WorldWideScience

Sample records for scaled momentum spectra

  1. Production cross-sections for high mass particles and transverse momentum spectra

    International Nuclear Information System (INIS)

    Arnold, R.C.; Halzen, F.

    1977-06-01

    The concept of transverse-mass (msub(T)) scaling is examined. It is suggested that: (1) experimental data on pion transverse momentum (psub(T)) spectra provide a reliable guide to expectations for high mass particle production; (2) dimensional scaling, e.g. implied by quark-gluon dynamics, yields an estimate of msub(T) -4 spectra at ultra-high energies; however, stronger damping is expected at currently accessible energies; (3) values increase linearly with the produced particle mass. The results of msub(T) scaling are compared with estimates for high mass production in the context of the Drell-Yan model. (author)

  2. Effect of isospin degree of freedom on transverse momentum spectra

    International Nuclear Information System (INIS)

    Kaur, Sukhjit; Swati

    2013-01-01

    We study the effect of isospin degree of freedom, incident energy as well as system mass on the behavior of transverse momentum spectra, dN/p t dp t , of neutrons and protons. We find that most of the nucleons suffer soft collisions. The effect of isospin degree of freedom on transverse spectra diminishes with the increase in the incident energy. In Fermi energy region, transverse momentum spectra of both protons and neutrons show sensitivity toward the density dependence of symmetry energy. (author)

  3. Identified hadron transverse momentum spectra in Au+Au collisions at sNN=62.4 GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G. J. Van; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2007-02-01

    Transverse momentum spectra of pions, kaons, protons, and antiprotons from Au+Au collisions at sNN = 62.4 GeV have been measured by the PHOBOS experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The identification of particles relies on three different methods: low momentum particles stopping in the first detector layers; the specific energy loss (dE/dx) in the silicon spectrometer, and time-of-flight measurement. These methods cover the transverse momentum ranges 0.03 0.2, 0.2 1.0, and 0.5 3.0 GeV/c, respectively. Baryons are found to have substantially harder transverse momentum spectra than mesons. The pT region in which the proton to pion ratio reaches unity in central Au+Au collisions at sNN = 62.4 GeV fits into a smooth trend as a function of collision energy. At low transverse mass, the spectra of various species exhibit a significant deviation from transverse mass scaling. The observed particle yields at very low pT are comparable to extrapolations from higher pT for kaons, protons and antiprotons. By comparing our results to Au+Au collisions at sNN = 200 GeV, we conclude that the net proton yield at midrapidity is proportional to the number of participant nucleons in the collision.

  4. Momentum spectra for single and double electron ionization of He in relativistic collisions

    International Nuclear Information System (INIS)

    Wood, C.J.; Olson, R.E.

    1997-08-01

    The complete momentum spectra for single and double ionization of He by 1GeV/u (β=0.88) U 92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r 12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons. (orig.)

  5. Momentum spectra for single and double electron ionization of He in relativistic collisions

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The complete momentum spectra for single and double ionization of He by 1-GeV/u (β=0.88) U 92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r 12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons. copyright 1997 The American Physical Society

  6. Transverse momentum spectra of the produced hadrons at SPS

    Indian Academy of Sciences (India)

    2014-04-30

    Apr 30, 2014 ... The transverse momentum spectra of the produced hadrons have been compared to a model, which is based on the assumption that a nucleus–nucleus collision is a superposition of isotropically decaying thermal sources at a given freeze-out temperature. The freeze-out temperature in nucleus–nucleus ...

  7. Scaled momentum spectra in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2009-12-01

    Charged particle production has been studied in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 0.44 fb -1 . Distributions of scaled momenta in the Breit frame are presented for particles in the current fragmentation region. The evolution of these spectra with the photon virtuality, Q 2 , is described in the kinematic region 10 2 2 . Next-to-leading-order and modified leading-log-approximation QCD calculations as well as predictions from Monte Carlo models are compared to the data. The results are also compared to e + e - annihilation data. The dependences of the pseudorapidity distribution of the particles on Q 2 and on the energy in the γp system, W, are presented and interpreted in the context of the hypothesis of limiting fragmentation. (orig.)

  8. Scaled momentum spectra in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences; University College London (United Kingdom); Max Planck Inst., Munich (Germany); Abt, I. [Max-Planck-Inst. fuer Physik, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2009-12-15

    Charged particle production has been studied in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 0.44 fb{sup -1}. Distributions of scaled momenta in the Breit frame are presented for particles in the current fragmentation region. The evolution of these spectra with the photon virtuality, Q{sup 2}, is described in the kinematic region 10

  9. Charged particle transverse momentum spectra in pp collisions at $\\sqrt{s}$ = 0.9 and 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Benucci, Leonardo; De Wolf, Eddi A; Janssen, Xavier; Maes, Joris; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Cimmino, Anna; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; Cortina Gil, Eduardo; De Favereau De Jeneret, Jerome; Delaere, Christophe; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Carvalho, Wagner; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Torres Da Silva De Araujo, Felipe; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vankov, Ivan; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhang, Linlin; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Khalil, Shaaban; Mahmoud, Mohammed; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Wyslouch, Bolek; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Lomidze, David; Anagnostou, Georgios; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Ata, Metin; Bender, Walter; Dietz-Laursonn, Erik; Erdmann, Martin; Frangenheim, Jens; Hebbeker, Thomas; Hinzmann, Andreas; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Thomas, Maarten; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katkov, Igor; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Pitzl, Daniel; Raspereza, Alexei; Raval, Amita; Rosin, Michele; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Kaschube, Kolja; Kaussen, Gordon; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schröder, Matthias; Schum, Torben; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Bauer, Julia; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Sikler, Ferenc; Veres, Gabor Istvan; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Bhattacharya, Satyaki; Choudhary, Brajesh C; Gomber, Bhawna; Gupta, Pooja; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Kumar, Ashok; Ranjan, Kirti; Shivpuri, Ram Krishen; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Grandi, Claudio; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; De Mattia, Marco; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dohhee; Son, Dong-Chul; Son, Taejin; Kim, Jaeho; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Jeong, Min-Soo; Jo, Mihee; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Rhee, Han-Bum; Seo, Eunsung; Shin, Seungsu; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Tam, Jason; Yiu, Chun Hin; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Brona, Grzegorz; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Ribeiro, Pedro Quinaz; Seixas, Joao; Varela, Joao; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Slabospitsky, Sergey; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Bona, Marcella; Breuker, Horst; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Maurisset, Aurelie; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Racz, Attila; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Simon, Michal; Sphicas, Paraskevas; Spiropulu, Maria; Stoye, Markus; Tadel, Matevz; Tropea, Paola; Tsirou, Andromachi; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Starodumov, Andrei; Bortignon, Pierluigi; Caminada, Lea; Chanon, Nicolas; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hervé, Alain; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Meridiani, Paolo; Milenovic, Predrag; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Stieger, Benjamin; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Regenfus, Christian; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Dutta, Suchandra; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Hansen, Maria; Hartley, Dominic; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Ward, Simon; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; MacEvoy, Barry C; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Liu, Hongxuan; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Salur, Sevil; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Chandra, Avdhesh; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Shen, Benjamin C; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Sudano, Elizabeth; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Cassel, David; Chatterjee, Avishek; Das, Souvik; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Salvati, Emmanuele; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gunthoti, Kranti; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Khatiwada, Rakshya; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pordes, Ruth; Prokofyev, Oleg; Saoulidou, Niki; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Prescott, Craig; Remington, Ronald; Schmitt, Michael Houston; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Ceron, Cristobal; Gaultney, Vanessa; Kramer, Laird; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Mesa, Dalgis; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Quertenmont, Loic; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Ralich, Robert; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hamdan, Saleh; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Wenger, Edward Allen; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Dudero, Phillip Russell; Franzoni, Giovanni; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jones, John; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; Everett, Adam; Garfinkel, Arthur F; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Jindal, Pratima; Parashar, Neeti; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Yan, Ming; Atramentov, Oleksiy; Barker, Anthony; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Pivarski, James; Safonov, Alexei; Sengupta, Sinjini; Tatarinov, Aysen; Toback, David; Weinberger, Michael; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Mane, Poonam; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Issah, Michael; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Efron, Jonathan; Flood, Kevin; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Palmonari, Francesco; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc

    2011-01-01

    The charged particle transverse momentum (pT) spectra are presented for pp collisions at sqrt(s)=0.9 and 7 TeV. The data samples were collected with the CMS detector at the LHC and correspond to integrated luminosities of 231 inverse microbarns and 2.96 inverse picobarns, respectively. Calorimeter-based high-transverse-energy triggers are employed to enhance the statistical reach of the high-pT measurements. The results are compared with both leading-order QCD and with an empirical scaling of measurements at different collision energies using the scaling variable xT = 2 pT/sqrt(s) over the pT range up to 200 GeV/c. Using a combination of xT scaling and direct interpolation at fixed pT, a reference transverse momentum spectrum at sqrt(s)=2.76 TeV is constructed, which can be used for studying high-pT particle suppression in the dense QCD medium produced in heavy-ion collisions at that centre-of-mass energy.

  10. Charged particle transverse momentum spectra in pp collisions at sqrt(s) = 0.9 and 7 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2011-08-01

    The charged particle transverse momentum (pT) spectra are presented for pp collisions at sqrt(s)=0.9 and 7 TeV. The data samples were collected with the CMS detector at the LHC and correspond to integrated luminosities of 231 inverse microbarns and 2.96 inverse picobarns, respectively. Calorimeter-based high-transverse-energy triggers are employed to enhance the statistical reach of the high-pT measurements. The results are compared with both leading-order QCD and with an empirical scaling of measurements at different collision energies using the scaling variable xT = 2 pT/sqrt(s) over the pT range up to 200 GeV/c. Using a combination of xT scaling and direct interpolation at fixed pT, a reference transverse momentum spectrum at sqrt(s)=2.76 TeV is constructed, which can be used for studying high-pT particle suppression in the dense QCD medium produced in heavy-ion collisions at that centre-of-mass energy.

  11. Universal scaling of strange particle pT spectra in pp collisions

    Science.gov (United States)

    Yang, Liwen; Wang, Yanyun; Hao, Wenhui; Liu, Na; Du, Xiaoling; Zhang, Wenchao

    2018-04-01

    As a complementary study to that performed on the transverse momentum (pT) spectra of charged pions, kaons and protons in proton-proton (pp) collisions at LHC energies 0.9, 2.76 and 7TeV, we present a scaling behaviour in the pT spectra of strange particles (KS0, Λ, Ξ and φ) at these three energies. This scaling behaviour is exhibited when the spectra are expressed in a suitable scaling variable z=pT/K, where the scaling parameter K is determined by the quality factor method and increases with the center of mass energy (√{s}). The rates at which K increases with ln √{s} for these strange particles are found to be identical within errors. In the framework of the colour string percolation model, we argue that these strange particles are produced through the decay of clusters that are formed by the colour strings overlapping. We observe that the strange mesons and baryons are produced from clusters with different size distributions, while the strange mesons (baryons) KS0 and φ ( Λ and Ξ) originate from clusters with the same size distributions. The cluster's size distributions for strange mesons are more dispersed than those for strange baryons. The scaling behaviour of the pT spectra for these strange particles can be explained by the colour string percolation model in a quantitative way.

  12. Momentum scale in the HARP TPC

    CERN Document Server

    Catanesi, M G; Edgecock, R; Ellis, M; Soler, F J P; Gössling, C; Bunyatov, S; Krasnoperov, A; Popov, B; Serdiouk, V; Tereschenko, V; Di Capua, E; Vidal-Sitjes, G; Artamonov, A; Giani, S; Gilardoni, S; Gorbunov, P; Grant, A; Grossheim, A; Ivanchenko, V; Kayis-Topaksu, A; Panman, J; Papadopoulos, I; Chernyaev, E; Tsukerman, I; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Morone, M C; Prior, G; Schroeter, R; Meurer, C; Gastaldi, Ugo; Mills, G B; Graulich, J S; Grégoire, G; Bonesini, M; Ferri, F; Kirsanov, M; Bagulya, A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Bobisut, F; Gibin, D; Guglielmi, A; Mezzetto, M; Dumarchez, J; Dore, U; Orestano, D; Pastore, F; Tonazzo, A; Tortora, L; Booth, C; Howlett, L; Bogomilov, M; Chizhov, M; Kolev, D; Tsenov, R; Piperov, S; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Burguet-Castell, J; Cervera-Villanueva, A; Gómez-Cadenas, J J; Martín-Albo, J; Novella, P; Sorel, M

    2007-01-01

    Recently a claim was made that the reconstruction of the large angle tracks in the HARP TPC was affected by a momentum bias as large as 15% at 500 MeV/c transverse momentum. In the following we recall the main issues with the momentum measurement in the HARP TPC, and describe the cross-checks made to validate the momentum scale. Proton-proton elastic scattering data off the hydrogen target are used to alibrate the momentum of charged particles with a precision evaluated to be 3.5%. A full description of the time development of the dynamic distortions in the TPC during physics spills is now available together with a correction algorithm. This allows a new cross-check using an enlarged data set made by comparing positive and negative pion elasticscattering data collected with negative polarity of the solenoid magnet. These data confirm the absence of a bias in the sagitta measurement. The dE/dx versus momentum curves are revisited, and shown to provide a confirmation that the HARP momentum calibration is correc...

  13. Scaling function, spectral function and nucleon momentum distribution in nuclei

    International Nuclear Information System (INIS)

    Antonov, A.N.; Ivanov, M.V.; Caballero, J.A.; Barbaro, M.B.; Udias, J.M.; Moya de Guerra, E.; Donnelly, T.W.

    2010-01-01

    The aim of the study is to find a good simultaneous description of the spectral function and the momentum distribution in relation to the realistic scaling function obtained from inclusive electron-nuclei scattering experiments. We start with a modified Hartree-Fock spectral function in which the energy dependent part (δ-function) is replaced by the Gaussian distributions with hole state widths as free parameters. We calculate the scaling function and the nucleon momentum distribution on the basis of the spectral function constructed in this way, trying to find a good description of the experimental data. The obtained scaling function has a weak asymmetry and the momentum distribution has not got a high-momentum tail in the case when harmonic-oscillator single-particle wave functions are used. So, to improve the behavior of the momentum distribution we used the basis of natural orbitals (NO) in which short-range correlations are partly incorporated. The results for the scaling function show again a weak asymmetry, but in this case the momentum distribution has a high-momentum tail. As a next step we include final-state interactions (FSI) in the calculations to reproduce the experimentally observed asymmetry of the scaling function. (author)

  14. Transverse momentum spectra and elliptic flow: Hydrodynamics with QCD-based equations of state

    CERN Document Server

    Bluhm, M; Heinz, U

    2008-01-01

    We present a family of equations of state within a quasiparticle model adjusted to lattice QCD and study the impact on azimuthal flow anisotropies and transverse momentum spectra within hydrodynamic simulations for heavy-ion collisions at energies relevant for LHC.

  15. Phase transition and angular momentum dependence of correlations in the rotational spectra of Ne20 and Ne22

    International Nuclear Information System (INIS)

    Satpathy, L.; Schmid, K.W.; Krewald, S.; Faessler, A.

    1974-01-01

    Multi-Configuration-Hartree-Fock (MCHF) calculations with angular momentum projection before the variation of the internal degree of freedom have been performed for the nuclei Ne 20 and Ne 22 . This procedure yields different correlated intrinsic states for the different members of a rotational band. Thus, the angular momentum dependence of correlations has been studied. Experimentally, the ground state spectra of Ne 20 and Ne 22 show properties similar to the phase transitions observed in some rare earth nuclei which have been well reproduced through the present calculations. The calculated spectra show a significant improvement compared to the ones obtained by variation before the angular momentum projection is effected. (author)

  16. Experimental momentum spectra of identified hadrons in jets and the predictions from LPHD + MLLA

    International Nuclear Information System (INIS)

    Bruemmer, N.C.

    1994-05-01

    Experimental data on the shape of hadronic momentum spectra are compared with theoretical predictions in the context of calculations in the Modified Leading Log Approximation (MLLA), under the assumption of Local Parton Hadron Duality (LPHD). Considered are experimental measurements at e + e - -colliders of ξ p * , the position of the maximum in the distribution of ξ p =log(1/x p ), where x p =p/p beam . The parameter ξ p * is determined for various hadrons at various centre of mass energies. It is interesting to look at the dependence of ξ p * on the hadron type. This is used to study the influence of the hadron tye on the cut-off scale Q 0 in the parton shower development. The dependence of ξ p * on the centre of mass energy is seen to be described adequately by perturbation theory. The approach is made quantitative by extracting a value of α s (m Z ) fro an overall fit to the scaling behviour of ξ p * . (orig.)

  17. Scale transformations, the energy-momentum tensor, and the equation of state

    International Nuclear Information System (INIS)

    Carruthers, P.

    1989-01-01

    The Equation of State (EOS) relates diagonal elements of the energy-momentum tensor θ μν . The first moment of the energy-momentum tensor generates scale transformations. The virial theorem, a consequence of the behavior of the energy density under scale transformations, allows one to eliminate the kinetic energy in terms of the potential terms. The trace theorem for the energy-momentum tensor expresses ε-3p in terms of ensemble averages of scale-breaking operators, allowing a new approach to the EOS. 10 refs

  18. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.; Brion, C.E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemistry; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre; Chakravorty, S.J.; Davidson, E.R. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry; Sgamellotti, A. [Univ di Perugia (Italy). Dipartimento di Chimica; von Niessen, W. [Technische Univ. Braunschweig (Germany). Inst fuer Physikalische

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green`s function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs.

  19. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    International Nuclear Information System (INIS)

    Zheng, Y.; Brion, C.E.; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E.; Chakravorty, S.J.; Davidson, E.R.; Sgamellotti, A.; von Niessen, W.

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green's function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs

  20. Comparing Erlang Distribution and Schwinger Mechanism on Transverse Momentum Spectra in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2016-01-01

    Full Text Available We study the transverse momentum spectra of J/ψ and Υ mesons by using two methods: the two-component Erlang distribution and the two-component Schwinger mechanism. The results obtained by the two methods are compared and found to be in agreement with the experimental data of proton-proton (pp, proton-lead (p-Pb, and lead-lead (Pb-Pb collisions measured by the LHCb and ALICE Collaborations at the large hadron collider (LHC. The related parameters such as the mean transverse momentum contributed by each parton in the first (second component in the two-component Erlang distribution and the string tension between two partons in the first (second component in the two-component Schwinger mechanism are extracted.

  1. Large-scale exact diagonalizations reveal low-momentum scales of nuclei

    Science.gov (United States)

    Forssén, C.; Carlsson, B. D.; Johansson, H. T.; Sääf, D.; Bansal, A.; Hagen, G.; Papenbrock, T.

    2018-03-01

    Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. Here we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding 1010 on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for 6Li in model spaces up to Nmax=22 and to reveal the 4He+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.

  2. Full-sky formulae for weak lensing power spectra from total angular momentum method

    International Nuclear Information System (INIS)

    Yamauchi, Daisuke; Taruya, Atsushi; Namikawa, Toshiya

    2013-01-01

    We systematically derive full-sky formulae for the weak lensing power spectra generated by scalar, vector and tensor perturbations from the total angular momentum (TAM) method. Based on both the geodesic and geodesic deviation equations, we first give the gauge-invariant expressions for the deflection angle and Jacobi map as observables of the CMB lensing and cosmic shear experiments. We then apply the TAM method, originally developed in the theoretical studies of CMB, to a systematic derivation of the angular power spectra. The TAM representation, which characterizes the total angular dependence of the spatial modes projected along a line-of-sight, can carry all the information of the lensing modes generated by scalar, vector, and tensor metric perturbations. This greatly simplifies the calculation, and we present a complete set of the full-sky formulae for angular power spectra in both the E-/B-mode cosmic shear and gradient-/curl-mode lensing potential of deflection angle. Based on the formulae, we give illustrative examples of non-vanishing B-mode cosmic shear and curl-mode of deflection angle in the presence of the vector and tensor perturbations, and explicitly compute the power spectra

  3. Large transverse momentum processes in a non-scaling parton model

    International Nuclear Information System (INIS)

    Stirling, W.J.

    1977-01-01

    The production of large transverse momentum mesons in hadronic collisions by the quark fusion mechanism is discussed in a parton model which gives logarithmic corrections to Bjorken scaling. It is found that the moments of the large transverse momentum structure function exhibit a simple scale breaking behaviour similar to the behaviour of the Drell-Yan and deep inelastic structure functions of the model. An estimate of corresponding experimental consequences is made and the extent to which analogous results can be expected in an asymptotically free gauge theory is discussed. A simple set of rules is presented for incorporating the logarithmic corrections to scaling into all covariant parton model calculations. (Auth.)

  4. Scaling properties of the transverse mass spectra

    International Nuclear Information System (INIS)

    Schaffner-Bielich, J.

    2002-01-01

    Motivated from the formation of an initial state of gluon-saturated matter, we discuss scaling relations for the transverse mass spectra at BNL's relativistic heavy-ion collider (RHIC). We show on linear plots, that the transverse mass spectra for various hadrons can be described by an universal function in m t . The transverse mass spectra for different centralities can be rescaled into each other. Finally, we demonstrate that m t -scaling is also present in proton-antiproton collider data and compare it to m t -scaling at RHIC. (orig.)

  5. Transverse Momentum Spectra of KS0 and K*0 at Midrapidity in d + Au, Cu + Cu, and p+p Collisions at √(sNN)=200 GeV

    International Nuclear Information System (INIS)

    Zhang, Guo-Xing; Li, Bao-Chun; Guo, Yuan-Yuan

    2015-01-01

    We analyze transverse momentum spectra of K S 0 and K *0 at midrapidity in d + Au, Cu + Cu, and p+p collisions at √(s NN )=200 GeV in the formworks of Tsallis statistics and Boltzmann statistics, respectively. Both of them can describe the transverse momentum spectra and extract the thermodynamics parameters of matter evolution in the collisions. The parameters are helpful for us to understand the thermodynamics factors of the particle production

  6. Scaled momentum spectra in deep inelastic scattering at HERA

    NARCIS (Netherlands)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bold, T.; Boos, E. G.; Borodin, M.; Borras, K.; Boscherini, D.; Boutle, S. K.; Brock, I.; Brownson, E.; Brugnera, R.; Bruemmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Butterworth, J. M.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Pellegrino, A.

    Charged particle production has been studied in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 0.44 fb(-1). Distributions of scaled momenta in the Breit frame are presented for particles in the current fragmentation region. The evolution

  7. On centrality and rapidity dependences of transverse momentum spectra of negative pions in 12C + 12C collisions at 4.2 GeV/c per nucleon

    International Nuclear Information System (INIS)

    Iqbal, A.; Haseeb, M.Q.; Olimov, K.K.; Khan, Imran; Yuldashev, B.S.

    2014-01-01

    The dependences of the experimental transverse momentum spectra of the negative pions, produced in minimum bias 12 C + 12 C collisions at a momentum of 4.2A GeV/c, on the collision centrality and the pion rapidity range were studied. To analyze quantitatively the change in the p t spectra of π - mesons with the changes of collision centrality and pion rapidity range, the extracted p t spectra were fitted by Hagedorn, Boltzmann, simple exponential and Gaussian functions. The values of the extracted spectral temperatures T 1 and T 2 were consistently larger for the p t spectra of π - mesons coming from midrapidity range as compared to those of the negative pions generated in the target and projectile fragmentation regions. The spectral temperatures T 1 and T 2 extracted from fitting the p t spectra of π - mesons in range p t = 0.1–1.2 GeV/c practically coincided with each other in peripheral, semicentral and central 12 C + 12 C collision events, and thus did not show any collision centrality dependence. However, the values of T 1 and T 2 extracted from fitting in range p t = 0.1–0.7 GeV/c were consistently and noticeably larger in case of central collisions as compared to peripheral and semicentral 12 C + 12 C collisions. Hagedorn and Boltzmann functions provided significantly better fits of the transverse momentum spectra of the negative pions with the physically acceptable values of the extracted temperatures as compared to Gaussian and simple exponential functions. (author)

  8. Longitudinal-momentum distributions for positive particles produced at small angles in proton-proton collisions at a cm energy of 446 GeV

    CERN Document Server

    Albrow, M G; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Kanaris, A D; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C; Terwilliger, K M; Van der Veen, F

    1973-01-01

    Longitudinal-momentum spectra are presented for the production of K /sup +/ and pi /sup +/ mesons at the CERN ISR at a transverse momentum of 0.8 GeV/c and a total c.m. energy of 44.6 GeV. Proton spectra for transverse momenta between 0.7 and 1.2 GeV/c are also given. The spectra cover a range of 0.2 to 1.0 in the Feynman variable x=2p/sub L // square root s. The pi /sup +/ spectrum agrees well with scaling when compared with accelerator data, while the K/sup +/ spectrum is consistently above the scaling prediction. The proton spectra have pronounced peaks at x=1, minima near x=0.9 and broad maxima at x=0.6. The data are compared with triple-Regge and diffraction dissociation models. (9 refs).

  9. Transverse momentum dependent (TMD) parton distribution functions. Status and prospects

    International Nuclear Information System (INIS)

    Angeles-Martinez, R.; Bacchetta, A.; Pavia Univ.; Balitsky, I.I.

    2015-07-01

    We provide a concise overview on transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum q T spectra of Higgs and vector bosons for low q T , and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present an application of a new tool, TMDlib, to parton density fits and parameterizations.

  10. A fast and accurate method for perturbative resummation of transverse momentum-dependent observables

    Science.gov (United States)

    Kang, Daekyoung; Lee, Christopher; Vaidya, Varun

    2018-04-01

    We propose a novel strategy for the perturbative resummation of transverse momentum-dependent (TMD) observables, using the q T spectra of gauge bosons ( γ ∗, Higgs) in pp collisions in the regime of low (but perturbative) transverse momentum q T as a specific example. First we introduce a scheme to choose the factorization scale for virtuality in momentum space instead of in impact parameter space, allowing us to avoid integrating over (or cutting off) a Landau pole in the inverse Fourier transform of the latter to the former. The factorization scale for rapidity is still chosen as a function of impact parameter b, but in such a way designed to obtain a Gaussian form (in ln b) for the exponentiated rapidity evolution kernel, guaranteeing convergence of the b integral. We then apply this scheme to obtain the q T spectra for Drell-Yan and Higgs production at NNLL accuracy. In addition, using this scheme we are able to obtain a fast semi-analytic formula for the perturbative resummed cross sections in momentum space: analytic in its dependence on all physical variables at each order of logarithmic accuracy, up to a numerical expansion for the pure mathematical Bessel function in the inverse Fourier transform that needs to be performed just once for all observables and kinematics, to any desired accuracy.

  11. Scale-dependence of transverse momentum correlations in Pb - Au collisions at 158A GeV/c

    CERN Document Server

    Adamová, D; Antonczyk, D; Appelshäuser, H; Belaga, V; Bielcikova, S; Braun-Munzinger, P; Busch, O; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Dubitzky, W; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Zeev; Garabatos, C; Glässel, P; Holeczek, J; Kushpil, V; Maas, A; Marín, A; Milosevic, J; Milov, A; Miskowiec, D; Panebratsev, Yu A; Petchenova, O; Petracek, V; Pfeiffer, A; Ploskon, M; Radomski, S; Rak, acn J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Sedykh, S; Shimansky, S; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, Itzhak; Tsiledakis, G; Wessels, J P; Wienold, T; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V

    2008-01-01

    We present results on transverse momentum correlations of charged particle pairs produced in Pb-Au collisions at 158$A$ GeV/$c$ at the Super Proton Synchrotron. The transverse momentum correlations have been studied as a function of collision centrality, angular separation of the particle pairs, transverse momentum and charge sign. We demonstrate that the results are in agreement with previous findings in scale-independent analyses at the same beam energy. Employing the two-particle momentum correlator $$ and the cumulative $p_t$ variable $x(p_t)$, we identify, using the scale-dependent approach presented in this paper, different sources contributing to the measured correlations, such as quantum and Coulomb correlations, elliptic flow and mini-jet fragmentation.

  12. Scale-dependence of transverse momentum correlations in PbAu collisions at 158A GeV/c

    Science.gov (United States)

    Ceres Collaboration; Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielcikova, S.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Holeczek, J.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petráček, V.; Pfeiffer, A.; Płoskoń, M.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.

    2008-10-01

    We present results on transverse momentum correlations of charged particle pairs produced in PbAu collisions at 158A GeV/c at the Super Proton Synchrotron. The transverse momentum correlations have been studied as a function of collision centrality, angular separation of the particle pairs, transverse momentum and charge sign. We demonstrate that the results are in agreement with previous findings in scale-independent analyses at the same beam energy. Employing the two-particle momentum correlator and the cumulative p variable x(p), we identify, using the scale-dependent approach presented in this paper, different sources contributing to the measured correlations, such as quantum and Coulomb correlations, elliptic flow and mini-jet fragmentation.

  13. Transverse momentum spectra of hadrons in p + p collisions at CERN SPS energies from the UrQMD transport model

    Science.gov (United States)

    Ozvenchuk, V.; Rybicki, A.

    2018-05-01

    The UrQMD transport model, version 3.4, is used to study the new experimental data on transverse momentum spectra of π±, K±, p and p bar produced in inelastic p + p interactions at SPS energies, recently published by the NA61/SHINE Collaboration. The comparison of model predictions to these new measurements is presented as a function of collision energy for central and forward particle rapidity intervals. In addition, the inverse slope parameters characterizing the transverse momentum distributions are extracted from the predicted spectra and compared to the corresponding values obtained from NA61/SHINE distributions, as a function of particle rapidity and collision energy. A complex pattern of deviations between the experimental data and the UrQMD model emerges. For charged pions, the fair agreement visible at top SPS energies deteriorates with the decreasing energy. For charged K mesons, UrQMD significantly underpredicts positive kaon production at lower beam momenta. It also underpredicts the central rapidity proton yield at top collision energy and overpredicts antiproton production at all considered energies. We conclude that the new experimental data analyzed in this paper still constitute a challenge for the present version of the model.

  14. Light-quarkonium spectra and orbital-angular-momentum decomposition in a Bethe-Salpeter-equation approach

    Energy Technology Data Exchange (ETDEWEB)

    Hilger, T.; Krassnigg, A. [University of Graz, NAWI Graz, Institute of Physics, Graz (Austria); Gomez-Rocha, M. [ECT*, Villazzano, Trento (Italy)

    2017-09-15

    We investigate the light-quarkonium spectrum using a covariant Dyson-Schwinger-Bethe-Salpeter-equation approach to QCD. We discuss splittings among as well as orbital angular momentum properties of various states in detail and analyze common features of mass splittings with regard to properties of the effective interaction. In particular, we predict the mass of anti ss exotic 1{sup -+} states, and identify orbital angular momentum content in the excitations of the ρ meson. Comparing our covariant model results, the ρ and its second excitation being predominantly S-wave, the first excitation being predominantly D-wave, to corresponding conflicting lattice-QCD studies, we investigate the pion-mass dependence of the orbital-angular-momentum assignment and find a crossing at a scale of m{sub π} ∝ 1.4 GeV. If this crossing turns out to be a feature of the spectrum generated by lattice-QCD studies as well, it may reconcile the different results, since they have been obtained at different values of m{sub π}. (orig.)

  15. Scale-invariant inclusive spectra in a dual model

    International Nuclear Information System (INIS)

    Chikovani, Z.E.; Jenkovsky, L.L.; Martynov, E.S.

    1979-01-01

    One-particle inclusive distributions at large transverse momentum phisub(tr) are shown to scale, Edσ/d 3 phi approximately phisub(tr)sup(-N)(1-Xsub(tr))sup(1+N/2)lnphisub(tr), in a dual model with Mandelstam analyticity if the Regge trajectories are logarithmic asymptotically

  16. Transverse momentum spectra of inclusive b jets in pPb collisions at $\\sqrt{ s_{\\mathrm{NN}} } =$ 5.02 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Assran, Yasser; Awad, Adel; El Sawy, Mai; Mahrous, Ayman; Radi, Amr; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Davignon, Olivier; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Bell, Alan James; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Trippkewitz, Karim Damun; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schwandt, Joern; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Mal, Prolay; Mandal, Koushik; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Jain, Sandhya; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukherjee, Swagata; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sudhakar, Katta; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gonella, Franco; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Passaseo, Marina; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Zanetti, Anna; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Ryu, Min Sang; Song, Sanghyeon; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Leonardo, Nuno; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; De Castro Manzano, Pablo; Duarte Campderros, Jordi; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Piparo, Danilo; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Yu, Shin-Shan; Kumar, Arun; Bartek, Rachel; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Tali, Bayram; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Yetkin, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Thomas, Laurent; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Gastler, Daniel; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Cutts, David; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Sinthuprasith, Tutanon; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova PANEVA, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; To, Wing; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Hu, Zhen; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Jung, Andreas Werner; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Di Giovanni, Gian Piero; Field, Richard D; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Terentyev, Nikolay; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Sanders, Stephen; Stringer, Robert; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Niu, Xinmei; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Dahmes, Bryan; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Brinkerhoff, Andrew; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Kotov, Khristian; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Malik, Sudhir; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Petrillo, Gianluca; Verzetti, Mauro; Demortier, Luc; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Nash, Kevin; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Krutelyov, Vyacheslav; Montalvo, Roy; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Ni, Hong; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Christian, Allison; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Gomber, Bhawna; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2016-03-10

    We present a measurement of b jet transverse momentum ($ p_{\\mathrm{T}} $) spectra in proton-lead (pPb) collisions using a dataset corresponding to about 35 nb$^{-1}$ collected with the CMS detector at the LHC. Jets from b quark fragmentation are found by exploiting the long lifetime of hadrons containing a b quark through tagging methods using distributions of the secondary vertex mass and displacement. Extracted cross sections for b jets are scaled by the effective number of nucleon-nucleon collisions and are compared to a reference obtained from PYTHIA simulations of pp collisions. The PYTHIA-based estimate of the nuclear modification factor is found to be 1.22 $\\pm$ 0.15 (stat+syst pPb) $\\pm$ 0.27 (syst PYTHIA) averaged over all jets with $ p_{\\mathrm{T}} $ between 55 and 400 GeV$c$ and with $ | \\eta_{\\text{lab}} | $ lower than 2. We also compare this result to predictions from models using perturbative calculations in quantum chromodynamics.

  17. Scale-dependence of transverse momentum correlations in Pb sbnd Au collisions at 158A GeV/c

    Science.gov (United States)

    Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielcikova, S.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Holeczek, J.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petráček, V.; Pfeiffer, A.; Płoskoń, M.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.; Ceres Collaboration

    2008-10-01

    We present results on transverse momentum correlations of charged particle pairs produced in Pb sbnd Au collisions at 158A GeV/c at the Super Proton Synchrotron. The transverse momentum correlations have been studied as a function of collision centrality, angular separation of the particle pairs, transverse momentum and charge sign. We demonstrate that the results are in agreement with previous findings in scale-independent analyses at the same beam energy. Employing the two-particle momentum correlator and the cumulative p variable x(p), we identify, using the scale-dependent approach presented in this paper, different sources contributing to the measured correlations, such as quantum and Coulomb correlations, elliptic flow and mini-jet fragmentation.

  18. Angular momentum-large-scale structure alignments in ΛCDM models and the SDSS

    Science.gov (United States)

    Paz, Dante J.; Stasyszyn, Federico; Padilla, Nelson D.

    2008-09-01

    We study the alignments between the angular momentum of individual objects and the large-scale structure in cosmological numerical simulations and real data from the Sloan Digital Sky Survey, Data Release 6 (SDSS-DR6). To this end, we measure anisotropies in the two point cross-correlation function around simulated haloes and observed galaxies, studying separately the one- and two-halo regimes. The alignment of the angular momentum of dark-matter haloes in Λ cold dark matter (ΛCDM) simulations is found to be dependent on scale and halo mass. At large distances (two-halo regime), the spins of high-mass haloes are preferentially oriented in the direction perpendicular to the distribution of matter; lower mass systems show a weaker trend that may even reverse to show an angular momentum in the plane of the matter distribution. In the one-halo term regime, the angular momentum is aligned in the direction perpendicular to the matter distribution; the effect is stronger than for the one-halo term and increases for higher mass systems. On the observational side, we focus our study on galaxies in the SDSS-DR6 with elongated apparent shapes, and study alignments with respect to the major semi-axis. We study five samples of edge-on galaxies; the full SDSS-DR6 edge-on sample, bright galaxies, faint galaxies, red galaxies and blue galaxies (the latter two consisting mainly of ellipticals and spirals, respectively). Using the two-halo term of the projected correlation function, we find an excess of structure in the direction of the major semi-axis for all samples; the red sample shows the highest alignment (2.7 +/- 0.8per cent) and indicates that the angular momentum of flattened spheroidals tends to be perpendicular to the large-scale structure. These results are in qualitative agreement with the numerical simulation results indicating that the angular momentum of galaxies could be built up as in the Tidal Torque scenario. The one-halo term only shows a significant alignment

  19. Muon reconstruction efficiency, momentum scale and resolution in pp collisions at 8TeV with ATLAS

    CERN Document Server

    Dimitrievska, A; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment identifies and reconstructs muons with two high precision tracking systems, the Inner Detector and the Muon Spectrometer, which provide independent measurements of the muon momentum. This poster summarizes the performance of the combined muon reconstruction in terms of reconstruction efficiency, momentum scale and resolution. Data-driven techniques are used to derive corrections to be applied to simulation in order to reproduce the reconstruction efficiency, momentum scale and resolution as observed in experimental data, and to asses systematic uncertainties on these quantities. The analysed dataset corresponds to an integrated luminosity of 20.4 fb−1 from 8 TeV pp collisions recorded in 2012.

  20. Scaled momentum distributions of charged particles in dijet photoproduction at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2009-04-01

    The scaled momentum distributions of charged particles in jets have been measured for dijet photoproduction with the ZEUS detector at HERA using an integrated luminosity of 359 pb -1 . The distributions are compared to predictions based on perturbative QCD carried out in the framework of the modified leading-logarithmic approximation (MLLA) and assuming local parton-hadron duality (LPHD). The universal MLLA scale, Λ eff , and the LPHD parameter, κ ch , are extracted. (orig.)

  1. Transverse momentum of partons. From low to high pT

    International Nuclear Information System (INIS)

    Diehl, Markus

    2008-11-01

    Transverse-momentum spectra in hard processes are typically described either in terms of intrinsic transverse momentum of partons, or in terms of perturbative radiation. The relation between these descriptions is discussed for the example of semi-inclusive deep inelastic scattering, with special focus on the angular distribution of the observed hadron. This involves nontrivial theoretical issues, such as the proper definition of transverse-momentum dependent parton distributions, and has practical consequences for the description of p T spectra in phenomenology. (orig.)

  2. Scaled momentum distributions of charged particles in dijet photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)

    2009-04-15

    The scaled momentum distributions of charged particles in jets have been measured for dijet photoproduction with the ZEUS detector at HERA using an integrated luminosity of 359 pb{sup -1}. The distributions are compared to predictions based on perturbative QCD carried out in the framework of the modified leading-logarithmic approximation (MLLA) and assuming local parton-hadron duality (LPHD). The universal MLLA scale, {lambda}{sub eff}, and the LPHD parameter, {kappa}{sup ch}, are extracted. (orig.)

  3. Muon reconstruction efficiency, momentum scale and resolution in pp collisions at 8TeV with ATLAS

    CERN Document Server

    Dimitrievska, A; The ATLAS collaboration; Sforza, F

    2014-01-01

    The ATLAS experiment identifies and reconstructs muons with two high precision tracking systems, the inner detector and the muon spectrometer, which provide independent measurements of the muon momentum. This poster summarizes the performance of the combined muon reconstruction in terms of reconstruction efficiency, momentum scale and resolution. Data-driven techniques are used to derive corrections to be applied to simulation in order to reproduce the reconstruction efficiency, momentum scale and resolution as observed in experimental data, and to asses systematic uncertainties on these quantities. The analysed dataset corresponds to an integrated luminosity of 20.4 fb−1 from pp collisions at center of mass enegy of 8 TeV recorded in 2012.

  4. Transverse-momentum spectra and nuclear modification factor using Boltzmann Transport Equation with flow in Pb+Pb collisions at √(s{sub NN}) = 2.76 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sushanta; Khuntia, Arvind; Tiwari, Swatantra Kumar; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Indore (India)

    2017-05-15

    In the continuation of our previous work, the transverse-momentum (p{sub T}) spectra and nuclear modification factor (R{sub AA}) are derived using the relaxation time approximation of Boltzmann Transport Equation (BTE). The initial p{sub T}-distribution used to describe p + p collisions has been studied with the perturbative-Quantum Chromodynamics (pQCD) inspired power-law distribution, Hagedorn's empirical formula and with the Tsallis non-extensive statistical distribution. The non-extensive Tsallis distribution is observed to describe the complete range of the transverse-momentum spectra. The Boltzmann-Gibbs Blast Wave (BGBW) distribution is used as the equilibrium distribution in the present formalism, to describe the p{sub T}-distribution and nuclear modification factor in nucleus-nucleus collisions. The experimental data for Pb+Pb collisions at √(s{sub NN}) = 2.76 TeV at the Large Hadron Collider at CERN have been analyzed for pions, kaons, protons, K{sup *0} and φ. It is observed that the present formalism while explaining the transverse-momentum spectra up to 5 GeV/c, explains the nuclear modification factor very well up to 8 GeV/c in p{sub T} for all these particles except for protons. R{sub AA} is found to be independent of the degree of non-extensivity, q{sub pp} after p{sub T} ∝ 8 GeV/c. (orig.)

  5. Measurement of Inclusive Momentum Spectra and Multiplicity Distributions of Charged Particles at {radical}s {approx} 2-5 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Dunwoodie, William

    2003-08-06

    Inclusive momentum spectra and multiplicity distributions of charged particles measured with the BESII detector at center of mass energies of 2.2, 2.6, 3.0, 3.2, 4.6 and 4.8 GeV are presented. Values of the second binomial moment, R{sub 2}, obtained from the multiplicity distributions are reported. These results are compared with both experimental data from high energy e{sup +}e{sup -}, ep and p{bar p} experiments and QCD calculations.

  6. Centrality Dependence of Charged-Hadron Transverse-Momentum Spectra in d+Au Collisions at (sNN)=200 GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zhang, J.

    2003-08-01

    We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at (sNN)=200 GeV. The spectra were obtained for transverse momenta 0.25spectra with collision centrality is presented in comparison to p+p¯ collisions at the same collision energy. With increasing centrality, the yield at high transverse momenta increases more rapidly than the overall particle density, leading to a strong modification of the spectral shape. This change in spectral shape is qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-pT hadrons observed in Au+Au collisions.

  7. Transverse momentum spectra and nuclear modification factors of charged particles in Xe–Xe collisions at $\\sqrt{s_{\\rm NN}} = 5.44$ TeV

    CERN Document Server

    Acharya, Shreyasi; The ALICE collaboration; Adamova, Dagmar; Adolfsson, Jonatan; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Al-turany, Mohammad; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Ali, Yasir; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altenkamper, Lucas; Altsybeev, Igor; Andrei, Cristian; Andreou, Dimitra; Andrews, Harry Arthur; Andronic, Anton; Angeletti, Massimo; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Anwar, Rafay; Apadula, Nicole; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barioglio, Luca; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartsch, Esther; Bastid, Nicole; Basu, Sumit; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Bazo Alba, Jose Luis; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhaduri, Partha Pratim; Bhasin, Anju; Bhat, Inayat Rasool; Bhatt, Himani; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Antonio; Bianchi, Livio; Bianchi, Nicola; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Boca, Gianluigi; Bock, Friederike; Bogdanov, Alexey; Boldizsar, Laszlo; Bombara, Marek; Bonomi, Germano; Bonora, Matthias; Borel, Herve; Borissov, Alexander; Borri, Marcello; Botta, Elena; Bourjau, Christian; Bratrud, Lars; Braun-munzinger, Peter; Bregant, Marco; Broker, Theo Alexander; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buhler, Paul; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Soto Camacho, Rabi; Camerini, Paolo; Capon, Aaron Allan; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Chandra, Sinjini; Chang, Beomsu; Chang, Wan; Chapeland, Sylvain; Chartier, Marielle; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Chowdhury, Tasnuva; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Concas, Matteo; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Costanza, Susanna; Crkovska, Jana; Crochet, Philippe; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Franz Degenhardt, Hermann; Deisting, Alexander; Deloff, Andrzej; Delsanto, Silvia; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Ruzza, Benedetto; Arteche Diaz, Raul; Dietel, Thomas; Dillenseger, Pascal; Ding, Yanchun; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Van Doremalen, Lennart Vincent; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dudi, Sandeep; Duggal, Ashpreet Kaur; Dukhishyam, Mallick; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erhardt, Filip; Ersdal, Magnus Rentsch; Espagnon, Bruno; Eulisse, Giulio; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Fabbietti, Laura; Faggin, Mattia; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiorenza, Gabriele; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; De Leone Gay, Maria Beatriz; Germain, Marie; Ghosh, Jhuma; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Greiner, Leo Clifford; Grelli, Alessandro; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Gronefeld, Julius Maximilian; Grosa, Fabrizio; Grosse-oetringhaus, Jan Fiete; Grosso, Raffaele; Guernane, Rachid; Guerzoni, Barbara; Guittiere, Manuel; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Bautista Guzman, Irais; Haake, Rudiger; Habib, Michael Karim; Hadjidakis, Cynthia Marie; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Hannigan, Ryan; Haque, Md Rihan; Harris, John William; Harton, Austin Vincent; Hassan, Hadi; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Gonzalez Hernandez, Emma; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hills, Christopher; Hippolyte, Boris; Hohlweger, Bernhard; Horak, David; Hornung, Sebastian; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Chun-lu; Hughes, Charles; Huhn, Patrick; Humanic, Thomas; Hushnud, Hushnud; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Iddon, James Philip; Iga Buitron, Sergio Arturo; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Islam, Md Samsul; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jaelani, Syaefudin; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Jena, Chitrasen; Jercic, Marko; Jimenez Bustamante, Raul Tonatiuh; Jin, Muqing; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karczmarczyk, Przemyslaw; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Ketzer, Bernhard Franz; Khabanova, Zhanna; Khan, Shaista; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Khuntia, Arvind; Kielbowicz, Miroslaw Marek; Kileng, Bjarte; Kim, Byungchul; Kim, Daehyeok; Kim, Dong Jo; Kim, Eun Joo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minjung; Kim, Se Yong; Kim, Taejun; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Varga-kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Konyushikhin, Maxim; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Kralik, Ivan; Kravcakova, Adela; Kreis, Lukas; Krivda, Marian; Krizek, Filip; Kruger, Mario; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kundu, Sourav; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lai, Yue Shi; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Larionov, Pavel; Laudi, Elisa; Lavicka, Roman; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lehrbach, Johannes; Lemmon, Roy Crawford; Leogrande, Emilia; Leon Monzon, Ildefonso; Levai, Peter; Li, Xiaomei; Li, Xing Long; Lien, Jorgen Andre; Lietava, Roman; Lim, Bong-hwi; Lindal, Svein; Lindenstruth, Volker; Lindsay, Scott William; Lippmann, Christian; Lisa, Michael Annan; Litichevskyi, Vladyslav; Liu, Alwina; Ljunggren, Hans Martin; Llope, William; Lodato, Davide Francesco; Loginov, Vitaly; Loizides, Constantinos; Loncar, Petra; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Luhder, Jens Robert; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Maevskaya, Alla; Mager, Magnus; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Malik, Qasim Waheed; Malinina, Liudmila; Mal'kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-garcia, Gines; Martinez Pedreira, Miguel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Masson, Erwann; Mastroserio, Annalisa; Mathis, Andreas Michael; Toledo Matuoka, Paula Fernanda; Matyja, Adam Tomasz; Mayer, Christoph; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Meddi, Franco; Melikyan, Yuri; Menchaca-rocha, Arturo Alejandro; Meninno, Elisa; Mercado-perez, Jorge; Meres, Michal; Soncco Meza, Carlos; Mhlanga, Sibaliso; Miake, Yasuo; Micheletti, Luca; Mieskolainen, Matti Mikael; Mihaylov, Dimitar Lubomirov; Mikhaylov, Konstantin; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Auro Prasad; Mohanty, Bedangadas; Khan, Mohammed Mohisin; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Arratia Munoz, Miguel Ignacio; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Myers, Corey James; Myrcha, Julian Wojciech; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Narayan, Amrendra; Naru, Muhammad Umair; Nassirpour, Adrian Fereydon; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Nesbo, Simon Voigt; Neskovic, Gvozden; Ng, Fabian; Nicassio, Maria; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oh, Hoonjung; Ohlson, Alice Elisabeth; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pacik, Vojtech; Pagano, Davide; Paic, Guy; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Panebianco, Stefano; Papikyan, Vardanush; Pareek, Pooja; Park, Jonghan; Parkkila, Jasper Elias; Parmar, Sonia; Passfeld, Annika; Pathak, Surya Prakash; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira, Luis Gustavo; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrovici, Mihai; Petta, Catia; Peretti Pezzi, Rafael; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Pisano, Silvia; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pliquett, Fabian; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Pozdniakov, Valeriy; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Punin, Valery; Putschke, Jorn Henning; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Ratza, Viktor; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reshetin, Andrey; Revol, Jean-pierre; Reygers, Klaus Johannes; Riabov, Viktor; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-lucian; Rode, Sudhir Pandurang; Rodriguez Cahuantzi, Mario; Roeed, Ketil; Rogalev, Roman; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Rokita, Przemyslaw Stefan; Ronchetti, Federico; Dominguez Rosas, Edgar; Roslon, Krystian; Rosnet, Philippe; Rossi, Andrea; Rotondi, Alberto; Roukoutakis, Filimon; Roy, Christelle Sophie; Roy, Pradip Kumar; Vazquez Rueda, Omar; Rui, Rinaldo; Rumyantsev, Boris; Rustamov, Anar; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Saha, Sumit Kumar; Sahoo, Baidyanath; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandoval, Andres; Sarkar, Amal; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Sas, Mike Henry Petrus; Scapparone, Eugenio; Scarlassara, Fernando; Schaefer, Brennan; Scheid, Horst Sebastian; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Marten Ole; Schmidt, Martin; Schmidt, Nicolas Vincent; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sett, Priyanka; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shahoyan, Ruben; Shaikh, Wadut; Shangaraev, Artem; Sharma, Anjali; Sharma, Ankita; Sharma, Meenakshi; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shimomura, Maya; Shirinkin, Sergey; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singh, Randhir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Sputowska, Iwona Anna; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Stocco, Diego; Storetvedt, Maksim Melnik; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Suzuki, Ken; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Teyssier, Boris; Thakur, Dhananjaya; Thakur, Sanchari; Thomas, Deepa; Thoresen, Freja; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Topilskaya, Nataliya; Toppi, Marco; Rojas Torres, Solangel; Tripathy, Sushanta; Trogolo, Stefano; Trombetta, Giuseppe; Tropp, Lukas; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Trzcinski, Tomasz Piotr; Trzeciak, Barbara Antonina; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Vercellin, Ermanno; Vergara Limon, Sergio; Vermunt, Luuk; Vernet, Renaud; Vertesi, Robert; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Virgili, Tiziano; Vislavicius, Vytautas; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Voscek, Dominik; Vranic, Danilo; Vrlakova, Janka; Wagner, Boris; Wang, Hongkai; Wang, Mengliang; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wegrzynek, Adam; Weiser, Dennis Franz; Wenzel, Sandro Christian; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Willsher, Emily; Windelband, Bernd Stefan; Witt, William Edward; Xu, Ran; Yalcin, Serpil; Yamakawa, Kosei; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correa Zanoli, Henrique Jose; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zhalov, Mikhail; Zhang, Xiaoming; Zhang, Yonghong; Zhang, Zuman; Zhao, Chengxin; Zherebchevskii, Vladimir; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Ya; Zichichi, Antonino; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zmeskal, Johann; Zou, Shuguang

    2018-01-01

    Transverse momentum ($p_{\\rm T}$ ) spectra of charged particles at mid-pseudorapidity in Xe-Xe collisions at $\\sqrt{s_{\\rm NN}} = 5.44$ TeV measured with the ALICE apparatus at the Large Hadron Collider are reported. The kinematic range $0.15 10$ GeV/$c$. This similarity is qualitatively consistent with the expected quadratic path length dependence of medium-induced radiative energy loss of a parton propagating in the medium. The centrality dependence of the ratio of the average transverse momentum $p_{\\rm T}$ in Xe-Xe collisions over Pb-Pb collisions at $\\sqrt{s_{\\rm NN}} = 5.02$ TeV is compared to hydrodynamical model calculations.

  8. Centrality dependence of charged hadron transverse momentum spectra in d+Au collisions at $\\sqrt{s_{NN}}$ = 200 GeV

    CERN Document Server

    Back, B B; Ballintijn, M; Barton, D S; Becker, B; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K H; Gushue, S; Halliwell, C; Hamblen, J; Harrington, A S; Henderson, C; Hofman, D J; Hollis, R S; Holynski, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Khan, N; Kulinich, P A; Kuo, C M; Lee, J W; Lin, W T; Manly, S; Mignerey, A C; Nöll, A; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Roland, C; Roland, G; Sagerer, J; Sarin, P; Sawicki, P; Sedykh, I; Skulski, W; Smith, C E; Steinberg, P; Stephans, G S F; Sukhanov, A; Teng, R; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Verdier, R; Veres, G I; Wadsworth, B; Wolfs, F L H; Wosiek, B; Wozniak, K; Wuosmaa, A H; Wyslouch, B; Zhang, J

    2003-01-01

    We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at sqrt(s_NN) = 200 GeV. The spectra were obtained for transverse momenta 0.25 < p_T < 6.0 GeV/c, in a pseudorapidity range of 0.2 < eta < 1.4 in the deuteron direction. The evolution of the spectra with collision centrality is presented in comparison to p+pbarcollisions at the same collision energy. With increasing centrality, the yield at high transverse momenta increases more rapidly than the overall particle density, leading to a strong modification of the spectral shape. This change in spectral shape is qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-p_T hadrons observed in Au+Au collisions.

  9. Angular momentum fuctuation energy in the cranking model

    International Nuclear Information System (INIS)

    Goodman, A.L.

    1979-01-01

    Angular momentum is approximately projected from Hartree-Fock-Bogoliubov cranked (HFBC) wave functions. At each J the projected energy is Esub(proj)approximately Esub(HFBC). The spin-dependent fluctuation ΔJ includes contributions from Jsub(y) and Jsub(z) as well as Jsub(x). There are no correlations in the three angular momentum components. Projected energies are calculated for 168 170 Yb and 174 Hf. When compared to experimental energies, the projected spectra are less compressed than the HFBC spectra. At low spins the projected and experimental energies are in good agreement. (Aut.)

  10. Physical approach to price momentum and its application to momentum strategy

    Science.gov (United States)

    Choi, Jaehyung

    2014-12-01

    We introduce various quantitative and mathematical definitions for price momentum of financial instruments. The price momentum is quantified with velocity and mass concepts originated from the momentum in physics. By using the physical momentum of price as a selection criterion, the weekly contrarian strategies are implemented in South Korea KOSPI 200 and US S&P 500 universes. The alternative strategies constructed by the physical momentum achieve the better expected returns and reward-risk measures than those of the traditional contrarian strategy in weekly scale. The portfolio performance is not understood by the Fama-French three-factor model.

  11. Production spectra of zero-degree neutral particles measured by the LHCf experiment

    Directory of Open Access Journals (Sweden)

    Tiberio A.

    2017-01-01

    In this paper, latest published physics results from p-p and p-Pb collisions (at √s = 7, 2.76 TeV and sNN = 5.02 TeV, respectively compared with Monte Carlo predictions of DPMJET, EPOS, PYTHIA, QGSJET and SIBYLL event generators will be presented. In particular, the inclusive energy spectra of neutrons in p-p collisions and the transverse and longitudinal momentum spectra of neutral pions for different pseudo-rapidity ranges in p-p and p-Pb collisions will be shown; then, test of Feynman scaling hypothesis using neutral pion spectra will be discussed. Preliminary results of photon inclusive energy spectra in p-p collisions at √s = 13 TeV will be also presented.

  12. Resummation of transverse momentum distributions in distribution space

    International Nuclear Information System (INIS)

    Ebert, Markus A.; Tackmann, Frank J.

    2016-11-01

    Differential spectra in observables that resolve additional soft or collinear QCD emissions exhibit Sudakov double logarithms in the form of logarithmic plus distributions. Important examples are the total transverse momentum q_T in color-singlet production, N-jettiness (with thrust or beam thrust as special cases), but also jet mass and more complicated jet substructure observables. The all-order logarithmic structure of such distributions is often fully encoded in differential equations, so-called (renormalization group) evolution equations. We introduce a well-defined technique of distributional scale setting, which allows one to treat logarithmic plus distributions like ordinary logarithms when solving these differential equations. In particular, this allows one (through canonical scale choices) to minimize logarithmic contributions in the boundary terms of the solution, and to obtain the full distributional logarithmic structure from the solution's evolution kernel directly in distribution space. We apply this technique to the q_T distribution, where the two-dimensional nature of convolutions leads to additional difficulties (compared to one-dimensional cases like thrust), and for which the resummation in distribution (or momentum) space has been a long-standing open question. For the first time, we show how to perform the RG evolution fully in momentum space, thereby directly resumming the logarithms [ln"n(q"2_T/Q"2)/q"2_T]_+ appearing in the physical q_T distribution. The resummation accuracy is then solely determined by the perturbative expansion of the associated anomalous dimensions.

  13. Full transverse-momentum spectra of low-mass Drell-Yan pairs at LHC energies

    CERN Document Server

    Fái, G; Zhang, X; Fai, George; Qiu, Jianwei; Zhang, Xiaofei

    2003-01-01

    The transverse momentum distribution of low-mass Drell-Yan pairs is calculated in QCD perturbation theory with all-order resummation. We argue that at LHC energies the results should be reliable for the entire transverse momentum range. We demonstrate that the transverse momentum distribution of low-mass Drell-Yan pairs is an advantageous source of constraints on the gluon distribution and its nuclear dependence.

  14. Three-dimensional electromagnetic strong turbulence. I. Scalings, spectra, and field statistics

    International Nuclear Information System (INIS)

    Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.

    2011-01-01

    The first fully three-dimensional (3D) simulations of large-scale electromagnetic strong turbulence (EMST) are performed by numerically solving the electromagnetic Zakharov equations for electron thermal speeds ν e with ν e /c≥0.025. The results of these simulations are presented, focusing on scaling behavior, energy density spectra, and field statistics of the Langmuir (longitudinal) and transverse components of the electric fields during steady-state strong turbulence, where multiple wave packets collapse simultaneously and the system is approximately statistically steady in time. It is shown that for ν e /c > or approx. 0.17 strong turbulence is approximately electrostatic and can be explained using the electrostatic two-component model. For v e /c > or approx. 0.17 the power-law behaviors of the scalings, spectra, and field statistics differ from the electrostatic predictions and results because ν e /c is sufficiently high to allow transverse modes to become trapped in density wells. The results are compared with those of past 3D electrostatic strong turbulence (ESST) simulations and 2D EMST simulations. For number density perturbations, the scaling behavior, spectra, and field statistics are shown to be only weakly dependent on ν e /c, whereas the Langmuir and transverse scalings, spectra, and field statistics are shown to be strongly dependent on ν e /c. Three-dimensional EMST is shown to have features in common with 2D EMST, such as a two-component structure and trapping of transverse modes which are dependent on ν e /c.

  15. Resummation of transverse momentum distributions in distribution space

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Markus A.; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2016-11-15

    Differential spectra in observables that resolve additional soft or collinear QCD emissions exhibit Sudakov double logarithms in the form of logarithmic plus distributions. Important examples are the total transverse momentum q{sub T} in color-singlet production, N-jettiness (with thrust or beam thrust as special cases), but also jet mass and more complicated jet substructure observables. The all-order logarithmic structure of such distributions is often fully encoded in differential equations, so-called (renormalization group) evolution equations. We introduce a well-defined technique of distributional scale setting, which allows one to treat logarithmic plus distributions like ordinary logarithms when solving these differential equations. In particular, this allows one (through canonical scale choices) to minimize logarithmic contributions in the boundary terms of the solution, and to obtain the full distributional logarithmic structure from the solution's evolution kernel directly in distribution space. We apply this technique to the q{sub T} distribution, where the two-dimensional nature of convolutions leads to additional difficulties (compared to one-dimensional cases like thrust), and for which the resummation in distribution (or momentum) space has been a long-standing open question. For the first time, we show how to perform the RG evolution fully in momentum space, thereby directly resumming the logarithms [ln{sup n}(q{sup 2}{sub T}/Q{sup 2})/q{sup 2}{sub T}]{sub +} appearing in the physical q{sub T} distribution. The resummation accuracy is then solely determined by the perturbative expansion of the associated anomalous dimensions.

  16. Resummation of transverse momentum distributions in distribution space

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Markus A.; Tackmann, Frank J. [Theory Group, Deutsches Elektronen-Synchrotron (DESY),D-22607 Hamburg (Germany)

    2017-02-22

    Differential spectra in observables that resolve additional soft or collinear QCD emissions exhibit Sudakov double logarithms in the form of logarithmic plus distributions. Important examples are the total transverse momentum q{sub T} in color-singlet production, N-jettiness (with thrust or beam thrust as special cases), but also jet mass and more complicated jet substructure observables. The all-order logarithmic structure of such distributions is often fully encoded in differential equations, so-called (renormalization group) evolution equations. We introduce a well-defined technique of distributional scale setting, which allows one to treat logarithmic plus distributions like ordinary logarithms when solving these differential equations. In particular, this allows one (through canonical scale choices) to minimize logarithmic contributions in the boundary terms of the solution, and to obtain the full distributional logarithmic structure from the solution’s evolution kernel directly in distribution space. We apply this technique to the q{sub T} distribution, where the two-dimensional nature of convolutions leads to additional difficulties (compared to one-dimensional cases like thrust), and for which the resummation in distribution (or momentum) space has been a long-standing open question. For the first time, we show how to perform the RG evolution fully in momentum space, thereby directly resumming the logarithms [ln{sup n} (q{sub T}{sup 2}/Q{sup 2})/q{sub T}{sup 2}]{sub +} appearing in the physical q{sub T} distribution. The resummation accuracy is then solely determined by the perturbative expansion of the associated anomalous dimensions.

  17. Transverse momentum spectra of the produced hadrons at SPS ...

    Indian Academy of Sciences (India)

    momentum distribution of produced hadrons in nucleus–nucleus collisions. ..... 0.7. 0.8. 40 AGeV. 80 AGeV. 158 AGeV. mT - mπ(GeV) d2 N π/m. Tdm. TdY .... the availability of systematic data from pp to pA to AA collision at LHC energy, would.

  18. Structures in semiclassical spectra: a question of scale

    International Nuclear Information System (INIS)

    Berry, M.V.

    1984-01-01

    Theories of semiclassical bound state spectra for systems with N freedoms are reviewed, emphasizing the different features occurring on successively finer scales of energy E, measured in terms of h/2π, and attempting to correlate these with whether the underlying classical motion is regular or irregular. (Auth.)

  19. Investigation of electron momentum distributions for outer valence orbitals of trichlorofluoromethane by (e, 2e) electron momentum spectroscopy

    International Nuclear Information System (INIS)

    Zhou, L.X.; Shan, X.; Chen, X.J.; Yin, X.F.; Zhang, X.H.; Xu, C.K.; Wei, Z.; Xu, K.Z.

    2006-01-01

    The binding energy spectra and electron momentum distributions for the outer valence orbitals of trichlorofluoromethane (CFCl 3 ) have been measured by binary (e, 2e) electron momentum spectroscopy (EMS) at an impact energy of 1200 eV + binding energy. The experimental electron momentum profiles are compared with Hartree-Fock and density functional theory (DFT) calculations with different-sized basis sets. Generally, the DFT calculations employing B3LYP functional with large basis sets of AUG-cc-pVDZ and AUG-cc-pVTZ give better description of the experimental results. But for 3e orbital, all the theoretical calculations underestimate the experiment, which is probably due to the distorted-wave effect that often occurs in π*-like molecular orbital

  20. Measurement and interpretation of momentum spectra of the inclusive reaction np→pX between 1.4 and 1.9GeV/c. Determination of cross sections for the np→pΔ330 channel

    International Nuclear Information System (INIS)

    Laville, J.-L.

    1976-01-01

    The creation of a high intensity beam of monokinetic neutrons obtained from stripping deuterons extracted from the synchrotron Saturne (C.E.N., Saclay) has allowed to measure with good statistical accuracy 43 momentum spectra of the final proton of the inclusive reaction np→pX at 1.39, 1.56, 1.73 and 1.90GeV/c (approximately 10 spectra per incident momentum). The final proton was analyzed with a magnetic spectrometer in the angular region between 0 and 20 deg in the laboratory. The set of results has been the object of two analyses: at first, the experimental spectra were compared with a pion exchange model modified by the off-shell parametrization of BENECKE-DURR-PILKUHN overall, this model correctly reproduces the measured spectra, both in form and absolute normalization. In the second analysis, the total and differential cross sections of the np→pΔ 33 0 channel were determined from the spectra measured using a subtraction procedure. The differential cross sections obtained in this way show an angular dependence that differs from the predictions of the pion exchange model. It is concluded that, at low energy, near its threshold, the reaction NN→NΔ 33 involves a set of more complex mechanisms than pion exchange alone, even if the latter remains dominant [fr

  1. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  2. Heat and momentum transport scalings in vertical convection

    Science.gov (United States)

    Shishkina, Olga

    2016-11-01

    For vertical convection, where a fluid is confined between two differently heated isothermal vertical walls, we investigate the heat and momentum transport, which are measured, respectively, by the Nusselt number Nu and the Reynolds number Re . For laminar vertical convection we derive analytically the dependence of Re and Nu on the Rayleigh number Ra and the Prandtl number Pr from our boundary layer equations and find two different scaling regimes: Nu Pr 1 / 4 Ra 1 / 4 , Re Pr - 1 / 2 Ra 1 / 2 for Pr > 1 . Direct numerical simulations for Ra from 105 to 1010 and Pr from 0.01 to 30 are in excellent ageement with our theoretical findings and show that the transition between the regimes takes place for Pr around 0.1. We summarize the results from and present new theoretical and numerical results for transitional and turbulent vertical convection. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  3. Disentangling random thermal motion of particles and collective expansion of source from transverse momentum spectra in high energy collisions

    Science.gov (United States)

    Wei, Hua-Rong; Liu, Fu-Hu; Lacey, Roy A.

    2016-12-01

    In the framework of a multisource thermal model, we describe experimental results of the transverse momentum spectra of final-state light flavor particles produced in gold-gold (Au-Au), copper-copper (Cu-Cu), lead-lead (Pb-Pb), proton-lead (p-Pb), and proton-proton (p -p) collisions at various energies, measured by the PHENIX, STAR, ALICE, and CMS Collaborations, by using the Tsallis-standard (Tsallis form of Fermi-Dirac or Bose-Einstein), Tsallis, and two- or three-component standard distributions which can be in fact regarded as different types of ‘thermometers’ or ‘thermometric scales’ and ‘speedometers’. A central parameter in the three distributions is the effective temperature which contains information on the kinetic freeze-out temperature of the emitting source and reflects the effects of random thermal motion of particles as well as collective expansion of the source. To disentangle both effects, we extract the kinetic freeze-out temperature from the intercept of the effective temperature (T) curve as a function of particle’s rest mass (m 0) when plotting T versus m 0, and the mean transverse flow velocity from the slope of the mean transverse momentum ( ) curve as a function of mean moving mass (\\overline{m}) when plotting versus \\overline{m}.

  4. Charged hadron transverse momentum distributions in Au+Au collisions at S=200 GeV

    Science.gov (United States)

    Roland, Christof; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The evolution of the spectra for transverse momenta p_T from 0.25 to 5GeV/c is studied as a function of collision centrality over a range from 65 to 344 participating nucleons. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at the highest p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  5. Multi-photon resonant effects in strong-field ionization: origin of the dip in experimental longitudinal momentum distributions

    International Nuclear Information System (INIS)

    Alnaser, A S; Maharjan, C M; Wang, P; Litvinyuk, I V

    2006-01-01

    We studied ionization of neon and argon by intense linearly polarized femtosecond laser pulses of different wavelengths (400 nm and 800 nm) and peak intensities, and by measuring momentum distributions of singly charged positive ions in the direction parallel to laser polarization. For Ne the momentum distributions exhibited a characteristic dip at zero momentum at 800 nm and a complex multipeak structure at 400 nm. Similarly, for Ar the momentum distributions evolved from a complex multipeak structure with a pronounced dip in the centre at 400 nm, to a smooth distribution characteristic of pure tunneling ionization (800 nm, high intensities). In the intermediate regime (800 nm, medium to low intensities), for both atoms we observed recoil ion momentum distributions modulated by quasi-periodic structures usually seen in the photoelectron energy spectra in a multi-photon regime (ATI spectra). Ne did show a characteristic 'dip' at low momentum, while the longitudinal momentum distribution for Ar exhibited a spike at zero momentum instead. The spectra did dramatically change at 400 nm, where both ions show the pronounced dip near zero momentum. Based on our results, we conclude that the structures observed in Ne and Ar momentum distributions reflect the specifics of atomic structure of the two targets and should not be attributed to effects of electron recollision, as was suggested earlier. Instead, as our results indicate, they are due to the effects of multi-photon resonant enhancement of strong-field ionization. (letter to the editor)

  6. Charged hadron transverse momentum distributions in Au+Au collisions at √sNN=200 GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Lee, J. W.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2004-01-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sNN=200 GeV. The spectra were measured for transverse momenta pT from 0.25 to 4.5 GeV/c in a pseudorapidity range of 0.2<η<1.4. The evolution of the spectra is studied as a function of collision centrality, from 65 to 344 participating nucleons. The results are compared to data from proton-antiproton collisions and Au+Au collisions at lower RHIC energies. We find a significant change of the spectral shape between proton-antiproton and semi-peripheral Au+Au collisions. Comparing semi-peripheral to central Au+Au collisions, we find that the yields at high pT exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  7. Pseudorapidity dependence of charged hadron transverse momentum spectra in d+Au collisions at √(sNN )=200 GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.

    2004-12-01

    We have measured the transverse momentum distributions of charged hadrons in d+Au collisions at √(sNN )=200 GeV in the range of 0.5< pT <4.0 GeV/c . The total range of pseudorapidity, η , is 0.2<η<1.4 , where positive η is in the deuteron direction. The data has been divided into three regions of pseudorapidity, covering 0.2<η<0.6 , 0.6<η<1.0 , and 1.0<η<1.4 , and has been compared to charged hadron spectra from p+ p¯ collisions at the same energy. There is a significant change in the spectral shape as a function of pseudorapidity. As η increases we see a decrease in the nuclear modification factor RdAu .

  8. Measurement of multiplicity and momentum spectra in the current fragmentation region of the Breit frame at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-01-01

    Charged particle production has been measured in Deep Inelastic Scattering (DIS) events using the ZEUS detector over a large range of Q 2 from 10 to 1280 GeV 2 . The evolution with Q of the charged multiplicity and scaled momentum has been investigated in the current fragmentation region of the Breit frame. The data are used to study QCD coherence effects in DIS and are compared with corresponding e + e - data in order to test the universality of quark fragmentation. (orig.)

  9. Variation of level density parameter with angular momentum in 119Sb

    International Nuclear Information System (INIS)

    Aggarwal, Mamta; Kailas, S.

    2015-01-01

    Nuclear level density (NLD), a basic ingredient of Statistical Model has been a subject of interest for various decades as it plays an important role in the understanding of a wide variety of Nuclear reactions. There have been various efforts towards the precise determination of NLD and study its dependence on excitation energy and angular momentum as it is crucial in the determination of cross-sections. Here we report our results of theoretical calculations in a microscopic framework to understand the experimental results on inverse level density parameter (k) extracted for different angular momentum regions for 119 Sb corresponding to different γ-ray multiplicities by comparing the experimental neutron energy spectra with statistical model predictions where an increase in the level density with the increasing angular momentum is predicted. NLD and neutron emission spectra dependence on temperature and spin has been studied in our earlier works where the influence of structural transitions due to angular momentum and temperature on level density of states and neutron emission probability was shown

  10. Centrality Dependence of Charged Hadron Transverse Momentum Spectra in Au+Au Collisions from √(sNN)=62.4 to 200 GeV

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2005-03-01

    We have measured transverse momentum distributions of charged hadrons produced in Au+Au collisions at √(sNN)=62.4 GeV. The spectra are presented for transverse momenta 0.25spectra at √(sNN)=62.4 and 200 GeV. The dynamical origin of this surprising factorization of energy and centrality dependence of particle production in heavy-ion collisions remains to be understood.

  11. Earthquake source scaling and self-similarity estimation from stacking P and S spectra

    Science.gov (United States)

    Prieto, GermáN. A.; Shearer, Peter M.; Vernon, Frank L.; Kilb, Debi

    2004-08-01

    We study the scaling relationships of source parameters and the self-similarity of earthquake spectra by analyzing a cluster of over 400 small earthquakes (ML = 0.5 to 3.4) recorded by the Anza seismic network in southern California. We compute P, S, and preevent noise spectra from each seismogram using a multitaper technique and approximate source and receiver terms by iteratively stacking the spectra. To estimate scaling relationships, we average the spectra in size bins based on their relative moment. We correct for attenuation by using the smallest moment bin as an empirical Green's function (EGF) for the stacked spectra in the larger moment bins. The shapes of the log spectra agree within their estimated uncertainties after shifting along the ω-3 line expected for self-similarity of the source spectra. We also estimate corner frequencies and radiated energy from the relative source spectra using a simple source model. The ratio between radiated seismic energy and seismic moment (proportional to apparent stress) is nearly constant with increasing moment over the magnitude range of our EGF-corrected data (ML = 1.8 to 3.4). Corner frequencies vary inversely as the cube root of moment, as expected from the observed self-similarity in the spectra. The ratio between P and S corner frequencies is observed to be 1.6 ± 0.2. We obtain values for absolute moment and energy by calibrating our results to local magnitudes for these earthquakes. This yields a S to P energy ratio of 9 ± 1.5 and a value of apparent stress of about 1 MPa.

  12. Identified hadron spectra from PHOBOS

    Science.gov (United States)

    Veres, Gábor I.; the PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wysłouch, B.; Zhang, J.

    2004-08-01

    Transverse momentum spectra of pions, kaons and protons, as well as antiparticle to particle ratios near mid-rapidity from d+Au collisions at \\sqrt{sNN} = 200 GeV have been measured by the PHOBOS experiment at RHIC. The transverse momentum range of particle identification was extended to beyond 3 GeV/c using the TOF detector and a new trigger system. The pseudorapidity dependence of the nuclear modification factor for charged hadrons in d+Au collisions is presented.

  13. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  14. Alpha Momentum and Price Momentum

    Directory of Open Access Journals (Sweden)

    Hannah Lea Hühn

    2018-05-01

    Full Text Available We analyze a novel alpha momentum strategy that invests in stocks based on three-factor alphas which we estimate using daily returns. The empirical analysis for the U.S. and for Europe shows that (i past alpha has power in predicting the cross-section of stock returns; (ii alpha momentum exhibits less dynamic factor exposures than price momentum and (iii alpha momentum dominates price momentum only in the U.S. Connecting both strategies to behavioral explanations, alpha momentum is more related to an underreaction to firm-specific news while price momentum is primarily driven by price overshooting due to momentum trading.

  15. A Simple Parameterization of the Cosmic-Ray Muon Momentum Spectra at the Surface as a Function of Zenith Angle

    OpenAIRE

    Reyna, D.

    2006-01-01

    The designs of many neutrino experiments rely on calculations of the background rates arising from cosmic-ray muons at shallow depths. Understanding the angular dependence of low momentum cosmic-ray muons at the surface is necessary for these calculations. Heuristically, from examination of the data, a simple parameterization is proposed, based on a straighforward scaling variable. This in turn, allows a universal calculation of the differential muon intensity at the surface for all zenith an...

  16. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    International Nuclear Information System (INIS)

    Tait, E W; Payne, M C; Ratcliff, L E; Haynes, P D; Hine, N D M

    2016-01-01

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. (paper)

  17. Charged Particles Multiplicity and Scaling Violation of Fragmentation Functions in Electron-Positron Annihilation

    International Nuclear Information System (INIS)

    Ghaffary, Tooraj

    2016-01-01

    By the use of data from the annihilation process of electron-positron in AMY detector at 60 GeV center of mass energy, charged particles multiplicity distribution is obtained and fitted with the KNO scaling. Then, momentum spectra of charged particles and momentum distribution with respect to the jet axis are obtained, and the results are compared to the different models of QCD; also, the distribution of fragmentation functions and scaling violations are studied. It is being expected that the scaling violations of the fragmentation functions of gluon jets are stronger than the quark ones. One of the reasons for such case is that splitting function of quarks is larger than splitting function of gluon.

  18. Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at √s=8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A. [Yerevan Physics Institute, Yerevan (Armenia); Adam, W. [Institut für Hochenergiephysik der OeAW, Wien (Austria); Collaboration: The CMS collaboration; and others

    2017-02-20

    The transverse momentum spectra of weak vector bosons are measured in the CMS experiment at the LHC. The measurement uses a sample of proton-proton collisions at √s=8 TeV, collected during a special low-luminosity running that corresponds to an integrated luminosity of 18.4±0.5 pb{sup −1}. The production of W bosons is studied in both electron and muon decay modes, while the production of Z bosons is studied using only the dimuon decay channel. The ratios of W{sup −} to W{sup +} and Z to W differential cross sections are also measured. The measured differential cross sections and ratios are compared with theoretical predictions up to next-to-next leading order in QCD.

  19. Momentum, Fall 2016

    OpenAIRE

    2016-01-01

    Momentum is the quarterly magazine of the Department of Mechanical Engineering at Virginia Tech. In this issue: Nano engineering - Scaling up; Coating 3D objects quickly Energy Harvesting - from soldier's backpacks to nuclear monitoring Hyperloop - team readies pod, university to build test track.

  20. Interplay of soft and hard processes and hadron $p_{T}$ spectra in p A and AA collisions

    CERN Document Server

    Enke, Wang; 10.1103/PhysRevC.64.034901

    2001-01-01

    Motivated by a schematic model of multiple parton scattering within the Glauber formalism, the transverse momentum spectra in pA and AA collisions are analyzed in terms of a nuclear modification factor with respect to pp collisions. The existing data at the CERN Super Proton Synchrotron energies are shown to be consistent with the picture of Glauber multiple scattering in which the interplay between soft and hard processes and the effect of absorptive processes lead to nontrivial nuclear modification of the particle spectra. Relative to the additive model of incoherent hard scattering, the spectra are enhanced at large p/sub T/ (hard) by multiple scattering while suppressed at low p/sub T/ (soft) by absorptive correction with the transition occurring at around a scale p/sub 0/~1-2 GeV/c that separates soft and hard processes. Around the same scale, the p/sub T / spectra in pp collisions also change from an exponential form at low p/sub T/ to a power-law behavior at high p/sub T/. At very large p/sub T/>>p/sub...

  1. The gamma-ray spectra of 5-carbon alkane isomers in the positron annihilation process

    International Nuclear Information System (INIS)

    Ma, Xiaoguang; Zhu, Yinghao; Liu, Yang

    2016-01-01

    The gamma-ray spectra of pentane (C_5H_1_2) and its two isomers, i.e., 2-Methylbutane (CH_3C(CH_3)HC_2H_5) and 2,2-Dimethylpropane (C(CH_3)_4) have been studied theoretically in the present work. The recent experimental gamma-ray spectra of these three molecules show that they have the same Doppler shifts, although their molecular structures are dramatically different. In order to reveal why the gamma-ray spectra of these molecules are less sensitive to the molecular structures, the one-dimensional gamma-ray spectra and spherically averaged momentum (SAM) distributions, the two-dimensional angular correlation of annihilation radiation (ACAR), and the three-dimensional momentum distributions of the positron–electron pair are studied. The one-centered momentum distributions of the electrons are found to play more important role than the multi-centered coordinate distributions. The present theoretical predictions have confirmed the experimental findings for the first time. The dominance of the inner valence electrons in the positron–electron annihilation process has also been suggested in the present work. - Highlights: • The structure effects only play a minor role in the one-dimension gamma-ray spectra. • The present study further confirms the dominance of the inner valence electrons in the positron–electron annihilation process. • The momentum distributions of the electrons play more important role than the coordinate distributions.

  2. Momentum spectra of electrons rescattered from rare-gas targets following their extraction by one- and two-color femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ray, D.; Chen Zhangjin; De, S.; Cao, W.; Le, A. T.; Lin, C. D.; Cocke, C. L.; Litvinyuk, I. V.; Kling, M. F.

    2011-01-01

    We have used velocity-map imaging to measure the three-dimensional momenta of electrons rescattered from Xe and Ar following the liberation of the electrons from these atoms by 45 fs, 800 nm intense laser pulses. Strong structure in the rescattering region is observed in both angle and energy, and is interpreted in terms of quantitative rescattering (QRS) theory. Momentum images have also been taken with two-color (800 nm + 400 nm) pulses on Xe targets. A strong dependence of the spectra on the relative phase of the two colors is observed in the rescattering region. Interpretation of the phase dependence using both QRS theory and a full solution to the time-dependent Schroedinger equation shows that the rescattered electrons provide a much more robust method for determining the relative phase of the two colors than do the direct electrons.

  3. Trapped Bose-Einstein condensates with Planck-scale induced deformation of the energy-momentum dispersion relation

    International Nuclear Information System (INIS)

    Briscese, F.

    2012-01-01

    We show that harmonically trapped Bose-Einstein condensates can be used to constrain Planck-scale physics. In particular we prove that a Planck-scale induced deformation of the Minkowski energy-momentum dispersion relation δE≃ξ 1 mcp/2M p produces a shift in the condensation temperature T c of about ΔT c /T c 0 ≃10 -6 ξ 1 for typical laboratory conditions. Such a shift allows to bound the deformation parameter up to |ξ 1 |≤10 4 . Moreover we show that it is possible to enlarge ΔT c /T c 0 and improve the bound on ξ 1 lowering the frequency of the harmonic trap. Finally we compare the Planck-scale induced shift in T c with similar effects due to interboson interactions and finite size effects.

  4. Angular momentum from tidal torques

    International Nuclear Information System (INIS)

    Barnes, J.; Efstathiou, G.; Cambridge Univ., England)

    1987-01-01

    The origin of the angular momentum of bound objects in large N-body simulations is studied using three sets of models. One model with white-noise initial conditions is analyzed as well as two in which the initial conditions have more power on large scales, as predicted in models with cold dark matter. The growth and distribution of angular momentum in individual objects is studied and it is found that the specific angular momentum distribution of bound clumps increases in a near linear fashion with radius while the orientation of the angular momentum in the inner high-density regions is often poorly correlated with that of the outer parts. It is also found that the dimensionless spin parameter is insensitive to the initial perturbation spectrum and has a median value of about 0.05. 61 references

  5. A symmetry based study of positron annihilation spectra

    International Nuclear Information System (INIS)

    Adam, G.; Adam, S.; Inst. of Physics and Nuclear Engineering, Bucharest

    1995-01-01

    The authors describe a method for off-line analysis of spectra measured by two-dimensional angular correlation of annihilation radiation (2D-ACAR) positron spectroscopy. The method takes into account, at all its stages, two salient data features: the piecewise constant discretization of the 2D physical momentum distribution into square pixels, performed by the setup, and the occurrence of a characteristic 2D projected symmetry of the positron-electron pair momentum distribution. Several validating criteria are derived which secure significantly increased reliability of the output. The method is tested on 2D-ACAR spectra measured on (R)Ba 2 Cu 3 O 7-δ (R123; R = Y, Dy) single crystals. It resolves ridge Fermi surfaces (FS) up to 3rd Umklapp components on both kinds of R123 spectra. Moreover, on a c-axis-projected Y123 spectrum, measured at 300 K, it resolves a small but clear signature of the pillbox FS at the S point of the first Brillouin zone as well

  6. Inclusive zero-angle neutron spectra at the ISR and OPER-model

    International Nuclear Information System (INIS)

    Grigoryan, A.A.

    1977-01-01

    The invlusive zero-angle neutron spectra in pp-collisions measured at the ISR are compared with the OPER-model predictions. OPER-model rather well describes the experimental data. Some features of the spectra behaviour at fixed transverse momentum and large x are considered

  7. Density functional theory calculations of energy-loss carbon near-edge spectra of small diameter armchair and zigzag nanotubes: Core-hole, curvature, and momentum-transfer orientation effects

    International Nuclear Information System (INIS)

    Titantah, J.T.; Lamoen, D.; Jorissen, K.

    2004-01-01

    We perform density functional theory calculations on a series of armchair and zigzag nanotubes of diameters less than 1 nm using the all-electron full-potential(-linearized)-augmented-plane-wave method. Emphasis is laid on the effects of curvature, the electron-beam orientation, and the inclusion of the core hole on the carbon electron-energy-loss K edge. The electron-energy-loss near-edge spectra of all the studied tubes show strong curvature effects compared to that of flat graphene. The curvature-induced π-σ hybridization is shown to have a more drastic effect on the electronic properties of zigzag tubes than on those of armchair tubes. We show that the core-hole effect must be accounted for in order to correctly reproduce electron-energy-loss measurements. We also find that the energy-loss near-edge spectra of these carbon systems are dominantly dipole selected and that they can be expressed simply as a proportionality with the local momentum projected density of states, thus portraying the weak energy dependence of the transition matrix elements. Compared to graphite, we report a reduction in the anisotropy as seen on the energy-loss near-edge spectra of carbon nanotubes

  8. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    K. G. McNaughton

    2007-06-01

    Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".

    We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (zi εo2/3, where zi is inversion height and εo is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z εo2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.

    We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2. That is, the lengths of the thermal structures depend on both the lengths of the

  9. Angular momentum of dwarf galaxies

    Science.gov (United States)

    Kurapati, Sushma; Chengalur, Jayaram N.; Pustilnik, Simon; Kamphuis, Peter

    2018-05-01

    Mass and specific angular momentum are two fundamental physical parameters of galaxies. We present measurements of the baryonic mass and specific angular momentum of 11 void dwarf galaxies derived from neutral hydrogen (HI) synthesis data. Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the derived curves generally overlap within the error bars, except in the central regions where, as expected, the 3D routines give steeper curves. The specific angular momentum of void dwarfs is found to be high compared to an extrapolation of the trends seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular galaxies that lie outside of voids. As such, our data show no evidence for a dependence of the specific angular momentum on the large scale environment. Combining our data with the data from the literature, we find a baryonic threshold of ˜109.1 M⊙ for this increase in specific angular momentum. Interestingly, this threshold is very similar to the mass threshold below which the galaxy discs start to become systematically thicker. This provides qualitative support to the suggestion that the thickening of the discs, as well as the increase in specific angular momentum, are both results of a common physical mechanism, such as feedback from star formation. Quantitatively, however, the amount of star formation observed in our dwarfs appears insufficient to produce the observed increase in specific angular momentum. It is hence likely that other processes, such as cold accretion of high angular momentum gas, also play a role in increasing the specific angular momentum.

  10. Transverse-momentum scaling in pi /sup +or-/, K/sup +or-/, p, p production in proton-proton inclusive reactions at very high energies

    CERN Document Server

    Misra, R C

    1975-01-01

    Experimental measurements made on pp reactions at CERN ISR are discussed. The dependence on transverse momentum is approximately exponential for pi /sup +or-/ and K/sup +or-/ production, while for antiprotons and protons in the fragmentation region the dependence is better represented by a Gaussian form. It is shown that a generalised formalism can be set up, similar to KNO scaling, for the transverse momentum distribution of the produced particles and the production process can be either exponential or Gaussian. (11 refs).

  11. Angular momentum dependence of the distribution of shell model eigenenergies

    International Nuclear Information System (INIS)

    Yen, M.K.

    1974-01-01

    In the conventional shell model calculation the many-particle energy matrices are constructed and diagonalized for definite angular momentum and parity. However the resulting set of eigenvalues possess a near normal behavior and hence a simple statistical description is possible. Usually one needs only about four parameters to capture the average level densities if the size of the set is not too small. The parameters are essentially moments of the distribution. But the difficulty lies in the yet unsolved problem of calculating moments in the fixed angular momentum subspace. We have derived a formula to approximate the angular momentum projection dependence of any operator averaged in a shell model basis. This approximate formula which is a truncated series in Hermite polynomials has been proved very good numerically and justified analytically for large systems. Applying this formula to seven physical cases we have found that the fixed angular momentum projection energy centroid, width and higher central moments can be obtained accurately provided for even-even nuclei the even and odd angular momentum projections are treated separately. Using this information one can construct the energy distribution for fixed angular momentum projection assuming normal behavior. Then the fixed angular momentum level densities are deduced and spectra are extracted. Results are in reasonably good agreement with the exact values although not as good as those obtained using exact fixed angular momentum moments. (Diss. Abstr. Int., B)

  12. Ghost Imaging Using Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    赵生妹; 丁建; 董小亮; 郑宝玉

    2011-01-01

    We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to K with increment n/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object.%We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum.In the signal arm,object spatial information is encoded as a phase matrix.For an N-grey-scale object,different phase matrices,varying from 0 to π with increment π/N,are used for different greyscales,and then they are modulated to a signal beam by a spatial light modulator.According to the conservation of the orbital angular momentum in the ghost imaging system,these changes will give different coincidence rates in measurement,and hence the object information can be extracted in the idler arm.By simulations and experiments,the results show that our scheme can improve the resolution of the image effectively.Compared with another encoding method using orbital angular momentum,our scheme has a better performance for both characters and the image object.

  13. GEANT4 hadronic cascade models analysis of proton and charged pion transverse momentum spectra from p plus Cu and Pb collisions at 3, 8, and 15 GeV/c

    CERN Document Server

    Abdel-Waged, Khaled; Uzhinskii, V V

    2011-01-01

    We describe how various hadronic cascade models, which are implemented in the GEANT4 toolkit, describe proton and charged pion transverse momentum spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c, recently measured in the hadron production (HARP) experiment at CERN. The Binary, ultrarelativistic quantum molecular dynamics (UrQMD) and modified FRITIOF (FTF) hadronic cascade models are chosen for investigation. The first two models are based on limited (Binary) and branched (UrQMD) binary scattering between cascade particles which can be either a baryon or meson, in the three-dimensional space of the nucleus, while the latter (FTF) considers collective interactions between nucleons only, on the plane of impact parameter. It is found that the slow (p(T) 0.3 GeV/c) proton spectra are not strongly affected by the differences between the FTF and UrQMD models. It is also shown that the UrQMD and FTF combined with Binary (FTFB) models could reproduce both proton and charged pion spectra from p + Cu and Pb...

  14. Complete single ionization momentum spectra for strong perturbation collisions

    International Nuclear Information System (INIS)

    Olson, R.E.; Wood, C.J.

    1997-09-01

    The combination of recoil ion and ionized electron momentum spectroscopy provides an unparalleled method to investigate the details of ion-atom collision dynamics in kinematically complete experiments. To predict singleionization scattering behavior at the level now realized by experiment, the classical trajectory three-body Monte Carlo method has been used to obtain complete momenta information for the ionized electron, recoil ion, and projectile in the collision plane defined by the incident projectile and outgoing recoil ion. Strongly coupled systems were considered where the charge state of the projectile divided by the speed of the collision q/v is greater than unity. Illustrated are 3.6 MeV/u Se 28+ and 9.5 MeV/u Ni 26+ collisions on He where experimental data are available. The theoretical results are in good agreement with these data and calculations have been performed for 165 keV/u and 506 keV/u C 6+ +He to compare results for the same q/v perturbation strengths. (orig.)

  15. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface

    Science.gov (United States)

    Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.

    2017-12-01

    Within the lowest kilometer of the Earth’s atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber, or frequency. Spectra are derived from Fourier transforms of wind records as functions of space or time corresponding to wavenumber and frequency spectra, respectively. Atmospheric spectra often exhibit different subranges that can be distinguished and scaled by the physical parameters responsible for: (1) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen’s early work in 1953 ‘on the spectrum of energy in turbulent shear flow’ led Tchen to predict a shear production subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured in a meteorological mast at Høvsøre, Denmark, that support Tchen’s prediction of a shear production subrange following a distinct power law of degree -1

  16. Scaled momentum distributions for K0s and Lambda/bar Lambda in DIS at HERA

    CERN Document Server

    Abramowicz, H.

    2012-01-01

    Scaled momentum distributions for the strange hadrons K0s and Lambda/bar Lambda were measured in deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 330 pb-1. The evolution of these distributions with the photon virtuality, Q2, was studied in the kinematic region 10 < Q2 < 40000 GeV2 and 0.001 < x < 0.75, where x is the Bjorken scaling variable. Clear scaling violations are observed. Predictions based on different approaches to fragmentation were compared to the measurements. Tuned leading-logarithm parton-shower Monte Carlo calculations interfaced to the Lund string fragmentation model describe the data reasonably well in the whole range measured. Next-to-leading-order QCD calculations based on fragmentation functions, FFs, extracted from e+e- data alone, fail to describe the measurements. The calculations based on FFs extracted from a global analysis including e+e-, ep and pp data give an improved description. The measurements presented in this paper hav...

  17. Inclusive transverse momentum distributions of charged particles in diffractive and non-diffractive photoproduction at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-03-01

    Inclusive transverse momentum spectra of charged particles in photoproduction events in the laboratory pseudorapidity range -1.2 T =8 GeV using the ZEUS detector. Diffractive and non-diffractive reactions have been selected with an average γp centre of mass (c.m.) energy of =180 GeV. For diffractive reactions, the p T spectra of the photon dissociation events have been measured in two intervals of the dissociated photon mass with mean values X >=5 GeV and 10 GeV. The inclusive transverse momentum spectra fall exponentially in the low p T region. The non-diffractive data show a pronounced high p T tail departing from the exponential shape. The p T distributions are compared to lower energy photoproduction data and to hadron-hadron collisions at a similar c.m. energy. The data are also compared to the results of a next-to-leading order QCD calculation. (orig.)

  18. Toward a general theory of momentum-like effects.

    Science.gov (United States)

    Hubbard, Timothy L

    2017-08-01

    The future actions, behaviors, and outcomes of objects, individuals, and processes can often be anticipated, and some of these anticipations have been hypothesized to result from momentum-like effects. Five types of momentum-like effects (representational momentum, operational momentum, attentional momentum, behavioral momentum, psychological momentum) are briefly described. Potential similarities involving properties of momentum-like effects (continuation, coherence, role of chance or guessing, role of sensory processing, imperviousness to practice or error feedback, shifts in memory for position, effects of changes in velocity, rapid occurrence, effects of retention interval, attachment to an object rather than an abstract frame of reference, nonrigid transformation) are described, and potential constraints on a future theory of momentum-like effects (dynamic representation, nature of extrapolation, sensitivity to environmental contingencies, bridging gaps between stimulus and response, increasing adaptiveness to the environment, serving as a heuristic for perception and action, insensitivity to stimulus format, importance of subjective consequences, role of knowledge and belief, automaticity of occurrence, properties of functional architecture) are discussed. The similarity and ubiquity of momentum-like effects suggests such effects might result from a single or small number of mechanisms that operate over different dimensions, modalities, and time-scales and provide a fundamental adaptation for perception and action. Copyright © 2017. Published by Elsevier B.V.

  19. Event Patterns Extracted from Transverse Momentum and Rapidity Spectra of Z Bosons and Quarkonium States Produced in pp and Pb-Pb Collisions at LHC

    Directory of Open Access Journals (Sweden)

    Ya-Hui Chen

    2016-01-01

    Full Text Available Transverse momentum (pT and rapidity (y spectra of Z bosons and quarkonium states (some charmonium cc¯ mesons such as J/ψ and ψ(2S and some bottomonium bb¯ mesons such as Υ(1S, Υ(2S, and Υ(3S produced in proton-proton (pp and lead-lead (Pb-Pb collisions at the large hadron collider (LHC are uniformly described by a hybrid model of two-component Erlang distribution for pT spectrum and two-component Gaussian distribution for y spectrum. The former distribution results from a multisource thermal model, and the latter one results from the revised Landau hydrodynamic model. The modelling results are in agreement with the experimental data measured in pp collisions at center-of-mass energies s=2.76 and 7 TeV and in Pb-Pb collisions at center-of-mass energy per nucleon pair sNN=2.76 TeV. Based on the parameter values extracted from pT and y spectra, the event patterns (particle scatter plots in two-dimensional pT-y space and in three-dimensional velocity space are obtained.

  20. Parity at the Planck scale

    Science.gov (United States)

    Arzano, Michele; Gubitosi, Giulia; Magueijo, João

    2018-06-01

    We explore the possibility that well known properties of the parity operator, such as its idempotency and unitarity, might break down at the Planck scale. Parity might then do more than just swap right and left polarized states and reverse the sign of spatial momentum k: it might generate superpositions of right and left handed states, as well as mix momenta of different magnitudes. We lay down the general formalism, but also consider the concrete case of the Planck scale kinematics governed by κ-Poincaré symmetries, where some of the general features highlighted appear explicitly. We explore some of the observational implications for cosmological fluctuations. Different power spectra for right handed and left handed tensor modes might actually be a manifestation of deformed parity symmetry at the Planck scale. Moreover, scale-invariance and parity symmetry appear deeply interconnected.

  1. Development of a Simple Positron Age-Momentum Setup

    Science.gov (United States)

    Sheffield, Thomas; Quarles, C. A.

    2009-04-01

    A positron age-momentum setup that uses NIM Bin electronic modules and a conventional multichannel analyzer (MCA) is described. The essential idea is to accumulate a Doppler broadened spectrum (sensitive to the annihilation electron momentum) using a high purity Germanium detector in coincidence with a BaF2 scintillation counter, which also serves as the stop signal in a conventional positron lifetime setup. The MCA that collects the Doppler spectrum is gated by a selected region of the lifetime spectrum. Thus we can obtain Doppler broadening spectra as a function of positron lifetime: an age-momentum spectrum. The apparatus has been used so far to investigate a ZnO sample where the size of different vacancy trapping sites may affect the positron lifetime and the Doppler broadening spectrum. We are also looking at polymer and rubber carbon-black composite samples where differences in the Doppler spectrum may arise from positron trapping or positronium formation in the samples. Correction for background and contribution from the positron source itself to the Doppler spectrum will be discussed.

  2. Pi zero hadronic production with large transverse momentum at 200 GeV/c

    International Nuclear Information System (INIS)

    Moniez, M.

    1984-03-01

    This thesis presents some measurements of the cross-sections of high transverse momentum π 0 meson hadronic events. 200 GeV/c π + , π - , proton, K + and K - particles constitute the beams which interact with a 12 C fixed target. A method for the discrimination of high transverse momentum π 0 in the NA3 experiment detector is detailed. With pion and proton beams, we obtain spectra from the observed signal which are compatible with existing data and extend the range of π 0 production measurements to 5.8 GeV/c transverse momentum. The π 0 production ratio between proton and pion beams is compared with theoretical expectations. First measurements of π 0 production with K + and K - beams are performed over two transverse momentum ranges. The spectrometer of the apparatus allows some measurements on π 0 related charged particles: search for charged rho and study of the mean transverse momentum of recoil fragment components [fr

  3. Angular momentum projection of cranked PNC wave function

    International Nuclear Information System (INIS)

    Han Yong

    2000-01-01

    In studying the properties of nuclear higher-spin states, not only the K-mixture needed to be taken into account, but also the Coriolis interaction (the cranking term) should be introduced. The cranking term breaks the time reversal symmetry, and the projection of the single-particle angular momentum on the intrinsic symmetric axis is no longer a good quantum number. This makes the theoretical calculation somewhat complicated. However, considering some intrinsic symmetry in a nucleus, it is not very difficult to apply the angular momentum projection technique to the PNC wave functions including the cranking components (the cranked PNC wave functions). The fundamental expressions for calculating the nuclear energy spectra and the electromagnetic properties are deduced and evaluated in theory, consequently the feasibility of actualizing the present scheme is made clear

  4. Directional Wave Spectra Observed During Intense Tropical Cyclones

    Science.gov (United States)

    Collins, C. O.; Potter, H.; Lund, B.; Tamura, H.; Graber, H. C.

    2018-02-01

    Two deep-sea moorings were deployed 780 km off the coast of southern Taiwan for 4-5 months during the 2010 typhoon season. Directional wave spectra, wind speed and direction, and momentum fluxes were recorded on two Extreme Air-Sea Interaction buoys during the close passage of Severe Tropical Storm Dianmu and three tropical cyclones (TCs): Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. Conditions sampled include significant wave heights up to 11 m and wind speeds up to 26 m s-1. Details varied for large-scale spectral structure in frequency and direction but were mostly bimodal. The modes were generally composed of a swell system emanating from the most intense storm region and local wind-seas. The peak systems were consistently young, meaning actively forced by winds, when the storms were close. During the peaks of the most intense passages—Chaba at the northern mooring and Megi at the southern—the bimodal seas coalesced. During Chaba, the swell and wind-sea coupling directed the high frequency waves and the wind stress away from the wind direction. A spectral wave model was able reproduce many of the macrofeatures of the directional spectra.

  5. Scalings, spectra, and statistics of strong wave turbulence

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1996-01-01

    A two-component model of strongly nonlinear wave turbulence is developed for a broad class of systems in which high-frequency electrostatic waves interact with low-frequency sound-like waves. In this model coherent nonlinear wave packets form and collapse amid a sea of incoherent background waves. It is shown that three classes of turbulence exist, typified by Langmuir, lower-hybrid, and upper-hybrid turbulence. Balance between power input to incoherent waves, and dissipation at the end of collapse determines power-law scalings of turbulent electrostatic energy density, density fluctuations, length and time scales. Knowledge of the evolution of collapsing packets enables probability distributions of the magnitudes of electric fields and density fluctuations to be calculated, yielding power-law dependences. Wavenumber spectra of collapsing waves and associated density fluctuations are also calculated and shown to have power-law forms. Applications to Langmuir, lower-hybrid, and upper-hybrid waves are discussed. In the Langmuir case the results agree with earlier theory and simulations, with one exception, which is consistent only with earlier simulations. In the lower-hybrid and upper-hybrid cases, the results are consistent with the few simulations to date. copyright 1996 American Institute of Physics

  6. Impact of Coulomb potential on peak structures arising in momentum and low-energy photoelectron spectra produced in strong-field ionization of laser-irradiated atoms

    Science.gov (United States)

    Pyak, P. E.; Usachenko, V. I.

    2018-03-01

    The phenomenon of pronounced peak structure(s) of longitudinal momentum distributions as well as a spike-like structure of low-energy spectra of photoelectrons emitted from laser-irradiated Ar and Ne atoms in a single ionization process is theoretically studied in the tunneling and multiphoton regimes of ionization. The problem is addressed assuming only the direct above-threshold ionization (ATI) as a physical mechanism underlying the phenomenon under consideration (viz. solely contributing to observed photoelectron momentum distributions (PMD)) and using the Coulomb-Volkov (CV) ansatz within the frame of conventional strong-field approximation (SFA) applied in the length-gauge formulation. The developed CV-SFA approach also incorporates the density functional theory essentially exploited for numerical composition of initial (laser-free) atomic state(s) constructed from atomic orbitals of Gaussian type. Our presented CV-SFA based (and laser focal-volume averaged) calculation results proved to be well reproducing both the pronounced double-peak and/or ATI-like multi-peak structure(s) experimentally observed in longitudinal PMD under conditions of tunneling and/or multiphoton regime, respectively. In addition, our CV-SFA results presented for tunneling regime also suggest and remarkably reproduce a pronounced structure observed in relevant experiments as a ‘spike-like’ enhanced maximum arising in low-energy region (around the value of about 1 eV) of photoelectron spectra. The latter consistency allows to identify and interpret these results as the so-called low-energy structure (LES) since the phenomenon proved to appear as the most prominent if the influence of Coulomb potential on photoelectron continuum states is maximally taken into account under calculations (viz. if the parameter Z in CV’s functions is put equal to 1). Moreover, the calculated LES proved to correspond (viz., established as closely related) to the mentioned double-peak structure arising

  7. Deconvoluting double Doppler spectra

    International Nuclear Information System (INIS)

    Ho, K.F.; Beling, C.D.; Fung, S.; Chan, K.L.; Tang, H.W.

    2001-01-01

    The successful deconvolution of data from double Doppler broadening of annihilation radiation (D-DBAR) spectroscopy is a promising area of endeavour aimed at producing momentum distributions of a quality comparable to those of the angular correlation technique. The deconvolution procedure we test in the present study is the constrained generalized least square method. Trials with computer simulated DDBAR spectra are generated and deconvoluted in order to find the best form of regularizer and the regularization parameter. For these trials the Neumann (reflective) boundary condition is used to give a single matrix operation in Fourier space. Experimental D-DBAR spectra are also subject to the same type of deconvolution after having carried out a background subtraction and using a symmetrize resolution function obtained from an 85 Sr source with wide coincidence windows. (orig.)

  8. Investigation of the molecular conformations of ethanol using electron momentum spectroscopy

    International Nuclear Information System (INIS)

    Ning, C G; Luo, Z H; Huang, Y R; Liu, K; Zhang, S F; Deng, J K; Hajgato, B; Morini, F; Deleuze, M S

    2008-01-01

    The valence electronic structure and momentum-space electron density distributions of ethanol have been investigated with our newly constructed high-resolution electron momentum spectrometer. The measurements are compared to thermally averaged simulations based on Kohn-Sham (B3LYP) orbital densities as well as one-particle Green's function calculations of ionization spectra and Dyson orbital densities, assuming Boltzmann's statistical distribution of the molecular structure over the two energy minima defining the anti and gauche conformers. One-electron ionization energies and momentum distributions in the outer-valence region were found to be highly dependent upon the molecular conformation. Calculated momentum distributions indeed very sensitively reflect the distortions and topological changes that molecular orbitals undergo due to the internal rotation of the hydroxyl group, and thereby exhibit variations which can be traced experimentally. The B3LYP model Kohn-Sham orbital densities are overall in good agreement with the experimental distributions, and closely resemble benchmark ADC(3) Dyson orbital densities. Both approaches fail to quantitatively reproduce the experimental momentum distributions characterizing the highest occupied molecular orbital. Since electron momentum spectroscopy measurements at various electron impact energies indicate that the plane wave impulse approximation is valid, this discrepancy between theory and experiment is tentatively ascribed to thermal disorder, i.e. large-amplitude and thermally induced dynamical distortions of the molecular structure in the gas phase

  9. Nuclear level density parameter 's dependence on angular momentum

    International Nuclear Information System (INIS)

    Aggarwal, Mamta; Kailas, S.

    2009-01-01

    Nuclear level densities represent a very important ingredient in the statistical Model calculations of nuclear reaction cross sections and help to understand the microscopic features of the excited nuclei. Most of the earlier experimental nuclear level density measurements are confined to low excitation energy and low spin region. A recent experimental investigation of nuclear level densities in high excitation energy and angular momentum domain with some interesting results on inverse level density parameter's dependence on angular momentum in the region around Z=50 has motivated us to study and analyse these experimental results in a microscopic theoretical framework. In the experiment, heavy ion fusion reactions are used to populate the excited and rotating nuclei and measured the α particle evaporation spectra in coincidence with ray multiplicity. Residual nuclei are in the range of Z R 48-55 with excitation energy range 30 to 40 MeV and angular momentum in 10 to 25. The inverse level density parameter K is found to be in the range of 9.0 - 10.5 with some exceptions

  10. Collective processes in heavy-ion collisions with atomic nuclei. Dissipation of energy and angular momentum

    International Nuclear Information System (INIS)

    Kuzminski, J.

    1980-01-01

    The collective processes in collision of heavy-ions with atomic nuclei are discussed. Measured data on the S+Ti collision at Esub(LAB)=105, 130 and 144 MeV have been analysed in terms of a ''fission-like'' processes which seem to be a special case of deep inelastic collisions whose total available kinetic energy is completely dissipated. Applying transport theory it was possible to introduce a ''clock'' for measuring the time scale of nuclear processes in collision of heavy-ions by measuring the FWHM of mass distribution of emitted reaction products. Experimental data on continuum gamma spectra from Cu+Au collision at Esub(LAB)=400 MeV are presented and the angular momentum dissipation in this reaction is discussed. (author)

  11. Finite-momentum condensation in a pumped microcavity

    International Nuclear Information System (INIS)

    Brierley, R. T.; Eastham, P. R.

    2010-01-01

    We calculate the absorption spectra of a semiconductor microcavity into which a nonequilibrium exciton population has been pumped. We predict strong peaks in the spectrum corresponding to collective modes analogous to the Cooper modes in superconductors and fermionic atomic gases. These modes can become unstable, leading to the formation of off-equilibrium quantum condensates. We calculate a phase diagram for condensation and show that the dominant instabilities can be at a finite momentum. Thus we predict the formation of inhomogeneous condensates, similar to Fulde-Ferrel-Larkin-Ovchinnikov states.

  12. Dynamics of high momentum transfer processes

    International Nuclear Information System (INIS)

    Efremov, A.V.

    1977-01-01

    The high momentum transfer processes are considered in terms of field theory of quarks interacting through scalar or pseudoscalar gluons. This approach is based on an algorithm involving the consideration of the Feynman diagram asymptotical behaviour and its summation. The Parton model and quark counting power are an approximation of not too high momentum transfer when anti g 2 (q 2 )ln(-q 2 /Λ) 2 -invariant charge, Λ-boundary parameter. The violation of scaling beyond this region depends on the character of charge renormalization and is of the same kind as in the Wilson expansion approach. Scaling in this region is suppressed by anti g 4 factor for high psub(UPSILON) hadroproduction and wide angle elastic scattering, and by anti g 2 factor for inclusive lepton production and wide angle electro- and photoproduction. Parameter Λ is controlled by hadron masses and can be essential for not too high psub(UPSILON)

  13. Anomalous nuclear enhancement of inclusive spectra at large transverse momentum

    International Nuclear Information System (INIS)

    Krzywicki, Andre.

    1976-01-01

    A parton model interpretation of the anomalous nuclear enhancement of inclusive spectra, observed by Cronin et al is proposed. It seems that the picture representing a nucleus as a collection of quasi-free nucleons in slow relative motion is incorrect when the nucleus is probed during a very short time. This conjecture rests on an extension to nuclei of the Kuti and Weisskopf parton model. A list of observable predictions concerning both hadronic and leptonic interactions with nuclei is given [fr

  14. Symmetric large momentum transfer for atom interferometry with BECs

    Science.gov (United States)

    Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Rasel, Ernst M.; Quantus Collaboration

    2017-04-01

    We develop and demonstrate a novel scheme for a symmetric large momentum transfer beam splitter for interferometry with Bose-Einstein condensates. Large momentum transfer beam splitters are a key technique to enhance the scaling factor and sensitivity of an atom interferometer and to create largely delocalized superposition states. To realize the beam splitter, double Bragg diffraction is used to create a superposition of two symmetric momentum states. Afterwards both momentum states are loaded into a retro-reflected optical lattice and accelerated by Bloch oscillations on opposite directions, keeping the initial symmetry. The favorable scaling behavior of this symmetric acceleration, allows to transfer more than 1000 ℏk of total differential splitting in a single acceleration sequence of 6 ms duration while we still maintain a fraction of approx. 25% of the initial atom number. As a proof of the coherence of this beam splitter, contrast in a closed Mach-Zehnder atom interferometer has been observed with up to 208 ℏk of momentum separation, which equals a differential wave-packet velocity of approx. 1.1 m/s for 87Rb. The presented work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).

  15. Calculation of gamma spectra for positron annihilation on molecules

    Energy Technology Data Exchange (ETDEWEB)

    Green, Dermot G; Gribakin, G F [Centre for Theoretical Atomic, Molecular and Optical Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Wang, F [Centre for Molecular Simulation, Sinburne University of Technology, Melbourne, Victoria 3122 (Australia); Surko, C M, E-mail: dgreen09@qub.ac.u [Physics Department, University of California, San Diego, La Jolla, California 92093-0319 (United States)

    2009-11-01

    Gamma spectra for positron annihilation on molecules are calculated based on molecular electron momentum densities and using an atomic adjustment factor that accounts for the positron. Results for H{sub 2} agree well with experiment. Analysis of methane and larger alkanes and their substitutes is underway.

  16. Increased Elemental Specificity of Positron Annihilation Spectra

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Alatalo, M.; Ghosh, V.J.; Kruseman, A.C.; Nielsen, B.; Lynn, K.G.

    1996-01-01

    Positron annihilation spectroscopy (PAS) is a sensitive probe for studying the electronic structure of defects in solids. We show that the high-momentum part of the Doppler-broadened annihilation spectra can be used to distinguish different elements. This is achieved by using a new two-detector coincidence system to examine the line shape variations originating from high-momentum core electrons. Because the core electrons retain their atomic character even when atoms form a solid, these results can be directly compared to simple theoretical predictions. The new approach adds increased elemental specificity to the PAS technique, and is useful in studying the elemental variations around a defect site. copyright 1996 The American Physical Society

  17. Scaled momentum distributions for K0S and Λ/ anti Λ in DIS at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2011-11-01

    Scaled momentum distributions for the strange hadrons K S 0 and Λ/ anti Λ were measured in deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 330 pb -1 . The evolution of these distributions with the photon virtuality, Q 2 , was studied in the kinematic region 10 2 2 and 0.001 + e - data alone, fail to describe the measurements. The calculations based on FFs extracted from a global analysis including e + e - , ep and pp data give an improved description. The measurements presented in this paper have the potential to further constrain the FFs of quarks, anti-quarks and gluons yielding K S 0 and Λ/ anti Λ strange hadrons. (orig.)

  18. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    International Nuclear Information System (INIS)

    Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.

    2011-01-01

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.

  19. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyev, C. N.; Volyar, A. V. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Yavorsky, M. A. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Universite Bordeaux and CNRS, LOMA, UMR 5798, FR-33400 Talence (France)

    2011-12-15

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.

  20. Can the Fermi-motion of partons recover canonical scaling in hadronic high-psub(T) processes

    International Nuclear Information System (INIS)

    Halzen, F.; Ringland, G.A.; Roberts, R.G.

    1977-10-01

    A study is made of the effects on high psub(T) spectra of hadrons when partons are allowed to have transverse momentum (Fermi-motion). It is found that: (i) the importance of Fermi-motion depends crucially on the treatment of 'soft' parton-parton collisions; (ii) recent claims that values of approximately equal 0.6 GeV/c allow canonically scaling quark-quark scattering to describe the data are not confirmed; and (iii) even larger values of , however implausible, cannot reconcile canonical scaling with the present data. (author)

  1. Lattice study of the gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (Department of Physics, Washington University, St. Louis, Missouri 63130 (United States)); Parrinello, C. (Physics Department, New York University, 4 Washington Place, New York, New York 10003 (United States) Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)); Soni, A. (Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States))

    1994-02-01

    We consider pure glue QCD at [beta]=5.7, [beta]=6.0, and [beta]=6.3. We evaluate the gluon propagator both in time at zero three-momentum and in momentum space. From the former quantity we obtain evidence for a dynamically generated effective mass, which at [beta]=6.0 and [beta]=6.3 increases with the time separation of the sources, in agreement with earlier results. The momentum space propagator [ital G]([ital k]) provides further evidence for mass generation. In particular, at [beta]=6.0, for 300 MeV[approx lt][ital k][approx lt]1 GeV, the propagator [ital G]([ital k]) can be fit to a continuum formula proposed by Gribov and others, which contains a mass scale [ital b], presumably related to the hadronization mass scale. For higher momenta Gribov's model no longer provides a good fit, as [ital G]([ital k]) tends rather to follow an inverse power law [approx]1/[ital k][sup 2+[gamma

  2. Approximate angular momentum projection from cranked intrinsic states

    International Nuclear Information System (INIS)

    Goodman, A.L.

    1979-01-01

    High-spin spectra are determined by approximately projecting states of good angular momentum from cranked Hartree-Fock-Bogoliubov (CHFB) wave functions. For each J the projected energy is E/sub PROJ/ approx. = E/sub CHFB/ - (ΔJ) 2 /2 J/sub CHFB/, where the moment of inertia J and the fluctuation ΔJ are spin dependent. For /sup 168,170/Yb and 174 Hf the projected J is less than the CHFB value for all J. Consequently approximate projection increases all yrast excitation energies for these nuclei

  3. On Descriptions of Particle Transverse Momentum Spectra in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Fu-Hu Liu

    2014-01-01

    is obtained that, at a given set of parameters, the standard distributions show a narrower shape than their Tsallis forms which result in wide and/or multicomponent spectra with the Tsallis distribution in between. A comparison among the temperatures obtained from the distributions is made with a possible relation to the Boltzmann temperature. An example of the angular distributions of projectile fragments in nuclear collisions is given.

  4. Electronic orbital angular momentum and magnetism of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ji, E-mail: ji.luo@upr.edu

    2014-10-01

    Orbital angular momentum (OAM) of graphene electrons in a perpendicular magnetic field is calculated and corresponding magnetic moment is used to investigate the magnetism of perfect graphene. Variation in magnetization demonstrates its decrease with carrier-doping, plateaus in a large field, and de Haas–van Alphen oscillation. Regulation of graphene's magnetism by a parallel electric field is presented. The OAM originates from atomic-scale electronic motion in graphene lattice, and vector hopping interaction between carbon atomic orbitals is the building element. A comparison between OAM of graphene electrons, OAM of Dirac fermions, and total angular momentum of the latter demonstrates their different roles in graphene's magnetism. Applicability and relation to experiments of the results are discussed. - Highlights: • Orbital angular momentum of graphene electrons is calculated. • Orbital magnetic moment of graphene electrons is obtained. • Variation in magnetization of graphene is calculated. • Roles of different kinds of angular momentum are investigated.

  5. Large-scale kinetic energy spectra from Eulerian analysis of EOLE wind data

    Science.gov (United States)

    Desbois, M.

    1975-01-01

    A data set of 56,000 winds determined from the horizontal displacements of EOLE balloons at the 200 mb level in the Southern Hemisphere during the period October 1971-February 1972 is utilized for the computation of planetary- and synoptic-scale kinetic energy space spectra. However, the random distribution of measurements in space and time presents some problems for the spectral analysis. Two different approaches are used, i.e., a harmonic analysis of daily wind values at equi-distant points obtained by space-time interpolation of the data, and a correlation method using the direct measurements. Both methods give similar results for small wavenumbers, but the second is more accurate for higher wavenumbers (k above or equal to 10). The spectra show a maximum at wavenumbers 5 and 6 due to baroclinic instability and then decrease for high wavenumbers up to wavenumber 35 (which is the limit of the analysis), according to the inverse power law k to the negative p, with p close to 3.

  6. Numerical modeling study of the momentum deposition of small amplitude gravity waves in the thermosphere

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Space Weather; Henan Normal Univ., Xinxiang (China). College of Mathematics and Information Science; Xu, J. [Chinese Academy of Sciences, Beijing (China). State Key Lab. of Space Weather; Yue, J. [National Center for Atmospheric Research, Boulder, CO (United States). High Altitude Observatory; Hampton Univ., VA (United States). Atmospheric and Planetary Sciences; Vadas, S.L. [North West Research Associates, Inc., Boulder, CO (United States)

    2013-03-01

    We study the momentum deposition in the thermosphere from the dissipation of small amplitude gravity waves (GWs) within a wave packet using a fully nonlinear two-dimensional compressible numerical model. The model solves the nonlinear propagation and dissipation of a GW packet from the stratosphere into the thermosphere with realistic molecular viscosity and thermal diffusivity for various Prandtl numbers. The numerical simulations are performed for GW packets with initial vertical wavelengths ({lambda}{sub z}) ranging from 5 to 50 km. We show that {lambda}{sub z} decreases in time as a GW packet dissipates in the thermosphere, in agreement with the ray trace results of Vadas and Fritts (2005) (VF05). We also find good agreement for the peak height of the momentum flux (z{sub diss}) between our simulations and VF05 for GWs with initial {lambda}{sub z} {<=} 2{pi}H in an isothermal, windless background, where H is the density scale height.We also confirm that z{sub diss} increases with increasing Prandtl number. We include eddy diffusion in the model, and find that the momentum deposition occurs at lower altitudes and has two separate peaks for GW packets with small initial {lambda}{sub z}. We also simulate GW packets in a non-isothermal atmosphere. The net {lambda}{sub z} profile is a competition between its decrease from viscosity and its increase from the increasing background temperature. We find that the wave packet disperses more in the non-isothermal atmosphere, and causes changes to the momentum flux and {lambda}{sub z} spectra at both early and late times for GW packets with initial {lambda}{sub z} {>=} 10 km. These effects are caused by the increase in T in the thermosphere, and the decrease in T near the mesopause. (orig.)

  7. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  8. Transverse momentum dependence of inclusive primary charged-particle production in p-Pb collisions at $\\sqrt{s_{NN}}$ = 5.02 TeV

    CERN Document Server

    Abelev, Betty Bezverkhny; Adamova, Dagmar; Aggarwal, Madan Mohan; Agnello, Michelangelo; Agostinelli, Andrea; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Belmont Iii, Ronald John; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berger, Martin Emanuel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boehmer, Felix Valentin; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Di Bari, Domenico; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dorheim, Sverre; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; Hilden, Timo Eero; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Esposito, Marco; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Gronefeld, Julius Maximilian; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gumbo, Mervyn; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hippolyte, Boris; Hladky, Jan; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kadyshevskiy, Vladimir; Kalcher, Sebastian; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Okatan, Ali; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Sahoo, Pragati; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palmeri, Armando; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sanchez Rodriguez, Fernando Javier; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Segato, Gianfranco; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wagner, Vladimir; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zaman, Ali; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zyzak, Maksym

    2014-09-16

    The transverse momentum ($p_T$) distribution of primary charged particles is measured at midrapidity in minimum-bias p-Pb collisions at $\\sqrt{s_{NN}}$ = 5.02 TeV with the ALICE detector at the LHC in the range 0.15 < $p_T$ < 50 GeV/c. The spectra are compared to the expectation based on binary collision scaling of particle production in pp collisions, leading to a nuclear modification factor consistent with unity for $p_T$ larger than 2 GeV/c. The measurement is compared to theoretical calculations and to data in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV

  9. Momentum distributions and ionization potentials for the valence orbitals of hydrogen fluoride and hydrogen chloride

    International Nuclear Information System (INIS)

    Brion, C.E.; Hood, S.T.; Suzuki, I.H.; Weigold, E.

    1980-02-01

    The binding energy spectra and momentum distributions for the valence orbitals of HF and HCl have been obtained using (e,2e) spectroscopy with symmetric kinematics at 1200eV and 400eV. For HCl the strength of the innermost valence orbital (4sigma) is found to be significantly split among several ion states in the range 25eV to 41eV. The corresponding orbital in HF (2sigma) is however not significantly split among ion states. The measured momentum distributions are compared with the results of several calculatons of at least double zeta quality as well as with a one particle Green's function calculation of the generalized overlap amplitude. Agreement in shape is quite good for the innermost orbitals, but for the π and outer sigma orbitals of HF the momentum distributions calculated directly from the molecular orbitals are significantly more extended in momentum space than the measured distributions. The Green's function calculations give momentum distributions in good agreement with the data and pole strengths for transitions in qualitative agreement with the observed cross sections

  10. On the transverse momentum in Z-boson production in a virtually ordered parton shower

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science

    2009-12-15

    Cross sections for physical processes that involve very different momentum scales in the same process will involve large logarithms of the ratio of the momentum scales when calculated in perturbation theory. One goal of calculations using parton showers is to sum these large logarithms. We ask whether this goal is achieved for the transverse momentum distribution of a Z-boson produced in hadron-hadron collisions when the shower is organized with higher virtuality parton splittings coming first, followed successively by lower virtuality parton splittings. We find that the virtuality ordered shower works well in reproducing the known QCD result. (orig.)

  11. On the transverse momentum in Z-boson production in a virtually ordered parton shower

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2009-12-01

    Cross sections for physical processes that involve very different momentum scales in the same process will involve large logarithms of the ratio of the momentum scales when calculated in perturbation theory. One goal of calculations using parton showers is to sum these large logarithms. We ask whether this goal is achieved for the transverse momentum distribution of a Z-boson produced in hadron-hadron collisions when the shower is organized with higher virtuality parton splittings coming first, followed successively by lower virtuality parton splittings. We find that the virtuality ordered shower works well in reproducing the known QCD result. (orig.)

  12. Development and Validation of Personality Disorder Spectra Scales for the MMPI-2-RF.

    Science.gov (United States)

    Sellbom, Martin; Waugh, Mark H; Hopwood, Christopher J

    2018-01-01

    The purpose of this study was to develop and validate a set of MMPI-2-RF (Ben-Porath & Tellegen, 2008/2011) personality disorder (PD) spectra scales. These scales could serve the purpose of assisting with DSM-5 PD diagnosis and help link categorical and dimensional conceptions of personality pathology within the MMPI-2-RF. We developed and provided initial validity results for scales corresponding to the 10 PD constructs listed in the DSM-5 using data from student, community, clinical, and correctional samples. Initial validation efforts indicated good support for criterion validity with an external PD measure as well as with dimensional personality traits included in the DSM-5 alternative model for PDs. Construct validity results using psychosocial history and therapists' ratings in a large clinical sample were generally supportive as well. Overall, these brief scales provide clinicians using MMPI-2-RF data with estimates of DSM-5 PD constructs that can support cross-model connections between categorical and dimensional assessment approaches.

  13. ''Turbulent Equipartition'' Theory of Toroidal Momentum Pinch

    International Nuclear Information System (INIS)

    Hahm, T.S.; Diamond, P.H.; Gurcan, O.D.; Rewaldt, G.

    2008-01-01

    The mode-independent part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density (Hahm et al., Phys. Plasmas 14,072302 (2007)) which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of 'magnetically weighted angular momentum density', nm i U # parallel# R/B 2 , and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustrated that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.

  14. Characteristics of sources and sinks of momentum in a turbulent boundary layer

    Science.gov (United States)

    Fiscaletti, D.; Ganapathisubramani, B.

    2018-05-01

    In turbulent boundary layers, the wall-normal gradient of the Reynolds shear stress identifies momentum sources and sinks (T =∂ [-u v ]/∂ y ). These motions can be physically interpreted in two ways: (1) as contributors to the turbulence term balancing the mean momentum equation, and (2) as regions of strong local interaction between velocity and vorticity fluctuations. In this paper, the space-time evolution of momentum sources and sinks is investigated in a turbulent boundary layer at the Reynolds number (Reτ) = 2700, with time-resolved planar particle image velocimetry in a plane along the streamwise and wall-normal directions. Wave number-frequency power spectra of T fluctuations reveal that the wave velocities of momentum sources and sinks tend to match the local streamwise velocity in proximity to the wall. However, as the distance from the wall increases, the wave velocities of the T events are slightly lower than the local streamwise velocities of the flow, which is also confirmed from the tracking in time of the intense momentum sources and sinks. This evidences that momentum sources and sinks are preferentially located in low-momentum regions of the flow. The spectral content of the T fluctuations is maximum at the wall, but it decreases monotonically as the distance from the wall grows. The relative spectral contributions of the different wavelengths remains unaltered at varying wall-normal locations. From autocorrelation coefficient maps, the characteristic streamwise and wall-normal extents of the T motions are respectively 60 and 40 wall units, independent of the wall distance. Both statistics and instantaneous visualizations show that momentum sources and sinks have a preferential tendency to be organized in positive-negative pairs in the wall-normal direction.

  15. Electron shell contributions to gamma-ray spectra of positron annihilation in noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng; Selvam, Lalitha [Centre for Molecular Simulation, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122 (Australia); Gribakin, Gleb F [Department of Applied Mathematics and Theoretical Physics, Queen' s University Belfast BT7 1NN (United Kingdom); Surko, Clifford M, E-mail: fwang@swin.edu.a [Physics Department, University of California, San Diego, La Jolla, CA 92093-0319 (United States)

    2010-08-28

    Gamma-ray positron annihilation spectra of the noble gases are simulated using computational chemistry tools for the bound electron wavefunctions and plane-wave approximation for the low-energy positron. The present annihilation line shapes, i.e. the full width at half maximum, {Delta}{epsilon}, of the {gamma}-ray annihilation spectra for He and Ar (valence) agree well with available independent atomic calculations using a different algorithm. For other noble gases they achieve moderate agreement with the experimental measurements. It is found that the contributions of various atomic electron shells to the spectra depend significantly on their principal quantum number n and orbital angular momentum quantum number l. The present study further reveals that the outermost ns electrons of the noble gases exhibit spectral line shapes in close agreement with those measured, indicating (as expected) that the measurements are not due to a simple sum over the momentum densities for all atomic electrons. The robust nature of the present approach makes it possible for us to proceed to more complex molecular systems using the tools of modern computational chemistry.

  16. An application of transverse momentum dependent evolution equations in QCD

    International Nuclear Information System (INIS)

    Ceccopieri, Federico A.; Trentadue, Luca

    2008-01-01

    The properties and behaviour of the solutions of the recently obtained k t -dependent QCD evolution equations are investigated. When used to reproduce transverse momentum spectra of hadrons in Semi-Inclusive DIS, an encouraging agreement with data is found. The present analysis also supports at the phenomenological level the factorization properties of the Semi-Inclusive DIS cross-sections in terms of k t -dependent distributions. Further improvements and possible developments of the proposed evolution equations are envisaged

  17. Studies of momentum transfer and X-ray spectra in a laser-produced plasma

    International Nuclear Information System (INIS)

    Leroy, Pierre

    Studies of momentum transfer from a ballistic pendulum appear to give satisfactory results for absorbed laser energies in excess of 200 mJ i.e. for fluxes in the 3.10 10 to 3.10 12 W.cm -2 range. A hard X-ray component attributed to fast electrons was revealed by an X-ray spectrometer with a PM system of greater sensitivity than PIN diodes. The laser energy is however too weak to enable studies to be conducted as a function of laser flux or measurements to be performed on targets of low Z [fr

  18. Electron momentum distributions and binding energies for the valence orbitals of hydrogen bromide and hydrogen iodide

    International Nuclear Information System (INIS)

    Brion, C.E.; McCarthy, I.E.; Suzuki, I.H.; Weigold, E.; Williams, G.R.J.; Bedford, K.L.; Kunz, A.B.; Weidman, R.

    1981-12-01

    The electron binding energy spectra and momentum distributions have been obtained for the valence orbitals of HBr and HI using noncoplanar symmetric electron coincidence spectroscopy at 1200eV. The weakly bonding inner valence ns orbitals, which have not been previously observed, have their spectroscopic (pole) strength severely split among a number of ion states. For HBr the strength of the main inner valence (ns) transition is 0.42 0.03 whereas for HI it is 0.37 0.04, in close agreement with that observed for the valence s orbitals of the corresponding isoelectronic inert gas atoms. The spectroscopic strength for the two outermost orbitals is found to be close to unity, in agreement with many body Green's function calculations. The measured momentum distributions are compared with several spherically averaged MO momentum distributions, as well as (for HBr) with a Green's function calculation of the generalized overlap amplitude (GOA). The GOA momentum distributions are in excellent agreement with the HBr data, both in shape and relative magnitude. Not all of the MO momentum distributions are in reasonable agreement with the data. Comparison is also made with the calculated momentum distributions for Kr, Br, Xe and I

  19. Nuclear effects on the transverse momentum spectra of charged particles in pPb collisions at $\\sqrt{s_{\\mathrm{NN}}}$ = 5.02 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Linlin; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrens, Ulf; Bell, Alan James; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Galanti, Mario; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Demiyanov, Andrey; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Musella, Pasquale; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Isildak, Bora; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Ratnikov, Fedor; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Smith, Geoffrey; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Malik, Sudhir; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Korjenevski, Sergey; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Vuosalo, Carl; Woods, Nathaniel

    2015-05-29

    Transverse momentum spectra of charged particles are measured by the CMS experiment at the CERN LHC in pPb collisions at $\\sqrt{s_{\\mathrm{NN}}}$ = 5.02 TeV, in the range of $p_\\mathrm{T}$ between 0.4 and 120 GeV/$c$ and pseudorapidity $|\\eta_\\mathrm{CM}|$ lower than 1.8 in the proton-nucleon center-of-mass frame. For $p_\\mathrm{T}$ lower than 10 GeV/$c$, the charged-particle production is asymmetric about $|\\eta_\\mathrm{CM}|$ = 0, with smaller yield observed in the direction of the proton beam, qualitatively consistent with expectations from shadowing in nuclear parton distribution functions (nPDF). A pp reference spectrum at $\\sqrt{s}$ =5.02 TeV is obtained by interpolation from previous measurements at higher and lower center-of-mass energies. The $p_\\mathrm{T}$ distribution measured in pPb collisions shows an enhancement of charged particles with $p_\\mathrm{T}$ larger than 20 GeV/$c$ compared to expectations from the pp reference. The enhancement is larger than predicted by perturbative quantum chromodyna...

  20. Higgs-boson production at small transverse momentum

    Science.gov (United States)

    Becher, Thomas; Neubert, Matthias; Wilhelm, Daniel

    2013-05-01

    Using methods from effective field theory, we have recently developed a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q T , in which large logarithms of the scale ratio m V / q T are resummed to all orders. This formalism is applied to the production of Higgs bosons in gluon fusion at the LHC. The production cross section receives logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale {q_{*}}tilde{mkern6mu} {m_H}{e^{{{{{-const}} / {{{α_s}( {{m_H}} )}} .}}}}≈ 8 GeV, which protects the process from receiving large long-distance hadronic contributions. We present numerical predictions for the transverse-momentum spectrum of Higgs bosons produced at the LHC, finding that it is quite insensitive to hadronic effects.

  1. Field momentum, inertial momentum and gravitational momentum of a system of bodies in the post-Newtonian approximation

    Energy Technology Data Exchange (ETDEWEB)

    Jankiewicz, Cz; Sikora, D [Wyzsza Szkola Pedagogiczna, Rzeszow (Poland)

    1980-01-01

    It is shwon that in the post-Newtonian approximation the gravitational momentum of a system of point particles is equal to the sum of field momentum and inertial momentum only in two classes of coordinate systems. This equality may be treated as a natural condition on a coordinate system in which the generally covariant Einstein equations are to be solved.

  2. On momentum conservation

    International Nuclear Information System (INIS)

    Karastoyanov, A.

    1990-01-01

    The relativistic law of momentum transformation shows that the sum of momenta of even isolated particles is not invariable in all inertial reference systems. This is connected with the relativistic change of kinetic energy and mass of a system of particles in result of internal interactions. The paper proposes a short and simple proof on the necessity of potential momentum. The momentum conservation law (for all interactions in the Minkowski world) is expressed in a generalized form. The constancy of the sum of kinetic and potential momentum of closed system of particles is shown. The energy conservation is a necessary condition. The potential momentum is defined as usual (e.g. as in the Berkeley Physics Course). (author). 13 refs

  3. Momentum-dependent excitation processes in crystalline and amorphous films of conjugated oligomers

    International Nuclear Information System (INIS)

    Zojer, E.; Knupfer, M.; Shuai, Z.; Fink, J.; Bredas, J.L.; Hoerhold, H.-H.; Grimme, J.; Scherf, U.; Benincori, T.; Leising, G.

    2000-01-01

    The electronic structure of periodic materials is usually described on the basis of band-structure models, in which each state is not only characterized by its energy but also by the corresponding electron momentum. In this paper we present investigations of momentum-dependent excitation processes in a number of molecular crystals and amorphous thin films. For our studies we have chosen ladder-type quinquephenyl (5LP), distyrylbenzene (3PV), a substituted quinquephenylenevinylene (5PV), and a bridged quarterthienyl (4TB). These substances are representative for several classes of conjugated organic materials. Their physical properties are dominated by the molecular building blocks. The investigated films, however, also allow us to study differences in the characteristics of crystalline (3PV and 4TB), partly amorphous (5LP) and fully amorphous (5PV) systems. Momentum-dependent excitations are induced by inelastic electron scattering in electron-energy-loss spectroscopy (EELS) experiments. The experimental data are compared to molecule based post-Hartree-Fock quantum-chemical simulations performed with the intermediate neglect of differential overlap (INDO) approach coupled to a configuration interaction (CI) technique applying the proper momentum-dependent transition matrix elements. Our results show that even in relatively small systems the molecular electronic states can be characterized by an associated range in momentum space. In addition, differences between inelastic electron scattering spectra for low values of momentum transfer and the optical data obtained for the crystalline samples underline the strong impact of light propagation on the absorption characteristics of highly anisotropic crystalline materials

  4. c-Axis projected electron-positron momentum density in YBa2Cu3O7

    International Nuclear Information System (INIS)

    Bansil, A.; Smedskjaer, L.C.

    1990-11-01

    The authors present the theoretical c-axis projected electron-positron momentum density N 2γ (P x ,p y ) in YBa 2 Cu 3 O 7 based on the local density approximation (LDA) framework along various lines in momentum space. The calculations use the Korringa-Kohn-Rostoker (KKR) band structure formalism. The anisotropic distribution defined by taking cuts through the calculated spectra along different lines in the (p x ,p y ) plane possesses complex structures which arise from both Fermi surface effects and the anisotropy of the smoothly varying underlying background from filled bands; the maximum size of the anisotropy is about 10% of N 2γ (0,0). The theoretically predicted N 2γ (p x , y ) distribution is compared with the measured 2D-ACAR spectrum. The considerations suggest that in interpreting the 2D-ACAR data on YBa 2 Cu 3 O 7 in terms of a band theory LDA picture, a substantial, largely isotropic, background should be subtracted from both the 2D-ACAR's and the associated LCW-folded spectra

  5. The relation between lattice order and energy resolved momentum densities in carbon films

    International Nuclear Information System (INIS)

    Vos, M.; Storer, P.; Cai, Y.Q.; McCarthy, I.E.; Weigold, E.

    1994-06-01

    The (e,2e) technique is well known to be able to measure the momentum profiles of the electron orbitals in molecules. In crystalline solids energy levels are replaced by bands, and the momentum profiles simplify to energy dependent delta functions. In this paper the development from a molecular to a crystalline picture of the electronic structure is illustrated using a simple model of a linear chain of atoms of increasing length. This model is used to get some insight into the (e,2e) momentum profiles expected for disordered solids. These results are compared to the experimental data for carbon films with different degrees of order, i.e amorphous carbon films, annealed amorphous carbon films and highly oriented pyrolitic graphite (HOPG) films. The focus is on the influence of disorder on (e,2e) spectra. The intensity of the π electron contribution is suppressed in HOPG, due to the orientation chosen. In the annealed evaporated samples, the planes of graphite atoms have random orientation and the π electrons are clearly seen. With increasing order the momentum profiles show increasingly well defined peaks. 16 refs., 7 figs

  6. Measurement of charged particle spectra in pp collisions and nuclear modification factor $R_\\mathrm{pPb}$ at $\\sqrt{s_{NN}}=5.02$TeV with the ATLAS detector at the LHC

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    This note presents an analysis of the inclusive charged particle spectra in pp collisions at $\\sqrt{s}=5.02$TeV that are measured with the ATLAS experiment at the LHC. The measurements are performed with pp data recorded in 2015 with an integrated luminosity of 25pb$^{-1}$. The ratio of spectra measured in the p+Pb collisions to the pp cross section scaled by the number of binary nucleon-nucleon collisions, $R_\\mathrm{pPb}$, is evaluated to facilitate a comparison of the particle production in the two colliding systems. The nuclear modification factor does not show any significant deviation from unity in the probed transverse momentum region.

  7. W UMa stars and angular momentum loss

    International Nuclear Information System (INIS)

    Vilhu, O.; Rahunen, T.

    1980-01-01

    The structure and evolution of W UMa stars is still unsolved although considerable progress has been achieved in recent years. The authors aim is to find out whether it is possible to obtain more extreme mass ratios, what is the angular momentum needed and what is the time scale. (Auth.)

  8. Scaling of Elliptic Flow, Recombination and Sequential Freeze-Out of Hadrons in Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.; He, M., and Rapp, R.

    2010-09-21

    The scaling properties of elliptic flow of hadrons produced in ultrarelativistic heavy-ion collisions are investigated at low transverse momenta, p{sub T} {le} 2 GeV. Utilizing empirical parametrizations of a thermalized fireball with collective-flow fields, the resonance recombination model (RRM) is employed to describe hadronization via quark coalescence at the hadronization transition. We reconfirm that RRM converts equilibrium quark distribution functions into equilibrated hadron spectra including the effects of space-momentum correlations on elliptic flow. This provides the basis for a controlled extraction of quark distributions of the bulk matter at hadronization from spectra of multistrange hadrons which are believed to decouple close to the critical temperature. The resulting elliptic flow from empirical fits at the BNL Relativistic Heavy Ion Collider exhibits transverse kinetic-energy and valence-quark scaling. Utilizing the well-established concept of sequential freeze-out, the scaling at low momenta extends to bulk hadrons ({pi}, K, p) at thermal freeze-out, albeit with different source parameters compared to chemical freeze-out. Elliptic-flow scaling is thus compatible with both equilibrium hydrodynamics and quark recombination.

  9. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Abiteboul, J.

    2012-10-01

    The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are

  10. Critical gravitational collapse with angular momentum. II. Soft equations of state

    Science.gov (United States)

    Gundlach, Carsten; Baumgarte, Thomas W.

    2018-03-01

    We study critical phenomena in the collapse of rotating ultrarelativistic perfect fluids, in which the pressure P is related to the total energy density ρ by P =κ ρ , where κ is a constant. We generalize earlier results for radiation fluids with κ =1 /3 to other values of κ , focusing on κ power-law scalings of the black-hole mass. We do see systematic effects in the black-hole angular momentum, but it is not clear yet if these are due to the predicted nontrivial scaling functions, or to nonlinear effects at sufficiently large initial angular momentum (which we do not account for in our theoretical model).

  11. The total energy-momentum tensor for electromagnetic fields in a dielectric

    Science.gov (United States)

    Crenshaw, Michael E.

    2017-08-01

    Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density

  12. Dependence of two-neutron momentum densities on total pair momentum

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joseph A [Los Alamos National Laboratory; Wiringa, R B [ANL; Schiavilla, R [JEFFERSON LAB; Pieper, Steven C [ANL

    2008-01-01

    Two-nucleon momentum distributions are calculated for the ground states of {sup 3}He and {sup 4}He as a function of the nucleons' relative and total momenta. We use variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of pp pairs is found to be much smaller than that of pn pairs for values of the relative momentum in the range (300--500) MeV/c and vanishing total momentum. Howeer, as the totalmomentum increases to 400 MeV/c, the ratio of pp to pn pairs in this relative momentum range grows and approaches the limit 1/2 for {sup 3}He and 1/4 for {sup 4}He, corresponding to the ratio of pp to pn pairs in these nuclei. This behavior should be easily observable in two-nucleon knock-out processes, such as A(e, e'pN).

  13. Analysis of electron-positron momentum spectra of metallic alloys as supported by first-principles calculations

    OpenAIRE

    Folegati, P.; Makkonen, I.; Ferragut, R.; Puska, Martti J.

    2007-01-01

    Electron-positron momentum distributions measured by the coincidence Doppler broadening method can be used in the chemical analysis of the annihilation environment, typically a vacancy-impurity complex in a solid. In the present work, we study possibilities for a quantitative analysis, i.e., for distinguishing the average numbers of different atomic species around the defect. First-principles electronic structure calculations self-consistently determining electron and positron densities and i...

  14. Momentum characteristics of spectators in fragmentation of 4He nuclei

    International Nuclear Information System (INIS)

    Glagolev, V.V.; Lebedev, R.M.; Strel'tsov, V.N.

    1985-01-01

    Some characteristics of 2 H, 3 H, 3 He fragments from 4 Hep interaction at 8.6 GeV/c have been studied. A numerical procedure, based on Monte-Carlo method, for getting the wave function of relative motion of nucleons or groups of nucleons in nucleus is proposed to describe the fragment momentum spectra and the asymmetry in Treiman-Yang angle distribution. The agreement between computed and experimental results is sufficient if one takes into account the experimental errors and the nucleus binding energy

  15. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, D.; Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2016-08-15

    We describe a new “complete” spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the “spin-polarizing mirror” type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å{sup −1}, at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.

  16. Angular-momentum-projected cranked HFB approach to the study of nuclear rotations

    International Nuclear Information System (INIS)

    Wuest, E.; Ansari, A.; Mosel, U.

    1985-01-01

    Employing a pairing-plus-quadrupole interaction hamiltonian and projecting out good angular momentum states from the cranked Hartree-Fock-Bogoliubov (CHFB) intrinsic wave functions the yrast spectra of 158 Dy and 168 Yb are calculated up to moderately high spins (Isub(max)=16) as to include the backbending region. Then the variation of pairing correlation, g-factor and rotational alignment of neutron spin as a function of total angular momentum is studied. The effect of particle number projection on the spin-projected CHFB wave functions is also investigated and is found to be unimportant for the calculation of g-factors. On the other hand, corrections of the excitation energies for number fluctuations in the CHFB wave functions are essential. Furthermore, looking at the distribution of the total projection quantum number K in various cranking wave functions we are able to throw some light on the Knot=0 nature of the aligned s-band. A variation-after-spin projection calculation strictly for the axial shape, without cranking, is also carried out for both the nuclei considered here. In the low-spin region this numerically 'cheaper' scheme produces energy spectra similar to that of the CHFB method, and may thus be used to readjust the interaction parameters. (orig.)

  17. Combined threshold and transverse momentum resummation for inclusive observables

    International Nuclear Information System (INIS)

    Muselli, Claudio; Forte, Stefano; Ridolfi, Giovanni

    2017-01-01

    We present a combined resummation for the transverse momentum distribution of a colorless final state in perturbative QCD, expressed as a function of transverse momentum p T and the scaling variable x. Its expression satisfies three requirements: it reduces to standard transverse momentum resummation to any desired logarithmic order in the limit p T →0 for fixed x, up to power suppressed corrections in p T ; it reduces to threshold resummation to any desired logarithmic order in the limit x→1 for fixed p T , up to power suppressed correction in 1−x; upon integration over transverse momentum it reproduces the resummation of the total cross cross at any given logarithmic order in the threshold x→1 limit, up to power suppressed correction in 1−x. Its main ingredient, and our main new result, is a modified form of transverse momentum resummation, which leads to threshold resummation upon integration over p T , and for which we provide a simple closed-form analytic expression in Fourier-Mellin (b,N) space. We give explicit coefficients up to NNLL order for the specific case of Higgs production in gluon fusion in the effective field theory limit. Our result allows for a systematic improvement of the transverse momentum distribution through threshold resummation which holds for all p T , and elucidates the relation between transverse momentum resummation and threshold resummation at the inclusive level, specifically by providing within perturbative QCD a simple derivation of the main consequence of the so-called collinear anomaly of SCET.

  18. Combined threshold and transverse momentum resummation for inclusive observables

    Energy Technology Data Exchange (ETDEWEB)

    Muselli, Claudio; Forte, Stefano [Tif Lab, Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova,Via Dodecaneso 33, I-16146 Genova (Italy)

    2017-03-21

    We present a combined resummation for the transverse momentum distribution of a colorless final state in perturbative QCD, expressed as a function of transverse momentum p{sub T} and the scaling variable x. Its expression satisfies three requirements: it reduces to standard transverse momentum resummation to any desired logarithmic order in the limit p{sub T}→0 for fixed x, up to power suppressed corrections in p{sub T}; it reduces to threshold resummation to any desired logarithmic order in the limit x→1 for fixed p{sub T}, up to power suppressed correction in 1−x; upon integration over transverse momentum it reproduces the resummation of the total cross cross at any given logarithmic order in the threshold x→1 limit, up to power suppressed correction in 1−x. Its main ingredient, and our main new result, is a modified form of transverse momentum resummation, which leads to threshold resummation upon integration over p{sub T}, and for which we provide a simple closed-form analytic expression in Fourier-Mellin (b,N) space. We give explicit coefficients up to NNLL order for the specific case of Higgs production in gluon fusion in the effective field theory limit. Our result allows for a systematic improvement of the transverse momentum distribution through threshold resummation which holds for all p{sub T}, and elucidates the relation between transverse momentum resummation and threshold resummation at the inclusive level, specifically by providing within perturbative QCD a simple derivation of the main consequence of the so-called collinear anomaly of SCET.

  19. Momentum transfer to rotating magnetized plasma from gun plasma injection

    International Nuclear Information System (INIS)

    Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.

    2006-01-01

    Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1 87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented

  20. Resummed pQCD for $W^{+-}$ and $Z^{0}$ transverse momentum spectra at RHIC and LHC

    CERN Document Server

    Xiao Fei Zhang

    2003-01-01

    The transverse momentum distributions of W/sup +or-/ and Z/sup 0/ are predicted at RHIC and LHC. A resummation formalism with power corrections to the renormalization group equations is used. Shadowing effects are discussed and found to be unimportant at RHIC, but important for LHC. We study the enhancement of power corrections due to multiple scattering in nuclear collisions and numerically illustrate the weak effects of the dependence on the nuclear mass. (12 refs).

  1. Dual electromagnetism: helicity, spin, momentum and angular momentum

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Y; Nori, Franco; Bekshaev, Aleksandr Y

    2013-01-01

    The dual symmetry between electric and magnetic fields is an important intrinsic property of Maxwell equations in free space. This symmetry underlies the conservation of optical helicity and, as we show here, is closely related to the separation of spin and orbital degrees of freedom of light (the helicity flux coincides with the spin angular momentum). However, in the standard field-theory formulation of electromagnetism, the field Lagrangian is not dual symmetric. This leads to problematic dual-asymmetric forms of the canonical energy–momentum, spin and orbital angular-momentum tensors. Moreover, we show that the components of these tensors conflict with the helicity and energy conservation laws. To resolve this discrepancy between the symmetries of the Lagrangian and Maxwell equations, we put forward a dual-symmetric Lagrangian formulation of classical electromagnetism. This dual electromagnetism preserves the form of Maxwell equations, yields meaningful canonical energy–momentum and angular-momentum tensors, and ensures a self-consistent separation of the spin and orbital degrees of freedom. This provides a rigorous derivation of the results suggested in other recent approaches. We make the Noether analysis of the dual symmetry and all the Poincaré symmetries, examine both local and integral conserved quantities and show that only the dual electromagnetism naturally produces a complete self-consistent set of conservation laws. We also discuss the observability of physical quantities distinguishing the standard and dual theories, as well as relations to quantum weak measurements and various optical experiments. (paper)

  2. FT-IR spectra of the anti-HIV nucleoside analogue d4T (Stavudine). Solid state simulation by DFT methods and scaling by different procedures

    Science.gov (United States)

    Alcolea Palafox, M.; Kattan, D.; Afseth, N. K.

    2018-04-01

    A theoretical and experimental vibrational study of the anti-HIV d4T (stavudine or Zerit) nucleoside analogue was carried out. The predicted spectra in the three most stable conformers in the biological active anti-form of the isolated state were compared. Comparison of the conformers with those of the natural nucleoside thymidine was carried out. The calculated spectra were scaled by using different scaling procedures and three DFT methods. The TLSE procedure leads to the lowest error and is thus recommended for scaling. With the population of these conformers the IR gas-phase spectra were predicted. The crystal unit cell of the different polymorphism forms of d4T were simulated through dimer forms by using DFT methods. The scaled spectra of these dimer forms were compared. The FT-IR spectrum was recorded in the solid state in the 400-4000 cm-1 range. The respective vibrational bands were analyzed and assigned to different normal modes of vibration by comparison with the scaled vibrational values of the different dimer forms. Through this comparison, the polymorphous form of the solid state sample was identified. The study indicates that d4T exist only in the ketonic form in the solid state. The results obtained were in agreement with those determined in related anti-HIV nucleoside analogues.

  3. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    Science.gov (United States)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  4. Optical Angular Momentum

    International Nuclear Information System (INIS)

    Arimondo, Ennio

    2004-01-01

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  5. Counter terms for low momentum nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Holt, Jason D.; Kuo, T.T.S.; Brown, G.E.; Bogner, Scott K.

    2004-01-01

    There is much current interest in treating low energy nuclear physics using the renormalization group (RG) and effective field theory (EFT). Inspired by this RG-EFT approach, we study a low-momentum nucleon-nucleon (NN) interaction, V low-k , obtained by integrating out the fast modes down to the scale Λ∼2 fm -1 . Since NN experiments can only determine the effective interaction in this low momentum region, our chief purpose is to find such an interaction for complex nuclei whose typical momenta lie below this scale. In this paper we find that V low-k can be highly satisfactorily accounted for by the counter terms corresponding to a short range effective interaction. The coefficients C n of the power series expansion ΣC n q n for the counter terms have been accurately determined, and results derived from several meson-exchange NN interaction models are compared. The counter terms are found to be important only for the S, P and D partial waves. Scaling behavior of the counter terms is studied. Finally we discuss the use of these methods for computing shell model matrix elements

  6. About the damping of quark-hadron form factors in relative quark momentum

    International Nuclear Information System (INIS)

    Lewin, K.; Kallies, W.

    1979-01-01

    A problem of sufficient damping of hadron bound states at nonasymptotic relative quark momenta is discussed. This phenomenon is considered in the connection with the power scaling beginning at momentum transfer | t | >= 2-3 GeV 2 . Damping of hadron bound states is obtained on the basis of a behaviour of four-quark Green's functions in the momentum transfer which is required by diffraction scattering

  7. Scaled momentum distributions for K{sup 0}{sub S} and {lambda}/ anti {lambda} in DIS at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2011-11-15

    Scaled momentum distributions for the strange hadrons K{sub S}{sup 0} and {lambda}/ anti {lambda} were measured in deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 330 pb{sup -1}. The evolution of these distributions with the photon virtuality, Q{sup 2}, was studied in the kinematic region 10scaling variable. Clear scaling violations are observed. Predictions based on different approaches to fragmentation were compared to the measurements. Tuned leading-logarithm parton-shower Monte Carlo calculations interfaced to the Lund string fragmentation model describe the data reasonably well in the whole range measured. Next-to-leading-order QCD calculations based on fragmentation functions, FFs, extracted from e{sup +}e{sup -} data alone, fail to describe the measurements. The calculations based on FFs extracted from a global analysis including e{sup +}e{sup -}, ep and pp data give an improved description. The measurements presented in this paper have the potential to further constrain the FFs of quarks, anti-quarks and gluons yielding K{sub S}{sup 0} and {lambda}/ anti {lambda} strange hadrons. (orig.)

  8. Momentum fractionation on superstrata

    International Nuclear Information System (INIS)

    Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.

    2016-01-01

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS_3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.

  9. Angular momentum content of galaxies

    International Nuclear Information System (INIS)

    Shaya, E.J.; Tully, R.B.

    1984-01-01

    A schema of galaxy formation is developed in which the environmental influence of large-scale structure plays a dominant role. This schema was motivated by the observation that the fraction of E and S0 galaxies is much higher in clusters than in low-density regions and by an inference that those spirals that are found in clusters probably have fallen in relatively recently from the low-density regions. It is proposed that the tidal field of the Local Supercluster acts to determine the morphology of galaxies through two complementary mechanisms. In the first place, the supercluster can apply torques to protogalaxies. Galaxies which collapsed while expanding away from the central cluster decoupled from the external tidal field and conserved the angular momentum that they acquired before collapse. Galaxies which formed in the cluster while the cluster collapsed continued to feel the tidal field. In the latter case, the spin of outer collapsing layers can be halted and reversed, and tends to cancel the spin of inner layers. The result is a reduction of the total angular momentum content of the galaxy. In addition, the supercluster tidal field can regulate accretion of fresh material onto the galaxies since the field creates a Roche limit about galaxies and material beyond this limit is lost. Any material that has not collapsed onto a galaxy by the time the galaxy falls into a cluster will be tidally stripped. The angular momentum content of that part of the protogalactic cloud which has not yet collapsed . continues to grow linearly with time due to the continued torquing by the supercluster and neighbors. Galaxies at large distances from the cluster core can continue to accrete this high angular momentum material until the present, but galaxies that enter the cluster are cut off from replenishing material

  10. Towards a Symmetric Momentum Distribution in the Muon Ionisation Cooling Experiment

    CERN Document Server

    Hansen, O M; Efthymiopoulos, I

    2013-01-01

    TheMuon Ionisation Cooling Experiment (MICE) is under development at Rutherford Appleton Labratory (UK). It is a proof-of-principle experiment for ionisation cooling, which is a prerequisite for a future Neutrino Factory (NF) or a Muon Collider. The muon beam will have a symmetrical momentum distribution in the cooling channel of theNF [1]. In the MICE beamline pions are captured by a quadrupole triplet, beam momentum is selected by dipole 1 (D1) before the beam traverses the decay solenoid. After the decay solenoid the beam momentum is selected by dipole 2 (D2), the beam is focused in two quadrupole triplets and characterised by time-of-flight (TOF) detectors TOF0 and TOF1 before entering the cooling channel. By doing a so-called D1-scan, where the optics parameters are scaled according to the upstream beam momentum, the purity and momentum distribution of the decay muons are changed. In this paper simulation results from G4Beamline (G4BL) [2] and data from MICE are presented and compared.

  11. Track-based improvement in the jet transverse momentum resolution for ATLAS

    CERN Document Server

    Marshall, Z; Schwartzmann, A

    2011-01-01

    We present a track-based method for improving the jet momentum resolution in ATLAS. Information is added to the reconstructed jet after the standard jet energy scale corrections have been applied. Track-based corrections are implemented, and a 10 − 15% improvement in the jet transverse momentum resolution at low pT is achieved. The method is explained, and some validation and physics results are presented. Additional variables are described and analyzed for their resolution improvement potential.

  12. Incomplete momentum transfer components in /sup 16/O + /sup 12/C Fusion at 20 MeV/A

    Energy Technology Data Exchange (ETDEWEB)

    Menchaca-Rocha, A.; Brandan, M.E. (Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires); Dacal, A.; Galindo, A.; Mahoney, J.; Murphy, M.; Rae, W.D.M. (California Univ., Berkeley (USA). Lawrence Berkeley Lab.)

    1983-01-27

    The energy spectra of Z = 3-9 particles from reactions induced by 20 MeV/A /sup 16/O on /sup 12/C have been measured. The systematics found from the fusion-like residues clearly deviate from those expected for complete fusion, giving evidence for important incomplete momentum transfer components.

  13. Explanation of the Hund's rule for atomic spectra

    International Nuclear Information System (INIS)

    Muftakhova, F.I.; Zilberman, L.A.

    1982-01-01

    An original formula for electrostatic interaction in many-electron atoms, based on a new mathematical method, related by recoupling a matrix of n vector coupling momenta and its permutation properties, is given in general form. Hund's rule for atomic spectra-like maximum probability of couple momentum of l 2 configuration in the LS term of lsup(n) configuration is explained. Also, non-competence of exchange interaction notion for d and f atoms is based on mentioned formula. (Auth.)

  14. Alongshore Momentum Balance Over Shoreface-Connected Ridges, Fire Island, NY

    Science.gov (United States)

    Ofsthun, C.; Wu, X.; Voulgaris, G.; Warner, J. C.

    2016-12-01

    he momentum balance of alongshore flows over straight, uniform shelfs has been analyzed extensively over the last few decades. More recently, the effect of coastline curvature and how this might alter the relative significance of the momentum terms has received additional attention. In this contribution, the alongshore momentum over shelves with straight coastline, but non-uniform bathymetry is examined. Hydrodynamic and hydrographic data collected by the US Geological Survey (Fire Island Coastal Change project) on the inner shelf of Fire Island, NY over a region of shore-face connected ridges (SFCRs) are used to describe wind-induced circulation and the terms of the alongshore momentum balance equation. Analysis of the data revealed a predominantly alongshore circulation, under westward wind forcing, with localized offshore (onshore) current veering over the ridge crests (troughs). Momentum balance analysis hinted that local acceleration, advective acceleration, and bottom stress are balanced by wind stress and regional (>100 km) pressure gradient force. In addition, a numerical model using an idealized SFCR bathymetry, forced by our observed winds, was employed to compare the momentum balance relationships identified by the data and those under steady-state conditions published earlier (Warner et al., 2014). A synthesis of the numerical and experimental data revealed that the true pressure gradient force results from the sum of local pressure gradient force, which maintains a Bernoulli-like relationship with alongshore advective acceleration, and regional pressure gradient force, which maintains a strong, negative relationship with wind stress. The differences between steady-state and realistic conditions is mainly on the contributions of regional scale pressure gradients that develop under realistic conditions, and the reduced contribution of local scale pressure gradients which develop best under steady-state conditions. Our analysis indicates that current

  15. On transverse momentum dependence of average multiplicity

    International Nuclear Information System (INIS)

    Slepchenko, L.A.; Matveev, V.A.; Sissakian, A.N.

    1975-01-01

    The behaviour of the mean associated multiplicity of the secondary particles as function of the transverse momentum is considered. New scaling regularities of the cross-sections of the semi-inclusive reactions are predicted and compared with the experimental data obtained in the two-meter propane chamber of JINR, irradiated by π - -mesons with p=40 GeV/c at the Serpukhov accelerator

  16. Angular momentum in general relativity

    International Nuclear Information System (INIS)

    Cresswell, A.; Zimmerman, R.L.; Oregon Univ., Eugene

    1986-01-01

    It is argued that the correct expressions for the angular momentum flux carried by gravitational radiation should follow directly from the momentum currents. Following this approach, the authors compute the angular momentum associated with several different choices of energy-momentum prescriptions. (author)

  17. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  18. Momentum transfer dependence of generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Neetika [Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab (India)

    2016-11-15

    We revisit the model for parametrization of the momentum dependence of nucleon generalized parton distributions in the light of recent MRST measurements of parton distribution functions (A.D. Martin et al., Eur. Phys. J. C 63, 189 (2009)). Our parametrization method with a minimum set of free parameters give a sufficiently good description of data for Dirac and Pauli electromagnetic form factors of proton and neutron at small and intermediate values of momentum transfer. We also calculate the GPDs for up- and down-quarks by decomposing the electromagnetic form factors for the nucleon using the charge and isospin symmetry and also study the evolution of GPDs to a higher scale. We further investigate the transverse charge densities for both the unpolarized and transversely polarized nucleon and compare our results with Kelly's distribution. (orig.)

  19. Simultaneous projection of particle-number and angular momentum BCS wave-functions in the rare-earth nuclei

    International Nuclear Information System (INIS)

    Oudih, M.R.; Fellah, M.; Allal, N.H.; Benhamouda, N.

    1999-01-01

    It is well established that the BCS wave-functions are neither eigen-functions of the particle-number operator nor of the angular momentum operator. In a previous paper, we have developed a particle-number projection before variation method (of FBCS type). This discrete projection method is based on the SBCS wave-function. The aim of the present contribution is to perform a subsequent angular momentum projection by means of the Peierls-Yoccoz method. The general expression of the system energy, after the double projection, is established in the case of axial symmetry. For practical calculations, an approximation method is introduced. It leads to a semi-classical form of the rotational energy. The rotational spectra have been evaluated numerically for some even-even rare-earth nuclei. The single-particle energies and eigen-states are those of a deformed Woods-Saxon mean field. The obtained results are compared on one hand, to the experimental data, and on the other hand, to the theoretical spectra evaluated by a particle-number projection after variation method (of PBCS type). For all studied nuclei, the spectra determined by the FBCS method reproduce the experimental data better than those of the PBCS method. However, even if the present method is satisfying for low angular momenta, the agreement with the experimental data is lesser for I ≥ 8, particularly for the lighter studied nuclei. (authors)

  20. Transverse momentum distributions of primary charged particles in pp, p-Pb and Pb-Pb collisions measured with ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Knichel, Michael Linus

    2015-07-01

    The data analyzed for this thesis were collected in pp, p-Pb and Pb-Pb collisions by ALICE in 2010-2013. Transverse momentum (p{sub T}) distributions of primary charged particles have been measured at mid rapidity vertical stroke η vertical stroke <0.8 in inelastic pp collisions at center-of-mass energies of √(s)=0.9 TeV (for 0.15momentum spectra were measured at mid rapidity vertical stroke η vertical stroke <0.8 and cover 0.15scaled by the nuclear overlap function calculated in a Monte Carlo Glauber approach. To obtain the nuclear modification factor R{sub pPb} a pp reference is required at √(s)=5.02 TeV, where no measurement is available. At large p{sub T}, the pp reference is constructed from measured spectra at √(s)=7 TeV multiplied by scaling factors from NLO pQCD calculations. At low p{sub T}, where perturbative calculations are not reliable, the pp reference is interpolated between the measurements at √(s)=2.76 TeV and √(s)=7 TeV, assuming a power law behavior of the cross section as

  1. Observations of the scale-dependent turbulence and evaluation of the flux–gradient relationship for sensible heat for a closed Douglas-fir canopy in very weak wind conditions

    Directory of Open Access Journals (Sweden)

    D. Vickers

    2014-09-01

    Full Text Available Observations of the scale-dependent turbulent fluxes, variances, and the bulk transfer parameterization for sensible heat above, within, and beneath a tall closed Douglas-fir canopy in very weak winds are examined. The daytime sub-canopy vertical velocity spectra exhibit a double-peak structure with peaks at timescales of 0.8 s and 51.2 s. A double-peak structure is also observed in the daytime sub-canopy heat flux co-spectra. The daytime momentum flux co-spectra in the upper bole space and in the sub-canopy are characterized by a relatively large cross-wind component, likely due to the extremely light and variable winds, such that the definition of a mean wind direction, and subsequent partitioning of the momentum flux into along- and cross-wind components, has little physical meaning. Positive values of both momentum flux components in the sub-canopy contribute to upward transfer of momentum, consistent with the observed sub-canopy secondary wind speed maximum. For the smallest resolved scales in the canopy at nighttime, we find increasing vertical velocity variance with decreasing timescale, consistent with very small eddies possibly generated by wake shedding from the canopy elements that transport momentum, but not heat. Unusually large values of the velocity aspect ratio within the canopy were observed, consistent with enhanced suppression of the horizontal wind components compared to the vertical by the very dense canopy. The flux–gradient approach for sensible heat flux is found to be valid for the sub-canopy and above-canopy layers when considered separately in spite of the very small fluxes on the order of a few W m−2 in the sub-canopy. However, single-source approaches that ignore the canopy fail because they make the heat flux appear to be counter-gradient when in fact it is aligned with the local temperature gradient in both the sub-canopy and above-canopy layers. While sub-canopy Stanton numbers agreed well with values

  2. Transverse momentum at work in high-energy scattering experiments

    Science.gov (United States)

    Signori, Andrea

    2017-01-01

    I will review some aspects of the definition and the phenomenology of Transverse-Momentum-Dependent distributions (TMDs) which are potentially interesting for the physics program at several current and future experimental facilities. First of all, I will review the definition of quark, gluon and Wilson loop TMDs based on gauge invariant hadronic matrix elements. Looking at the phenomenology of quarks, I will address the flavor dependence of the intrinsic transverse momentum in unpolarized TMDs, focusing on its extraction from Semi-Inclusive Deep-Inelastic Scattering. I will also present an estimate of its impact on the transverse momentum spectrum of W and Z bosons produced in unpolarized hadronic collisions and on the determination of the W boson mass. Moreover, the combined effect of the flavor dependence and the evolution of TMDs with the energy scale will be discussed for electron-positron annihilation. Concerning gluons, I will present from an effective theory point of view the TMD factorization theorem for the transverse momentum spectrum of pseudoscalar quarkonium produced in hadronic collisions. Relying on this, I will discuss the possibility of extracting precise information on (un)polarized gluon TMDs at a future Fixed Target Experiment at the LHC (AFTER@LHC).

  3. Momentum equation for arc-driven rail guns

    International Nuclear Information System (INIS)

    Batteh, J.H.

    1984-01-01

    In several models of arc-driven rail guns, the rails are assumed to be infinitely high to simplify the calculation of the electromagnetic fields which appear in the momentum equation for the arc. This assumption leads to overestimates of the arc pressures and accelerations by approximately a factor of 2 for typical rail-gun geometries. In this paper, we develop a simple method for modifying the momentum equation to account for the effect of finite-height rails on the performance of the rail gun and the properties of the arc. The modification is based on an integration of the Lorentz force across the arc cross section at each axial location in the arc. Application of this technique suggests that, for typical rail-gun geometries and moderately long arcs, the momentum equation appropriate for infinite-height rails can be retained provided that the magnetic pressure term in the equation is scaled by a factor which depends on the effective inductance of the gun. The analysis also indicates that the magnetic pressure gradient actually changes sign near the arc/projectile boundary because of the magnetic fields associated with the arc current

  4. Event patterns extracted from top quark-related spectra in proton-proton collisions at 8 TeV

    Science.gov (United States)

    Chen, Ya-Hui; Liu, Fu-Hu; Lacey, Roy A.

    2018-02-01

    We analyze the transverse momentum (p T) and rapidity (y) spectra of top quark pairs, hadronic top quarks, and top quarks produced in proton-proton (pp) collisions at center-of-mass energy \\sqrt{s}=8 TeV. For {p}{{T}} spectra, we use the superposition of the inverse power-law suggested by the QCD (quantum chromodynamics) calculus and the Erlang distribution resulting from a multisource thermal model. For y spectra, we use the two-component Gaussian function resulting from the revised Landau hydrodynamic model. The modelling results are in agreement with the experimental data measured at the detector level, in the fiducial phase-space, and in the full phase-space by the ATLAS Collaboration at the Large Hadron Collider (LHC). Based on the parameter values extracted from p T and y spectra, the event patterns in three-dimensional velocity (βx -βy -βz ), momentum (px -py -pz ), and rapidity (y 1-y 2-y) spaces are obtained, and the probability distributions of these components are also obtained. Supported by National Natural Science Foundation of China (11575103, 11747319), the Shanxi Provincial Natural Science Foundation (201701D121005), the Fund for Shanxi “1331 Project” Key Subjects Construction and the US DOE (DE-FG02-87ER40331.A008)

  5. Suppression of Charged Particle Production at Large Transverse Momentum in Central Pb--Pb Collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV

    CERN Document Server

    Aamodt, K.; Adamova, D.; Adare, A.M.; Aggarwal, M.M.; Aglieri Rinella, G.; Agocs, A.G.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, N.; Masoodi, A.Ahmad; Ahn, S.U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Molina, R.Alfaro; Alici, A.; Alkin, A.; Almaraz Avina, E.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anson, C.; Anticic, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshauser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I.C.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T.C.; Aysto, J.; Azmi, M.D.; Bach, M.; Badala, A.; Baek, Y.W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Ferroli, R.Baldini; Baldisseri, A.; Baldit, A.; Ban, J.; Barbera, R.; Barile, F.; Barnafoldi, G.G.; Barnby, L.S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I.G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Betev, L.; Bhasin, A.; Bhati, A.K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Biolcati, E.; Blanc, A.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Boggild, H.; Bogolyubsky, M.; Boldizsar, L.; Bombara, M.; Bombonati, C.; Book, J.; Borel, H.; Bortolin, C.; Bose, S.; Bossu, F.; Botje, M.; Bottger, S.; Boyer, B.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Breitner, T.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G.E.; Budnikov, D.; Buesching, H.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Catanescu, V.; Cavicchioli, C.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J.L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D.D.; Chochula, P.; Chojnacki, M.; Christakoglou, P.; Christensen, C.H.; Christiansen, P.; Chujo, T.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Coffin, J.P.; Coli, S.; Conesa Balbastre, G.; Conesa del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J.G.; Cormier, T.M.; Corrales Morales, Y.; Cortes Maldonado, I.; Cortese, P.; Cosentino, M.R.; Costa, F.; Cotallo, M.E.; Crescio, E.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Erasmo, G.D.; Dainese, A.; Dalsgaard, H.H.; Danu, A.; Das, D.; Das, I.; Dash, A.; Dash, S.; De, S.; De Azevedo Moregula, A.; de Barros, G.O.V.; De Caro, A.; De Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Remigis, R.; de Rooij, R.; Delagrange, H.; Delgado Mercado, Y.; Dellacasa, G.; Deloff, A.; Demanov, V.; Denes, E.; Deppman, A.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dietel, T.; Divia, R.; Djuvsland, O.; Dobrin, A.; Dobrowolski, T.; Dominguez, I.; Donigus, B.; Dordic, O.; Driga, O.; Dubey, A.K.; Dubuisson, J.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A.K.; Dutta Majumdar, M.R.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H.A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evrard, S.; Eyyubova, G.; Fabjan, C.W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Fekete, V.; Felea, D.; Feofilov, G.; Fernandez Tellez, A.; Ferretti, A.; Ferretti, R.; Figueredo, M.A.S.; Filchagin, S.; Fini, R.; Finogeev, D.; Fionda, F.M.; Fiore, E.M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Fuchs, U.; Furano, F.; Furget, C.; Fusco Girard, M.; Gaardhoje, J.J.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gallio, M.; Ganoti, P.; Garabatos, C.; Gemme, R.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Girard, M.R.; Giraudo, G.; Giubellino, P.; Gladysz-Dziadus, E.; Glassel, P.; Gomez, R.; Gonzalez-Trueba, L.H.; Gonzalez-Zamora, P.; Gonzalez Santos, H.; Gorbunov, S.; Gotovac, S.; Grabski, V.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J.F.; Grossiord, J.Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Gutbrod, H.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Harris, J.W.; Hartig, M.; Hasch, D.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heide, M.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Hernandez, C.; Herrera Corral, G.; Herrmann, N.; Hetland, K.F.; Hicks, B.; Hille, P.T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hrivnacova, I.; Huang, M.; Huber, S.; Humanic, T.J.; Hwang, D.S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G.M.; Innocenti, P.G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Jacholkowski, A.; Jacobs, P.M.; Jancurova, L.; Jangal, S.; Janik, R.; Jayarathna, S.P.; Jena, S.; Jirden, L.; Jones, G.T.; Jones, P.G.; Jovanovic, P.; Jung, H.; Jung, W.; Jusko, A.; Kalcher, S.; Kalinak, P.; Kalisky, M.; Kalliokoski, T.; Kalweit, A.; Kamermans, R.; Kanaki, K.; Kang, E.; Kang, J.H.; Kaplin, V.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M.M.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D.J.; Kim, D.S.; Kim, D.W.; Kim, H.N.; Kim, J.H.; Kim, J.S.; Kim, M.; Kim, M.; Kim, S.; Kim, S.H.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J.L.; Klein, J.; Klein-Bosing, C.; Kliemant, M.; Klovning, A.; Kluge, A.; Knichel, M.L.; Koch, K.; Kohler, M.K.; Kolevatov, R.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskih, A.; Kornas, E.; Kottachchi Kankanamge Don, C.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Kral, J.; Kralik, I.; Kramer, F.; Kraus, I.; Krawutschke, T.; Kretz, M.; Krivda, M.; Krumbhorn, D.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P.G.; Kurashvili, P.; Kurepin, A.; Kurepin, A.B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M.J.; Kwon, Y.; La Rocca, P.; Ladron de Guevara, P.; Lafage, V.; Lara, C.; Larsen, D.T.; Lazzeroni, C.; Le Bornec, Y.; Lea, R.; Lee, K.S.; Lee, S.C.; Lefevre, F.; Lehnert, J.; Leistam, L.; Lenhardt, M.; Lenti, V.; Leon Monzon, I.; Leon Vargas, H.; Levai, P.; Li, X.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M.A.; Liu, L.; Loggins, V.R.; Loginov, V.; Lohn, S.; Lohner, D.; Loizides, Constantin; Lopez, X.; Lopez Noriega, M.; Lopez Torres, E.; Lovhoiden, G.; Lu, X.G.; Luettig, P.; Lunardon, M.; Luparello, G.; Luquin, L.; Luzzi, C.; Ma, K.; Ma, R.; Madagodahettige-Don, D.M.; Maevskaya, A.; Mager, M.; Mahapatra, D.P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Mares, J.; Margagliotti, G.V.; Margotti, A.; Marin, A.; Martashvili, I.; Martinengo, P.; Martinez, M.I.; Martinez Davalos, A.; Martinez Garcia, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z.L.; Matyja, A.; Mayani, D.; Mazza, G.; Mazzoni, M.A.; Meddi, F.; Menchaca-Rocha, A.; Mendez Lorenzo, P.; Mercado Perez, J.; Mereu, P.; Miake, Y.; Midori, J.; Milano, L.; Milosevic, J.; Mischke, A.; Miskowiec, D.; Mitu, C.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Monteno, M.; Montes, E.; Morando, M.; Moreira De Godoy, D.A.; Moretto, S.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muller, H.; Muhuri, S.; Munhoz, M.G.; Munoz, J.; Musa, L.; Musso, A.; Nandi, B.K.; Nania, R.; Nappi, E.; Nattrass, C.; Navach, F.; Navin, S.; Nayak, T.K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nendaz, F.; Newby, J.; Nicassio, M.; Nielsen, B.S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.S.; Nilsson, M.S.; Noferini, F.; Nooren, G.; Novitzky, N.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Obayashi, H.; Ochirov, A.; Oeschler, H.; Oh, S.K.; Oleniacz, J.; Oppedisano, C.; Ortiz Velasquez, A.; Ortona, G.; Oskarsson, A.; Ostrowski, P.; Otterlund, I.; Otwinowski, J.; Ovrebekk, G.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paic, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S.K.; Palaha, A.; Palmeri, A.; Pappalardo, G.S.; Park, W.J.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Peresunko, D.; Perez Lara, C.E.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A.J.; Petracek, V.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Piyarathna, D.B.; Platt, R.; Ploskon, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P.L.M.; Poghosyan, M.G.; Polak, K.; Polichtchouk, B.; Pop, A.; Pospisil, V.; Potukuchi, B.; Prasad, S.K.; Preghenella, R.; Prino, F.; Pruneau, C.A.; Pshenichnov, I.; Puddu, G.; Pulvirenti, A.; Punin, V.; Putis, M.; Putschke, J.; Quercigh, E.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Rademakers, O.; Radomski, S.; Raiha, T.S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramirez Reyes, A.; Rammler, M.; Raniwala, R.; Raniwala, S.; Rasanen, S.S.; Read, K.F.; Real, J.S.; Redlich, K.; Renfordt, R.; Reolon, A.R.; Reshetin, A.; Rettig, F.; Revol, J.P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R.A.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rodriguez Cahuantzi, M.; Rohr, D.; Rohrich, D.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, P.; Rubio Montero, A.J.; Rui, R.; Rusanov, I.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Safarik, K.; Sahoo, R.; Sahu, P.K.; Saiz, P.; Sakai, S.; Sakata, D.; Salgado, C.A.; Samanta, T.; Sambyal, S.; Samsonov, V.; Sandor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R.P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H.R.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P.A.; Scott, R.; Segato, G.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Shabratova, G.; Shahoyan, R.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siemiarczuk, T.; Silenzi, A.; Silvermyr, D.; Simonetti, G.; Singaraju, R.; Singh, R.; Sinha, B.C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T.B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Sogaard, C.; Soloviev, A.; Soltz, R.; Son, H.; Song, M.; Soos, C.; Soramel, F.; Spyropoulou-Stassinaki, M.; Srivastava, B.K.; Stachel, J.; Stan, I.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Stenlund, E.; Steyn, G.; Stocco, D.; Stock, R.; Stolpovskiy, M.; Strmen, P.; Suaide, A.A.P.; Subieta Vasquez, M.A.; Sugitate, T.; Suire, C.; Sumbera, M.; Susa, T.; Swoboda, D.; Symons, T.J.M.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Tagridis, C.; Takahashi, J.; J.Tapia Takaki, D.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Telesca, A.; Terrevoli, C.; Thader, J.; Thomas, D.; Thomas, J.H.; Tieulent, R.; Timmins, A.R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Tosello, F.; Traczyk, T.; Truesdale, D.; Trzaska, W.H.; Tumkin, A.; Turrisi, R.; Turvey, A.J.; Tveter, T.S.; Ulery, J.; Ullaland, K.; Uras, A.; Urban, J.; Urciuoli, G.M.; Usai, G.L.; Vacchi, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; van Leeuwen, M.; Vande Vyvre, P.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.P.; Vodopyanov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Vrlakova, J.; Vulpescu, B.; Wagner, B.; Wagner, V.; Wan, R.; Wang, D.; Wang, Y.; Wang, Y.; Watanabe, K.; Wessels, J.P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, A.; Wilk, G.; Williams, M.C.S.; Windelband, B.; Yang, H.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I.K.; Yuan, X.; Yushmanov, I.; Zabrodin, E.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Zavada, P.; Zbroszczyk, H.; Zelnicek, P.; Zenin, A.; Zgura, I.; Zhalov, M.; Zhang, X.; Zhou, D.; Zichichi, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.

    2013-07-16

    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in $|\\eta|<0.8$ and $0.3 < p_T < 20$ GeV/$c$ are compared to the expectation in pp collisions at the same $\\sqrt{s_{_{NN}}}$, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor $R_{AA}$. The result indicates only weak medium effects ($R_{AA} \\approx $ 0.7) in peripheral collisions. In central collisions, $R_{AA}$ reaches a minimum of about 0.14 at $p_T=6$-7GeV/$c$ and increases significantly at larger $p_T$. The measured suppression of high-$p_T$ particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb co...

  6. The Gauge-Invariant Angular Momentum Sum-Rule for the Proton

    CERN Document Server

    Shore, G.M.

    2000-01-01

    We give a gauge-invariant treatment of the angular momentum sum-rule for the proton in terms of matrix elements of three gauge-invariant, local composite operators. These matrix elements are decomposed into three independent form factors, one of which is the flavour singlet axial charge. We further show that the axial charge cancels out of the sum-rule, so that it is unaffacted by the axial anomaly. The three form factors are then related to the four proton spin components in the parton model, namely quark and gluon intrinsic spin and orbital angular momentum. The renormalisation of the three operators is determined to one loop from which the scale dependence and mixing of the spin components is derived under the constraint that the quark spin be scale-independent. We also show how the three form factors can be measured in experiments.

  7. Coda-derived source spectra, moment magnitudes and energy-moment scaling in the western Alps

    Science.gov (United States)

    Morasca, P.; Mayeda, K.; Malagnini, L.; Walter, William R.

    2005-01-01

    A stable estimate of the earthquake source spectra in the western Alps is obtained using an empirical method based on coda envelope amplitude measurements described by Mayeda et al. for events ranging between MW~ 1.0 and ~5.0. Path corrections for consecutive narrow frequency bands ranging between 0.3 and 25.0 Hz were included using a simple 1-D model for five three-component stations of the Regional Seismic network of Northwestern Italy (RSNI). The 1-D assumption performs well, even though the region is characterized by a complex structural setting involving strong lateral variations in the Moho depth. For frequencies less than 1.0 Hz, we tied our dimensionless, distance-corrected coda amplitudes to an absolute scale in units of dyne cm by using independent moment magnitudes from long-period waveform modelling for three moderate magnitude events in the region. For the higher frequencies, we used small events as empirical Green's functions, with corner frequencies above 25.0 Hz. For each station, the procedure yields frequency-dependent corrections that account for site effects, including those related to fmax, as well as to S-to-coda transfer function effects. After the calibration was completed, the corrections were applied to the entire data set composed of 957 events. Our findings using the coda-derived source spectra are summarized as follows: (i) we derived stable estimates of seismic moment, M0, (and hence MW) as well as radiated S-wave energy, (ES), from waveforms recorded by as few as one station, for events that were too small to be waveform modelled (i.e. events less than MW~ 3.5); (ii) the source spectra were used to derive an equivalent local magnitude, ML(coda), that is in excellent agreement with the network averaged values using direct S waves; (iii) scaled energy, , where ER, the radiated seismic energy, is comparable to results from other tectonically active regions (e.g. western USA, Japan) and supports the idea that there is a fundamental

  8. Production spectra of π+-, K+-, p+- at large angles in proton-proton collisions in the CERN intersecting storage rings

    International Nuclear Information System (INIS)

    Alper, B.; Boeggild, H.; Booth, P.; Bulos, F.; Carroll, L.J.; Damgaard, G.; Von Dardel, G.; Duff, B.; Hansen, K.H.; Heymann, F.; Jackson, J.N.; Jarlskog, G.; Joensson, L.; Klovning, A.; Leistam, L.; Lillethun, E.; Lohse, E.; Lynch, G.; Manning, G.; Potter, K.; Prentice, M.; Sharp, P.; Sharrock, S.; Oelgaard-Nielsen, S.; Quarrie, D.; Weiss, J.M.

    1975-01-01

    Results are given on the inclusive production of charged pions, kaons, and nucleons, in proton-proton collisions at c.m. energies from √s=23 to 63 GeV at large angles and for the transverse momentum range 0.1 < psub(T) < 4.8 GeV/c. The dependence of the production spectra on the collision energy √s, the transverse momentum psub(T), and the longitudinal rapidity is discussed. (Auth.)

  9. Nucleon internal structure: a new set of quark, gluon momentum, angular momentum operators and parton distribution functions

    International Nuclear Information System (INIS)

    Wang Fan; Sun Weimin; Chen Xiangsong; Lu Xiaofu; Goldman, T.

    2009-01-01

    It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relation. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed. (authors)

  10. Optical angular momentum and atoms

    Science.gov (United States)

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  11. Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    CERN Document Server

    Aduszkiewicz, A.; Andronov, E.; Antićić, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blümer, J.; Bogomilov, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S.A.; Busygina, O.; Christakoglou, P.; Cirković, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G.A.; Fodor, Z.; Garibov, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Herve, A.; Hierholzer, M.; Igolkin, S.; Ivashkin, A.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kisiel, J.; Kobayashi, T.; Kolesnikov, V.I.; Kolev, D.; Kondratiev, V.P.; Korzenev, A.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; László, A.; Lewicki, M.; Lyubushkin, V.V.; Maćkowiak-Pawłowska, M.; Maksiak, B.; Malakhov, A.I.; Manić, D.; Marcinek, A.; Marton, K.; Mathes, H.J.; Matulewicz, T.; Matveev, V.; Melkumov, G.L.; Morozov, S.; Mrówczyński, S.; Nakadaira, T.; Naskręt, M.; Nirkko, M.; Nishikawa, K.; Panagiotou, A.D.; Pavin, M.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Popov, B.A.; Posiadała, M.; Puławski, S.; Puzović, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Sarnecki, R.; Schmidt, K.; Sekiguchi, T.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Tefelska, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberič, D.; Vechernin, V.V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszyński, O.; Zambelli, L.

    2016-11-21

    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations \\$\\Delta[P_{T},N]\\$, \\$\\Sigma[P_{T},N]\\$ and \\$\\Phi_{p_T}\\$ are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions ...

  12. Erythrocyte depletion from bone marrow: performance evaluation after 50 clinical-scale depletions with Spectra Optia BMC.

    Science.gov (United States)

    Kim-Wanner, Soo-Zin; Bug, Gesine; Steinmann, Juliane; Ajib, Salem; Sorg, Nadine; Poppe, Carolin; Bunos, Milica; Wingenfeld, Eva; Hümmer, Christiane; Luxembourg, Beate; Seifried, Erhard; Bonig, Halvard

    2017-08-11

    Red blood cell (RBC) depletion is a standard graft manipulation technique for ABO-incompatible bone marrow (BM) transplants. The BM processing module for Spectra Optia, "BMC", was previously introduced. We here report the largest series to date of routine quality data after performing 50 clinical-scale RBC-depletions. Fifty successive RBC-depletions from autologous (n = 5) and allogeneic (n = 45) BM transplants were performed with the Spectra Optia BMC apheresis suite. Product quality was assessed before and after processing for volume, RBC and leukocyte content; RBC-depletion and stem cell (CD34+ cells) recovery was calculated there from. Clinical engraftment data were collected from 26/45 allogeneic recipients. Median RBC removal was 98.2% (range 90.8-99.1%), median CD34+ cell recovery was 93.6%, minimum recovery being 72%, total product volume was reduced to 7.5% (range 4.7-23.0%). Products engrafted with expected probability and kinetics. Performance indicators were stable over time. Spectra Optia BMC is a robust and efficient technology for RBC-depletion and volume reduction of BM, providing near-complete RBC removal and excellent CD34+ cell recovery.

  13. Production of baryons with large transverse momentum

    International Nuclear Information System (INIS)

    Landshoff, P.V.; Polkinghorne, J.C.; Scott, D.M.

    1975-01-01

    The multiple scattering of constituent quarks provides a natural mechanism for fairly copious production of large-transverse-momentum baryons in nucleon--nucleon collisions. The predicted scaling law agrees well with available data, and the mechanism provides a qualitative explanation of nuclear-target effects. In comparison with previous parton models, correlations are predicted to be qualitatively different, and large-p/sub T/ baryon production by meson beams is relatively suppressed

  14. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

    KAUST Repository

    Loizou, Nicolas

    2017-12-27

    In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

  15. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

    KAUST Repository

    Loizou, Nicolas; Richtarik, Peter

    2017-01-01

    In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

  16. Orbital angular momentum parton distributions in quark models

    International Nuclear Information System (INIS)

    Scopetta, S.; Vento, V.

    2000-01-01

    At the low energy, hadronic, scale we calculate Orbital Angular Momentum (OAM) twist-two parton distributions for the relativistic MIT bag model and for nonrelativistic quark models. We reach the scale of the data by leading order evolution in perturbative QCD. We confirm that the contribution of quarks and gluons OAM to the nucleon spin grows with Q 2 , and it can be relevant at the experimental scale, even if it is negligible at the hadronic scale, irrespective of the model used. The sign and shape of the quark OAM distribution at high Q 2 may depend strongly on the relative size of the OAM and spin distributions at the hadronic scale. Sizeable quark OAM distributions at the hadronic scale, as proposed by several authors, can produce the dominant contribution to the nucleon spin at high Q 2 . (author)

  17. Parametric dependences of momentum pinch and Prandtl number in JET

    DEFF Research Database (Denmark)

    Tala, T.; Salmi, A.; Angioni, C.

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density...... gradient length, with an experimental scaling for the pinch number being -Rvpinch/χφ = 1.2R/Ln +1.4. There is no dependence of the pinch number on collisionality, whereas the pinch seems to depend weakly on q-profile, the pinch number decreasing with increasing q. The Prandtl number was not found to depend...... either on R/Ln, collisionality or on q. The gyro-kinetic simulations show qualitatively similar dependence of the pinch number on R/Ln, but the dependence is weaker in the simulations. Gyro-kinetic simulations do not find any clear parametric dependence in the Prandtl number, in agreement...

  18. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    International Nuclear Information System (INIS)

    Li, Yunyun; Li, Nianbei; Hänggi, Peter; Li, Baowen; Liu, Sha

    2015-01-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  19. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    Science.gov (United States)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  20. Kinetic energy and scalar spectra in high Rayleigh number axially homogeneous buoyancy driven turbulence

    Science.gov (United States)

    Pawar, Shashikant S.; Arakeri, Jaywant H.

    2016-06-01

    Kinetic energy and scalar spectra from the measurements in high Rayleigh number axially homogeneous buoyancy driven turbulent flow are presented. Kinetic energy and concentration (scalar) spectra are obtained from the experiments wherein density difference is created using brine and fresh water and temperature spectra are obtained from the experiments in which heat is used. Scaling of the frequency spectra of lateral and longitudinal velocity near the tube axis is closer to the Kolmogorov-Obukhov scaling, while the scalar spectra show some evidence of dual scaling, Bolgiano-Obukhov scaling followed by Obukhov-Corrsin scaling. These scalings are also observed in the corresponding second order spatial structure functions of velocity and concentration fluctuations.

  1. Electron momentum spectroscopy

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1986-03-01

    For electron energies greater than a few hundred eV and recoil momenta less than a few atomic units, the differential cross section for the non-coplanar symmetric (e,2e) reaction on an atom or molecule depends on the target and ion structure only through the target-ion overlap. Experimental criteria for the energy and momentum are that the apparent structure information does not change when the energy and momentum are varied. The plane-wave impulse approximation is a sufficient description of the reaction mechanism for determining spherically-averaged squares of momentum-space orbitals for atoms and molecules and for coefficients describing initial and final state correlations

  2. DC conductivities from non-relativistic scaling geometries with momentum dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Cremonini, S. [Department of Physics, Lehigh University,16 Memorial Drive East, Bethlehem, PA 18018 (United States); Liu, Hai-Shan [Institute for Advanced Physics & Mathematics, Zhejiang University of Technology,Hangzhou 310023 (China); George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States); Lü, H. [Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University,Beijing 100875 (China); Pope, C.N. [George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States); Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University,Beijing 100875 (China); DAMTP, Centre for Mathematical Sciences, Cambridge University,Wilberforce Road, Cambridge CB3 OWA (United Kingdom)

    2017-04-04

    We consider a gravitational theory with two Maxwell fields, a dilatonic scalar and spatially dependent axions. Black brane solutions to this theory are Lifshitz-like and violate hyperscaling. Working with electrically charged solutions, we calculate analytically the holographic DC conductivities when both gauge fields are allowed to fluctuate. We discuss some of the subtleties associated with relating the horizon to the boundary data, focusing on the role of Lifshitz asymptotics and the presence of multiple gauge fields. The axionic scalars lead to momentum dissipation in the dual holographic theory. Finally, we examine the behavior of the DC conductivities as a function of temperature, and comment on the cases in which one can obtain a linear resistivity.

  3. Numerical and Experimental Identification of Seven-Wire Strand Tensions Using Scale Energy Entropy Spectra of Ultrasonic Guided Waves

    Directory of Open Access Journals (Sweden)

    Ji Qian

    2018-01-01

    Full Text Available Accurate identification of tension in multiwire strands is a key issue to ensure structural safety and durability of prestressed concrete structures, cable-stayed bridges, and hoist elevators. This paper proposes a method to identify strand tensions based on scale energy entropy spectra of ultrasonic guided waves (UGWs. A numerical method was first developed to simulate UGW propagation in a seven-wire strand, employing the wavelet transform to extract UGW time-frequency energy distributions for different loadings. Mode separation and frequency band loss of L(0,1 were then found for increasing tension, and UGW scale energy entropy spectra were extracted to establish a tension identification index. A good linear relationship was found between the proposed identification index and tensile force, and effects of propagation distance and propagation path were analyzed. Finally, UGWs propagation was examined experimentally for a long seven-wire strand to investigate attenuation and long distance propagation. Numerical and experimental results verified that the proposed method not only can effectively identify strand tensions but can also adapt to long distance tests for practical engineering.

  4. Initial angular momentum and flow in high energy nuclear collisions

    Science.gov (United States)

    Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth

    2018-03-01

    We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.

  5. Centrality dependence of baryon and meson momentum distributions in proton-nucleus collisions

    International Nuclear Information System (INIS)

    Hwa, Rudolph C.; Yang, C.B.

    2002-01-01

    The proton and neutron inclusive distributions in the projectile fragmentation region of pA collisions are studied in the valon model. Momentum degradation and flavor changes due to the nuclear medium are described at the valon level using two parameters. Particle production is treated by means of the recombination subprocess. The centrality dependences of the net proton and neutron spectra of the NA49 data are satisfactorily reproduced. The effective degradation length is determined to be 17 fm. Pion inclusive distributions can be calculated without any adjustable parameters

  6. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng, E-mail: dssu@imr.ac.cn [Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016 (China)

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  7. Momentum constraint relaxation

    International Nuclear Information System (INIS)

    Marronetti, Pedro

    2006-01-01

    Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature A ij -tilde, generated by a vector potential w i , as outlined by York. The components of w i are relaxed to solve approximately the momentum constraint equations, slowly pushing the evolution towards the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that it effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly

  8. Analysis of the dependence of surfatron acceleration of electrons by an electromagnetic wave in space plasma on the particle momentum along the wave front

    Energy Technology Data Exchange (ETDEWEB)

    Erokhin, A. N., E-mail: nerokhin@mx.iki.rssi.ru [People’s Friendship University of Russia (Russian Federation); Zol’nikova, N. N. [Russian Academy of Sciences, Space Research Institute (Russian Federation); Erokhin, N. S. [People’s Friendship University of Russia (Russian Federation)

    2016-01-15

    Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g{sub y}(0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phase Ψ(0) on the particle trajectory. It is assumed in the calculations that vertical bar Ψ(0) vertical bar ≤ π. For strongly relativistic values of g{sub y}(0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones.

  9. Analysis of the dependence of surfatron acceleration of electrons by an electromagnetic wave in space plasma on the particle momentum along the wave front

    International Nuclear Information System (INIS)

    Erokhin, A. N.; Zol’nikova, N. N.; Erokhin, N. S.

    2016-01-01

    Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g y (0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phase Ψ(0) on the particle trajectory. It is assumed in the calculations that vertical bar Ψ(0) vertical bar ≤ π. For strongly relativistic values of g y (0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones

  10. Nuclear Effects in Neutrino Interactions at Low Momentum Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, Ethan Ryan [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-05-01

    This is a study to identify predicted effects of the carbon nucleus environment on neutrino - nucleus interactions with low momentum transfer. A large sample of neutrino interaction data collected by the MINERvA experiment is analyzed to show the distribution of charged hadron energy in a region with low momentum transfer. These distributions reveal a major discrepancy between the data and a popular interaction model with only the simplest Fermi gas nuclear effects. Detailed analysis of systematic uncertainties due to energy scale and resolution can account for only a little of the discrepancy. Two additional nuclear model effects, a suppression/screening effect (RPA), and the addition of a meson exchange current process (MEC), are shown to improve the description of the data.

  11. Nuclear structure at high angular momentum

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1976-08-01

    There is considerable interest in high angular-momentum states of nuclei, and some recent progress in three areas is discussed. Part I considers transitional nuclei, where two types of rotational bands--decoupled and strongly coupled--are found to occur very frequently. These can be described by several collective models, but the required potential-energy surfaces seem to differ somewhat from those calculated microscopically. In Part II the processes that might cause backbending (irregularities in the rotational levels of certain nuclei) are discussed, and alignment of individual nucleons now seems to be the cause in most cases. The mixing of the ground band with this aligned band can be studied in some detail using Coulomb excitation with very heavy ions. Part III deals with the very high-spin states where effective moments of inertia have been obtained for spins up to 50h. Also structure has been seen in the spectra around these spin values which can be tentatively related to calculated shell effects. 74 references, 61 figures

  12. Measurement of jet spectra in Pb–Pb collisions at √(sNN)=2.76TeV with the ALICE detector at the LHC

    International Nuclear Information System (INIS)

    Verweij, Marta

    2013-01-01

    We report a measurement of transverse momentum spectra of jets detected with the ALICE detector in Pb–Pb collisions at √(s NN )=2.76TeV. Jets are reconstructed from charged particles using the anti-k T jet algorithm. The background from soft particle production is determined for each event and subtracted. The remaining influence of underlying event fluctuations is quantified by embedding different probes into heavy-ion data. The reconstructed transverse momentum spectrum is corrected for background fluctuations by unfolding. We compare the inclusive jet spectra reconstructed with R=0.2 and R=0.3 for different centrality classes and compare the jet yield in Pb–Pb and pp events

  13. Investigation of the coupling of the momentum distribution of a BEC with its collective of modes

    Science.gov (United States)

    Henn, Emanuel; Tavares, Pedro; Fritsch, Amilson; Vivanco, Franklin; Telles, Gustavo; Bagnato, Vanderlei

    In our group we have a strong research line on quantum turbulence and the general investigation of Bose-Einstein condensates (BEC) subjected to oscillatory excitations. Inside this research line we investigate first the behavior of the normal modes of the BEC under this excitation and observe a non-linear behavior in the amplitude of the quadrupolar mode. Also, inside this same procedure of investigation we study the momentum distribution of a BEC to understand if it is possible to extract Kolmogorov like excitation spectra which would point to a turbulent state of matter. The condensate is perturbed, and we let it evolve in-trap after which we perform standard time-of- flight absorption imaging. The momentum distribution is extracted and analyzed as a function of the in-trap free evolution time for a 2D projected cloud. We show that the momentum distribution has its features varying periodically with the same frequency as the quadrupolar mode displayed by the atomic gas hinting at a strong coupling of both. The main consequence of that one cannot be assertive about the quantitative features of the extract spectrum of momentum and we can only rely on its qualitative features. Financial Support: FAPESP, CNPq.

  14. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    Science.gov (United States)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  15. Momentum density maps for molecules

    International Nuclear Information System (INIS)

    Cook, J.P.D.; Brion, C.E.

    1982-01-01

    Momentum-space and position-space molecular orbital density functions computed from LCAO-MO-SCF wavefunctions are used to rationalize the shapes of some momentum distributions measured by binary (e,2e) spectroscopy. A set of simple rules is presented which enable one to sketch the momentum density function and the momentum distribution from a knowledge of the position-space wavefunction and the properties and effects of the Fourier Transform and the spherical average. Selected molecular orbitals of H 2 , N 2 and CO 2 are used to illustrate this work

  16. Force As A Momentum Current

    International Nuclear Information System (INIS)

    Munera, Hector A.

    2010-01-01

    Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.

  17. Momentum confinement at low torque

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, W M [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); De Grassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Budny, R [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kinsey, J E [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kramer, G J [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Luce, T C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Mikkelsen, D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Nazikian, R [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Petty, C C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Politzer, P A [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Scott, S D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Zeeland, M A Van [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Zarnstorff, M C [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2007-12-15

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized beta {beta}{sub N}, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q{sub min} show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. GLF23 modeling suggests that the role of E x B shearing is quite different between the two plasmas, which may help to explain the different dependence of the momentum confinement on torque.

  18. Transverse momentum dependence of inclusive primary charged-particle production in p–Pb collisions at √sNN = 5.02 TeV

    NARCIS (Netherlands)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.|info:eu-repo/dai/nl/371577810; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.|info:eu-repo/dai/nl/371578248; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.|info:eu-repo/dai/nl/355079615; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.|info:eu-repo/dai/nl/070139032; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.|info:eu-repo/dai/nl/411885812; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A R; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.|info:eu-repo/dai/nl/411888056; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'erasmo, G.; De Caro, A.; De Cataldo, G.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Rooij, R.|info:eu-repo/dai/nl/315888644; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, O.; Dobrin, A.|info:eu-repo/dai/nl/372618715; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.|info:eu-repo/dai/nl/355502488; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Hilden, T. E.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.|info:eu-repo/dai/nl/326052577; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J. Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, I.M.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Jachołkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kadyshevskiy, V.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L D|info:eu-repo/dai/nl/370530780; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.|info:eu-repo/dai/nl/362845670; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.|info:eu-repo/dai/nl/074064975; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; de Ladron Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.|info:eu-repo/dai/nl/355080192; La Rocca, P.; Lea, R.; Leardini, L.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X. G.|info:eu-repo/dai/nl/330612220; Luettig, P.; Lunardon, M.; Luparello, G.|info:eu-repo/dai/nl/355080400; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.|info:eu-repo/dai/nl/325781435; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mlynarz, J.; Mohammadi, N.|info:eu-repo/dai/nl/369405870; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.|info:eu-repo/dai/nl/07051349X; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.|info:eu-repo/dai/nl/323375618; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.|info:eu-repo/dai/nl/304833959; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.|info:eu-repo/dai/nl/32823219X; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakai, S.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Segato, G.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Slupecki, M.; Smirnov, N.; Snellings, R. J M|info:eu-repo/dai/nl/165585781; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; šumbera, M.; Susa, T.; Symons, T. J M; Szabo, A.; de Szanto Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Van Der Maarel, J.|info:eu-repo/dai/nl/412860996; Van Hoorne, J. W.; Van Leeuwen, M.|info:eu-repo/dai/nl/304836737; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.|info:eu-repo/dai/nl/304845035; Zhou, Y.; Zhuo, Zhou; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zyzak, M.

    2014-01-01

    The transverse momentum (Formula presented.) distribution of primary charged particles is measured at midrapidity in minimum-bias p–Pb collisions at (Formula presented.)NN = 5.02(Formula presented.) TeV with the ALICE detector at the LHC in the range. The spectra are compared to the expectation

  19. Transverse momentum dependence of inclusive primary charged-particle production in p–Pb collisions at √sNN=5.02 TeV

    NARCIS (Netherlands)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.|info:eu-repo/dai/nl/371577810; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.|info:eu-repo/dai/nl/371578248; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.|info:eu-repo/dai/nl/355079615; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.|info:eu-repo/dai/nl/070139032; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.|info:eu-repo/dai/nl/411885812; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A R; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.|info:eu-repo/dai/nl/411888056; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'erasmo, G.; De Caro, A.; De Cataldo, G.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Rooij, R.|info:eu-repo/dai/nl/315888644; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, O.; Dobrin, A.|info:eu-repo/dai/nl/372618715; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.|info:eu-repo/dai/nl/355502488; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Hilden, T. E.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.|info:eu-repo/dai/nl/326052577; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J. Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, I.M.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Jachołkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kadyshevskiy, V.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L D|info:eu-repo/dai/nl/370530780; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.|info:eu-repo/dai/nl/362845670; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.|info:eu-repo/dai/nl/074064975; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; de Ladron Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.|info:eu-repo/dai/nl/355080192; La Rocca, P.; Lea, R.; Leardini, L.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X. G.|info:eu-repo/dai/nl/330612220; Luettig, P.; Lunardon, M.; Luparello, G.|info:eu-repo/dai/nl/355080400; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.|info:eu-repo/dai/nl/325781435; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mlynarz, J.; Mohammadi, N.|info:eu-repo/dai/nl/369405870; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.|info:eu-repo/dai/nl/07051349X; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.|info:eu-repo/dai/nl/323375618; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.|info:eu-repo/dai/nl/304833959; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.|info:eu-repo/dai/nl/32823219X; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakai, S.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Segato, G.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Slupecki, M.; Smirnov, N.; Snellings, R. J M|info:eu-repo/dai/nl/165585781; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; šumbera, M.; Susa, T.; Symons, T. J M; Szabo, A.; de Szanto Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Van Der Maarel, J.|info:eu-repo/dai/nl/412860996; Van Hoorne, J. W.; Van Leeuwen, M.|info:eu-repo/dai/nl/304836737; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.|info:eu-repo/dai/nl/304845035; Zhou, Y.; Zhuo, Zhou; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zyzak, M.

    2014-01-01

    The transverse momentum (Formula presented.) distribution of primary charged particles is measured at midrapidity in minimum-bias p–Pb collisions at (Formula presented.)NN = 5.02(Formula presented.) TeV with the ALICE detector at the LHC in the range. The spectra are compared to the expectation

  20. Modification of $K^{0}_{s}$ and $\\Lambda (\\overline{\\Lambda})$ transverse momentum spectra in Pb-Pb collisions at $\\sqrt{^{s}NN}$ = 2.76 TeV with ALICE

    CERN Document Server

    Schuchmann, Simone; Appelshaeuser, Harald

    2016-01-01

    Measurements of the transverse momentum (pt) spectra of K0s and Lambda(Anti-Lambda) in Pb-Pb and pp collisions at sqrt(sNN) = 2.76 TeV with the ALICE detector at the LHC at CERN up to pT = 20GeV/c and pT = 16GeV/c, respectively, are presented in this thesis. In addition, the particle rapidity densities at mid-rapidity and nuclear modification factors of K0s and Lambda(Anti-Lambda) are discussed. Regarding the rapidity density, a suppression of the strange particle production in pp as compared to Pb–Pb collisions is observed at all centralities, whereas the production per pion rapidity density stays constant as a function of mean particle production including both systems. Furthermore, the relative increase of the individual particle species in pp and AA collisions is compatible for non- and single-strange particles when going from RHIC (sqrt(sNN) = 0.2 TeV) to LHC energies. On the other hand, in case of multi-strange baryons, a stronger increase in the particle production in pp is seen. The Lambda and Anti-...

  1. Charged Particle Momentum Spectra in $e^+ e^-$ annihilation at $\\sqrt{s}$ = 192-209 GeV

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2003-01-01

    Charged particle momentum distributions are studied in the reaction e+e- -> hadrons, using data collected with the OPAL detector at centre-of-mass energies from 192 GeV to 209 GeV. The data correspond to an average centre-of- mass energy of 201.7 GeV and a total integrated luminosity of 433 pb-1. The measured distributions and derived quantities, in combination with corresponding results obtained at lower centre-of-mass energies, are compared to QCD predictions in various theoretical approaches to study the energy dependence of the strong interaction and to test QCD as the theory describing it. In general, a good agreement is found between the measurements and the corresponding QCD predictions.

  2. Momentum and velocity of the ablated material in laser machining of carbon fiber preforms

    Science.gov (United States)

    Mucha, P.; Speker, N.; Weber, R.; Graf, T.

    2013-11-01

    The automation in fabrication of CFRP (carbon-fiber-reinforced plastics) parts demands efficient and low-cost machining technologies. In conventional cutting technologies, tool-wear and low process speeds are some of the reasons for high costs. Thus, the use of lasers is an attractive option for cutting CF-preforms. A typical effect degrading the quality in laser cutting CF-preform is a bulged cutting edge. This effect is assumed to be caused by interaction of the fibers with the ablated material, which leaves the kerf at high velocity. Hence, a method for measuring the momentum and the velocity of the vapor is presented in this article. To measure the momentum of the ablated material, the CF-preform is mounted on a precision scale while cutting it with a laser. The direction of the momentum was determined by measuring the momentum parallel and orthogonal to the CF-preform surface. A change of the direction of the momentum with different cutting-speeds is assessed at constant laser-power. Averaged velocities of the ablation products of up to 300 m/s were determined by measuring the ablated mass and the momentum.

  3. Energy-momentum density of graphite by electron-momentum spectroscopy

    International Nuclear Information System (INIS)

    Vos, M.; Fang, Z.; Canney, S.; Kheifets, A.; McCarthy, I.E.; Weigold, E.

    1996-11-01

    The energy-resolved electron momentum density of graphite has been measured along a series of well-defined directions using electron momentum spectroscopy (EMS). This is the first measurement of this kind performed on a single-crystal target with a thoroughly controlled orientation which clearly demonstrates the different nature of the σ and π bands in graphite. Good agreement between the calculated density and the measured one is found, further establishing that fact that EMS yields more direct and complete information on the valence electronic structure that any other method. 12 refs., 2 figs

  4. Single-Particle Momentum Distributions of Efimov States in Mixed-Species Systems

    DEFF Research Database (Denmark)

    T. Yamashita, M.; F. Bellotti, F.; Frederico, T.

    2013-01-01

    to derive formulas for the scaling factor of the Efimov spectrum for any mass ratio assuming either that two or three of the two-body subsystems have a bound state at zero energy. We consider the single-particle momentum distribution analytically and numerically and analyse the tail of the momentum......We solve the three-body bound state problem in three dimensions for mass imbalanced systems of two identical bosons and a third particle in the universal limit where the interactions are assumed to be of zero-range. The system displays the Efimov effect and we use the momentum-space wave equation...... distribution to obtain the three-body contact parameter. Our finding demonstrate that the functional form of the three-body contact term depends on the mass ratio and we obtain an analytic expression for this behavior. To exemplify our results, we consider mixtures of Lithium with either two Caesium or Rubium...

  5. Modeling BSM effects on the Higgs transverse-momentum spectrum in an EFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Grazzini, Massimiliano [Physik-Institut, Universität Zürich,CH-8057 Zürich (Switzerland); Ilnicka, Agnieszka [Physik-Institut, Universität Zürich,CH-8057 Zürich (Switzerland); Physics Department, ETH Zürich,CH-8093 Zürich (Switzerland); Paul Scherrer Institute,CH-5232 Villigen PSI, Switzwerland (Switzerland); Spira, Michael [Paul Scherrer Institute,CH-5232 Villigen PSI, Switzwerland (Switzerland); Wiesemann, Marius [Physik-Institut, Universität Zürich,CH-8057 Zürich (Switzerland); CERN Theory Division,CH-1211, Geneva 23 (Switzerland)

    2017-03-22

    We consider the transverse-momentum distribution of a Higgs boson produced through gluon fusion in hadron collisions. At small transverse momenta, the large logarithmic terms are resummed up to next-to-leading-logarithmic (NLL) accuracy. The resummed computation is consistently matched to the next-to-leading-order (NLO) result valid at large transverse momenta. The ensuing Standard Model prediction is supplemented by possible new-physics effects parametrised through three dimension-six operators related to the modification of the top and bottom Yukawa couplings, and to the inclusion of a point-like Higgs-gluon coupling, respectively. We present resummed transverse-momentum spectra including the effect of these operators at NLL+NLO accuracy and study their impact on the shape of the distribution. We find that such modifications, while affecting the total rate within the current uncertainties, can lead to significant distortions of the spectrum. The proper parametrization of such effects becomes increasingly important for experimental analyses in Run II of the LHC.

  6. Pseudorapidity and transverse-momentum distributions of charged particles in proton–proton collisions at s=13 TeV

    Directory of Open Access Journals (Sweden)

    J. Adam

    2016-02-01

    Full Text Available The pseudorapidity (η and transverse-momentum (pT distributions of charged particles produced in proton–proton collisions are measured at the centre-of-mass energy s=13 TeV. The pseudorapidity distribution in |η|<1.8 is reported for inelastic events and for events with at least one charged particle in |η|<1. The pseudorapidity density of charged particles produced in the pseudorapidity region |η|<0.5 is 5.31±0.18 and 6.46±0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15momentum spectra of charged particles is also investigated as a function of event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators.

  7. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    Directory of Open Access Journals (Sweden)

    Elliot Leader

    2018-04-01

    Full Text Available The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam. Keywords: Photon, Angular momentum, Laser optics, Particle physics

  8. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  9. Event patterns extracted from anisotropic spectra of charged particles produced in Pb-Pb collisions at 2.76 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ya-Hui; Liu, Fu-Hu [Shanxi University, Institute of Theoretical Physics and State Key Laboratory of Quantum Optics and Quantum Optics Devices, Taiyuan, Shanxi (China)

    2017-11-15

    Event patterns extracted from anisotropic spectra of charged particles produced in lead-lead collisions at 2.76 TeV are investigated. We use an inverse power-law resulted from the QCD calculus to describe the transverse momentum spectrum in the hard scattering process, and a revised Erlang distribution resulted from a multisource thermal model to describe the transverse momentum spectrum and anisotropic flow in the soft excitation process. The pseudorapidity distribution is described by a three-Gaussian function which is a revision of the Landau hydrodynamic model. Thus, the event patterns at the kinetic freeze-out are displayed by the scatter plots of the considered particles in the three-dimensional velocity, momentum, and rapidity spaces. (orig.)

  10. Event patterns extracted from anisotropic spectra of charged particles produced in Pb-Pb collisions at 2.76 TeV

    Science.gov (United States)

    Chen, Ya-Hui; Liu, Fu-Hu

    2017-11-01

    Event patterns extracted from anisotropic spectra of charged particles produced in lead-lead collisions at 2.76 TeV are investigated. We use an inverse power-law resulted from the QCD calculus to describe the transverse momentum spectrum in the hard scattering process, and a revised Erlang distribution resulted from a multisource thermal model to describe the transverse momentum spectrum and anisotropic flow in the soft excitation process. The pseudorapidity distribution is described by a three-Gaussian function which is a revision of the Landau hydrodynamic model. Thus, the event patterns at the kinetic freeze-out are displayed by the scatter plots of the considered particles in the three-dimensional velocity, momentum, and rapidity spaces.

  11. FSFE: Fake Spectra Flux Extractor

    Science.gov (United States)

    Bird, Simeon

    2017-10-01

    The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO.

  12. Nucleon momentum distribution in deuteron and other nuclei within the light-front dynamics method

    International Nuclear Information System (INIS)

    Antonov, A.N.; Gaidarov, M.K.; Ivanov, M.V.; Kadrev, D.N.; Krumova, G.Z.; Hodgson, P.E.; Geramb, H.V. von

    2002-01-01

    The relativistic light-front dynamics (LFD) method has been shown to give a correct description of the most recent data for the deuteron monopole and quadrupole charge form factors obtained at the Jefferson Laboratory for elastic electron-deuteron scattering for six values of the squared momentum transfer between 0.66 and 1.7 (GeV/c) 2 . The good agreement with the data is in contrast with the results of the existing nonrelativistic approaches. In this work we first make a complementary test of the LFD applying it to calculate another important characteristic, the nucleon momentum distribution n(q) of the deuteron, using six invariant functions f i (i=1,...,6) instead of two (S and D waves) in the nonrelativistic case. The comparison with the y-scaling data shows the decisive role of the function f 5 which at q≥500 MeV/c exceeds all other f functions (as well as the S and D waves) for the correct description of n(q) of the deuteron in the high-momentum region. Comparison with other calculations using S and D waves corresponding to various nucleon-nucleon potentials is made. Second, using clear indications that the high-momentum components of n(q) in heavier nuclei are related to those in the deuteron, we develop an approach within the natural orbital representation to calculate n(q) in (A,Z) nuclei on the basis of the deuteron momentum distribution. As examples, n(q) in 4 He, 12 C, and 56 Fe are calculated and good agreement with the y-scaling data is obtained

  13. ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hee-Jong [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Ho, Shirley; White, Martin; Reid, Beth; Schlegel, David J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Cuesta, Antonio J.; Padmanabhan, Nikhil [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Ross, Ashley J.; Percival, Will J.; Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Saito, Shun [Department of Astronomy, 601 Campbell Hall, University of California at Berkeley, Berkeley, CA 94720 (United States); De Putter, Roland [Instituto de Fisica Corpuscular, Valencia (Spain); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Xu Xiaoying; Skibba, Ramin [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Schneider, Donald P. [Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802 (United States); Verde, Licia [Institucio Catalana de Recerca i Estudis Avancats, Barcelona (Spain); Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J. [Apache Point Observatory, 2001 Apache Point Road, Sunspot, NM 88349 (United States); and others

    2012-12-10

    We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over {approx}10,000 deg{sup 2} between 0.45 < z < 0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, to derive the location of Baryon acoustic oscillations (BAOs) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale D{sub A} (z)/r{sub s} = 9.212{sup +0.416}{sub -{sub 0.404}} at z = 0.54, and therefore D{sub A} (z) = 1411 {+-} 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D{sub A} (z) is 1.4{sigma} higher than what is expected for the concordance {Lambda}CDM, in accordance to the trend of other spectroscopic BAO measurements for z {approx}> 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.

  14. Imprints of the Molecular Electronic Structure in the Photoelectron Spectra of Strong-Field Ionized Asymmetric Triatomic Model Molecules

    Science.gov (United States)

    Paul, Matthias; Yue, Lun; Gräfe, Stefanie

    2018-06-01

    We examine the circular dichroism in the angular distribution of photoelectrons of triatomic model systems ionized by strong-field ionization. Following our recent work on this effect [Paul, Yue, and Gräfe, J. Mod. Opt. 64, 1104 (2017), 10.1080/09500340.2017.1299883], we demonstrate how the symmetry and electronic structure of the system is imprinted into the photoelectron momentum distribution. We use classical trajectories to reveal the origin of the threefolded pattern in the photoelectron momentum distribution, and show how an asymmetric nuclear configuration of the triatomic system effects the photoelectron spectra.

  15. Momentum and angular momentum in the H-space of asymptotically flat, Einstein-Maxwell space-time

    International Nuclear Information System (INIS)

    Hallidy, W.; Ludvigsen, M.

    1979-01-01

    New definitions are proposed for the momentum and angular momentum of Einstein-Maxwell fields that overcome the deficiencies of earlier definitions of these terms and are appropriate to the new H-space formulations of space-time. Definitions are made in terms of the Winicour-Tamburino linkages applied to the good cuts of Cj + . The transformations between good cuts then correspond to the translations and Lorentz transformations at points in H-space. For the special case of Robinson-Trautman type II space-times, it is shown that the definitions of momentum and angular momentum yield previously published results. (author)

  16. Turbulent transport of toroidal angular momentum in low flow gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I; Catto, Peter J

    2010-01-01

    We derive a self-consistent equation for the turbulent transport of toroidal angular momentum in tokamaks in the low flow ordering that only requires solving gyrokinetic Fokker-Planck and quasineutrality equations correct to second order in an expansion on the gyroradius over scale length. We also show that according to our orderings the long wavelength toroidal rotation and the long wavelength radial electric field satisfy the neoclassical relation that gives the toroidal rotation as a function of the radial electric field and the radial gradients of pressure and temperature. Thus, the radial electric field can be solved for once the toroidal rotation is calculated from the transport of toroidal angular momentum. Unfortunately, even though this methodology only requires a gyrokinetic model correct to second order in gyroradius over scale length, current gyrokinetic simulations are only valid to first order. To overcome this difficulty, we exploit the smallish ratio B p /B, where B is the total magnetic field and B p is its poloidal component. When B p /B is small, the usual first order gyrokinetic equation provides solutions that are accurate enough to employ for our expression for the transport of toroidal angular momentum. We show that current δf and full f simulations only need small corrections to achieve this accuracy. Full f simulations, however, are still unable to determine the long wavelength, radial electric field from the quasineutrality equation.

  17. An experimental and theoretical investigation of the valence orbital momentum distributions and binding energy spectra of nitrogen

    International Nuclear Information System (INIS)

    Cook, J.P.D.; Pascual, R.; Weigold, E.

    1989-05-01

    A detailed electron momentum spectrosocpy (EMS) and a manybody theoretical study of the complete valence region of N 2 was carried out. The 1500eV EMS momentum distributions show that they provide a sensitive test for orbital wavefunctions of SCF calculations, and of correlation effects. The outermost 3σ g orbital is more sharply peaked at the origin than predicted by the orbital wavefunction. The inner valence 2σ g orbital is severely split, with spectroscopic strength ranging from 34eV to over 60eV in binding energy. The results of the present extended basis 1p Green's function calculations, as well as those of several previous manybody calculations, are only in semiquantitative agreement with this. There is a 2σ u pole at 25eV with a pole strength of approximately 0.067 in agreement with the results of manybody calculations. There is significant 2σ u and or 1π u strength and little 2σ g strength in the region 26-34eV. Poles observed at 29 and 32eV, previously attributed to the 2σ g orbital, are shown to be largely 2σ u in character. The manybody calculations predict too much 2σ g strength in the region 26-34eV. 29 refs., 1 tab., 16 figs

  18. A Study of Large Transverse Momentum Phenomena

    CERN Multimedia

    2002-01-01

    This experiment studies the structure of those p-p and @*-p collisions which are characterized by a very high transverse momentum flow in the central region. Some specific items studied are:\\\\ \\\\ \\item -~~Structure of events, where the high transverse momentum is shared by charged and neutral hadron (``jets''). Transverse momentum distribution, correlations and momentum balance for such events. \\item -~~Structure of events, where the high transverse momentum is mostly carried by one identified particle. Quantum number dependence and quantum number correlations of the high transverse momentum events. \\item -~~Structure of events containing large transverse momentum leptons or lepton pairs or direct photons. \\end{enumerate}.sk -~~Study of low momentum electrons and photons. -~~Search for gluonium states. -~~Search for new and rare particles. \\\\ \\\\ A conventional C-type magnet with a 0.5 T field in the direction of the beams together with a 42-layer cylindrical drift chamber detector is used for momentum analysi...

  19. Momentum Confinement at Low Torque

    International Nuclear Information System (INIS)

    Solomon, W.M.; Burrell, K.H.; deGrassie, J.S.; Budny, R.; Groebner, R.J.; Heidbrink, W.W.; Kinsey, J.E.; Kramer, G.J.; Makowski, M.A.; Mikkelsen, D.; Nazikian, R.; Petty, C.C.; Politzer, P.A.; Scott, S.D.; Van Zeeland, M.A.; Zarnstorff, M.C.

    2007-01-01

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized β N , by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co-neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q min show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. The relative importance of E x B shearing between the two is modeled using GLF23 and may suggest a possible explanation.

  20. The momentum distribution inside nucleus

    International Nuclear Information System (INIS)

    Fujita, T.

    1985-01-01

    Discussions are made on several reactions which can determine the momentum distribution inside nucleus. The first reaction discussed is the high energy heavy ion collision. This reaction involves many nucleons which interact strongly. Therefore, one must be careful for any possible final state interactions. The expression for the single particle momentum distribution is given. And it can be said that the expression is consistent with the description of the energetic neutrons from muon capture by heavy nucleus. The best way to determine the momentum distribution would be the lepton-nucleus scattering since it does not involve the strong interaction in the initial channel. Another reaction discussed is the backward proton production, which is governed by quite complicated reaction processes. Therefore, the determination of the momentum distribution is only indirect. Noverthless, it is found that this reaction presents a very interesting and important information on the momentum distribution. (Aoki, K.)

  1. Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    International Nuclear Information System (INIS)

    Aduszkiewicz, A.; Dominik, W.; Kuich, M.; Matulewicz, T.; Posiadala, M.; Ali, Y.; Brzychczyk, J.; Larsen, D.; Planeta, R.; Richter-Was, E.; Staszel, P.; Wyszynski, O.; Andronov, E.; Feofilov, G.A.; Igolkin, S.; Kondratiev, V.P.; Seryakov, A.; Vechernin, V.V.; Vinogradov, L.; Anticic, T.; Kadija, K.; Susa, T.; Antoniou, N.; Christakoglou, P.; Davis, N.; Diakonos, F.; Kapoyannis, A.; Panagiotou, A.D.; Vassiliou, M.; Baatar, B.; Bunyatov, S.A.; Kolesnikov, V.I.; Krasnoperov, A.; Lyubushkin, V.V.; Malakhov, A.I.; Matveev, V.; Melkumov, G.L.; Tereshchenko, V.; Bay, F.; Di Luise, S.; Rubbia, A.; Sgalaberna, D.; Blondel, A.; Bravar, A.; Debieux, S.; Haesler, A.; Korzenev, A.; Ravonel, M.; Bluemer, J.; Dembinski, H.; Engel, R.; Herve, A.; Mathes, H.J.; Roth, M.; Szuba, M.; Ulrich, R.; Unger, M.; Veberic, D.; Bogomilov, M.; Kolev, D.; Tsenov, R.; Busygina, O.; Golubeva, M.; Guber, F.; Ivashkin, A.; Kurepin, A.; Morozov, S.; Petukhov, O.; Sadovsky, A.; Cirkovic, M.; Manic, D.; Puzovic, J.; Czopowicz, T.; Dynowski, K.; Grebieszkow, K.; Mackowiak-Pawlowska, M.; Maksiak, B.; Sarnecki, R.; Slodkowski, M.; Tefelska, A.; Tefelski, D.; Deveaux, M.; Koziel, M.; Renfordt, R.; Stroebele, H.; Dumarchez, J.; Robert, A.; Ereditato, A.; Hierholzer, M.; Nirkko, M.; Pistillo, C.; Redij, A.; Fodor, Z.; Garibov, A.; Gazdzicki, M.; Grzeszczuk, A.; Kaptur, E.; Kisiel, J.; Kowalski, S.; Pulawski, S.; Schmidt, K.; Wilczek, A.; Hasegawa, T.; Kobayashi, T.; Nakadaira, T.; Nishikawa, K.; Sakashita, K.; Sekiguchi, T.; Shibata, M.; Tada, M.; Kowalik, K.; Rondio, E.; Stepaniak, J.; Laszlo, A.; Marton, K.; Vesztergombi, G.; Lewicki, M.; Naskret, M.; Turko, L.; Marcinek, A.; Mrowczynski, S.; Rybczynski, M.; Seyboth, P.; Stefanek, G.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.; Pavin, M.; Popov, B.A.; Rauch, W.; Roehrich, D.; Rustamov, A.; Zambelli, L.

    2016-01-01

    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80, and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations Δ[P_T,N], Σ[P_T,N] and Φ_p__T are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models Epos and Urqmd do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume. (orig.)

  2. Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Aduszkiewicz, A.; Dominik, W.; Kuich, M.; Matulewicz, T.; Posiadala, M. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Ali, Y.; Brzychczyk, J.; Larsen, D.; Planeta, R.; Richter-Was, E.; Staszel, P.; Wyszynski, O. [Jagiellonian University, Cracow (Poland); Andronov, E.; Feofilov, G.A.; Igolkin, S.; Kondratiev, V.P.; Seryakov, A.; Vechernin, V.V.; Vinogradov, L. [St. Petersburg State University, St. Petersburg (Russian Federation); Anticic, T.; Kadija, K.; Susa, T. [Ruder Boskovic Institute, Zagreb (Croatia); Antoniou, N.; Christakoglou, P.; Davis, N.; Diakonos, F.; Kapoyannis, A.; Panagiotou, A.D.; Vassiliou, M. [University of Athens, Athens (Greece); Baatar, B.; Bunyatov, S.A.; Kolesnikov, V.I.; Krasnoperov, A.; Lyubushkin, V.V.; Malakhov, A.I.; Matveev, V.; Melkumov, G.L.; Tereshchenko, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Bay, F.; Di Luise, S.; Rubbia, A.; Sgalaberna, D. [ETH Zuerich, Zurich (Switzerland); Blondel, A.; Bravar, A.; Debieux, S.; Haesler, A.; Korzenev, A.; Ravonel, M. [University of Geneva, Geneva (Switzerland); Bluemer, J.; Dembinski, H.; Engel, R.; Herve, A.; Mathes, H.J.; Roth, M.; Szuba, M.; Ulrich, R.; Unger, M.; Veberic, D. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Bogomilov, M.; Kolev, D.; Tsenov, R. [University of Sofia, Faculty of Physics, Sofia (Bulgaria); Busygina, O.; Golubeva, M.; Guber, F.; Ivashkin, A.; Kurepin, A.; Morozov, S.; Petukhov, O.; Sadovsky, A. [Institute for Nuclear Research, Moscow (Russian Federation); Cirkovic, M.; Manic, D.; Puzovic, J. [University of Belgrade, Belgrade (Serbia); Czopowicz, T.; Dynowski, K.; Grebieszkow, K.; Mackowiak-Pawlowska, M.; Maksiak, B.; Sarnecki, R.; Slodkowski, M.; Tefelska, A.; Tefelski, D. [Warsaw University of Technology, Warsaw (Poland); Deveaux, M.; Koziel, M.; Renfordt, R.; Stroebele, H. [University of Frankfurt, Frankfurt (Germany); Dumarchez, J.; Robert, A. [University of Paris VI and VII, LPNHE, Paris (France); Ereditato, A.; Hierholzer, M.; Nirkko, M.; Pistillo, C.; Redij, A. [University of Bern, Bern (Switzerland); Fodor, Z. [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest (Hungary); University of Wroclaw, Wroclaw (Poland); Garibov, A. [National Nuclear Research Center, Baku (Azerbaijan); Gazdzicki, M. [University of Frankfurt, Frankfurt (Germany); Jan Kochanowski University in Kielce, Kielce (Poland); Grzeszczuk, A.; Kaptur, E.; Kisiel, J.; Kowalski, S.; Pulawski, S.; Schmidt, K.; Wilczek, A. [University of Silesia, Katowice (Poland); Hasegawa, T.; Kobayashi, T.; Nakadaira, T.; Nishikawa, K.; Sakashita, K.; Sekiguchi, T.; Shibata, M.; Tada, M. [Institute for Particle and Nuclear Studies, KEK, Tsukuba (Japan); Kowalik, K.; Rondio, E.; Stepaniak, J. [National Center for Nuclear Research, Warsaw (Poland); Laszlo, A.; Marton, K.; Vesztergombi, G. [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest (Hungary); Lewicki, M.; Naskret, M.; Turko, L. [University of Wroclaw, Wroclaw (Poland); Marcinek, A. [Jagiellonian University, Cracow (Poland); University of Wroclaw, Wroclaw (Poland); Mrowczynski, S.; Rybczynski, M.; Seyboth, P.; Stefanek, G.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A. [Jan Kochanowski University in Kielce, Kielce (Poland); Pavin, M. [Ruder Boskovic Institute, Zagreb (Croatia); University of Paris VI and VII, LPNHE, Paris (France); Popov, B.A. [University of Paris VI and VII, LPNHE, Paris (France); Joint Institute for Nuclear Research, Dubna (RU); Rauch, W. [Fachhochschule Frankfurt, Frankfurt (DE); Roehrich, D. [University of Bergen, Bergen (NO); Rustamov, A. [National Nuclear Research Center, Baku (AZ); University of Frankfurt, Frankfurt (DE); Zambelli, L. [University of Paris VI and VII, LPNHE, Paris (FR); Institute for Particle and Nuclear Studies, KEK, Tsukuba (JP)

    2016-11-15

    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80, and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations Δ[P{sub T},N], Σ[P{sub T},N] and Φ{sub p{sub T}} are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models Epos and Urqmd do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume. (orig.)

  3. A scale space approach for unsupervised feature selection in mass spectra classification for ovarian cancer detection.

    Science.gov (United States)

    Ceccarelli, Michele; d'Acierno, Antonio; Facchiano, Angelo

    2009-10-15

    Mass spectrometry spectra, widely used in proteomics studies as a screening tool for protein profiling and to detect discriminatory signals, are high dimensional data. A large number of local maxima (a.k.a. peaks) have to be analyzed as part of computational pipelines aimed at the realization of efficient predictive and screening protocols. With this kind of data dimensions and samples size the risk of over-fitting and selection bias is pervasive. Therefore the development of bio-informatics methods based on unsupervised feature extraction can lead to general tools which can be applied to several fields of predictive proteomics. We propose a method for feature selection and extraction grounded on the theory of multi-scale spaces for high resolution spectra derived from analysis of serum. Then we use support vector machines for classification. In particular we use a database containing 216 samples spectra divided in 115 cancer and 91 control samples. The overall accuracy averaged over a large cross validation study is 98.18. The area under the ROC curve of the best selected model is 0.9962. We improved previous known results on the problem on the same data, with the advantage that the proposed method has an unsupervised feature selection phase. All the developed code, as MATLAB scripts, can be downloaded from http://medeaserver.isa.cnr.it/dacierno/spectracode.htm.

  4. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    Science.gov (United States)

    Leader, Elliot

    2018-04-01

    The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.

  5. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    Energy Technology Data Exchange (ETDEWEB)

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim, E-mail: ekarimi@uottawa.ca [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Boyd, Robert W. [Department of Physics, University of Ottawa, 25 Templeton, Ottawa, Ontario K1N 6N5 Canada (Canada); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2014-09-08

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.

  6. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    International Nuclear Information System (INIS)

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.; Upham, Jeremy; Karimi, Ebrahim; Boyd, Robert W.

    2014-01-01

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.

  7. Measurement of deuteron spectra and elliptic flow in Pb–Pb collisions at √sNN = 2.76 TeV at the LHC

    NARCIS (Netherlands)

    Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C. D.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.C.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A R; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, Sukhee; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; Dasgupta, S. S.; De Caro, A.; De Cataldo, G.; De Conti, C.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. Derradi; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, O.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. V.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; De Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L. C.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Sorkine-Hornung, Olga; Hosokawa, R.; Hristov, P.; Hughes, C.W.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L.D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.M.; Khan, Shfaqat A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.-S.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.L.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, Seema; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Strunz-Lehner, Christine; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal’Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, Alicia; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, Isabel M.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, Rajiv; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal Da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H.P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N. V.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q. Y.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J.M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, J. S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, Linda; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C S; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I. K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, Shui

    2017-01-01

    The transverse momentum (pT) spectra and elliptic flow coefficient (v2) of deuterons and anti-deuterons at mid-rapidity (| y| < 0.5) are measured with the ALICE detector at the LHC in Pb–Pb collisions at √sNN = 2.76 TeV. The measurement of the pT spectra of (anti-)deuterons is done up to 8 GeV/c in

  8. ICNTS. Benchmarking of momentum correction techniques

    International Nuclear Information System (INIS)

    Beidler, Craig D.; Isaev, Maxim Yu.; Kasilov, Sergei V.

    2008-01-01

    In the traditional neoclassical ordering, mono-energetic transport coefficients are evaluated using the simplified Lorentz form of the pitch-angle collision operator which violates momentum conservation. In this paper, the parallel momentum balance with radial parallel momentum transport and viscosity terms is analysed, in particular with respect to the radial electric field. Next, the impact of momentum conservation in the stellarator lmfp-regime is estimated for the radial transport and the parallel electric conductivity. Finally, momentum correction techniques are described based on mono-energetic transport coefficients calculated e.g. by the DKES code, and preliminary results for the parallel electric conductivity and the bootstrap current are presented. (author)

  9. Energy dependence of pi, p and pbar transverse momentum spectra for Au+Au collisions at sqrt sNN = 62.4 and 200 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, H

    2007-03-26

    We study the energy dependence of the transverse momentum (pT) spectra for charged pions, protons and anti-protons for Au+Au collisions at sqrt sNN = 62.4 and 200 GeV. Data are presented at mid-rapidity (lbar y rbar< 0.5) for 0.2< pT< 12 GeV/c. In the intermediate pT region (2< pT< 6 GeV/c), the nuclear modification factor is higher at 62.4 GeV than at 200 GeV, while at higher pT (pT> 7 GeV/c) the modification is similar for both energies. The p/pi+ and pbar/pi- ratios for central collisions at sqrt sNN = 62.4 GeV peak at pT _~;; 2 GeV/c. In the pT range where recombination is expected to dominate, the p/pi+ ratios at 62.4 GeV are larger than at 200 GeV, while the pbar/pi- ratios are smaller. For pT> 2 GeV/c, the pbar/pi- ratios at the two beam energies are independent of pT and centrality indicating that the dependence of the pbar/pi- ratio on pT does not change between 62.4 and 200 GeV. These findings challenge various models incorporating jet quenching and/or constituent quark coalescence.

  10. Extraction of partonic transverse momentum distributions from semi-inclusive deep inelastic scattering and Drell-Yan data

    Energy Technology Data Exchange (ETDEWEB)

    Pisano, Cristian [Dipartimento di Fisica, Universita di Pavia; INFN, Sezione di Pavia Via Bassi 6, I-27100 Pavia, Italy; Bacchetta, Alessandro [Dipartimento di Fisica, Universita di Pavia; INFN, Sezione di Pavia Via Bassi 6, I-27100 Pavia, Italy; Delcarro, Filippo [Dipartimento di Fisica, Universita di Pavia; INFN, Sezione di Pavia Via Bassi 6, I-27100 Pavia, Italy; Radici, Marco [INFN, Sezione di Pavia Via Bassi 6, I-27100 Pavia, Italy; Signori, Andrea [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-04-01

    We present a first attempt at a global fit of unpolarized quark transverse momentum dependent distribution and fragmentation functions from available data on semi-inclusive deep-inelastic scattering, Drell-Yan and $Z$ boson production processes. This analysis is performed in the low transverse momentum region, at leading order in perturbative QCD and with the inclusion of energy scale evolution effects at the next-to-leading logarithmic accuracy.

  11. Angular Momentum in Dwarf Galaxies

    Directory of Open Access Journals (Sweden)

    Del Popolo A.

    2014-06-01

    Full Text Available We study the “angular momentum catastrophe” in the framework of interaction among baryons and dark matter through dynamical friction. By means of Del Popolo (2009 model we simulate 14 galaxies similar to those investigated by van den Bosch, Burkert and Swaters (2001, and calculate the distribution of their spin parameters and the angular momenta. Our model gives the angular momentum distribution which is in agreement with the van den Bosch et al. observations. Our result shows that the “angular momentum catastrophe” can be naturally solved in a model that takes into account the baryonic physics and the exchange of energy and angular momentum between the baryonic clumps and dark matter through dynamical friction.

  12. Chemical analysis of industrial scale deposits by combined use of correlation coefficients with emission line detection of laser induced breakdown spectroscopy spectra

    International Nuclear Information System (INIS)

    Siozos, P.; Philippidis, A.; Hadjistefanou, M.; Gounarakis, C.; Anglos, D.

    2013-01-01

    Laser-induced breakdown spectroscopy (LIBS) was used to determine the mineral composition of various industrial scale samples. The aim of the study has been to investigate the capacity of LIBS to provide a fast, reliable analytical tool for carrying out routine analysis of inorganic scales, potentially on site, as a means to facilitate decision making concerning scale removal procedures. LIBS spectra collected in the range of 200–660 nm conveyed information about the metal content of the minerals. Via a straightforward analysis based on linear correlation of LIBS spectra it was possible to successfully discriminate scale samples into three main groups, Fe-rich, Ca-rich and Ba-rich, on the basis of correlation coefficients. By combining correlation coefficients with spectral data collected in the NIR, 860–960 nm, where sulfur emissions are detected, it became further possible to discriminate sulfates from carbonates as confirmed by independent analysis based on Raman spectroscopy. It is emphasized that the proposed LIBS-based method successfully identifies the major mineral or minerals present in the samples classifying the scales into relevant groups hence enabling process engineers to select appropriate scale dissolution strategies. - Highlights: • LIBS was used to determine the mineral composition of industrial scale samples. • Three groups of inorganic scales were identified: Ca rich, Ba rich and Fe rich. • A method that combines correlation coefficients and line detection is proposed. • The method successfully identifies the main mineral, or minerals, in the samples. • The results were compared with results obtained by use of Raman analysis

  13. Measurement of deuteron spectra and elliptic flow in Pb-Pb collisions at √(s{sub NN}) = 2.76 TeV at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, S. [Variable Energy Cyclotron Centre, Kolkata (India); Adamova, D. [Academy of Sciences of the Czech Republic, Rez u Prahy (Czech Republic). Nuclear Physics Inst.; Adolfsson, J. [Lund Univ. (Sweden). Div. of Experimental High Energy Physics; Collaboration: ALICE Collaboration; and others

    2017-10-15

    The transverse momentum (p{sub T}) spectra and elliptic flow coefficient (v{sub 2}) of deuterons and anti-deuterons at mid-rapidity (vertical stroke y vertical stroke < 0.5) are measured with the ALICE detector at the LHC in Pb-Pb collisions at √(s{sub NN}) = 2.76 TeV. The measurement of the p{sub T} spectra of (anti-)deuterons is done up to 8 GeV/c in 0-10% centrality class and up to 6 GeV/c in 10-20% and 20-40% centrality classes. The v{sub 2} is measured in the 0.8 < p{sub T} < 5 GeV/c interval and in six different centrality intervals (0-5, 5-10, 10-20, 20-30, 30-40 and 40-50%) using the scalar product technique. Measured π{sup ±}, K{sup ±} and p+ p transverse-momentum spectra and v{sub 2} are used to predict the deuteron p{sub T} spectra and v{sub 2} within the Blast-Wave model. The predictions are able to reproduce the v{sub 2} coefficient in the measured p{sub T} range and the transverse-momentum spectra for p{sub T} > 1.8 GeV/c within the experimental uncertainties. The measurement of the coalescence parameter B{sub 2} is performed, showing a p{sub T} dependence in contrast with the simplest coalescence model, which fails to reproduce also the measured v{sub 2} coefficient. In addition, the coalescence parameter B{sub 2} and the elliptic flow coefficient in the 20-40% centrality interval are compared with the AMPT model which is able, in its version without string melting, to reproduce the measured v{sub 2}(p{sub T}) and the B{sub 2}(p{sub T}) trend. (orig.)

  14. Representational momentum in memory for pitch.

    Science.gov (United States)

    Freyd, J J; Kelly, M H; DeKay, M L

    1990-11-01

    When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.

  15. Production spectra of $\\pi ^{\\pm}$, K$^{\\pm}$, p$^{\\pm}$ at large angles in proton-proton collisions in the CERN intersecting storage rings

    CERN Document Server

    Alper, B; Booth, P; Bulos, F; Carroll, L J; Damgaard, G; Duff, Brian G; Hansen, K H; Heymann, Franz F; Jackson, J N; Jarlskog, G; Jönsson, L B; Klovning, A; Leistam, L; Lillethun, E; Lohse, E; Lynch, G; Manning, Geoffrey; Ølgaard-Nielsen, S; Potter, K; Prentice, M; Quarrie, D; Sharp, P; Sharrock, S; von Dardel, Guy F; Weiss, J M

    1975-01-01

    Results are given on the inclusive production of charged pions, kaons, and nucleons, in proton-proton collisions at c.m. energies from square root s=23 to 63 GeV at large angles and for the transverse momentum range 0.1

    spectra on the collision energy square root s, the transverse momentum p/sub T /, and the longitudinal rapidity is discussed. (19 refs).

  16. Momentum transport in gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Rico

    2016-07-01

    In this thesis, the gyrokinetic-Vlasov code GKW is used to study turbulent transport, with a focus on radial transport of toroidal momentum. To support the studies on turbulent transport an eigenvalue solver has been implemented into GKW. This allows to find, not only the most unstable mode, but also subdominant modes. Furthermore it is possible to follow the modes in parameter scans. Furthermore, two fundamental mechanisms that can generate an intrinsic rotation have been investigated: profile shearing and the velocity nonlinearity. The study of toroidal momentum transport in a tokamak due to profile shearing reveals that the momentum flux can not be accurately described by the gradient in the turbulent intensity. Consequently, a description using the profile variation is used. A linear model has been developed that is able to reproduce the variations in the momentum flux as the profiles of density and temperature vary, reasonably well. It uses, not only the gradient length of density and temperature profile, but also their derivative, i.e. the second derivative of the logarithm of the temperature and the density profile. It is shown that both first as well as second derivatives contribute to the generation of a momentum flux. A difference between the linear and nonlinear simulations has been found with respect to the behaviour of the momentum flux. In linear simulations the momentum flux is independent of the normalized Larmor radius ρ{sub *}, whereas it is linear in ρ{sub *} for nonlinear simulations, provided ρ{sub *} is small enough (≤4.10{sup -3}). Nonlinear simulations reveal that the profile shearing can generate an intrinsic rotation comparable to that of current experiments. Under reactor conditions, however, the intrinsic rotation from the profile shearing is expected to be small due to the small normalized Larmor radius ρ{sub *}

  17. Energetic proton analysis at large angle by 200 MeV proton scattering on nuclei: inclusive spectra; proton-gamma coincidence spectra

    International Nuclear Information System (INIS)

    Al-Zoubidi, M.

    1984-01-01

    With a large acceptance magnet, both in momentum (300-700 MeV/c) and angle (10 0 ), backward energetic proton inclusive cross sections were measured for 200 MeV protons hitting 6 Li, 27 Al, 28 Si, 58 Ni and 197 Au targets. The data are analysed using the ''Quasi Two Body Scaling'' (QTBS) picture and also compared with the predictions at a standard cascade code. This QTBS approch assumes the dominance of the single scattering mechanism. It is shown that a scaling regime is reached for several data taken at incident energies at about 200 MeV/A. These data are remarkably well reproduced using a universal one nucleon momentum density distribution for A > approximately 20. A (p-γ) coincidence experiment was performed on 28 Si target, at 80 0 . Preliminary results indicates also single nucleon-nucleon collision, but the other low energy nucleon interacts with the residuel nucleus. Excitation energy transferred to the system is about 50 MeV [fr

  18. Measurement of heat and momentum eddy diffusivities in recirculating LMFBR outlet plenum flows

    International Nuclear Information System (INIS)

    Manno, V.P.; Golay, M.W.

    1978-06-01

    An optical technique has been developed for the measurement of the eddy diffusivity of heat in a transparent flowing medium. The method uses a combination of two established measurement tools: a Mach-Zehnder interferometer for the monitoring of turbulently fluctuating temperature and a Laser Doppler Anemometer (LDA) for the measurement of turbulent velocity fluctuations. The technique is applied to the investigation of flow fields characteristic of the LMFBR outlet plenum. The study is accomplished using air as the working fluid in a small scale Plexiglas test section. Lows are introduced into both the 1 / 15 scale FFTF outlet plenum and the 3 / 80 scale CRBR geometry plenum at inlet Reynolds numbers of 22,000. Measurements of the eddy diffusivity of heat and the eddy diffusivity of momentum are performed at a total of 11 measurement stations. Significant differences of the turbulence parameters are found between the two geometries, and the higher chimney structure of the CRBR case is found to be the major cause of the distinction. Spectral intensity studies of the fluctuating electronic analog signals of velocity and temperature are also performed. Error analysis of the overall technique indicates an experimental error of 10% in the determination of the eddy diffusivity of heat and 6% in the evaluation of turbulent momentum viscosity. In general it is seen that the turbulence in the cases observed is not isotropic, and use of isotropic turbulent heat and momentum diffusivities in transport modelling would not be a valid procedure

  19. Introducing Conservation of Momentum

    Science.gov (United States)

    Brunt, Marjorie; Brunt, Geoff

    2013-01-01

    The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…

  20. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    International Nuclear Information System (INIS)

    Teeny, Nicolas

    2016-01-01

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  1. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    Energy Technology Data Exchange (ETDEWEB)

    Teeny, Nicolas

    2016-10-18

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  2. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Lilly, D. K.

    1983-01-01

    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  3. Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at $\\mathbf{\\sqrt{\\textit s}}$ = 13 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasar, Cigdem; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-02-10

    The pseudorapidity ($\\eta$) and transverse-momentum ($p_{\\rm T}$) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy $\\sqrt{s}$ = 13 TeV. The pseudorapidity distribution in $|\\eta|<$ 1.8 is reported for inelastic events and for events with at least one charged particle in $|\\eta|<$ 1. The pseudorapidity density of charged particles produced in the pseudorapidity region $|\\eta|<$ 0.5 is 5.31 $\\pm$ 0.18 and 6.46 $\\pm$ 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 $<$ $p_{\\rm T}$ $<$ 20 GeV/c and $|\\eta|<$ 0.8 for events with at least one charged particle in $|\\eta|<$ 1. The correlation between transverse momentum and particle multiplicity is also investigated by studying the evolution of the spectra with event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators.

  4. Positronium in metal-oxide powders studied with age. The age-momentum correlation technique

    International Nuclear Information System (INIS)

    Waeyenberge, B. van; Dauve, Ch.

    2001-01-01

    For the first time positronium is investigated in the fine powders of MgO and Al 2 O 3 using age-momentum correlation technique based on a relativistic positron beam. The application of this technique for investigating the interaction of positronium with the grain surfaces is discussed and compared with other techniques. The previously reported interaction of the positronium with paramagnetic centers is further studied. A qualitative interpretation of the spectra is given. In the Al 2 O 3 samples we found some unexpected behaviour of the conversion quenching of ortho-positronium at irradiation induced paramagnetic surface defect. (author)

  5. Angular-momentum transport in nuclear collisions

    International Nuclear Information System (INIS)

    Wolschin, G.; Ayik, S.; Noerenberg, W.

    1978-01-01

    Among the various relaxation processes that can be observed in heavy-ion collisions, the dissipation of relative angular momentum into intrinsic angular momentum of the fragments attracts increasing attention. Here we present a transport theoretical description of angular-momentum and mass transport that allows for a transparent interpretation of the data. (orig.) [de

  6. Assessment of fluctuating pressure gradient using acceleration spectra in near wall flows

    Science.gov (United States)

    Cadel, Daniel; Lowe, K. Todd

    2015-11-01

    Separation of contributions to the fluctuating acceleration from pressure gradient fluctuations and viscous shear fluctuations in the frequency domain is examined in a turbulent boundary layer. Past work leveraging turbulent accelerations for pressure gradient measurements has neglected the viscous shear term from the momentum equation--an invalid assumption in the case of near wall flows. The present study seeks to account for the influence of the viscous shear term and spectrally reject its contribution, which is thought to be concentrated at higher frequencies. Spectra of velocity and acceleration fluctuations in a flat plate, zero pressure gradient turbulent boundary layer at a momentum thickness Reynolds number of 7500 are measured using a spatially resolving three-component laser Doppler velocimeter. This canonical case data is applied for validation of the spectral approach for future application in more complex aerodynamic flows.

  7. Momentum in Transformation of Technical Infrastructure

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten

    1999-01-01

    Current infrastructure holds a considerable momentum and this momentum is a barrier of transformation towards more sustainable technologies and more sustainable styles of network management. Using the sewage sector in Denmark as an example of a technical infrastructure system this paper argues...... that there are technical, economical and social aspects of the current infrastructures momentum....

  8. T2K off-axis near detector νμ flux measurement and absolute momentum scale calibration of the off-axis near detector tracker

    International Nuclear Information System (INIS)

    Blaszczyk, F.

    2011-09-01

    In this thesis we present the results from the ν μ energy spectrum measurement at T2K's near detector and T2K's near detector tracker absolute momentum scale calibration. First we review the main historical steps and the current state of the art of neutrino physics as well as the theoretical framework required to understand the thesis physics analyses presented later on. In particular we focus on the neutrino oscillation parametrization and the neutrino-matter interaction models. We then describe T2K, an off-axis long baseline neutrino oscillation experiment in Japan which consists of a muon neutrino beam sent from J-PARC to Super- Kamiokande, with a magnetized near detector located at 280 m from the neutrino production site. T2K's main goals are measuring the last unknown angle of the PMNS matrix θ 13 through the search of ν e appearance in the ν μ beam and measuring precisely the atmospheric parameters through muon neutrino disappearance. We briefly describe the detectors, in particular the near detector tracker and its performance. We then present the analyses tools, such as the reconstruction techniques used and how the neutrino charged current interaction events needed for the energy spectrum measurement are selected. The main goal of the thesis, the muon neutrino energy spectrum measurement done with the first T2K data is explained next. We give the motivations for such measurement, the results obtained with the first T2K data sample, and the different systematic errors studied. Finally, the absolute momentum scale calibration of T2K's near detector tractor, done through the reconstruction of the neutral kaon invariant mass, is explained. (author)

  9. Liquid momentum removal using rod arrays applied to the HYLIFE ICF reactor

    International Nuclear Information System (INIS)

    Raffray, A.R.; Hoffman, M.A.

    1986-01-01

    This research relates to the multiple liquid-lithium-jet blanket concept for the HYLIFE inertial-confinement fusion (ICF) reactor. The fusion micro-explosion would result in part of the liquid lithium being propelled towards the vacuum chamber wall where the resulting impact would cause high peak stresses. In an attempt to reduce these peak stresses, it was proposed to set up an array of bars between the vacuum vessel first wall and the liquid jets so that part of the liquid momentum would be removed as the liquid passed through the bars. A series of small-scale scoping experiments were run to obtain a preliminary evaluation of the effectiveness of such rod arrays in removing momentum from impinging liquid slugs. The impact force of an unconfined cylindrical water jet on in-line and staggered rod arrays was measured. The results indicate that the fraction of momentum removed from liquid slugs could probably exceed 18% for a staggered rod arrangement in the HYLIFE reactor

  10. Configuration mixing of mean-field wave functions projected on angular momentum and particle number: Application to 24Mg

    International Nuclear Information System (INIS)

    Valor, A.; Heenen, P.-H.; Bonche, P.

    2000-01-01

    We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF + BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows us also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF + BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to 24 Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment

  11. Delin and Delog codes for graphic representation of gamma ray spectra

    International Nuclear Information System (INIS)

    Travesi, A.; Romero, L.

    1983-01-01

    Two FORTRAN IV Codes have been developed for graphic representation of the gamma-ray spectra obtained with GeLi detectors and multichannel analyzers. The graphic plotting is carried out with the H.P. Graphic Plotter Mod HP-7221 A, using the graphic package software GRAPHICS-1000 from Hewlett-Packard. The codes have a great versatility and the representation of gamma spectra can be done in a lineal, semilog, or log-log scale, as desired. The gamma ray spectra data are fed into the computer through magnetic tape or perforated paper tape. The different output options and complementary data are given in a conversational way through a terminal with TV display. Among the options that can be selected by the user are the following: 1) smoothing the spectra; 2) drawing the spectra point by point or continuous; 3) output drawing in 1, 2 or 4 sheets with automatic division of the energy scale; 4) overlapping of selected spectra regions in γ-scale ampliation with automatic printout of the region limits and ampliation factor; 5) printing spectra data and identifications of selected photopeaks. The codes can be employed with any computer using printing devices, HP-GRAPHICS 1000 software compatible, but are easily modified for another printing software since their modular structure with FORTRAN IV written subroutines. (author)

  12. DELIN and DELOG codes for graphic representation of gamma ray spectra

    International Nuclear Information System (INIS)

    Romero, L.; Travesi, A.

    1983-01-01

    Two Fortran IV Codes has been developed for graphic representation of the gamma-ray spectra obtained with Ge Li detectors and multichannel analyzers. The grafic plotting es carried out with the H.P. Graphic Plotter Mod HP-7221 A, using the graphic package software GRAPHICS-1000 from Hewlett-Packard. The codes have a great versatility and the representation of gamma spectra can ba done in a lineal, semi log, or log-log scale, as desired. The gamma ray spectra data are feed into the computer through magnetic tape or perfored paper tape. The different out-put options and complementary data are given in a conversational way through a terminal with T.V. displays. Among the options that can be selected by the user are the following: - smoothing the spectra - drawing the spectra point by point or continuous - out-put drawing an 1, 2, or 4 sheet with automatic division of the energy scale. - overlapping of selected spectra regions in Y scale ampliation with automatic print-out of the region limits and ampliation factor. - Printing spectra data and identifications of selected photo peaks. The codes can be employed with any computer using printing devices, HP-Graphics 1000 software compatible, but are easily modified for another printing software since their modular structure with Fortran IV written

  13. Electron scattering from high-momentum neutrons in deuterium

    International Nuclear Information System (INIS)

    Klimenko, A.V.; Kuhn, S.E.; Bueltmann, S.; Careccia, S.L.; Dharmawardane, K.V.; Dodge, G.E.; Guler, N.; Hyde-Wright, C.E.; Klein, A.; Tkachenko, S.; Weinstein, L.B.; Zhang, J.; Butuceanu, C.; Griffioen, K.A.; Baillie, N.; Fersch, R.G.; Funsten, H.; Egiyan, K.S.; Asryan, G.; Dashyan, N.B.

    2006-01-01

    We report results from an experiment measuring the semiinclusive reaction 2 H(e,e ' p s ) in which the proton p s is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CEBAF large acceptance spectrometer. A reduced cross section was extracted for different values of final state missing mass W*, backward proton momentum p → s , and momentum transfer Q 2 . The data are compared to a simple plane wave impulse approximation (PWIA) spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. Within the framework of the simple spectator model, a 'bound neutron structure function' F 2n eff was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where the effects of FSI appear to be smaller. For p s >0.4 GeV/c, where the neutron is far off-shell, the model overestimates the value of F 2n eff in the region of x* between 0.25 and 0.6. A dependence of the bound neutron structure function on the neutron's 'off-shell-ness' is one possible effect that can cause the observed deviation

  14. On the Classical and Quantum Momentum Map

    DEFF Research Database (Denmark)

    Esposito, Chiara

    In this thesis we study the classical and quantum momentum maps and the theory of reduction. We focus on the notion of momentum map in Poisson geometry and we discuss the classification of the momentum map in this framework. Furthermore, we describe the so-called Poisson Reduction, a technique...... that allows us to reduce the dimension of a manifold in presence of symmetries implemented by Poisson actions. Using techniques of deformation quantization and quantum groups, we introduce the quantum momentum map as a deformation of the classical momentum map, constructed in such a way that it factorizes...

  15. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination

    Energy Technology Data Exchange (ETDEWEB)

    Barada, Daisuke [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya 321-8585 (Japan); Juman, Guzhaliayi; Yoshida, Itsuki [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Miyamoto, Katsuhiko; Omatsu, Takashige, E-mail: omatsu@faculty.chiba-u.jp [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Molecular Chirality Research Center, Chiba University, Chiba 263-8522 (Japan); Kawata, Shigeo [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Ohno, Seigo [Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan)

    2016-02-01

    It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum and a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.

  16. Generalized z-scaling and pp collisions at RHIC

    International Nuclear Information System (INIS)

    Tokarev, Mikhail; Zborovsky, Imrich

    2007-01-01

    New generalization of the z-scaling in inclusive particle production is proposed. The scaling variable z is expressed in terms of the momentum fractions x 1 and x 2 of the incoming protons. Explicit dependence of z on the momentum fractions y a and y b of the scattered and recoil constituents carried by the inclusive particle and recoil object is included. The scaling function Ψ (z) for charged and identified hadrons produced in proton-proton collisions is constructed. The scheme allows unique description of data on inclusive cross sections of charged hadrons, pions, kaons, antiprotons and lambdas produced at RHIC energies. The obtained results suggest that the z-scaling may be used as a tool for searching for new physics phenomena of particle production in high transverse momentum and high multiplicity region at proton-proton colliders RHIC and LHC. (author)

  17. Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

    NARCIS (Netherlands)

    Aamodt, K.; Chojnacki, M.; Christakoglou, P.; de Rooij, R. S.; Grelli, A.; Kamermans, R.; Mischke, A.; Nooren, G.J.L.; Peitzmann, T.; Thomas, D.; van Leeuwen, M.; Verweij, M.

    2010-01-01

    Inclusive transverse momentum spectra of primary charged particles in Pb–Pb collisions at √sNN= 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0–5% and 70–80% of the hadronic Pb–Pb cross section. The

  18. Attention and Representational Momentum

    OpenAIRE

    Hayes, Amy; Freyd, Jennifer J

    1995-01-01

    Representational momentum, the tendency for memory to be distorted in the direction of an implied transformation, suggests that dynamics are an intrinsic part of perceptual representations. We examined the effect of attention on dynamic representation by testing for representational momentum under conditions of distraction. Forward memory shifts increase when attention is divided. Attention may be involved in halting but not in maintaining dynamic representations.

  19. Universal spin-momentum locked optical forces

    Energy Technology Data Exchange (ETDEWEB)

    Kalhor, Farid [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Thundat, Thomas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Jacob, Zubin, E-mail: zjacob@purdue.edu [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Birck Nanotechnology Center, Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)

    2016-02-08

    Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.

  20. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron

    Science.gov (United States)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-04-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  1. Transverse momentum distributions of neutral pions from central and peripheral 16O+Au collisions at 200 A GeV

    International Nuclear Information System (INIS)

    Albrecht, R.; Bock, R.; Gutbrod, H.H.; Kolb, B.W.; Lund, I.; Schmidt, H.R.; Siemiarczuk, T.; Awes, T.C.; Baktash, C.; Ferguson, R.L.; Lee, I.Y.; Obenshain, F.E.; Plasil, F.; Soerensen, S.P.; Young, G.R.; Beckmann, P.; Berger, F.; Clewing, G.; Dragon, L.; Glasow, R.; Kampert, K.H.; Loehner, H.; Peitzmann, T.; Purschke, M.; Santo, R.; Claesson, G.; Franz, A.; Poskanzer, A.M.; Ritter, H.G.; Garpman, S.; Gustafsson, H.A.; Oskarsson, A.; Otterlund, I.; Persson, S.; Stenlund, E.; Kristiansson, P.

    1989-01-01

    The production of neutral pions by the interaction of 200 A GeV protons and 16 O projectiles with a Au target has been studied in the pseudorapidity range 1.5≤η≤2.1. Transverse momentum spectra have been measured between 0.4 GeV/c and 2.8 GeV/c and their dependence on the centrality of the collision has been investigated. The data show a high degree of similarity to p+p and α+α data from the ISR. The peripheral-collision spectra display a marked change of slope with a hard component starting at about 1.8 GeV/c, in contrast to central-collision data. (orig.)

  2. Population momentum across vertebrate life histories

    Science.gov (United States)

    Koons, D.N.; Grand, J.B.; Arnold, J.M.

    2006-01-01

    Population abundance is critically important in conservation, management, and demographic theory. Thus, to better understand how perturbations to the life history affect long-term population size, we examined population momentum for four vertebrate classes with different life history strategies. In a series of demographic experiments we show that population momentum generally has a larger effect on long-term population size for organisms with long generation times than for organisms with short generation times. However, patterns between population momentum and generation time varied across taxonomic groups and according to the life history parameter that was changed. Our findings indicate that momentum may be an especially important aspect of population dynamics for long-lived vertebrates, and deserves greater attention in life history studies. Further, we discuss the importance of population momentum in natural resource management, pest control, and conservation arenas. ?? 2006 Elsevier B.V. All rights reserved.

  3. Momentum of the Pure Radiation Field

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2007-01-01

    Full Text Available The local momentum equation of the pure radiation field is considered in terms of an earlier elaborated and revised electromagnetic theory. In this equation the contribution from the volume force is found to vanish in rectangular geometry, and to become nonzero but negligible in cylindrical geometry. Consequently the radiated momentum is due to the Poynting vector only, as in conventional electrodynamics. It results in physically relevant properties of a photon model having an angular momentum (spin. The Poynting vector concept is further compared to the quantized momentum concept for a free particle, as represented by a spatial gradient operator acting on the wave function. However, this latter otherwise successful concept leads to difficulties in the physical interpretation of known and expected photon properties such as the spin, the negligible loss of transverse momentum across a bounding surface, and the Lorentz invariance.

  4. Fast-forward scaling theory for phase imprinting on a BEC: creation of a wave packet with uniform momentum density and loading to Bloch states without disturbance

    Science.gov (United States)

    Masuda, Shumpei; Nakamura, Katsuhiro; Nakahara, Mikio

    2018-02-01

    We study phase imprinting on Bose-Einstein condensates (BECs) with the fast-forward scaling theory revealing a nontrivial scaling property in quantum dynamics. We introduce a wave packet with uniform momentum density (WPUM) which has peculiar properties but is short-lived. The fast-forward scaling theory is applied to derive the driving potential for creation of the WPUMs in a predetermined time. Fast manipulation is essential for the creation of WPUMs because of the instability of the state. We also study loading of a BEC into a predetermined Bloch state in the lowest band from the ground state of a periodic potential. Controlled linear potential is not sufficient for creation of the Bloch state with large wavenumber because the change in the amplitude of the order parameter is not negligible. We derive the exact driving potential for creation of predetermined Bloch states using the obtained theory.

  5. Momentum and Kinetic Energy Before the Tackle in Rugby Union

    Directory of Open Access Journals (Sweden)

    Sharief Hendricks, David Karpul, Mike Lambert

    2014-09-01

    Full Text Available Understanding the physical demands of a tackle in match situations is important for safe and effective training, developing equipment and research. Physical components such as momentum and kinetic energy, and it relationship to tackle outcome is not known. The aim of this study was to compare momenta between ball-carrier and tackler, level of play (elite, university and junior and position (forwards vs. backs, and describe the relationship between ball-carrier and tackler mass, velocity and momentum and the tackle outcome. Also, report on the ball-carrier and tackler kinetic energy before contact and the estimated magnitude of impact (energy distributed between ball-carrier and tackler upon contact. Velocity over 0.5 seconds before contact was determined using a 2-dimensional scaled version of the field generated from a computer alogorithm. Body masses of players were obtained from their player profiles. Momentum and kinetic energy were subsequently calculated for 60 tackle events. Ball-carriers were heavier than the tacklers (ball-carrier 100 ± 14 kg vs. tackler 93 ± 11 kg, d = 0.52, p = 0.0041, n = 60. Ball-carriers as forwards had a significantly higher momentum than backs (forwards 563 ± 226 Kg.m.s-1 n = 31 vs. backs 438 ± 135 Kg.m.s-1, d = 0.63, p = 0.0012, n = 29. Tacklers dominated 57% of tackles and ball-carriers dominated 43% of tackles. Despite the ball-carrier having a mass advantage before contact more frequently than the tackler, momentum advantage and tackle dominance between the ball-carrier and tackler was proportionally similar. These findings may reflect a characteristic of the modern game of rugby where efficiently heavier players (particularly forwards are tactically predetermined to carry the ball in contact.

  6. Study of cross-spectra of velocity components and temperature series in a nocturnal boundary layer

    Science.gov (United States)

    Maqueda, Gregorio; Sastre, Mariano; Viñas, Carmen; Viana, Samuel; Yagüe, Carlos

    2010-05-01

    The main characteristic of the Planetary Boundary Layer is the turbulent flow that can be understood as the motions of many superimposed eddies with different scales, which are very irregular and produce mixing among the atmospheric properties. Spectral analysis is a widely used statistical tool to know the size of eddies into the flow. The Turbulent Kinetic Energy is split in fractions for each scale of eddy by mean the power spectrum of the wind velocity components. Also, the fluctuation of the other variables as temperature, humidity, gases concentrations or material particles presents in the atmosphere can be divided according to the importance of different scales in a similar way than the wind. A Cross-spectrum between two time series is used in meteorology to know their correlation in frequency space. Specially, coespectrum, or real part of cross-spectrum, amplitud and coherence give us many information about the low or high correlation between two variables in a particular frecuency or scale (Stull, 1988). In this work we have investigated cross-spectra of velocity components and temperature measured along the summer 2009 at the CIBA, Research Centre for the Lower Atmosphere, located in Valladolid province (Spain), which is on a quite flat terrain (Cuxart et al., 2000; Viana et al., 2009). In these experimental dataset, among other instrumentation, two sonic anemometers (20 Hz, sampling rate) at 1.5 m and 10 m height are available. Cross-spectra between variables of the two levels, specially, wind vertical component and sonic temperature, under stable stratification are studied in order to improve the knowledge of the proprieties of the momentum and heat fluxes near the ground in the PBL. Nevertheless, power spectral of horizontal components of the wind, at both levels, have been also analysed. The spectra and cross-spectra were performed by mean the Blackman-Tukey method, widely utilised in the time series studies (Blackman & Tukey, 1958) and, where it is

  7. Transverse Momentum Distributions for Heavy Quark Pairs

    OpenAIRE

    Berger, Edmond L.; Meng, Ruibin

    1993-01-01

    We study the transverse momentum distribution for a $pair$ of heavy quarks produced in hadron-hadron interactions. Predictions for the large transverse momentum region are based on exact order $\\alpha_s^3$ QCD perturbation theory. For the small transverse momentum region, we use techniques for all orders resummation of leading logarithmic contributions associated with initial state soft gluon radiation. The combination provides the transverse momentum distribution of heavy quark pairs for all...

  8. Low momentum penguin contributions in a chiral theory

    International Nuclear Information System (INIS)

    Eeg, J.O.

    1985-11-01

    It has been shown that penguin diagram contributions corresponding to u-quark loop momenta below a scale Λsub(x) approximately= 1 GeV are enhanced and could at least partly explain the ΔI=1/2 rule. Thus a previous calculation within the bag model is confirmed. The present caluculation is performed wihtin an effective chiral theory with pions and kaons coupled to quarks. It has been found that low momentum left-left loop contributions are important, while left-right contributions can be neglected

  9. Transverse momentum dependent parton distributions at small-x

    Directory of Open Access Journals (Sweden)

    Bo-Wen Xiao

    2017-08-01

    Full Text Available We study the transverse momentum dependent (TMD parton distributions at small-x in a consistent framework that takes into account the TMD evolution and small-x evolution simultaneously. The small-x evolution effects are included by computing the TMDs at appropriate scales in terms of the dipole scattering amplitudes, which obey the relevant Balitsky–Kovchegov equation. Meanwhile, the TMD evolution is obtained by resumming the Collins–Soper type large logarithms emerged from the calculations in small-x formalism into Sudakov factors.

  10. Parametrization relating the fermionic mass spectra

    International Nuclear Information System (INIS)

    Kleppe, A.

    1993-01-01

    When parametrizing the fermionic mass spectra in terms of the unit matrix and a recursive matrix scrR 0 , which corresponds to an underlying scaling pattern in the mass spectra, each fermionic sector is characterized by three parameters: k, α, and R. Using the set of relations displayed by the parameters of the different sectors, it is possible to formulate a ''family Lagrangian'' which for each sector encompasses all the families. Relations between quark masses are furthermore deduced from these ''family Lagrangians.'' Using the relations between the parameters of the different charge sectors, it is also possible to ''derive'' the quark mass spectra from the (charged) leptonic mass spectrum

  11. Pengembangan Alat Peraga Momentum dengan Sistem Sensor

    Directory of Open Access Journals (Sweden)

    Upik Rahma

    2015-12-01

    Full Text Available Abstract This research aims to develop the props with the concept of momentum by using motion sensors. The method used is a method of research and development (Research and Development. In the implementation of the study outlines the development of research carried out in two stages: Theoretical and Empirical. Results of this research is a props momentum that has been developed and can be used by high school teachers who will perform physical demonstration of the momentum of an object. This tool can also be used as a media demonstration teacher for high school students to explain the physics of matter other. From the test results Viewer tool development momentum in SMAN 100 Jakarta indicate that the tool has been able to meet the expectations of teachers and learners in the orientation of the development of the various needs of props for high school students in the learning process of physics. Based on the results of this study concluded that, with the development of props momentum sensor system has met the criteria of props as a medium of learning physics. Keywords: learning media devlopment, learning media momentum with sensor systems, instructional media. Abstrak Penelitian ini bertujuan mengembangkan alat peraga dengan konsep momentum dengan menggunakan sensor gerak. Metode penelitian yang digunakan adalah metode penelitian pengembangan (Research and Development. Dalam pelaksanaan penelitian secara garis besar penelitian pengembangan dilaksanakan dalam dua tahap yaitu Teoritik dan Empiris. Hasil penelitian ini adalah sebuah alat peraga momentum yang sudah dikembangkan dan dapat digunakan oleh guru SMA yang akan melakukan peragaan fisika tentang momentum suatu benda. Alat ini juga dapat dipakai guru sebagai media demonstrasi bagi siswa SMA untuk menjelaskan materi fisika lainnya. Dari hasil uji coba pengembangan Alat Peraga Momentum di SMAN 100 Jakarta menunjukan bahwa alat telah mampu memenuhi harapan bagi guru dan peserta didik dalam

  12. Energy-momentum structure of the krypton valence shell by electron-momentum spectroscopy

    International Nuclear Information System (INIS)

    Nicholson, R.; Braidwood, S.W.; McCathy, I.E.; Weigold, E.; Brunger, M.J.

    1996-03-01

    Momentum distributions and spectroscopic factors are obtained in a high resolution electron-momentum spectroscopy study of krypton at 1000 eV. The shapes and relative magnitudes of the momentum profiles are in good agreement with the results of calculations made within the distorted-wave impulse approximation (DWIA) framework. The DWIA describes the relative magnitudes of the 4p and 4s manifolds as well as giving a good representation of the shapes of the respective 4p and 4s cross sections. Results for the momentum profiles belonging to excited 2 P o and 2 S e manifolds are also presented. Spectroscopic factors for transitions belonging to the 2 p o and 2 S e manifolds are assigned up to a binding energy of 42 eV. The spectroscopic factor for the lowest 4s transition is 0.51 ± 0.01, whereas that for the ground-state 4p transition is 0.98± 0.01. Comparisons of the present binding energies and spectroscopic factors are made against the results of several many-body calculations and photoelectron spectroscopy (PES) results. In addition, a new procedure is outlined, utilising the experimental 4p and 4s manifold cross sections, that provides information on possible initial state configuration interaction effects in krypton. 50 refs., 2 tabs., 10 figs

  13. Large transverse momentum behavior of gauge theories

    International Nuclear Information System (INIS)

    Coquereaux, Robert; De Rafael, Eduardo.

    1977-05-01

    The large transverse momentum behavior of Compton scattering and Moeller scattering in Quantum Electrodynamics; and of elastic quark-quark scattering in Quantum Chromodynamics are examined in perturbation theory. The results strongly suggest that the large transverse momentum regime in gauge theories is governed by a differential equation of the Callan-Symanzik type with a suitable momentum dependent anomalous dimension term. An explicit solution for the quark-quark elastic scattering amplitude at large transverse momentum is given

  14. Brane world black holes in teleparallel theory equivalent to general relativity and their Killing vectors, energy, momentum and angular momentum

    International Nuclear Information System (INIS)

    Nashed, Gamal G. L.

    2010-01-01

    The energy–momentum tensor, which is coordinate-independent, is used to calculate energy, momentum and angular momentum of two different tetrad fields. Although, the two tetrad fields reproduce the same space-time their energies are different. Therefore, a regularized expression of the gravitational energy–momentum tensor of the teleparallel equivalent of general relativity (TEGR), is used to make the energies of the two tetrad fields equal. The definition of the gravitational energy–momentum is used to investigate the energy within the external event horizon. The components of angular momentum associated with these space–times are calculated. In spite of using a static space–time, we get a non-zero component of angular momentum! Therefore, we derive the Killing vectors associated with these space–times using the definition of the Lie derivative of a second rank tensor in the framework of the TEGR to make the picture more clear. (general)

  15. Momentum transport studies from multi-machine comparisons

    International Nuclear Information System (INIS)

    Yoshida, M.; Kamada, Y.; Sakamoto, Y.; Kaye, S.; Solomon, W.; Bell, R.E.; Rice, J.; Podpaly, Y.; Reinke, M.L.; Tala, T.; Salmi, A.; Burrell, K.H.; Ferreira, J.; McDonald, D.; Mantica, P.

    2012-01-01

    A database of toroidal momentum transport on five tokamaks, Alcator C-Mod, DIII-D, JET, NSTX and JT-60U, has been constructed under a wide range of conditions in order to understand the characteristics of toroidal momentum transport coefficients, namely the toroidal momentum diffusivity (χ φ ) and the pinch velocity (V pinch ). Through an inter-machine comparison, the similarities and differences in the properties of χ φ and V pinch among the machines have been clarified. Parametric dependences of these momentum transport coefficients have been investigated over a wide range of plasma parameters taking advantage of the different operation regimes in machines. The approach offers insights into the parametric dependences as follows. The toroidal momentum diffusivity (χ φ ) generally increases with increasing heat diffusivity (χ i ). The correlation is observed over a wide range of χ φ , covering roughly two orders of magnitude, and within each of the machines over the whole radius. Through the inter-machine comparison, it is found that χ φ becomes larger in the outer region of the plasma. Also observed is a general trend for V pinch in tokamaks; the inward pinch velocity (−V pinch ) increases with increasing χ φ . The results that are commonly observed in machines will support a toroidal rotation prediction in future devices. On the other hand, differences among machines have been observed. The toroidal momentum diffusivity, χ φ , is larger than or equal to χ i in JET and JT-60U; on the other hand, χ φ is smaller than or equal to χ i in NSTX, DIII-D and Alcator C-Mod. In DIII-D, the ratio −RV pinch /χ φ at r/a = 0.5–0.6 is about 2, which is small compared with that in other tokamaks (−RV pinch /χ φ ≈ 5). Based on these different observations, parametric dependences of χ φ /χ i , RV pinch /χ φ and χ φ have been investigated in H-mode plasmas. Across the dataset from all machines, the ratio χ φ /χ i tends to be larger in low

  16. The light-front gauge-invariant energy-momentum tensor

    International Nuclear Information System (INIS)

    Lorce, Cedric

    2015-01-01

    In this study, we provide for the first time a complete parametrization for the matrix elements of the generic asymmetric, non-local and gauge-invariant canonical energy-momentum tensor, generalizing therefore former works on the symmetric, local and gauge-invariant kinetic energy-momentum tensor also known as the Belinfante-Rosenfeld energy-momentum tensor. We discuss in detail the various constraints imposed by non-locality, linear and angular momentum conservation. We also derive the relations with two-parton generalized and transverse-momentum dependent distributions, clarifying what can be learned from the latter. In particular, we show explicitly that two-parton transverse-momentum dependent distributions cannot provide any model-independent information about the parton orbital angular momentum. On the way, we recover the Burkardt sum rule and obtain similar new sum rules for higher-twist distributions

  17. Energy-momentum tensor in scalar QED

    International Nuclear Information System (INIS)

    Joglekar, S.D.; Misra, A.

    1988-01-01

    We consider the renormalization of the energy-momentum tensor in scalar quantum electrodynamics. We show the need for adding an improvement term to the conventional energy-momentum tensor. We consider two possible forms for the improvement term: (i) one in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be obtained from an action that is a finite function of bare quantities); (ii) one in which the improvement coefficient is a finite quantity, i.e., a finite function of renormalized parameters. We establish a negative result; viz., neither form leads to a finite energy-momentum tensor to O(e 2 λ/sup n/). .AE

  18. First-principles momentum-dependent local ansatz wavefunction and momentum distribution function bands of iron

    International Nuclear Information System (INIS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-01-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi–Dirac function for the d electrons with e g symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data. (author)

  19. Momentum-Space Josephson Effects

    Science.gov (United States)

    Hou, Junpeng; Luo, Xi-Wang; Sun, Kuei; Bersano, Thomas; Gokhroo, Vandna; Mossman, Sean; Engels, Peter; Zhang, Chuanwei

    2018-03-01

    The Josephson effect is a prominent phenomenon of quantum supercurrents that has been widely studied in superconductors and superfluids. Typical Josephson junctions consist of two real-space superconductors (superfluids) coupled through a weak tunneling barrier. Here we propose a momentum-space Josephson junction in a spin-orbit coupled Bose-Einstein condensate, where states with two different momenta are coupled through Raman-assisted tunneling. We show that Josephson currents can be induced not only by applying the equivalent of "voltages," but also by tuning tunneling phases. Such tunneling-phase-driven Josephson junctions in momentum space are characterized through both full mean field analysis and a concise two-level model, demonstrating the important role of interactions between atoms. Our scheme provides a platform for experimentally realizing momentum-space Josephson junctions and exploring their applications in quantum-mechanical circuits.

  20. Study of high-transverse momentum quark and gluon jet fragmentation

    International Nuclear Information System (INIS)

    Ghez, P.

    1986-09-01

    The fragmentation properties of high-transverse momentum jets are investigated using new data from the ISR and the SPS collider. Effects from gluon radiation are clearly demonstrated by comparison with a state-of-the-art model including QCD parton cascade evolution and string hadronization, which gives in general good agreement with the data. Differences between quark and gluon jets are discussed as well as Q 2 -dependent scaling violation effects

  1. Energy-momentum tensor in the fermion-pairing model

    International Nuclear Information System (INIS)

    Kawati, S.; Miyata, H.

    1980-01-01

    The symmetric energy-momentum tensor for the self-interacting fermion theory (psi-barpsi) 2 is expressed in terms of the collective mode within the Hartree approximation. The divergent part of the energy-momentum tensor for the fermion theory induces an effective energy-momentum tensor for the collective mode, and this effective energy-momentum tensor automatically has the Callan-Coleman-Jackiw improved form. The renormalized energy-momentum tensor is structurally equivalent to the Callan-Coleman-Jackiw improved tensor for the Yukawa theory

  2. Search for resonance structures in inclusive charged pion spectra from p-barp annihilation at rest

    International Nuclear Information System (INIS)

    Angelopoulos, A.; Apostolakis, A.; Papaelias, P.

    1985-01-01

    The charged pion momentum spectra from p-barp annihilation at rest have been measured with high statistics. A search for structures finds four narrow lines which are identified with the absorption and decay processes of kaons stopping in the target. Limits of 1-6 x 10 -4 /p-bar (90% C.L.) are placed on the yield of a narrow state in the mass range 1000--1660 MeV

  3. Photon-momentum transfer in molecular photoionization

    Science.gov (United States)

    Chelkowski, Szczepan; Bandrauk, André D.

    2018-05-01

    In most models and theoretical calculations describing multiphoton ionization by infrared light, the dipole approximation is used. This is equivalent to setting the very small photon momentum to zero. Using numerical solutions of the (nondipole) three-dimensional time-dependent Schrödinger equation for one electron in a H2+ molecular ion we investigate the effect the photon-momentum transfer to the photoelectron in an H2+ ion in various regimes. We find that the photon-momentum transfer in a molecule is very different from the transfer in atoms due to two-center interference effects. The photon-momentum transfer is very sensitive to the symmetry of the initial electronic state and is strongly dependent on the internuclear distance and on the ellipticity of the laser.

  4. Momentum sharing in imbalanced Fermi systems

    Science.gov (United States)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  5. Momentum sharing in imbalanced Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. M. -T.; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D' Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. M.; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatie, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using C-12, Al-27, Fe-56, and Pb-208 targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  6. Angular Momentum and Galaxy Formation Revisited

    Science.gov (United States)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-01

    -M sstarf scaling relations. This provides a physical motivation for characterizing galaxies most basically with two parameters: mass and bulge-to-disk ratio. Next, in an approach complementary to numerical simulations, we construct idealized models of angular momentum content in a cosmological context, using estimates of dark matter halo spin and mass from theoretical and empirical studies. We find that the width of the halo spin distribution cannot account for the differences between spiral and elliptical j sstarf, but that the observations are reproduced well if these galaxies simply retained different fractions of their initial j complement (~60% and ~10%, respectively). We consider various physical mechanisms for the simultaneous evolution of j sstarf and M sstarf (including outflows, stripping, collapse bias, and merging), emphasizing that the vector sum of all such processes must produce the observed j sstarf-M sstarf relations. We suggest that a combination of early collapse and multiple mergers (major or minor) may account naturally for the trend for ellipticals. More generally, the observed variations in angular momentum represent simple but fundamental constraints for any model of galaxy formation.

  7. Quantum corrections to the inflaton potential and the power spectra from superhorizon modes and trace anomalies

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de; Sanchez, N.G.

    2005-01-01

    We obtain the effective inflaton potential during slow-roll inflation by including the one-loop quantum corrections to the energy momentum tensor from scalar curvature and tensor perturbations as well as from light scalars and Dirac fermions coupled to the inflaton. During slow-roll inflation there is an unambiguous separation between super- and subhorizon contributions to the energy momentum tensor. The superhorizon part is determined by the curvature perturbations and scalar field fluctuations: both feature infrared enhancements as the inverse of a combination of slow-roll parameters which measure the departure from scale invariance in each case. Fermions and gravitons do not exhibit infrared divergences. The subhorizon part is completely specified by the trace anomaly of the fields with different spins and is solely determined by the space-time geometry. The one-loop corrections to the amplitude of curvature and tensor perturbations are obtained to leading order in slow roll and in the (H/M Pl ) 2 expansion. A complete assessment of the backreaction problem up to one loop including bosons and fermions is provided. The result validates the effective field theory description of inflation and confirms the robustness of the inflationary paradigm to quantum fluctuations. Quantum corrections to the power spectra are expressed in terms of the CMB observables: n s , r and dn s /dlnk. Trace anomalies (especially the graviton part) dominate these quantum corrections in a definite direction: they enhance the scalar curvature fluctuations and reduce the tensor fluctuations

  8. Orbital angular momentum in phase space

    International Nuclear Information System (INIS)

    Rigas, I.; Sanchez-Soto, L.L.; Klimov, A.B.; Rehacek, J.; Hradil, Z.

    2011-01-01

    Research highlights: → We propose a comprehensive Weyl-Wigner formalism for the canonical pair angle-angular momentum. → We present a simple and useful toolkit for the practitioner. → We derive simple evolution equations in terms of a star product in the semiclassical limit. - Abstract: A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.

  9. Wigner Functions and Quark Orbital Angular Momentum

    OpenAIRE

    Mukherjee, Asmita; Nair, Sreeraj; Ojha, Vikash Kumar

    2014-01-01

    Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs). We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  10. Energy-momentum tensor in quantum field theory

    International Nuclear Information System (INIS)

    Fujikawa, K.

    1981-01-01

    The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path-integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat--space-time limit, all the Ward-Takahashi identities associated with space-time transformations including the global dilatation become free from anomalies in terms of this energy-momentum tensor, reflecting the general covariance of the integral measure; the trace of this tensor is thus finite at zero momentum transfer for renormalizable theories. The Jacobian for the local conformal transformation, however, becomes nontrivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization-group b function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise

  11. Energy-momentum tensor in quantum field theory

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo.

    1980-12-01

    The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat space-time limit, all the Ward-Takahashi identities associate with space-time transformations including the global dilatation become free from anomalies, reflecting the general covariance of the integral measure; the trace of this energy-momentum tensor is thus finite at the zero momentum transfer. The Jacobian for the local conformal transformation however becomes non-trivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at the vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization group β-function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at the vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise. (author)

  12. Angular momentum projected wave-functions

    International Nuclear Information System (INIS)

    Bengtsson, R.; Haakansson, H.B.

    1978-01-01

    Angular momentum projection has become a vital link between intrinsic model-wavefunctions and the physical states one intends to describe. We discuss in general terms some aspects of angular momentum projection and present results from projection on e.g. cranking wavefunctions. Mass densities and spectroscopic factors are also presented for some cases. (author)

  13. Evaluation of the Momentum Closure Schemes in MPAS-Ocean

    Science.gov (United States)

    Zhao, Shimei; Liu, Yudi; Liu, Wei

    2018-04-01

    In order to compare and evaluate the performances of the Laplacian viscosity closure, the biharmonic viscosity closure, and the Leith closure momentum schemes in the MPAS-Ocean model, a variety of physical quantities, such as the relative reference potential energy (RPE) change, the RPE time change rate (RPETCR), the grid Reynolds number, the root mean square (RMS) of kinetic energy, and the spectra of kinetic energy and enstrophy, are calculated on the basis of results of a 3D baroclinic periodic channel. Results indicate that: 1) The RPETCR demonstrates a saturation phenomenon in baroclinic eddy tests. The critical grid Reynolds number corresponding to RPETCR saturation differs between the three closures: the largest value is in the biharmonic viscosity closure, followed by that in the Laplacian viscosity closure, and that in the Leith closure is the smallest. 2) All three closures can effectively suppress spurious dianeutral mixing by reducing the grid Reynolds number under sub-saturation conditions of the RPETCR, but they can also damage certain physical processes. Generally, the damage to the rotation process is greater than that to the advection process. 3) The dissipation in the biharmonic viscosity closure is strongly dependent on scales. Most dissipation concentrates on small scales, and the energy of small-scale eddies is often transferred to large-scale kinetic energy. The viscous dissipation in the Laplacian viscosity closure is the strongest on various scales, followed by that in the Leith closure. Note that part of the small-scale kinetic energy is also transferred to large-scale kinetic energy in the Leith closure. 4) The characteristic length scale L and the dimensionless parameter D in the Leith closure are inherently coupled. The RPETCR is inversely proportional to the product of D and L. When the product of D and L is constant, both the simulated RPETCR and the inhibition of spurious dianeutral mixing are the same in all tests using the Leith

  14. Momentum and Angular Momentum Transfer in Oblique Impacts: Implications for Asteroid Rotations

    Science.gov (United States)

    Yanagisawa, Masahisa; Hasegawa, Sunao; Shirogane, Nobutoshi

    1996-09-01

    We conducted a series of high velocity oblique impact experiments (0.66-6.7 km/s) using polycarbonate (plastic) projectiles and targets made of mortar, aluminum alloy, and mild steel. We then calculated the efficiencies of momentum transfer for small cratering impacts. They are η = (M‧Vn‧)/(mvn) and ζ = (M‧Vt‧)/(mvt), wheremandvare the mass and velocity of a projectile, andM‧ andV‧ represent those of a postimpact target. Subscripts “n” and “t” denote the components normal and tangential to the target surface at the impact point, respectively. The main findings are: (1) η increases with increasing impact velocity; (2) η is larger for mortar than for ductile metallic targets; (3) ζ for mortar targets seems to increase with the impact velocity in the velocity range less than about 2 km/s and decrease with it in the higher velocity range; (4) ζ for the aluminum alloy targets correlates negatively with incident zenith angle of the projectile. In addition to these findings on the momentum transfer, we show theoretically that “ζL” can be expressed by η and ζ for small cratering impact. Here, ζLis the spin angular momentum that the target acquires at impact divided by the collisional angular momentum due to the projectile. This is an important parameter to study the collisional evolution of asteroid rotation. For a spherical target, ζLis shown to be well approximated by ζ.

  15. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  16. Cutoff effects on energy-momentum tensor correlators in lattice gauge theory

    International Nuclear Information System (INIS)

    Meyer, Harvey B.

    2009-01-01

    We investigate the discretization errors affecting correlators of the energy-momentum tensor T μν at finite temperature in SU(N c ) gauge theory with the Wilson action and two different discretizations of T μν . We do so by using lattice perturbation theory and non-perturbative Monte-Carlo simulations. These correlators, which are functions of Euclidean time x 0 and spatial momentum p, are the starting point for a lattice study of the transport properties of the gluon plasma. We find that the correlator of the energy ∫d 3 x T 00 has much larger discretization errors than the correlator of momentum ∫d 3 x T 0k . Secondly, the shear and diagonal stress correlators (T 12 and T kk ) require N τ ≥ 8 for the Tx 0 = 1/2 point to be in the scaling region and the cutoff effect to be less than 10%. We then show that their discretization errors on an anisotropic lattice with a σ /a τ = 2 are comparable to those on the isotropic lattice with the same temporal lattice spacing. Finally, we also study finite p correlators.

  17. Calculation of exact vibrational spectra for P{sub 2}O and CH{sub 2}NH using a phase space wavelet basis

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Thomas, E-mail: tom.halverson@ttu.edu; Poirier, Bill [Department of Chemistry and Biochemistry and Department of Physics, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States)

    2014-05-28

    ‘‘Exact” quantum dynamics calculations of vibrational spectra are performed for two molecular systems of widely varying dimensionality (P{sub 2}O and CH{sub 2}NH), using a momentum-symmetrized Gaussian basis. This basis has been previously shown to defeat exponential scaling of computational cost with system dimensionality. The calculations were performed using the new “SWITCHBLADE” black-box code, which utilizes both dimensionally independent algorithms and massive parallelization to compute very large numbers of eigenstates for any fourth-order force field potential, in a single calculation. For both molecules considered here, many thousands of vibrationally excited states were computed, to at least an “intermediate” level of accuracy (tens of wavenumbers). Future modifications to increase the accuracy to “spectroscopic” levels, along with other potential future improvements of the new code, are also discussed.

  18. Momentum and Kinetic Energy Before the Tackle in Rugby Union

    Science.gov (United States)

    Hendricks, Sharief; Karpul, David; Lambert, Mike

    2014-01-01

    Understanding the physical demands of a tackle in match situations is important for safe and effective training, developing equipment and research. Physical components such as momentum and kinetic energy, and it relationship to tackle outcome is not known. The aim of this study was to compare momenta between ball-carrier and tackler, level of play (elite, university and junior) and position (forwards vs. backs), and describe the relationship between ball-carrier and tackler mass, velocity and momentum and the tackle outcome. Also, report on the ball-carrier and tackler kinetic energy before contact and the estimated magnitude of impact (energy distributed between ball-carrier and tackler upon contact). Velocity over 0.5 seconds before contact was determined using a 2-dimensional scaled version of the field generated from a computer alogorithm. Body masses of players were obtained from their player profiles. Momentum and kinetic energy were subsequently calculated for 60 tackle events. Ball-carriers were heavier than the tacklers (ball-carrier 100 ± 14 kg vs. tackler 93 ± 11 kg, d = 0.52, p = 0.0041, n = 60). Ball-carriers as forwards had a significantly higher momentum than backs (forwards 563 ± 226 Kg.m.s-1 n = 31 vs. backs 438 ± 135 Kg.m.s-1, d = 0.63, p = 0.0012, n = 29). Tacklers dominated 57% of tackles and ball-carriers dominated 43% of tackles. Despite the ball-carrier having a mass advantage before contact more frequently than the tackler, momentum advantage and tackle dominance between the ball-carrier and tackler was proportionally similar. These findings may reflect a characteristic of the modern game of rugby where efficiently heavier players (particularly forwards) are tactically predetermined to carry the ball in contact. Key Points First study to quantify momentum, kinetic energy, and magnitude of impact in rugby tackles across different levels in matches without a device attached to a player. Physical components alone, of either ball-carrier or

  19. Momentum and kinetic energy before the tackle in rugby union.

    Science.gov (United States)

    Hendricks, Sharief; Karpul, David; Lambert, Mike

    2014-09-01

    Understanding the physical demands of a tackle in match situations is important for safe and effective training, developing equipment and research. Physical components such as momentum and kinetic energy, and it relationship to tackle outcome is not known. The aim of this study was to compare momenta between ball-carrier and tackler, level of play (elite, university and junior) and position (forwards vs. backs), and describe the relationship between ball-carrier and tackler mass, velocity and momentum and the tackle outcome. Also, report on the ball-carrier and tackler kinetic energy before contact and the estimated magnitude of impact (energy distributed between ball-carrier and tackler upon contact). Velocity over 0.5 seconds before contact was determined using a 2-dimensional scaled version of the field generated from a computer alogorithm. Body masses of players were obtained from their player profiles. Momentum and kinetic energy were subsequently calculated for 60 tackle events. Ball-carriers were heavier than the tacklers (ball-carrier 100 ± 14 kg vs. tackler 93 ± 11 kg, d = 0.52, p = 0.0041, n = 60). Ball-carriers as forwards had a significantly higher momentum than backs (forwards 563 ± 226 Kg(.)m(.)s(-1) n = 31 vs. backs 438 ± 135 Kg(.)m(.)s(-1), d = 0.63, p = 0.0012, n = 29). Tacklers dominated 57% of tackles and ball-carriers dominated 43% of tackles. Despite the ball-carrier having a mass advantage before contact more frequently than the tackler, momentum advantage and tackle dominance between the ball-carrier and tackler was proportionally similar. These findings may reflect a characteristic of the modern game of rugby where efficiently heavier players (particularly forwards) are tactically predetermined to carry the ball in contact. Key PointsFirst study to quantify momentum, kinetic energy, and magnitude of impact in rugby tackles across different levels in matches without a device attached to a player.Physical components alone, of either ball

  20. Scaling laws with current for equilibrium momentum spread and emittances from intrabeam scattering and electron cooling

    International Nuclear Information System (INIS)

    Hasse, R.W.; Boine-Frankenheim, O.

    2004-01-01

    Based on the theories of Piwinski, Bjorken-Mtingawa and Martini of Coulomb scattering, expressions for the heating rates due to intrabeam scattering were known since a long time. Simplifications by Wei-Parzen and Rao and Piwinski led to analytic approximations which are easily applicable to existing lattices. We use these approximations and also the formulae from thermal equilibration of Struckmeier and equate them to either constant cooling rates from electron cooling or to the Novosibirsk cooling rates for electron cooling to calculate the equilibrium values of the horizontal and vertical emittances and the momentum spread (longitudinal emittance) for typical beams in the ESR or in the HESR. For constant cooling and all approximation formulae the ratio of current to the product of the three emittances remains almost constant. This yields a slope of the momentum spread with current between 0.2 and 0.3, in agreement with experimental data. Using the Novosibirsk cooling rates this slope is much larger

  1. Dividing Attention Increases Operational Momentum

    Directory of Open Access Journals (Sweden)

    Koleen McCrink

    2017-12-01

    Full Text Available When adding or subtracting two quantities, adults often compute an estimated outcome that is larger or smaller, respectively, than the actual outcome, a bias referred to as “operational momentum”. The effects of attention on operational momentum were investigated. Participants viewed a display in which two arrays of objects were added, or one array was subtracted from another array, and judged whether a subsequent outcome (probe array contained the correct or incorrect number of objects. In a baseline condition, only the arrays to be added or subtracted were viewed. In divided attention conditions, participants simultaneously viewed a sequence of colors or shapes, and judged which color (a non-spatial judgment or shape (a spatial judgment was repeated. Operational momentum occurred in all conditions, but was higher in divided attention conditions than in the baseline condition, primarily for addition problems. This pattern suggests that dividing attention, rather than decreasing operational momentum by decreasing attentional shifts, actually increased operational momentum. These results are consistent with a heightened use of arithmetic heuristics under conditions of divided attention.

  2. Wigner Functions and Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Mukherjee Asmita

    2015-01-01

    Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  3. Investigation of ultrashort pulse laser ablation of solid targets by measuring the ablation-generated momentum using a torsion pendulum.

    Science.gov (United States)

    Zhang, Nan; Wang, Wentao; Zhu, Xiaonong; Liu, Jiansheng; Xu, Kuanhong; Huang, Peng; Zhao, Jiefeng; Li, Ruxin; Wang, Mingwei

    2011-04-25

    50 fs - 12 ps laser pulses are employed to ablate aluminum, copper, iron, and graphite targets. The ablation-generated momentum is measured with a torsion pendulum. Corresponding time-resolved shadowgraphic measurements show that the ablation process at the optimal laser fluence achieving the maximal momentum is primarily dominated by the photomechanical mechanism. When laser pulses with specific laser fluence are used and the pulse duration is tuned from 50 fs to 12 ps, the generated momentum firstly increases and then remains almost constant, which could be attributed to the change of the ablation mechanism involved from atomization to phase explosion. The investigation of the ablation-generated momentum also reveals a nonlinear momentum-energy conversion scaling law, namely, as the pulse energy increases, the momentum obtained by the target increases nonlinearly. This may be caused by the effective reduction of the dissipated energy into the surrounding of the ablation zone as the pulse energy increases, which indicates that for femtosecond laser the dissipated energy into the surrounding target is still significant.

  4. The production of $\\rho$, $\\omega$ and $\\phi$ vector-mesons by protons and sulphur ions with incident momentum of 200 GeV/c per nucleon

    CERN Document Server

    Abreu, M C; Baglin, C; Baldit, C; Bedjidian, M; Bordalo, P; Borges, G; Bussière, A; Castor, J; Chaurand, B; Chevrot, I; Cheynis, B; Devaux, A; Drapier, O; Espagnon, B; Fargeix, J; Ferreira, R; Force, P; Gerschel, C; Grossiord, J Y; Guichard, A; Guimarães, J; Haroutunian, R; Jouan, D; Kluberg, L; Lourenço, C; Mourgues, S; Petiau, P; Pizzi, J R; Quintans, C; Ramos, S; Romana, A; Santos, H; Saturnini, P; Shahoyan, R; Sonderegger, P; Tarrago, X

    2005-01-01

    The production of rho omega and phi vector-mesons, detected through their mumu decay channel, is studied in p-W, S-S, S-Cu and S-U reactions at 200 GeV/c per nucleon incident momentum. Their inclusive cross-sections are determined in various transverse momentum intervals and their dependence on the projectile and target mass numbers is investigated. The relative yield B/sub mumu/sigma/sub phi //(B/sub mumu/sigmaas a function of the transverse momentum, p/sub T /, and of the collision centrality. While this ratio exhibits no significant dependence with p/sub T/, it clearly increases with the centrality of the collision. Effective temperatures deduced from the transverse mass spectra, dsigma/dM/sub T/, lead to values of Trho +omega equal or slightly higher than T/sub phi/. Both these effective temperatures smoothly increase from p-W to S-U reactions.

  5. Absolute flux scale for radioastronomy

    International Nuclear Information System (INIS)

    Ivanov, V.P.; Stankevich, K.S.

    1986-01-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized

  6. Reduction of momentum transfer rates by parallel electric fields: A two-fluid demonstration

    International Nuclear Information System (INIS)

    Delamere, P.A.; Stenbaek-Nielsen, H.C.; Otto, A.

    2002-01-01

    Momentum transfer between an ionized gas cloud moving relative to an ambient magnetized plasma is a general problem in space plasma physics. Obvious examples include the Io-Jupiter interaction, comets, and coronal mass ejections. Active plasma experiments have demonstrated that momentum transfer rates associated with Alfven wave propagation are poorly understood. Barium injection experiments from the Combined Release and Radiation Effects Satellite (CRRES) have shown that dense ionized clouds are capable of ExB drifting over large distances perpendicular to the magnetic field. The CRRES 'skidding' distances were much larger than predicted by magnetohydrodynamic theory and it has been proposed that parallel electric fields were a key component in the skidding phenomenon. A two-fluid code was used to demonstrate the role of parallel electric fields in reducing momentum transfer between two distinct plasma populations. In this study, a dense plasma was initialized moving relative to an ambient plasma and perpendicular to B. Parallel electric fields were introduced via a friction term in the electron momentum equation and the collision frequency was scaled in proportion to the field-aligned current density. The simulation results showed that parallel electric fields decreased the decelerating magnetic tension force on the plasma cloud through a magnetic diffusion/reconnection process

  7. Angular momentum projected semiclassics

    International Nuclear Information System (INIS)

    Hasse, R.W.

    1986-10-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle- one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space (r, r') the relevant quantities depend on vertical stroker - r 3 vertical stroke instead of vertical stroker - r'vertical stroke and in Wigner space (R, P) they become proportional to the angular momentum constraints δ(vertical strokeRxPvertical stroke/ℎ - l) and δ((RxP) z /ℎ - m). As applications we calculate the single-particle and one particle- one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction. (orig.)

  8. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  9. Twistor theory and the energy-momentum and angular momentum of the gravitational field at spatial infinity

    International Nuclear Information System (INIS)

    Shaw, W.T.

    1983-01-01

    Penrose's 'quasi-local mass and angular momentum' is investigated for 2-surfaces near spatial infinity in both linearized theory on Minkowski space and full general relativity. It is shown that for space-times that are radially smooth of order one in the sense of Beig and Schmidt with asymptotically electric Weyl curvature, there exists a global concept of a twistor space at spatial infinity. Global conservation laws for the energy-momentum and angular momentum are obtained, and the ten conserved quantities are shown to be invariant under asymptotic coordinate transformations. The relation to other definitions is discussed briefly. (author)

  10. Study of the transverse momentum distribution in the inclusive reactions K+p→K0+X between 5 and 32GeV/c and K+p→π-+X between 8.2 and 32 GeV/c

    International Nuclear Information System (INIS)

    Chliapnikov, P.V.; Gerdyukov, D.N.; Klimenko, S.V.; Minaev, N.G.; Perevoztchikov, V.M.; Rubin, A.M.; Uvarov, V.A.; Vorobjev, A.P.; Grard, F.; Henri, V.P.; Windmolders, R.

    1975-01-01

    The analysis of the transverse momentum spectra in the inclusive reactions K + p→K 0 +X at 5, 8.2, 16 and 32GeV/c and K + p→π - +X at 8.2, 16 and 32GeV/c in terms of a Bose-Einstein distribution reveals a strong correlation between the values of the temperature and the Feynman variable x. The variation of the temperature versus the incident momentum is also discussed [fr

  11. Schottky spectra and crystalline beams

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1996-01-01

    In this paper we revise the current dependence of the Schottky noise power of a cooled proton beam previously measured at NAP-M. More careful study of experimental data indicates a linear decrease in the inverse Schottky noise power with an increase in the beam intensity (N). The root of this function determines a threshold current which occurs at N = N th ≅1.2 x 10 8 particles. The inspection of measured Schottky spectra shows that this threshold does not correspond to some collective instability of the measured harmonic of the linear beam density. The found value of N th does not depend on the longitudinal beam temperature. For the case of NAP-M lattice, the study of the spectral properties of the Schottky noise in the crystalline string predicts the current dependence of the equilibrium momentum spread of the beam, which qualitatively agrees with that, recalculated from the NAP-M data. (orig.)

  12. Charged particle spectra in p+Pb collisions

    CERN Document Server

    Shulga, Evgeny; The ATLAS collaboration

    2016-01-01

    Per-event charged particle spectra and nuclear modification factors are measured with the ATLAS detector at the LHC in p+Pbinteractions at sqrt(s_NN)=5.02 TeV. Results are presented as a function of transverse momentum, rapidity, and in different intervals of collision centrality, which is characterised in p+Pb collisions by the total transverse energy measured over the pseudorapidity interval -3.2

  13. Value and Momentum Everywhere

    DEFF Research Database (Denmark)

    Asness, Clifford S.; Moskowitz, Tobias J.; Heje Pedersen, Lasse

    across asset classes than passive exposures to the asset classes themselves. However, value and momentum are negatively correlated both within and across asset classes. Our results indicate the presence of common global risks that we characterize with a three factor model. Global funding liquidity risk...... is a partial source of these patterns, which are identifiable only when examining value and momentum simultaneously across markets. Our findings present a challenge to existing behavioral, institutional, and rational asset pricing theories that largely focus on U.S. equities....

  14. Dirac states for unit position and momentum: Phase consistency of their angular momentum representations

    International Nuclear Information System (INIS)

    Snider, R.F.

    1982-01-01

    It is shown that the position and momentum directional representations of angular momentum states must satisfy Σ/sub lambdas/ = Σ/sub lambdas/(i)/sup lambda/Y/sub lambdas/(r)Y/sub lambdas/ (p)*. This imposes phase constraints on the relation between , , Y/sub lambdas/ (r), and Y/sub lambdas/(p). In the accompanying paper, it is shown that this resolves a problem in the centrifugal sudden approximation of molecular collision theory

  15. Morse Potential in the Momentum Representation

    International Nuclear Information System (INIS)

    Sun Guohua; Dong Shihai

    2012-01-01

    The momentum representation of the Morse potential is presented analytically by hypergeometric function. The properties with respect to the momentum p and potential parameter β are studied. Note that |Ψ(p)| is a nodeless function and the mutual orthogonality of functions is ensured by the phase functions arg[Ψ(p)]. It is interesting to see that the |Ψ(p)| is symmetric with respect to the axis p = 0 and the number of wave crest of |Ψ(p)| is equal to n + 1. We also study the variation of |Ψ(p)| with respect to β. The amplitude of |Ψ(p)| first increases with the quantum number n and then deceases. Finally, we notice that the discontinuity in phase occurs at some points of the momentum p and the position and momentum probability densities are symmetric with respect to their arguments.

  16. Morse Potential in the Momentum Representation

    Institute of Scientific and Technical Information of China (English)

    孙国华; 董世海

    2012-01-01

    The momentum representation of the Morse potential is presented analytically by hypergeometric function. The properties with respect to the momentum p and potential parameter β are studied. Note that [q2(p)l is a nodeless function and the mutual orthogonality of functions is ensured by the phase functions arg[(p)], It is interesting to see that the [~ (p)[ is symmetric with respect to the axis p = 0 and the number of wave crest of [ (p)[ is equal to n + 1. We also study the variation of ]k(p)l with respect to . The arnplitude of |ψ(p)] first increases with the quantum number n and then deceases. Finally, we notice that the discontinuity in phase occurs at some points of the momentum p and the position and momentum probability densities are symmetric with respect to their arguments.

  17. Electron correlation effects in the (e,2e) valence separation energy spectra of krypton

    International Nuclear Information System (INIS)

    Fuss, I.; Glass, R.; McCarthy, I.E.; Minchinton, A.; Weigold, E.

    1981-04-01

    Separation energy spectra and momentum distributions for the valence orbitals of krypton have been obtained at a total electron energy of 1200eV using (e,2e) spectroscopy with symmetric kinematics. The spectroscopic strength of the 4s orbital is found to be significantly split among ion states ranging into the continuum, whereas the spectroscopic strength of the 4p ground state transition is found to be essentially unity. The momentum distributions for the 4p -1 and 4s -1 transitions are well described by the corresponding Hartree-Fock ground state orbital momentum distributions. A number of configuration interaction calculations using predominantly the 4s4p 6 and 4s 2 4p 4 4d ( 2 Ssub(1/2)) configurations, have been carried out for the main 4s - 1 ion eigenstates. The results, although confirming severe splitting of the 4s -1 spectroscopic strength, over-estimate the 4s4p 6 component of the lowest 2 S level in the ion. The data provides a sensitive test of the variational determination of the parameters of pseudostates representing configurations not treated explicitly

  18. Deuterium electrodisintegration at high recoil momentum

    International Nuclear Information System (INIS)

    Steenholen, G.

    1996-01-01

    The availability of continuous electron beams made it possible to carry out various deuterium electro-disintegration experiments in kinematical domains corresponding to a high recoil momentum. Three such experiments are discussed: 1) the left-right asymmetry with respect to the direction of the momentum transfer has been measured with good precision; 2) cross sections have been obtained in a kinematical region well above the quasi-elastic peak; 3) data have been taken in quasi-elastic kinematics that can be used to study high-momentum components in the deuterium wave function [ru

  19. Parasitic momentum flux in the tokamak core

    Science.gov (United States)

    Stoltzfus-Dueck, T.

    2017-10-01

    Tokamak plasmas rotate spontaneously without applied torque. This intrinsic rotation is important for future low-torque devices such as ITER, since rotation stabilizes certain instabilities. In the mid-radius `gradient region,' which reaches from the sawtooth inversion radius out to the pedestal top, intrinsic rotation profiles may be either flat or hollow, and can transition suddenly between these two states, an unexplained phenomenon referred to as rotation reversal. Theoretical efforts to explain the mid-radius rotation shear have largely focused on quasilinear models, in which the phase relationships of some selected instability result in a nondiffusive momentum flux (``residual stress''). In contrast, the present work demonstrates the existence of a robust, fully nonlinear symmetry-breaking momentum flux that follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The physical origin is an often-neglected portion of the radial ExB drift, which is shown to drive a symmetry-breaking outward flux of co-current momentum whenever free energy is transferred from the electrostatic potential to ion parallel flows. The fully nonlinear derivation relies only on conservation properties and symmetry, thus retaining the important contribution of damped modes. The resulting rotation peaking is counter-current and scales as temperature over plasma current. As first demonstrated by Landau, this free-energy transfer (thus also the corresponding residual stress) becomes inactive when frequencies are much higher than the ion transit frequency, which allows sudden transitions between hollow and flat profiles. Simple estimates suggest that this mechanism may be consistent with experimental observations. This work was funded in part by the Max-Planck/Princeton Center for Plasma Physics and in part by the U.S. Dept. of Energy, Office of Science, Contract No. DE-AC02-09CH11466.

  20. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  1. Evaluation of spent fuel isotopics, radiation spectra and decay heat using the scale computational system

    International Nuclear Information System (INIS)

    Parks, C.V.; Hermann, O.W.; Ryman, J.C.

    1986-01-01

    In order to be a self-sufficient system for transport/storage cask shielding and heat transfer analysis, the SCALE system developers included modules to evaluate spent fuel radiation spectra and decay heat. The primary module developed for these analyses is ORIGEN-S which is an updated verision of the original ORIGEN code. The COUPLE module was also developed to enable ORIGEN-S to easily utilize multigroup cross sections and neutron flux data during a depletion analysis. Finally, the SAS2 control module was developed for automating the depletion and decay via ORIGEN-S while using burnup-dependent neutronic data based on a user-specified fuel assembly and reactor history. The ORIGEN-S data libraries available for depletion and decay have also been significantly updated from that developed with the original ORIGEN code

  2. Cascade-Driven Series with Narrower Multifractal Spectra Than Their Surrogates: Standard Deviation of Multipliers Changes Interactions across Scales

    Directory of Open Access Journals (Sweden)

    Jun Taek Lee

    2017-01-01

    Full Text Available Multifractal (or singularity spectra widths w allow diagnosing cascade structure through comparing original series’ widths wOrig to surrogate series’ widths wSurr. However, interpretations of 0scale interactions using white-noise multipliers. Multifractal detrended fluctuation analysis (MF-DFA and Chhabra and Jensen’s method provided two estimates of wOrig for 200 simulated series at each value 0.1≤σ≤1.1 incrementing by 0.05. Increasing σ draws wOrig away from wSurrscale interactions more diverse than in cascades with wSurr

  3. K∗(892)0 and φ meson production at high transverse momentum in pp and Pb-Pb collisions at √sNN =2.76 TeV

    NARCIS (Netherlands)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Janssen, M M; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C. D.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.C.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Iga Buitron, S. A.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A R; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, Sukhee; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; Dasgupta, S. S.; De Caro, A.; De Cataldo, G.; De Conti, C.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. Derradi; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, O.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; De Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L. C.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.W.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L.D.; Keil, M.; Ketzer, B.; Mohisin Khan, M.; Khan, P.M.; Khan, Shfaqat A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.-S.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.L.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, Seema; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Strunz-Lehner, Christine; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, Alicia; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, Isabel M.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, Rajiv; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal Da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, J.-W.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H.P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q. Y.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R; Singha, S.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J.M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, J. S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; Van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C S; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I. K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.

    2017-01-01

    The production of K∗(892)0 and φ(1020) mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions at √sNN=2.76TeV has been analyzed using a high luminosity data sample accumulated in 2011 with the ALICE detector at the Large Hadron Collider (LHC). Transverse momentum (pT) spectra have been

  4. Transverse momentum in double parton scattering. Factorisation, evolution and matching

    Energy Technology Data Exchange (ETDEWEB)

    Buffing, Maarten G.A.; Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kasemets, Tomas [Nikhef, Amsterdam (Netherlands). Theory Group; VU Univ. Amsterdam (Netherlands)

    2017-08-15

    We give a description of double parton scattering with measured transverse momenta in the final state, extending the formalism for factorisation and resummation developed by Collins, Soper and Sterman for the production of colourless particles. After a detailed analysis of their colour structure, we derive and solve evolution equations in rapidity and renormalisation scale for the relevant soft factors and double parton distributions. We show how in the perturbative regime, transverse momentum dependent double parton distributions can be expressed in terms of simpler nonperturbative quantities and compute several of the corresponding perturbative kernels at one-loop accuracy. We then show how the coherent sum of single and double parton scattering can be simplified for perturbatively large transverse momenta, and we discuss to which order resummation can be performed with presently available results. As an auxiliary result, we derive a simple form for the square root factor in the Collins construction of transverse momentum dependent parton distributions.

  5. Transverse momentum in double parton scattering. Factorisation, evolution and matching

    International Nuclear Information System (INIS)

    Buffing, Maarten G.A.; Diehl, Markus; Kasemets, Tomas

    2017-08-01

    We give a description of double parton scattering with measured transverse momenta in the final state, extending the formalism for factorisation and resummation developed by Collins, Soper and Sterman for the production of colourless particles. After a detailed analysis of their colour structure, we derive and solve evolution equations in rapidity and renormalisation scale for the relevant soft factors and double parton distributions. We show how in the perturbative regime, transverse momentum dependent double parton distributions can be expressed in terms of simpler nonperturbative quantities and compute several of the corresponding perturbative kernels at one-loop accuracy. We then show how the coherent sum of single and double parton scattering can be simplified for perturbatively large transverse momenta, and we discuss to which order resummation can be performed with presently available results. As an auxiliary result, we derive a simple form for the square root factor in the Collins construction of transverse momentum dependent parton distributions.

  6. Frustrated antiferromagnets at high fields: Bose-Einstein condensation in degenerate spectra

    International Nuclear Information System (INIS)

    Jackeli, G.; Zhitomirsky, M.E.

    2004-01-01

    Quantum phase transition at the saturation field is studied for a class of frustrated quantum antiferromagnets. The considered models include (i) the J 1 -J 2 frustrated square-lattice antiferromagnet with J 2 =(1/2)J 1 and (ii) the nearest-neighbor Heisenberg antiferromagnet on a face centered cubic lattice. In the fully saturated phase the magnon spectra for the two models have lines of degenerate minima. Transition into a partially magnetized state is treated via a mapping to a dilute gas of hard-core bosons and by complementary spin-wave calculations. Momentum dependence of the exact four-point boson vertex removes the degeneracy of the single-particle excitation spectra and selects the ordering wave vectors at (π,π) and (π,0,0) for the two models. We predict a unique form for the magnetization curve ΔM=S-M≅μ (d-1)/2 (logμ) (d-1) , where μ is a distance from the quantum critical point

  7. Pseudorapidity Asymmetry and Centrality Dependence of Charged Hadron Spectra in d+Au collisions at √sNN = 200 GeV

    International Nuclear Information System (INIS)

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bharadwaj, S.; Bhasin, A.; Bhati, A.K.; Bhatia, V.S.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Moura, M.M. de; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fomenko, K.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Gans, J.; Ganti, M.S.; Gaudichet, L.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guo, Y.; Gupta, A.; Gutierrez, T.D.; Hallman, T.J.; Hamed, A.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, V.Yu.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klay, J.; Klein, S.R.; Koetke, D.D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; Kutuev, R.Kh.

    2005-01-01

    The pseudorapidity asymmetry and centrality dependence of charged hadron spectra in d+Au collisions at √s NN = 200 GeV are presented. The charged particle density at mid-rapidity, its pseudorapidity asymmetry and centrality dependence are reasonably reproduced by a Multi-Phase Transport model, by HIJING, and by the latest calculations in a saturation model. Ratios of transverse momentum spectra between backward and forward pseudorapidity are above unity for p T below 5 GeV/c. The ratio of central to peripheral spectra in d+Au collisions shows enhancement at 2 T < 6 GeV/c, with a larger effect at backward rapidity than forward rapidity. Our measurements are in qualitative agreement with gluon saturation and in contrast to calculations based on incoherent multiple partonic scatterings

  8. Momentum Maps and Stochastic Clebsch Action Principles

    Science.gov (United States)

    Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.

    2018-01-01

    We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.

  9. The gauge-invariant canonical energy-momentum tensor

    Science.gov (United States)

    Lorcé, Cédric

    2016-03-01

    The canonical energy-momentum tensor is often considered as a purely academic object because of its gauge dependence. However, it has recently been realized that canonical quantities can in fact be defined in a gauge-invariant way provided that strict locality is abandoned, the non-local aspect being dictacted in high-energy physics by the factorization theorems. Using the general techniques for the parametrization of non-local parton correlators, we provide for the first time a complete parametrization of the energy-momentum tensor (generalizing the purely local parametrizations of Ji and Bakker-Leader-Trueman used for the kinetic energy-momentum tensor) and identify explicitly the parts accessible from measurable two-parton distribution functions (TMDs and GPDs). As by-products, we confirm the absence of model-independent relations between TMDs and parton orbital angular momentum, recover in a much simpler way the Burkardt sum rule and derive three similar new sum rules expressing the conservation of transverse momentum.

  10. The gauge-invariant canonical energy-momentum tensor

    International Nuclear Information System (INIS)

    Lorce, C.

    2016-01-01

    The canonical energy-momentum tensor is often considered as a purely academic object because of its gauge dependence. However, it has recently been realized that canonical quantities can in fact be defined in a gauge-invariant way provided that strict locality is abandoned, the non-local aspect being dictated in high-energy physics by the factorization theorems. Using the general techniques for the parametrization of non-local parton correlators, we provide for the first time a complete parametrization of the energy-momentum tensor (generalizing the purely local parametrizations of Ji and Bakker-Leader-Trueman used for the kinetic energy-momentum tensor) and identify explicitly the parts accessible from measurable two-parton distribution functions (TMD and GPD). As by-products, we confirm the absence of model-independent relations between TMDs and parton orbital angular momentum, recover in a much simpler way the Burkardt sum rule and derive 3 similar new sum rules expressing the conservation of transverse momentum. (author)

  11. Momentum management strategy during Space Station buildup

    Science.gov (United States)

    Bishop, Lynda; Malchow, Harvey; Hattis, Philip

    1988-01-01

    The use of momentum storage devices to control effectors for Space Station attitude control throughout the buildup sequence is discussed. Particular attention is given to the problem of providing satisfactory management of momentum storage effectors throughout buildup while experiencing variable torque loading. Continuous and discrete control strategies are compared and the effects of alternative control moment gyro strategies on peak momentum storage requirements and on commanded maneuver characteristics are described.

  12. Quantum properties of double kicked systems with classical translational invariance in momentum

    Science.gov (United States)

    Dana, Itzhack

    2015-01-01

    Double kicked rotors (DKRs) appear to be the simplest nonintegrable Hamiltonian systems featuring classical translational symmetry in phase space (i.e., in angular momentum) for an infinite set of values (the rational ones) of a parameter η . The experimental realization of quantum DKRs by atom-optics methods motivates the study of the double kicked particle (DKP). The latter reduces, at any fixed value of the conserved quasimomentum β ℏ , to a generalized DKR, the "β -DKR ." We determine general quantum properties of β -DKRs and DKPs for arbitrary rational η . The quasienergy problem of β -DKRs is shown to be equivalent to the energy eigenvalue problem of a finite strip of coupled lattice chains. Exact connections are then obtained between quasienergy spectra of β -DKRs for all β in a generically infinite set. The general conditions of quantum resonance for β -DKRs are shown to be the simultaneous rationality of η ,β , and a scaled Planck constant ℏS. For rational ℏS and generic values of β , the quasienergy spectrum is found to have a staggered-ladder structure. Other spectral structures, resembling Hofstadter butterflies, are also found. Finally, we show the existence of particular DKP wave-packets whose quantum dynamics is free, i.e., the evolution frequencies of expectation values in these wave-packets are independent of the nonintegrability. All the results for rational ℏS exhibit unique number-theoretical features involving η ,ℏS, and β .

  13. The amplituhedron from momentum twistor diagrams

    International Nuclear Information System (INIS)

    Bai, Yuntao; He, Song

    2015-01-01

    We propose a new diagrammatic formulation of the all-loop scattering amplitudes/Wilson loops in planar N=4 SYM, dubbed the “momentum-twistor diagrams”. These are on-shell-diagrams obtained by gluing trivalent black and white vertices in momentum twistor space, which, in the reduced diagram case, are known to be related to diagrams in the original twistor space. The new diagrams are manifestly Yangian invariant, and they naturally represent factorization and forward-limit contributions in the all-loop BCFW recursion relations in momentum twistor space, in a fashion that is completely different from those in momentum space. We show how to construct and evaluate momentum-twistor diagrams, and how to use them to obtain tree-level amplitudes and loop-level integrands; in particular the latter involve isolated bubble-structures for loop variables arising from forward limits, or the entangled removal of particles. From each diagram, the generalized “boundary measurement” directly gives the C, D matrices, thus a cell in the amplituhedron associated with the amplitude, and we expect that our diagrammatic representations of the amplitude provide triangulations of the amplituhedron. To demonstrate the computational power of the formalism, we give explicit results for general two-loop integrands, and the cells of the amplituhedron for two-loop MHV amplitudes.

  14. Energy-momentum tensor of the electromagnetic field

    International Nuclear Information System (INIS)

    Horndeski, G.W.; Wainwright, J.

    1977-01-01

    In this paper we investigate the energy-momentum tensor of the most general second-order vector-tensor theory of gravitation and electromagnetism which has field equations which are (i) derivable from a variational principle, (ii) consistent with the notion of conservation of charge, and (iii) compatible with Maxwell's equations in a flat space. This energy-momentum tensor turns out to be quadratic in the first partial derivatives of the electromagnetic field tensor and depends upon the curvature tensor. The asymptotic behavior of this energy-momentum tensor is examined for solutions to Maxwell's equations in Minkowski space, and it is demonstrated that this energy-momentum tensor predicts regions of negative energy density in the vicinity of point sources

  15. Constituent models and large transverse momentum reactions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1975-01-01

    The discussion of constituent models and large transverse momentum reactions includes the structure of hard scattering models, dimensional counting rules for large transverse momentum reactions, dimensional counting and exclusive processes, the deuteron form factor, applications to inclusive reactions, predictions for meson and photon beams, the charge-cubed test for the e/sup +-/p → e/sup +-/γX asymmetry, the quasi-elastic peak in inclusive hadronic reactions, correlations, and the multiplicity bump at large transverse momentum. Also covered are the partition method for bound state calculations, proofs of dimensional counting, minimal neutralization and quark--quark scattering, the development of the constituent interchange model, and the A dependence of high transverse momentum reactions

  16. Whole-body angular momentum during stair ascent and descent.

    Science.gov (United States)

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Renner-Teller modelling of recent experimental spectra of H{sub 2}S{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Duxbury, Geoffrey [Department of Physics, SUPA, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glagow G4 0NG, Scotland (United Kingdom)

    2015-01-22

    Recently there has been a renewal of interest in the spectroscopy and dynamics of the formation and fragmentation of the hydrogen sulphide ion, including. rotationally resolved spectra of higher vibrational states of the ∼A{sup 2}A{sub 1}−∼X{sup 2}B{sub 1} system than were obtained previously, and a comprehensive imaging study of the photo-fragmentation routes of highly excited H{sub 2}S{sup +}. In collaboration with Ch. Jungen and A. Alijah I have extended our previous l basis approach to the calculation of the effects of orbital angular momentum in H{sub 2}S{sup +} to include the stretch - bender extensions, with the options of using either the K- or l basis. This new code is being used to calculate the complicated orbital angular momentum and spin-orbit coupling effects responsible for the ro-vibronic pattern measured in some of the new experimental results.

  18. Dark halos formed via dissipationless collapse. I - Shapes and alignment of angular momentum

    Science.gov (United States)

    Warren, Michael S.; Quinn, Peter J.; Salmon, John K.; Zurek, Wojciech H.

    1992-11-01

    We use N-body simulations on highly parallel supercomputers to study the structure of Galactic dark matter halos. The systems form by gravitational collapse from scale-free and more general Gaussian initial density perturbations in an expanding 400 Mpc-cubed spherical slice of an Einstein-deSitter universe. We analyze the structure and kinematics of about 100 of the largest relaxed halos in each of 10 separate simulations. A typical halo is a triaxial spheroid which tends to be more often prolate than oblate. These shapes are maintained by anisotropic velocity dispersion rather than by angular momentum. Nevertheless, there is a significant tendency for the total angular momentum vector to be aligned with the minor axis of the density distribution.

  19. ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS

    International Nuclear Information System (INIS)

    Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Jürg; Wadsley, James; Moustakas, Leonidas A.

    2013-01-01

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ∼70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by λ ∼ 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  20. Orbital momentum distribution and binding energies for the complete valence shell of molecular chlorine by electron momentum spectroscopy

    International Nuclear Information System (INIS)

    Frost, L.; Grisogono, A.M.; McCarthy, I.E.

    1986-10-01

    The complete valence shell binding energy spectrum (10-50 eV) of Cl 2 has been determined using electron momentum (binary (e,2e)) spectroscopy. The inner valence region, corresponding to 4σ u and 4σ g ionization, has been measured for the first time and shows extensive splitting of the ionization strength due to electron correlation effects. These measurements are compared with the results of many-body calculations using Green's function and CI methods employing unpolarised as well as polarised wave functions. Momentum distributions, measured in both the outer and inner valence regions, are compared with calculations using a range of unpolarised and polarised wave functions. Computed orbital density maps in momentum and position space for oriented Cl 2 molecules are discussed in comparison with the measured and calculated spherically averaged momentum distributions

  1. Low-pT spectra of identified charged particles in √ {sNN} = 200 GeV Au+Au collisions from PHOBOS experiment at RHIC

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    The PHOBOS experiment at the Relativistic Heavy Ion Collider (RHIC), comprising the spectrometer with multiple layers of silicon wafers, is an excellent detector for very low transverse momentum (pT) particles. Transverse momentum distributions of π-+π+, K-+K+ and p+/line{p} produced at mid-rapidity are presented for the 15% most central Au-Au collisions at √ {sNN} = 200 GeV. The momentum ranges for measured particles are from 30 to 50 MeV/c for pions, 90 to 130 MeV/c for kaons and 140 to 210 MeV/c for protons and antiprotons. The measurement method is briefly described. A comparison of the pT spectra to experimental results at higher particle momenta and to model predictions is discussed. PACS: 25.75.-q

  2. Off-momentum loss maps with one beam

    CERN Document Server

    Garcia Morales, Hector; Salvachua Ferrando, Belen Maria; CERN. Geneva. ATS Department

    2016-01-01

    The aim of this MD is the benchmarking of simulation of off-momentum loss maps. This will help us to further understand the dynamics of the off-momentum collimation cleaning and give input to the determination of the operational settings of the off-momentum cleaning insertion. The MD was carried out during different end-of-fills of other MDs. In this note we summarize the procedures and the measurements taken during the MD week.

  3. Revealing low-energy part of the beta spectra

    International Nuclear Information System (INIS)

    Selvi, S.; Celiktas, C.

    2002-01-01

    An effective method is proposed to separate electronic noise from the beta-particle spectra revealing lower energy part of the spectra. The available methods for reducing the noise problem cut the noise along with the low-energy part of the beta spectra by using a discriminator. Our setup eliminates this undesirable effect by shifting the noise toward the lowest energy scale leaving the low-energy part of spectra undisturbed. We achieved this noise-pulse-separation by treating the noise as a pulse so that we can exploit the application of the pulse-shape analyzer equipment used for pulse shape identification of particles and rejection of defective pulses. To the best of our knowledge this method of the noise separation is a novel approach

  4. Scaling and constitutive relationships in downcomer modeling

    International Nuclear Information System (INIS)

    Daly, B.J.; Harlow, F.H.

    1978-12-01

    Constitutive relationships to describe mass and momentum exchange in multiphase flow in a pressurized water reactor downcomer are presented. Momentum exchange between the phases is described by the product of the flux of momentum available for exchange and the effective area for interaction. The exchange of mass through condensation is assumed to occur along a distinct condensation boundary separating steam at saturation temperature from water in which the temperature falls off roughly linearly with distance from the boundary. Because of the abundance of nucleation sites in a typical churning flow in a downcomer, we propose an equilibrium evaporation process that produces sufficient steam per unit time to keep the water perpetually cooled to the saturation temperature. The transport equations, constitutive models, and boundary conditions used in the K-TIF numerical method are nondimensionalized to obtain scaling relationships for two-phase flow in the downcomer. The results indicate that, subject to idealized thermodynamic and hydraulic constraints, exact mathematical scaling can be achieved. Experiments are proposed to isolate the effects of parameters that contribute to mass, momentum, and energy exchange between the phases

  5. Angular Momentum

    Science.gov (United States)

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  6. Scale-free, axisymmetry galaxy models with little angular momentum

    International Nuclear Information System (INIS)

    Richstone, D.O.

    1980-01-01

    Two scale-free models of elliptical galaxies are constructed using a self-consistent field approach developed by Schwarschild. Both models have concentric, oblate spheroidal, equipotential surfaces, with a logarithmic potential dependence on central distance. The axial ratio of the equipotential surfaces is 4:3, and the extent ratio of density level surfaces id 2.5:1 (corresponding to an E6 galaxy). Each model satisfies the Poisson and steady state Boltzmann equaion for time scales of order 100 galactic years

  7. y scaling as a probe of nuclear light-cone dynamics

    International Nuclear Information System (INIS)

    Ji Xiangdong; Filippone, B.W.

    1990-01-01

    The y scaling exhibited in quasielastic electron scattering on nuclei is shown to occur in the same kinematic limit as x scaling in deep-inelastic lepton-nucleon scattering. Using the impulse approximation in a relativistic model, we demonstrate that the scaling function F(y) can be interpreted as the nucleon light-cone momentum distribution and the scaling variable y is related to the light-cone momentum t + of the nucleon. We also derive the convolution formula for deep-inelastic lepton-nucleus scattering and show that the same F(y) can be extracted from the experimental structure functions of the nucleon and nuclei

  8. Large transverse momenta in inclusive hadronic reactions and asymptotic scale invariance

    International Nuclear Information System (INIS)

    Miralles, F.; Sala, C.

    1976-01-01

    The inclusive reaction among scalar particles in considered, assuming that in the large-transverse momentum limit, scale invariance becomes important. Predictions are made of the asymptotic scale invariance for large four transverse momentum in hadron-hadron interactions, and they are compared with previous predictions. Photoproduction is also studied and the predictions that follow from different assumptions about the compositeness of hadrons are compared

  9. Forecast Accuracy Uncertainty and Momentum

    OpenAIRE

    Bing Han; Dong Hong; Mitch Warachka

    2009-01-01

    We demonstrate that stock price momentum and earnings momentum can result from uncertainty surrounding the accuracy of cash flow forecasts. Our model has multiple information sources issuing cash flow forecasts for a stock. The investor combines these forecasts into an aggregate cash flow estimate that has minimal mean-squared forecast error. This aggregate estimate weights each cash flow forecast by the estimated accuracy of its issuer, which is obtained from their past forecast errors. Mome...

  10. Essays on Momentum Strategies in Finance

    NARCIS (Netherlands)

    J.A. van Oord (Arco)

    2016-01-01

    textabstractThis section briefly summarizes in which way we have investigated momentum in this thesis. In Chapter 2 we alter the momentum strategy to improve its performance, while in Chapter 3 we leave the strategy as is, but aim at improving its performance by hedging. In Chapter 4 we develop a

  11. The TeV-scale cosmic ray proton and helium spectra

    Indian Academy of Sciences (India)

    2016-01-07

    Jan 7, 2016 ... Recent measurements of cosmic ray proton and helium spectra show a hardening above a few hundreds of GeV. This excess is hard to understand in the framework of the conventional models of galactic cosmic ray production and propagation. Here, we propose to explain this anomaly by the presence of ...

  12. Momentum considerations on the New MEXICO experiment

    Science.gov (United States)

    Parra, E. A.; Boorsma, K.; Schepers, J. G.; Snel, H.

    2016-09-01

    The present paper regards axial and angular momentum considerations combining detailed loads from pressure sensors and the flow field mapped with particle image velocimetry (PIV) techniques. For this end, the study implements important results leaning on experimental data from wind tunnel measurements of the New MEXICO project. The measurements, taken on a fully instrumented rotor, were carried out in the German Dutch Wind tunnel Organisation (DNW) testing the MEXICO rotor in the open section. The work revisits the so-called momentum theory, showing that the integral thrust and torque measured on the rotor correspond with an extent of 0.7 and 2.4% respectively to the momentum balance of the global flow field using the general momentum equations. Likewise, the sectional forces combined with the local induced velocities are found to plausibly obey the annular streamtube theory, albeit some limitations in the axial momentum become more apparent at high inductions after a=0.3. Finally, azimuth induced velocities are measured and compared to predictions from models of Glauert and Burton et al., showing close-matching forecasts for blade spans above 25%.

  13. Fragmentation and momentum correlations in heavy-ion collisions

    Indian Academy of Sciences (India)

    The role of momentum correlations in the production of light and medium mass fragments is studied by imposing momentum cut in the clusterization of the phase space. Our detailed investigation shows that momentum cut has a major role to play in the emission of fragments. A comparison with the experimental data is also ...

  14. Effects of quantum chemistry models for bound electrons on positron annihilation spectra for atoms and small molecules

    International Nuclear Information System (INIS)

    Wang Feng; Ma Xiaoguang; Selvam, Lalitha; Gribakin, Gleb; Surko, Clifford M

    2012-01-01

    The Doppler-shift spectra of the γ-rays from positron annihilation in molecules were determined by using the momentum distribution of the annihilation electron–positron pair. The effect of the positron wavefunction on spectra was analysed in a recent paper (Green et al 2012 New J. Phys. 14 035021). In this companion paper, we focus on the dominant contribution to the spectra, which arises from the momenta of the bound electrons. In particular, we use computational quantum chemistry models (Hartree–Fock with two basis sets and density functional theory (DFT)) to calculate the wavefunctions of the bound electrons. Numerical results are presented for noble gases and small molecules such as H 2 , N 2 , O 2 , CH 4 and CF 4 . The calculations reveal relatively small effects on the Doppler-shift spectra from the level of inclusion of electron correlation energy in the models. For atoms, the difference in the full-width at half-maximum of the spectra obtained using the Hartree–Fock and DFT models does not exceed 2%. For molecules the difference can be much larger, reaching 8% for some molecular orbitals. These results indicate that the predicted positron annihilation spectra for molecules are generally more sensitive to inclusion of electron correlation energies in the quantum chemistry model than the spectra for atoms are. (paper)

  15. The spanwise spectra in wall-bounded turbulence

    Science.gov (United States)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2018-06-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  16. Seismic spectra of events at regional distances

    International Nuclear Information System (INIS)

    Springer, D.L.; Denny, M.D.

    1976-01-01

    About 40 underground nuclear explosions detonated at the Nevada Test Site (NTS) were chosen for analysis of their spectra and any relationships they might have to source parameters such as yield, depth of burial, etc. The sample covered a large yield range (less than 20 kt to greater than 1 Mt). Broadband (0.05 to 20 Hz) data recorded by the four-station seismic network operated by Lawrence Livermore Laboratory were analyzed in a search for unusual explosion signatures in their spectra. Long time windows (total wave train) as well as shorter windows (for instance, P/sub n/) were used as input to calculate the spectra. Much variation in the spectra of the long windows is typical although some gross features are similar, such as a dominant peak in the microseismic window. The variation is such that selection of corner frequencies is impractical and yield scaling could not be determined. Spectra for one NTS earthquake showed more energy in the short periods (less than 1 sec) as well as in the long periods (greater than 8 sec) compared to those for NTS explosions

  17. Photon momentum and optical forces in cavities

    DEFF Research Database (Denmark)

    Partanen, Mikko; Häyrynen, Teppo; Oksanen, Jani

    2016-01-01

    During the past century, the electromagnetic field momentum in material media has been under debate in the Abraham-Minkowski controversy as convincing arguments have been advanced in favor of both the Abraham and Minkowski forms of photon momentum. Here we study the photon momentum and optical....... When describing the steady-state nonequilibrium field distributions we use the recently developed quantized fluctuational electrodynamics (QFED) formalism. While allowing detailed studies of light propagation and quantum field fluctuations in interfering structures, our methods also provide practical...

  18. Single-particle inclusive spectra of charged particles in anti- pp-interactions at 22.4 GeV/c

    International Nuclear Information System (INIS)

    Boos, E.G.; Samojlov, V.V.; Takibaev, Zh.S.

    1976-01-01

    The inclusive spectra for inelastic anti-pp-interactions are investigated. Distributions of the transverse momentum squared for negative and positive particles as well as for identified protons have been obtained. The missing mass-squared distributions to the identified protons have been determined for different topologies of the experiment. The rapidity and target fragmentation cross-sections distributions have been obtained for the anti-pp → π - (π + )+X reactions in the center-of-mass-system. Average characteristics of the transverse momentum distribution show similar features as well as those obtained at higher than 22.4 GeV/c elsewhere. The upper limit of the antiproton diffraction dissociation cross section is 3.68+-0.45 mb. In the central region a charge asymmetry has been observed, the asymmetry parameter being equal to 0.15+-0.01

  19. Momentum accounting for trends : Relevance, explanatory and predictive power of the framework of triple-entry bookkeeping and momentum accounting of Yuji Ijiri

    NARCIS (Netherlands)

    Melse, E.

    2010-01-01

    The objective of momentum accounting is to improve strategic management accounting practices, enumeration and corporate disclosure for governance purposes. This accounting theory introduces new measurement units: momentum and force. The key development is to see momentum as a rate or the speed of

  20. Quadratic Zeeman spectra for the hydrogen atom by means of semiclassical quantization

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi; Adachi, Satoshi

    1988-01-01

    The elliptic cylindrical coordinates of type I adapted to the Fock hypersphere in momentum space of the Kepler motion and their canonical momenta are used to construct an analytic form of the classical action integrals which yield an adequate parametrization of the KAM (Kolmogorov-Arnold-Moser) tori of the Kepler trajectories weakly perturbed by a uniform magnetic field. The semiclassical quantization formula so provided presents a prototype of the exact EBK (Einstein-Brillouin-Keller) quantization scheme, and the resulting quantized energies vs the magnetic field strength correspond to the quadratic Zeeman spectra of each Rydberg multiplet lifted by the perturbation. (author)

  1. The TeV-scale cosmic ray proton and helium spectra: Contributions ...

    Indian Academy of Sciences (India)

    has been proposed some time ago by Stanev et al [13] and Zatsepin and Sokolskaya .... as a stochastic variable whose probability distribution function p( ) has been studied in ... are independently adjusted to the proton and helium spectra.

  2. Studies of vector boson transverse momentum simulation in Monte Carlo event generators

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    We present studies of event generator behaviours regarding vector boson production characteristics, in particular the transverse momentum, pT, of the $Z$ boson as measured by ATLAS, for discussion at the LPCC working group meeting on precision electroweak physics at the LHC. The results discussed focus on the poor descriptions of ATLAS $W$ and $Z$ pT spectra by the ATLAS AUET2B LO** tune of PYTHIA6, and by the shower-matched NLO generator combination POWHEG+PYTHIA6. We show that both standalone PYTHIA6 and POWHEG can be made to describe the Sudakov peak of the ATLAS $Z$ pT distribution by tuning of the PYTHIA parton shower -- different approaches are required in each case. Comparisons of other NLO generators to the $Z$ pT data are also shown.

  3. Momentum distributions: opening remarks

    International Nuclear Information System (INIS)

    Weigold, E.

    1982-01-01

    The problem of the hydrogen atom has played a central role in the development of quantum mechanics, beginning with Bohr's daring speculations. It was also the first problem tackled by Schroedinger with his new wave mechanics and similarly it was used by Heisenberg in his first papers as a prime example of the success of quantum mechanics. It has always played a central role in the teaching of quantum physics and has served as a most important heuristic tool, shaping our intuition and inspiring many expositions. The Schroedinger equation for the hydrogen atom is usually solved in the position representation, the solution to the equation being the wave functions psi/sub nlm/(r). If Schroedinger's equation is solved in the momentum representation instead of the coordinate representation, the absolute square of the corresponding momentum state wave function phi/sub nlm/(p) would give the momentum probability distribution of the electron in the state defined by the quantum numbers n, l and m. Three different types of collisions which can take place in the (e,2e) reaction on atomic hydrogen, which is a three body problem, are discussed

  4. Angular momentum in general relativity

    International Nuclear Information System (INIS)

    Prior, C.R.

    1977-01-01

    The definition of angular momentum proposed in part I of this series (Prior. Proc. R. Soc. Lond.; A354:379 (1977)) is investigated when applied to rotating black holes. It is shown how to use the formula to evaluate the angular momentum of a stationary black hole. This acts as a description of a background space on which the effect of first matter and then gravitational perturbations is considered. The latter are of most interest and the rate of change of angular momentum, dJ/dt, is found as an expression in the shear induced in the event horizon by the perturbation and in its time integral. Teukolsky's solutions (Astrophys. J.; 185:635 (1973)) for the perturbed component of the Weyl tensor are then used to find this shear and hence to give an exact answer for dJ/dt. One of the implications of the result is a direct verification of Bekenstein's formula (Phys. Rev.; 7D:949 (1973)) relating in a simple way the rate of change of angular momentum to the rate of change of mass caused by a plane wave. A more general expression is also given for dM/dt. Considering only stationary perturbations, it is shown how to generalize the definition of angular momentum so as to include information about its direction as well. Three problems are particularly discussed - a single moon, two or more moons and a ring of matter causing the perturbation - since they provide illustrations of all the main features of the black hole's behaviour. In every case it is found that the black hole realigns its axis of rotation so that the final configuration is axisymmetric if possible; otherwise is slows down completely to reach a static state. (author)

  5. Bound-state momentum distributions

    International Nuclear Information System (INIS)

    Alexander, Y.; Redish, E.F.; Wall, N.S.

    1977-01-01

    Proposed forms for nuclear momentum distributions are investigated. Calculations of (p,p') reactions using those forms are done in a plane-wave impulse approximation at angles where the quasielastic peak is seen and also at back angles. The parameters used are derived from (e,e') data, where the nuclear momenta probed overlap with those of the low angle (p,p') experiment. Although there is reasonable agreement for the (p,p') data at 180 0 , the inclusion of distortion necessitates a different parameter set to obtain agreement for the quasifree process. We conclude that the (p,p') reaction cannot be readily understood with a simple momentum distribution

  6. Transverse momentum distributions and nuclear effects

    Directory of Open Access Journals (Sweden)

    Pace Emanuele

    2015-01-01

    Full Text Available A distorted spin-dependent spectral function for 3He is considered to take care of the final state interaction in the extraction of the quark transverse-momentum distributions in the neutron from semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers. The generalization of the analysis in a Poincaré covariant framework within the light-front dynamics is outlined. The definition of the light-front spin-dependent spectral function for a J=1/2 system, as the nucleon, allows us to show that within the light-front dynamics and in the valence approximation only three of the six leading twist T-even transverse-momentum distributions are independent.

  7. Optical momentum and angular momentum in complex media: from the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons

    Science.gov (United States)

    Bliokh, Konstantin Y.; Bekshaev, Aleksandr Y.; Nori, Franco

    2017-12-01

    We examine the momentum and angular momentum (AM) properties of monochromatic optical fields in dispersive and inhomogeneous isotropic media, using the Abraham- and Minkowski-type approaches, as well as the kinetic (Poynting-like) and canonical (with separate spin and orbital degrees of freedom) pictures. While the kinetic Abraham–Poynting momentum describes the energy flux and the group velocity of the wave, the Minkowski-type quantities, with proper dispersion corrections, describe the actual momentum and AM carried by the wave. The kinetic Minkowski-type momentum and AM densities agree with phenomenological results derived by Philbin. Using the canonical spin–orbital decomposition, previously used for free-space fields, we find the corresponding canonical momentum, spin and orbital AM of light in a dispersive inhomogeneous medium. These acquire a very natural form analogous to the Brillouin energy density and are valid for arbitrary structured fields. The general theory is applied to a non-trivial example of a surface plasmon-polariton (SPP) wave at a metal-vacuum interface. We show that the integral momentum of the SPP per particle corresponds to the SPP wave vector, and hence exceeds the momentum of a photon in the vacuum. We also provide the first accurate calculation of the transverse spin and orbital AM of the SPP. While the intrinsic orbital AM vanishes, the transverse spin can change its sign depending on the SPP frequency. Importantly, we present both macroscopic and microscopic calculations, thereby proving the validity of the general phenomenological results. The microscopic theory also predicts a transverse magnetization in the metal (i.e. a magnetic moment for the SPP) as well as the corresponding direct magnetization current, which provides the difference between the Abraham and Minkowski momenta.

  8. Optical momentum and angular momentum in complex media: from the Abraham-Minkowski debate to unusual properties of surface plasmon-polaritons

    Science.gov (United States)

    Y Bliokh, Konstantin; Y Bekshaev, Aleksandr; Nori, Franco

    2017-12-01

    We examine the momentum and angular momentum (AM) properties of monochromatic optical fields in dispersive and inhomogeneous isotropic media, using the Abraham- and Minkowski-type approaches, as well as the kinetic (Poynting-like) and canonical (with separate spin and orbital degrees of freedom) pictures. While the kinetic Abraham-Poynting momentum describes the energy flux and the group velocity of the wave, the Minkowski-type quantities, with proper dispersion corrections, describe the actual momentum and AM carried by the wave. The kinetic Minkowski-type momentum and AM densities agree with phenomenological results derived by Philbin. Using the canonical spin-orbital decomposition, previously used for free-space fields, we find the corresponding canonical momentum, spin and orbital AM of light in a dispersive inhomogeneous medium. These acquire a very natural form analogous to the Brillouin energy density and are valid for arbitrary structured fields. The general theory is applied to a non-trivial example of a surface plasmon-polariton (SPP) wave at a metal-vacuum interface. We show that the integral momentum of the SPP per particle corresponds to the SPP wave vector, and hence exceeds the momentum of a photon in the vacuum. We also provide the first accurate calculation of the transverse spin and orbital AM of the SPP. While the intrinsic orbital AM vanishes, the transverse spin can change its sign depending on the SPP frequency. Importantly, we present both macroscopic and microscopic calculations, thereby proving the validity of the general phenomenological results. The microscopic theory also predicts a transverse magnetization in the metal (i.e. a magnetic moment for the SPP) as well as the corresponding direct magnetization current, which provides the difference between the Abraham and Minkowski momenta.

  9. Momentum, March 2016

    OpenAIRE

    2016-01-01

    Momentum is the quarterly magazine of the Department of Mechanical Engineering at Virginia Tech. In this issue: Lead-free piezoelectric material in development; Harnessing the energy of ocean waves; Meet the Hyperloop team; Maleshia Jones - Graduate student with focus.

  10. Momentum sum rules for fragmentation functions

    International Nuclear Information System (INIS)

    Meissner, S.; Metz, A.; Pitonyak, D.

    2010-01-01

    Momentum sum rules for fragmentation functions are considered. In particular, we give a general proof of the Schaefer-Teryaev sum rule for the transverse momentum dependent Collins function. We also argue that corresponding sum rules for related fragmentation functions do not exist. Our model-independent analysis is supplemented by calculations in a simple field-theoretical model.

  11. Transverse spin and momentum correlations in quantum ...

    Indian Academy of Sciences (India)

    asymmetry for a longitudinally polarized target in semi-inclusive deep inelastic scattering. Keywords. .... integrate out ξ and perform the momentum integration over the diquark momentum ...... [53] European Muon: M Arneodo et al, Z. Phys. C34 ...

  12. Energy, momentum and angular momentum conservations in de Sitter gravity

    International Nuclear Information System (INIS)

    Lu, Jia-An

    2016-01-01

    In de Sitter (dS) gravity, where gravity is a gauge field introduced to realize the local dS invariance of the matter field, two kinds of conservation laws are derived. The first kind is a differential equation for a dS-covariant current, which unites the canonical energy-momentum (EM) and angular momentum (AM) tensors. The second kind presents a dS-invariant current which is conserved in the sense that its torsion-free divergence vanishes. The dS-invariant current unites the total (matter plus gravity) EM and AM currents. It is well known that the AM current contains an inherent part, called the spin current. Here it is shown that the EM tensor also contains an inherent part, which might be observed by its contribution to the deviation of the dust particle’s world line from a geodesic. All the results are compared to the ordinary Lorentz gravity. (paper)

  13. Proton-proton elastic scattering at 50 GeV/c incident momentum in the momentum transfer range 0.82

    International Nuclear Information System (INIS)

    Baglin, C.; Guillaud, J.P.; Poulet, M.; Myrheim, J.; Asa'd, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M.; Brom, J.M.; Kenyon Gjerpe, I.; Buran, T.; Buzzo, A.; Ferroni, S.; Gracco, V.; Kirsebom, K.; Macri, M.; Santroni, A.; Skjevling, G.; Soerensen, S.O.

    1983-01-01

    A measurement of the proton-proton elastic differential cross section at 50 GeV/c incident momentum in the momentum transfer range 0.8 2 is presented. The data are compared to pp data at lower and higher energies, and to some model predictions. (orig.)

  14. On the vertical exchange of heat, mass and momentum over complex, mountainous terrain

    Directory of Open Access Journals (Sweden)

    Mathias Walter Rotach

    2015-12-01

    Full Text Available The role of the atmospheric boundary layer (ABL in the atmosphere-climate system is the exchange of heat, mass and momentum between ‘the earth’s surface’ and the atmosphere. Traditionally, it is understood that turbulent transport is responsible for this exchange and hence the understanding and physical description of the turbulence structure of the boundary layer is key to assess the effectiveness of earth-atmosphere exchange. This understanding is rooted in the (implicit assumption of a scale separation or spectral gap between turbulence and mean atmospheric motions, which in turn leads to the assumption of a horizontally homogeneous and flat (HHF surface as a reference, for which both physical understanding and model parameterizations have successfully been developed over the years. Over mountainous terrain, however, the ABL is generically inhomogeneous due to both thermal (radiative and dynamic forcing. This inhomogeneity leads to meso-scale and even sub-meso-scale flows such as slope and valley winds or wake effects. It is argued here that these (submeso-scale motions can significantly contribute to the vertical structure of the boundary layer and hence vertical exchange of heat and mass between the surface and the atmosphere. If model grid resolution is not high enough the latter will have to be parameterized (in a similar fashion as gravity wave drag parameterizations take into account the momentum transport due to gravity waves in large-scale models. In this contribution we summarize the available evidence of the contribution of (submeso-scale motions to vertical exchange in mountainous terrain from observational and numerical modeling studies. In particular, a number of recent simulation studies using idealized topography will be summarized and put into perspective – so as to identify possible limitations and areas of necessary future research.

  15. Primordial spectra from sudden turning trajectory

    Science.gov (United States)

    Noumi, Toshifumi; Yamaguchi, Masahide

    2013-12-01

    Effects of heavy fields on primordial spectra of curvature perturbations are discussed in inflationary models with a sudden turning trajectory. When heavy fields are excited after the sudden turn and oscillate around the bottom of the potential, the following two effects are generically induced: deformation of the inflationary background spacetime and conversion interactions between adiabatic and isocurvature perturbations, both of which can affect the primordial density perturbations. In this paper, we calculate primordial spectra in inflationary models with sudden turning potentials taking into account both of the two effects appropriately. We find that there are some non-trivial correlations between the two effects in the power spectrum and, as a consequence, the primordial scalar power spectrum has a peak around the scale exiting the horizon at the turn. Though both effects can induce parametric resonance amplifications, they are shown to be canceled out for the case with the canonical kinetic terms. The peak feature and the scale dependence of bispectra are also discussed.

  16. First-Principles Momentum Dependent Local Ansatz Approach to the Momentum Distribution Function in Iron-Group Transition Metals

    Science.gov (United States)

    Kakehashi, Yoshiro; Chandra, Sumal

    2017-03-01

    The momentum distribution function (MDF) bands of iron-group transition metals from Sc to Cu have been investigated on the basis of the first-principles momentum dependent local ansatz wavefunction method. It is found that the MDF for d electrons show a strong momentum dependence and a large deviation from the Fermi-Dirac distribution function along high-symmetry lines of the first Brillouin zone, while the sp electrons behave as independent electrons. In particular, the deviation in bcc Fe (fcc Ni) is shown to be enhanced by the narrow eg (t2g) bands with flat dispersion in the vicinity of the Fermi level. Mass enhancement factors (MEF) calculated from the jump on the Fermi surface are also shown to be momentum dependent. Large mass enhancements of Mn and Fe are found to be caused by spin fluctuations due to d electrons, while that for Ni is mainly caused by charge fluctuations. Calculated MEF are consistent with electronic specific heat data as well as recent angle resolved photoemission spectroscopy data.

  17. Improvement of the spallation-reaction simulation code by considering both the high-momentum intranuclear nucleons and the preequilibrium process

    International Nuclear Information System (INIS)

    Ishibashi, K.; Miura, Y.; Sakae, T.

    1990-01-01

    In the present study, intranuclear nucleons with a high momentum are introduced into intranuclear cascade calculation, and the preequilibrium effects are considered at the end of the cascade process. The improvements made in the HETC (High Energy Transport Code) are outlined, focusing on intranuclear nucleons with a high momentum, and termination of the intranuclear cascade process. Discussion is made of the cutoff energy, and Monte Carlo calculations based on an excitation model are presented and analyzed. The experimental high energy neutrons in the backward direction are successfully reproduced. The preequilibrium effect is considered in a local manner, and this is introduced as a simple probability density function for terminating the intranuclear cascade process. The resultant neutron spectra reproduce the shoulders of the experimental data in the region of 20 to 50 MeV. The exciton model is coded with a Monte Carlo algorithm. The results of the exciton model calculation is not so appreciable except for intermediate energy neutrons in the backward direction. (N.K.)

  18. Emergent gravity from vanishing energy-momentum tensor

    Energy Technology Data Exchange (ETDEWEB)

    Carone, Christopher D.; Erlich, Joshua [High Energy Theory Group, Department of Physics, College of William and Mary,Williamsburg, VA 23187-8795 (United States); Vaman, Diana [Department of Physics, University of Virginia,Box 400714, Charlottesville, VA 22904 (United States)

    2017-03-27

    A constraint of vanishing energy-momentum tensor is motivated by a variety of perspectives on quantum gravity. We demonstrate in a concrete example how this constraint leads to a metric-independent theory in which quantum gravity emerges as a nonperturbative artifact of regularization-scale physics. We analyze a scalar theory similar to the Dirac-Born-Infeld (DBI) theory with vanishing gauge fields, with the DBI Lagrangian modulated by a scalar potential. In the limit of a large number of scalars, we explicitly demonstrate the existence of a composite massless spin-2 graviton in the spectrum that couples to matter as in Einstein gravity. We comment on the cosmological constant problem and the generalization to theories with fermions and gauge fields.

  19. Emergent gravity from vanishing energy-momentum tensor

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Erlich, Joshua; Vaman, Diana

    2017-01-01

    A constraint of vanishing energy-momentum tensor is motivated by a variety of perspectives on quantum gravity. We demonstrate in a concrete example how this constraint leads to a metric-independent theory in which quantum gravity emerges as a nonperturbative artifact of regularization-scale physics. We analyze a scalar theory similar to the Dirac-Born-Infeld (DBI) theory with vanishing gauge fields, with the DBI Lagrangian modulated by a scalar potential. In the limit of a large number of scalars, we explicitly demonstrate the existence of a composite massless spin-2 graviton in the spectrum that couples to matter as in Einstein gravity. We comment on the cosmological constant problem and the generalization to theories with fermions and gauge fields.

  20. Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory

    International Nuclear Information System (INIS)

    Pons, Josep M.

    2011-01-01

    In the framework of classical field theory, we first review the Noether theory of symmetries, with simple rederivations of its essential results, with special emphasis given to the Noether identities for gauge theories. With this baggage on board, we next discuss in detail, for Poincare invariant theories in flat spacetime, the differences between the Belinfante energy-momentum tensor and a family of Hilbert energy-momentum tensors. All these tensors coincide on shell but they split their duties in the following sense: Belinfante's tensor is the one to use in order to obtain the generators of Poincare symmetries and it is a basic ingredient of the generators of other eventual spacetime symmetries which may happen to exist. Instead, Hilbert tensors are the means to test whether a theory contains other spacetime symmetries beyond Poincare. We discuss at length the case of scale and conformal symmetry, of which we give some examples. We show, for Poincare invariant Lagrangians, that the realization of scale invariance selects a unique Hilbert tensor which allows for an easy test as to whether conformal invariance is also realized. Finally we make some basic remarks on metric generally covariant theories and classical field theory in a fixed curved background.

  1. The D1Πu state of HD and the mass scaling relation of its predissociation widths

    Science.gov (United States)

    Dickenson, G. D.; Ubachs, W.

    2012-07-01

    Absorption spectra of HD have been recorded in the wavelength range of 75-90 nm at 100 K using the vacuum ultraviolet Fourier transform spectrometer at the Synchrotron SOLEIL. The present wavelength resolution represents an order of magnitude improvement over that of previous studies. We present a detailed study of the D1Πu-X1Σ+g system observed up to v‧ = 18. The Q-branch transition probing levels of Π- symmetry are observed as narrow resonances limited by the Doppler width at 100 K. Line positions for these transitions are determined to an estimated absolute accuracy of 0.06 cm-1. Predissociation line widths of Π+ levels are extracted from the absorption spectra. A comparison with the recent results on a study of the D1Πu state in H2 and D2 reveals that the predissociation widths scale as μ-2J(J + 1), with μ being the reduced mass of the molecule and J the rotational angular momentum quantum number, as expected from an interaction with the B‧1Σ+u continuum causing the predissociation.

  2. Experimental Evidence of Momentum Transport Induced by an Up-Down Asymmetric Magnetic Equilibrium in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Camenen, Y.; Peeters, A. G.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Szepesi, G.; Bortolon, A.; Duval, B. P.; Federspiel, L.; Karpushov, A. N.; Piras, F.; Sauter, O.

    2010-01-01

    The first experimental evidence of parallel momentum transport generated by the up-down asymmetry of a toroidal plasma is reported. The experiments, conducted in the Tokamak a Configuration Variable, were motivated by the recent theoretical discovery of ion-scale turbulent momentum transport induced by an up-down asymmetry in the magnetic equilibrium. The toroidal rotation gradient is observed to depend on the asymmetry in the outer part of the plasma leading to a variation of the central rotation by a factor of 1.5-2. The direction of the effect and its magnitude are in agreement with theoretical predictions for the eight possible combinations of plasma asymmetry, current, and magnetic field.

  3. Missing mass spectra in pp inelastic scattering at total energies of 23 GeV and 31 GeV

    CERN Document Server

    Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C; Van der Veen, F

    1974-01-01

    Results are reported of measurements of the momentum spectra of protons emitted at small angles in inelastic reactions at the CERN ISR. The data are for total energies s/sup 1///sub 2/ of 23 GeV and 31 GeV. The structure of the peak at low values of the missing mass M (of the system recoiling against the observed proton) is studied. The missing mass distributions have the form (M/sup 2/)-/sup B(t)/ where t is the four-momentum transfer squared. B(t) drops from 0.98+or-0.06 at t=-0.15 GeV/sup 2/ to 0.20+or-0.15 at t=-1.65 GeV/sup 2/. The results are compared with a simple triple-Regge formula. (12 refs).

  4. Variations on supersymmetry breaking and neutrino spectra

    International Nuclear Information System (INIS)

    Borzumati, F.; Hamaguchi, K.; Nomura, Y.; Yanagida, T.

    2000-01-01

    The problem of generating light neutrinos within supersymmetric models is discussed. It is shown that the hierarchy of scales induced by supersymmetry breaking can give rise to suppression factors of the correct order of magnitude to produce experimentally allowed neutrino spectra

  5. Distance- and momentum-dependence of modern nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Feldmeier, Hans; Neff, Thomas; Weber, Dennis

    2015-01-01

    A phase-space representation of nuclear interactions, which depends on the distance r vector and relative momentum p vector of the nucleons, is presented. It visualizes in an intuitive way the non-local behavior introduced by cutoffs in momentum space or renormalization procedures that are used to adapt the interaction to low momentum many-body Hilbert spaces, as done in the unitary correlation operator method (UCOM) or with the similarity renormalization group (SRG). It allows to develop intuition about the various interactions and illustrates how the softened interactions reduce the short-range repulsion in favor of non-locality or momentum dependence while keeping the scattering phase shifts invariant. It also reveals that these effective interactions can have undesired complicated momentum dependencies at momenta around and above the Fermi momentum. Properties, similarities, and differences of the Argonne and the N3LO chiral potential, and their UCOM and SRG derivatives are discussed. (author)

  6. Josephson oscillation and self-trapping in momentum space

    Science.gov (United States)

    Zheng, Yi; Feng, Shiping; Yang, Shi-Jie

    2018-04-01

    The Creutz ladder model is studied in the presence of unconventional flux induced by complex tunneling rates along and between the two legs. In the vortex phase, the double-minima band structure is regarded as a double well. By introducing a tunable coupling between the two momentum minima, we demonstrate a phenomenon of Josephson oscillations in momentum space. The condensate density locked in one of the momentum valleys is referred to as macroscopic quantum self-trapping. The on-site interaction of the lattice provides an effective analogy to the double-well model within the two-mode approximation which allows for a quantitative understanding of the Josephson effect and the self-trapping in momentum space.

  7. Chaos-assisted broadband momentum transformation in optical microresonators

    Science.gov (United States)

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-01

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks.

  8. Large scale structure from viscous dark matter

    CERN Document Server

    Blas, Diego; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-01-01

    Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 \\, h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to varia...

  9. Relativistic differential-difference momentum operators and noncommutative differential calculus

    International Nuclear Information System (INIS)

    Mir-Kasimov, R.M.

    2011-01-01

    Full text: (author)The relativistic kinetic momentum operators are introduced in the framework of the Quantum Mechanics in the relativistic configuration space (RCS). These operators correspond to the half of the non-Euclidean distance in the Lobachevsky momentum space. In terms of kinetic momentum operators the relativistic kinetic energy is separated from the total Hamiltonian. The role of the plane wave (wave function of the motion with definite value of momentum and energy) plays the generation function for the matrix elements of the unitary irreps of Lorentz group (generalized Jacobi polynomials). The kinetic momentum operators are the interior derivatives in the framework of the non-commutative differential calculus over the commutative algebra generated by the coordinate functions over the RCS

  10. Overview of toroidal momentum transport

    International Nuclear Information System (INIS)

    Peeters, A.G.; Hornsby, W.A.; Angioni, C.; Hein, T.; Kluy, N.; Strintzi, D.; Tardini, G.; Bortolon, A.; Camenen, Y.; Casson, F.J.; Snodin, A.P.; Szepesi, G.; Duval, B.; Fiederspiel, L.; Idomura, Y.; Mantica, P.; Parra, F.I.; Tala, T.; De Vries, P.; Weiland, J.

    2011-01-01

    Toroidal momentum transport mechanisms are reviewed and put in a broader perspective. The generation of a finite momentum flux is closely related to the breaking of symmetry (parity) along the field. The symmetry argument allows for the systematic identification of possible transport mechanisms. Those that appear to lowest order in the normalized Larmor radius (the diagonal part, Coriolis pinch, E x B shearing, particle flux, and up-down asymmetric equilibria) are reasonably well understood. At higher order, expected to be of importance in the plasma edge, the theory is still under development.

  11. Design spectra development considering short time histories

    International Nuclear Information System (INIS)

    Weiner, E.O.

    1983-01-01

    Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE. MODQKE was written to modify or provide new histories with special attention paid to short seismic records. A technique from the open literature was borrowed to generate an initial history that approximates a given response spectrum. Further refinement is done with smoothing cycles in which several correction signals are added to the history in a way that produces a least squares fit between actual and prescribed spectra. Provision is made for history shaping, a baseline correction, and final scaling. MODQKE performance has been demonstrated with seven examples having zero to ten percent damping ratios, and 2.5 seconds to 20 seconds durations and a variety of target spectra. The examples show the program is inexpensive to use. MDOF is a simple modal superposition program. It has no eigensolver, and the user supplies mode shapes, frequencies, and participation factors as input. Floor spectra can be generated from design spectra by using a history from MODQKE that conforms to the design spectrum as input to MDOF. Floor motions from MDOF can be fed back to MODQKE without modification to obtain the floor spectra. A simple example is given to show how equipment mass effects can be incorporated into the MDOF solution. Any transient solution capability can be used to replace MDOF. For example, a direct transient approach may be desirable if both the equipment and floor structures are to be included in the model with different damping fractions. (orig./HP)

  12. The Effects of Minimal Length, Maximal Momentum, and Minimal Momentum in Entropic Force

    Directory of Open Access Journals (Sweden)

    Zhong-Wen Feng

    2016-01-01

    Full Text Available The modified entropic force law is studied by using a new kind of generalized uncertainty principle which contains a minimal length, a minimal momentum, and a maximal momentum. Firstly, the quantum corrections to the thermodynamics of a black hole are investigated. Then, according to Verlinde’s theory, the generalized uncertainty principle (GUP corrected entropic force is obtained. The result shows that the GUP corrected entropic force is related not only to the properties of the black holes but also to the Planck length and the dimensionless constants α0 and β0. Moreover, based on the GUP corrected entropic force, we also derive the modified Einstein’s field equation (EFE and the modified Friedmann equation.

  13. Influence of the centrifugal force and parallel dynamics on the toroidal momentum transport due to small scale turbulence in a tokamak

    International Nuclear Information System (INIS)

    Peeters, A. G.; Camenen, Y.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Strintzi, D.; Angioni, C.

    2009-01-01

    The paper derives the gyro-kinetic equation in the comoving frame of a toroidally rotating plasma, including both the Coriolis drift effect [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)] as well as the centrifugal force. The relation with the laboratory frame is discussed. A low field side gyro-fluid model is derived from the gyro-kinetic equation and applied to the description of parallel momentum transport. The model includes the effects of the Coriolis and centrifugal force as well as the parallel dynamics. The latter physics effect allows for a consistent description of both the Coriolis drift effect as well as the ExB shear effect [R. R. Dominguez and G. M. Staebler, Phys. Fluids B 5, 3876 (1993)] on the momentum transport. Strong plasma rotation as well as parallel dynamics reduce the Coriolis (inward) pinch of momentum and can lead to a sign reversal generating an outward pinch velocity. Also, the ExB shear effect is, in a similar manner, reduced by the parallel dynamics and stronger rotation.

  14. Momentum and mass relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gregoire, C.; Scheuter, F.; Remaud, B.; Sebille, F.

    1984-01-01

    The momentum and mass relaxation are shown to be described by transport equations. The momentum relaxation, which can be studied in the intermediate energy regime by the particle emissions, refers to a microscopic slowing down and diffusion process in the momentum space. The mass relaxation refers to the coupling of the collective mass asymmetry degree of freedom and the intrinsic system. It can be illustrated by the fast fission of light and very heavy systems

  15. Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction

    International Nuclear Information System (INIS)

    Yamane, Keisaku; Yang, Zhili; Toda, Yasunori; Morita, Ryuji

    2014-01-01

    We propose a high-precision method for measuring the orbital angular momentum (OAM) spectrum of ultra-broadband optical-vortex (OV) pulses from fork-like interferograms between OV pulses and a reference plane-wave pulse. It is based on spatial reconstruction of the electric fields of the pulses to be measured from the frequency-resolved interference pattern. Our method is demonstrated experimentally by obtaining the OAM spectra for different spectral components of the OV pulses, enabling us to characterize the frequency dispersion of the topological charge of the OAM spectrum by a simple experimental setup. Retrieval is carried out in quasi-real time, allowing us to investigate OAM spectra dynamically. Furthermore, we determine the relative phases (including the sign) of the topological-charge-resolved electric-field amplitudes, which are significant for evaluating OVs or OV pulses with arbitrarily superposed modes. (paper)

  16. Smoothed dissipative particle dynamics with angular momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de

    2015-01-15

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  17. Preequilibrium GDR excitation and entrance channel angular momentum effects

    International Nuclear Information System (INIS)

    Sandoli, M.; Campajola, L.; De Rosa, A.; D'Onofrio, A.; La Commara, M.; Ordine, A.; Pierroutsakou, D.; Roca, V.; Romano, M.; Romoli, M.; Terrasi, F.; Trotta, M.; Cardella, G.; Papa, M.; Pappalardo, G.; Rizzo, F.; Alamanos, N.; Auger, F.; Gillibert, A.

    1997-01-01

    The energy spectra of the γ-rays emitted in the 35 Cl+ 92 Mo reaction at incident energy E=260 MeV were measured in coincidence with the ejectiles produced in dissipative reaction events. The cumulative energy spectrum of the γ-rays coming from the decay of the ejectiles was calculated within the statistical model and its comparison to the experimental spectrum evidences an excess in the data for E γ =8 to 12 MeV. Such an excess, fitted with a Lorentz curve, is attributed to the preequilibrium GDR γ-decay of the intermediate dinuclear system. The centroid energy of the Lorentz curve corresponds to a dipole oscillation along the symmetry axis of the system and its width is found to be comparable to that of the ground state GDR low energy component of the deformed dinucleus. The small quantal dispersion Δl=(10.3±0.1)ℎ of the entrance channel angular momentum, determined by analysing the dissipative fragment angular distribution in the framework of the Strutinsky model, is suggested to limit the broadening of the preequilibrium GDR width. (orig.)

  18. On energy-momentum tensors of gravitational field

    International Nuclear Information System (INIS)

    Nikishov, A.I.

    2001-01-01

    The phenomenological approach to gravitation is discussed in which the 3-graviton interaction is reduced to the interaction of each graviton with the energy-momentum tensor of two others. If this is so, (and in general relativity this is not so), then the problem of choosing the correct energy-momentum tensor comes to finding the right 3-graviton vertex. Several energy-momentum tensors od gravitational field are considered and compared in the lowest approximation. Each of them together with the energy-momentum tensor of point-like particles satisfies the conservation laws when equations of motion of particles are the same as in general relativity. It is shown that in Newtonian approximation the considered tensors differ one from other in the way their energy density is distributed between energy density of interaction (nonzero only at locations of particles) and energy density of gravitational field. Stating from Lorentz invariance, the Lagrangians for spin-2, mass-0 field are considered [ru

  19. Observation of Polarization Vortices in Momentum Space

    Science.gov (United States)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-01

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  20. ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES

    International Nuclear Information System (INIS)

    Seo, Hee-Jong; Ho, Shirley; White, Martin; Reid, Beth; Schlegel, David J.; Cuesta, Antonio J.; Padmanabhan, Nikhil; Ross, Ashley J.; Percival, Will J.; Nichol, Robert C.; Saito, Shun; De Putter, Roland; Eisenstein, Daniel J.; Xu Xiaoying; Skibba, Ramin; Schneider, Donald P.; Verde, Licia; Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J.

    2012-01-01

    We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over ∼10,000 deg 2 between 0.45 A (z)/r s = 9.212 +0.416 – 0 .404 at z = 0.54, and therefore D A (z) = 1411 ± 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D A (z) is 1.4σ higher than what is expected for the concordance ΛCDM, in accordance to the trend of other spectroscopic BAO measurements for z ∼> 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.

  1. Longitudinal schottky spectra of a bunched Ne10+ ion beam at the CSRe

    International Nuclear Information System (INIS)

    Wen Weiqiang; Ma Xinwen; Zhang Dacheng

    2013-01-01

    The longitudinal Schottky spectra of a radio-frequency (RF) bunched and electron cooled 22Ne 10+ ion beam at 70 MeV/u have been studied by a newly installed resonant Schottky pick-up at the experimental cooler storage ring (CSRe), at IMP. For an RF-bunched ion beam, a longitudinal momentum spread of Δp/p=1.6 × 10 -5 has been reached with less than 107 stored ions. The reduction of momentum spread compared with a coasting ion beam was observed from Schottky noise signal of the bunched ion beam. In order to prepare the future laser cooling experiment at the CSRe, the RF-bunching power was modulated at 25 th , 50 th and 75 th harmonic of the revolution frequency, effective bunching amplitudes were extracted from the Schottky spectrum analysis. Applications of Schottky noise for measuring beam lifetime with ultra-low intensity of ion beams are presented, and it is relevant to upcoming experiments on laser cooling of relativistic heavy ion beams and nuclear physics at the CSRe. (authors)

  2. Analysis of COSIMA spectra: Bayesian approach

    Directory of Open Access Journals (Sweden)

    H. J. Lehto

    2015-06-01

    secondary ion mass spectrometer (TOF-SIMS spectra. The method is applied to the COmetary Secondary Ion Mass Analyzer (COSIMA TOF-SIMS mass spectra where the analysis can be broken into subgroups of lines close to integer mass values. The effects of the instrumental dead time are discussed in a new way. The method finds the joint probability density functions of measured line parameters (number of lines, and their widths, peak amplitudes, integrated amplitudes and positions. In the case of two or more lines, these distributions can take complex forms. The derived line parameters can be used to further calibrate the mass scaling of TOF-SIMS and to feed the results into other analysis methods such as multivariate analyses of spectra. We intend to use the method, first as a comprehensive tool to perform quantitative analysis of spectra, and second as a fast tool for studying interesting targets for obtaining additional TOF-SIMS measurements of the sample, a property unique to COSIMA. Finally, we point out that the Bayesian method can be thought of as a means to solve inverse problems but with forward calculations, only with no iterative corrections or other manipulation of the observed data.

  3. Behaviour of 144Gd at very high angular momentum. Study of the continuum

    International Nuclear Information System (INIS)

    Nourreddine, A.

    1984-01-01

    The specific physical concepts that dictated the choice of 144 Gd for the present high spin study are presented in the first part of this work. The second part describes the various formalisms and techniques used to extract the multiplicities, multipolarities and moments of inertia from continuous γ ray spectra. The third part relates the results of the quasi-continuum γ ray of 144 Gd formed in the fusion-evaporation reaction 120 Sn( 28 Si, 4nγ) with four bombarding energies. A detailed balance of energy and angular momentum of the compound nucleus desexcitation has been given. Finally the evolution of the nuclear shape as a function of spin has been determined from the experimental data and interpreted by a combined micro and macroscopic theoretical calculations using a Woods-Saxon potential [fr

  4. Momentum distribution in the nucleus. II

    International Nuclear Information System (INIS)

    Amado, R.D.; Woloshyn, R.M.

    1977-01-01

    We calculate the single particle momentum distribution n(q) for a one-dimensional model with delta forces. There is a domain of q for which n(q) has an exponential falloff; but, after allowance is made for the nonsaturation in the model, that domain does not grow significantly with particle number. The relation of this result to large momentum scattering from the nucleus and to the Hartree approximation is briefly discussed

  5. The gluon propagator in momentum space

    International Nuclear Information System (INIS)

    Bernard, C.; Soni, A.

    1992-01-01

    We consider quenched QCD on a 16 3 x40 lattice at β=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others

  6. The angular momentum dependence of complex fragment emission

    International Nuclear Information System (INIS)

    Sobtka, L.G.; Sarantites, D.G.; Li, Z.

    1987-01-01

    Large fragment (A > 4) production at high angular momentum is studied via the reaction, 200 MeV 45 Sc + 65 Cu. Comparisons of the fragment yields from this reaction (high angular momentum) to those from 93 Nb + Be (low angular momentum) are used to verify the strong angular momentum dependence of large fragment production predicted by equilibrium models. Details of the coincident γ-ray distributions not only confirm a rigidly rotating intermediate but also indicate that the widths of the primary L-wave distributions decrease with increasing symmetry in the decay channel. These data are used to test the asymmetry and L-wave dependence of emission barriers calculated from a rotating, finite range corrected, liquid drop model. 21 refs., 10 figs

  7. Performance of Missing Transverse Momentum Reconstruction in Proton-Proton Collisions at $\\sqrt{s}$ = 7 TeV with ATLAS

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Akesson, Torsten Paul; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amoros, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Asman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Galtieri, Angela Barbaro; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimaraes da Costa, Joao; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jurg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Boser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, Andre; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Buscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, Francois; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urban, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Garrido, Maria Del Mar Capeans; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Montoya, German D.Carrillo; Carter, Antony; Carter, Janet; Carvalho, Joao; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G.; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H.; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muino, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, Maria Jose; Costanzo, Davide; Costin, Tudor; Cote, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crepe-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristobal; Donszelmann, Tulay Cuhadar; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; De Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; de la Taille, Christophe; de la Torre, Hector; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; de Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; del Papa, Carlo; del Peso, Jose; del Prete, Tarcisio; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Yagci, Kamile Dindar; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, Andre; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jurgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jorg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Duhrssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Duren, Michael; Ebenstein, William; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipcic, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, K.K.; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; Garcia, Carmen; Garcia Navarro, Jose Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Dani\\|{e}l Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Helene; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Borge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Gopfert, Thomas; Goeringer, Christian; Gossling, Claus; Gottfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Goncalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; Gonzalez de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorisek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafstrom, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jorgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Mathieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frederic; Hensel, Carsten; Henss, Tobias; Medina Hernandez, Carlos; Hernandez Jimenez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higon-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Goran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jez, Pavel; Jezequel, Stephane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kersevan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Koneke, Karsten; Konig, Adriaan; Koenig, Sebastian; Kopke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamaki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Kruger, Hans; Kruker, Tobias; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramon; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Celine; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Leveque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Sterzo, Francesco Lo; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dorthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Bjorn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Macek, Bostjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mattig, Peter; Mattig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amelia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandic, Igor; Mandrysch, Rocco; Maneira, Jose; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin Dit Latour, Bertrand; Martin--Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W.Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijovic, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuz, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A.; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjornmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Monig, Klaus; Moser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Mock, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Muller, Thomas; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Hong, Van Nguyen Thi; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozicka, Miroslav; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, Antonio; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pasztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Cavalcanti, Tiago Perez; Perez Codina, Estel; Perez Garcia-Estan, Maria Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, Joao Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommes, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Bueso, Xavier Portell; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Rohne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Ruhr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, Jose; Salvachua Ferrando, Belen; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Bjorn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, Joao; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schafer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schoning, Andre; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, Jose; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, Jose; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjolin, Jorgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spano, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St. Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockmanns, Tobias; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Strohmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sanchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothee; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tic, Tom\\'{a}\\v{s}; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Viegas, Florbela De Jes Tique Aires; Tisserant, Sylvain; Tobias, Jurgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokar, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torro Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocme, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Ferrer, Juan Antonio Valls; Van der Graaf, Harry; van der Kraaij, Erik; van der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; Van Gemmeren, Peter; van Kesteren, Zdenko; Van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Anh, Tuan Vu; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C.; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Zenis, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi Della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Zivkovic, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-03

    The measurement of missing transverse momentum in the ATLAS detector, described in this paper, makes use of the full event reconstruction and a calibration based on reconstructed physics objects. The performance of the missing transverse momentum reconstruction is evaluated using data collected in pp collisions at a centre-of-mass energy of 7 TeV in 2010. Minimum bias events and events with jets of hadrons are used from data samples corresponding to an integrated luminosity of about 0.3 inverse nb and 600 inverse nb, together with events containing a Z boson decaying to two leptons (electrons or muons) or a W boson decaying to a lepton (electron or muon) and a neutrino, from a data sample corresponding to an integrated luminosity of about 36 inverse pb. An estimate of the systematic uncertainty on the missing transverse momentum scale is presented.

  8. Momentum and hamiltonian in complex action theory

    DEFF Research Database (Denmark)

    Nagao, Keiichi; Nielsen, Holger Frits Bech

    2012-01-01

    $-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led...

  9. Y-Scaling in a simple quark model

    International Nuclear Information System (INIS)

    Kumano, S.; Moniz, E.J.

    1988-01-01

    A simple quark model is used to define a nuclear pair model, that is, two composite hadrons interacting only through quark interchange and bound in an overall potential. An ''equivalent'' hadron model is developed, displaying an effective hadron-hadron interaction which is strongly repulsive. We compare the effective hadron model results with the exact quark model observables in the kinematic region of large momentum transfer, small energy transfer. The nucleon reponse function in this y-scaling region is, within the traditional frame work sensitive to the nucleon momentum distribution at large momentum. We find a surprizingly small effect of hadron substructure. Furthermore, we find in our model that a simple parametrization of modified hadron size in the bound state, motivated by the bound quark momentum distribution, is not a useful way to correlate different observables

  10. Edge momentum transport by neutrals: an interpretive numerical framework

    Science.gov (United States)

    Omotani, J. T.; Newton, S. L.; Pusztai, I.; Viezzer, E.; Fülöp, T.; The ASDEX Upgrade Team

    2017-06-01

    Due to their high cross-field mobility, neutrals can contribute to momentum transport even at the low relative densities found inside the separatrix and they can generate intrinsic rotation. We use a charge-exchange dominated solution to the neutral kinetic equation, coupled to neoclassical ions, to evaluate the momentum transport due to neutrals. Numerical solutions to the drift-kinetic equation allow us to cover the full range of collisionality, including the intermediate levels typical of the tokamak edge. In the edge there are several processes likely to contribute to momentum transport in addition to neutrals. Therefore, we present here an interpretive framework that can evaluate the momentum transport through neutrals based on radial plasma profiles. We demonstrate its application by analysing the neutral angular momentum flux for an L-mode discharge in the ASDEX Upgrade tokamak. The magnitudes of the angular momentum fluxes we find here due to neutrals of 0.6-2 \\text{N} \\text{m} are comparable to the net torque on the plasma from neutral beam injection, indicating the importance of neutrals for rotation in the edge.

  11. Angular momentum conservation for uniformly expanding flows

    International Nuclear Information System (INIS)

    Hayward, Sean A

    2007-01-01

    Angular momentum has recently been defined as a surface integral involving an axial vector and a twist 1-form, which measures the twisting around the spacetime due to a rotating mass. The axial vector is chosen to be a transverse, divergence-free, coordinate vector, which is compatible with any initial choice of axis and integral curves. Then a conservation equation expresses the rate of the change of angular momentum along a uniformly expanding flow as a surface integral of angular momentum densities, with the same form as the standard equation for an axial Killing vector, apart from the inclusion of an effective energy tensor for gravitational radiation

  12. The electromagnetic impulse pendulum and momentum conservation

    International Nuclear Information System (INIS)

    Graneau, P.; Graneau, P.N.

    1986-01-01

    Largely quantitative experiments by Pappas have indicated that the momentum imparted to an electrodynamic impulse pendulum was not balanced by an equal and opposite momentum change of field energy as required by the special theory of relativity. The authors repeated Pappas' experiment using discharge currents from a capacitor bank which contained a known amount of stored energy. It turned out that, for momentum conservation, the magnetic-field energy required would have been 1000 to 2000 times as large as the energy that was actually stored in the capacitors. In the second part of the paper the pendulum experiments are interpreted in terms of Ampere's force law

  13. Inefficient Angular Momentum Transport in Accretion Disk Boundary Layers: Angular Momentum Belt in the Boundary Layer

    Science.gov (United States)

    Belyaev, Mikhail A.; Quataert, Eliot

    2018-04-01

    We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.

  14. A UniChem and electron momentum spectroscopy investigations into the valence electronic structure of trans 1,3 butadiene

    Energy Technology Data Exchange (ETDEWEB)

    Michalewicz, M.T. [CSIRO, Supercomputing Support Group, Carlton, VIC (Australia). Division of Information Technology; Winkler, D.A. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC (Australia). Div. of Chemical Physics; Brunger, M.J.; McCarthy, L.E. [Flinders Univ. of South Australia, Bedford Park, SA (Australia). School of Physical Sciences; Von Niessen, W. [Flinders Univ. of South Australia, Bedford Park, SA (Australia). School of Physical Sciences

    1996-09-01

    The experimental (e,2e) coincidence spectroscopy, known as electron momentum spectroscopy (EMS) was applied to the trans 1,3 butadiene (C{sub 4}H{sub 6}) molecule with detailed binding energy spectra and orbital momentum distributions (MDs) being measured. A small selection of this data is presented. The usage of UniChem computational chemistry codes for the Flinders-developed AMOLD program allows to calculate theoretical MDs for each orbital, to help elucidate the valence electronic structure of butadiene. The results of the many-body Green`s function calculation is also presented, to the ADC(3) level, for the binding energies and spectroscopic factors of the respective orbitals of C{sub 4}H{sub 6}. A critical comparison between the experimental and theoretical MDs allows to determine the optimum wavefunction from the basis sets studied. The determination of the wavefunction then allows to make further use of the UniChem package to derive butadiene`s chemically interesting molecular properties. A summary of these results and comparison of them with the previous results of other workers is presented. 23 refs., 2 tabs., 2 figs.

  15. A UniChem and electron momentum spectroscopy investigations into the valence electronic structure of trans 1,3 butadiene

    International Nuclear Information System (INIS)

    Michalewicz, M.T.; Winkler, D.A.; Brunger, M.J.; McCarthy, L.E.; Von Niessen, W.

    1996-09-01

    The experimental (e,2e) coincidence spectroscopy, known as electron momentum spectroscopy (EMS) was applied to the trans 1,3 butadiene (C 4 H 6 ) molecule with detailed binding energy spectra and orbital momentum distributions (MDs) being measured. A small selection of this data is presented. The usage of UniChem computational chemistry codes for the Flinders-developed AMOLD program allows to calculate theoretical MDs for each orbital, to help elucidate the valence electronic structure of butadiene. The results of the many-body Green's function calculation is also presented, to the ADC(3) level, for the binding energies and spectroscopic factors of the respective orbitals of C 4 H 6 . A critical comparison between the experimental and theoretical MDs allows to determine the optimum wavefunction from the basis sets studied. The determination of the wavefunction then allows to make further use of the UniChem package to derive butadiene's chemically interesting molecular properties. A summary of these results and comparison of them with the previous results of other workers is presented. 23 refs., 2 tabs., 2 figs

  16. Bound-bound transitions in the emission spectra of Ba+-He excimer

    Science.gov (United States)

    Moroshkin, P.; Kono, K.

    2016-05-01

    We present an experimental and theoretical study of the emission and absorption spectra of the Ba+ ions and Ba+*He excimer quasimolecules in the cryogenic Ba-He plasma. We observe several spectral features in the emission spectrum, which we assign to the electronic transitions between bound states of the excimer correlating to the 6 2P3 /2 and 5 2D3 /2 ,5 /2 states of Ba+. The resulting Ba+(5 2DJ) He is a metastable electronically excited complex with orbital angular momentum L =2 , thus expanding the family of known metal-helium quasimolecules. It might be suitable for high-resolution spectroscopic studies and for the search for new polyatomic exciplex structures.

  17. Transverse momentum distributions of identified particles produced ...

    Indian Academy of Sciences (India)

    We assume that the transverse momentum distributions of identified particles measured in final state are contributed by a few energy sources which can be regarded as partons or quarks in the interacting system. The particle is contributed by each source with gluons which have transverse momentum distributions in an ...

  18. Borel resummation of transverse momentum distributions

    International Nuclear Information System (INIS)

    Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni

    2009-01-01

    We present a new prescription for the resummation of contributions due to soft gluon emission to the transverse momentum distribution of processes such as Drell-Yan production in hadronic collisions. We show that familiar difficulties in obtaining resummed results as a function of transverse momentum starting from impact-parameter space resummation are related to the divergence of the perturbative expansion of the momentum-space result. We construct a resummed expression by Borel resummation of this divergent series, removing the divergence in the Borel inversion through the inclusion of a suitable higher twist term. The ensuing resummation prescription is free of numerical instabilities, is stable upon the inclusion of subleading terms, and the original divergent perturbative series is asymptotic to it. We compare our results to those obtained using alternative prescriptions, and discuss the ambiguities related to the resummation procedure

  19. Borel resummation of transverse momentum distributions

    CERN Document Server

    Bonvini, Marco; Ridolfi, Giovanni

    2009-01-01

    We present a new prescription for the resummation of contributions due to soft gluon emission to the trasverse momentum distribution of processes such as Drell-Yan production in hadronic collisions. We show that familiar difficulties in obtaining resummed results as a function of transverse momentum starting from impact-parameter space resummation are related to the divergence of the perturbative expansion of the momentum-space result. We construct a resummed expression by Borel resummation of this divergent series, removing the divergence in the Borel inversion through the inclusion of a suitable higher twist term. The ensuing resummation prescription is free of numerical instabilities, is stable upon the inclusion of subleading terms, and the original divergent perturbative series is asymptotic to it. We compare our results to those obtained using alternative prescriptions, and discuss the ambiguities related to the resummation procedure.

  20. EVOLUTION OF MAGNETIC HELICITY AND ENERGY SPECTRA OF SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2016-01-01

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30–60 Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field

  1. EVOLUTION OF MAGNETIC HELICITY AND ENERGY SPECTRA OF SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongqi [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Brandenburg, Axel [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Sokoloff, D. D., E-mail: hzhang@bao.ac.cn [Department of Physics, Moscow University, 119992 Moscow (Russian Federation)

    2016-03-10

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30–60 Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field.

  2. Mass and momentum conservation for fluid simulation

    KAUST Repository

    Lentine, Michael; Aanjaneya, Mridul; Fedkiw, Ronald

    2011-01-01

    Momentum conservation has long been used as a design principle for solid simulation (e.g. collisions between rigid bodies, mass-spring elastic and damping forces, etc.), yet it has not been widely used for fluid simulation. In fact, semi-Lagrangian advection does not conserve momentum, but is still regularly used as a bread and butter method for fluid simulation. In this paper, we propose a modification to the semi-Lagrangian method in order to make it fully conserve momentum. While methods of this type have been proposed earlier in the computational physics literature, they are not necessarily appropriate for coarse grids, large time steps or inviscid flows, all of which are common in graphics applications. In addition, we show that the commonly used vorticity confinement turbulence model can be modified to exactly conserve momentum as well. We provide a number of examples that illustrate the benefits of this new approach, both in conserving fluid momentum and passively advected scalars such as smoke density. In particular, we show that our new method is amenable to efficient smoke simulation with one time step per frame, whereas the traditional non-conservative semi-Lagrangian method experiences serious artifacts when run with these large time steps, especially when object interaction is considered. Copyright © 2011 by the Association for Computing Machinery, Inc.

  3. Intrinsic spin and momentum relaxation in organic single-crystalline semiconductors probed by ESR and Hall measurements

    Science.gov (United States)

    Tsurumi, Junto; Häusermann, Roger; Watanabe, Shun; Mitsui, Chikahiko; Okamoto, Toshihiro; Matsui, Hiroyuki; Takeya, Jun

    Spin and charge momentum relaxation mechanism has been argued among organic semiconductors with various methods, devices, and materials. However, little is known in organic single-crystalline semiconductors because it has been hard to obtain an ideal organic crystal with an excellent crystallinity and controllability required for accurate measurements. By using more than 1-inch sized single crystals which are fabricated via contentious edge-casting method developed by our group, we have successfully demonstrated a simultaneous determination of spin and momentum relaxation time for gate-induced charges of 3,11-didecyldinaphtho[2,3- d:2',3'- d']benzo[1,2- b:4,5- b']dithiophene, by combining electron spin resonance (ESR) and Hall effect measurements. The obtained temperature dependences of spin and momentum relaxation times are in good agreement in terms of power law with a factor of approximately -2. It is concluded that Elliott-Yafet spin relaxation mechanism can be dominant at room temperature regime (200 - 300 K). Probing characteristic time scales such as spin-lattice, spin-spin, and momentum relaxation times, demonstrated in the present work, would be a powerful tool to elucidate fundamental spin and charge transport mechanisms. We acknowledge the New Energy and Industrial Technology Developing Organization (NEDO) for financial support.

  4. Compton spectra of atoms at high x-ray intensity

    Science.gov (United States)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  5. MD 2179: Scraping of off-momentum halo after injection

    CERN Document Server

    Garcia Morales, Hector; Patecki, Marcin; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2018-01-01

    In this MD, a beam scraping was performed using the momentum primary collimator in IR3 where dispersion is high. A second scraping was performed using a TCSG in IR7 where dispersion is almost negligible. In such a way, we aim to disentangle the contribution of off-momentum particles to halo population. These scrapings will provide useful information to better understand the usual off-momentum losses we see at the start of the ramp. The MD results would also be used to benchmark simulations of off-momentum beam losses in order to gain confidence in simulation models.

  6. Momentum anisotropy at freeze out

    International Nuclear Information System (INIS)

    Feld, S.; Borghini, N.; Lang, C.

    2017-01-01

    The transition from a hydrodynamical modeling to a particle-based approach is a crucial element of the description of high-energy heavy-ion collisions. Assuming this “freeze out” happens instantaneously at each point of the expanding medium, we show that the local phase-space distribution of the emitted particles is asymmetric in momentum space. This suggests the use of anisotropic hydrodynamics for the last stages of the fluid evolution. We discuss how observables depend on the amount of momentum-space anisotropy at freeze out and how smaller or larger anisotropies allow for different values of the freeze-out temperature. (paper)

  7. Do Momentum Strategies Work?: - Australian Evidence

    OpenAIRE

    Michael E. Drew; Madhu Veeraraghavan; Min Ye

    2004-01-01

    This paper investigates the profitability of momentum investment strategy and the predictive power of trading volume for equities listed in the Australian Stock Exchange. Recent research finds that momentum and trading volume appear to predict subsequent returns in U.S. market and past volume helps to reconcile intermediate-horizon “under reaction” and long-horizon “overreaction” effects. However, bulk of the evidence on this important relationship between past returns and future returns is l...

  8. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. [Washington Univ., St. Louis, MO (United States). Dept. of Physics; Parrinello, C. [New York Univ., NY (United States). Dept. of Physics]|[Brookhaven National Lab., Upton, NY (United States); Soni, A. [Brookhaven National Lab., Upton, NY (United States)

    1992-12-31

    We consider quenched QCD on a 16{sup 3}{times}40 lattice at {beta}=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others.

  9. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (Washington Univ., St. Louis, MO (United States). Dept. of Physics); Parrinello, C. (New York Univ., NY (United States). Dept. of Physics Brookhaven National Lab., Upton, NY (United States)); Soni, A. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    We consider quenched QCD on a 16[sup 3][times]40 lattice at [beta]=6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others.

  10. The gluon propagator in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, C. (Dept. of Physics, Washington Univ., St. Louis, MO (United States)); Parrinello, C. (Physics Dept., New York Univ., NY (United States) Physics Dept., Brookhaven National Lab., Upton, NY (United States)); Soni, A. (Physics Dept., Brookhaven National Lab., Upton, NY (United States))

    1993-03-01

    We consider quenched QCD on a 16[sup 3] x 40 lattice at [beta] = 6.0. We give preliminary numerical results for the lattice gluon propagator evaluated both in coordinate and momentum space. Our findings are compared with earlier results in the literature at zero momentum. In addition, by considering nonzero momenta we attempt to extract the form of the propagator and compare it to continuum predictions formulated by Gribov and others. (orig.)

  11. Continuous Wheel Momentum Dumping Using Magnetic Torquers and Thrusters

    Science.gov (United States)

    Oh, Hwa-Suk; Choi, Wan-Sik; Eun, Jong-Won

    1996-12-01

    Two momentum management schemes using magnetic torquers and thrusters are sug-gested. The stability of the momentum dumping logic is proved at a general attitude equilibrium. Both momentum dumping control laws are implemented with Pulse-Width- Pulse-Frequency Modulated on-off control, and shown working equally well with the original continuous and variable strength control law. Thrusters are assummed to be asymmetrically configured as a contingency case. Each thruster is fired following separated control laws rather than paired thrusting. Null torque thrusting control is added on the thrust control calculated from the momentum control law for the gener-ation of positive thrusting force. Both magnetic and thrusting control laws guarantee the momentum dumping, however, the wheel inner loop control is needed for the "wheel speed" dumping, The control laws are simulated on the KOrea Multi-Purpose SATellite (KOMPSAT) model.

  12. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: "average" horizontal component

    Science.gov (United States)

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter

    2014-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.

  13. Nuclear physics. Momentum sharing in imbalanced Fermi systems.

    Science.gov (United States)

    Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I

    2014-10-31

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.

  14. Intra-industry momentum and product market competition around the world

    Directory of Open Access Journals (Sweden)

    Ting Li

    2016-06-01

    Full Text Available This paper examines the relationship between product market competition and intra-industry momentum returns. Based on 12,982 firm observations from 19 developed markets for the period of 1990–2010, I find that buying winners and selling losers in competitive industries generates significantly higher momentum profits than that in concentrated industries. The higher the intensity of product market competition, the larger are the intra-industry momentum returns. The results are robust to sub-samples (periods of the U.S., non-U.S. countries, the G7 countries, 1990–2000, and 2001–2010. I further employ the nearness of a stock's price to the 52-week high to determine past winners and losers and find stronger results. I also compare intra-industry momentum returns with Jegadeesh and Titman (1993 individual stock momentum and Moskowitz and Grinblatt (1999 inter-industry momentum strategies. My results suggest that intra-industry momentum strategy outperforms the latter two strategies in most cases. The overall results are consistent with the notion that severe product market competition induces managers to improve financial performance.

  15. Beta spectra. II-Positron spectra

    International Nuclear Information System (INIS)

    Grau, A.; Garcia-Torano, E.

    1981-01-01

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  16. MaRaCluster: A Fragment Rarity Metric for Clustering Fragment Spectra in Shotgun Proteomics.

    Science.gov (United States)

    The, Matthew; Käll, Lukas

    2016-03-04

    Shotgun proteomics experiments generate large amounts of fragment spectra as primary data, normally with high redundancy between and within experiments. Here, we have devised a clustering technique to identify fragment spectra stemming from the same species of peptide. This is a powerful alternative method to traditional search engines for analyzing spectra, specifically useful for larger scale mass spectrometry studies. As an aid in this process, we propose a distance calculation relying on the rarity of experimental fragment peaks, following the intuition that peaks shared by only a few spectra offer more evidence than peaks shared by a large number of spectra. We used this distance calculation and a complete-linkage scheme to cluster data from a recent large-scale mass spectrometry-based study. The clusterings produced by our method have up to 40% more identified peptides for their consensus spectra compared to those produced by the previous state-of-the-art method. We see that our method would advance the construction of spectral libraries as well as serve as a tool for mining large sets of fragment spectra. The source code and Ubuntu binary packages are available at https://github.com/statisticalbiotechnology/maracluster (under an Apache 2.0 license).

  17. Angular momentum transfer in primordial discs and the rotation of the first stars

    Science.gov (United States)

    Hirano, Shingo; Bromm, Volker

    2018-05-01

    We investigate the rotation velocity of the first stars by modelling the angular momentum transfer in the primordial accretion disc. Assessing the impact of magnetic braking, we consider the transition in angular momentum transport mode at the Alfvén radius, from the dynamically dominated free-fall accretion to the magnetically dominated solid-body one. The accreting protostar at the centre of the primordial star-forming cloud rotates with close to breakup speed in the case without magnetic fields. Considering a physically motivated model for small-scale turbulent dynamo amplification, we find that stellar rotation speed quickly declines if a large fraction of the initial turbulent energy is converted to magnetic energy (≳ 0.14). Alternatively, if the dynamo process were inefficient, for amplification due to flux freezing, stars would become slow rotators if the pre-galactic magnetic field strength is above a critical value, ≃10-8.2 G, evaluated at a scale of nH = 1 cm-3, which is significantly higher than plausible cosmological seed values (˜10-15 G). Because of the rapid decline of the stellar rotational speed over a narrow range in model parameters, the first stars encounter a bimodal fate: rapid rotation at almost the breakup level, or the near absence of any rotation.

  18. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  19. Plasma electron hole kinematics. I. Momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, I. H.; Zhou, C. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-08-15

    We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, which behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, including self-acceleration at formation, and hole pushing and trapping by ion streams.

  20. Momentum mapping spectrometer for probing the fragmentation dynamics of molecules induced by keV electrons

    International Nuclear Information System (INIS)

    Singh, Raj; Bhatt, Pragya; Yadav, Namita; Shanker, R

    2011-01-01

    We describe a new experimental setup for studying the fragmentation dynamics of molecules induced by the impact of keV electrons using the well-known technique of recoil ion momentum spectroscopy. The apparatus consists of mainly a time- and position-sensitive multi-hit particle detector for ion analysis and a channel electron multiplier detector for detecting the ejected electrons. Different components of the setup and the relevant electronics for data acquisition are described in detail with their working principles. In order to verify the reliable performance of the setup, we have recorded the collision-induced ionic spectra of the CO 2 molecule by the impact of keV electrons. Information about the ion pairs of CO + :O + , C + :O + and O + :O + resulting from dissociative ionizing collisions of 20 and 26 keV electrons with a dilute gaseous target of CO 2 molecules has been obtained. Under conditions of the present experiment, the momentum resolutions of the spectrometer for the combined momenta of CO + and O + ions in the direction of the time-of-flight axis and perpendicular to the direction of an electron beam are found to be 10.0 ± 0.2 and 15.0 ± 0.3 au, respectively

  1. Parametric dependences of momentum pinch and Prandtl number in JET

    NARCIS (Netherlands)

    Tala, T.; Salmi, A.; Angioni, C.; Casson, F. J.; Corrigan, G.; Ferreira, J.; Giroud, C.; Mantica, P.; Naulin, V.; Peeters, A.G.; Solomon, W. M.; Strintzi, D.; Tsalas, M.; Versloot, T. W.; de Vries, P. C.; Zastrow, K. D.

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density

  2. REIT Momentum and the Performance of Real Estate Mutual Funds

    NARCIS (Netherlands)

    J. Derwall (Jeroen); J.J. Huij (Joop); W.A. Marquering (Wessel)

    2009-01-01

    textabstractREITs exhibit a strong and prevalent momentum effect that is not captured by conventional factor models. This REIT momentum anomaly hampers proper judgments about the performance of actively managed REIT portfolios. In contrast, a REIT momentum factor adds incremental explanatory power

  3. Chaos-assisted broadband momentum transformation in optical microresonators.

    Science.gov (United States)

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-20

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Generation of angular-momentum-dominated electron beams from a photoinjector

    International Nuclear Information System (INIS)

    Sun, Yin-E.; Piot, Philippe; Kim, Kwang-Je; Barov, Nikolas; Lidia, Steven; Santucci, James; Tikhoplav, Rodion; Wennerberg, Jason

    2004-01-01

    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models

  5. The transverse momentum dependence of quark fragmentation functions from cascade models

    International Nuclear Information System (INIS)

    Groot, E.H. de; Engels, J.

    1979-01-01

    A covariant generalization of the onedimensional cascade model for quark fragmentation functions is presented, so as to include the transverse momentum behaviour and the possibility to produce different particles at different vertices along the chain. In the scaling limit the exact solution is given, if the primordial function is of the type αZsup(α-1). T(pT). For the more general case of factorizing primordial functions an analytic expression for the seagull effect is derived, which turns out to be independent of the function T(pT). (orig.) [de

  6. Anomalous momentum transport from drift waves

    International Nuclear Information System (INIS)

    Dominguez, R.R.; Staebler, G.M.

    1993-01-01

    A sheared slab magnetic field model B = B 0 [z + (x/L s )y], with inhomogeneous flows in the y and z directions, is used to perform a fully-kinetic stability analysis of the ion temperature gradient (ITG) and dissipative trapped electron (DTE) modes. The concomitant quasilinear stress components that couple to the local perpendicular (y-component) and parallel (z-component) momentum transport are also calculated and the anomalous perpendicular and parallel viscous stresses obtained. A breakdown of the ITG-induced perpendicular viscous stress is generally observed at moderate values of the sheared perpendicular flow. The ITG-induced parallel viscous stress is generally larger and strongly dependent on the sheared flows. The DTE-induced perpendicular viscous stress may sometimes be negative, tending to cancel the ITG contributions while the DTE-induced parallel viscous stress is generally small. The effect of the perpendicular stress component in the momentum balance equations is generally small while the parallel stress component can dominate the usual neoclassical viscous stress terms. The dominant contribution to parallel viscous stress by the ITG mode suggests that bulk plasma toroidal momentum confinement, like energy confinement, is governed by an anomalous ion loss mechanism. Furthermore, the large anomalous effect suggests that the neoclassical explanation of poloidal flows in tokamaks may be incorrect. The present results are in general agreement with existing experimental observations on momentum transport in tokamaks

  7. Automated Angular Momentum Recoupling Algebra

    Science.gov (United States)

    Williams, H. T.; Silbar, Richard R.

    1992-04-01

    We present a set of heuristic rules for algebraic solution of angular momentum recoupling problems. The general problem reduces to that of finding an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). The method lends itself to implementation on a microcomputer, and we have developed such an implementation using a dialect of LISP. We describe both how our code, called RACAH, works and how it appears to the user. We illustrate the use of RACAH for several transition and scattering amplitude matrix elements occurring in atomic, nuclear, and particle physics.

  8. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  9. Momentum sharing in imbalanced Fermi systems

    OpenAIRE

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.

    2014-01-01

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in ne...

  10. Ion energy/momentum effects during ion assisted growth of niobium nitride films

    Science.gov (United States)

    Klingenberg, Melissa L.

    The research described herein was performed to better understand and discern ion energy vs. ion momentum effects during ion beam assisted (IBAD) film growth and their effects on residual stress, crystalline structure, morphology, and composition, which influence film tribological properties. NbxN y was chosen for this research because it is a refractory material that can possess a large number of crystalline structures, and it has been found to have good tribological properties. To separate the effects of momentum transfer per arriving atom (p/a), which considers bombarding species mass, energy, and ion-to-atom transport ratio, from those of energy deposition per arriving atom (E/a), a mass independent parameter, different inert ion beams (krypton, argon, and neon) were used to create a matrix of coatings formed using similar energy deposition, but different momentum transfer and vice versa. Deposition was conducted in a research-scale IBAD system using electron beam evaporation, a radio frequency ion source, and a neutral nitrogen gas backfill. Films were characterized using x-ray diffraction, atomic force microscopy, Rutherford backscattering spectrometry, and residual stress analysis. Direct and quantifiable effects of bombardment were observed; however, energy deposition and momentum transfer effects could not be completely separated, confirming that thin film processes are complex. Complexities arose from ion-specific interactions (ion size, recoil energy, per cent reflected neutrals, Penning ionization, etc.) and chemistry effects that are not considered by the simple models. Overall, it can be stated that bombardment promoted nitride formation, nanocrystallinity, and compressive stress formation; influenced morphology (which influenced post-deposition oxygen uptake) and stress evolution; increased lattice parameter; modified crystalline phase and texture; and led to inert gas incorporation. High stress levels correlated strongly with material disorder and

  11. Transverse Momentum Distributions of Electron in Simulated QED Model

    Science.gov (United States)

    Kaur, Navdeep; Dahiya, Harleen

    2018-05-01

    In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.

  12. Generalized z-scaling in proton-proton collisions at high energies

    International Nuclear Information System (INIS)

    Zborovsky, I.; Tokarev, M.

    2006-01-01

    New generalization of z-scaling in inclusive particle production is proposed. The scaling variable z is a fractal measure which depends on kinematical characteristics of the underlying subprocess expressed in terms of the momentum fractions x 1 and x 2 of the incoming protons. In the generalized approach, the x 1 and x 2 are functions of the momentum fractions y a and y b of the scattered and recoil constituents carried out by the inclusive particle and recoil object, respectively. The scaling function ψ(z) for charged and identified hadrons produced in proton-proton collisions is constructed. The fractal dimensions and heat capacity of the produced medium entering definition of the z are established to obtain energy, angular and multiplicity independence of the ψ(z). The scheme allows unique description of data on inclusive cross sections of charged particles, pions, kaons, antiprotons, and lambdas at high energies. The obtained results are of interest to use z-scaling as a tool for searching for new physics phenomena of particle production in high transverse momentum and high multiplicity region at the proton-proton colliders RHIC and LHC

  13. The price momentum of stock in distribution

    Science.gov (United States)

    Liu, Haijun; Wang, Longfei

    2018-02-01

    In this paper, a new momentum of stock in distribution is proposed and applied in real investment. Firstly, assuming that a stock behaves as a multi-particle system, its share-exchange distribution and cost distribution are introduced. Secondly, an estimation of the share-exchange distribution is given with daily transaction data by 3 σ rule from the normal distribution. Meanwhile, an iterative method is given to estimate the cost distribution. Based on the cost distribution, a new momentum is proposed for stock system. Thirdly, an empirical test is given to compare the new momentum with others by contrarian strategy. The result shows that the new one outperforms others in many places. Furthermore, entropy of stock is introduced according to its cost distribution.

  14. A Very High Momentum Particle Identification Detector

    CERN Document Server

    Acconcia, T.V.; Barile, F.; Barnaföldi, G.G.; Bellwied, R.; Bencedi, G.; Bencze, G.; Berenyi, D.; Boldizsar, L.; Chattopadhyay, S.; Cindolo, F.; Chinellato, D.D.; D'Ambrosio, S.; Das, D.; Das, K.; Das-Bose, L.; Dash, A.K.; De Cataldo, G.; De Pasquale, S.; Di Bari, D.; Di Mauro, A.; Futo, E.; Garcia, E.; Hamar, G.; Harton, A.; Iannone, G.; Jimenez, R.T.; Kim, D.W.; Kim, J.S.; Knospe, A.; Kovacs, L.; Levai, P.; Nappi, E.; Markert, C.; Martinengo, P.; Mayani, D.; Molnar, L.; Olah, L.; Paic, G.; Pastore, C.; Patimo, G.; Patino, M.E.; Peskov, V.; Pinsky, L.; Piuz, F.; Pochybova, S.; Sgura, I.; Sinha, T.; Song, J.; Takahashi, J.; Timmins, A.; Van Beelen, J.B.; Varga, D.; Volpe, G.; Weber, M.; Xaplanteris, L.; Yi, J.; Yoo, I.K.

    2014-01-01

    The construction of a new detector is proposed to extend the capabilities of ALICE in the high transverse momentum (pT) region. This Very High Momentum Particle Identification Detector (VHMPID) performs charged hadron identification on a track-by-track basis in the 5 GeV/c < p < 25 GeV/c momentum range and provides ALICE with new opportunities to study parton-medium interactions at LHC energies. The VHMPID covers up to 30% of the ALICE central barrel and presents sufficient acceptance for triggered- and tagged-jet studies, allowing for the first time identified charged hadron measurements in jets. This Letter of Intent summarizes the physics motivations for such a detector as well as its layout and integration into ALICE.

  15. Non-physical momentum sources in slab geometry gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I; Catto, Peter J

    2010-01-01

    We investigate momentum transport in the Hamiltonian electrostatic gyrokinetic formulation of Dubin et al (1983 Phys. Fluids 26 3524). We prove that the long wavelength electric field obtained from the gyrokinetic quasineutrality introduces a non-physical momentum source in the low flow ordering.

  16. Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays

    Science.gov (United States)

    Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.

    2009-01-01

    Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.

  17. TMD Evolution at Moderate Hard Scales

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Ted [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Collins, John C. [Pennsylvania State Univ., University Park, PA (United States)

    2016-01-01

    We summarize some of our recent work on non-perturbative transverse momentum dependent (TMD) evolution, emphasizing aspects that are necessary for dealing with moderately low scale processes like semi-inclusive deep inelastic scattering.

  18. Effects of Wall-Normal and Angular Momentum Injections in Airfoil Separation Control

    Science.gov (United States)

    Munday, Phillip M.; Taira, Kunihiko

    2018-05-01

    The objective of this computational study is to quantify the influence of wall-normal and angular momentum injections in suppressing laminar flow separation over a canonical airfoil. Open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at $\\alpha = 9^\\circ$ and $Re = 23,000$ is examined with large-eddy simulations. This study independently introduces wall-normal momentum and angular momentum into the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. It is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Lift enhancement and suppression of separation with the wall-normal and angular momentum inputs are characterized by modifying the standard definition of the coefficient of momentum. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With this single modified coefficient of momentum, we are able to categorize each controlled flow into separated, transitional, and attached flows.

  19. Rotations and angular momentum

    International Nuclear Information System (INIS)

    Nyborg, P.; Froyland, J.

    1979-01-01

    This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included

  20. Transverse momentum in semi-inclusive deep inelastic scattering

    International Nuclear Information System (INIS)

    Ceccopieri, Federico Alberto; Trentadue, Luca

    2006-01-01

    Within the framework of perturbative quantum chromodynamics we derive the evolution equations for transverse momentum dependent distributions and apply them to the case of semi-inclusive deep inelastic scattering. The evolution equations encode the perturbative component of transverse momentum generated by collinear parton branchings. The current fragmentation is described via transverse momentum dependent parton densities and fragmentation functions. Target fragmentation instead is described via fracture functions. We present, to leading logarithmic accuracy, the corresponding semi-inclusive deep inelastic scattering cross-section, which applies to the entire phase space of the detected hadron. Some phenomenological implications and further developments are briefly outlined

  1. How psychological and behavioral team states change during positive and negative momentum.

    Science.gov (United States)

    Den Hartigh, Ruud J R; Gernigon, Christophe; Van Yperen, Nico W; Marin, Ludovic; Van Geert, Paul L C

    2014-01-01

    In business and sports, teams often experience periods of positive and negative momentum while pursuing their goals. However, researchers have not yet been able to provide insights into how psychological and behavioral states actually change during positive and negative team momentum. In the current study we aimed to provide these insights by introducing an experimental dynamical research design. Rowing pairs had to compete against a virtual opponent on rowing ergometers, while a screen in front of the team broadcasted the ongoing race. The race was manipulated so that the team's rowing avatar gradually progressed (positive momentum) or regressed (negative momentum) in relation to the victory. The participants responded verbally to collective efficacy and task cohesion items appearing on the screen each minute. In addition, effort exertion and interpersonal coordination were continuously measured. Our results showed negative psychological changes (perceptions of collective efficacy and task cohesion) during negative team momentum, which were stronger than the positive changes during positive team momentum. Moreover, teams' exerted efforts rapidly decreased during negative momentum, whereas positive momentum accompanied a more variable and adaptive sequence of effort exertion. Finally, the interpersonal coordination was worse during negative momentum than during positive momentum. These results provide the first empirical insights into actual team momentum dynamics, and demonstrate how a dynamical research approach significantly contributes to current knowledge on psychological and behavioral processes.

  2. Momentum-space resummation for transverse observables and the Higgs p ⊥ at N3LL+NNLO

    Science.gov (United States)

    Bizoń, Wojciech; Monni, Pier Francesco; Re, Emanuele; Rottoli, Luca; Torrielli, Paolo

    2018-02-01

    We present an approach to the momentum-space resummation of global, recursively infrared and collinear safe observables that can vanish away from the Sudakov region. We focus on the hadro-production of a generic colour singlet, and we consider the class of observables that depend only upon the total transverse momentum of the radiation, prime examples being the transverse momentum of the singlet, and ϕ ∗ in Drell-Yan pair production. We derive a resummation formula valid up to next-to-next-to-next-to-leading-logarithmic accuracy for the considered class of observables. We use this result to compute state-of-the-art predictions for the Higgs-boson transverse-momentum spectrum at the LHC at next-to-next-to-next-to-leading-logarithmic accuracy matched to fixed next-to-next-to-leading order. Our resummation formula reduces exactly to the customary resummation performed in impact-parameter space in the known cases, and it also predicts the correct power-behaved scaling of the cross section in the limit of small value of the observable. We show how this formalism is efficiently implemented by means of Monte Carlo techniques in a fully exclusive generator that allows one to apply arbitrary cuts on the Born variables for any colour singlet, as well as to automatically match the resummed results to fixed-order calculations.

  3. Time series momentum and contrarian effects in the Chinese stock market

    Science.gov (United States)

    Shi, Huai-Long; Zhou, Wei-Xing

    2017-10-01

    This paper concentrates on the time series momentum or contrarian effects in the Chinese stock market. We evaluate the performance of the time series momentum strategy applied to major stock indices in mainland China and explore the relation between the performance of time series momentum strategies and some firm-specific characteristics. Our findings indicate that there is a time series momentum effect in the short run and a contrarian effect in the long run in the Chinese stock market. The performances of the time series momentum and contrarian strategies are highly dependent on the look-back and holding periods and firm-specific characteristics.

  4. Unexpected Climatological Behavior of MLT Gravity Wave Momentum Flux in the Lee of the Southern Andes Hot Spot

    Science.gov (United States)

    DeWit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.

    2017-01-01

    The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7degS, 67.7degW), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.

  5. Angular momentum in QGP holography

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2014-10-01

    Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.

  6. Parton self-energies for general momentum-space anisotropy

    Science.gov (United States)

    Kasmaei, Babak S.; Strickland, Michael

    2018-03-01

    We introduce an efficient general method for calculating the self-energies, collective modes, and dispersion relations of quarks and gluons in a momentum-anisotropic high-temperature quark-gluon plasma. The method introduced is applicable to the most general classes of deformed anisotropic momentum distributions and the resulting self-energies are expressed in terms of a series of hypergeometric basis functions which are valid in the entire complex phase-velocity plane. Comparing to direct numerical integration of the self-energies, the proposed method is orders of magnitude faster and provides results with similar or better accuracy. To extend previous studies and demonstrate the application of the proposed method, we present numerical results for the parton self-energies and dispersion relations of partonic collective excitations for the case of an ellipsoidal momentum-space anisotropy. Finally, we also present, for the first time, the gluon unstable mode growth rate for the case of an ellipsoidal momentum-space anisotropy.

  7. Importance of high order momentum terms in SLC optics

    International Nuclear Information System (INIS)

    Kozanecki, W.

    1985-01-01

    The evaluation of background levels at the SLC relies, in several cases, on the proper representation of how low momentum electrons propagate through the Arcs and the Final Focus System (FFS). For example, beam - gas bremsstrahlung in the arcs causes electrons of up to 6% energy loss to be transported through to the IP; secondary showers on edges of masks and collimators yield debris with a very wide momentum spectrum. This note is a naive attempt at checking the validity of TRANSPORT and TURTLE calculations, by evaluating the contributions of the momentum terms to increasingly higher order, and checking the mutual consistency of the results produced by the two methods on a beam of wide momentum spread. 8 refs., 4 figs., 1 tab

  8. General Navier–Stokes-like momentum and mass-energy equations

    Energy Technology Data Exchange (ETDEWEB)

    Monreal, Jorge, E-mail: jmonreal@mail.usf.edu

    2015-03-15

    A new system of general Navier–Stokes-like equations is proposed to model electromagnetic flow utilizing analogues of hydrodynamic conservation equations. Such equations are intended to provide a different perspective and, potentially, a better understanding of electromagnetic mass, energy and momentum behaviour. Under such a new framework additional insights into electromagnetism could be gained. To that end, we propose a system of momentum and mass-energy conservation equations coupled through both momentum density and velocity vectors.

  9. Angular momentum of circularly polarized light in dielectric media

    OpenAIRE

    Mansuripur, Masud

    2014-01-01

    A circularly polarized plane-wave is known to have no angular momentum when examined through Maxwell's equations. This, however, contradicts the experimentally observed facts, where finite segments of plane waves are known to be capable of imparting angular momentum to birefringent platelets. Using a superposition of four plane-waves propagating at slightly different angles to a common direction, we derive an expression for the angular momentum density of a single plane-wave in the limit when...

  10. Momentum transfer in relativistic heavy ion charge-exchange reactions

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  11. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    International Nuclear Information System (INIS)

    Zhao, N.; Yan, N.; Xu, G. S.; Wang, H. Q.; Wang, L.; Ding, S. Y.; Chen, R.; Chen, L.; Zhang, W.; Hu, G. H.; Shao, L. M.; Wang, Z. X.

    2016-01-01

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentum transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.

  12. Probing Transverse Momentum Dependent Parton Distributions in Charmonium and Bottomonium Production

    OpenAIRE

    Mukherjee, Asmita; Rajesh, Sangem

    2015-01-01

    We propose the study of unpolarized transverse momentum dependent gluon parton distributions as well as the effect of linearly polarized gluons on transverse momentum and rapidity distributions of $J/\\psi$ and $\\Upsilon$ production within the framework of transverse momentum dependent factorization employing color evaporation model (CEM) in unpolarized proton-proton collision. We estimate the transverse momentum and rapidity distributions of $J/\\psi$ and $\\Upsilon$ at LHCb, RHIC and AFTER ene...

  13. Valence electron momentum distributions in cadmium

    International Nuclear Information System (INIS)

    Frost, L.; Weigold, E.; Mitroy, J.

    1982-08-01

    The valence 5s and 4d electron momentum distributions in cadmium have been measured using noncoplanar symmetric (e, 2e) electron coincidence spectroscopy at a total energy of 1200eV. They are in close agreement with Hartree-Fock momentum distributions both in shape and relative magnitudes. Some satellite lines of very low intensity have been detected. A CI calculation of the Cd ground state and several Cd + ion states has been carried out to predict cross reactions for the ground state and various satellite transitions. The predictions are in agreement with the data

  14. The D1Πu state of HD and the mass scaling relation of its predissociation widths

    International Nuclear Information System (INIS)

    Dickenson, G D; Ubachs, W

    2012-01-01

    Absorption spectra of HD have been recorded in the wavelength range of 75–90 nm at 100 K using the vacuum ultraviolet Fourier transform spectrometer at the Synchrotron SOLEIL. The present wavelength resolution represents an order of magnitude improvement over that of previous studies. We present a detailed study of the D 1 Π u –X 1 Σ + g system observed up to v′ = 18. The Q-branch transition probing levels of Π − symmetry are observed as narrow resonances limited by the Doppler width at 100 K. Line positions for these transitions are determined to an estimated absolute accuracy of 0.06 cm −1 . Predissociation line widths of Π + levels are extracted from the absorption spectra. A comparison with the recent results on a study of the D 1 Π u state in H 2 and D 2 reveals that the predissociation widths scale as μ −2 J(J + 1), with μ being the reduced mass of the molecule and J the rotational angular momentum quantum number, as expected from an interaction with the B′ 1 Σ + u continuum causing the predissociation. (paper)

  15. Spectra of turbulent static pressure fluctuations in jet mixing layers

    Science.gov (United States)

    Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.

    1977-01-01

    Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.

  16. Prediction of Lunar Reconnaissance Orbiter Reaction Wheel Assembly Angular Momentum Using Regression Analysis

    Science.gov (United States)

    DeHart, Russell

    2017-01-01

    This study determines the feasibility of creating a tool that can accurately predict Lunar Reconnaissance Orbiter (LRO) reaction wheel assembly (RWA) angular momentum, weeks or even months into the future. LRO is a three-axis stabilized spacecraft that was launched on June 18, 2009. While typically nadir-pointing, LRO conducts many types of slews to enable novel science collection. Momentum unloads have historically been performed approximately once every two weeks with the goal of maintaining system total angular momentum below 70 Nms; however flight experience shows the models developed before launch are overly conservative, with many momentum unloads being performed before system angular momentum surpasses 50 Nms. A more accurate model of RWA angular momentum growth would improve momentum unload scheduling and decrease the frequency of these unloads. Since some LRO instruments must be deactivated during momentum unloads and in the case of one instrument, decontaminated for 24 hours there after a decrease in the frequency of unloads increases science collection. This study develops a new model to predict LRO RWA angular momentum. Regression analysis of data from October 2014 to October 2015 was used to develop relationships between solar beta angle, slew specifications, and RWA angular momentum growth. The resulting model predicts RWA angular momentum using input solar beta angle and mission schedule data. This model was used to predict RWA angular momentum from October 2013 to October 2014. Predictions agree well with telemetry; of the 23 momentum unloads performed from October 2013 to October 2014, the mean and median magnitude of the RWA total angular momentum prediction error at the time of the momentum unloads were 3.7 and 2.7 Nms, respectively. The magnitude of the largest RWA total angular momentum prediction error was 10.6 Nms. Development of a tool that uses the models presented herein is currently underway.

  17. Study on off-momentum tail scraping in the LHC

    CERN Document Server

    Mirarchi, D; Bruce, R; CERN. Geneva. ATS Department

    2014-01-01

    A study on o-momentum tail population in the LHC was performed through collimator scraping at high dispersion region. High intensity measurements at the end of a physics ll with 25ns bunch spacing were carried out on 16th December 2012, using primary collimators (TCPs) in the momentum cleaning insertion (IR3) as scrapers. The o-momentum cuts were applied up to the level where the IR3 primary collimator is the aperture bottleneck for all particles outside the bucket, and the TCPs in the betatron cleaning insertion (IR7) are still the primary restriction of aperture of the machine in the transverse plane for particles inside the bucket. This because whether a particle is lost in IR3 or IR7 is not given only by the momentum oset but also by the betatron amplitude, as explained in the text. A signicant decay of the abort gap (AG) population was observed, while moving in the collimator jaw on the side where particles with negative o-momentum are expected. The level of the AG popupation achieved was at a similar le...

  18. Dimensional Effects on the Momentum distribution of Bosonic Trimer States

    DEFF Research Database (Denmark)

    F. Bellotti, F.; Frederico, T.; T. Yamashita, M.

    2013-01-01

    -body contact parameter is universal and then demonstrate that the momentum distribution at next-to-leading order has a logarithmic dependence on momentum which is vastly different from the three-dimensional case. Based on this, we propose a scheme for measuring the effective dimensionality of a quantum many......-body system by exploiting the functional form of the momentum distribution....

  19. On the Angular Momentum Loss of Tropical Cyclones: An f-Plane Approximation

    Science.gov (United States)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin; Kim, Won-Ho

    2018-02-01

    The angular momentum for ideal axisymmetric tropical cyclones on the f-plane is investigated with a focus on the total-volume integrated quantity. Budget analysis of the momentum equation at cylindrical coordinates shows that a tropical cyclone loses angular momentum during its development and mature stages due to the dynamical difference between the viscous inward-flow near the surface and the angular momentum conserving outward-flow aloft. The total relative angular momentum of a tropical cyclone, as a result, can be negative (i.e., implying anticyclonic rotation as a whole) despite intense cyclonic wind in the tropospheric layers. This anticyclonic rotation was measured in terms of the super-rotation ratio, the ratio of total relative angular momentum to the planetary angular momentum. Simulations with the numerical model of Weather Research and Forecasting (WRF) version 3.4.1 was found to be in favor of the theoretical angular-momentum budget analysis. It was revealed in the numerical simulations that the super-rotation ratio was negative, indicating a sub-rotation, as was predicted by analysis. The sub-rotation ratio was found to be less than one percent for typical tropical cyclones. To show the angular momentum decrease even in the decaying stage, numerical simulations where the thermal forcing by sea surface temperature switched off in the mature stage were carried out. In support of the angular momentum budget analysis, the results indicated that the angular momentum also decreases for a while soon after the forcing was eliminated.

  20. Transverse momentum spectra of charged particles in proton-proton collisions at $\\sqrt{s}$ = 900 GeV with ALICE at the LHC

    CERN Document Server

    Aamodt, K; Abeysekara, U; Abrahantes Quintana, A; Abramyan, A; Adamov, D; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Aguilar Salazar, S; Ahammed, Z; Ahmad, A; Ahmad, N; Ahn, S U; Akimoto, R; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Almarz Avia, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Andrei, C; Andronic, A; Anelli, G; Angelov, V; Anson, C; Anticic, T; Antinori, F; Antinori, S; Antipin, K; Antonczyk, D; Antonioli, P; Anzo, A; Aphecetche, L; Appelshuser, H; Arcelli, S; Arceo, R; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Asryan, A; Augustinus, A; AverbecK, R; Awes, T C; yst, J; Azmi, M D; Bablok, S; Bach, M; Badal, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Baldit, A; Bn, J; Barbera, R; Barnafldi, G G; Barnby, L S; Barret, V; Bartke, J; Barile, F; Basile, M; Basmanov, V; Bastid, N; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Becker, B; Belikov, I; Bellwied, R; Belmont-Moreno, E; Belogianni, A; Benhabib, L; Beole, S; Berceanu, I; Bercuci, A; Berdermann, E; Berdnikov, Y; Betev, L; Bhasin, A; Bhati, A K; Bianchi, L; Bianchi, N; Bianchin, C; Bielck, J; Bielckov, J; Bilandzic, A; Bimbot, L; Biolcati, E; Blanc, A; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Bogdanov, A; Bggild, H; Bogolyubsky, M; Bohm, J; Boldizsr, L; Bombara, M; Bombonati, C; Bondila, M; Borel, H; Borisov, A; Bortolin, C; Bose, S; Bosisio, L; Boss, F; Botje, M; Bttger, S; Bourdaud, G; Boyer, B; Braun, M; Braun-Munzinger, P; Bravina, L; Bregant, M; Breitner, T; Bruckner, G; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Calvo, E; Camacho, E; Camerini, P; Campbell, M; Canoa Roman, V; Capitani, G P; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Daz, A; Caselle, M; Castillo Castellanos, J; Castillo Hernandez, J F; Catanescu, V; Cattaruzza, E; Cavicchioli, C; Cerello, P; Chambert, V; Chang, B; Chapeland, S; Charpy, A; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chiavassa, E; Chibante Barroso, V; Chinellato, D D; Chochula, P; Choi, K; Chojnacki, M; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chuman, F; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Cobanoglu, O; Coffin, J P; Coli, S; Colla, A; Conesa Balbastre, G; Conesa del Valle, Z; Conner, E S; Constantin, P; Contin, G; Contreras, J G; Corrales Morales, Y; Cormier, T M; Cortese, P; Corts Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cuautle, E; Cunqueiro, L; Cussonneau, J; Dainese, A; Dalsgaard, H H; Danu, A; Das, I; Dash, A; Dash, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gaspari, M; de Groot, J; De Gruttola, D; De Marco, N; De Pasquale, S; De Remigis, R; de Rooij, R; de Vaux, G; Delagrange, H; Delgado, Y; Dellacasa, G; Deloff, A; Demanov, V; Dnes, E; Deppman, A; D'Erasmo, G; Derkach, D; Devaux, A; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Dialinas, M; Daz, L; Daz, R; Dietel, T; Divi, R; Djuvsland,; Dobretsov, V; Dobrin, A; Dobrowolski, T; Dnigus, B; Domnguez, I; Dordic, O; Dubey, A K; Dubuisson, J; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Dutta Majumdar, M R; Elia, D; Emschermann, D; Enokizono, A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evrard, S; Eyyubova, G; Fabjan, C W; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fateev, O; Fearick, R; Fedunov, A; Fehlker, D; Fekete, V; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernndez Tllez, A; Ferreiro, E G; Ferretti, A; Ferretti, R; Figueredo, M A S; Filchagin, S; Fini, R; Fionda, F M; Fiore, E M; Floris, M; Fodor, Z; Foertsch, S; Foka, P; Fokin, S; Formenti, F; Fragiacomo, E; Fragkiadakis, M; Frankenfeld, U; Frolov, A; Fuchs, U; Furano, F; Furget, C; Fusco Girard, M; Gaardhje, J J; Gadrat, S; Gagliardi, M; Gago, A; Gallio, M; Ganoti, P; Ganti, M S; Garabatos, C; Garca Trapaga, C; Gebelein, J; Gemme, R; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Giraudo, G; Giubellino, P; Gladysz-Dziadus, E; Glasow, R; Glssel, P; Glenn, A; Gomez Jimnez, R; Gonzlez Santos, H; Gonzlez-Trueba, L H; Gonzlez-Zamora, P; Gorbunov, S; Gorbunov, Y; Gotovac, S; Gottschlag, H; Grabski, V; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J Y; Grosso, R; Guber, F; Guernane, R; Guerra, C; Guerzoni, B; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Gustafsson, H A; Gutbrod, H; Haaland,; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hamblen, J; Han, B H; Harris, J W; Hartig, M; Harutyunyan, A; Hasch, D; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heide, M; Heinz, M; Helstrup, H; Herghelegiu, A; Hernndez, C; Herrera Corral, G; Herrmann, N; Hetland, K F; Hicks, B; Hiei, A; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hrivncov, I; Hu, S; Huang, M; Huber, S; Humanic, T J; Hutter, D; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Iwasaki, T; Jachokowski, A; Jacobs, P; Jancurov, L; Jangal, S; Janik, R; Jena, C; Jena, S; Jirden, L; Jones, G T; Jones, P G; Jovanovic, P; Jung, H; Jung, W; Jusko, A; Kaidalov, A B; Kalcher, S; Kalink, P; Kalisky, M; Kalliokoski, T; Kalweit, A; Kamal, A; Kamermans, R; Kanaki, K; Kang, E; Kang, J H; Kapitan, J; Kaplin, V; Kapusta, S; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kikola, D; Kileng, B; Kim, D J; Kim, D S; Kim, D W; Kim, H N; Kim, J; Kim, J H; Kim, J S; Kim, M; Kim, M; Kim, S H; Kim, S; Kim, Y; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bsing, C; Kliemant, M; Klovning, A; Kluge, A; Knichel, M L; Kniege, S; Koch, K; Kolevatov, R; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskih, A; Kornas, E; Kour, R; Kowalski, M; Kox, S; Kozlov, K; Kral, J; Krlik, I; Kramer, F; Kraus, I; Kravckov, A; Krawutschke, T; Krivda, M; Krumbhorn, D; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kumar, L; Kumar, N; Kupczak, R; Kurashvili, P; Kurepin, A; Kurepin, A N; Kuryakin, A; Kushpil, S; Kushpil, V; Kutouski, M; Kvaerno, H; Kweon, M J; Kwon, Y; La Rocca, P; Lackner, F; Ladron de Guevara, P; Lafage, V; Lal, C; Lara, Camilo; Larsen, D T; Laurenti, G; Lazzeroni, C; Le Bornec, Y; Le Bris, N; Lee, H; Lee, K S; Lee, S C; Lefvre, F; Lenhardt, M; Leistam, L; Lehnert, J; Lenti, V; Leon, H; Leon Monzon, I; Leon Vargas, H; Lvai, P; Li, X; Li, Y; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loginov, V; Lohn, S; Lopez, X; Lopez Noriega, M; Lopez-Ramrez, R; Lopez Torres, E; Lvhiden, G; Lozea Feijo Soares, A; Lu, S; Luettig, P; Lunardon, M; Luparello, G; Luquin, L; Lutz, J R; Ma, K; Ma, R; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Makhlyueva, I; Mal'Kevich, D; Malaev, M; Malagalage, K J; Maldonado Cervantes, I; Malek, M; Malkiewicz, T; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Mares, J; Margagliotti, G V; Margotti, A; Marn, A; Martashvili, I; Martinengo, P; Martnez Hernndez, M I; Martnez Davalos, A; Martnez Garca, G; Maruyama, Y; Marzari Chiesa, A; Masciocchi, S; Masera, M; Masetti, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mazza, G; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mendez Lorenzo, P; Meoni, M; Mercado Prez, J; Mereu, P; Miake, Y; Michalon, A; Miftakhov, N; Milano, L; Milosevic, J; Minafra, F; Mischke, A; Miskowiec, D; Mitu, C; Mizoguchi, K; Mlynarz, J; Mohanty, B; Molnar, L; Mondal, M M; Montao Zetina, L; Monteno, M; Montes, E; Morando, M; Moretto, S; Morsch, A; Moukhanova, T; Muccifora, V; Mudnic, E; Muhuri, S; Mller, H; Munhoz, M G; Munoz, J; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Navach, F; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nendaz, F; Newby, J; Nianine, A; Nicassio, M; Nielsen, B S; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyatha, A; Nygaard, C; Nyiri, A; Nystrand, J; Ochirov, A; Odyniec, G; Oeschler, H; Oinonen, M; Okada, K; Okada, Y; Oldenburg, M; Oleniacz, J; Oppedisano, C; Orsini, F; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Osmic, F; sterman, L; Ostrowski, P; Otterlund, I; Otwinowski, J; Øvrebekk, G; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paic, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Panse, R; Papikyan, V; Pappalardo, G S; Park, W J; Pastirck, B; Pastore, C; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pepato, A; Pereira, H; Peressounko, D; Prez, C; Perini, D; Perrino, D; Peryt, W; Peschek, J; Pesci, A; Peskov, V; Pestov, Y; Peters, A J; Petrcek, V; Petridis, A; Petris, M; Petrov, P; Petrovici, M; Petta, C; Peyr, J; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piuz, F; Platt, R; Ploskon, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta Lerma, P L M; Poggio, F; Poghosyan, M.G.; Polk, K; Polichtchouk, B; Polozov, P; Polyakov, V; Pommeresch, B; Pop, A; Posa, F; Pospsil, V; Potukuchi, B; Pouthas, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Pujahari, P; Pulvirenti, A; Punin, A; Punin, V; Putis, M; Putschke, J; Quercigh, E; Rachevski, A; Rademakers, A; Radomski, S; Rih, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramrez Reyes, A; Rammler, M; Raniwala, R; Raniwala, S; Rsnen, S S; Rashevskaya, I; Rath, S; Read, K F; Real, J S; Redlich, K; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J P; Reygers, K; Ricaud, H; Riccati, L; Ricci, R A; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodriguez Cahuantzi, M; Red, K; Rhrich, D; Romn Lopez, S; Romita, R; Ronchetti, F; Rosinsk, P; Rosnet, P; Rossegger, S; Rossi, A; Roukoutakis, F; Rousseau, S; Roy, C; Roy, P; Rubio-Montero, A J; Rui, R; Rusanov, I; Russo, G; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safark, K; Sahoo, R; Saini, J; Saiz, P; Sakata, D; Salgado, C A; Salgueiro Domingues da Silva, R; Salur, S; Samanta, T; Sambyal, S; Samsonov, V; Sndor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Saturnini, P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schindler, H; Schmidt, C; Schmidt, H R; Schossmaier, K; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Segato, G; Semenov, D; Senyukov, S; Seo, J; Serci, S; Serkin, L; Serradilla, E; Sevcenco, A; Sgura, I; Shabratova, G; Shahoyan, R; Sharkov, G; Sharma, N; Sharma, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddi, E; Siemiarczuk, T; Silenzi, A; Silvermyr, D; Simili, E; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R; Snow, H; Sgaard, C; Soloviev, A; Soltveit, H K; Soltz, R; Sommer, W; Son, C W; Son, H; Song, M; Soos, C; Soramel, F; Soyk, D; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Staley, F; Stan, E; Stefanek, G; Stefanini, G; Steinbeck, T; Stenlund, E; Steyn, G; Stocco, D; Stock, R; Stolpovsky, P; Strmen, P; Suaide, A A P; Subieta Vsquez, M A; Sugitate, T; Suire, C; Sumbera, M; Susa, T; Swoboda, D; Symons, J; Szanto de Toledo, A; Szarka, I; Szostak, A; Szuba, M; Tadel, M; Tagridis, C; Takahara, A; Takahashi, J; Tanabe, R; Tapia Takaki, J D; Taureg, H; Tauro, A; Tavlet, M; Tejeda Muoz, G; Telesca, A; Terrevoli, C; Thader, J; Tieulent, R; Tlusty, D; Toia, A; Tolyhy, T; Torcato de Matos, C; Torii, H; Torralba, G; Toscano, L; Tosello, F; Tournaire, A; Traczyk, T; Tribedy, P; Trger, G; Truesdale, D; Trzaska, W H; Tsiledakis, G; Tsilis, E; Tsuji, T; Tumkin, A; Turrisi, R; Turvey, A; Tveter, T S; Tydesj, H; Tywoniuk, K; Ulery, J; Ullaland, K; Uras, A; Urbn, J; Urciuoli, G M; Usai, G L; Vacchi, A; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasiliev, A; Vassiliev, I; Vasileiou, M; Vechernin, V; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vetlitskiy, I; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopianov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Vrlkov, J; Vulpescu, B; Wagner, B; Wagner, V; Wallet, L; Wan, R; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Wen, Q; Wessels, J; Westerhoff, U; Wiechula, J; Wikne, J; Wilk, A; Wilk, G; Williams, M C S; Willis, N; Windelband, B; Xu, C; Yang, C; Yang, H; Yasnopolskiy, S; Yermia, F; Yi, J; Yin, Z; Yokoyama, H; Yoo, I K; Yuan, X; Yurevich, V; Yushmanov, I; Zabrodin, E; Zagreev, B; Zalite, A; Zampolli, C; Zanevsky, Yu; Zaporozhets, S; Zarochentsev, A; Zvada, P; Zbroszczyk, H; Zelnicek, P; Zenin, A; Zepeda, A; Zgura, I; Zhalov, M; Zhang, X; Zhou, D; Zhou, S; Zhu, J; Zichichi, A; Zinchenko, A; Zinovjev, G; Zoccarato, Y; Zychcek, V; Zynovyev, M

    2010-01-01

    The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at $\\sqrt{s} = 900$~GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region $(|\\eta|_{\\rm INEL}=0.483\\pm0.001$~(stat.)~$\\pm0.007$~(syst.)~GeV/$c$ and $\\left_{\\rm NSD}=0.489\\pm0.001$~(stat.)~$\\pm0.007$~(syst.)~GeV/$c$, respectively. The data exhibit a slightly larger $\\left$ than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.