSO incorporates the diversity of individuals in searching and information dissemination ability, leading to a quite different optimization process. Systematic results with respect to several standard test functions demonstrate that SF-PSO gives rise to a better balance between the convergence speed and the optimum quality, accounting for its much better performance than that of the traditional PSO algorithms. We further explore the dynamical searching process microscopically, finding that the cooperation of hub nodes and non-hub nodes play a crucial role in optimizing the convergence process. Our work may have implications in computational intelligence and complex networks.

  11. Light Scattering by Optically Soft Particles Theory and Applications

    CERN Document Server

    Sharma, Subodh K

    2006-01-01

    The present monograph deals with a particular class of approximation methods in the context of light scattering by small particles. This class of approximations has been termed as eikonal or soft particle approximations. The eikonal approximation was studied extensively in the potential scattering and then adopted in optical scattering problems. In this context, the eikonal and other soft particle approximations pertain to scatterers whose relative refractive index compared to surrounding medium is close to unity. The study of these approximations is very important because soft particles occur abundantly in nature. For example, the particles that occur in ocean optics, biomedical optics, atmospheric optics and in many industrial applications can be classified as soft particles. This book was written in recognition of the long-standing and current interest in the field of scattering approximations for soft particles. It should prove to be a useful addition for researchers in the field of light scattering.

  12. Vectorlike particles, Z′ and Yukawa unification in F-theory inspired E6

    Directory of Open Access Journals (Sweden)

    Athanasios Karozas

    2018-03-01

    Full Text Available We explore the low energy implications of an F-theory inspired E6 model whose breaking yields, in addition to the MSSM gauge symmetry, a Z′ gauge boson associated with a U(1 symmetry broken at the TeV scale. The zero mode spectrum of the effective low energy theory is derived from the decomposition of the 27 and 27‾ representations of E6 and we parametrise their multiplicities in terms of a minimum number of flux parameters. We perform a two-loop renormalisation group analysis of the gauge and Yukawa couplings of the effective theory model and estimate lower bounds on the new vectorlike particles predicted in the model. We compute the third generation Yukawa couplings in an F-theory context assuming an E8 point of enhancement and express our results in terms of the local flux densities associated with the gauge symmetry breaking. We find that their values are compatible with the ones computed by the renormalisation group equations, and we identify points in the parameter space of the flux densities where the t−b−τ Yukawa couplings unify.

  13. Vectorlike particles, Z‧ and Yukawa unification in F-theory inspired E6

    Science.gov (United States)

    Karozas, Athanasios; Leontaris, George K.; Shafi, Qaisar

    2018-03-01

    We explore the low energy implications of an F-theory inspired E6 model whose breaking yields, in addition to the MSSM gauge symmetry, a Z‧ gauge boson associated with a U (1) symmetry broken at the TeV scale. The zero mode spectrum of the effective low energy theory is derived from the decomposition of the 27 and 27 ‾ representations of E6 and we parametrise their multiplicities in terms of a minimum number of flux parameters. We perform a two-loop renormalisation group analysis of the gauge and Yukawa couplings of the effective theory model and estimate lower bounds on the new vectorlike particles predicted in the model. We compute the third generation Yukawa couplings in an F-theory context assuming an E8 point of enhancement and express our results in terms of the local flux densities associated with the gauge symmetry breaking. We find that their values are compatible with the ones computed by the renormalisation group equations, and we identify points in the parameter space of the flux densities where the t - b - τ Yukawa couplings unify.

  14. Quantum no-scale regimes in string theory

    Science.gov (United States)

    Coudarchet, Thibaut; Fleming, Claude; Partouche, Hervé

    2018-05-01

    We show that in generic no-scale models in string theory, the flat, expanding cosmological evolutions found at the quantum level can be attracted to a "quantum no-scale regime", where the no-scale structure is restored asymptotically. In this regime, the quantum effective potential is dominated by the classical kinetic energies of the no-scale modulus and dilaton. We find that this natural preservation of the classical no-scale structure at the quantum level occurs when the initial conditions of the evolutions sit in a subcritical region of their space. On the contrary, supercritical initial conditions yield solutions that have no analogue at the classical level. The associated intrinsically quantum universes are sentenced to collapse and their histories last finite cosmic times. Our analysis is done at 1-loop, in perturbative heterotic string compactified on tori, with spontaneous supersymmetry breaking implemented by a stringy version of the Scherk-Schwarz mechanism.

  15. Method of producing carbon coated nano- and micron-scale particles

    Science.gov (United States)

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  16. Testing the Grandchildren's Received Affection Scale using Affection Exchange Theory.

    Science.gov (United States)

    Mansson, Daniel H

    2013-04-01

    The purpose of this study was to test the Grandchildren's Received Affection Scale (GRAS) using Affection Exchange Theory (Floyd, 2006). In accordance with Affection Exchange Theory, it was hypothesized that grandchildren's scores on the Trait Affection Received Scale (i.e., the extent to which individuals by nature receive affection) would be related significantly and positively to their reports of received affection from their grandparents (i.e., their scores on the GRAS). Additionally, a research question was asked to explore if grandchildren's received affection from their grandparents is dependent on their grandparent's biological sex or lineage (i.e., maternal vs paternal). Thus, young adult grandchildren (N = 422) completed the GRAS and the Trait Affection Received Scale. The results of zero-order Pearson correlational analyses provided support for the hypothesis, whereas the results of MANOVAs tests only partially support extant grandparent-grandchild theory and research. These findings broaden the scope of Affection Exchange Theory and also bolster the GRAS's utility in future grandparent-grandchild affectionate communication research.

  17. 1. Vienna central european seminar on particle physics and quantum field theory. Advances in quantum field theory. Program

    International Nuclear Information System (INIS)

    Hueffel, H.

    2004-01-01

    The new seminar series 'Vienna central European seminar on particle physics and quantum field theory' has been created 2004 and is intended to provide interactions between leading researchers and junior physicists. This year 'Advances in quantum field theory' has been chosen as subject and is centred on field theoretic aspects of string dualities. The lectures mainly focus on these aspects of string dualities. Further lectures regarding supersymmetric gauge theories, quantum gravity and noncommutative field theory are presented. The vast field of research concerning string dualities justifies special attention to their effects on field theory. (author)

  18. Quantum theory of nonrelativistic particles interacting with gravity

    International Nuclear Information System (INIS)

    Anastopoulos, C.

    1996-01-01

    We investigate the effects of the gravitational field on the quantum dynamics of nonrelativistic particles. We consider N nonrelativistic particles, interacting with the linearized gravitational field. Using the Feynman-Vernon influence functional technique, we trace out the graviton field to obtain a master equation for the system of particles to first order in G. The effective interaction between the particles as well as the self-interaction is in general non-Markovian. We show that the gravitational self-interaction cannot be held responsible for decoherence of microscopic particles due to the fast vanishing of the diffusion function. For macroscopic particles though, it leads to diagonalization to the energy eigenstate basis, a desirable feature in gravity-induced collapse models. We finally comment on possible applications. copyright 1996 The American Physical Society

  19. Problems in particle theory: Progress report, April 30, 1988--April 30, 1989

    International Nuclear Information System (INIS)

    Wilczek, F.; Adler, S.L.

    1989-01-01

    Funds are requested for the support of members of The Institute for Advanced Study working on problems in high energy theory. The specific problems to be investigated, which will depend strongly on the particular individuals supported, are expected to cover a variety of topics in particle theory and quantum field theory

  20. The algebraic construction of the scale-invariant asymtotic theory

    International Nuclear Information System (INIS)

    Gatto, R.; Sartori, G.

    1975-01-01

    The procedure proposed in the preceding paper to construct the asymptotic scale-invariant theory is applied to massive free fields. The contracted fields (of the asymptotic theory) are calculated in terms of the original fields by two different procedures. The contracted charges are calculated and their general relation to the original charges is verified. The problem of defining a vacuum state for the contracted fields and charges is solved. The relation to the problem of non-equivalent representations of the commutator relations is pointed out

  1. Validation of Theory of Consumption Values Scales for Deal Sites

    DEFF Research Database (Denmark)

    Sudzina, Frantisek

    2016-01-01

    Deal sites became a widely used artefact. But there is still only a limited number of papers investigating their adoption and use. Most of the research published on the topic is qualitative. It is typical for an early stage of investigation of any new artefact. The Theory of Consumption Values ex...... explains purchase behavior. The aim of this paper is to validate scales for the Theory of Consumption Values for deal sites. This should pave a way for quantitative investigation of motives for purchasing using deal sites....

  2. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. II. PARTICLE ENERGIZATION INSIDE MAGNETICALLY CONFINED CAVITIES

    International Nuclear Information System (INIS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Le Roux, Jakobus A.; Webb, Gary M.; Malandraki, Olga E.

    2016-01-01

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.

  3. Verification of Gyrokinetic Particle of Turbulent Simulation of Device Size Scaling Transport

    Institute of Scientific and Technical Information of China (English)

    LIN Zhihong; S. ETHIER; T. S. HAHM; W. M. TANG

    2012-01-01

    Verification and historical perspective are presented on the gyrokinetic particle simulations that discovered the device size scaling of turbulent transport and indentified the geometry model as the source of the long-standing disagreement between gyrokinetic particle and continuum simulations.

  4. Research in the theory of condensed matter and elementary particles. [Progress report

    International Nuclear Information System (INIS)

    1985-01-01

    The proposed research is concerned with problems occupying the common ground between quantum field theory and statistical mechanics. The topics under investigation include: superconformal field theory in two dimensions, its relationship to two dimensional critical phenomena and its applications in string theory; the covariant formulation of the superstring theory; formation of large-scale structures and spatial chaos in dynamical systems; fermion-boson mass relations in BCS type theories; and properties of quantum field theories defined over galois fields. 37 refs

  5. The Study of Non-Linear Acceleration of Particles during Substorms Using Multi-Scale Simulations

    International Nuclear Information System (INIS)

    Ashour-Abdalla, Maha

    2011-01-01

    To understand particle acceleration during magnetospheric substorms we must consider the problem on multple scales ranging from the large scale changes in the entire magnetosphere to the microphysics of wave particle interactions. In this paper we present two examples that demonstrate the complexity of substorm particle acceleration and its multi-scale nature. The first substorm provided us with an excellent example of ion acceleration. On March 1, 2008 four THEMIS spacecraft were in a line extending from 8 R E to 23 R E in the magnetotail during a very large substorm during which ions were accelerated to >500 keV. We used a combination of a global magnetohydrodynamic and large scale kinetic simulations to model the ion acceleration and found that the ions gained energy by non-adiabatic trajectories across the substorm electric field in a narrow region extending across the magnetotail between x = -10 R E and x = -15 R E . In this strip called the 'wall region' the ions move rapidly in azimuth and gain 100s of keV. In the second example we studied the acceleration of electrons associated with a pair of dipolarization fronts during a substorm on February 15, 2008. During this substorm three THEMIS spacecraft were grouped in the near-Earth magnetotail (x ∼-10 R E ) and observed electron acceleration of >100 keV accompanied by intense plasma waves. We used the MHD simulations and analytic theory to show that adiabatic motion (betatron and Fermi acceleration) was insufficient to account for the electron acceleration and that kinetic processes associated with the plasma waves were important.

  6. Streamflow Observations From Cameras: Large-Scale Particle Image Velocimetry or Particle Tracking Velocimetry?

    Science.gov (United States)

    Tauro, F.; Piscopia, R.; Grimaldi, S.

    2017-12-01

    Image-based methodologies, such as large scale particle image velocimetry (LSPIV) and particle tracking velocimetry (PTV), have increased our ability to noninvasively conduct streamflow measurements by affording spatially distributed observations at high temporal resolution. However, progress in optical methodologies has not been paralleled by the implementation of image-based approaches in environmental monitoring practice. We attribute this fact to the sensitivity of LSPIV, by far the most frequently adopted algorithm, to visibility conditions and to the occurrence of visible surface features. In this work, we test both LSPIV and PTV on a data set of 12 videos captured in a natural stream wherein artificial floaters are homogeneously and continuously deployed. Further, we apply both algorithms to a video of a high flow event on the Tiber River, Rome, Italy. In our application, we propose a modified PTV approach that only takes into account realistic trajectories. Based on our findings, LSPIV largely underestimates surface velocities with respect to PTV in both favorable (12 videos in a natural stream) and adverse (high flow event in the Tiber River) conditions. On the other hand, PTV is in closer agreement than LSPIV with benchmark velocities in both experimental settings. In addition, the accuracy of PTV estimations can be directly related to the transit of physical objects in the field of view, thus providing tangible data for uncertainty evaluation.

  7. The radiochromic dye film dose meter as a possible test of particle track theory

    International Nuclear Information System (INIS)

    Hansen, J.W.; Jensen, M.; Katz, R.

    1980-09-01

    The response characteristic of the thin-film radiometric dye cyanide plastic dose meter to ionizing radiation of electrons and heavy charged particles is investigated as a possible test of the particle track theory worked out by Robert Katz and coworkers. Dose response curves for low-LET radiation have been investigated and are used for a quality estimation of the response for protons and oxygen ions at 16 and 4 MeV/amu, respectively. A bleaching effect on the colouration at high doses intimates that the target cannot be interpreted lieerally, but it might still be possinle to transfer the function of the macroscopic dose response to a theoretical dose response curve in a microscopic scale for a single ion. From this relation the macroscopic dose response curve can be determined qhen the film is irradiated with heavy ions. It will be shown theoretically that for protons there is no saturation in the track core, whereas calculations for oxygen ions show a heavy saturation in the track core, which means that a part of the ions loose their energy ineffectively. We can conclude that itis possible qualitatively to predict the dose response curve for high-LET particles by means of the dose response curve for low-LET radiation. (author)

  8. An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas

    International Nuclear Information System (INIS)

    Drury, L.O'C.

    1983-01-01

    The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints; applied to reactionless test particles in a steady plane shock the mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalised Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks; the possible time dependence is briefly discussed. (author)

  9. Introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.O. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))

    1983-08-01

    The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints; applied to reactionless test particles in a steady plane shock the mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalized Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks; the possible time dependence is briefly discussed.

  10. Introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.Oc.

    1983-08-01

    The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints applied to reactionless test particles in a steady plane shock. The mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalized Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks. The possible time dependence is briefly discussed. 75 references.

  11. Departures from scaling in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Gutbrod, F.

    1987-01-01

    High statistics Monte Carlo Data in SU(2) lattice gauge theory are presented. At β = 2.6 and β = 2.7 large deviations form scaling are observed for Creutz ratios, when 12 4 and 24 4 lattice data are compared. There is a trend towards a restauration of asymptotic scaling with increasing β, which vanishes if at the higher value of β larger loops are considered than at lower β. The static qanti q-potential and an upper limit for the string tension are given. (orig.)

  12. Mixing large and small particles in a pilot scale rotary kiln

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Aniol, Rasmus Wochnik; Larsen, Morten Boberg

    2011-01-01

    The mixing of solid alternative fuel particles in cement raw materials was studied experimentally by visual observation in a pilot scale rotary kiln. Fuel particles were placed on top of the raw material bed prior to the experiment. The percentage of particles visible above the bed as a function...... of time was evaluated with the bed predominantly in the rolling bed mode. Experiments were conducted to investigate the effects of fuel particle size and shape, fuel particle density, rotary kiln fill degree and rotational speed. Large fuel particles and low-density fuel particles appeared more on top...... of the bed than smaller particles and high-density fuel particles. Fuel particle dimensions and sphericity were important parameters for the percentage of visible particles. Increasing bed fill degree and/or increasing rotational speed decreased the percentage of particles visible on top of the bed...

  13. Detailed treatment of scaling violations in asymptotically free gauge theories

    International Nuclear Information System (INIS)

    Hinchliffe, I.; Llewellyn Smith, C.H.

    1977-01-01

    Scaling violations in lepto-production are discussed on the basis of asymptotically free gauge theories. Detailed attention is given to the problems of operator mixing and data parametrisation. All the electro-/muo-production data for F 2 can be accommodated. The calculated values for Fsub(L) are also compatible with the data in the region where the theory may be trusted. It is shown that the FNAL data for sigmasup(anti γ)/sigmasup(γ) and sup(anti γ) can be explained if the freedom to input rather large amounts of antiquarks is exploited. It is therefore premature to conclude that new flavours are required. Predictions are given for very high energies which are relevant for possible new experimental facilities. The consequences of a conjecture about the possible pattern of scaling violations in the production of W's, Z's and μ-pairs are explored. Some theoretical problems and uncertainties in testing asymptotic freedom are discussed. (Auth.)

  14. Three-particle physics and dispersion relation theory

    CERN Document Server

    Anisovich, A V; Matveev, M A; Nikonov, V A; Nyiri, J; Sarantsev, A V

    2013-01-01

    The necessity of describing three-nucleon and three-quark systems have led to a constant interest in the problem of three particles. The question of including relativistic effects appeared together with the consideration of the decay amplitude in the framework of the dispersion technique. The relativistic dispersion description of amplitudes always takes into account processes connected with the investigated reaction by the unitarity condition or by virtual transitions; in the case of three-particle processes they are, as a rule, those where other many-particle states and resonances are produced. The description of these interconnected reactions and ways of handling them is the main subject of the book.

  15. Full nuclear field theory treatment of two-particle-one-hole-excitations

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Liotta, R.J.

    1981-01-01

    The nuclear field theory series is summed up to all orders of perturbation theory including only Tamm-Dancoff vertices for the case of two-particle-one-hole-excitations. It is found that the theory gives the same results as those provided by the shell-model method, but only if all possible basis states are included in the formalism. Applicability of the theory is discussed in a simple model

  16. [Research programs on elementary particle and field theories and superconductivity

    International Nuclear Information System (INIS)

    Khuri, N.N.

    1992-01-01

    Research of staff members in theoretical physics is presented in the following areas: super string theory, a new approach to path integrals, new ideas on the renormalization group, nonperturbative chiral gauge theories, the standard model, K meson decays, and the CP problem. Work on high-T c superconductivity and protein folding is also related

  17. Kinetic theory of a longitudinally expanding system of scalar particles

    International Nuclear Information System (INIS)

    Epelbaum, Thomas; Gelis, François; Jeon, Sangyong; Moore, Guy; Wu, Bin

    2015-01-01

    A simple kinematical argument suggests that the classical approximation may be inadequate to describe the evolution of a system with an anisotropic particle distribution. In order to verify this quantitatively, we study the Boltzmann equation for a longitudinally expanding system of scalar particles interacting with a ϕ 4 coupling, that mimics the kinematics of a heavy ion collision at very high energy. We consider only elastic 2→2 scatterings, and we allow the formation of a Bose-Einstein condensate in overpopulated situations by solving the coupled equations for the particle distribution and the particle density in the zero mode. For generic CGC-like initial conditions with a large occupation number, the solutions of the full Boltzmann equation cease to display the classical attractor behavior sooner than expected; for moderate coupling, the solutions appear never to follow a classical attractor solution.

  18. Shock waves in collective field theories for many particle systems

    Energy Technology Data Exchange (ETDEWEB)

    Oki, F; Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K

    1980-10-01

    We find shock wave solutions to collective field equations for quantum mechanical many particle system. Importance of the existence of a ''tension'' working on the surface of the shock-wave front is pointed out.

  19. Proceedings of the Johns Hopkins workshop on current problems in particle theory 5: unified field theories and beyond

    International Nuclear Information System (INIS)

    1981-01-01

    Topics covered include: symmetric gauge theories; infinite lie algebras in physics; the mechanism for confinement in massive quark QCD; a search for possible composite models of quarks and leptons; the radiative structure of Fermion masses; fractional electric charge in QCD; heavy particle effects; Fermion mass heirarchies in theories of technicolor; statistical notions applied in the early universe; grand unification and cosmology - an environmental impact statement; first order phase transition in the early universe; the electric dipole moment of the neutron; cosmological constraints on Grand Unified Theories; and the consequences for CP invariance of instanton angles THETA in dynamically broken gauge theories. Individual items from this workshop were prepared separately for the data base

  20. Particles and energy fluxes from a conformal field theory perspective

    International Nuclear Information System (INIS)

    Fabbri, A.; Navarro-Salas, J.; Olmo, G.J.

    2004-01-01

    We analyze the creation of particles in two dimensions under the action of conformal transformations. We focus our attention on Mobius transformations and compare the usual approach, based on the Bogoliubov coefficients, with an alternative but equivalent viewpoint based on correlation functions. In the latter approach the absence of particle production under full Mobius transformations is manifest. Moreover, we give examples, using the moving-mirror analogy, to illustrate the close relation between the production of quanta and energy

  1. Interaction range perturbation theory for three-particle problem

    International Nuclear Information System (INIS)

    Simenog, I.V.; Shapoval, D.V.

    1988-01-01

    The limit of zero interaction range is correctly defined for a system of three spinless particles and three particles in a doublet state. The scattering amplitude is expanded with respect to the interaction range r, and the corrections of order r ln r, r, and r 2 ln2 r are found. An explicit model-independent asymptotic expression is obtained for the scattering amplitude in terms of the scattering length, and its accuracy is established

  2. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles

    Science.gov (United States)

    Elizondo-Aguilera, L. F.; Zubieta Rico, P. F.; Ruiz-Estrada, H.; Alarcón-Waess, O.

    2014-11-01

    A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, Fl m ,l m(k ,t ) and Flm ,l m S(k ,t ) , are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density nl m(k ,t ) and the translational (α =T ) and rotational (α =R ) current densities jlm α(k ,t ) . Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by Sl m ,l m(k ) . Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γT and γR, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.

  3. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles.

    Science.gov (United States)

    Elizondo-Aguilera, L F; Zubieta Rico, P F; Ruiz-Estrada, H; Alarcón-Waess, O

    2014-11-01

    A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, F_{lm,lm}(k,t) and F_{lm,lm}^{S}(k,t), are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density n_{lm}(k,t) and the translational (α=T) and rotational (α=R) current densities j_{lm}^{α}(k,t). Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by S_{lm,lm}(k). Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γ_{T} and γ_{R}, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.

  4. Atomic-scale simulation of dust grain collisions: Surface chemistry and dissipation beyond existing theory

    Science.gov (United States)

    Quadery, Abrar H.; Doan, Baochi D.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K.

    2017-10-01

    The early stages of planet formation involve steps where submicron-sized dust particles collide to form aggregates. However, the mechanism through which millimeter-sized particles aggregate to kilometer-sized planetesimals is still not understood. Dust grain collision experiments carried out in the environment of the Earth lead to the prediction of a 'bouncing barrier' at millimeter-sizes. Theoretical models, e.g., Johnson-Kendall-Roberts and Derjaguin-Muller-Toporov theories, lack two key features, namely the chemistry of dust grain surfaces, and a mechanism for atomic-scale dissipation of energy. Moreover, interaction strengths in these models are parameterized based on experiments done in the Earth's environment. To address these issues, we performed atomic-scale simulations of collisions between nonhydroxylated and hydroxylated amorphous silica nanoparticles. We used the ReaxFF approach which enables modeling chemical reactions using an empirical potential. We found that nonhydroxylated nanograins tend to adhere with much higher probability than suggested by existing theories. By contrast, hydroxylated nanograins exhibit a strong tendency to bounce. Also, the interaction between dust grains has the characteristics of a strong chemical force instead of weak van der Waals forces. This suggests that the formation of strong chemical bonds and dissipation via internal atomic vibration may result in aggregation beyond what is expected based on our current understanding. Our results also indicate that experiments should more carefully consider surface conditions to mimic the space environment. We also report results of simulations with molten silica nanoparticles. It is found that molten particles are more likely to adhere due to viscous dissipation, which supports theories that suggest aggregation to kilometer scales might require grains to be in a molten state.

  5. Interim development report: engineering-scale HTGR fuel particle crusher

    International Nuclear Information System (INIS)

    Baer, J.W.; Strand, J.B.

    1978-09-01

    During the reprocessing of HTGR fuel, a double-roll crusher is used to fracture the silicon carbide coatings on the fuel particles. This report describes the development of the roll crusher used for crushing Fort-St.Vrain type fissile and fertile fuel particles, and large high-temperature gas-cooled reactor (LHTGR) fissile fuel particles. Recommendations are made for design improvements and further testing

  6. Deducing T, C, and P invariance for strong interactions in topological particle theory

    International Nuclear Information System (INIS)

    Jones, C.E.

    1985-01-01

    It is shown here how the separate discrete invariances [time reversal (T), charge conjugation (C), and parity (P)] in strong interactions can be deduced as consequences of other S-matrix requirements in topological particle theory

  7. Research program in elementary particle theory: Progress report, January 1, 1988-December 1988

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Dicus, D.A.

    1988-08-01

    This report discusses progress in the following areas: Mathematical Physics, Strings and Gauge Theories; Quantum Optics; High Energy Phenomenology; Angular Momentum, QCD Sum Rules; and Application of Particle Physics to Astrophysics

  8. Three- and two-point one-loop integrals in heavy particle effective theories

    International Nuclear Information System (INIS)

    Bouzas, A.O.

    2000-01-01

    We give a complete analytical computation of three- and two-point loop integrals occurring in heavy particle theories, involving a velocity change, for arbitrary real values of the external masses and residual momenta. (orig.)

  9. Introduction of the chronon in the theory of electron and the wave-particle duality

    International Nuclear Information System (INIS)

    Caldirola, P.

    1984-01-01

    The author summarizes the more important results obtained in the electron theory based on the chronon and stresses some peculiarities of the wave-particle duality directly connected with the introduction of the chronon. (Auth.)

  10. Research program in elementary particle theory. Progress report for the period ending June 30, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The Syracuse High-Energy Theory group has contributed significantly to many of the current areas of active research in particle physics. Multigenerational grand unified theories have been explored in depth and the predictions of grand unified theories for proton decay have been critically examined. The properties of magnetic monopoles predicted by such theories have been studied. Topological solutions predicted by chiral and other phenomenologically interesting models have been studied. Various properties of glueballs have been explored using the effective Lagrangian approach. Now results of neutrinoless double beta decay in lepton-number-violating gauge theories were found. Aspects of galaxy formation, the nature of phase transitions in general field theories, and properties of supersymmetric theories have been explored. Progress has also been made in the formulation of relativistic particle dynamics. Publications are listed

  11. Translation Fidelity of Psychological Scales: An Item Response Theory Analysis of an Individualism-Collectivism Scale.

    Science.gov (United States)

    Bontempo, Robert

    1993-01-01

    Describes a method for assessing the quality of translations based on item response theory (IRT). Results from the IRT technique with French and Chinese versions of a scale measuring individualism-collectivism for samples of 250 U.S., 357 French, and 290 Chinese undergraduates show how several biased items are detected. (SLD)

  12. A nonlocal species concentration theory for diffusion and phase changes in electrode particles of lithium ion batteries

    Science.gov (United States)

    Zhang, Tao; Kamlah, Marc

    2018-01-01

    A nonlocal species concentration theory for diffusion and phase changes is introduced from a nonlocal free energy density. It can be applied, say, to electrode materials of lithium ion batteries. This theory incorporates two second-order partial differential equations involving second-order spatial derivatives of species concentration and an additional variable called nonlocal species concentration. Nonlocal species concentration theory can be interpreted as an extension of the Cahn-Hilliard theory. In principle, nonlocal effects beyond an infinitesimal neighborhood are taken into account. In this theory, the nonlocal free energy density is split into the penalty energy density and the variance energy density. The thickness of the interface between two phases in phase segregated states of a material is controlled by a normalized penalty energy coefficient and a characteristic interface length scale. We implemented the theory in COMSOL Multiphysics^{circledR } for a spherically symmetric boundary value problem of lithium insertion into a Li_xMn_2O_4 cathode material particle of a lithium ion battery. The two above-mentioned material parameters controlling the interface are determined for Li_xMn_2O_4 , and the interface evolution is studied. Comparison to the Cahn-Hilliard theory shows that nonlocal species concentration theory is superior when simulating problems where the dimensions of the microstructure such as phase boundaries are of the same order of magnitude as the problem size. This is typically the case in nanosized particles of phase-separating electrode materials. For example, the nonlocality of nonlocal species concentration theory turns out to make the interface of the local concentration field thinner than in Cahn-Hilliard theory.

  13. Motion of spinning particles. Post-Newtonian approximation in the Einstein-Cartan theory

    Energy Technology Data Exchange (ETDEWEB)

    Boccaletti, D; Agostini, W; Festa, P [Rome Univ. (Italy). Ist. di Matematica

    1979-01-11

    The equations of motion of spinning particles are obtained in the post-Newtonian approximation of the Einstein-Cartan theory. The starting point of the calculation is the Hehl combined equation and a semi-classical model is assumed for the system of spinning particles. Comparison is made with an analogous quantum result obtained in the context of Gupta quantization of the linearized Einstein theory.

  14. Boomerang RG flows in M-theory with intermediate scaling

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P.; Rosen, Christopher; Sosa-Rodriguez, Omar

    2017-07-01

    We construct novel RG flows of D=11 supergravity that asymptotically approach AdS 4 × S 7 in the UV with deformations that break spatial translations in the dual field theory. In the IR the solutions return to exactly the same AdS 4 × S 7 vacuum, with a renormalisation of relative length scales, and hence we refer to the flows as `boomerang RG flows'. For sufficiently large deformations, on the way to the IR the solutions also approach two distinct intermediate scaling regimes, each with hyperscaling violation. The first regime is Lorentz invariant with dynamical exponent z = 1 while the second has z = 5/2. Neither ofthe two intermediatescaling regimesare associatedwith exact hyperscaling violation solutions of D = 11 supergravity. The RG flow solutions are constructed using the four dimensional N = 2 STU gauged supergravity theory with vanishing gauge fields, but non-vanishing scalar and pseudoscalar fields. In the ABJM dual field theory the flows are driven by spatially modulated deformation parameters for scalar and fermion bilinear operators.

  15. Research program in elementary particle theory: Outstanding Junior Investigator Program

    International Nuclear Information System (INIS)

    Bowick, M.J.

    1990-01-01

    This report discusses the following topics: aspects of string theory; nonlinear sigma models and high-T c superconductivity; axionic black holes; topological mass generation; and quantum gravity in 2 + 1 dimensions

  16. Research program in elementary particle theory: Outstanding junior investigator program

    International Nuclear Information System (INIS)

    Bowick, M.J.

    1989-01-01

    This report briefly discusses the following topics: high-temperature strings; axionic black holes and wormholes; equations of motion for massless modes as vanishing curvature; vertex algebras and string theory; and massive axions

  17. Medical radiation dosimetry theory of charged particle collision energy loss

    CERN Document Server

    McParland, Brian J

    2014-01-01

    Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the worl...

  18. Burnout of pulverized biomass particles in large scale boiler – Single particle model approach

    DEFF Research Database (Denmark)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero

    2010-01-01

    the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner...... location and the trajectories of the particles might be optimised to maximise the residence time and burnout....

  19. Systematic renormalization of the effective theory of Large Scale Structure

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Mirbabayi, Mehrdad; Pajer, Enrico

    2016-01-01

    A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k 2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.

  20. Scale-covariant theory of gravitation and astrophysical applications

    International Nuclear Information System (INIS)

    Canuto, V.; Adams, P.J.; Hsieh, S.; Tsiang, E.

    1977-01-01

    By associating the mathematical operation of scale transformation with the physics of using different dynamical systems to measure space-time distances, we formulate a scale-covariant theory of gravitation. Corresponding to each dynamical system of units is a gauge condition which determines the otherwise arbitrary gauge function. For gravitational units, the gauge condition is chosen so that the standard Einstein equations are recovered. Assuming the atomic units, derivable from atomic dynamics, to be distinct from the gravitational units, a different gauge condition must be imposed. It is suggested that Dirac's large-number hypothesis be used for the determination of this condition so that gravitational phenomena can be described in atomic units. The result allows a natural interpretation of the possible variation of the gravitational constant without compromising the validity of general relativity. A geometrical interpretation of the scale-covariant theory is possible if the covariant tensors in Riemannian space are replaced by cocovariant cotensors in an integrable Weyl space. A scale-invariant action principle is constructed from the metrical potentials of the integrable Weyl space. Application of the dynamical equations in atomic units to cosmology yields a family of homogeneous solutions characterized by R approx. t for large cosmological times. Equations of motion in atomic units are solved for spherically symmetric gravitational fields. Expressions for perihelion shift and light deflection are derived. They do not differ from the predictions of general relativity except for secular variations, having the age of the universe as a time scale. Similar variations of periods and radii for planetary orbits are also derived

  1. The existence of superluminal particles is consistent with the kinematics of Einstein's special theory of relativity

    OpenAIRE

    Székely, Gergely

    2012-01-01

    Within an axiomatic framework of kinematics, we prove that the existence of faster than light particles is logically independent of Einstein's special theory of relativity. Consequently, it is consistent with the kinematics of special relativity that there might be faster than light particles.

  2. Particle theory, cosmology and relativity. Progress report, August 1, 1983-March 31, 1984

    International Nuclear Information System (INIS)

    Gaisser, T.K.; Steigman, G.

    1983-01-01

    Research progress is briefly described on the following topics: calculation of neutrino flux produced by cosmic rays, multiple muon events in deep underground detectors, large air showers, primordial nucleosynthesis, supersymmetry and equilibrium in the very early universe, the bag model of particle interactions, and particle theory in curved spaces. Publications are listed

  3. Theory and simulation of epitaxial rotation. Light particles adsorbed on graphite

    DEFF Research Database (Denmark)

    Vives, E.; Lindgård, P.-A.

    1993-01-01

    We present a theory and Monte Carlo simulations of adsorbed particles on a corrugated substrate. We have focused on the case of rare gases and light molecules, H-2 and D2, adsorbed on graphite. The competition between the particle-particle and particle-substrate interactions gives rise to frustra...... found a modulated 4 x 4 structure. Energy, structure-factor intensities, peak positions, and epitaxial rotation angles as a function of temperature and coverage have been determined from the simulations. Good agreement with theory and experimental data is found.......We present a theory and Monte Carlo simulations of adsorbed particles on a corrugated substrate. We have focused on the case of rare gases and light molecules, H-2 and D2, adsorbed on graphite. The competition between the particle-particle and particle-substrate interactions gives rise...... between the commensurate and incommensurate phase for the adsorbed systems. From our simulations and our theory, we are, able to understand the gamma phase of D2 as an ordered phase stabilized by disorder. It can be described as a 2q-modulated structure. In agreement with the experiments, we have also...

  4. Scaling of the space-time correlation function of particle currents in a suspension of hard-sphere-like particles: exposing when the motion of particles is Brownian.

    Science.gov (United States)

    van Megen, W; Martinez, V A; Bryant, G

    2009-12-18

    The current correlation function is determined from dynamic light scattering measurements of a suspension of particles with hard spherelike interactions. For suspensions in thermodynamic equilibrium we find scaling of the space and time variables of the current correlation function. This finding supports the notion that the movement of suspended particles can be described in terms of uncorrelated Brownian encounters. However, in the metastable fluid, at volume fractions above freezing, this scaling fails.

  5. Path integral for a relativistic-particle theory

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Gitman, D.M.; Shvartsman, S.M.

    1991-01-01

    An action of a relativistic spinning particle written in reparametrization and local super-invariant form is consistently determined by using the path integral representation for the Green's function of the spinor field. It is shown that, to obtain the causal propagator, the integration over the null mode of the onebein variable must be performed in the (0, + ∞ limits

  6. Path integral for a relativistic-particle theory

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E.S. (AN SSSR, Moscow (SU)); Gitman, D.M. (Moskovskij Inst. Radiotekhniki, Ehlektroniki i Automatiki, Moscow (SU)); Shvartsman, S.M. (Tomskij Pedagogicheskij Inst., Tomsk (SU))

    1991-06-01

    An action of a relativistic spinning particle written in reparametrization and local super-invariant form is consistently determined by using the path integral representation for the Green's function of the spinor field. It is shown that, to obtain the causal propagator, the integration over the null mode of the onebein variable must be performed in the (0, + {infinity}) limits.

  7. On the theory of high-velocity particles

    International Nuclear Information System (INIS)

    Gordeyev, G.V.

    1979-01-01

    The equations of mechanics and electrodynamics are presented in a form which is covariant for Galileo transformations in Euclidean space. The author shows that Galileo transformations in the Euclidean space are valid for particles with velocities approaching that of light. (author)

  8. Quantum Optics, Diffraction Theory, and Elementary Particle Physics

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Physical optics has expanded greatly in recent years. Though it remains part of the ancestry of elementary particle physics, there are once again lessons to be learned from it. I shall discuss several of these, including some that have emerged at CERN and Brookhaven.

  9. Anyons as spin particles: from classical mechanics to field theory

    OpenAIRE

    Plyushchay, Mikhail S.

    1995-01-01

    (2+1)-dimensional relativistic fractional spin particles are considered within the framework of the group-theoretical approach to anyons starting from the level of classical mechanics and concluding by the construction of the minimal set of linear differential field equations.

  10. Martinus Veltman, the Electroweak Theory, and Elementary Particle Physics

    Science.gov (United States)

    Particle Physics Resources with Additional Information Martinus Veltman Courtesy University of Michigan Martinus J.G. Veltman, the John D. MacArthur Professor Emeritus of Physics at the University of Michigan , was awarded the 1999 Nobel Prize in physics "for elucidating the quantum structure of electroweak

  11. [Investigations in dynamics of gauge theories in theoretical particle physics

    International Nuclear Information System (INIS)

    1993-01-01

    The major theme of the theoretical physics research conducted under DOE support over the past several years has been within the rubric of the standard model, and concerned the interplay between symmetries and dynamics. The research was thus carried out mostly in the context of gauge field theories, and usually in the presence of chiral fermions. Dynamical symmetry breaking was examined both from the point of view of perturbation theory, as well as from non-perturbative techniques associated with certain characteristic features of specific theories. Among the topics of research were: the implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in any theory, topological and conformal properties of quantum fields in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD, the phenomenological implications of a strongly interacting Higgs sector in the standard model, and the application of soliton ideas to the physics to be explored at the SSC

  12. F-theory, GUTs, and the weak scale

    International Nuclear Information System (INIS)

    Heckman, Jonathan J.; Vafa, Cumrun

    2009-01-01

    In this paper we study a deformation of gauge mediated supersymmetry breaking in a class of local F-theory GUT models where the scale of supersymmetry breaking determines the value of the μ term. Geometrically correlating these two scales constrains the soft SUSY breaking parameters of the MSSM. In this scenario, the hidden SUSY breaking sector involves an anomalous U(1) Peccei-Quinn symmetry which forbids bare μ and Bμ terms. This sector typically breaks supersymmetry at the desired range of energy scales through a simple stringy hybrid of a Fayet and Polonyi model. A variant of the Giudice-Masiero mechanism generates the value μ ∼ 10 2 -10 3 GeV when the hidden sector scale of supersymmetry breaking is F 1/2 ∼ 10 8.5 GeV. Further, the Bμ problem is solved due to the mild hierarchy between the GUT scale and Planck scale. These models relate SUSY breaking with the QCD axion, and solve the strong CP problem through an axion with decay constant f a ∼ M GUT cμ/Λ, where Λ ∼ 10 5 GeV is the characteristic scale of gaugino mass unification in gauge mediated models, and the ratio μ/Λ ∼ M GUT /M pl ∼ 10 -3 . We find f a ∼ 10 12 GeV, which is near the high end of the phenomenologically viable window. Here, the axino is the goldstino mode which is eaten by the gravitino. The gravitino is the LSP with a mass of about 10 1 -10 2 MeV, and a bino-like neutralino is (typically) the NLSP with mass of about 10 2 -10 3 GeV. Compatibility with electroweak symmetry breaking also determines the value of tanβ ∼ 30±7.

  13. The role of instantons in scale-invariant gauge theories

    International Nuclear Information System (INIS)

    Affleck, I.

    1980-01-01

    Instanton calculations in scale-invariant gauge theories, such as QCD, have long been plagued by divergences at large distances where strong coupling effects are important. Furthermore, Witten has argued that quantum effects may cause the instanton gas to disappear and has displayed this phenomenon in the CPsup(N-1) model at large N. It is argued here that instantons can play a role in calculations involving an inherent infrared cut-off, and this is demonstrated in the CPsup(N-1) model for large N at a finite temperature. Some results on finite-temperature QED are also obtained in passing. (orig.)

  14. Polarization correction in the theory of energy losses by charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, D. N., E-mail: makarovd0608@yandex.ru; Matveev, V. I. [Lomonosov Northern (Arctic) Federal University (Russian Federation)

    2015-05-15

    A method for finding the polarization (Barkas) correction in the theory of energy losses by charged particles in collisions with multielectron atoms is proposed. The Barkas correction is presented in a simple analytical form. We make comparisons with experimental data and show that applying the Barkas correction improves the agreement between theory and experiment.

  15. Progress report on research program in elementary particle theory, 1979-1980

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1980-01-01

    A qualitative description is given of research in the following areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics and quark-parton physics; quantum mechanics, quantum field theory, and fundamental problems; and groups, gauges, and grand unified theories. Reports on this work have already been published, or will be, when it is completed

  16. Particle transport methods for LWR dosimetry developed by the Penn State transport theory group

    International Nuclear Information System (INIS)

    Haghighat, A.; Petrovic, B.

    1997-01-01

    This paper reviews advanced particle transport theory methods developed by the Penn State Transport Theory Group (PSTTG) over the past several years. These methods have been developed in response to increasing needs for accuracy of results and for three-dimensional modeling of nuclear systems

  17. Exactly renormalizable model in quantum field theory. II. The physical-particle representation

    NARCIS (Netherlands)

    Ruijgrok, Th.W.

    1958-01-01

    For the simplified model of quantum field theory discussed in a previous paper it is shown how the physical particles can be properly described by means of the so-called asymptotically stationary (a.s.) states. It is possible by formulating the theory in terms of these a.s. states to express it

  18. On the GUT scale of F-theory SU(5)

    International Nuclear Information System (INIS)

    Leontaris, G.K.; Vlachos, N.D.

    2011-01-01

    In F-theory GUTs, threshold corrections from Kaluza-Klein (KK) massive modes arising from gauge and matter multiplets play an important role in the determination of the weak mixing angle and the strong gauge coupling of the effective low energy model. In this Letter we further explore the induced modifications on the gauge couplings running and the GUT scale. In particular, we focus on the KK-contributions from matter curves and analyze the conditions on the chiral and Higgs matter spectrum which imply a GUT scale consistent with the minimal unification scenario. As an application, we present an explicit computation of these thresholds for matter fields residing on specific non-trivial Riemann surfaces.

  19. Plant interactions alter the predictions of metabolic scaling theory

    DEFF Research Database (Denmark)

    Lin, Yue; Berger, Uta; Grimm, Volker

    2013-01-01

    Metabolic scaling theory (MST) is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of 24/3 between mean individual biomass and density during densitydependent mortality (self-thinning). Empirical tests have...... processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive....... of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric), and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories...

  20. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa; Mochrie, S. G. J.; Peppin, S. S. L.; Wettlaufer, J. S.

    2011-01-01

    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  1. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa

    2011-02-01

    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  2. An empirical approach to the theory of particle and nuclear ...

    Indian Academy of Sciences (India)

    Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, ... brief review of some interesting consequences is presented here. ... generalization of the Gutzwiller trace formula for field theories may lead to a systematic semiclassi- ... There are two important gaps in the line, first being between Т.

  3. Particle Production and Effective Thermalization in Inhomogeneous Mean Field Theory

    NARCIS (Netherlands)

    Aarts, G.; Smit, J.

    2000-01-01

    As a toy model for dynamics in nonequilibrium quantum field theory we consider the abelian Higgs model in 1+1 dimensions with fermions. In the approximate dynamical equations, inhomogeneous classical (mean) Bose fields are coupled to quantized fermion fields, which are treated with a mode function

  4. Literature in focus: Particle beams from theory to practice

    CERN Multimedia

    2003-01-01

    Wednesday 1st October 16 h00 - Central Library CERN's Frank Zimmermann and DESY's Michiko G. Minty had their book 'Measurement and control of charged particle beams' published a few months ago by Springer. Frank Zimmermann, a young but already well established accelerator physicist, was awarded the European Accelerator Prize by the Interdivisional Group on Accelerators of the European Physical Society last year. Mr. Zimmermann was particularly cited for his significant contribution to the understanding of fast ion and electron cloud instabilities. The book is the first comprehensive and systematic review of all methods used for the measurement, correction, and control of the beam dynamics of modern particle accelerators and is intended for graduate students starting research or work in the field of beam physics. Specific techniques and methods for relativistic beams are illustrated by examples from operational accelerators, like CERN, DESY, SLAC, KEK, LBNL, and FNAL. Problems and solutions enhance the book...

  5. Duffin-Kemmer formulation of spin one-half particle gauge theory

    International Nuclear Information System (INIS)

    Samiullah, M.; Mansour, H.M.M.

    1981-02-01

    We have gauge formulated the spin one-half particle equation in the Duffin-Kemmer formalism of Barut et al. The theory distinguishes between the left and the right chiral states and has a built in chirality. As an example the theory has been applied to the Weinberg Salam model reproducing all its essential features. In view of the built in chirality a lattice gauge version of such a theory is expected to be useful. (author)

  6. Conceptual basis for the radiometric dye film dose meter as a test of particle track theory

    International Nuclear Information System (INIS)

    Hansen, J.W.

    1980-05-01

    This report is a summary of a lecture held at the Danish-Polish Symposium on Radiation Chemistry in Warsaw, October 1979, describing an initiated work connected to the particle track theory worked out by R. Katz and coworkers. A short description is given of the theory and the applicability of the theory in the use of the radiometric dye cyanide film dose meter as a detector in radiation of different qualities. A few experimental results are given. (author)

  7. Relativistic scattering theory of two charged spinless particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Hannemann

    1985-01-01

    In the framework of a relativistic quantum mechanics, the authors calculate for two spinless particles with Coulomb interaction exactly the partial-wave S-matrix and the full scattering amplitude. From the former they can extract the exact binding energies which, when expanded in powers of α, reproduce in the hydrogenic case the fourth-order result of a previous study. In the weak field limit, the latter coincides with the amplitude derived by another study from QED in eikonal approximation

  8. Time-dependent transport of energetic particles in magnetic turbulence: computer simulations versus analytical theory

    Science.gov (United States)

    Arendt, V.; Shalchi, A.

    2018-06-01

    We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.

  9. N-particle effective generators of the Poincare group derived from a field theory

    International Nuclear Information System (INIS)

    Krueger, A.; Gloeckle, W.

    1999-01-01

    In quantum mechanics the principle of relativity is guaranteed by unitary operators being associated with inhomogeneous Lorentz transformations ensuring that quantum mechanical expectation values remain unchanged. In field theory the ten generators of inhomogeneous Lorentz transformations can be derived from a scalar Lagrangian density describing the physical system of interest. They obey the well known Poincare Lie algebra. For interacting systems some of the generators become operators allowing for particle production or annihilation so that the generators act on the full Fock space. However, given a field theory on the whole Fock space we prove that it is possible to construct generators acting on a subspace with a finite number of particles by one and the same unitary transformation of all generators leaving the Poincare algebra valid. In this manner it is in principle possible to derive a relativistically invariant theory of interacting particles on a Hilbert space with a finite number of particles from a field theoretical Lagrangian. Refs. 3 (author)

  10. Calculation of positron binding energies using the generalized any particle propagator theory

    International Nuclear Information System (INIS)

    Romero, Jonathan; Charry, Jorge A.; Flores-Moreno, Roberto; Varella, Márcio T. do N.; Reyes, Andrés

    2014-01-01

    We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ∼0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach

  11. Finite-size scaling theory and quantum hamiltonian Field theory: the transverse Ising model

    International Nuclear Information System (INIS)

    Hamer, C.J.; Barber, M.N.

    1979-01-01

    Exact results for the mass gap, specific heat and susceptibility of the one-dimensional transverse Ising model on a finite lattice are generated by constructing a finite matrix representation of the Hamiltonian using strong-coupling eigenstates. The critical behaviour of the limiting infinite chain is analysed using finite-size scaling theory. In this way, excellent estimates (to within 1/2% accuracy) are found for the critical coupling and the exponents α, ν and γ

  12. A critical review on the scaling theory of dispersion

    Science.gov (United States)

    Zech, Alraune; Mai, Juliane; Attinger, Sabine; Dietrich, Peter; Teutsch, Georg; Fiori, Aldo; Rubin, Yoram

    2014-05-01

    The phenomenon of dispersive mixing of solutes in aquifers is subject of research since decades. The characterization of dispersivity at a particular field site is a prerequisite to predict the movement and spreading of a contaminant plume. Experimental investigations have shown, that field-scale dispersivities vary over orders of magnitude, which apparently depends on the scale of measurement. Gelhar et al. [1992] and Schulze-Makuch [2005] have reviewed a large number of transport experiments reported in the literature. Based on that data Schulze-Makuch [2005] performed a trend analysis of longitudinal dispersivity, fostering the empirical relationship of a power law between dispersivities and the scale of measurement without an upper bound. The goal of our study is to critically revisit not only the data used for the trend analysis but the power-law scale dependence of longitudinal dispersivity (e.g. Neuman [1990], Xu and Eckstein [1995]). Our particular focus is on the reported dispersivities of large amount (larger than 100m) and large measurement scales (in the order of kilometers). We aim to evaluate current theories of transport against a critical "mass" of field experiments and to bracket the conditions of their applicability. We further aim to evaluate the adequacy of the field sampling techniques that were employed from the perspective of more than 30 years development in modeling and field characterization. Given the tremendous progress in field data acquisition techniques and new insights gained, it is reasonable to expect that interpretations of past experiments may be flawed due to the limitations or inadequacy of field sampling techniques. Gelhar, L.W., C. Welty, and K.R. Rehfeldt, 1992, A critical review of data on field-scale dispersion in aquifers, Water Resources Research 28, No. 7: 1955-1974. Schulze-Makuch, D., 2005, Longitudinal dispersivity data and implications for scaling behavior, Ground Water, Vol. 43, No. 3, 443-456. Neuman, S.P., 1990

  13. Conductance of finite systems and scaling in localization theory

    Science.gov (United States)

    Suslov, I. M.

    2012-11-01

    The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D(ω, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Wölfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions β( g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Wölfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of β( g) in 1/ g coincides with results of the σ-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + ɛ looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law σ(ω) ∝ - iω for conductivity are discussed.

  14. Cosmological tests of a scale covariant theory of gravitation

    International Nuclear Information System (INIS)

    Owen, J.R.

    1979-01-01

    The Friedmann models with #betta# = 0 are subjected to several optical and radio tests within the standard and scale covariant theories of gravitation. Within standard cosmology, both interferometric and scintillation data are interpreted in terms of selection effects and evolution. Within the context of scale covariant cosmology are derived: (1) the full solution to Einstein's gravitational equations in atomic units for a matter dominated universe, (2) the study of the magnitude vs. redshift relation for elliptical galaxies, (3) the derivation of the evolutionary parameter used in (2), (4) the isophotal angular diameter vs. redshift relation, (5) the metric angular diameter vs. redshift relation, (6) the N(m) vs. magnitude relation for QSO's and their m vs z relation, and finally (7) the integrated and differential expressions for the number count vs. radio flux test. The results, both in graphical and tabular form, are presented for four gauges (i.e. parametrized relations between atomic and gravitational units). No contradiction between the new theory and the data is found with any of the tests studied. For some gauges, which are suggested by a recent analysis of the time variation of the Moon's period which is discussed in the text in terms of the new theory, the effect of the deceleration parameter on cosmological predictions is enhanced over standard cosmology and it is possible to say that the data are more easily reconciled with an open universe. Within the same gauge, the main features of both the N(m) vs. m and m-z test are accounted for by the same simple evolutionary parametrization whereas different evolutionary rates were indicated by interpretation within standard cosmology. The same consistency, lacking in standard cosmology on this level of analysis, is achieved for the integrated and differential number count - radio flux tests within the same gauge

  15. Conductance of finite systems and scaling in localization theory

    International Nuclear Information System (INIS)

    Suslov, I. M.

    2012-01-01

    The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D(ω, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Wölfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions β(g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Wölfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of β(g) in 1/g coincides with results of the σ-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + ε looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law σ(ω) ∝ −iω for conductivity are discussed.

  16. On the theory of direct reactions with many particle final states

    International Nuclear Information System (INIS)

    Trautmann, D.; Baur, G.

    1977-01-01

    We study the theory of direct reactions with many particle final states. First, we concentrate on the DWBA formulation of the break-up of deuterons on heavy nuclei below the Coulomb barrier. Because there are no free parameters, this permits a clean test of the theory by comparing it to the experimental data. The agreement is very good. The theory is applied to the break-up of antideuteronic atoms. Then the effect of virtual deuteron break-up on Rutherford scattering is studied. It is small, but it seems to be measurable. Also the deuteron break-up above the Coulomb barrier can be well explained theoretically. In this context, small effects are studied briefly. A semiclassical theory of the break-up process is given, which results in an intuitive picture and a fast computational method. Our theory lends itself in a natural way to the study of stripping reactions to unbound states. The relation of stripping into the continuum to elastic scattering of the transferred particle on the same target nucleus is explained. Then the connection of stripping to bound and unbound states is established. Finally various examples of stripping of uncharged and charged particles into the continuum are given to illustrate the theory. Resonance wave functions describing the transferred particle are discussed. In a conclusion an outlook for possible future developments of experiment and theory is given. (author)

  17. Linear kinetic theory and particle transport in stochastic mixtures

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1994-03-01

    The primary goal in this research is to develop a comprehensive theory of linear transport/kinetic theory in a stochastic mixture of solids and immiscible fluids. The statistics considered correspond to N-state discrete random variables for the interaction coefficients and sources, with N denoting the number of components of the mixture. The mixing statistics studied are Markovian as well as more general statistics, such as renewal processes. A further goal of this work is to demonstrate the applicability of the formalism to real world engineering problems. This three year program was initiated June 15, 1993 and has been underway nine months. Many significant results have been obtained, both in the formalism development and in representative applications. These results are summarized by listing the archival publications resulting from this grant, including the abstracts taken directly from the papers

  18. A field theory for composite particles (hadrons): Pt. 2

    International Nuclear Information System (INIS)

    Biswas, T.

    1986-01-01

    Interaction between composite units (hadrons) is introduced in a fashion similar to QED. Quark-quark interactions within hadrons are considered to be of direct-interaction nature. This provides a completely relativistic and self-consistent theory for strong interactions that can be used as a tool for phenomenology. Hadron scattering and bound states have a simple description and their computation is expected to be laborious but straightforward

  19. Topics in gauge theories and unification of elementary particle interactions

    International Nuclear Information System (INIS)

    Srivastava, Y.N.; Vaughn, M.T.

    1986-01-01

    The proposed research includes work on (1) jets in minimum bias, (2) quantum Hall effect and applications of quantum electrodynamics to microelectronics and (3) renormalization group analysis of unified gauge theories. In addition, rates were computed for vector boson decay modes of the nucleon in N=1 supergravity models, and is doing further work on supersymmetric signals at SLC and LEP, and on superstring phenomenology

  20. Gauge transformations in relativistic two-particle constraint theory

    International Nuclear Information System (INIS)

    Jallouli, H.; Sazdjian, H.

    1996-01-01

    The forms of the local potentials in linear covariant gauges are investigated and relationships are found between them. The gauge transformation properties of the Green's function and of the Bethe-Salpeter wave function are reviewed. The infinitesimal gauge transformation laws of the constraint theory wave functions and potentials are determined. The case of the local approximation of potentials is considered. The general properties of the gauge transformations in the local approximation are studied. (K.A.)

  1. G2-MSSM: An M theory motivated model of particle physics

    International Nuclear Information System (INIS)

    Acharya, Bobby S.; Bobkov, Konstantin; Kane, Gordon L.; Shao Jing; Kumar, Piyush

    2008-01-01

    We continue our study of the low energy implications of M theory vacua on G 2 -manifolds, undertaken in B. S. Acharya, K. Bobkov, G. L. Kane, P. Kumar, and J. Shao, Phys. Rev. D 76, 126010 (2007); B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006), where it was shown that the moduli can be stabilized and a TeV scale generated, with the Planck scale as the only dimensionful input. A well-motivated phenomenological model, the G 2 -MSSM, can be naturally defined within the above framework. In this paper, we study some of the important phenomenological features of the G 2 -MSSM. In particular, the soft supersymmetry breaking parameters and the superpartner spectrum are computed. The G 2 -MSSM generically gives rise to light gauginos and heavy scalars with wino lightest supersymmetric particles when one tunes the cosmological constant. Electroweak symmetry breaking is present but fine-tuned. The G 2 -MSSM is also naturally consistent with precision gauge coupling unification. The phenomenological consequences for cosmology and collider physics of the G 2 -MSSM will be reported in more detail soon.

  2. Scattering by ensembles of small particles experiment, theory and application

    Science.gov (United States)

    Gustafson, B. A. S.

    1980-01-01

    A hypothetical self consistent picture of evolution of prestellar intertellar dust through a comet phase leads to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of (ALPHA)-meteoroids is also predicted.

  3. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory and Astrophysical Applications

    International Nuclear Information System (INIS)

    Matthaeus, W.; Brown, M.

    2006-01-01

    This is the final technical report for a funded program to provide theoretical support to the Swarthmore Spheromak Experiment. We examined mhd relaxation, reconnecton between two spheromaks, particle acceleration by these processes, and collisonless effects, e.g., Hall effect near the reconnection zone,. Throughout the project, applications to space plasma physics and astrophysics were included. Towards the end of the project we were examining a more fully turbulent relaxation associated with unconstrained dynamics in SSX. We employed experimental, spacecraft observations, analytical and numerical methods.

  4. Scattering by ensembles of small particles experiment, theory and application

    International Nuclear Information System (INIS)

    Gustafson, B.Aa.S.

    1980-01-01

    A hypothetical selfconsistent picture of evolution of prestellar interstellar dust through a comet phase leades to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of β-meteoroids is also predicted. (author)

  5. Black holes, magnetic fields and particle creation. [Quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, G W [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics

    1976-10-01

    Wald has given a classical argument suggesting that a rotating black hole immersed in a uniform magnetic field B will acquire a charge Q = 2JB where J is the angular momentum of the hole. The note contains a quantum field theoretic treatment of this process. For fields B greater than B/sub 0/ = 4 x 10/sup 13/ G the black hole will rapidly emit charged particles to achieve the equilibrium value. If B is less than the critical value the charge will remain zero.

  6. Simulation and scaling analysis of a spherical particle-laden blast wave

    Science.gov (United States)

    Ling, Y.; Balachandar, S.

    2018-05-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  7. Simulation and scaling analysis of a spherical particle-laden blast wave

    Science.gov (United States)

    Ling, Y.; Balachandar, S.

    2018-02-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  8. Dynamical theory of hadrons based upon extended particle picture

    International Nuclear Information System (INIS)

    Hara, Osamu

    1980-01-01

    An extended particle model of hadrons is discussed on the basis of the assumption that the hadrons correspond to the respective eigenstates of the internal motion of extended bodies which are considered as deformable spheres for simplicity. Such three-dimensionally extended bodies have several remarkable features. The first point is that it is allowed to make half-integer spin. The internal motion of the bodies can be described in terms of quark-like excitons. But the great difference is that these quark-like excitons obey Bose statistics. Therefore in this model, there is no positive reason to introduce the degree of freedom of color at least from the symmetry reason. The second point is that the triality must be restricted to zero. Therefore, the particles with fractional charge do not appear, and the confinement is automatic. It is assumed that the interaction among hadrons takes place due to the coupling of current carried by excited quark-like excitons. All hadron interactions are described in terms of a single coupling constant characterizing the coupling between current and intermediate field. Once the interaction Hamiltonian is given, it is straight forward to calculate scattering amplitude. High energy charge exchange scattering and the decay width of higher resonances can be understood. (Kako, I.)

  9. Proceedings of the 28. international symposium Ahrenshoop on the theory of elementary particles

    International Nuclear Information System (INIS)

    Luest, D.; Weigt, G.

    1995-03-01

    The following topics were dealt with: elementary particle theory, string theory, algebra, group theory, symmetries, Lie groups, unified field theories, topology and theories of gravitation.ok place from August 30 to September 3, 1994 at Wendisch-Rietz near Berlin. The Symposium was organized jointly by the Institute for Elementary Particle Physics of the Humboldt University of Berlin, the Institute for Theoretical Physics of the University Hannover, the Section of Physics of the University Munich, and DESY Institute for High Energy Physics Zeuthen. It was made possible thanks to the financial support of the Bundesland Brandenburg, the DESY Institute for High Energy Physics Zeuthen, the Walter and Eva Andrejewski Stiftung, and last but not least the Deutsche Forschungsgemeinschaft (DFG). We also would like to thank Karin Pipke for her dedicated assistance to prepare this manuscript. (orig.)

  10. Neutral Theory and Scale-Free Neural Dynamics

    Science.gov (United States)

    Martinello, Matteo; Hidalgo, Jorge; Maritan, Amos; di Santo, Serena; Plenz, Dietmar; Muñoz, Miguel A.

    2017-10-01

    Neural tissues have been consistently observed to be spontaneously active and to generate highly variable (scale-free distributed) outbursts of activity in vivo and in vitro. Understanding whether these heterogeneous patterns of activity stem from the underlying neural dynamics operating at the edge of a phase transition is a fascinating possibility, as criticality has been argued to entail many possible important functional advantages in biological computing systems. Here, we employ a well-accepted model for neural dynamics to elucidate an alternative scenario in which diverse neuronal avalanches, obeying scaling, can coexist simultaneously, even if the network operates in a regime far from the edge of any phase transition. We show that perturbations to the system state unfold dynamically according to a "neutral drift" (i.e., guided only by stochasticity) with respect to the background of endogenous spontaneous activity, and that such a neutral dynamics—akin to neutral theories of population genetics and of biogeography—implies marginal propagation of perturbations and scale-free distributed causal avalanches. We argue that causal information, not easily accessible to experiments, is essential to elucidate the nature and statistics of neural avalanches, and that neutral dynamics is likely to play an important role in the cortex functioning. We discuss the implications of these findings to design new empirical approaches to shed further light on how the brain processes and stores information.

  11. Particle contamination effects in EUVL: enhanced theory for the analytical determination of critical particle sizes

    Science.gov (United States)

    Brandstetter, Gerd; Govindjee, Sanjay

    2012-03-01

    Existing analytical and numerical methodologies are discussed and then extended in order to calculate critical contamination-particle sizes, which will result in deleterious effects during EUVL E-chucking in the face of an error budget on the image-placement-error (IPE). The enhanced analytical models include a gap dependant clamping pressure formulation, the consideration of a general material law for realistic particle crushing and the influence of frictional contact. We present a discussion of the defects of the classical de-coupled modeling approach where particle crushing and mask/chuck indentation are separated from the global computation of mask bending. To repair this defect we present a new analytic approach based on an exact Hankel transform method which allows a fully coupled solution. This will capture the contribution of the mask indentation to the image-placement-error (estimated IPE increase of 20%). A fully coupled finite element model is used to validate the analytical models and to further investigate the impact of a mask back-side CrN-layer. The models are applied to existing experimental data with good agreement. For a standard material combination, a given IPE tolerance of 1 nm and a 15 kPa closing pressure, we derive bounds for single particles of cylindrical shape (radius × height < 44 μm) and spherical shape (diameter < 12 μm).

  12. Recent development of linear scaling quantum theories in GAMESS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol Ho [Kyungpook National Univ., Daegu (Korea, Republic of)

    2003-06-01

    Linear scaling quantum theories are reviewed especially focusing on the method adopted in GAMESS. The three key translation equations of the fast multipole method (FMM) are deduced from the general polypolar expansions given earlier by Steinborn and Rudenberg. Simplifications are introduced for the rotation-based FMM that lead to a very compact FMM formalism. The OPS (optimum parameter searching) procedure, a stable and efficient way of obtaining the optimum set of FMM parameters, is established with complete control over the tolerable error {epsilon}. In addition, a new parallel FMM algorithm requiring virtually no inter-node communication, is suggested which is suitable for the parallel construction of Fock matrices in electronic structure calculations.

  13. Stability theory for dynamic equations on time scales

    CERN Document Server

    Martynyuk, Anatoly A

    2016-01-01

    This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...

  14. Proceedings of the Johns Hopkins workshop on current problems in particle theory 5: unified field theories and beyond

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Topics covered include: symmetric gauge theories; infinite lie algebras in physics; the mechanism for confinement in massive quark QCD; a search for possible composite models of quarks and leptons; the radiative structure of Fermion masses; fractional electric charge in QCD; heavy particle effects; Fermion mass heirarchies in theories of technicolor; statistical notions applied in the early universe; grand unification and cosmology - an environmental impact statement; first order phase transition in the early universe; the electric dipole moment of the neutron; cosmological constraints on Grand Unified Theories; and the consequences for CP invariance of instanton angles THETA in dynamically broken gauge theories. Individual items from this workshop were prepared separately for the data base. (GHT)

  15. Particles and scaling for lattice fields and Ising models

    International Nuclear Information System (INIS)

    Glimm, J.; Jaffe, A.

    1976-01-01

    The conjectured inequality GAMMA 6 4 -fields and the scaling limit for d-dimensional Ising models. Assuming GAMMA 6 = 6 these phi 4 fields are free fields unless the field strength renormalization Z -1 diverges. (orig./BJ) [de

  16. String Theory, the Crisis in Particle Physics and the Ascent of Metaphoric Arguments

    Science.gov (United States)

    Schroer, Bert

    This essay presents a critical evaluation of the concepts of string theory and its impact on particle physics. The point of departure is a historical review of four decades of string theory within the broader context of six decades of failed attempts at an autonomous S matrix approach to particle theory. The central message, contained in Secs. 5 and 6, is that string theory is not what its name suggests, namely a theory of objects in space-time whose localization is string-instead of pointlike. Contrary to popular opinion, the oscillators corresponding to the Fourier models of a quantum-mechanical string do not become embedded in space-time and neither does the "range space" of a chiral conformal QFT acquire the interpretation of stringlike-localized quantum matter. Rather, string theory represents a solution to a problem which enjoyed some popularity in the 1960s: find a principle which, similar to the SO(4,2) group in the case of the hydrogen spectrum, determines an infinite component wave function with a (realistic) mass/spin spectrum. Instead of the group theory used in the old failed attempts, it creates this mass/spin spectrum by combining an internal oscillator quantum mechanics with a pointlike-localized quantum-field-theoretic object, i.e. the mass/spin tower "sits" over one point and does not arise from a wiggling string in space-time. The widespread acceptance of a theory whose interpretation has been based on metaphoric reasoning had a corroding influence on particle theory, a point which will be illustrated in the last section with some remarks of a more sociological nature. These remarks also lend additional support to observations on connections between the discourse in particle physics and the present Zeitgeist of the post-Cold War period that are made in the introduction.

  17. Using satellite-based measurements to explore spatiotemporal scales and variability of drivers of new particle formation

    Science.gov (United States)

    New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently ...

  18. Particle theory, cosmology, and relativity. Progress report, July 1, 1981-June 30, 1982

    International Nuclear Information System (INIS)

    Gaisser, T.K.; Steigman, G.; Halprin, A.

    1982-01-01

    Research in high energy physics, astrophysics, and related topics are covered. Research in particle physics and cosmic rays focusses on implications of cosmic rays for particle physics above 10 TeV. The work on the early evolution of the universe contributes directly to answers to some of the fundamental questions in particle physics and cosmology. The study of electroweak interactions centers in large part on low energy tests of high energy physics, and a brief analysis of the statistical distribution of quarks among the spheres in the Fairbank quark-search experiment. The potential role of bag-like models in theories of composite leptons has been addressed. In projective relativity aspects of particle theory, a quantization scheme for geodesics in deSitter space was devised

  19. Applicability of the Taylor-Green-Kubo formula in particle diffusion theory

    International Nuclear Information System (INIS)

    Shalchi, A.

    2011-01-01

    Diffusion coefficients of particles can be defined as time integrals over velocity correlation functions, or as mean square displacements divided by time. In the present paper it is demonstrated that these two definitions are not equivalent. An exact relation between mean square displacements and velocity correlations is derived. As an example of the applicability of these results so-called drift coefficients of energetic particles are discussed. It is explained why different previous approaches in drift theory provided contradicting results.

  20. Particle content and degrees of freedom of a gravitational field in 4th order theories of gravity

    International Nuclear Information System (INIS)

    Moebius, K.; Akademie der Wissenschaften der DDR, Potsdam-Babelsberg. Einstein-Laboratorium fuer Theoretische Physik)

    1988-01-01

    In gravitational theories of 4-th order, the influence of certain properties of the field equations (tracelessness, conformal invariance, scale invariance respectively their breaking) for the 'particle content' (number of degrees of freedom, mass, spin) is investigated. Using the plane-wave ansatz valid in linearized theory it is possible to determine the mass content of the theory, but one cannot get assertions about the number of degrees of freedom and the spin states corresponding to the field quanta. In the linearized theory, this can be done with a spin projection formalism. Using the Cauchy initial value problem and a counting method first developed by Einstein one can get, however, a useful definition of the concept of the degrees of freedom for the full nonlinear theory. This is due to the fact that this method allows to incorporate the concrete structure of the field equations (and thus their nonlinearities). Analysing different general-relativistic field theories via these approaches the influence of the various structures of nonlinearities is discussed. It is, in particular, shown that those results obtained by the spin projection formalism can be reproduced by 'nonlinear methods'. (author)

  1. Plant interactions alter the predictions of metabolic scaling theory.

    Directory of Open Access Journals (Sweden)

    Yue Lin

    Full Text Available Metabolic scaling theory (MST is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of -4/3 between mean individual biomass and density during density-dependent mortality (self-thinning. Empirical tests have produced variable results, and the validity of MST is intensely debated. MST focuses on organisms' internal physiological mechanisms but we hypothesize that ecological interactions can be more important in determining plant mass-density relationships induced by density. We employ an individual-based model of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric, and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories. Slopes were significantly shallower than -4/3 if competition was size-symmetric. We conclude that when the size of survivors is influenced by strong ecological interactions, these can override predictions of MST, whereas when surviving plants are less affected by interactions, individual-level metabolic processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive.

  2. On the consistency of scale among experiments, theory, and simulation

    Science.gov (United States)

    McClure, James E.; Dye, Amanda L.; Miller, Cass T.; Gray, William G.

    2017-02-01

    As a tool for addressing problems of scale, we consider an evolving approach known as the thermodynamically constrained averaging theory (TCAT), which has broad applicability to hydrology. We consider the case of modeling of two-fluid-phase flow in porous media, and we focus on issues of scale as they relate to various measures of pressure, capillary pressure, and state equations needed to produce solvable models. We apply TCAT to perform physics-based data assimilation to understand how the internal behavior influences the macroscale state of two-fluid porous medium systems. A microfluidic experimental method and a lattice Boltzmann simulation method are used to examine a key deficiency associated with standard approaches. In a hydrologic process such as evaporation, the water content will ultimately be reduced below the irreducible wetting-phase saturation determined from experiments. This is problematic since the derived closure relationships cannot predict the associated capillary pressures for these states. We demonstrate that the irreducible wetting-phase saturation is an artifact of the experimental design, caused by the fact that the boundary pressure difference does not approximate the true capillary pressure. Using averaging methods, we compute the true capillary pressure for fluid configurations at and below the irreducible wetting-phase saturation. Results of our analysis include a state function for the capillary pressure expressed as a function of fluid saturation and interfacial area.

  3. Universality and scaling in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Michael, C.; Teper, M.; Oxford Univ.

    1988-01-01

    We calculate the lowest glueball masses and the string tension for both Manton's action and for Symanzik's tree-level improved action. We do so on large lattices and for small lattice spacings using techniques recently employed in an extensive investigation of the Wilson plaquette action. Comparing all these results we find that the ratios of the lightest masses are universal to a high degree of accuracy. In particular, we confirm that on large volumes the tensor glueball is heavier than the scalar glueball: m[2 + ] ≅ 1.5 m[0 + ]. We repeat these calculations for larger lattice spacings and find that the string tension follows 2-loop perturbation theory more closely in the case of these alternative actions than in the case of the standard plaquette action. Our attempt to repeat the analysis with Wilson's block-spin improved action foundered on the strong breakdown of positivity apparent in the calculated correlation functions. In all the cases which we were able to study the observed violations of scaling are in the same direction. This suggests that the causes of the scaling violations observed with Wilson's plaquette action are 'semi-universal'. It also weakens the implication of the observed universality for the question of how close we are to the continuum limit. (orig.)

  4. Search of unified theory of basic types of elementary particle interactions

    International Nuclear Information System (INIS)

    Anselm, A.

    1981-01-01

    Four types of forces are described (strong, weak, electromagnetic and gravitational) mediating the basic interactions of quarks and leptons, and attempts are reported of forming a unified theory of all basic interactions. The concepts are discussed, such as the theory symmetry (eg., invariance in relation to the Lorentz transformations) and isotopic symmetry (based on the interchangeability of particles in a given isotopic multiplet). Described are the gauge character of electromagnetic and gravitational interactions, the violation of the gauge symmetry and the mechanism of particle confinement. (H.S.)

  5. Theory of using magnetic deflections to combine charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Steckbeck, Mackenzie K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: Bs= 1/2(rc/rs) Bc, where Bs and Bc are the magnetic fields in the steering and bending magnet and rc/rs is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.

  6. Small-scale gradients of charged particles in the heliospheric magnetic field

    International Nuclear Information System (INIS)

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  7. Treatment of the intrinsic Hamiltonian in particle-number nonconserving theories

    International Nuclear Information System (INIS)

    Hergert, H.; Roth, R.

    2009-01-01

    We discuss the implications of using an intrinsic Hamiltonian in theories without particle-number conservation, e.g., the Hartree-Fock-Bogoliubov approximation, where the Hamiltonian's particle-number dependence leads to discrepancies if one naively replaces the particle-number operator by its expectation value. We develop a systematic expansion that fixes this problem and leads to an a posteriori justification of the widely-used one- plus two-body form of the intrinsic kinetic energy in nuclear self-consistent field methods. The expansion's convergence properties as well as its practical applications are discussed for several sample nuclei.

  8. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. I. DYNAMICS OF MAGNETIC ISLANDS NEAR THE HELIOSPHERIC CURRENT SHEET

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, O. [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation RAS (IZMIRAN), Troitsk, Moscow 142190 (Russian Federation); Zank, G. P.; Li, G.; Roux, J. A. le; Webb, G. M.; Dosch, A. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Malandraki, O. E. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)

    2015-08-01

    Increases of ion fluxes in the keV–MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets (CSs) are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller CSs in the solar wind, a consequence of which is particle energization by the dynamically evolving secondary CSs and magnetic islands. The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field and experience first-order Fermi acceleration in contracting magnetic islands according to the transport theory of Zank et al. We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.

  9. Numerical Test of Different Approximations Used in the Transport Theory of Energetic Particles

    Science.gov (United States)

    Qin, G.; Shalchi, A.

    2016-05-01

    Recently developed theories for perpendicular diffusion work remarkably well. The diffusion coefficients they provide agree with test-particle simulations performed for different turbulence setups ranging from slab and slab-like models to two-dimensional and noisy reduced MHD turbulence. However, such theories are still based on different analytical approximations. In the current paper we use a test-particle code to explore the different approximations used in diffusion theory. We benchmark different guiding center approximations, simplifications of higher-order correlations, and the Taylor-Green-Kubo formula. We demonstrate that guiding center approximations work very well as long as the particle's unperturbed Larmor radius is smaller than the perpendicular correlation length of the turbulence. Furthermore, the Taylor-Green-Kubo formula and the definition of perpendicular diffusion coefficients via mean square displacements provide the same results. The only approximation that was used in the past in nonlinear diffusion theory that fails is to replace fourth-order correlations by a product of two second-order correlation functions. In more advanced nonlinear theories, however, this type of approximation is no longer used. Therefore, we confirm the validity of modern diffusion theories as a result of the work presented in the current paper.

  10. Point-particle effective field theory I: classical renormalization and the inverse-square potential

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P.; Hayman, Peter [Physics & Astronomy, McMaster University,Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Williams, M. [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Zalavári, László [Physics & Astronomy, McMaster University,Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada)

    2017-04-19

    Singular potentials (the inverse-square potential, for example) arise in many situations and their quantum treatment leads to well-known ambiguities in choosing boundary conditions for the wave-function at the position of the potential’s singularity. These ambiguities are usually resolved by developing a self-adjoint extension of the original problem; a non-unique procedure that leaves undetermined which extension should apply in specific physical systems. We take the guesswork out of this picture by using techniques of effective field theory to derive the required boundary conditions at the origin in terms of the effective point-particle action describing the physics of the source. In this picture ambiguities in boundary conditions boil down to the allowed choices for the source action, but casting them in terms of an action provides a physical criterion for their determination. The resulting extension is self-adjoint if the source action is real (and involves no new degrees of freedom), and not otherwise (as can also happen for reasonable systems). We show how this effective-field picture provides a simple framework for understanding well-known renormalization effects that arise in these systems, including how renormalization-group techniques can resum non-perturbative interactions that often arise, particularly for non-relativistic applications. In particular we argue why the low-energy effective theory tends to produce a universal RG flow of this type and describe how this can lead to the phenomenon of reaction catalysis, in which physical quantities (like scattering cross sections) can sometimes be surprisingly large compared to the underlying scales of the source in question. We comment in passing on the possible relevance of these observations to the phenomenon of the catalysis of baryon-number violation by scattering from magnetic monopoles.

  11. A flux-scaling scenario for high-scale moduli stabilization in string theory

    Directory of Open Access Journals (Sweden)

    Ralph Blumenhagen

    2015-08-01

    Full Text Available Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on Calabi–Yau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.

  12. A flux-scaling scenario for high-scale moduli stabilization in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Font, Anamaría [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU, Theresienstr. 37, 80333 München (Germany); Fuchs, Michael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Herschmann, Daniela, E-mail: herschma@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Plauschinn, Erik [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Sekiguchi, Yuta; Wolf, Florian [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU, Theresienstr. 37, 80333 München (Germany)

    2015-08-15

    Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on Calabi–Yau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.

  13. Scaling Properties of Particle Density Fields Formed in Simulated Turbulent Flows

    Science.gov (United States)

    Hogan, Robert C.; Cuzzi, Jeffrey N.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Direct numerical simulations (DNS) of particle concentrations in fully developed 3D turbulence were carried out in order to study the nonuniform structure of the particle density field. Three steady-state turbulent fluid fields with Taylor microscale Reynolds numbers (Re(sub lambda)) of 40, 80 and 140 were generated by solving the Navier-Stokes equations with pseudospectral methods. Large scale forcing was used to drive the turbulence and maintain temporal stationarity. The response of the particles to the fluid was parameterized by the particle Stokes number St, defined as the ratio of the particle's stopping time to the mean period of eddies on the Kolmogorov scale (eta). In this paper, we consider only passive particles optimally coupled to these eddies (St approx. = 1) because of their tendency to concentrate more than particles with lesser or greater St values. The trajectories of up to 70 million particles were tracked in the equilibrated turbulent flows until the particle concentration field reached a statistically stationary state. The nonuniform structure of the concentration fields was characterized by the multifractal singularity spectrum, f(alpha), derived from measures obtained after binning particles into cells ranging from 2(eta) to 15(eta) in size. We observed strong systematic variations of f(alpha) across this scale range in all three simulations and conclude that the particle concentration field is not statistically self similar across the scale range explored. However, spectra obtained at the 2(eta), 4(eta), and 8(eta) scales of each flow case were found to be qualitatively similar. This result suggests that the local structure of the particle concentration field may be flow-Independent. The singularity spectra found for 2n-sized cells were used to predict concentration distributions in good agreement with those obtained directly from the particle data. This Singularity spectrum has a shape similar to the analogous spectrum derived for the

  14. Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions

    International Nuclear Information System (INIS)

    Qi Jianquan; Wang Yu; Wan Pingchen; Long Tuli; Chan, Helen Lai Wah

    2005-01-01

    This paper reports a wet chemical synthesis technique for large-scale fabrication of perovskite barium strontium titanate nano-particles near room temperature and under ambient pressure. The process employs titanium alkoxide and alkali earth hydroxides as starting materials and involves very simple operation steps. Particle size and crystallinity of the particles are controllable by changing the processing parameters. Observations by X-ray diffraction, scanning electron microscopy and transmission electron microscopy TEM indicate that the particles are well-crystallized, chemically stoichiometric and ∼50nm in diameter. The nanoparticles can be sintered into ceramics at 1150 deg. C and show typical ferroelectric hysteresis loops

  15. E × B electron drift instability in Hall thrusters: Particle-in-cell simulations vs. theory

    Science.gov (United States)

    Boeuf, J. P.; Garrigues, L.

    2018-06-01

    The E × B Electron Drift Instability (E × B EDI), also called Electron Cyclotron Drift Instability, has been observed in recent particle simulations of Hall thrusters and is a possible candidate to explain anomalous electron transport across the magnetic field in these devices. This instability is characterized by the development of an azimuthal wave with wavelength in the mm range and velocity on the order of the ion acoustic velocity, which enhances electron transport across the magnetic field. In this paper, we study the development and convection of the E × B EDI in the acceleration and near plume regions of a Hall thruster using a simplified 2D axial-azimuthal Particle-In-Cell simulation. The simulation is collisionless and the ionization profile is not-self-consistent but rather is given as an input parameter of the model. The aim is to study the development and properties of the instability for different values of the ionization rate (i.e., of the total ion production rate or current) and to compare the results with the theory. An important result is that the wavelength of the simulated azimuthal wave scales as the electron Debye length and that its frequency is on the order of the ion plasma frequency. This is consistent with the theory predicting destruction of electron cyclotron resonance of the E × B EDI in the non-linear regime resulting in the transition to an ion acoustic instability. The simulations also show that for plasma densities smaller than under nominal conditions of Hall thrusters the field fluctuations induced by the E × B EDI are no longer sufficient to significantly enhance electron transport across the magnetic field, and transit time instabilities develop in the axial direction. The conditions and results of the simulations are described in detail in this paper and they can serve as benchmarks for comparisons between different simulation codes. Such benchmarks would be very useful to study the role of numerical noise (numerical

  16. Specific surface area behavior of a dissolving population of particles. Augmenting Mercer Dissolution Theory

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Rothenberg, S.J.

    1986-01-01

    Specific surface area (Sp) measurements were made on two uranium oxide aerosol materials before and after in vitro dissolution studies were performed on the materials. The results of these Sp measurements were evaluated relative to predictions made from extending Mercer dissolution theory to describe the Sp behavior of a dissolving population of particles

  17. Influence of Particle Theory Conceptions on Pre-Service Science Teachers' Understanding of Osmosis and Diffusion

    Science.gov (United States)

    AlHarbi, Nawaf N. S.; Treagust, David F.; Chandrasegaran, A. L.; Won, Mihye

    2015-01-01

    This study investigated the understanding of diffusion, osmosis and particle theory of matter concepts among 192 pre-service science teachers in Saudi Arabia using a 17-item two-tier multiple-choice diagnostic test. The data analysis showed that the pre-service teachers' understanding of osmosis and diffusion concepts was mildly correlated with…

  18. Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient

    NARCIS (Netherlands)

    Dhont, J.K.G.; Briels, Willem J.

    2008-01-01

    The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that

  19. Particle production in field theories coupled to strong external sources, I: Formalism and main results

    International Nuclear Information System (INIS)

    Gelis, Francois; Venugopalan, Raju

    2006-01-01

    We develop a formalism for particle production in a field theory coupled to a strong time-dependent external source. An example of such a theory is the color glass condensate. We derive a formula, in terms of cut vacuum-vacuum Feynman graphs, for the probability of producing a given number of particles. This formula is valid to all orders in the coupling constant. The distribution of multiplicities is non-Poissonian, even in the classical approximation. We investigate an alternative method of calculating the mean multiplicity. At leading order, the average multiplicity can be expressed in terms of retarded solutions of classical equations of motion. We demonstrate that the average multiplicity at next-to-leading order can be formulated as an initial value problem by solving equations of motion for small fluctuation fields with retarded boundary conditions. The variance of the distribution can be calculated in a similar fashion. Our formalism therefore provides a framework to compute from first principles particle production in proton-nucleus and nucleus-nucleus collisions beyond leading order in the coupling constant and to all orders in the source density. We also provide a transparent interpretation (in conventional field theory language) of the well-known Abramovsky-Gribov-Kancheli (AGK) cancellations. Explicit connections are made between the framework for multi-particle production developed here and the framework of reggeon field theory

  20. Causality of the quasi-particle pole in strong coupling theories

    International Nuclear Information System (INIS)

    Henning, P.A.

    1993-01-01

    Conflicting statements on the boundary condition for the causal propagation of quasi-particles are related to a consistency criterion for perturbation theory in strong fields. It is shown, that the two descriptions coincide in the commonly accepted physical region. (orig.)

  1. Topics in gauge theories and the unification of elementary particle interactions

    International Nuclear Information System (INIS)

    Srivastava, Y.N.; Vaughn, M.T.

    1992-02-01

    We report on work done by the principal investigators and their collaborators on: purely fermionic composite models, gravitational diamagnetism, dynamical Casimir effect, N-particle amplitudes for large N beyond the three approximation, and analysis of classical scalar φ 4 field theory

  2. Scale-similar clustering of heavy particles in the inertial range of turbulence

    Science.gov (United States)

    Ariki, Taketo; Yoshida, Kyo; Matsuda, Keigo; Yoshimatsu, Katsunori

    2018-03-01

    Heavy particle clustering in turbulence is discussed from both phenomenological and analytical points of view, where the -4 /3 power law of the pair-correlation function is obtained in the inertial range. A closure theory explains the power law in terms of the balance between turbulence mixing and preferential-concentration mechanism. The obtained -4 /3 power law is supported by a direct numerical simulation of particle-laden turbulence.

  3. What could we learn about high energy particle physics from cosmological observations at largest spatial scales ?

    Directory of Open Access Journals (Sweden)

    Gorbunov Dmitry

    2017-01-01

    Full Text Available The very well known example of cosmology testing particle physics is the number of relativistic particles (photons and three active neutrinos within the Standard Model at primordial nucleosynthesis. These days the earliest moment we can hope to probe with present cosmological data is the early time inflation. The particle physics conditions there and now are different because of different energy scales and different values of the scalar fields, that usually prohibits a reliable connection between the particle physics parameters at the two interesting epochs. The physics at the highest energy scales may be probed with observations at the largest spatial scales (just somewhat smaller than the size of the visible Universe. However, we are not (yet ready to make the tests realistic, because of lack of a self-consistent theoretical description of the presently favorite cosmological models to be valid right after inflation.

  4. Application of the reduction of scale range in a Lorentz boosted frame to the numerical simulation of particle acceleration devices

    International Nuclear Information System (INIS)

    Vay, J.; Fawley, W.M.; Geddes, C.G.; Cormier-Michel, E.; Grote, D.P.

    2009-01-01

    It has been shown that the ratio of longest to shortest space and time scales of a system of two or more components crossing at relativistic velocities is not invariant under Lorentz transformation. This implies the existence of a frame of reference minimizing an aggregate measure of the ratio of space and time scales. It was demonstrated that this translated into a reduction by orders of magnitude in computer simulation run times, using methods based on first principles (e.g., Particle-In-Cell), for particle acceleration devices and for problems such as: free electron laser, laser-plasma accelerator, and particle beams interacting with electron clouds. Since then, speed-ups ranging from 75 to more than four orders of magnitude have been reported for the simulation of either scaled or reduced models of the above-cited problems. In it was shown that to achieve full benefits of the calculation in a boosted frame, some of the standard numerical techniques needed to be revised. The theory behind the speed-up of numerical simulation in a boosted frame, latest developments of numerical methods, and example applications with new opportunities that they offer are all presented

  5. Theory of reflection reflection and transmission of electromagnetic, particle and acoustic waves

    CERN Document Server

    Lekner, John

    2016-01-01

    This book deals with the reflection of electromagnetic and particle waves by interfaces. The interfaces can be sharp or diffuse. The topics of the book contain absorption, inverse problems, anisotropy, pulses and finite beams, rough surfaces, matrix methods, numerical methods,  reflection of particle waves and neutron reflection. Exact general results are presented, followed by long wave reflection, variational theory, reflection amplitude equations of the Riccati type, and reflection of short waves. The Second Edition of the Theory of Reflection is an updated and much enlarged revision of the 1987 monograph. There are new chapters on periodically stratified media, ellipsometry, chiral media, neutron reflection and reflection of acoustic waves. The chapter on anisotropy is much extended, with a complete treatment of the reflection and transmission properties of arbitrarily oriented uniaxial crystals. The book gives a systematic and unified treatment reflection and transmission of electromagnetic and particle...

  6. Size-selective sorting in bubble streaming flows: Particle migration on fast time scales

    Science.gov (United States)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2015-11-01

    Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  7. Modeling the effects of cohesive energy for single particle on the material removal in chemical mechanical polishing at atomic scale

    International Nuclear Information System (INIS)

    Wang Yongguang; Zhao Yongwu; An Wei; Wang Jun

    2007-01-01

    This paper proposes a novel mathematical model for chemical mechanical polishing (CMP) based on interface solid physical and chemical theory in addition to energy equilibrium knowledge. And the effects of oxidation concentration and particle size on the material removal in CMP are investigated. It is shown that the mechanical energy and removal cohesive energy couple with the particle size, and being a cause of the non-linear size-removal rate relation. Furthermore, it also shows a nonlinear dependence of removal rate on removal cohesive energy. The model predictions are in good qualitative agreement with the published experimental data. The current study provides an important starting point for delineating the micro-removal mechanism in the CMP process at atomic scale

  8. Theory of energetic trapped particle-induced resistive interchange-ballooning modes

    International Nuclear Information System (INIS)

    Biglari, H.; Chen, L.

    1986-02-01

    A theory describing the influence of energetic trapped particles on resistive interchange-ballooning modes in tokamaks is presented. It is shown that a population of hot particles trapped in the region of adverse curvature can resonantly interact with and destabilize the resistive interchange mode, which is stable in their absence because of favorable average curvature. The mode is different from the usual resistive interchange mode not only in its destabilization mechanism, but also in that it has a real component to its frequency comparable to the precessional drift frequency of the rapidly circulating energetic species. Corresponding growth rate and threshold conditions for this trapped-particle-driven instability are derived and finite banana width effects are shown to have a stabilizing effect on the mode. Finally, the ballooning/tearing dispersion relation is generalized to include hot particles, so that both the ideal and the resistive modes are derivable in the appropriate limits. 23 refs., 7 figs

  9. Theory of the particle matrix elements for Helium atom scattering in surfaces

    International Nuclear Information System (INIS)

    Khater, A.; Toennies, J.P.

    2000-01-01

    Full text.A brief review is presented for the recent development of the theory of the particle transition matrix elements, basic to the cross section for Helium and inert particle scattering at thermal energies in solid surfaces. the Jackson and Mott matrix elements are presented and discussed for surface scattering processes, habitually classified as elastic and inelastic. Modified transition matrix elements, introduced originally to account for the cut-off effects, are presented in a direct and simple manner. the Debye-Waller factor is introduced and discussed. A recent calculation for the particle transition matrix elements is presented for the specular and inelastic transition matrix elements and the corresponding inelastic scattering cross section is compared in detail to experimental data. the specular and inelastic transition matrix elements are found to be intrinsically similar owing to the intermediate role of a proposed virtual particle squeezed state near the surface

  10. Single-particle energies and density of states in density functional theory

    Science.gov (United States)

    van Aggelen, H.; Chan, G. K.-L.

    2015-07-01

    Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.

  11. The design and scale-up of spray dried particle delivery systems.

    Science.gov (United States)

    Al-Khattawi, Ali; Bayly, Andrew; Phillips, Andrew; Wilson, David

    2018-01-01

    The rising demand for pharmaceutical particles with tailored physicochemical properties has opened new markets for spray drying especially for solubility enhancement, improving inhalation medicines and stabilization of biopharmaceuticals. Despite this, the spray drying literature is scattered and often does not address the principles underpinning robust development of pharmaceuticals. It is therefore necessary to present clearer picture of the field and highlight the factors influencing particle design and scale-up. Areas covered: The review presents a systematic analysis of the trends in development of particle delivery systems using spray drying. This is followed by exploring the mechanisms governing particle formation in the process stages. Particle design factors including those of equipment configurations and feed/process attributes were highlighted. Finally, the review summarises the current industrial approaches for upscaling pharmaceutical spray drying. Expert opinion: Spray drying provides the ability to design particles of the desired functionality. This greatly benefits the pharmaceutical sector especially as product specifications are becoming more encompassing and exacting. One of the biggest barriers to product translation remains one of scale-up/scale-down. A shift from trial and error approaches to model-based particle design helps to enhance control over product properties. To this end, process innovations and advanced manufacturing technologies are particularly welcomed.

  12. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    Science.gov (United States)

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-10

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  13. Lorentz invariance from classical particle paths in quantum field theory of electric and magnetic charge

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.; Zwanziger, D.

    1979-01-01

    We establish the Lorentz invariance of the quantum field theory of electric and magnetic charge. This is a priori implausible because the theory is the second-quantized version of a classical field theory which is inconsistent if the minimally coupled charged fields are smooth functions. For our proof we express the generating functional for the gauge-invariant Green's functions of quantum electrodynamics: with or without magnetic charge: as a path integral over the trajectories of classical charged point particles. The electric-electric and electric-magnetic interactions contribute factors exp(JDJ) and exp(JD'K), where J and K are the electric and magnetic currents of classical point particles and D is the usual photon propagator. The propagator D' involves the Dirac string but exp(JD'K) depends on it only through a topological integer linking string and classical particle trajectories. The charge quantization condition e/sub i/g/sub j/ - g/sub i/e/sub j/ = integer then suffices to make the gauge-invariant Green's functions string independent. By implication our formulation shows that if the Green's functions of quantum electrodynamics are expressed as usual as functional integrals over classical charged fields, the smooth field configurations have measure zero and all the support of the Feynman measure lies on the trajectories of classical point particles

  14. Momentum transfer theory of non-conservative charged particle transport in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Vrhovac, S.B.; Petrovic, Z.Lj.

    1995-01-01

    Momentum - transfer approximation is applied to momentum and energy balance equations describing reacting particle swarms in gases in crossed electric and magnetic fields. Transport coefficients of charged particles undergoing both inelastic and reactive, non-particle-conserving collisions with a gas of neutral molecules are calculated. Momentum - transfer theory (MTT) has been developed mainly by Robson and collaborators. It has been applied to a single reactive gas and mixtures of reactive gases in electric field only. MTT has also been applied in crossed electric and magnetic fields recently and independently of our work but the reactive collisions were not considered. Consider a swarm of electrons of charge e and mass m moving with velocity rvec v through a neutral gas under the influence of an applied electric rvec E and magnetic rvec B field. The collision processes which we shall investigate are limited to elastic, inelastic and reactive collisions of electrons with gas molecules. Here we interpret reactive collisions as collisions which produce change in number of the swarm particles. Reactive collisions involve creation (ionization by electron impact) or loss (electron attachment) of swarm particles. We consider only single ionization in approximation of the mass ratio m/m 0 0 are masses of electrons and neutral particles, respectively. We assume that the stage of evolution of the swarm is the hydrodynamic limit (HDL). In HDL, the space - time dependence of all properties is carried by the number density n of swarm particles

  15. On the Renormalization of the Effective Field Theory of Large Scale Structures

    OpenAIRE

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory o...

  16. Theory of Rapid Formation of Pedestal and Pedestal width due to Anomalous Particle Pinch in the Edge of H-mode Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Kaw, P.K., E-mail: kaw@ipr.res.in [Institute for Plasma Research, Bhat (India); Singh, R. [Institute for Plasma Research, Bhat (India); ITER Organization, Saint Paul-lez-Durance [France; Nordman, H. [Chamlers Institute of Technology, Goteborg (Sweden); Garbet, X.; Bourdelle, C. [CEA, Saint Paul-lez-Durance (France); Campbell, D.; Loarte, A.; Bora, D. [ITER Organization, Saint Paul-lez-Durance (France)

    2012-09-15

    Full text: A theory based on a turbulent particle pinch is proposed to explain the rapid formation of sharp density gradients in tokamak edge plasmas, in particular the pedestal region. The inward radial particle flux in the pedestal results from the interaction between small scale electron temperature gradient driven (ETG) turbulence and self-consistently formed 'electron geodesic acoustic modes' (el-GAMs). To address this phenomenon, the el-GAM modulational instability driven by the ETG turbulence background is studied. The ETG level of fluctuations and particle pinch are estimated through the back reaction of eGAMs on ETG turbulence. It is found that the particle pinch is quite sensitive to magnetic shear, safety factor, ratio of electron to ion temperatures and atomic mass number. In the absence of particle source in the pedestal, the density gradient length scale, of the order of the pedestal width, is estimated. It is shown that it is proportional to the major radius, up to some dependence on the poloidal beta. Moreover it does not depend on the normalized gyro-radius. This scaling agrees with DIII-D and JET similarity experiments. This dependence is favorable when extrapolated to the pedestal width in ITER in spite of its low normalized gyro radius. It is also shown that the density scale length becomes sharper by increasing the magnetic shear. A new H-mode pedestal pressure scaling is derived assuming that the pressure gradient is limited by the ballooning instability. (author)

  17. Proceedings of the XXVI international symposium Ahrenshoop on the theory of elementary particles

    International Nuclear Information System (INIS)

    Doerfel, B.; Wieczorek, E.

    1993-02-01

    These proceedings contain most of the invited talks and short communications presented at the XXVI th International Symposium Ahrenshoop on the Theory of Elementary Particles which took place from September 9 th to 13 th , 1992 at Wendisch-Rietz near Berlin. The Symposium was organized jointly by the Institute for Elementary Particle Physics of the Humboldt University Berlin, the Institute for Theoretical Physics of the University Hannover, the Sektion Physik of the University Munich, and DESY - Institute for High Energy Physics Zeuthen. See hints under the relevant topics. (orig.)

  18. The standard theory of particle physics Essays to celebrate CERN’s 60th anniversary

    CERN Document Server

    Maiani, Luciano

    2016-01-01

    The book gives a quite complete and up-to-date picture of the Standard Theory with an historical perspective, with a collection of articles written by some of the protagonists of present particle physics. The theoretical developments are described together with the most up-to-date experimental tests, including the discovery of the Higgs Boson and the measurement of its mass as well as the most precise measurements of the top mass, giving the reader a complete description of our present understanding of particle physics.

  19. Experiment and theory in particle physics: Reflections on the discovery of the tau lepton

    Energy Technology Data Exchange (ETDEWEB)

    Perl, M.L.

    1996-08-01

    This article is thoughts from the author on particle physics work from his perspective. It is not a summary of his work on the tau lepton, but rather a look at what makes good science, experimental and theoretical, from his experiences in the field. The section titles give a good summary on the topics the author chooses to touch upon. They are: the state of elementary particle physics; getting good ideas in experimental science; a difficult field; experiments and experimenting; 10% of the money and 30% of the time; the dictatorship of theory; technological dreams; last words.

  20. Experiment and theory in particle physics: Reflections on the discovery of the tau lepton

    International Nuclear Information System (INIS)

    Perl, M.L.

    1996-08-01

    This article is thoughts from the author on particle physics work from his perspective. It is not a summary of his work on the tau lepton, but rather a look at what makes good science, experimental and theoretical, from his experiences in the field. The section titles give a good summary on the topics the author chooses to touch upon. They are: the state of elementary particle physics; getting good ideas in experimental science; a difficult field; experiments and experimenting; 10% of the money and 30% of the time; the dictatorship of theory; technological dreams; last words

  1. Representation of mathematical expectation of symmetrical functionals in the particle transport theory

    International Nuclear Information System (INIS)

    Uchajkin, V.V.

    1977-01-01

    The two-dimensional functional is used to show that the mathematical expectation of symmetrical functionals may be represented as a nonlinear functional obtained from the solution of the Boltzman equations (Green's function). For the highest moments of additive detector readings, which are a particular case of symmetrical functionals, a similar result was obtained by the author previously when he studied particles transport with and without multiplication. In physical terms such a concept is conditioned by the absence of moving particles with one another, the assumption of which is the basis of the linear transport theory

  2. The corrections to scaling within Mazenko's theory in the limit of low ...

    Indian Academy of Sciences (India)

    functions'. In fact both the scaling functions and scaling exponents describe only the leading behaviour in the theory of scaling phenomena. There may be, and usually are, subdominant corrections, known as corrections to scaling. These corrections cannot be neglected in practice if more accurate values for exponents and ...

  3. Modular theory and Eyvind Wichmann's contributions to modern particle physics theory

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1999-06-01

    Some of the consequences of Eyvind Wichmann's contributions to modular theory and the QFT phase-space structure are presented. In order to show the power of those ideas in contemporary problems, I selected the issue of algebraic holography as well as a new nonperturbative constructive approach (based on the modular structure of wedge-localized algebras and modular inclusions) and show that these ideas are recent consequences of the path breaking work which Wichmann together with his collaborator Bisognano initiated in the mid 70{sup ies}. (author)

  4. Modular theory and Eyvind Wichmann's contributions to modern particle physics theory

    International Nuclear Information System (INIS)

    Schroer, Bert

    1999-06-01

    Some of the consequences of Eyvind Wichmann's contributions to modular theory and the QFT phase-space structure are presented. In order to show the power of those ideas in contemporary problems, I selected the issue of algebraic holography as well as a new nonperturbative constructive approach (based on the modular structure of wedge-localized algebras and modular inclusions) and show that these ideas are recent consequences of the path breaking work which Wichmann together with his collaborator Bisognano initiated in the mid 70 ies . (author)

  5. Modular theory and Eyvind Wichmann's contributions to modern particle physics theory

    Directory of Open Access Journals (Sweden)

    Bert Schroer

    2000-07-01

    Full Text Available Some of the consequences of Eyvind Wichmann's contributions to modular theory and the QFT phase-space structure are presented. In order to show the power of those ideas in contemporary problems, I selected the issue of algebraic holography as well as a new nonperturbative constructive approach (based on the modular structure of wedge-localized algebras and modular inclusions and show that these ideas are recent consequences of the pathbreaking work which Wichmann together with his collaborator Bisognano initiated in the mid Seventies.

  6. Linear arrangement of nano-scale magnetic particles formed in Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung, E-mail: k3201s@hotmail.co [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeda, Mahoto [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeguchi, Masaki [Advanced Electron Microscopy Group, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba, 305-0047 (Japan); Bae, Dong-Sik [School of Nano and Advanced Materials Engineering, Changwon National University, Gyeongnam, 641-773 (Korea, Republic of)

    2010-04-30

    The structural evolution of nano-scale magnetic particles formed in Cu-Fe-Ni alloys on isothermal annealing at 878 K has been investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and field-emission scanning electron microscopy (FE-SEM). Phase decomposition of Cu-Fe-Ni occurred after an as-quenched specimen received a short anneal, and nano-scale magnetic particles were formed randomly in the Cu-rich matrix. A striking feature that two or more nano-scale particles with a cubic shape were aligned linearly along <1,0,0> directions was observed, and the trend was more pronounced at later stages of the precipitation. Large numbers of <1,0,0> linear chains of precipitates extended in three dimensions in late stages of annealing.

  7. Calculation of the output power in self-amplified spontaneous radiation using scaling of power with number of simulation particles

    International Nuclear Information System (INIS)

    Yu, L.H.

    1998-01-01

    Recent advances in self-amplified spontaneous emission (SASE) experiments stimulate interest in quantitative comparison of measurements with theory. In this paper we show that the widely used simulation code TDA3D, developed by Tran and Wurtele [Comput. Phys. Commun. 54, 263 (1989)] even though a single frequency code, can be used to determine the output power in the SASE process with excellent approximation in the exponential growth regime. The method applies when the gain is not very high, which is a special advantage, because when the gain is not very high, the analytical calculation is particularly difficult since the exponential growing term does not dominate. The analysis utilizes a scaling relation between the output power and the number of simulation particles in the code TDA3D: left-angle P right-angle=N λ ' /N λ left-angle P ' right-angle, where left-angle P right-angle is the output power and N λ is the line density of the electrons, while left-angle P ' right-angle is the calculated output power using a line density N λ ' of the number of simulation particles in the code TDA3D. Because of the scaling property, the number of simulation particles can be taken to be many orders of magnitude less than the actual experiment. Comparison of our results with experiment yields new insight into the SASE process. copyright 1998 The American Physical Society

  8. Bethe-Salpeter kernels and particle structure in the Yukawa2 quantum field theory

    International Nuclear Information System (INIS)

    Cooper, A.S.

    1981-01-01

    The author discusses the extension to the (weakly coupled) Yukawa quantum field theory in two space-time dimensions (Y 2 ), with equal bare masses, of some techniques used in the analysis of particle structure for weakly coupled even P(PHI) 2 . In particular he considers existence, regularity, and decay properties for the inverse two point functions and various Bethe-Salpeter kernels of the theory. These properties suffice to ensure that in the +-2 fermion sectors the mass spectrum is discrete below 2m 0 and the S-matrix is unitary up to 2m 0 + epsilon. (Auth.)

  9. A New Likert Scale Based on Fuzzy Sets Theory

    Science.gov (United States)

    Li, Cheryl Qing

    2010-01-01

    In social science research, the Likert method is commonly used as a psychometric scale to measure responses. This measurement scale has a procedure that facilitates survey construction and administration, and data coding and analysis. However, there are some problems with Likert scaling. This dissertation addresses the information distortion and…

  10. Integral transport theory for charged particles in electric and magnetic fields

    International Nuclear Information System (INIS)

    Boffi, V.C.; Molinari, V.G.

    1979-01-01

    An integral transport theory for charged particles which, in the presence of electric and magnetic fields, diffuse by collisions against the atoms (or molecules) of a host medium is proposed. The combined effects of both the external fields and the mechanisms of scattering, removal and creation in building up the distribution function of the charged particles considered are investigated. The eigenvalue problem associated with the sourceless case of the given physical situation is also commented. Applications of the theory to a purely velocity-dependent problem and to a space-dependent problem, respectively, are illustrated for the case of a separable isotropic scattering kernel of synthetic type. Calculations of the distribution function, of the total current density and of relevant electrical conductivity are then carried out for different specializations of the external fields. (author)

  11. On the independent particle approximation of Gauge theories: a simple example

    International Nuclear Information System (INIS)

    Palladino, B.E.

    1992-08-01

    In this work, the independent particle model formulation is studied as a mean-field approximation of gauge theories using the path integral approach in the framework of quantum electrodynamics in 1+1 dimensions. It is shown how a mean-field approximation scheme can be applied to fit an effective potential to an independent particle model, building a straightforward relation between the model and the associated gauge field theory. An example is made considering the problem of massive Dirac fermions on a line, the so called massive Schwinger model. An interesting result is found, indicating a behaviour of screening of the charges in the relativistic limit of strong coupling. A forthcoming application of the method developed to confining potentials in independent quark models for QCD is in view and is briefly discussed. (author)

  12. Form factor of relativistic two-particle system and covariant hamiltonian formulation of quantum field theory

    International Nuclear Information System (INIS)

    Skachkov, N.; Solovtsov, I.

    1979-01-01

    Based on the hamiltonian formulation of quantum field theory proposed by Kadyshevsky the three-dimensional relativistic approach is developed for describing the form factors of composite systems. The main features of the diagram technique appearing in the covariant hamiltonian formulation of field theory are discussed. The three-dimensional relativistic equation for the vertex function is derived and its connection with that for the quasipotential wave function is found. The expressions are obtained for the form factor of the system through equal-time two-particle wave functions both in momentum and relativistic configurational representations. An explicit expression for the form factor is found for the case of two-particle interaction through the Coulomb potential

  13. The dynamics of particle disks. III - Dense and spinning particle disks. [development of kinetic theory for planetary rings

    Science.gov (United States)

    Araki, Suguru

    1991-01-01

    The kinetic theory of planetary rings developed by Araki and Tremaine (1986) and Araki (1988) is extended and refined, with a focus on the implications of finite particle size: (1) nonlocal collisions and (2) finite filling factors. Consideration is given to the derivation of the equations for the local steady state, the low-optical-depth limit, and the steady state at finite filling factors (including the effects of collision inelasticity, spin degrees of freedom, and self-gravity). Numerical results are presented in extensive graphs and characterized in detail. The importance of distinguishing effects (1) and (2) at low optical depths is stressed, and the existence of vertical density profiles with layered structures at high filling factors is demonstrated.

  14. Theoretical physics vol. 2. Quantum mechanics, relativistic quantum mechanics, quantum field theory, elementar-particle theory, thermodynamics and statistics

    International Nuclear Information System (INIS)

    Rebhan, E.

    2005-01-01

    The present second volume treats quantum mechanics, relativistic quantum mechanics, the foundations of quantum-field and elementary-particle theory as well as thermodynamics and statistics. Both volumes comprehend all fields, which are usually offered in a course about theoretical physics. In all treated fields a very careful introduction to the basic natural laws forms the starting point, whereby it is thoroughly analysed, which of them is based on empirics, which is logically deducible, and which role play basic definitions. Extendingly the matter extend of the corresponding courses starting from the relativistic quantum theory an introduction to the elementary particles is developed. All problems are very thoroughly and such extensively studied, that each step is singularly reproducible. On motivation and good understandability is cared much about. The mixing of mathematical difficulties with problems of physical nature often obstructive in the learning is so circumvented, that important mathematical methods are presented in own chapters (for instance Hilbert spaces, Lie groups). By means of many examples and problems (for a large part with solutions) the matter worked out is deepened and exercised. Developments, which are indeed important, but seem for the first approach abandonable, are pursued in excurses. This book starts from courses, which the author has held at the Heinrich-Heine university in Duesseldorf, and was in many repetitions fitted to the requirements of the students. It is conceived in such a way, that it is also after the study suited as dictionary or for the regeneration

  15. Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2007-01-01

    The work draws some fundamental connections between Feigenbaum's golden mean renormalization group and scenario for turbulence on the one side and high energy particle physics on the other side. The analysis which is based on the natural and obvious connections between the Fibonacci-like geometrical growth rate of ε (∞) spacetime and Feigenbaum's renormalization gives vital information to basic questions not only of quantum geometry, but also of quantum field theory

  16. Universal scaling of strange particle pT spectra in pp collisions

    Science.gov (United States)

    Yang, Liwen; Wang, Yanyun; Hao, Wenhui; Liu, Na; Du, Xiaoling; Zhang, Wenchao

    2018-04-01

    As a complementary study to that performed on the transverse momentum (pT) spectra of charged pions, kaons and protons in proton-proton (pp) collisions at LHC energies 0.9, 2.76 and 7TeV, we present a scaling behaviour in the pT spectra of strange particles (KS0, Λ, Ξ and φ) at these three energies. This scaling behaviour is exhibited when the spectra are expressed in a suitable scaling variable z=pT/K, where the scaling parameter K is determined by the quality factor method and increases with the center of mass energy (√{s}). The rates at which K increases with ln √{s} for these strange particles are found to be identical within errors. In the framework of the colour string percolation model, we argue that these strange particles are produced through the decay of clusters that are formed by the colour strings overlapping. We observe that the strange mesons and baryons are produced from clusters with different size distributions, while the strange mesons (baryons) KS0 and φ ( Λ and Ξ) originate from clusters with the same size distributions. The cluster's size distributions for strange mesons are more dispersed than those for strange baryons. The scaling behaviour of the pT spectra for these strange particles can be explained by the colour string percolation model in a quantitative way.

  17. Toward a unified theory of the radiation by relativistic particles in crystals

    International Nuclear Information System (INIS)

    Beloshitskii, V.V.; Kalinichenko, V.F.

    1989-01-01

    A quantum theory of the electromagnetic emission by relativistic particles incorporating channeling and the thermal vibrations of the crystal nuclei is derived. A general expression for the emission probability is found after an average over the initial polarizations of the particles and a summation over the final polarizations of the particles and over the polarizations of the photons. An average is carried out over the crystal states of the nuclei in the cases with and without excitation of phonons. The total emission is made up of channeling emission and bremsstrahlung, which are related to each other. During scattering by thermal vibrations, incoherent bremsstrahlung is produced. Some particular cases which determine the properties of the emission in the case of channeling are derived from the general expression and analyzed

  18. Theory of nonlinear acoustic forces acting on fluids and particles in microsystems

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias

    fundamentally new capabilities in chemical, biomedical, or clinical studies of single cells and bioparticles. This thesis, entitled Theory of nonlinear acoustic forces acting on fluids and particles in microsystems, advances the fundamental understanding of acoustofluidics by addressing the origin...... of the nonlinear acoustic forces acting on fluids and particles. Classical results in nonlinear acoustics for the non-dissipative acoustic radiation force acting on a particle or an interface, as well as the dissipative acoustic force densities driving acoustic streaming, are derived and discussed in terms...... in the continuous fluid parameters of density and compressibility, e.g., due to a solute concentration field, the thesis presents novel analytical results on the acoustic force density acting on inhomogeneous fluids in acoustic fields. This inhomogeneity-induced acoustic force density is non-dissipative in origin...

  19. Development and Characterization of Embedded Sensory Particles Using Multi-Scale 3D Digital Image Correlation

    Science.gov (United States)

    Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.

    2014-01-01

    A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.

  20. Deconfinement phase transition and finite-size scaling in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Mogilevskij, O.A.

    1988-01-01

    Calculation technique for deconfinement phase transition parameters based on application of finite-size scaling theory is suggested. The essence of the technique lies in plotting of universal scaling function on the basis of numerical data obtained at different-size final lattices and discrimination of phase transition parameters for infinite lattice system. Finite-size scaling technique was developed as applied to spin system theory. β critical index for Polyakov loop and SU(2) deconfinement temperature of lattice gauge theory are calculated on the basis of finite-size scaling technique. The obtained value agrees with critical index of magnetization in Ising three-dimensional model

  1. A critical look at 50 years particle theory from the perspective of the crossing property

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Universitaet, Berlin

    2010-02-01

    The crossing property, which originated more than 5 decades ago in the aftermath of dispersion relations, was the central new concept which opened an S-matrix based line of research in particle theory. Many constructive ideas in particle theory outside perturbative QFT, among them the S-matrix bootstrap program, the dual resonance model and the various stages of string theory have their historical roots in this property. The crossing property is perhaps the most subtle aspect of the particle-field relation. Although it is not difficult to state its content in terms of certain analytic properties relating different matrix elements of the S-matrix or form factors, its relation to the localization- and positive energy spectral principles requires a level of insight into the inner workings of QFT which goes beyond anything which can be found in typical textbooks on QFT. This paper presents a recent account based on new ideas derived from 'modular localization' including a mathematic appendix on this subject. The main content is an in-depth criticism of the dual model and its string theoretic extension. The conceptual flaws of these models are closely related to misunderstandings of the true meaning of crossing. The correct interpretation of string theory is that of a dynamic infinite component wave function or pointlike field i.e. a theory which under irreducible Poincare decomposition into an infinite mass/spin tower but which also contains operators which do not commute with the generators of the Poincare group but rather intertwine between different mass/spin levels. (author)

  2. A critical look at 50 years particle theory from the perspective of the crossing property

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Freie Universitaet, Berlin (Germany). Inst. fuer Theoretische Physik

    2010-02-15

    The crossing property, which originated more than 5 decades ago in the aftermath of dispersion relations, was the central new concept which opened an S-matrix based line of research in particle theory. Many constructive ideas in particle theory outside perturbative QFT, among them the S-matrix bootstrap program, the dual resonance model and the various stages of string theory have their historical roots in this property. The crossing property is perhaps the most subtle aspect of the particle-field relation. Although it is not difficult to state its content in terms of certain analytic properties relating different matrix elements of the S-matrix or form factors, its relation to the localization- and positive energy spectral principles requires a level of insight into the inner workings of QFT which goes beyond anything which can be found in typical textbooks on QFT. This paper presents a recent account based on new ideas derived from 'modular localization' including a mathematic appendix on this subject. The main content is an in-depth criticism of the dual model and its string theoretic extension. The conceptual flaws of these models are closely related to misunderstandings of the true meaning of crossing. The correct interpretation of string theory is that of a dynamic infinite component wave function or pointlike field i.e. a theory which under irreducible Poincare decomposition into an infinite mass/spin tower but which also contains operators which do not commute with the generators of the Poincare group but rather intertwine between different mass/spin levels. (author)

  3. A study of multiplicity scaling of particles produced in 16O-nucleus collisions

    International Nuclear Information System (INIS)

    Ahmad, N.

    2015-01-01

    Koba-Nielsen-Olesen (KNO) scaling has been a dominant framework to study the behaviour of multiplicity distribution of charged particles produced in high-energy hadronic collisions. Several workers have made attempt to investigate multiplicity distributions of particles produced in hadron-hadron (h-h), hadron-nucleus (h-A) and nucleus-nucleus (A-A) collisions at relativistic energies. Multiplicity distributions in p-nucleus interactions in emulsion experiments are found to be consistent with the KNO scaling. The applicability of the scaling of multiplicities was extended to FNL energies by earlier workers. Slattery has shown that KNO scaling is in agreement with the data on pp interactions over a wide-range of energies

  4. Low-energy limit of two-scale field theories

    International Nuclear Information System (INIS)

    Leon, J.; Perez-Mercader, J.; Sanchez, M.F.

    1991-01-01

    We present a full and self-contained discussion of the decoupling theorem applied to several general models in four-dimensional field theory. We compute in each case the low-energy effective action and show the explicit one-loop expressions for each of the effective parameters. We find that for suitable conditions one can always build an effective low-energy theory where the conditions of the decoupling theorem are satisfied

  5. [High energy particle physics]: Task A, High energy physics program: Experiment and theory; Task B, High energy physics program: Numerical simulation of quantum field theories

    International Nuclear Information System (INIS)

    Lannutti, J.E.

    1991-01-01

    This report discusses the following research: fixed target experiments; collider experiments; computing, networking and VAX upgrade; SSC preparation, detector development and detector construction; solid argon calorimetry; absorption of CAD system geometries into GEANT for SSC; and particle theory programs

  6. Scaled momentum distributions of charged particles in dijet photoproduction at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2009-04-01

    The scaled momentum distributions of charged particles in jets have been measured for dijet photoproduction with the ZEUS detector at HERA using an integrated luminosity of 359 pb -1 . The distributions are compared to predictions based on perturbative QCD carried out in the framework of the modified leading-logarithmic approximation (MLLA) and assuming local parton-hadron duality (LPHD). The universal MLLA scale, Λ eff , and the LPHD parameter, κ ch , are extracted. (orig.)

  7. Scaled momentum distributions of charged particles in dijet photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)

    2009-04-15

    The scaled momentum distributions of charged particles in jets have been measured for dijet photoproduction with the ZEUS detector at HERA using an integrated luminosity of 359 pb{sup -1}. The distributions are compared to predictions based on perturbative QCD carried out in the framework of the modified leading-logarithmic approximation (MLLA) and assuming local parton-hadron duality (LPHD). The universal MLLA scale, {lambda}{sub eff}, and the LPHD parameter, {kappa}{sup ch}, are extracted. (orig.)

  8. Scattering by non-spherical particles of size comparable to a wavelength - A new semi-empirical theory

    Science.gov (United States)

    Pollack, J. B.; Cuzzi, J. N.

    1980-01-01

    An approximate method is proposed for evaluating the interaction of randomly oriented, nonspherical particles with the total intensity component of electromagnetic radiation. When the particle size parameter, x, the ratio of particle circumference to wavelength, is less than some upper bound x(o) (about 5), Mie theory is used. For x greater than x(o), the interaction is divided into three components: diffraction, external reflection, and transmission. Physical optics theory is used to obtain the first of these components; geometrical optics theory is applied to the second; and a simple parameterization is employed for the third. The predictions of this theory are found to be in very good agreement with laboratory measurements for a wide variety of particle shapes, sizes, and refractive indexes. Limitations of the theory are also noted.

  9. [Modeling continuous scaling of NDVI based on fractal theory].

    Science.gov (United States)

    Luan, Hai-Jun; Tian, Qing-Jiu; Yu, Tao; Hu, Xin-Li; Huang, Yan; Du, Ling-Tong; Zhao, Li-Min; Wei, Xi; Han, Jie; Zhang, Zhou-Wei; Li, Shao-Peng

    2013-07-01

    Scale effect was one of the very important scientific problems of remote sensing. The scale effect of quantitative remote sensing can be used to study retrievals' relationship between different-resolution images, and its research became an effective way to confront the challenges, such as validation of quantitative remote sensing products et al. Traditional up-scaling methods cannot describe scale changing features of retrievals on entire series of scales; meanwhile, they are faced with serious parameters correction issues because of imaging parameters' variation of different sensors, such as geometrical correction, spectral correction, etc. Utilizing single sensor image, fractal methodology was utilized to solve these problems. Taking NDVI (computed by land surface radiance) as example and based on Enhanced Thematic Mapper Plus (ETM+) image, a scheme was proposed to model continuous scaling of retrievals. Then the experimental results indicated that: (a) For NDVI, scale effect existed, and it could be described by fractal model of continuous scaling; (2) The fractal method was suitable for validation of NDVI. All of these proved that fractal was an effective methodology of studying scaling of quantitative remote sensing.

  10. Application of diffusion theory to the transport of neutral particles in fusion plasmas

    International Nuclear Information System (INIS)

    Hasan, M.Z.

    1985-01-01

    It is shown that the widely held view that diffusion theory can not provide good accuracy for the transport of neutral particles in fusion plasmas is misplaced. In fact, it is shown that multigroup diffusion theory gives quite good accuracy as compared to the transport theory. The reasons for this are elaborated and some of the physical and theoretical reasons which make the multigroup diffusion theory provide good accuracy are explained. Energy dependence must be taken into consideration to obtain a realistic neutral atom distribution in fusion plasmas. There are two reasons for this; presence of either is enough to necessitate an energy dependent treatment. First, the plasma temperature varies spatially, and second, the ratio of charge-exchange to total plasma-neutral interaction cross section (c) is not close to one. A computer code to solve the one-dimensional multigroup diffusion theory in general geometry (slab, cylindrical and spherical) has been written for use on Cray computers, and its results are compared with those from the one-dimensional transport code ANISN to support the above finding. A fast, compact and versatile two-dimensional finite element multigroup diffusion theory code, FINAT, in X-Y and R-Z cylindrical/toroidal geometries has been written for use on CRAY computers. This code has been compared with the two dimensional transport code DOT-4.3. The accuracy is very good, and FENAT runs much faster compared even to DOT-4.3 which is a finite difference code

  11. Classical testing particles and (4 + N)-dimensional theories of space-time

    International Nuclear Information System (INIS)

    Nieto-Garcia, J.A.

    1986-01-01

    The Lagrangian theory of a classical relativistic spinning test particle (top) developed by Hanson and Regge and by Hojman is briefly reviewed. Special attention is devoted to the constraints imposed on the dynamical variables associated with the system of this theory. The equations for a relativistic top are formulated in a way suitable for use in the study of geometrical properties of the 4 + N-dimensional Kaluza-Klein background. It is shown that the equations of motion of a top in five dimensions reduce to the Hanson-Regge generalization of the Bargmann-Michel-Telegdi equations of motion in four dimensions when suitable conditions on the spin tensor are imposed. The classical bosonic relativistic string theory is discussed and the connection of this theory with the top theory is examined. It is found that the relation between the string and the top leads naturally to the consideration of a 3-dimensional extended system (called terron) which sweeps out a 4-dimensional surface as it evolves in a space-time. By using a square root procedure based on ideas by Teitelboim a theory of a supersymmetric top is developed. The quantization of the new supersymmetric system is discussed. Conclusions and suggestions for further research are given

  12. Two new proofs of the test particle superposition principle of plasma kinetic theory

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1975-12-01

    The test particle superposition principle of plasma kinetic theory is discussed in relation to the recent theory of two-time fluctuations in plasma given by Williams and Oberman. Both a new deductive and a new inductive proof of the principle are presented. The fundamental observation is that two-time expectations of one-body operators are determined completely in terms of the (x,v) phase space density autocorrelation, which to lowest order in the discreteness parameter obeys the linearized Vlasov equation with singular initial condition. For the deductive proof, this equation is solved formally using time-ordered operators, and the solution then rearranged into the superposition principle. The inductive proof is simpler than Rostoker's, although similar in some ways; it differs in that first order equations for pair correlation functions need not be invoked. It is pointed out that the superposition principle is also applicable to the short-time theory of neutral fluids

  13. Nucleation theory in Langevin's approach and lifetime of a Brownian particle in potential wells.

    Science.gov (United States)

    Alekseechkin, N V

    2008-07-14

    The multivariable theory of nucleation suggested by Alekseechkin [J. Chem. Phys. 124, 124512 (2006)] is further developed in the context of Langevin's approach. The use of this approach essentially enhances the capability of the nucleation theory, because it makes possible to consider the cases of small friction which are not taken into account by the classical Zel'dovich-Frenkel theory and its multivariable extensions. The procedure for the phenomenological determination of the nucleation parameters is described. Using the similarity of the Kramers model with that of nucleation, the lifetime of a Brownian particle in potential wells in various dimensionalities is calculated with the help of the expression for the steady state nucleation rate.

  14. Effects of the application of different particle sizes of mill scale (residue) in mass red ceramic

    International Nuclear Information System (INIS)

    Arnt, A.B.C.; Rocha, M.R.; Meller, J.G.

    2012-01-01

    This study aims to evaluate the influence of particle size of mill scale, residue, when added to a mass ceramic. This residue rich in iron oxide may be used as pigment in the ceramics industry. The use of pigments in ceramic products is related to the characteristics of non-toxicity, chemical stability and determination of tone. The tendency to solubilize the pigment depends on the specific surface area. The residue study was initially subjected to physical and chemical characterization and added in a proportion of 5% at a commercial ceramic white burning, with different particle sizes. Both formulations were sintered at a temperature of 950 ° C and evaluated for: loss on ignition, firing linear shrinkage, water absorption, flexural strength and difference of tone. Samples with finer particles of mill scale 0.038 μ showed higher mechanical strength values in the order of 18 MPa. (author)

  15. Active matter beyond mean-field: ring-kinetic theory for self-propelled particles.

    Science.gov (United States)

    Chou, Yen-Liang; Ihle, Thomas

    2015-02-01

    Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013)] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N-particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8, followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.

  16. Formulation and numerical implementation of micro-scale boundary conditions for particle aggregates

    NARCIS (Netherlands)

    Liu, J.; Bosco, E.; Suiker, A.S.J.

    2017-01-01

    Novel numerical algorithms are presented for the implementation of micro-scale boundary conditions of particle aggregates modelled with the discrete element method. The algorithms are based on a servo-control methodology, using a feedback principle comparable to that of algorithms commonly applied

  17. Scaling relations between structure and rheology of ageing casein particle gels

    NARCIS (Netherlands)

    Mellema, M.

    2000-01-01

    Mellema, M. (Michel), Scaling relations between structure and rheology of ageing casein particle gels , PhD Thesis, Wageningen University, 150 + 10 pages, references by chapter, English and Dutch summaries (2000).

    The relation between (colloidal)

  18. Regularity of particle velocity decrease with scale d distance for rockbursts and shot holes

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Rušajová, Jana

    2015-01-01

    Roč. 20, č. 2 (2015), s. 80-85 ISSN 1335-1788 Institutional support: RVO:68145535 Keywords : rockburst * hole shot * particle velocity * scaled distance * cylindrical and spherical waveforms Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.390, year: 2015 http://actamont.tuke.sk/pdf/2015/n2/2holub.pdf

  19. Time scales for spinodal decomposition in nuclear matter with pseudo-particle model

    Energy Technology Data Exchange (ETDEWEB)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.

    1993-12-31

    Dynamical instabilities arising from fluctuations in the spinodal zone for nuclear matter are studied using a large variety of zero range interactions in the frame of a pseudo-particle model. Scale times for spinodal decomposition are extracted and a possible link with decomposition in real heavy-ion collisions is discussed. (author) 12 refs.; 6 figs.; 1 tab.

  20. Time scales for spinodal decomposition in nuclear matter with pseudo-particle model

    International Nuclear Information System (INIS)

    Idier, D.; Benhassine, B.; Farine, M.; Remaud, B.; Sebille, F.

    1993-01-01

    Dynamical instabilities arising from fluctuations in the spinodal zone for nuclear matter are studied using a large variety of zero range interactions in the frame of a pseudo-particle model. Scale times for spinodal decomposition are extracted and a possible link with decomposition in real heavy-ion collisions is discussed. (author) 12 refs.; 6 figs.; 1 tab

  1. A reduced scale two loop PWR core designed with particle swarm optimization technique

    International Nuclear Information System (INIS)

    Lima Junior, Carlos A. Souza; Pereira, Claudio M.N.A; Lapa, Celso M.F.; Cunha, Joao J.; Alvim, Antonio C.M.

    2007-01-01

    Reduced scale experiments are often employed in engineering projects because they are much cheaper than real scale testing. Unfortunately, designing reduced scale thermal-hydraulic circuit or equipment, with the capability of reproducing, both accurately and simultaneously, all physical phenomena that occur in real scale and at operating conditions, is a difficult task. To solve this problem, advanced optimization techniques, such as Genetic Algorithms, have been applied. Following this research line, we have performed investigations, using the Particle Swarm Optimization (PSO) Technique, to design a reduced scale two loop Pressurized Water Reactor (PWR) core, considering 100% of nominal power and non accidental operating conditions. Obtained results show that the proposed methodology is a promising approach for forced flow reduced scale experiments. (author)

  2. Scaling laws and triviality bounds in the lattice Φ4 theory. Pt. 1

    International Nuclear Information System (INIS)

    Luescher, M.; Weisz, P.

    1987-01-01

    The lattice Φ 4 theory in four space-time dimensions is most likely 'trivial', i.e. its continuum limit is a free field theory. However, for small but positive lattice spacing a and at energies well below the cutoff mass Λ=1/a, the theory effectively behaves like a continuum theory with particle interactions, which may be appreciable. By a combination of known analytical methods, we here determine the maximal value of the renormalized coupling at zero momentum as a function of Λ/m, where m denotes the mass of the scalar particle in the theory. Moreover, a complete solution of the model is obtained in the sense that all low energy amplitudes can be computed with reasonable estimated accuracy for arbitrarily chosen bare coupling and mass in the symmetric phase region. (orig.)

  3. Large-scale particle simulations in a virtual-memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Wagner, J.S.; Tajima, T.; Million, R.

    1982-08-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceed the computer core size. The required address space is automatically mapped onto slow disc memory by the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Accesses to slow memory significantly reduce the execution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time

  4. Observation of scaling laws of ion confining potential versus thermal barrier depth and of axial particle confinement time in the tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Cho, T.; Inutake, M.; Ishii, K.

    1988-01-01

    In the thermal barrier tandem mirror GAMMA 10, the scaling law governing the enhancement of the ion confining potential, φ c , resulting from thermal barrier formation, is obtained experimentally, and is consistently interpreted in terms of the weak and strong ECH theories set up by Cohen and co-workers. The scaling law on the axial particle confinement time, τ pparallel , related to this φ c formation, is also demonstrated in detail; it is in good agreement with the Pastukhov theory as modified by Cohen and co-workers. This scaling is verified at any radial position in the core plasma region and at any time through the various stages of a discharge; this indicates a scaling with drastic improvement of τ pparallel , due to the potential formation in the tandem mirror plasma. (author). 41 refs, 12 figs

  5. Interfacial deflection and jetting of a paramagnetic particle-laden fluid: theory and experiment

    KAUST Repository

    Tsai, Scott S. H.

    2013-01-01

    We describe the results of experiments and mathematical analysis of the deformation of a free surface by an aggregate of magnetic particles. The system we study is differentiated from ferrofluid systems because it contains regions rich with magnetic material as well as regions of negligible magnetic content. In our experiments, the magnetic force from a spherical permanent magnet collects magnetic particles to a liquid-air interface, and deforms the free surface to form a hump. The hump is composed of magnetic and non-magnetic regions due to the particle collection. When the magnet distance falls below a threshold value, we observe the transition of the hump to a jet. The mathematical model we develop, which consists of a numerical solution and an asymptotic approximation, captures the shape of the liquid-air interface during the deformation stage and a scaling prediction for the critical magnet distance for the hump to become a jet. © 2013 The Royal Society of Chemistry.

  6. Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory

    Directory of Open Access Journals (Sweden)

    Vashishta P.

    2011-05-01

    Full Text Available A linear-scaling algorithm based on a divide-and-conquer (DC scheme is designed to perform large-scale molecular-dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT. This scheme is applied to the thermite reaction at an Al/Fe2O3 interface. It is found that mass diffusion and reaction rate at the interface are enhanced by a concerted metal-oxygen flip mechanism. Preliminary simulations are carried out for an aluminum particle in water based on the conventional DFT, as a target system for large-scale DC-DFT simulations. A pair of Lewis acid and base sites on the aluminum surface preferentially catalyzes hydrogen production in a low activation-barrier mechanism found in the simulations

  7. Self-Assembly of DNA-Coated Particles: Experiment, Simulation and Theory

    Science.gov (United States)

    Song, Minseok

    The bottom-up assembly of material architectures with tunable complexity, function, composition, and structure is a long sought goal in rational materials design. One promising approach aims to harnesses the programmability and specificity of DNA hybridization in order to direct the assembly of oligonucleotide-functionalized nano- and micro-particles by tailoring, in part, interparticle interactions. DNA-programmable assembly into three-dimensionally ordered structures has attracted extensive research interest owing to emergent applications in photonics, plasmonics and catalysis and potentially many other areas. Progress on the rational design of DNA-mediated interactions to create useful two-dimensional structures (e.g., structured films), on the other hand, has been rather slow. In this thesis, we establish strategies to engineer a diversity of 2D crystalline arrangements by designing and exploiting DNA-programmable interparticle interactions. We employ a combination of simulation, theory and experiments to predict and confirm accessibility of 2D structural diversity in an effort to establish a rational approach to 2D DNA-mediated particle assembly. We start with the experimental realization of 2D DNA-mediated assembly by decorating micron-sized silica particles with covalently attached single-stranded DNA through a two-step reaction. Subsequently, we elucidate sensitivity and ultimate controllability of DNA-mediated assembly---specifically the melting transition from dispersed singlet particles to aggregated or assembled structures---through control of the concentration of commonly employed nonionic surfactants. We relate the observed tunability to an apparent coupling with the critical micelle temperature in these systems. Also, both square and hexagonal 2D ordered particle arrangements are shown to evolve from disordered aggregates under appropriate annealing conditions defined based upon pre-established melting profiles. Subsequently, the controlled mixing of

  8. Scaling of Advanced Theory-of-Mind Tasks

    Science.gov (United States)

    Osterhaus, Christopher; Koerber, Susanne; Sodian, Beate

    2016-01-01

    Advanced theory-of-mind (AToM) development was investigated in three separate studies involving 82, 466, and 402 elementary school children (8-, 9-, and 10-year-olds). Rasch and factor analyses assessed whether common conceptual development underlies higher-order false-belief understanding, social understanding, emotion recognition, and…

  9. Symmetry-guided large-scale shell-model theory

    Czech Academy of Sciences Publication Activity Database

    Launey, K. D.; Dytrych, Tomáš; Draayer, J. P.

    2016-01-01

    Roč. 89, JUL (2016), s. 101-136 ISSN 0146-6410 R&D Projects: GA ČR GA16-16772S Institutional support: RVO:61389005 Keywords : Ab intio shell -model theory * Symplectic symmetry * Collectivity * Clusters * Hoyle state * Orderly patterns in nuclei from first principles Subject RIV: BE - Theoretical Physics Impact factor: 11.229, year: 2016

  10. Charged Particles Multiplicity and Scaling Violation of Fragmentation Functions in Electron-Positron Annihilation

    International Nuclear Information System (INIS)

    Ghaffary, Tooraj

    2016-01-01

    By the use of data from the annihilation process of electron-positron in AMY detector at 60 GeV center of mass energy, charged particles multiplicity distribution is obtained and fitted with the KNO scaling. Then, momentum spectra of charged particles and momentum distribution with respect to the jet axis are obtained, and the results are compared to the different models of QCD; also, the distribution of fragmentation functions and scaling violations are studied. It is being expected that the scaling violations of the fragmentation functions of gluon jets are stronger than the quark ones. One of the reasons for such case is that splitting function of quarks is larger than splitting function of gluon.

  11. Simulation of particle diffusion in a spectrum of electrostatic turbulence. Low frequency Bohm or percolation scaling

    International Nuclear Information System (INIS)

    Reuss, J.D.; Misguich, J.H.

    1996-02-01

    An important point for turbulent transport consists in determining the scaling law for the diffusion coefficient D due to electrostatic turbulence. It is well-known that for weak amplitudes or large frequencies, the reduced diffusion coefficient has a quasi-linear like (or gyro-Bohm like) scaling, while for large amplitudes or small frequencies it has been traditionally believed that the scaling is Bohm-like. The aim of this work consists to test this prediction for a given realistic model. This problem is studied by direct simulation of particle trajectories. Guiding centre diffusion in a spectrum of electrostatic turbulence is computed for test particles in a model spectrum, by means of a new parallelized code RADIGUET 2. The results indicate a continuous transition for large amplitudes toward a value which is compatible with the Isichenko percolation prediction. (author)

  12. An item response theory analysis of the Olweus Bullying scale.

    Science.gov (United States)

    Breivik, Kyrre; Olweus, Dan

    2014-12-02

    In the present article, we used IRT (graded response) modeling as a useful technology for a detailed and refined study of the psychometric properties of the various items of the Olweus Bullying scale and the scale itself. The sample consisted of a very large number of Norwegian 4th-10th grade students (n = 48 926). The IRT analyses revealed that the scale was essentially unidimensional and had excellent reliability in the upper ranges of the latent bullying tendency trait, as intended and desired. Gender DIF effects were identified with regard to girls' use of indirect bullying by social exclusion and boys' use of physical bullying by hitting and kicking but these effects were small and worked in opposite directions, having negligible effects at the scale level. Also scale scores adjusted for DIF effects differed very little from non-adjusted scores. In conclusion, the empirical data were well characterized by the chosen IRT model and the Olweus Bullying scale was considered well suited for the conduct of fair and reliable comparisons involving different gender-age groups. Information Aggr. Behav. 9999:XX-XX, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  13. Dynamical mechanism of symmetry breaking and particle mass generation in gauge field theories

    International Nuclear Information System (INIS)

    Miranskij, V.A.; Fomin, P.I.

    1985-01-01

    The dynamics of the spotaneous symmetry breaking and the particle mass generation in gauge theories with no fundamental scalar fields is considered. The emphasis is on the consideration of the symmetry breaking mechanism connected with the dynamics of the supercritical Coulomb-like forces caused by the gauge boson exchange between fermions. This mechanism is applied to different gauge theories, in particular, to the description of the spontaneous chira symmetry breaking in quantum chromodynamics. The mass relations for pseudoscalar meson nonet are obtained and it is shown that this mechanism resuls in the dynamical realisation of the hypothesis of the partial conservation of the axial-vector currents. The qualitative description of scalar mesons is given. The nature of the ultraviolet divergencies in quantum electrodynamics (QED) is investigated from the viewpoint of the dynamics of the fermion mass generation. The mechanism of the appearance of the additional (in comparison with perturbation theory) ultraviolet divergencies in QED with large bare coupling constant is indicated. The physical phenomenon underlying this mechanism is identified as the field theory analogue of the quantum mechanical ''fall into the centre'' (collapse) phenomenon. The similr phenomenon is shown to take place in some two-dimensional quantum field models. The dynamics of the bifermion condensates formation in tumblin gauge theories is briefly discussed

  14. Towards a generalized Landau theory of quasi-particles for hot dense matter

    International Nuclear Information System (INIS)

    Leermakers, R.

    1985-01-01

    In this thesis it is tried to construct a Landau quasi-particle theory for relativistic systems, using field-theoretical methods. It includes a perturbative calculation of the pressure of a quark-gluon plasma. It reports the existence of a hitherto unnoticed plasmon contribution of the order g 3 due to transverse quasi-gluons. A new and Lorentz covariant formulation of the Landau theory is being developed, for a general relativistic system. A detailed calculation is presented of the observables of a quantum electrodynamical (QED) plasma, in lowest orders of perturbation theory. A transverse plasmon effect is discovered, both analytically and numerically. In addition, the analysis shows quasi-electrons and positrons to be stable excitations at any temperature. This is proven in all orders of perturbation theory. Along with a Landau theory for quark-gluon matter, a linearized kinetic equation is derived for the singlet quark distribution function, with a collision term for soft encounters between quasi-quarks. (Auth.)

  15. Particle linear theory on a self-gravitating perturbed cubic Bravais lattice

    International Nuclear Information System (INIS)

    Marcos, B.

    2008-01-01

    Discreteness effects are a source of uncontrolled systematic errors of N-body simulations, which are used to compute the evolution of a self-gravitating fluid. We have already developed the so-called ''particle linear theory''(PLT), which describes the evolution of the position of self-gravitating particles located on a perturbed simple cubic lattice. It is the discrete analogue of the well-known (Lagrangian) linear theory of a self-gravitating fluid. Comparing both theories permits us to quantify precisely discreteness effects in the linear regime. It is useful to develop the PLT also for other perturbed lattices because they represent different discretizations of the same continuous system. In this paper we detail how to implement the PLT for perturbed cubic Bravais lattices (simple, body, and face-centered) in a cubic simulation box. As an application, we will study the discreteness effects--in the linear regime--of N-body simulations for which initial conditions have been set up using these different lattices.

  16. Contribution from the interaction Hamiltonian to the expectation value of particle number with the non-equilibrium quantum field theory

    International Nuclear Information System (INIS)

    Hotta, Ryuuichi; Morozumi, Takuya; Takata, Hiroyuki

    2012-01-01

    We develop the method analyzing particle number non-conserving phenomena with non-equilibrium quantum field-theory. In this study, we consider a CP violating model with interaction Hamiltonian that breaks particle number conservation. To derive the quantum Boltzmann equation for the particle number, we solve Schwinger-Dyson equation, which are obtained from two particle irreducible closed-time-path (2PI CTP) effective action. In this calculation, we show the contribution from interaction Hamiltonian to the time evolution of expectation value of particle number.

  17. Dark-Matter Particles without Weak-Scale Masses or Weak Interactions

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kumar, Jason

    2008-01-01

    We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders

  18. "Loops and Legs in Quantum Field Theory", 12th DESY Workshop on Elementary Particle Physics

    Science.gov (United States)

    The bi-annual international conference "Loops and Legs in Quantum Field Theory" has been held at Weimar, Germany, from April 27 to May 02, 2014. It has been the 12th conference of this series, started in 1992. The main focus of the conference are precision calculations of multi- loop and multi-leg processes in elementary particle physics for processes at present and future high-energy facilities within and beyond the Standard Model. At present many physics questions studied deal with processes at the LHC and future facilities like the ILC. A growing number of contributions deals with important developments in the field of computational technologies and algorithmic methods, including large-scale computer algebra, efficient methods to compute large numbers of Feynman diagrams, analytic summation and integration methods of various kinds, new related function spaces, precise numerical methods and Monte Carlo simulations. The present conference has been attended by more than 110 participants from all over the world, presenting more than 75 contributions, most of which have been written up for these pro- ceedings. The present volume demonstrates in an impressive way the enormous development of the field during the last few years, reaching the level of 5-loop calculations in QCD and a like- wise impressive development in massive next-to-leading order and next-to-next-to-leading order processes. Computer algebraic and numerical calculations require terabyte storage and many CPU years, even after intense parallelization, to obtain state-of-the-art theoretical predictions. The city of Weimar gave a suitable frame to the conference, with its rich history, especially in literature, music, arts, and architecture. Goethe, Schiller, Wieland, Herder, Bach and Liszt lived there and created many of their masterpieces. The many young participants signal that our field is prosperous and faces an exciting future. The conference hotel "Kaiserin Augusta" offered a warm hospitality and

  19. Scale-invariant entropy-based theory for dynamic ordering

    International Nuclear Information System (INIS)

    Mahulikar, Shripad P.; Kumari, Priti

    2014-01-01

    Dynamically Ordered self-organized dissipative structure exists in various forms and at different scales. This investigation first introduces the concept of an isolated embedding system, which embeds an open system, e.g., dissipative structure and its mass and/or energy exchange with its surroundings. Thereafter, scale-invariant theoretical analysis is presented using thermodynamic principles for Order creation, existence, and destruction. The sustainability criterion for Order existence based on its structured mass and/or energy interactions with the surroundings is mathematically defined. This criterion forms the basis for the interrelationship of physical parameters during sustained existence of dynamic Order. It is shown that the sufficient condition for dynamic Order existence is approached if its sustainability criterion is met, i.e., its destruction path is blocked. This scale-invariant approach has the potential to unify the physical understanding of universal dynamic ordering based on entropy considerations

  20. Evaluation of particle release from montmorillonite gel by flowing groundwater based on the DLVO theory

    International Nuclear Information System (INIS)

    Kurosawa, Susumu; Nagasaki, Shinya; Tanaka, Satoru

    2007-01-01

    Theoretical study has been performed to clarify the ability of colloid release form the montmorillonite gel by the flowing groundwater. Evaluation of montmorillonite colloidal particles release from the bentonite buffer material is important for the performance assessment of radioactive waste disposal because the colloids may influence the radionuclide transport. In this study, the minimum groundwater flow rate required to tear off montmorillonite particles from surface of bentonite buffer was estimated from the shear stress on the gel front, which was calculated by the DLVO theory. The estimated shear force was converted to corresponding groundwater velocity by using Stoke's equation. The results indicated that groundwater velocity in a range of about 10 -5 to 10 -4 m/s would be necessary to release montmorillonite particles. This range is higher than the groundwater flow velocity found generally in deep geological media in Japan. This study suggests that the effect of montmorillonite particles release from the bentonite buffer on radionuclide transport is likely to be negligible in the performance assessment of high-level radioactive waste geological disposal. (author)

  1. Mathematical gauge theory with applications to the standard model of particle physics

    CERN Document Server

    Hamilton, Mark J D

    2017-01-01

    The Standard Model is the foundation of modern particle and high energy physics. This book explains the mathematical background behind the Standard Model, translating ideas from physics into a mathematical language and vice versa. The first part of the book covers the mathematical theory of Lie groups and Lie algebras, fibre bundles, connections, curvature and spinors. The second part then gives a detailed exposition of how these concepts are applied in physics, concerning topics such as the Lagrangians of gauge and matter fields, spontaneous symmetry breaking, the Higgs boson and mass generation of gauge bosons and fermions. The book also contains a chapter on advanced and modern topics in particle physics, such as neutrino masses, CP violation and Grand Unification. This carefully written textbook is aimed at graduate students of mathematics and physics. It contains numerous examples and more than 150 exercises, making it suitable for self-study and use alongside lecture courses. Only a basic knowledge of d...

  2. Dynamics of continua and particles from general covariance of Newtonian gravitation theory

    International Nuclear Information System (INIS)

    Duval, C.; Kunzle, H.P.

    1976-07-01

    The principle of general covariance, which states that the total action functional in General Relativity is independent of coordinate transformations, is shown to be also applicable to the four-dimensional geometric theory of Newtonian gravitation. It leads to the correct conservation (or balance) equations of continuum mechanics as well as the equations of motion of test particles in a gravitational field. The degeneracy of the ''metric'' of Newtonian space-time forces to introduce a ''gauge field'' which fixes the connection and leads to a conserved current, the mass flow. The particle equations are also derived from an invariant Hamiltonian structure on the extended Galilei group and a minimal interaction principle. One not only finds the same equations of motion but even the same gauge fields

  3. Hydraulic and thermal conduction phenomena in soils at the particle-scale: Towards realistic FEM simulations

    International Nuclear Information System (INIS)

    Narsilio, G A; Yun, T S; Kress, J; Evans, T M

    2010-01-01

    This paper summarizes a method to characterize conduction properties in soils at the particle-scale. The method set the bases for an alternative way to estimate conduction parameters such as thermal conductivity and hydraulic conductivity, with the potential application to hard-to-obtain samples, where traditional experimental testing on large enough specimens becomes much more expensive. The technique is exemplified using 3D synthetic grain packings generated with discrete element methods, from which 3D granular images are constructed. Images are then imported into the finite element analyses to solve the corresponding governing partial differential equations of hydraulic and thermal conduction. High performance computing is implemented to meet the demanding 3D numerical calculations of the complex geometrical domains. The effects of void ratio and inter-particle contacts in hydraulic and thermal conduction are explored. Laboratory measurements support the numerically obtained results and validate the viability of the new methods used herein. The integration of imaging with rigorous numerical simulations at the pore-scale also enables fundamental observation of particle-scale mechanisms of macro-scale manifestation.

  4. A theory of two-beam acceleration of charged particles in a plasma waveguide

    International Nuclear Information System (INIS)

    Ostrovsky, A.O.

    1993-11-01

    The progress made in recent years in the field of high-current relativistic electron beam (REB) generation has aroused a considerable interest in studying REB potentialities for charged particle acceleration with a high acceleration rate T = 100MeV/m. It was proposed, in particular, to employ high-current REB in two-beam acceleration schemes (TBA). In these schemes high current REB (driving beam) excites intense electromagnetic waves in the electrodynamic structure which, in their turn, accelerate particles of the other beam (driven beam). The TBA schemes can be divided into two groups. The first group includes the schemes, where the two beams (driving and driven) propagate in different electrodynamic structures coupled with each other through the waveguides which ensure the microwave power transmission to accelerate driven beam particles. The second group includes the TBA schemes, where the driving and driven beams propagate in one electrodynamic structure. The main aim of this work is to demonstrate by theory the possibility of realizing effectively the TBA scheme in the plasma waveguide. The physical model of the TBA scheme under study is formulated. A set of equations describing the excitation of RF fields by a high-current REB and the acceleration of driven beam electrons is also derived. Results are presented on the the linear theory of plasma wave amplification by the driving beam. The range of system parameters, at which the plasma-beam instability develops, is defined. Results of numerical simulation of the TBA scheme under study are also presented. The same section gives the description of the dynamics of accelerated particle bunching in the high-current REB-excited field. Estimates are given for the accelerating field intensities in the plasma and electron acceleration rates

  5. Self-similarity and scaling theory of complex networks

    Science.gov (United States)

    Song, Chaoming

    Scale-free networks have been studied extensively due to their relevance to many real systems as diverse as the World Wide Web (WWW), the Internet, biological and social networks. We present a novel approach to the analysis of scale-free networks, revealing that their structure is self-similar. This result is achieved by the application of a renormalization procedure which coarse-grains the system into boxes containing nodes within a given "size". Concurrently, we identify a power-law relation between the number of boxes needed to cover the network and the size of the box defining a self-similar exponent, which classifies fractal and non-fractal networks. By using the concept of renormalization as a mechanism for the growth of fractal and non-fractal modular networks, we show that the key principle that gives rise to the fractal architecture of networks is a strong effective "repulsion" between the most connected nodes (hubs) on all length scales, rendering them very dispersed. We show that a robust network comprised of functional modules, such as a cellular network, necessitates a fractal topology, suggestive of a evolutionary drive for their existence. These fundamental properties help to understand the emergence of the scale-free property in complex networks.

  6. Scale-covariant theory of gravitation and astrophysical applications

    International Nuclear Information System (INIS)

    Canuto, V.; Hsieh, S.H.; Adams, P.J.

    1977-01-01

    We present generalized Einstein equations, invariant under scale transformations, and study several astrophysical tests. It is assumed that the dynamics of atoms or clocks used as measuring apparatus is given a priori. Connection with gauge fields and broken symmetries is made through the cosmological constant

  7. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    International Nuclear Information System (INIS)

    Krommes, John A.

    2007-01-01

    The present state of the theory of fluctuations in gyrokinetic (GK) plasmas and especially its application to sampling noise in GK particle-in-cell (PIC) simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism

  8. On the Discrete Kinetic Theory for Active Particles. Modelling the Immune Competition

    Directory of Open Access Journals (Sweden)

    I. Brazzoli

    2006-01-01

    Full Text Available This paper deals with the application of the mathematical kinetic theory for active particles, with discrete activity states, to the modelling of the immune competition between immune and cancer cells. The first part of the paper deals with the assessment of the mathematical framework suitable for the derivation of the models. Two specific models are derived in the second part, while some simulations visualize the applicability of the model to the description of biological events characterizing the immune competition. A final critical outlines some research perspectives.

  9. Some studies in parastatistical theories and its applications in the internal symmetry of elementary particles

    International Nuclear Information System (INIS)

    Silva, H.V. da.

    1984-01-01

    The results of investigations in parastatistical theories and in their applications to the internal symmetries of elementary particles are present. The paraquantization and the 'generalized paraquantization' (of Levine and Tomozawa) of the relativistic Schroedinger wave equations for non-zero mass and arbitrary spin (s), involving locally covariant wave functions, Ψ o,s + Ψ s,o are executed, and the restrictions resulting from the criterion of microscopic causality and the manner of establishment of the connection between spin and statistics in these quantizations are explicitly demonstrated. (Author) [pt

  10. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    Energy Technology Data Exchange (ETDEWEB)

    John A. Krommes

    2007-10-09

    The present state of the theory of fluctuations in gyrokinetic GK plasmas and especially its application to sampling noise in GK particle-in-cell PIC simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism.

  11. Vol. 1: Physics of Elementary Particles and Quantum Field Theory. General Problems

    International Nuclear Information System (INIS)

    Sitenko, A.

    1993-01-01

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceedings are published in 6 volumes. The papers presented in this volume refer to elementary particle physics and quantum field theory. The main attention is paid to the following problems: - development of science in Ukraine and its role in the state structures; - modern state of scientific research in Ukraine; - education and training of specialists; - history of Ukrainian physics and contribution of Ukrainian scientists in the world science; - problems of the Ukrainian scientific terminology

  12. MEG studies prohibited muon decays to explore grand unified theories of elementary particles

    International Nuclear Information System (INIS)

    Mori, Toshinori

    2009-01-01

    The MEG experiment, designed and proposed by Japanese physicists, is being carried out at Paul Scherrer Institute (PSI) in Switzerland, in collaboration with physicists from Italy, Switzerland, Russia and U.S.A. The experiment will make an extensive search for a muon's two-body decay into an electron and a gamma ray, μ→eγ, which is prohibited in the Standard Model of elementary particles, to explore Supersymmetric Grand Unified Theories. This article gives a brief description of the MEG experiment with an emphasis on the innovative experimental techniques developed to achieve the unprecedented experimental sensitivity. (author)

  13. Scattering of massless vector, tensor, and other particles in string theory at high energy

    International Nuclear Information System (INIS)

    Antonov, E.N.

    1990-01-01

    The 2 → 2 and 2 → 3 processes are studied in the multi-Regge kinematics for gluons and gravitons, the first excited states of the open and closed strings. The factorization of the corresponding amplitudes is demonstrated. Explicit relations generalizing the Low-Gribov expressions are obtained in the kinematics where one of the external particles is produced with small transverse momentum. The expressions in the limit α' → 0 coincide with the results of Yang-Mills theory and gravitation at high energies

  14. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1993-01-01

    The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs

  15. A simple dynamic subgrid-scale model for LES of particle-laden turbulence

    Science.gov (United States)

    Park, George Ilhwan; Bassenne, Maxime; Urzay, Javier; Moin, Parviz

    2017-04-01

    In this study, a dynamic model for large-eddy simulations is proposed in order to describe the motion of small inertial particles in turbulent flows. The model is simple, involves no significant computational overhead, contains no adjustable parameters, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach is based on the use of elliptic differential filters to model the subgrid-scale velocity. The only model parameter, which is related to the nominal filter width, is determined dynamically by imposing consistency constraints on the estimated subgrid energetics. The performance of the model is tested in large-eddy simulations of homogeneous-isotropic turbulence laden with particles, where improved agreement with direct numerical simulation results is observed in the dispersed-phase statistics, including particle acceleration, local carrier-phase velocity, and preferential-concentration metrics.

  16. Scaling theory put into practice: First-principles modeling of transport in doped silicon nanowires

    DEFF Research Database (Denmark)

    Markussen, Troels; Rurali, R.; Jauho, Antti-Pekka

    2007-01-01

    We combine the ideas of scaling theory and universal conductance fluctuations with density-functional theory to analyze the conductance properties of doped silicon nanowires. Specifically, we study the crossover from ballistic to diffusive transport in boron or phosphorus doped Si nanowires...

  17. Sequential Progressions in a Theory-of-Mind Scale: Longitudinal Perspectives

    Science.gov (United States)

    Wellman, Henry M.; Fang, Fuxi; Peterson, Candida C.

    2011-01-01

    Consecutive retestings of 92 U.S. preschoolers (n = 30), Chinese preschoolers (n = 31), and deaf children (n = 31) examined whether the sequences of development apparent in cross-sectional results with a theory-of-mind scale also appeared in longitudinal assessment. Longitudinal data confirmed that theory-of-mind progressions apparent in…

  18. Necessity of intermediate mass scales in grand unified theories with spontaneously broken CP invariance

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1982-07-01

    It is demonstrated that the spontaneous breakdown of CP invariance in grand unified theories requires the presence of intermediate mass scales. The simplest realization is provided by weakly broken left-right symmetry in the context of SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) model embedded in grand unified theories. (author)

  19. Quasi-potential and Two-Scale Large Deviation Theory for Gillespie Dynamics

    KAUST Repository

    Li, Tiejun; Li, Fangting; Li, Xianggang; Lu, Cheng

    2016-01-01

    theory for Gillespie-type jump dynamics. In the application to a typical genetic switching model, the two-scale large deviation theory is developed to take into account the fast switching of DNA states. The comparison with other proposals are also

  20. Topics in gauge theories and the unification of elementary particle interactions

    International Nuclear Information System (INIS)

    Srivastava, Y.N.; Vaughn, M.T.

    1990-02-01

    We report on work done by the principal investigators (Y.N. Srivastava and M.T. Vaughn) and their collaborators on non-scaling phenomena in very high energy, low p t physics, signatures for excited leptons and quarks, vacuum polarization effects in QED and in the standard model for macroscopic systems, anomalous decays of the Z 0 , computer graphic representations of topological solutions to classical field equations, and of iterated maps, and renormalization group analysis of unified gauge theories

  1. Alternative chemical-based synthesis routes and characterization of nano-scale particles

    International Nuclear Information System (INIS)

    Brocchi, E.A.; Motta, M.S.; Solorzano, I.G.; Jena, P.K.; Moura, F.J.

    2004-01-01

    Different nano-scale particles have been synthesized by alternative routes: nitrates dehydratation and oxide, or co-formed oxides, reduction by hydrogen. Chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support the feasibility for obtaining single-phase oxides and co-formed two-phase oxides. In addition, the reduction reaction has been applied to successfully produce metal/ceramic nanocomposites. Structural characterization has been carried out by means of X-ray diffraction and, more extensively, transmission electron microscopy operating in conventional diffraction contrast mode (CTEM) and high-resolution mode (HRTEM). Nano-scale size distribution of oxide particles is well demonstrated together with their defect-free structure in the lower range, around 20 nm, size. Structural features related to the synthesized nano-composites are also presented

  2. Progress report on research program in elementary particle theory, 1979-1980. [Univ. of Texas at Austin

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E.C.G.; Ne' eman, Y.

    1980-01-01

    A qualitative description is given of research in the following areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics and quark-parton physics; quantum mechanics, quantum field theory, and fundamental problems; and groups, gauges, and grand unified theories. Reports on this work have already been published, or will be, when it is completed. (RWR)

  3. Planet-Scale grid A particle collier leads data grid developers to unprecedented dimensions

    CERN Multimedia

    Thibodeau, Patrick

    2005-01-01

    In 2007, scientists will begin smashing protons and ions together in a massive, multinational experiment to understand what the universe looked like tiny fractions of a second after the Big Bang. The particle accelerator used in this test will release a vast flood of data on a scale unlike anything seen before, and for that scientists will need a computing grid of equally great capability

  4. Performing three-dimensional neutral particle transport calculations on tera scale computers

    International Nuclear Information System (INIS)

    Woodward, C.S.; Brown, P.N.; Chang, B.; Dorr, M.R.; Hanebutte, U.R.

    1999-01-01

    A scalable, parallel code system to perform neutral particle transport calculations in three dimensions is presented. To utilize the hyper-cluster architecture of emerging tera scale computers, the parallel code successfully combines the MPI message passing and paradigms. The code's capabilities are demonstrated by a shielding calculation containing over 14 billion unknowns. This calculation was accomplished on the IBM SP ''ASCI-Blue-Pacific computer located at Lawrence Livermore National Laboratory (LLNL)

  5. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    Science.gov (United States)

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  6. On the non-linear scale of cosmological perturbation theory

    CERN Document Server

    Blas, Diego; Konstandin, Thomas

    2013-01-01

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  7. On the non-linear scale of cosmological perturbation theory

    International Nuclear Information System (INIS)

    Blas, Diego; Garny, Mathias; Konstandin, Thomas

    2013-04-01

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  8. On the non-linear scale of cosmological perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  9. An new MHD/kinetic model for exploring energetic particle production in macro-scale systems

    Science.gov (United States)

    Drake, J. F.; Swisdak, M.; Dahlin, J. T.

    2017-12-01

    A novel MHD/kinetic model is being developed to explore magneticreconnection and particle energization in macro-scale systems such asthe solar corona and the outer heliosphere. The model blends the MHDdescription with a macro-particle description. The rationale for thismodel is based on the recent discovery that energetic particleproduction during magnetic reconnection is controlled by Fermireflection and Betatron acceleration and not parallel electricfields. Since the former mechanisms are not dependent on kineticscales such as the Debye length and the electron and ion inertialscales, a model that sheds these scales is sufficient for describingparticle acceleration in macro-systems. Our MHD/kinetic model includesmacroparticles laid out on an MHD grid that are evolved with the MHDfields. Crucially, the feedback of the energetic component on the MHDfluid is included in the dynamics. Thus, energy of the total system,the MHD fluid plus the energetic component, is conserved. The systemhas no kinetic scales and therefore can be implemented to modelenergetic particle production in macro-systems with none of theconstraints associated with a PIC model. Tests of the new model insimple geometries will be presented and potential applications will bediscussed.

  10. Rebound mechanics of micrometre-scale, spherical particles in high-velocity impacts.

    Science.gov (United States)

    Yildirim, Baran; Yang, Hankang; Gouldstone, Andrew; Müftü, Sinan

    2017-08-01

    The impact mechanics of micrometre-scale metal particles with flat metal surfaces is investigated for high-velocity impacts ranging from 50 m s -1 to more than 1 km s -1 , where impact causes predominantly plastic deformation. A material model that includes high strain rate and temperature effects on the yield stress, heat generation due to plasticity, material damage due to excessive plastic strain and heat transfer is used in the numerical analysis. The coefficient of restitution e is predicted by the classical work using elastic-plastic deformation analysis with quasi-static impact mechanics to be proportional to [Formula: see text] and [Formula: see text] for the low and moderate impact velocities that span the ranges of 0-10 and 10-100 m s -1 , respectively. In the elastic-plastic and fully plastic deformation regimes the particle rebound is attributed to the elastic spring-back that initiates at the particle-substrate interface. At higher impact velocities (0.1-1 km s -1 ) e is shown to be proportional to approximately [Formula: see text]. In this deeply plastic deformation regime various deformation modes that depend on plastic flow of the material including the time lag between the rebound instances of the top and bottom points of particle and the lateral spreading of the particle are identified. In this deformation regime, the elastic spring-back initiates subsurface, in the substrate.

  11. Transport of particles in liquid foams: a multi-scale approach

    International Nuclear Information System (INIS)

    Louvet, N.

    2009-11-01

    Foam is used for the decontamination of radioactive tanks since foam is a system that has a large surface for a low amount of liquid and as a consequence requires less water to be decontaminated. We study experimentally different particle transport configurations in fluid micro-channels network (Plateau borders) of aqueous foam. At first, foam permeability is measured at the scale of a single channel and of the whole foam network for 2 soap solutions known for their significant different interface mobility. Experimental data are well described by a model that takes into account the real geometry of the foam and by considering a constant value of the Boussinesq number of each soap solutions. Secondly, the velocity of one particle convected in a single foam channel is measured for different particle/channel aspect ratio. For small aspect ratio, a counterflow that is taking place at the channel's corners slows down the particle. A recirculation model in the channel foam films is developed to describe this effect. To do this, the Gibbs elasticity is introduced. Then, the threshold between trapped and released of one particle in liquid foam are carried out. This threshold is deduced from hydrodynamic and capillary forces equilibrium. Finally, the case of a clog foam node is addressed. (author)

  12. A Grouping Particle Swarm Optimizer with Personal-Best-Position Guidance for Large Scale Optimization.

    Science.gov (United States)

    Guo, Weian; Si, Chengyong; Xue, Yu; Mao, Yanfen; Wang, Lei; Wu, Qidi

    2017-05-04

    Particle Swarm Optimization (PSO) is a popular algorithm which is widely investigated and well implemented in many areas. However, the canonical PSO does not perform well in population diversity maintenance so that usually leads to a premature convergence or local optima. To address this issue, we propose a variant of PSO named Grouping PSO with Personal- Best-Position (Pbest) Guidance (GPSO-PG) which maintains the population diversity by preserving the diversity of exemplars. On one hand, we adopt uniform random allocation strategy to assign particles into different groups and in each group the losers will learn from the winner. On the other hand, we employ personal historical best position of each particle in social learning rather than the current global best particle. In this way, the exemplars diversity increases and the effect from the global best particle is eliminated. We test the proposed algorithm to the benchmarks in CEC 2008 and CEC 2010, which concern the large scale optimization problems (LSOPs). By comparing several current peer algorithms, GPSO-PG exhibits a competitive performance to maintain population diversity and obtains a satisfactory performance to the problems.

  13. Laboratory studies on tropospheric iodine chemistry: bridging the atomic, molecular and particle scale

    Science.gov (United States)

    Gomez Martin, J.; Saunders, R. W.; Blitz, M. A.; Mahajan, A. S.; Plane, J. M.

    2008-12-01

    High mixing ratios of the iodine oxides IO and OIO have been observed in the polar, mid-latitude and tropical marine boundary layer (MBL). The impact of the iodine chemistry on the oxidizing capacity of the MBL is well documented. Moreover, there is evidence showing that the bursts of new particles measured in coastal regions are produced by the biogenic emission of iodine containing precursors, followed by the photochemical production and condensation of iodine oxide vapours. Airborne measurements of particle growth rates show that these particles can reach significant sizes where they can contribute to the regional aerosol loading, thus suggesting a potential impact on climate on a regional or global scale. Within the frame of the INSPECT project (INorganic Secondary Particle Evolution, Chemistry and Transport) we wish to understand at a fundamental level the tendency for the iodine oxides formed from IO and OIO recombination to condense into particles. Elemental analysis of iodine oxide particles (IOP) made in the laboratory shows that they have the empirical formula I2O5. The major question is how this happens: through formation of I2O5 in the gas phase, followed by polymerization, or by condensation of various IxOy to form amorphous iodine oxides, which subsequently rearrange to I2O5. We are studying the gas phase photochemistry leading to nucleation of IOP, their growth kinetics, aspects of their heterogeneous chemistry, and their properties as ice condensation nuclei. In order to bridge the molecular and the particle scales, a wide variety of techniques are being used, including CRDS, ARAS, LIF, UV-VIS spectroscopy, PI-TOF-MS and mobility particle size scanning. The results obtained so far provide new and interesting insights to the problem. From the gas phase point of view, a unit iodine atom quantum yield from OIO photolysis has been now established across its strong visible spectral bands. This result implies a short lifetime of OIO and explains why in

  14. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.

    Science.gov (United States)

    Feng, Mengkai; Hou, Zhonghuai

    2017-06-28

    We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a memory function equation for the time dependence of density fluctuations in nonequilibrium steady states. With the basic assumption of the absence of macroscopic currents and standard mode coupling approximation, we can obtain expressions for the irreducible memory function and other relevant dynamic terms, wherein the nonequilibrium character of the active system is manifested through an averaged diffusion coefficient D[combining macron] and a nontrivial structural function S 2 (q) with q being the magnitude of wave vector q. D[combining macron] and S 2 (q) enter the frequency term and the vertex term for the memory function, and thus influence both the short time and the long time dynamics of the system. With these equations obtained, we study the glassy dynamics of this thermal self-propelled particle system by investigating the Debye-Waller factor f q and relaxation time τ α as functions of the persistence time τ p of self-propulsion, the single particle effective temperature T eff as well as the number density ρ. Consequently, we find the critical density ρ c for given τ p shifts to larger values with increasing magnitude of propulsion force or effective temperature, in good accordance with previously reported simulation work. In addition, the theory facilitates us to study the critical effective temperature T for fixed ρ as well as its dependence on τ p . We find that T increases with τ p and in the limit τ p → 0, it approaches the value for a simple passive Brownian system as expected. Our theory also well recovers the results for passive systems and can be

  15. Are particle rest masses variable: Theory and constraints from solar system experiments

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1977-01-01

    Particle rest mass variation in spacetime is considered. According to Dicke, if this is the case various null experiments indicate that all masses vary in the same way. Their variation relative to the Planck-Wheeler mass defines a universal scalar rest-mass field. We construct the relativistic dynamics for this field based on very general assumptions. In addition, we assume Einstein's equations to be valid in Planck-Wheeler units. A special case of the theory coincides with Dicke's reformulation of Brans-Dicke theory as general relativity with variable rest masses. In the general case the rest-mass field is some power r of a scalar field which obeys an ordinary scalar equation with coupling to the curvature of strength q. The r and q are the only parameters of the theory. Comparison with experiment is facilitated by recasting the theory into units in which rest masses are constant, the Planck-Wheeler mass varies, and the metric satisfies the equations of a small subset of the scalar-tensor theories of gravitation. The results of solar system experiments, usually used to test general relativity, are here used to delimit the acceptable values of r and q. We conclude that if cosmological considerations are not invoked, then the solar system experiments do not rule out the possibility of rest-mass variability. That is, there are theories which agree with all null and solar system experiments, and yet contradict the strong equivalence principle by allowing rest masses to vary relative to the Planck-Wheeler mass. We show that the field theory of the rest-mass field can be quantized and interpreted in terms of massless scalar quanta which interact very weakly with matter. This explains why they have not turned up in high-energy experiments. In future reports we shall investigate the implications of various cosmological and astrophysical data for the theory of variable rest masses. The ultimate goal is a firm decision on whether rest masses vary or not

  16. Trapping of Solar Energetic Particles by Small-Scale Topology of Solar Wind Turbulence

    Science.gov (United States)

    Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.

    2004-05-01

    The transport of energetic particles perpendicular to the mean magnetic field in space plasmas long has been viewed as a diffusive process. However, there is an apparent conflict between recent observations of solar energetic particles (SEP): 1) impulsive solar flares can exhibit ``dropouts" in which SEP intensity near Earth repeatedly disappears and reappears, indicating a filamentary distribution of SEPs and little diffusion across these boundaries. 2) Observations by the IMP-8 and Ulysses spacecraft, while they were on opposite sides of the Sun, showed similar time-intensity profiles for many SEP events, indicating rapid lateral diffusion of particles throughout the inner solar system within a few days. We explain these seemingly contradictory observations using a theoretical model, supported by computer simulations, in which many particles are temporarily trapped within topological structures in statistically homogeneous magnetic turbulence, and ultimately escape to diffuse at a much faster rate. This work was supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and the NASA Sun-Earth Connections Theory Program (grant NAG5-8134).

  17. Theory of charged particle heating by low-frequency Alfven waves

    International Nuclear Information System (INIS)

    Guo Zehua; Crabtree, Chris; Chen, Liu

    2008-01-01

    The heating of charged particles by a linearly polarized and obliquely propagating shear Alfven wave (SAW) at frequencies a fraction of the charged particle cyclotron frequency is demonstrated both analytically and numerically. Applying Lie perturbation theory, with the wave amplitude as the perturbation parameter, the resonance conditions in the laboratory frame are systematically derived. At the lowest order, one recovers the well-known linear cyclotron resonance condition k parallel v parallel -ω-nΩ=0, where v parallel is the particle velocity parallel to the background magnetic field, k parallel is the parallel wave number, ω is the wave frequency, Ω is the gyrofrequency, and n is any integer. At higher orders, however, one discovers a novel nonlinear cyclotron resonance condition given by k parallel v parallel -ω-nΩ/2=0. Analytical predictions on the locations of fixed points, widths of resonances, and resonance overlapping criteria for global stochasticity are also found to agree with those given by computed Poincare surfaces of section

  18. Particle Detectors in the Theory of Quantum Fields on Curved Spacetimes

    Science.gov (United States)

    Cant, John Fraser

    This work discusses aspects of a fundamental problem in the theory of quantum fields on curved spacetimes--that of giving physical meaning to the particle representations of the theory. In particular, the response of model particle detectors is analysed in detail. Unruh (1976) first introduced the idea of a model particle detector in order to give an operational definition to particles. He found that even in flat spacetime, the excitation of a particle detector does not necessarily correspond to the presence of an energy carrier--an accelerating detector will excite in response to the zero-energy state of the Minkowski vacuum. The central question I consider in this work is --where does the energy for the excitation of the accelerating detector come from? The accepted response has been that the accelerating force provides the energy. Evaluating the energy carried by the (conformally-invariant massless scalar) field after the interaction with the detector, however, I find that the detector excitation is compensated by an equal but opposite emission of negative energy. This result suggests that there may be states of lesser energy than that of the Minkowski vacuum. To resolve this paradox, I argue that the emission of a detector following a more realistic trajectory than that of constant acceleration--one that starts and finishes in inertial motion--will in total be positive, although during periods of constant acceleration the detector will still emit negative energy. The Minkowski vacuum retains its status as the field state of lowest energy. The second question I consider is the response of Unruh's detector in curved spacetime--is it possible to use such a detector to measure the energy carried by the field? In the particular case of a detector following a Killing trajectory, I find that there is a response to the energy of the field, but that there is also an inherent 'noise'. In a two dimensional model spacetime, I show that this 'noise' depends on the detector

  19. The string tension and the scaling behavior of SU(2) gauge theory on a random lattice

    International Nuclear Information System (INIS)

    Qui Zhaoming; Ren Haichang; Academia Sinica, Beijing; Wang Xiaoqun; Yang Zhixing; Zhao Enping

    1987-01-01

    The SU(2) gauge theory on an 8 4 random lattice has been studied by the Monte Carlo method. The string tensions have been evaluated. They display the expected scaling behavior for β = 1.2-1.3. The scale parameter Λ RAN has been determined approximately. (orig.)

  20. Item Response Theory Models for Wording Effects in Mixed-Format Scales

    Science.gov (United States)

    Wang, Wen-Chung; Chen, Hui-Fang; Jin, Kuan-Yu

    2015-01-01

    Many scales contain both positively and negatively worded items. Reverse recoding of negatively worded items might not be enough for them to function as positively worded items do. In this study, we commented on the drawbacks of existing approaches to wording effect in mixed-format scales and used bi-factor item response theory (IRT) models to…