WorldWideScience

Sample records for scale structural comparison

  1. The natural armors of fish: A comparison of the lamination pattern and structure of scales.

    Science.gov (United States)

    Murcia, Sandra; Lavoie, Ellen; Linley, Tim; Devaraj, Arun; Ossa, E Alex; Arola, D

    2017-09-01

    Fish scales exhibit a unique balance of flexibility, strength and toughness, which is essential to provide protection without encumbering locomotion. Although the mechanical behavior and structure of this natural armor are of recent interest, a comparison of these qualities from scales of different fish species has not been reported. In this investigation the armor of fish with different locomotion, size and protection needs were analyzed. Scales from the Arapaima gigas, the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio) were compared in terms of the stacking sequence of individual plies and their microstructure. The scales were also compared with respect to anatomical position to distinguish site-specific functional differences. Results show that the lamination sequence of plies for the carp and tarpon exhibit a Bouligand structure with relative rotation of 75° between consecutive plies. The arapaima scales exhibit a cross-ply structure, with 90° rotation between adjacent plies. In addition, results indicate that the volume fraction of reinforcement, the number of plies and the variations in thickness with anatomical position are unique amongst the three fish. These characteristics should be considered in evaluations focused on the mechanical behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The natural armors of fish: A comparison of the lamination pattern and structure of scales

    Energy Technology Data Exchange (ETDEWEB)

    Murcia, Sandra; Lavoie, Ellen; Linley, Tim; Devaraj, Arun; Ossa, E. Alex; Arola, D.

    2017-09-01

    Fish scales exhibit a unique balance of flexibility, strength and toughness, which is essential to provide protection without encumbering locomotion. Although the mechanical behavior and structure of this natural armor are of recent interest, a comparison of these qualities from scales of different fish species has not been reported. In this investigation the armor of fish with different locomotion, size and protection needs were analyzed. Scales from the Arapaima gigas, the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio) were compared in terms of the stacking sequence of individual plies and their microstructure. The scales were also compared with respect to anatomical position to distinguish site-specific functional differences. Results show that the lamination sequence of plies for the carp and tarpon exhibit a Bouligand structure with relative rotation of 75° between consecutive plies. The arapaima scales exhibit a cross-ply structure, with 90° rotation between adjacent plies. In addition, results indicate that the volume fraction of reinforcement, the number of plies and the variations in thickness with anatomical position are unique amongst the three fish. These characteristics should be considered in evaluations focused on the mechanical behavior.

  3. Comparison of the convergence properties of linear-scaling electronic-structure schemes for nonorthogonal bases

    International Nuclear Information System (INIS)

    Stephan, Uwe

    2000-01-01

    This paper presents a detailed comparison of the convergence properties of density-matrix and localized-orbital O(N) functionals within 512-atom cells of amorphous carbon using a first-principles local-orbital Hamiltonian. The functionals were minimized by means of the conventional but tensorially incorrect covariant derivatives as well as the correct contravariant derivatives. While the correct derivatives result in a much faster minimization, the energies obtained in this case are somewhat higher compared to using the covariant derivatives. However, we present a representation of the density-matrix functional which requires shorter minimization times and yet returns more accurate energies for practical sizes of the localization regions. Furthermore, while the density-matrix functional is superior in efficiency to the orbital-based functional when using the incorrect derivatives, both functionals exhibit similar decay properties in terms of conjugate-gradient iterations for the correct derivatives. This makes the orbital-based functional faster, especially when minimal sets of Wannier-like functions and projected initial functions can be used

  4. Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus I region

    Energy Technology Data Exchange (ETDEWEB)

    Poidevin, Frédérick [UCL, KLB, Department of Physics and Astronomy, Gower Place, London WC1E 6BT (United Kingdom); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Angile, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Netterfield, Calvin B. [Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Canãda, Madrid (Spain); Fissel, Laura M.; Gandilo, Natalie N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Fukui, Yasuo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Matthews, Tristan G.; Novak, Giles [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca, E-mail: fpoidevin@iac.es [Physics Department, University of Puerto Rico, Rio Piedras Campus, Box 23343, UPR station, San Juan, PR 00931 (United States); and others

    2014-08-10

    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.

  5. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    Science.gov (United States)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  6. RNA-TVcurve: a Web server for RNA secondary structure comparison based on a multi-scale similarity of its triple vector curve representation.

    Science.gov (United States)

    Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin

    2017-01-21

    RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA

  7. Structure from Motion vs. the Kinect: Comparisons of River Field Measurements at the 10-2 to 102 meter Scales

    Science.gov (United States)

    Fonstad, M. A.; Dietrich, J. T.

    2014-12-01

    At the very smallest spatial scales of fluvial field analysis, measurements made historically in situ are often now supplemented, or even replaced by, remote sensing methods. This is particularly true in the case of topographic and particle size measurement. In the field, the scales of in situ observation usually range from millimeters up to hundreds of meters. Two recent approaches for remote mapping of river environments at the scales of historical in situ observations are (1) camera-based structure from motion (SfM), and (2) active patterned-light measurement with devices such as the Kinect. Even if only carried by hand, these two approaches can produce topographic datasets over three to four orders of magnitude of spatial scale. Which approach is most useful? Previous studies have demonstrated that both SfM and the Kinect are precise and accurate over in situ field measurement scales; we instead turn to alternate comparative metrics to help determine which tools might be best for our river measurement tasks. These metrics might include (1) the ease of field use, (2) which general environments are or are not amenable to measurement, (3) robustness to changing environmental conditions, (4) ease of data processing, and (5) cost. We test these metrics in a variety of bar-scale fluvial field environments, including a large-river cobble bar, a sand-bedded river point bar, and a complex mountain stream bar. The structure from motion approach is field-equipment inexpensive, is viable over a wide range of environmental conditions, and is highly spatially scalable. The approach requires some type of spatial referencing to make the data useful. The Kinect has the advantages of an almost real-time display of collected data, so problems can be detected quickly, being fast and easy to use, and the data are collected with arbitrary but metric coordinates, so absolute referencing isn't needed to use the data for many problems. It has the disadvantages of its light field

  8. The structure of negative emotional states: comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories.

    Science.gov (United States)

    Lovibond, P F; Lovibond, S H

    1995-03-01

    The psychometric properties of the Depression Anxiety Stress Scales (DASS) were evaluated in a normal sample of N = 717 who were also administered the Beck Depression Inventory (BDI) and the Beck Anxiety Inventory (BAI). The DASS was shown to possess satisfactory psychometric properties, and the factor structure was substantiated both by exploratory and confirmatory factor analysis. In comparison to the BDI and BAI, the DASS scales showed greater separation in factor loadings. The DASS Anxiety scale correlated 0.81 with the BAI, and the DASS Depression scale correlated 0.74 with the BDI. Factor analyses suggested that the BDI differs from the DASS Depression scale primarily in that the BDI includes items such as weight loss, insomnia, somatic preoccupation and irritability, which fail to discriminate between depression and other affective states. The factor structure of the combined BDI and BAI items was virtually identical to that reported by Beck for a sample of diagnosed depressed and anxious patients, supporting the view that these clinical states are more severe expressions of the same states that may be discerned in normals. Implications of the results for the conceptualisation of depression, anxiety and tension/stress are considered, and the utility of the DASS scales in discriminating between these constructs is discussed.

  9. Scaling of structural failure

    Energy Technology Data Exchange (ETDEWEB)

    Bazant, Z.P. [Northwestern Univ., Evanston, IL (United States); Chen, Er-Ping [Sandia National Lab., Albuquerque, NM (United States)

    1997-01-01

    This article attempts to review the progress achieved in the understanding of scaling and size effect in the failure of structures. Particular emphasis is placed on quasibrittle materials for which the size effect is complicated. Attention is focused on three main types of size effects, namely the statistical size effect due to randomness of strength, the energy release size effect, and the possible size effect due to fractality of fracture or microcracks. Definitive conclusions on the applicability of these theories are drawn. Subsequently, the article discusses the application of the known size effect law for the measurement of material fracture properties, and the modeling of the size effect by the cohesive crack model, nonlocal finite element models and discrete element models. Extensions to compression failure and to the rate-dependent material behavior are also outlined. The damage constitutive law needed for describing a microcracked material in the fracture process zone is discussed. Various applications to quasibrittle materials, including concrete, sea ice, fiber composites, rocks and ceramics are presented.

  10. Scaling structure loads for SMA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Song, Jeong Guk; Jeon, Sang Ho; Lim, Hak Kyu; Lee, Kwang Nam [KEPCO ENC, Yongin (Korea, Republic of)

    2012-10-15

    When the Seismic Margin Analysis(SMA) is conducted, the new structural load generation with Seismic Margin Earthquake(SME) is the time consuming work. For the convenience, EPRI NP 6041 suggests the scaling of the structure load. The report recommend that the fixed base(rock foundation) structure designed using either constant modal damping or modal damping ratios developed for a single material damping. For these cases, the SME loads can easily and accurately be calculated by scaling the spectral accelerations of the individual modes for the new SME response spectra. EPRI NP 6041 provides two simple methodologies for the scaling structure seismic loads which are the dominant frequency scaling methodology and the mode by mode scaling methodology. Scaling of the existing analysis to develop SME loads is much easier and more efficient than performing a new analysis. This paper is intended to compare the calculating results of two different methodologies.

  11. Scaling structure loads for SMA

    International Nuclear Information System (INIS)

    Lee, Dong Won; Song, Jeong Guk; Jeon, Sang Ho; Lim, Hak Kyu; Lee, Kwang Nam

    2012-01-01

    When the Seismic Margin Analysis(SMA) is conducted, the new structural load generation with Seismic Margin Earthquake(SME) is the time consuming work. For the convenience, EPRI NP 6041 suggests the scaling of the structure load. The report recommend that the fixed base(rock foundation) structure designed using either constant modal damping or modal damping ratios developed for a single material damping. For these cases, the SME loads can easily and accurately be calculated by scaling the spectral accelerations of the individual modes for the new SME response spectra. EPRI NP 6041 provides two simple methodologies for the scaling structure seismic loads which are the dominant frequency scaling methodology and the mode by mode scaling methodology. Scaling of the existing analysis to develop SME loads is much easier and more efficient than performing a new analysis. This paper is intended to compare the calculating results of two different methodologies

  12. A Comparison of the Structural Factors of the Propensity for Abusiveness Scale for Women and Men in a Domestic Violence Treatment Program.

    Science.gov (United States)

    Allen, Christopher T; Swan, Suzanne C; Maas, Carl D; Barber, Sara

    2015-08-01

    Court-mandated domestic violence (DV) treatment programs across the country have seen a marked increase in female clients. These programs use a variety of measurement tools to assess the needs of their clients. Increased numbers of women in treatment for DV reflect a need to address the measurement of intimate partner violence (IPV) for both males and females. Unfortunately, the reliability and validity of many of measures used to assess IPV and related constructs for women remains unknown. The current study focuses on a particular measure, the Propensity for Abusiveness Scale (PAS). The PAS is not a measure of abusive behavior per se; rather, it assesses risk factors for abuse, including affective lability, anger expression, trauma symptoms, and harsh parenting experienced by the respondent. Specifically, the current study compares the factor structure and the measurement properties of the PAS for males and females in a sample of 885 (647 female, 238 male) participants in a DV treatment program. Findings indicate that the PAS demonstrated configural, metric, and scalar invariance between the female and male samples. These results suggest that it is appropriate for researchers and clinicians to make comparisons between women and men based on PAS factor scores. © The Author(s) 2014.

  13. Selecting numerical scales for pairwise comparisons

    International Nuclear Information System (INIS)

    Elliott, Michael A.

    2010-01-01

    It is often desirable in decision analysis problems to elicit from an individual the rankings of a population of attributes according to the individual's preference and to understand the degree to which each attribute is preferred to the others. A common method for obtaining this information involves the use of pairwise comparisons, which allows an analyst to convert subjective expressions of preference between two attributes into numerical values indicating preferences across the entire population of attributes. Key to the use of pairwise comparisons is the underlying numerical scale that is used to convert subjective linguistic expressions of preference into numerical values. This scale represents the psychological manner in which individuals perceive increments of preference among abstract attributes and it has important implications about the distribution and consistency of an individual's preferences. Three popular scale types, the traditional integer scales, balanced scales and power scales are examined. Results of a study of 64 individuals responding to a hypothetical decision problem show that none of these scales can accurately capture the preferences of all individuals. A study of three individuals working on an actual engineering decision problem involving the design of a decay heat removal system for a nuclear fission reactor show that the choice of scale can affect the preferred decision. It is concluded that applications of pairwise comparisons would benefit from permitting participants to choose the scale that best models their own particular way of thinking about the relative preference of attributes.

  14. Item bias detection in the Hospital Anxiety and Depression Scale using structural equation modeling: comparison with other item bias detection methods

    NARCIS (Netherlands)

    Verdam, M.G.E.; Oort, F.J.; Sprangers, M.A.G.

    Purpose Comparison of patient-reported outcomes may be invalidated by the occurrence of item bias, also known as differential item functioning. We show two ways of using structural equation modeling (SEM) to detect item bias: (1) multigroup SEM, which enables the detection of both uniform and

  15. Large scale structure and baryogenesis

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    2001-08-01

    We discuss a possible connection between the large scale structure formation and the baryogenesis in the universe. An update review of the observational indications for the presence of a very large scale 120h -1 Mpc in the distribution of the visible matter of the universe is provided. The possibility to generate a periodic distribution with the characteristic scale 120h -1 Mpc through a mechanism producing quasi-periodic baryon density perturbations during inflationary stage, is discussed. The evolution of the baryon charge density distribution is explored in the framework of a low temperature boson condensate baryogenesis scenario. Both the observed very large scale of a the visible matter distribution in the universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage. Moreover, for some model's parameters a natural separation of matter superclusters from antimatter ones can be achieved. (author)

  16. Comparison of Wechsler Memory Scale-Fourth Edition (WMS-IV) and Third Edition (WMS-III) dimensional structures: improved ability to evaluate auditory and visual constructs.

    Science.gov (United States)

    Hoelzle, James B; Nelson, Nathaniel W; Smith, Clifford A

    2011-03-01

    Dimensional structures underlying the Wechsler Memory Scale-Fourth Edition (WMS-IV) and Wechsler Memory Scale-Third Edition (WMS-III) were compared to determine whether the revised measure has a more coherent and clinically relevant factor structure. Principal component analyses were conducted in normative samples reported in the respective technical manuals. Empirically supported procedures guided retention of dimensions. An invariant two-dimensional WMS-IV structure reflecting constructs of auditory learning/memory and visual attention/memory (C1 = .97; C2 = .96) is more theoretically coherent than the replicable, heterogeneous WMS-III dimension (C1 = .97). This research suggests that the WMS-IV may have greater utility in identifying lateralized memory dysfunction.

  17. Efficient RNA structure comparison algorithms.

    Science.gov (United States)

    Arslan, Abdullah N; Anandan, Jithendar; Fry, Eric; Monschke, Keith; Ganneboina, Nitin; Bowerman, Jason

    2017-12-01

    Recently proposed relative addressing-based ([Formula: see text]) RNA secondary structure representation has important features by which an RNA structure database can be stored into a suffix array. A fast substructure search algorithm has been proposed based on binary search on this suffix array. Using this substructure search algorithm, we present a fast algorithm that finds the largest common substructure of given multiple RNA structures in [Formula: see text] format. The multiple RNA structure comparison problem is NP-hard in its general formulation. We introduced a new problem for comparing multiple RNA structures. This problem has more strict similarity definition and objective, and we propose an algorithm that solves this problem efficiently. We also develop another comparison algorithm that iteratively calls this algorithm to locate nonoverlapping large common substructures in compared RNAs. With the new resulting tools, we improved the RNASSAC website (linked from http://faculty.tamuc.edu/aarslan ). This website now also includes two drawing tools: one specialized for preparing RNA substructures that can be used as input by the search tool, and another one for automatically drawing the entire RNA structure from a given structure sequence.

  18. Factor Structure of the Spiritual Well-Being Scale: Cross-Cultural Comparisons Between Jordanian Arab and Malaysian Muslim University Students in Jordan.

    Science.gov (United States)

    Musa, Ahmad S

    2016-03-01

    This study reported the differences in factor structure of the Spiritual Well-Being Scale (SWBS) among Jordanian Arab and Malaysian Muslim participants and further examined its validity and reliability. A convenience sample of 553 Jordanian Arab and 183 Malaysian Malay Muslim university students was recruited from governmental universities in northern Jordan. The findings of this study revealed that this scale consists of two factors for the Jordanian Arab group, representing the "Religious Well-Being" and the "Existential Well-Being" subscales, and consists of three factors for the Malaysian group, representing the "Affiliation/Meaning and Purpose," "Positive Existential Well-Being/God Caring and Love," and "Alienation/Despair" subscales. In conclusion, the factor structure of the SWBS for both groups in this study was psychometrically sound with evidence of acceptable to good validity and reliability. Furthermore, this study supported the multidimensional nature of the SWBS and the earlier notion that ethnicity shapes responses to this scale. © The Author(s) 2014.

  19. Large scale nuclear structure studies

    International Nuclear Information System (INIS)

    Faessler, A.

    1985-01-01

    Results of large scale nuclear structure studies are reported. The starting point is the Hartree-Fock-Bogoliubov solution with angular momentum and proton and neutron number projection after variation. This model for number and spin projected two-quasiparticle excitations with realistic forces yields in sd-shell nuclei similar good results as the 'exact' shell-model calculations. Here the authors present results for a pf-shell nucleus 46 Ti and results for the A=130 mass region where they studied 58 different nuclei with the same single-particle energies and the same effective force derived from a meson exchange potential. They carried out a Hartree-Fock-Bogoliubov variation after mean field projection in realistic model spaces. In this way, they determine for each yrast state the optimal mean Hartree-Fock-Bogoliubov field. They apply this method to 130 Ce and 128 Ba using the same effective nucleon-nucleon interaction. (Auth.)

  20. Measuring social desirability across language and sex: A comparison of Marlowe-Crowne Social Desirability Scale factor structures in English and Mandarin Chinese in Malaysia.

    Science.gov (United States)

    Kurz, A Solomon; Drescher, Christopher F; Chin, Eu Gene; Johnson, Laura R

    2016-06-01

    Malaysia is a Southeast Asian country in which multiple languages are prominently spoken, including English and Mandarin Chinese. As psychological science continues to develop within Malaysia, there is a need for psychometrically sound instruments that measure psychological phenomena in multiple languages. For example, assessment tools for measuring social desirability could be a useful addition in psychological assessments and research studies in a Malaysian context. This study examined the psychometric performance of the English and Mandarin Chinese versions of the Marlowe-Crowne Social Desirability Scale when used in Malaysia. Two hundred and eighty-three students (64% female; 83% Chinese, 9% Indian) from two college campuses completed the Marlowe-Crowne Social Desirability Scale in their language of choice (i.e., English or Mandarin Chinese). Proposed factor structures were compared with confirmatory factor analysis, and multiple indicators-multiple causes models were used to examine measurement invariance across language and sex. Factor analyses supported a two-factor structure (i.e., Attribution and Denial) for the measure. Invariance tests revealed the scale was invariant by sex, indicating that social desirability can be interpreted similarly across sex. The scale was partially invariant by language version, with some non-invariance observed within the Denial factor. Non-invariance may be related to differences in the English and Mandarin Chinese languages, as well as cultural differences. Directions for further research include examining the measurement of social desirability in other contexts where both English and Mandarin Chinese are spoken (i.e., China) and further examining the causes of non-invariance on specific items. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  1. Functional nanometer-scale structures

    Science.gov (United States)

    Chan, Tsz On Mario

    Nanometer-scale structures have properties that are fundamentally different from their bulk counterparts. Much research effort has been devoted in the past decades to explore new fabrication techniques, model the physical properties of these structures, and construct functional devices. The ability to manipulate and control the structure of matter at the nanoscale has made many new classes of materials available for the study of fundamental physical processes and potential applications. The interplay between fabrication techniques and physical understanding of the nanostructures and processes has revolutionized the physical and material sciences, providing far superior properties in materials for novel applications that benefit society. This thesis consists of two major aspects of my graduate research in nano-scale materials. In the first part (Chapters 3--6), a comprehensive study on the nanostructures based on electrospinning and thermal treatment is presented. Electrospinning is a well-established method for producing high-aspect-ratio fibrous structures, with fiber diameter ranging from 1 nm--1 microm. A polymeric solution is typically used as a precursor in electrospinning. In our study, the functionality of the nanostructure relies on both the nanostructure and material constituents. Metallic ions containing precursors were added to the polymeric precursor following a sol-gel process to prepare the solution suitable for electrospinning. A typical electrospinning process produces as-spun fibers containing both polymer and metallic salt precursors. Subsequent thermal treatments of the as-spun fibers were carried out in various conditions to produce desired structures. In most cases, polymer in the solution and the as-spun fibers acted as a backbone for the structure formation during the subsequent heat treatment, and were thermally removed in the final stage. Polymers were also designed to react with the metallic ion precursors during heat treatment in some

  2. A Comparison of Curing Process-Induced Residual Stresses and Cure Shrinkage in Micro-Scale Composite Structures with Different Constitutive Laws

    Science.gov (United States)

    Li, Dongna; Li, Xudong; Dai, Jianfeng; Xi, Shangbin

    2018-02-01

    In this paper, three kinds of constitutive laws, elastic, "cure hardening instantaneously linear elastic (CHILE)" and viscoelastic law, are used to predict curing process-induced residual stress for the thermoset polymer composites. A multi-physics coupling finite element analysis (FEA) model implementing the proposed three approaches is established in COMSOL Multiphysics-Version 4.3b. The evolution of thermo-physical properties with temperature and degree of cure (DOC), which improved the accuracy of numerical simulations, and cure shrinkage are taken into account for the three models. Subsequently, these three proposed constitutive models are implemented respectively in a 3D micro-scale composite laminate structure. Compared the differences between these three numerical results, it indicates that big error in residual stress and cure shrinkage generates by elastic model, but the results calculated by the modified CHILE model are in excellent agreement with those estimated by the viscoelastic model.

  3. Symptom structure and severity: a comparison of responses to the positive and negative syndrome scale (PANSS) between patients with PTSD or schizophrenia.

    Science.gov (United States)

    Stefanovics, Elina A; Krystal, John H; Rosenheck, Robert A

    2014-05-01

    To describe and compare the structure and relative severity of symptoms in clinical trial patients diagnosed with Post Traumatic Stress Disorder (PTSD) or schizophrenia using the Positive and Negative Syndrome Scale (PANSS), developed originally to evaluate symptoms of schizophrenia. This secondary data analysis used baseline PANSS symptom ratings (n=267) from a six-month multicenter randomized placebo-controlled trial of adjunctive risperidone in patients with chronic military-related PTSD. First, using a split-half design, Exploratory Factor Analysis (EFA) was employed to identify independent factors which were then compared to published factor structures for schizophrenia. Next, Confirmatory Factor Analysis (CFA) was applied to the second half of the sample to compare the results of the EFA and published factor structures. Finally, T-tests were used to compare the severity of factor scores between the PTSD sample and the baseline PANSS ratings from the Clinical Antipsychotic Trial for Intervention Effectiveness (CATIE) schizophrenia sample (n=1460). EFA suggested five factors similar to those identified in a summary of 29 schizophrenia studies by Wallwork (Schizophrenia Research, 137:246-250). CFA showed that the five factor Wallwork model fit the data better than the EFA, although both had relatively high goodness of fit. T-tests showed that the PTSD sample had more severe symptoms on the Depressive factor, and the schizophrenia sample on the Positive, Negative, and Disorganized factors, with no significant difference on the Excited factor. Veterans with PTSD had similar symptom structure to patients with schizophrenia on the PANSS, but were less symptomatic on psychosis-related factors and more symptomatic on depression. Dimensional symptom factors can be virtually the same across diagnoses. Published by Elsevier Inc.

  4. Grid sensitivity capability for large scale structures

    Science.gov (United States)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  5. Comparison of vibration test results for Atucha II NPP and large scale concrete block models

    International Nuclear Information System (INIS)

    Iizuka, S.; Konno, T.; Prato, C.A.

    2001-01-01

    In order to study the soil structure interaction of reactor building that could be constructed on a Quaternary soil, a comparison study of the soil structure interaction springs was performed between full scale vibration test results of Atucha II NPP and vibration test results of large scale concrete block models constructed on Quaternary soil. This comparison study provides a case data of soil structure interaction springs on Quaternary soil with different foundation size and stiffness. (author)

  6. Unifying Inference of Meso-Scale Structures in Networks.

    Science.gov (United States)

    Tunç, Birkan; Verma, Ragini

    2015-01-01

    Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities) of the brain, as well as its auxiliary characteristics (core-periphery).

  7. Unifying Inference of Meso-Scale Structures in Networks.

    Directory of Open Access Journals (Sweden)

    Birkan Tunç

    Full Text Available Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities of the brain, as well as its auxiliary characteristics (core-periphery.

  8. Computational applications of DNA structural scales

    DEFF Research Database (Denmark)

    Baldi, P.; Chauvin, Y.; Brunak, Søren

    1998-01-01

    that these scales provide an alternative or complementary compact representation of DNA sequences. As an example, we construct a strand-invariant representation of DNA sequences. The scales can also be used to analyze and discover new DNA structural patterns, especially in combination with hidden Markov models......Studies several different physical scales associated with the structural features of DNA sequences from a computational standpoint, including dinucleotide scales, such as base stacking energy and propeller twist, and trinucleotide scales, such as bendability and nucleosome positioning. We show...

  9. Small scale structure on cosmic strings

    International Nuclear Information System (INIS)

    Albrecht, A.

    1989-01-01

    I discuss our current understanding of cosmic string evolution, and focus on the question of small scale structure on strings, where most of the disagreements lie. I present a physical picture designed to put the role of the small scale structure into more intuitive terms. In this picture one can see how the small scale structure can feed back in a major way on the overall scaling solution. I also argue that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small structure, which I argue in any case would be extremely valuable in filling the gaps in our resent understanding of cosmic string evolution. 24 refs., 8 figs

  10. Breaking wave impact on offshore tripod structures. Comparison of large scale experiments, CFD simulations, and DIN recommended practice; Wellenbrechen an Offshore Tripod-Gruendungen. Versuche und Simulationen im Vergleich zu Richtlinien

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Arndt; Schlurmann, Torsten [Hannover Univ. (Germany). Franzius-Institut fuer Wasserbau und Kuesteningenieurwesen

    2012-05-15

    Coastal and near shore areas offer a large potential for offshore wind energy production due to strong and steady wind conditions. Thousands of offshore wind energy converters are projected for mass production within the next years. Detailed understanding of the extreme, dynamic wave loads on offshore structures is essential for an efficient design. The impact on structures is a complex process and further studies are required for more detailed load assessments, which is why breaking wave loads were investigated by the research project ''GIGAWIND alpha ventus - Subproject 1'' within the network ''Research at Alpha VEntus'' (RAVE). Large scale laboratory tests (1:12) with breaking waves have been carried out at the Large Wave Flume of the ''Forschungszentrum Kueste'' (FZK, Hanover) to reveal more detailed insights on the impact area, duration and development of the wave induced momentum, and intensity of pressures. In addition, local pressures calculated by a three-dimensional numerical impact simulation are compared to the Large Wave Flume experiments. Slamming coefficients have been derived from the physical model tests and CFD simulations for the comparison to load calculations based on guidelines. (orig.)

  11. Universal Scaling Relations in Scale-Free Structure Formation

    Science.gov (United States)

    Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.

    2018-04-01

    A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM∝M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters and even dark matter halos. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power law tail of dA/d lnΣ∝Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D∝R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM halos) tend to a ρ∝R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation and detailed "full physics" hydrodynamical simulations. We find that these power-laws are good first order descriptions in all cases.

  12. Large-scale structure of the Universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.

    1978-01-01

    The problems, discussed at the ''Large-scale Structure of the Universe'' symposium are considered on a popular level. Described are the cell structure of galaxy distribution in the Universe, principles of mathematical galaxy distribution modelling. The images of cell structures, obtained after reprocessing with the computer are given. Discussed are three hypothesis - vortical, entropic, adiabatic, suggesting various processes of galaxy and galaxy clusters origin. A considerable advantage of the adiabatic hypothesis is recognized. The relict radiation, as a method of direct studying the processes taking place in the Universe is considered. The large-scale peculiarities and small-scale fluctuations of the relict radiation temperature enable one to estimate the turbance properties at the pre-galaxy stage. The discussion of problems, pertaining to studying the hot gas, contained in galaxy clusters, the interactions within galaxy clusters and with the inter-galaxy medium, is recognized to be a notable contribution into the development of theoretical and observational cosmology

  13. Comparison Between Overtopping Discharge in Small and Large Scale Models

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, Hans F.

    2006-01-01

    The present paper presents overtopping measurements from small scale model test performed at the Haudraulic & Coastal Engineering Laboratory, Aalborg University, Denmark and large scale model tests performed at the Largde Wave Channel,Hannover, Germany. Comparison between results obtained from...... small and large scale model tests show no clear evidence of scale effects for overtopping above a threshold value. In the large scale model no overtopping was measured for waveheights below Hs = 0.5m as the water sunk into the voids between the stones on the crest. For low overtopping scale effects...

  14. Individual differences in social comparison : Development of a scale of social comparison orientation

    NARCIS (Netherlands)

    Gibbons, FX; Buunk, BP

    Development and validation of a measure of individual differences in social comparison orientation (the Iowa-Netherlands Comparison Orientation Measure [INCOM]) are described. Assuming that the tendency toward social comparison is universal, the scale was constructed so as to be appropriate to and

  15. The origin of large scale cosmic structure

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Palmer, P.L.

    1985-01-01

    The paper concerns the origin of large scale cosmic structure. The evolution of density perturbations, the nonlinear regime (Zel'dovich's solution and others), the Gott and Rees clustering hierarchy, the spectrum of condensations, and biassed galaxy formation, are all discussed. (UK)

  16. Inflation, large scale structure and particle physics

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences ... Hybrid inflation; Higgs scalar field; structure formation; curvation. ... We then discuss a particle physics model of supersymmetric hybrid inflation at the intermediate scale in which ... May 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board ...

  17. Small scale structure formation in chameleon cosmology

    International Nuclear Information System (INIS)

    Brax, Ph.; Bruck, C. van de; Davis, A.C.; Green, A.M.

    2006-01-01

    Chameleon fields are scalar fields whose mass depends on the ambient matter density. We investigate the effects of these fields on the growth of density perturbations on sub-galactic scales and the formation of the first dark matter halos. Density perturbations on comoving scales R<1 pc go non-linear and collapse to form structure much earlier than in standard ΛCDM cosmology. The resulting mini-halos are hence more dense and resilient to disruption. We therefore expect (provided that the density perturbations on these scales have not been erased by damping processes) that the dark matter distribution on small scales would be more clumpy in chameleon cosmology than in the ΛCDM model

  18. Mirror dark matter and large scale structure

    International Nuclear Information System (INIS)

    Ignatiev, A.Yu.; Volkas, R.R.

    2003-01-01

    Mirror matter is a dark matter candidate. In this paper, we reexamine the linear regime of density perturbation growth in a universe containing mirror dark matter. Taking adiabatic scale-invariant perturbations as the input, we confirm that the resulting processed power spectrum is richer than for the more familiar cases of cold, warm and hot dark matter. The new features include a maximum at a certain scale λ max , collisional damping below a smaller characteristic scale λ S ' , with oscillatory perturbations between the two. These scales are functions of the fundamental parameters of the theory. In particular, they decrease for decreasing x, the ratio of the mirror plasma temperature to that of the ordinary. For x∼0.2, the scale λ max becomes galactic. Mirror dark matter therefore leads to bottom-up large scale structure formation, similar to conventional cold dark matter, for x(less-or-similar sign)0.2. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime. The differences pertain to scales smaller than λ S ' in the linear regime, and generally in the nonlinear regime because mirror dark matter is chemically complex and to some extent dissipative. Lyman-α forest data and the early reionization epoch established by WMAP may hold the key to distinguishing mirror dark matter from WIMP-style cold dark matter

  19. Cooling pipeline disposing structure for large-scaled cryogenic structure

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki.

    1996-01-01

    The present invention concerns an electromagnetic force supporting structure for superconductive coils. As the size of a cryogenic structure is increased, since it takes much cooling time, temperature difference between cooling pipelines and the cryogenic structure is increased over a wide range, and difference of heat shrinkage is increased to increase thermal stresses. Then, in the cooling pipelines for a large scaled cryogenic structure, the cooling pipelines and the structure are connected by way of a thin metal plate made of a material having a heat conductivity higher than that of the material of the structure by one digit or more, and the thin metal plate is bent. The displacement between the cryogenic structure and the cooling pipelines caused by heat shrinkage is absorbed by the elongation/shrinkage of the bent structure of the thin metal plate, and the thermal stresses due to the displacement is reduced. In addition, the heat of the cryogenic structures is transferred by way of the thin metal plate. Then, the cooling pipelines can be secured to the cryogenic structure such that cooling by heat transfer is enabled by absorbing a great deviation or three dimensional displacement due to the difference of the temperature distribution between the cryogenic structure enlarged in the scale and put into the three dimensional shape, and the cooling pipelines. (N.H.)

  20. Puzzles of large scale structure and gravitation

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    2006-01-01

    We consider the puzzle of cosmic voids bounded by two-dimensional structures of galactic clusters as also a puzzle pointed out by Weinberg: How can the mass of a typical elementary particle depend on a cosmic parameter like the Hubble constant? An answer to the first puzzle is proposed in terms of 'Scaled' Quantum Mechanical like behaviour which appears at large scales. The second puzzle can be answered by showing that the gravitational mass of an elementary particle has a Machian character (see Ahmed N. Cantorian small worked, Mach's principle and the universal mass network. Chaos, Solitons and Fractals 2004;21(4))

  1. Structural comparison of contractile nanomachines

    Directory of Open Access Journals (Sweden)

    Sebastian Kube

    2015-05-01

    Full Text Available Contractile molecular machines are a common feature among bacteriophages and prokaryotes. Due to their stability and the large size, contractile-tailed bacteriophages are traditionally investigated by electron microscopic methods. Complemented by crystallographic studies, a molecular model of contraction for the T4 phage was developed. Lately, also related contractile structures like the Photorhabdus virulence cassette-like particles, the R-Type pyocins and the contractile tubule of the bacterial Type VI secretion system have been analyzed by cryo electron microscopy. Photorhabdus virulence cassette particles and R-Type pyocins are toxin complexes reminiscent of bacteriophage tails that are secreted by bacteria to kill their insect host or competing bacteria. In contrast, the Type VI secretion system is an intracellular apparatus for injection of effector proteins into bacterial and eukaryotic cells. Although it shares homology with other contractile systems, the Type VI secretion system is additionally equipped with a recycling function, which makes it suitable for multiple rounds of action. Starting from the 3D reconstructions, we compare these molecular machines structurally and functionally to their viral counterparts and summarize the current knowledge on their respective mode of action.

  2. Geometrical scaling in charm structure function ratios

    International Nuclear Information System (INIS)

    Boroun, G.R.; Rezaei, B.

    2014-01-01

    By using a Laplace-transform technique, we solve the next-to-leading-order master equation for charm production and derive a compact formula for the ratio R c =F L cc ¯ /F 2 cc ¯ , which is useful for extracting the charm structure function from the reduced charm cross section, in particular, at DESY HERA, at small x. Our results show that this ratio is independent of x at small x. In this method of determining the ratios, we apply geometrical scaling in charm production in deep inelastic scattering (DIS). Our analysis shows that the renormalization scales have a sizable impact on the ratio R c at high Q 2 . Our results for the ratio of the charm structure functions are in a good agreement with some phenomenological models

  3. Design of scaled down structural models

    Science.gov (United States)

    Simitses, George J.

    1994-07-01

    In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral response. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.

  4. Challenges for Large Scale Structure Theory

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will describe some of the outstanding questions in Cosmology where answers could be provided by observations of the Large Scale Structure of the Universe at late times.I will discuss some of the theoretical challenges which will have to be overcome to extract this information from the observations. I will describe some of the theoretical tools that might be useful to achieve this goal. 

  5. Study of structural colour of Hebomoia glaucippe butterfly wing scales

    Science.gov (United States)

    Shur, V. Ya; Kuznetsov, D. K.; Pryakhina, V. I.; Kosobokov, M. S.; Zubarev, I. V.; Boymuradova, S. K.; Volchetskaya, K. V.

    2017-10-01

    Structural colours of Hebomoia glaucippe butterfly wing scales have been studied experimentally using high resolution scanning electron microscopy. Visualization of scales structures and computer simulation allowed distinguishing correlation between nanostructures on the scales and their colour.

  6. BLEVE overpressure: multi-scale comparison of blast wave modeling

    International Nuclear Information System (INIS)

    Laboureur, D.; Buchlin, J.M.; Rambaud, P.; Heymes, F.; Lapebie, E.

    2014-01-01

    BLEVE overpressure modeling has been already widely studied but only few validations including the scale effect have been made. After a short overview of the main models available in literature, a comparison is done with different scales of measurements, taken from previous studies or coming from experiments performed in the frame of this research project. A discussion on the best model to use in different cases is finally proposed. (authors)

  7. Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures

    Science.gov (United States)

    Manolakos, Elias S.

    2015-01-01

    Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub. PMID:26605332

  8. Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures.

    Science.gov (United States)

    Sharma, Anuj; Manolakos, Elias S

    2015-01-01

    Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub.

  9. Examining Similarity Structure: Multidimensional Scaling and Related Approaches in Neuroimaging

    Directory of Open Access Journals (Sweden)

    Svetlana V. Shinkareva

    2013-01-01

    Full Text Available This paper covers similarity analyses, a subset of multivariate pattern analysis techniques that are based on similarity spaces defined by multivariate patterns. These techniques offer several advantages and complement other methods for brain data analyses, as they allow for comparison of representational structure across individuals, brain regions, and data acquisition methods. Particular attention is paid to multidimensional scaling and related approaches that yield spatial representations or provide methods for characterizing individual differences. We highlight unique contributions of these methods by reviewing recent applications to functional magnetic resonance imaging data and emphasize areas of caution in applying and interpreting similarity analysis methods.

  10. Cross-Cultural Adaptation of the Physical Appearance Comparison Scale-Revised in Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Atari

    2015-09-01

    Full Text Available Background: The comparison of physical appearance may play an important role in many body-related variables. The Physical Appearance Comparison Scale-Revised (PACS-R is a recently developed instrument for measurement of physical appearance comparisons in a number of contexts. The aim of the present study was to validate the Persian version of this scale.Methods: The scale was administered following a standard back-translation procedure. The sample consisted of 206 female university students. The Body Appreciation Scale (BAS, Life Orientation Test (LOT, Interest in Aesthetic Rhinoplasty Scale (IARS, and Body Mass Index (BMI were used for assessment of concurrent validity. The factor structure of the scale was investigated using exploratory factor analysis (EFA. Analysis of variance (ANOVA, bivariate correlation coefficients, and one-sample t-test were used in SPSS software for statistical analysis. Effect sizes were also computed in comparisons between the Iranian sample and the American sample on which the scale was developed. Moreover, the reliability of the scale was evaluated using Cronbach’s alpha.Results: All items had adequate psychometric qualities in item analysis. The instrument was internally consistent (alpha = 0.97 and one-dimensional. It was positively correlated with BMI and interest in aesthetic rhinoplasty. Furthermore, PACS-R was inversely associated with optimism and body appreciation. Cross-cultural comparisons suggested that Iranian female participants had lower scores in physical appearance comparison.Conclusion: The Persian version of the PACS-R is a reliable and valid psychometric scale and may be used in clinical and research settings.

  11. Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer

    Science.gov (United States)

    Schnieders, Jana; Garbe, Christoph

    2014-05-01

    The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale

  12. Psychometric properties of the Social Comparison Motives Scale.

    Science.gov (United States)

    Tigges, Beth Baldwin

    2009-01-01

    This article describes the 19-item Social Comparison Motive Scale [SCMS], a measure of adolescents' motives for social comparison related to pregnancy. Dimensions and items were developed based on adolescent focus groups. The instrument was reviewed for content validity, pilot tested, and administered to 431 adolescents aged 14-18 years. Principal axis factor analysis with oblique rotation supported five dimensions. Convergent and discriminant validity were demonstrated by moderate correlations (r = .50) between the SCMS and the Iowa-Netherlands Comparison Orientation Measure and low correlations (r = .15) between the SCMS and the Rosenberg Self-Esteem Scale. Cronbach's alphas were .91 overall and .71 to .85 for the subscales. The SCMS demonstrated reliability and validity as a measure of adolescents' motives for comparing themselves with others about pregnancy.

  13. Neutrinos and large-scale structure

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.

    2015-01-01

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos

  14. Neutrinos and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Daniel J. [Daniel J. Eisenstein, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS #20, Cambridge, MA 02138 (United States)

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  15. Seeing Scale: Richard Dunn’s Structuralism

    Directory of Open Access Journals (Sweden)

    Keith Broadfoot

    2012-11-01

    Full Text Available Writing on the occasion of a retrospective of Richard Dunn’s work, Terence Maloon argued that ‘structuralism had an important bearing on virtually all of Richard Dunn’s mature works’, with ‘his modular, “crossed” formats’ being the most obvious manifestation of this. In this article I wish to reconsider this relation, withdrawing from a broad consideration of the framework of structuralism to focus on some of the quite particular ideas that Lacan proposed in response to structuralism. Beginning from a pivotal painting in the 1960s that developed out of Dunn’s experience of viewing the work of Barnett Newman, I wish to suggest a relation between the ongoing exploration of the thematic of scale in Dunn’s work and the idea of the symbolic that Lacan derives from structuralist thought. This relation, I argue, opens up a different way of understanding the art historical transition from Minimalism to Conceptual art.

  16. Dipolar modulation of Large-Scale Structure

    Science.gov (United States)

    Yoon, Mijin

    For the last two decades, we have seen a drastic development of modern cosmology based on various observations such as the cosmic microwave background (CMB), type Ia supernovae, and baryonic acoustic oscillations (BAO). These observational evidences have led us to a great deal of consensus on the cosmological model so-called LambdaCDM and tight constraints on cosmological parameters consisting the model. On the other hand, the advancement in cosmology relies on the cosmological principle: the universe is isotropic and homogeneous on large scales. Testing these fundamental assumptions is crucial and will soon become possible given the planned observations ahead. Dipolar modulation is the largest angular anisotropy of the sky, which is quantified by its direction and amplitude. We measured a huge dipolar modulation in CMB, which mainly originated from our solar system's motion relative to CMB rest frame. However, we have not yet acquired consistent measurements of dipolar modulations in large-scale structure (LSS), as they require large sky coverage and a number of well-identified objects. In this thesis, we explore measurement of dipolar modulation in number counts of LSS objects as a test of statistical isotropy. This thesis is based on two papers that were published in peer-reviewed journals. In Chapter 2 [Yoon et al., 2014], we measured a dipolar modulation in number counts of WISE matched with 2MASS sources. In Chapter 3 [Yoon & Huterer, 2015], we investigated requirements for detection of kinematic dipole in future surveys.

  17. Fire structures pine serotiny at different scales.

    Science.gov (United States)

    Hernández-Serrano, Ana; Verdú, Miguel; González-Martínez, Santiago C; Pausas, Juli G

    2013-12-01

    Serotiny (delayed seed release with the consequent accumulation of a canopy seedbank) confers fitness benefits in environments with crown-fire regimes. Thus, we predicted that serotiny level should be higher in populations recurrently subjected to crown-fires than in populations where crown-fires are rare. In addition, under a high frequency of fires, space and resources are recurrently available, permitting recruitment around each mother to follow the seed rain shadow. Thus, we also predicted spatial aggregation of serotiny within populations. We compared serotiny, considering both the proportion and the age of serotinous cones, in populations living in contrasting fire regimes for two iconic Mediterranean pine species (Pinus halepensis, P. pinaster). We framed our results by quantitatively comparing the strength of the fire-serotiny relationship with previous studies worldwide. For the two species, populations living under high crown-fire recurrence regimes had a higher serotiny level than those populations where the recurrence of crown-fires was low. For P. halepensis (the species with higher serotiny), populations in high fire recurrence regimes had higher fine-scale spatial aggregation of serotiny than those inhabiting low fire recurrence systems. The strength of the observed fire-serotiny relationship in P. halepensis is among the highest in published literature. Fire regime shapes serotiny level among populations, and in populations with high serotiny, recurrent fires maintain a significant spatial structure for this trait. Consequently, fire has long-term evolutionary implications at different scales, emphasizing its prominent role in shaping the ecology of pines.

  18. Responses in large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Barreira, Alexandre; Schmidt, Fabian, E-mail: barreira@MPA-Garching.MPG.DE, E-mail: fabians@MPA-Garching.MPG.DE [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-06-01

    We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ''bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients , which are only a function of the hard wavenumber k . Further, the responses up to n -th order completely describe the ( n +2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance Cov{sup NG}{sub ℓ=0}( k {sub 1}, k {sub 2}), in the limit where one of the modes, say k {sub 2}, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k {sub 2} ∼< 0.06 h Mpc{sup −1}, and for any k {sub 1} ∼> 2 k {sub 2}. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.

  19. Responses in large-scale structure

    Science.gov (United States)

    Barreira, Alexandre; Schmidt, Fabian

    2017-06-01

    We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ``bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients, which are only a function of the hard wavenumber k. Further, the responses up to n-th order completely describe the (n+2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance CovNGl=0(k1,k2), in the limit where one of the modes, say k2, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k2 lesssim 0.06 h Mpc-1, and for any k1 gtrsim 2k2. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.

  20. A scale invariant covariance structure on jet space

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2005-01-01

    This paper considers scale invariance of statistical image models. We study statistical scale invariance of the covariance structure of jet space under scale space blurring and derive the necessary structure and conditions of the jet covariance matrix in order for it to be scale invariant. As par...

  1. Structures and Intermittency in Small Scales Solar Wind Turbulence

    International Nuclear Information System (INIS)

    Sahraoui, Fouad; Goldstein, Melvyn

    2010-01-01

    Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to result from nonlinear interactions between the plasma modes, which depend strongly on their phase synchronization. Despite this important role of the phases in turbulence, very limited work has been devoted to study the phases as potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. The reason why the phases are seldom used is probably because they usually appear to be completely mixed (due to their dependence on an arbitrary time origin and to 2π periodicity). To handle the phases properly, a new method based on using surrogate data has been developed recently to detect coherent structures in magnetized plasmas [Sahraoui, PRE, 2008]. Here, we show new applications of the technique to study the nature (weak vs strong, self-similar vs intermittent) of the small scale turbulence in the solar wind using the Cluster observations.

  2. Multiresolution comparison of precipitation datasets for large-scale models

    Science.gov (United States)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  3. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  4. A comparison of methods for evaluating structure during ship collisions

    International Nuclear Information System (INIS)

    Ammerman, D.J.; Daidola, J.C.

    1996-01-01

    A comparison is provided of the results of various methods for evaluating structure during a ship-to-ship collision. The baseline vessel utilized in the analyses is a 67.4 meter in length displacement hull struck by an identical vessel traveling at speeds ranging from 10 to 30 knots. The structural response of the struck vessel and motion of both the struck and striking vessels are assessed by finite element analysis. These same results are then compared to predictions utilizing the open-quotes Tanker Structural Analysis for Minor Collisionsclose quotes (TSAMC) Method, the Minorsky Method, the Haywood Collision Process, and comparison to full-scale tests. Consideration is given to the nature of structural deformation, absorbed energy, penetration, rigid body motion, and virtual mass affecting the hydrodynamic response. Insights are provided with regard to the calibration of the finite element model which was achievable through utilizing the more empirical analyses and the extent to which the finite element analysis is able to simulate the entire collision event. 7 refs., 8 figs., 4 tabs

  5. The prisoner's dilemma in structured scale-free networks

    International Nuclear Information System (INIS)

    Li Xing; Wu Yonghui; Zhang Zhongzhi; Zhou Shuigeng; Rong Zhihai

    2009-01-01

    The conventional wisdom is that scale-free networks are prone to cooperation spreading. In this paper we investigate the cooperative behavior on the structured scale-free network. In contrast to the conventional wisdom that scale-free networks are prone to cooperation spreading, the evolution of cooperation is inhibited on the structured scale-free network when the prisoner's dilemma (PD) game is modeled. First, we demonstrate that neither the scale-free property nor the high clustering coefficient is responsible for the inhibition of cooperation spreading on the structured scale-free network. Then we provide one heuristic method to argue that the lack of age correlations and its associated 'large-world' behavior in the structured scale-free network inhibit the spread of cooperation. These findings may help enlighten further studies on the evolutionary dynamics of the PD game in scale-free networks

  6. Structural colors from Morpho peleides butterfly wing scales

    KAUST Repository

    Ding, Yong; Xu, Sheng; Wang, Zhong Lin

    2009-01-01

    A male Morpho peleides butterfly wing is decorated by two types of scales, cover and ground scales. We have studied the optical properties of each type of scales in conjunction with the structural information provided by cross-sectional transmission electron microscopy and computer simulation. The shining blue color is mainly from the Bragg reflection of the one-dimensional photonic structure, e.g., the shelf structure packed regularly in each ridges on cover scales. A thin-film-like interference effect from the base plate of the cover scale enhances such blue color and further gives extra reflection peaks in the infrared and ultraviolet regions. The analogy in the spectra acquired from the original wing and that from the cover scales suggests that the cover scales take a dominant role in its structural color. This study provides insight of using the biotemplates for fabricating smart photonic structures. © 2009 American Institute of Physics.

  7. Probes of large-scale structure in the Universe

    International Nuclear Information System (INIS)

    Suto, Yasushi; Gorski, K.; Juszkiewicz, R.; Silk, J.

    1988-01-01

    Recent progress in observational techniques has made it possible to confront quantitatively various models for the large-scale structure of the Universe with detailed observational data. We develop a general formalism to show that the gravitational instability theory for the origin of large-scale structure is now capable of critically confronting observational results on cosmic microwave background radiation angular anisotropies, large-scale bulk motions and large-scale clumpiness in the galaxy counts. (author)

  8. COMPARISON OF TWO STRUCTURE AND MOTION STRATEGIES

    Directory of Open Access Journals (Sweden)

    R. Roncella

    2012-09-01

    Full Text Available Automatic orientation of image sequences in close range photogrammetry is becoming more and more important, not least to maintain a degree of competitiveness with other survey techniques, such as laser scanning. The objective of this paper is to compare two Structure from Motion (SFM strategies. The previous strategy has been used at our Department for some years already in a wide range of projects and is based on the Harris operator and the fundamental matrix plus the trifocal tensor estimation to filter out the outliers. While it has in most cases performed satisfactorily, the percentage of accepted matches is generally smaller than expected; sometimes this leads to failure of the successful estimation of the trifocal tensor. The second one has only recently been implemented and is still under testing; it is based on the SURF operator and the 5-point relative orientation algorithm. The paper will show a comparison between the two strategies on a series of test cases.

  9. Scaling images using their background ratio. An application in statistical comparisons of images

    International Nuclear Information System (INIS)

    Kalemis, A; Binnie, D; Bailey, D L; Flower, M A; Ott, R J

    2003-01-01

    Comparison of two medical images often requires image scaling as a pre-processing step. This is usually done with the scaling-to-the-mean or scaling-to-the-maximum techniques which, under certain circumstances, in quantitative applications may contribute a significant amount of bias. In this paper, we present a simple scaling method which assumes only that the most predominant values in the corresponding images belong to their background structure. The ratio of the two images to be compared is calculated and its frequency histogram is plotted. The scaling factor is given by the position of the peak in this histogram which belongs to the background structure. The method was tested against the traditional scaling-to-the-mean technique on simulated planar gamma-camera images which were compared using pixelwise statistical parametric tests. Both sensitivity and specificity for each condition were measured over a range of different contrasts and sizes of inhomogeneity for the two scaling techniques. The new method was found to preserve sensitivity in all cases while the traditional technique resulted in significant degradation of sensitivity in certain cases

  10. Scaling images using their background ratio. An application in statistical comparisons of images.

    Science.gov (United States)

    Kalemis, A; Binnie, D; Bailey, D L; Flower, M A; Ott, R J

    2003-06-07

    Comparison of two medical images often requires image scaling as a pre-processing step. This is usually done with the scaling-to-the-mean or scaling-to-the-maximum techniques which, under certain circumstances, in quantitative applications may contribute a significant amount of bias. In this paper, we present a simple scaling method which assumes only that the most predominant values in the corresponding images belong to their background structure. The ratio of the two images to be compared is calculated and its frequency histogram is plotted. The scaling factor is given by the position of the peak in this histogram which belongs to the background structure. The method was tested against the traditional scaling-to-the-mean technique on simulated planar gamma-camera images which were compared using pixelwise statistical parametric tests. Both sensitivity and specificity for each condition were measured over a range of different contrasts and sizes of inhomogeneity for the two scaling techniques. The new method was found to preserve sensitivity in all cases while the traditional technique resulted in significant degradation of sensitivity in certain cases.

  11. Large scale structure from viscous dark matter

    CERN Document Server

    Blas, Diego; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-01-01

    Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 \\, h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to varia...

  12. A comparison of obsessive-compulsive personality disorder scales.

    Science.gov (United States)

    Samuel, Douglas B; Widiger, Thomas A

    2010-05-01

    In this study, we utilized a large undergraduate sample (N = 536), oversampled for the Diagnostic and Statistical Manual of Mental Disorders (4th ed., text revision [DSM-IV-TR]; American Psychiatric Association, 2000) obsessive-compulsive personality disorder (OCPD) pathology, to compare 8 self-report measures of OCPD. No prior study has compared more than 3 measures, and the results indicate that the scales had only moderate convergent validity. We also went beyond the existing literature to compare these scales to 2 external reference points: their relationships with a well-established measure of the five-factor model of personality (FFM) and clinicians' ratings of their coverage of the DSM-IV-TR criterion set. When the FFM was used as a point of comparison, the results suggest important differences among the measures with respect to their divergent representation of conscientiousness, neuroticism, and agreeableness. Additionally, an analysis of the construct coverage indicated that the measures also varied in terms of their representation of particular diagnostic criteria. For example, whereas some scales contained items distributed across the diagnostic criteria, others were concentrated more heavily on particular features of the DSM-IV-TR disorder.

  13. Optimization of Large-Scale Structural Systems

    DEFF Research Database (Denmark)

    Jensen, F. M.

    solutions to small problems with one or two variables to the optimization of large structures such as bridges, ships and offshore structures. The methods used for salving these problems have evolved from being classical differential calculus and calculus of variation to very advanced numerical techniques...

  14. Structure of Student Time Management Scale (STMS)

    Science.gov (United States)

    Balamurugan, M.

    2013-01-01

    With the aim of constructing a Student Time Management Scale (STMS), the initial version was administered and data were collected from 523 standard eleventh students. (Mean age = 15.64). The data obtained were subjected to Reliability and Factor analysis using PASW Statistical software version 18. From 42 items 14 were dropped, resulting in the…

  15. Large-Scale Structure Behind The Milky Way with ALFAZOA

    Science.gov (United States)

    Sanchez Barrantes, Monica; Henning, Patricia A.; Momjian, Emmanuel; McIntyre, Travis; Minchin, Robert F.

    2018-06-01

    The region of the sky behind the Milky Way (the Zone of Avoidance; ZOA) is not well studied due to high obscuration from gas and dust in our galaxy as well as stellar confusion, which results in low detection rate of galaxies in this region. Because of this, little is known about the distribution of galaxies in the ZOA, and other all sky redshift surveys have incomplete maps (e.g. the 2MASS Redshift survey in NIR has a gap of 5-8 deg around the Galactic plane). There is still controversy about the dipole anisotropy calculated from the comparison between the CMB and galaxy and redshift surveys, in part due to the incomplete sky mapping and redshift depth of these surveys. Fortunately, there is no ZOA at radio wavelengths because such wavelengths can pass unimpeded through dust and are not affected by stellar confusion. Therefore, we can detect and make a map of the distribution of obscured galaxies that contain the 21cm neutral hydrogen emission line, and trace the large-scale structure across the Galactic plane. The Arecibo L-Band Feed Array Zone of Avoidance (ALFAZOA) survey is a blind HI survey for galaxies behind the Milky Way that covers more than 1000 square degrees of the sky, conducted in two phases: shallow (completed) and deep (ongoing). We show the results of the finished shallow phase of the survey, which mapped a region between the galactic longitude l=30-75 deg, and latitude b <|10 deg|, and detected 418 galaxies to about 12,000 km/s, including galaxy properties and mapped large-scale structure. We do the same for new results from the deep phase, which is ongoing and covers 30 < l < 75 deg and b < |2| deg for the inner galaxy and 175 < l < 207 deg, with -2 < b < 1 for the outer galaxy.

  16. Hierarchical structure and cytocompatibility of fish scales from Carassius auratus

    International Nuclear Information System (INIS)

    Fang, Zhou; Wang, Yukun; Feng, Qingling; Kienzle, Arne; Müller, Werner E.G.

    2014-01-01

    To study the structure and the cytocompatibility of fish scales from Carassius auratus, scanning electron microscopy (SEM) was used to observe the morphology of fish scales treated with different processing methods. Based on varying morphologies and components, the fish scales can be divided into three regions on the surface and three layers in vertical. The functions of these three individual layers were analyzed. SEM results show that the primary inorganic components are spherical or cubic hydroxyapatite (HA) nanoparticles. The fish scales have an ∼ 60° overlapped plywood structure of lamellas in the fibrillary plate. The plywood structure consists of co-aligned type I collagen fibers, which are parallel to the HA lamellas. X-ray diffraction (XRD), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) and Fourier transform infrared (FTIR) analysis indicate that the main components are HA and type I collagen fibers. MC3T3-E1 cell culture results show a high cytocompatibility and the ability to guide cell proliferation and migration along the scale ridge channels of the fish scales. This plywood structure provides inspiration for a structure-enhanced composite material. - Highlights: • The Carassius auratus fish scale can be divided into 3 layers rather than 2. • The functions of these three individual layers were firstly analyzed. • The fish scale shows a high cytocompatibility. • The fish scale can guide cells migration along the scale ridge channels

  17. Hierarchical structure and cytocompatibility of fish scales from Carassius auratus

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhou [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, Yukun [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kienzle, Arne; Müller, Werner E.G. [Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Johannes Gutenberg-Universität, Duesbergweg 6, Mainz 55099 (Germany)

    2014-10-01

    To study the structure and the cytocompatibility of fish scales from Carassius auratus, scanning electron microscopy (SEM) was used to observe the morphology of fish scales treated with different processing methods. Based on varying morphologies and components, the fish scales can be divided into three regions on the surface and three layers in vertical. The functions of these three individual layers were analyzed. SEM results show that the primary inorganic components are spherical or cubic hydroxyapatite (HA) nanoparticles. The fish scales have an ∼ 60° overlapped plywood structure of lamellas in the fibrillary plate. The plywood structure consists of co-aligned type I collagen fibers, which are parallel to the HA lamellas. X-ray diffraction (XRD), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) and Fourier transform infrared (FTIR) analysis indicate that the main components are HA and type I collagen fibers. MC3T3-E1 cell culture results show a high cytocompatibility and the ability to guide cell proliferation and migration along the scale ridge channels of the fish scales. This plywood structure provides inspiration for a structure-enhanced composite material. - Highlights: • The Carassius auratus fish scale can be divided into 3 layers rather than 2. • The functions of these three individual layers were firstly analyzed. • The fish scale shows a high cytocompatibility. • The fish scale can guide cells migration along the scale ridge channels.

  18. Recent Progress in Large-Scale Structure

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    I will discuss recent progress in the understanding of how to model galaxy clustering. While recent analyses have focussed on the baryon acoustic oscillations as a probe of cosmology, galaxy redshift surveys contain a lot more information than the acoustic scale. In extracting this additional information three main issues need to be well understood: nonlinear evolution of matter fluctuations, galaxy bias and redshift-space distortions. I will present recent progress in modeling these three effects that pave the way to constraining cosmology and galaxy formation with increased precision.

  19. The pion structure function and scale breaking in Drell-Yan processes

    International Nuclear Information System (INIS)

    Moore, R.

    1979-01-01

    By use of the formalism of QCD, the structure functions of the nucleon and the pion obtained at Q 2 = m 2 sub(psi) is extended to higher values of Q 2 . These structure functions are then used to obtain predictions of scale-breaking effects in Drell-Yan lepton-pair production for both nucleon-nucleon and pion-nucleon cases. A comparison with recent experimental data is also presented. (author)

  20. Fine-Scale Genetic Structure in Finland

    Directory of Open Access Journals (Sweden)

    Sini Kerminen

    2017-10-01

    Full Text Available Coupling dense genotype data with new computational methods offers unprecedented opportunities for individual-level ancestry estimation once geographically precisely defined reference data sets become available. We study such a reference data set for Finland containing 2376 such individuals from the FINRISK Study survey of 1997 both of whose parents were born close to each other. This sampling strategy focuses on the population structure present in Finland before the 1950s. By using the recent haplotype-based methods ChromoPainter (CP and FineSTRUCTURE (FS we reveal a highly geographically clustered genetic structure in Finland and report its connections to the settlement history as well as to the current dialectal regions of the Finnish language. The main genetic division within Finland shows striking concordance with the 1323 borderline of the treaty of Nöteborg. In general, we detect genetic substructure throughout the country, which reflects stronger regional genetic differences in Finland compared to, for example, the UK, which in a similar analysis was dominated by a single unstructured population. We expect that similar population genetic reference data sets will become available for many more populations in the near future with important applications, for example, in forensic genetics and in genetic association studies. With this in mind, we report those extensions of the CP + FS approach that we found most useful in our analyses of the Finnish data.

  1. Scale modeling of reinforced concrete structures subjected to seismic loading

    International Nuclear Information System (INIS)

    Dove, R.C.

    1983-01-01

    Reinforced concrete, Category I structures are so large that the possibility of seismicly testing the prototype structures under controlled conditions is essentially nonexistent. However, experimental data, from which important structural properties can be determined and existing and new methods of seismic analysis benchmarked, are badly needed. As a result, seismic experiments on scaled models are of considerable interest. In this paper, the scaling laws are developed in some detail so that assumptions and choices based on judgement can be clearly recognized and their effects discussed. The scaling laws developed are then used to design a reinforced concrete model of a Category I structure. Finally, how scaling is effected by various types of damping (viscous, structural, and Coulomb) is discussed

  2. Large Scale Testing of Drystone Retaining Structures

    OpenAIRE

    Mundell, Chris

    2009-01-01

    Drystone walls have been used extensively around the world as earth retaining structures wherever suitable stone is found. Commonly about 0.6m thick (irrespective of height), there are about 9000km of drystone retaining walls on the UK road network alone, mostly built in the 19th and early 20th centuries, with an estimated replacement value in excess of £1 billion[1]. Drystone wall design is traditionally empirical, based on local knowledge of what has worked in the past. Methods vary from re...

  3. Multi-scale structural similarity index for motion detection

    Directory of Open Access Journals (Sweden)

    M. Abdel-Salam Nasr

    2017-07-01

    Full Text Available The most recent approach for measuring the image quality is the structural similarity index (SSI. This paper presents a novel algorithm based on the multi-scale structural similarity index for motion detection (MS-SSIM in videos. The MS-SSIM approach is based on modeling of image luminance, contrast and structure at multiple scales. The MS-SSIM has resulted in much better performance than the single scale SSI approach but at the cost of relatively lower processing speed. The major advantages of the presented algorithm are both: the higher detection accuracy and the quasi real-time processing speed.

  4. Phytophthora infestans population structure: A worldwide scale

    International Nuclear Information System (INIS)

    Cardenas, Martha; Danies, Giovanna; Tabima, Javier; Bernal, Adriana; Restrepo, Silvia

    2012-01-01

    Phytophthora infestans, the causal agent of late blight disease in potato and other members of the Solanaceae family, is responsible for causing the Irish potato famine and, even today, it causes enormous economic losses all over the world. For the establishment of an adequate pest management strategy, the determination of the pathogen's population structure is required. To characterize P. infestans populations worldwide two allozymes, Gpi (Glucose-6-phospate isomerase) and Pep (Pep tidase), the RG57 DNA RFLP fingerprinting probe, as well as resistance to the fungicide metalaxyl and mating type, have been used as markers. P. infestans populations in Mexico have been one of the main focuses of research in the population biology of this pathogen because this country has been considered as one of the possible centers of origin of this oomycete. In this review we present the population structure of P. infestans in Mexico, Europe, Africa, Asia, North America, and South America, expanding it on the present situation of P. infestans in Colombia. Finally, we will discuss different lines of research that are being carried out today with respect to P. infestans in Colombia, which have shown the importance of continuing the study of this devastating plant pathogen in our country.

  5. Phytophthora infestans population structure: a worldwide scale

    Directory of Open Access Journals (Sweden)

    Martha Cárdenas Toquica

    2012-05-01

    Full Text Available Phytophthora infestans, the causal agent of late blight disease in potato and other members of the Solanaceae family, is responsible for causing the Irish potato famine and, even today, it causes enormous economic losses all over the world. For the establishment of an adequate pest management strategy, the determination of population structure is required. To characterize P. infestans populations worldwide two allozymes, Gpi (Glucose-6-phospate isomerase and Pep (Peptidase, the RG57 DNA RFLP fingerprinting probe, as well as resistance to the fungicide metalaxyl and the mating type, have been used as markers. P. infestans populations in Mexico have been one of the main focuses of research in the population biology of this pathogen because this country has been considered as one of the possible centers of origin of this oomycete. In this review we present the population structure of P. infestans in Mexico, Europe, Africa, Asia, North America, and South America expanding on the present situation of P. infestans in Colombia. Finally, we will discuss different lines of research that are being carried out today with respect to P. infestans in Colombia, which have shown the importance of continuing the study of this devastating plant pathogen in our country.

  6. Structured ecosystem-scale approach to marine water quality management

    CSIR Research Space (South Africa)

    Taljaard, Susan

    2006-10-01

    Full Text Available and implement environmental management programmes. A structured ecosystem-scale approach for the design and implementation of marine water quality management programmes developed by the CSIR (South Africa) in response to recent advances in policies...

  7. Validity and factor structure of the bodybuilding dependence scale

    OpenAIRE

    Smith, D; Hale, B

    2004-01-01

    Objectives: To investigate the factor structure, validity, and reliability of the bodybuilding dependence scale and to investigate differences in bodybuilding dependence between men and women and competitive and non-competitive bodybuilders.

  8. Factor Structure of the Conflict Tactics Scale 1

    Directory of Open Access Journals (Sweden)

    Kaori Baba

    2017-07-01

    Full Text Available Background: The Conflict Tactics Scale 1 (CTS1 is a widely used self-report measure of abusive attitudes of parents towards children. The factor structure of the CTS1 still remains to be clarified. The aim of this study was to examine the factor structure of the Japanese version of the CTS1 for postpartum women in community settings. Method: The data in this study came from the Okayama and Kumamoto’s study. These were part of a larger survey using longitudinal questionnaire studies conducted in Japan from 2001 to 2002 and in 2011, respectively. In both study sites, the participant mothers were asked to fill in the CTS1 one month after delivery when they attended for check-up at the out-patient clinic. Results: A total of 1,150 questionnaires were collected, excluding the participants with missing values in the CTS1. Finally, 1,078 were included in the statistical analyses. Data of 1,078 women were divided into two parts. In the first halved sample (n=578, an exploratory factor analysis was conducted for the CTS1 items after exluding nine items with extremely low prevalence. It revealed 2-factor or 3-factor models. Then, we conducted a model comparison with the second halved sample (n=500, using confirmatory factor analysis. In terms of goodness-of-fit indeces, the 2-factor model was superior. Its subscales were Reasoning and Psycholosical Aggression. Conclusion: The 2-factor model of the CTS1 consisting of Reasoning and Psychological Aggression was superior to the 3-factor model. This is not inconsistent with the original authors’ theoretical model.

  9. Factor Structure of Child Behavior Scale Scores in Peruvian Preschoolers

    Science.gov (United States)

    Meyer, Erin L.; Schaefer, Barbara A.; Soto, Cesar Merino; Simmons, Crystal S.; Anguiano, Rebecca; Brett, Jeremy; Holman, Alea; Martin, Justin F.; Hata, Heidi K.; Roberts, Kimberly J.; Mello, Zena R.; Worrell, Frank C.

    2011-01-01

    Behavior rating scales aid in the identification of problem behaviors, as well as the development of interventions to reduce such behavior. Although scores on many behavior rating scales have been validated in the United States, there have been few such studies in other cultural contexts. In this study, the structural validity of scores on a…

  10. Multiscale properties of DNA primary structure: cross-scale correlations

    International Nuclear Information System (INIS)

    Altajskij, M.V.; Ivanov, V.V.; Polozov, R.V.

    2000-01-01

    Cross-scale correlations of wavelet coefficients of the DNA coding sequences are calculated and compared to that of the generated random sequence of the same length. The coding sequences are shown to have strong correlation between large and small scale structures, while random sequences have not

  11. Thermal fluid-structure interaction - a few scaling considerations

    International Nuclear Information System (INIS)

    Dimitrov, B.; Schwan, H.

    1984-01-01

    Scaling laws for modeling of nuclear reactor systems primarily consider relations between thermalhydraulic parameters in the control volumes for the model and the prototype. Usually the influence of structural heat is neglected. This report describes, how scaling criteria are improved by parameters concerning structural heat, because during thermal transients there is a strong coupling between the thermalhydraulic system and the surrounding structures. Volumetric scaling laws are applied to a straight pipe of the primary loop of a pressurized water reactor (PWR). For the prototype pipe data of a KWU standard PWR with four loops are chosen. Theoretical studies and RELAP 5/MOD 1 calculations regarding the influence of structural heat on thermalhydraulic response of the fluid are performed. Recommendations are given for minimization of distortions due to influence of structural heat between model and prototype. (orig.) [de

  12. Spatial scaling of bacterial community diversity at shallow hydrothermal vents: a global comparison

    Science.gov (United States)

    Pop Ristova, P.; Hassenrueck, C.; Molari, M.; Fink, A.; Bühring, S. I.

    2016-02-01

    Marine shallow hydrothermal vents are extreme environments, often characterized by discharge of fluids with e.g. high temperatures, low pH, and laden with elements toxic to higher organisms. They occur at continental margins around the world's oceans, but represent fragmented, isolated habitats of locally small areal coverage. Microorganisms contribute the main biomass at shallow hydrothermal vent ecosystems and build the basis of the food chain by autotrophic fixation of carbon both via chemosynthesis and photosynthesis, occurring simultaneously. Despite their importance and unique capacity to adapt to these extreme environments, little is known about the spatial scales on which the alpha- and beta-diversity of microbial communities vary at shallow vents, and how the geochemical habitat heterogeneity influences shallow vent biodiversity. Here for the first time we investigated the spatial scaling of microbial biodiversity patterns and their interconnectivity at geochemically diverse shallow vents on a global scale. This study presents data on the comparison of bacterial community structures on large (> 1000 km) and small (0.1 - 100 m) spatial scales as derived from ARISA and Illumina sequencing. Despite the fragmented global distribution of shallow hydrothermal vents, similarity of vent bacterial communities decreased with geographic distance, confirming the ubiquity of distance-decay relationship. Moreover, at all investigated vents, pH was the main factor locally structuring these communities, while temperature influenced both the alpha- and beta-diversity.

  13. Accelerating large-scale protein structure alignments with graphics processing units

    Directory of Open Access Journals (Sweden)

    Pang Bin

    2012-02-01

    Full Text Available Abstract Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs. As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU.

  14. Comparison of high group velocity accelerating structures

    International Nuclear Information System (INIS)

    Farkas, Z.D.; Wilson, P.B.

    1987-02-01

    It is well known that waveguides with no perturbations have phase velocities greater than the velocity of light c. If the waveguide dimensions are chosen so that the phase velocity is only moderately greater than c, only small perturbations are required to reduce the phase velocity to be synchronous with a high energy particle bunch. Such a lightly loaded accelerator structure will have smaller longitudinal and transverse wake potentials and hence will lead to lower emittance growth in an accelerated beam. Since these structures are lightly loaded, their group velocities are only slightly less than c and not in the order of 0.01c, as is the case for the standard disk-loaded structures. To ascertain that the peak and average power requirements for these structures are not prohibitive, we examine the elastance and the Q for several traveling wave structures: phase slip structures, bellows-like structures, and lightly loaded disk-loaded structures

  15. Large-Scale Structure and Hyperuniformity of Amorphous Ices

    Science.gov (United States)

    Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto

    2017-09-01

    We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.

  16. Some Statistics for Measuring Large-Scale Structure

    OpenAIRE

    Brandenberger, Robert H.; Kaplan, David M.; A, Stephen; Ramsey

    1993-01-01

    Good statistics for measuring large-scale structure in the Universe must be able to distinguish between different models of structure formation. In this paper, two and three dimensional ``counts in cell" statistics and a new ``discrete genus statistic" are applied to toy versions of several popular theories of structure formation: random phase cold dark matter model, cosmic string models, and global texture scenario. All three statistics appear quite promising in terms of differentiating betw...

  17. Graph-based linear scaling electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Germann, Timothy C.; Bock, Nicolas [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mniszewski, Susan M.; Mohd-Yusof, Jamal; Wall, Michael E.; Djidjev, Hristo [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rubensson, Emanuel H. [Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala (Sweden)

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  18. Comparison of laminite fracture features at different scales

    OpenAIRE

    Zihms, Stephanie; Miranda, Tiago; Lewis, Helen; Hall, Stephen

    2017-01-01

    Laminites (NE Brazil) are well laminated carbonates that provide insight into the geomechanical behaviour of layered systems, especially when comparing deformation characteristics observed in the laboratory with outcrop / field scale deformations. This is useful in order to a)  validate where laboratory experiments can reproduce field scale deformation types b)  understand which feature characteristics can or cannot be scaled

  19. Multi-scale structural community organisation of the human genome.

    Science.gov (United States)

    Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin

    2017-04-11

    Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.

  20. Trends in large-scale testing of reactor structures

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    2003-01-01

    Large-scale tests of reactor structures have been conducted at Sandia National Laboratories since the late 1970s. This paper describes a number of different large-scale impact tests, pressurization tests of models of containment structures, and thermal-pressure tests of models of reactor pressure vessels. The advantages of large-scale testing are evident, but cost, in particular limits its use. As computer models have grown in size, such as number of degrees of freedom, the advent of computer graphics has made possible very realistic representation of results - results that may not accurately represent reality. A necessary condition to avoiding this pitfall is the validation of the analytical methods and underlying physical representations. Ironically, the immensely larger computer models sometimes increase the need for large-scale testing, because the modeling is applied to increasing more complex structural systems and/or more complex physical phenomena. Unfortunately, the cost of large-scale tests is a disadvantage that will likely severely limit similar testing in the future. International collaborations may provide the best mechanism for funding future programs with large-scale tests. (author)

  1. Similitude and scaling of large structural elements: Case study

    Directory of Open Access Journals (Sweden)

    M. Shehadeh

    2015-06-01

    Full Text Available Scaled down models are widely used for experimental investigations of large structures due to the limitation in the capacities of testing facilities along with the expenses of the experimentation. The modeling accuracy depends upon the model material properties, fabrication accuracy and loading techniques. In the present work the Buckingham π theorem is used to develop the relations (i.e. geometry, loading and properties between the model and a large structural element as that is present in the huge existing petroleum oil drilling rigs. The model is to be designed, loaded and treated according to a set of similitude requirements that relate the model to the large structural element. Three independent scale factors which represent three fundamental dimensions, namely mass, length and time need to be selected for designing the scaled down model. Numerical prediction of the stress distribution within the model and its elastic deformation under steady loading is to be made. The results are compared with those obtained from the full scale structure numerical computations. The effect of scaled down model size and material on the accuracy of the modeling technique is thoroughly examined.

  2. Large-scale structure observables in general relativity

    International Nuclear Information System (INIS)

    Jeong, Donghui; Schmidt, Fabian

    2015-01-01

    We review recent studies that rigorously define several key observables of the large-scale structure of the Universe in a general relativistic context. Specifically, we consider (i) redshift perturbation of cosmic clock events; (ii) distortion of cosmic rulers, including weak lensing shear and magnification; and (iii) observed number density of tracers of the large-scale structure. We provide covariant and gauge-invariant expressions of these observables. Our expressions are given for a linearly perturbed flat Friedmann–Robertson–Walker metric including scalar, vector, and tensor metric perturbations. While we restrict ourselves to linear order in perturbation theory, the approach can be straightforwardly generalized to higher order. (paper)

  3. Classification of Farmland Landscape Structure in Multiple Scales

    Science.gov (United States)

    Jiang, P.; Cheng, Q.; Li, M.

    2017-12-01

    Farmland is one of the basic terrestrial resources that support the development and survival of human beings and thus plays a crucial role in the national security of every country. Pattern change is the intuitively spatial representation of the scale and quality variation of farmland. Through the characteristic development of spatial shapes as well as through changes in system structures, functions and so on, farmland landscape patterns may indicate the landscape health level. Currently, it is still difficult to perform positioning analyses of landscape pattern changes that reflect the landscape structure variations of farmland with an index model. Depending on a number of spatial properties such as locations and adjacency relations, distance decay, fringe effect, and on the model of patch-corridor-matrix that is applied, this study defines a type system of farmland landscape structure on the national, provincial, and city levels. According to such a definition, the classification model of farmland landscape-structure type at the pixel scale is developed and validated based on mathematical-morphology concepts and on spatial-analysis methods. Then, the laws that govern farmland landscape-pattern change in multiple scales are analyzed from the perspectives of spatial heterogeneity, spatio-temporal evolution, and function transformation. The result shows that the classification model of farmland landscape-structure type can reflect farmland landscape-pattern change and its effects on farmland production function. Moreover, farmland landscape change in different scales displayed significant disparity in zonality, both within specific regions and in urban-rural areas.

  4. Factor structure of the Body Appreciation Scale among Malaysian women.

    Science.gov (United States)

    Swami, Viren; Chamorro-Premuzic, Tomas

    2008-12-01

    The present study examined the factor structure of a Malay version of the Body Appreciation Scale (BAS), a recently developed scale for the assessment of positive body image that has been shown to have a unidimensional structure in Western settings. Results of exploratory and confirmatory factor analyses based on data from community sample of 591 women in Kuala Lumpur, Malaysia, failed to support a unidimensional structure for the Malay BAS. Results of a confirmatory factor analysis suggested two stable factors, which were labelled 'General Body Appreciation' and 'Body Image Investment'. Multi-group analysis showed that the two-factor structure was invariant for both Malaysian Malay and Chinese women, and that there were no significant ethnic differences on either factor. Results also showed that General Body Appreciation was significant negatively correlated with participants' body mass index. These results are discussed in relation to possible cross-cultural differences in positive body image.

  5. Interactive comparison and remediation of collections of macromolecular structures.

    Science.gov (United States)

    Moriarty, Nigel W; Liebschner, Dorothee; Klei, Herbert E; Echols, Nathaniel; Afonine, Pavel V; Headd, Jeffrey J; Poon, Billy K; Adams, Paul D

    2018-01-01

    Often similar structures need to be compared to reveal local differences throughout the entire model or between related copies within the model. Therefore, a program to compare multiple structures and enable correction any differences not supported by the density map was written within the Phenix framework (Adams et al., Acta Cryst 2010; D66:213-221). This program, called Structure Comparison, can also be used for structures with multiple copies of the same protein chain in the asymmetric unit, that is, as a result of non-crystallographic symmetry (NCS). Structure Comparison was designed to interface with Coot(Emsley et al., Acta Cryst 2010; D66:486-501) and PyMOL(DeLano, PyMOL 0.99; 2002) to facilitate comparison of large numbers of related structures. Structure Comparison analyzes collections of protein structures using several metrics, such as the rotamer conformation of equivalent residues, displays the results in tabular form and allows superimposed protein chains and density maps to be quickly inspected and edited (via the tools in Coot) for consistency, completeness and correctness. © 2017 The Protein Society.

  6. NMR structure of the protein NP-247299.1: comparison with the crystal structure

    International Nuclear Information System (INIS)

    Jaudzems, Kristaps; Geralt, Michael; Serrano, Pedro; Mohanty, Biswaranjan; Horst, Reto; Pedrini, Bill; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Comparison of the NMR and crystal structures of a protein determined using largely automated methods has enabled the interpretation of local differences in the highly similar structures. These differences are found in segments of higher B values in the crystal and correlate with dynamic processes on the NMR chemical shift timescale observed in solution. The NMR structure of the protein NP-247299.1 in solution at 313 K has been determined and is compared with the X-ray crystal structure, which was also solved in the Joint Center for Structural Genomics (JCSG) at 100 K and at 1.7 Å resolution. Both structures were obtained using the current largely automated crystallographic and solution NMR methods used by the JCSG. This paper assesses the accuracy and precision of the results from these recently established automated approaches, aiming for quantitative statements about the location of structure variations that may arise from either one of the methods used or from the different environments in solution and in the crystal. To evaluate the possible impact of the different software used for the crystallographic and the NMR structure determinations and analysis, the concept is introduced of reference structures, which are computed using the NMR software with input of upper-limit distance constraints derived from the molecular models representing the results of the two structure determinations. The use of this new approach is explored to quantify global differences that arise from the different methods of structure determination and analysis versus those that represent interesting local variations or dynamics. The near-identity of the protein core in the NMR and crystal structures thus provided a basis for the identification of complementary information from the two different methods. It was thus observed that locally increased crystallographic B values correlate with dynamic structural polymorphisms in solution, including that the solution state of the protein involves

  7. scale fish- eries: a comparison of two fishing settlements in ...

    African Journals Online (AJOL)

    is widely recognised as having a major influence on marine ecosystems ... sanal and small - scale fisheries can be difficult due to geographi- ... ever - growing coastal populations, the number of small - scale ... northern Madagascar near the city of Antsiranana, ... increasingly becoming a tourist destination, and some fish-.

  8. Experimental congruence of interval scale production from paired comparisons and ranking for image evaluation

    Science.gov (United States)

    Handley, John C.; Babcock, Jason S.; Pelz, Jeff B.

    2003-12-01

    Image evaluation tasks are often conducted using paired comparisons or ranking. To elicit interval scales, both methods rely on Thurstone's Law of Comparative Judgment in which objects closer in psychological space are more often confused in preference comparisons by a putative discriminal random process. It is often debated whether paired comparisons and ranking yield the same interval scales. An experiment was conducted to assess scale production using paired comparisons and ranking. For this experiment a Pioneer Plasma Display and Apple Cinema Display were used for stimulus presentation. Observers performed rank order and paired comparisons tasks on both displays. For each of five scenes, six images were created by manipulating attributes such as lightness, chroma, and hue using six different settings. The intention was to simulate the variability from a set of digital cameras or scanners. Nineteen subjects, (5 females, 14 males) ranging from 19-51 years of age participated in this experiment. Using a paired comparison model and a ranking model, scales were estimated for each display and image combination yielding ten scale pairs, ostensibly measuring the same psychological scale. The Bradley-Terry model was used for the paired comparisons data and the Bradley-Terry-Mallows model was used for the ranking data. Each model was fit using maximum likelihood estimation and assessed using likelihood ratio tests. Approximate 95% confidence intervals were also constructed using likelihood ratios. Model fits for paired comparisons were satisfactory for all scales except those from two image/display pairs; the ranking model fit uniformly well on all data sets. Arguing from overlapping confidence intervals, we conclude that paired comparisons and ranking produce no conflicting decisions regarding ultimate ordering of treatment preferences, but paired comparisons yield greater precision at the expense of lack-of-fit.

  9. INVESTIGATING THE FACTOR STRUCTURE OF THE BLOG ATTITUDE SCALE

    Directory of Open Access Journals (Sweden)

    Zahra SHAHSAVAR

    2010-10-01

    Full Text Available Due to the wide application of advanced technology in education, many attitude scales have been developed to evaluate learners’ attitudes toward educational tools. However, with the rapid development of emerging technologies, using blogs as one of the Web 2.0 tools is still in its infancy and few blog attitude scales have been developed yet. In view of this need, a lot of researchers like to design a new scale based on their conceptual and theoretical framework of their own study rather than using available scales. The present study reports the design and development of a blog attitude scale (BAS. The researchers developed a pool of items to capture the complexity of the blog attitude trait, selected 29 items in the content analysis, and assigned the scale comprising 29 items to 216 undergraduate students to explore the underlying structure of the BAS. In exploratory factor analysis, three factors were discovered: blog anxiety, blog desirability, and blog self-efficacy; 14 items were excluded. The extracted items were subjected to a confirmatory factor analysis which lent further support to the BAS underpinning structure.

  10. Origin of large-scale cell structure in the universe

    International Nuclear Information System (INIS)

    Zel'dovich, Y.B.

    1982-01-01

    A qualitative explanation is offered for the characteristic global structure of the universe, wherein ''black'' regions devoid of galaxies are surrounded on all sides by closed, comparatively thin, ''bright'' layers populated by galaxies. The interpretation rests on some very general arguments regarding the growth of large-scale perturbations in a cold gas

  11. Factor Structure of the Exercise Self-Efficacy Scale

    Science.gov (United States)

    Cornick, Jessica E.

    2015-01-01

    The current study utilized exercise self-efficacy ratings from undergraduate students to assess the factor structure of the Self-Efficacy to Regulate Exercise Scale (Bandura, 1997, 2006). An exploratory factor analysis (n = 759) indicated a two-factor model solution and three separate confirmatory factor analyses (n = 1,798) supported this…

  12. The Large-Scale Structure of Scientific Method

    Science.gov (United States)

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  13. Patterned Electroplating of Micrometer Scale Magnetic Structures on Glass Substrates

    NARCIS (Netherlands)

    de Vries, A.H.B.; Kanger, Johannes S.; Krenn, Bea E.; van Driel, Roel

    2004-01-01

    This paper has developed a new method of micro patterned electroplating that enables the fabrication of micrometer scale magnetic structures on glass substrates. In contrast to other methods, the process as developed here leaves the surrounding substrate area untouched: that is there is no seed

  14. Patterned electroplating of micrometer scale magnetic structures on glass substrates.

    NARCIS (Netherlands)

    de Vries, A.H.B.; Kanger, S.J.; Krenn, G.E.; van Driel, R.

    2004-01-01

    This paper has developed a new method of micro patterned electroplating that enables the fabrication of micrometer scale magnetic structures on glass substrates. In contrast to other methods, the process as developed here leaves the surrounding substrate area untouched: that is there is no seed

  15. Fractals and the Large-Scale Structure in the Universe

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 4. Fractals and the Large-Scale Structure in the Universe - Is the Cosmological Principle Valid? A K Mittal T R Seshadri. General Article Volume 7 Issue 4 April 2002 pp 39-47 ...

  16. A structured ecosystem-scale approach to marine water quality ...

    African Journals Online (AJOL)

    These, in turn, created the need for holistic and integrated frameworks within which to design and implement environmental management programmes. A structured ecosystem-scale approach for the design and implementation of marine water quality management programmes developed by the CSIR (South Africa) in ...

  17. External validation and comparison of three pediatric clinical dehydration scales.

    Directory of Open Access Journals (Sweden)

    Joshua Jauregui

    Full Text Available OBJECTIVE: To prospectively validate three popular clinical dehydration scales and overall physician gestalt in children with vomiting or diarrhea relative to the criterion standard of percent weight change with rehydration. METHODS: We prospectively enrolled a non-consecutive cohort of children ≤ 18 years of age with an acute episode of diarrhea or vomiting. Patient weight, clinical scale variables and physician clinical impression, or gestalt, were recorded before and after fluid resuscitation in the emergency department and upon hospital discharge. The percent weight change from presentation to discharge was used to calculate the degree of dehydration, with a weight change of ≥ 5% considered significant dehydration. Receiver operating characteristics (ROC curves were constructed for each of the three clinical scales and physician gestalt. Sensitivity and specificity were calculated based on the best cut-points of the ROC curve. RESULTS: We approached 209 patients, and of those, 148 were enrolled and 113 patients had complete data for analysis. Of these, 10.6% had significant dehydration based on our criterion standard. The Clinical Dehydration Scale (CDS and Gorelick scales both had an area under the ROC curve (AUC statistically different from the reference line with AUCs of 0.72 (95% CI 0.60, 0.84 and 0.71 (95% CI 0.57, 0.85 respectively. The World Health Organization (WHO scale and physician gestalt had AUCs of 0.61 (95% CI 0.45, 0.77 and 0.61 (0.44, 0.78 respectively, which were not statistically significant. CONCLUSION: The Gorelick scale and Clinical Dehydration Scale were fair predictors of dehydration in children with diarrhea or vomiting. The World Health Organization scale and physician gestalt were not helpful predictors of dehydration in our cohort.

  18. External validation and comparison of three pediatric clinical dehydration scales.

    Science.gov (United States)

    Jauregui, Joshua; Nelson, Daniel; Choo, Esther; Stearns, Branden; Levine, Adam C; Liebmann, Otto; Shah, Sachita P

    2014-01-01

    To prospectively validate three popular clinical dehydration scales and overall physician gestalt in children with vomiting or diarrhea relative to the criterion standard of percent weight change with rehydration. We prospectively enrolled a non-consecutive cohort of children ≤ 18 years of age with an acute episode of diarrhea or vomiting. Patient weight, clinical scale variables and physician clinical impression, or gestalt, were recorded before and after fluid resuscitation in the emergency department and upon hospital discharge. The percent weight change from presentation to discharge was used to calculate the degree of dehydration, with a weight change of ≥ 5% considered significant dehydration. Receiver operating characteristics (ROC) curves were constructed for each of the three clinical scales and physician gestalt. Sensitivity and specificity were calculated based on the best cut-points of the ROC curve. We approached 209 patients, and of those, 148 were enrolled and 113 patients had complete data for analysis. Of these, 10.6% had significant dehydration based on our criterion standard. The Clinical Dehydration Scale (CDS) and Gorelick scales both had an area under the ROC curve (AUC) statistically different from the reference line with AUCs of 0.72 (95% CI 0.60, 0.84) and 0.71 (95% CI 0.57, 0.85) respectively. The World Health Organization (WHO) scale and physician gestalt had AUCs of 0.61 (95% CI 0.45, 0.77) and 0.61 (0.44, 0.78) respectively, which were not statistically significant. The Gorelick scale and Clinical Dehydration Scale were fair predictors of dehydration in children with diarrhea or vomiting. The World Health Organization scale and physician gestalt were not helpful predictors of dehydration in our cohort.

  19. The factor structure of the Social Interaction Anxiety Scale and the Social Phobia Scale.

    Science.gov (United States)

    Heidenreich, Thomas; Schermelleh-Engel, Karin; Schramm, Elisabeth; Hofmann, Stefan G; Stangier, Ulrich

    2011-05-01

    The Social Interaction Anxiety Scale (SIAS) and the Social Phobia Scale (SPS) are two compendium measures that have become some of the most popular self-report scales of social anxiety. Despite their popularity, it remains unclear whether it is necessary to maintain two separate scales of social anxiety. The primary objective of the present study was to examine the factor analytic structure of both measures to determine the factorial validity of each scale. For this purpose, we administered both scales to 577 patients at the beginning of outpatient treatment. Analyzing both scales simultaneously, a CFA with two correlated factors showed a better fit to the data than a single factor model. An additional EFA with an oblique rotation on all 40 items using the WLSMV estimator further supported the two factor solution. These results suggest that the SIAS and SPS measure similar, but not identical facets of social anxiety. Thus, our findings provide support to retain the SIAS and SPS as two separate scales. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. BigSUR: large-scale structured urban reconstruction

    KAUST Repository

    Kelly, Tom; Femiani, John; Wonka, Peter; Mitra, Niloy J.

    2017-01-01

    The creation of high-quality semantically parsed 3D models for dense metropolitan areas is a fundamental urban modeling problem. Although recent advances in acquisition techniques and processing algorithms have resulted in large-scale imagery or 3D polygonal reconstructions, such data-sources are typically noisy, and incomplete, with no semantic structure. In this paper, we present an automatic data fusion technique that produces high-quality structured models of city blocks. From coarse polygonal meshes, street-level imagery, and GIS footprints, we formulate a binary integer program that globally balances sources of error to produce semantically parsed mass models with associated facade elements. We demonstrate our system on four city regions of varying complexity; our examples typically contain densely built urban blocks spanning hundreds of buildings. In our largest example, we produce a structured model of 37 city blocks spanning a total of 1,011 buildings at a scale and quality previously impossible to achieve automatically.

  1. BigSUR: large-scale structured urban reconstruction

    KAUST Repository

    Kelly, Tom

    2017-11-22

    The creation of high-quality semantically parsed 3D models for dense metropolitan areas is a fundamental urban modeling problem. Although recent advances in acquisition techniques and processing algorithms have resulted in large-scale imagery or 3D polygonal reconstructions, such data-sources are typically noisy, and incomplete, with no semantic structure. In this paper, we present an automatic data fusion technique that produces high-quality structured models of city blocks. From coarse polygonal meshes, street-level imagery, and GIS footprints, we formulate a binary integer program that globally balances sources of error to produce semantically parsed mass models with associated facade elements. We demonstrate our system on four city regions of varying complexity; our examples typically contain densely built urban blocks spanning hundreds of buildings. In our largest example, we produce a structured model of 37 city blocks spanning a total of 1,011 buildings at a scale and quality previously impossible to achieve automatically.

  2. Measuring Poverty in Southern India: A Comparison of Socio-Economic Scales Evaluated against Childhood Stunting.

    Science.gov (United States)

    Kattula, Deepthi; Venugopal, Srinivasan; Velusamy, Vasanthakumar; Sarkar, Rajiv; Jiang, Victoria; S, Mahasampath Gowri; Henry, Ankita; Deosaran, Jordanna Devi; Muliyil, Jayaprakash; Kang, Gagandeep

    2016-01-01

    Socioeconomic status (SES) scales measure poverty, wealth and economic inequality in a population to guide appropriate economic and public health policies. Measurement of poverty and comparison of material deprivation across nations is a challenge. This study compared four SES scales which have been used locally and internationally and evaluated them against childhood stunting, used as an indicator of chronic deprivation, in urban southern India. A door-to-door survey collected information on socio-demographic indicators such as education, occupation, assets, income and living conditions in a semi-urban slum area in Vellore, Tamil Nadu in southern India. A total of 7925 households were categorized by four SES scales-Kuppuswamy scale, Below Poverty Line scale (BPL), the modified Kuppuswamy scale, and the multidimensional poverty index (MDPI) and the level of agreement compared between scales. Logistic regression was used to test the association of SES scales with stunting. The Kuppuswamy, BPL, MDPI and modified Kuppuswamy scales classified 7.1%, 1%, 5.5%, and 55.3% of families as low SES respectively, indicating conservative estimation of low SES by the BPL and MDPI scales in comparison with the modified Kuppuswamy scale, which had the highest sensitivity (89%). Children from low SES classified by all scales had higher odds of stunting, but the level of agreement between scales was very poor ranging from 1%-15%. There is great non-uniformity between existing SES scales and cautious interpretation of SES scales is needed in the context of social, cultural, and economic realities.

  3. Mechanical properties and the laminate structure of Arapaima gigas scales.

    Science.gov (United States)

    Lin, Y S; Wei, C T; Olevsky, E A; Meyers, Marc A

    2011-10-01

    The Arapaima gigas scales play an important role in protecting this large Amazon basin fish against predators such as the piranha. They have a laminate composite structure composed of an external mineralized layer and internal lamellae with thickness of 50-60 μm each and composed of collagen fibers with ~1 μm diameter. The alignment of collagen fibers is consistent in each individual layer but varies from layer to layer, forming a non-orthogonal plywood structure, known as Bouligand stacking. X-ray diffraction revealed that the external surface of the scale contains calcium-deficient hydroxyapatite. EDS results confirm that the percentage of calcium is higher in the external layer. The micro-indentation hardness of the external layer (550 MPa) is considerably higher than that of the internal layer (200 MPa), consistent with its higher degree of mineralization. Tensile testing of the scales carried out in the dry and wet conditions shows that the strength and stiffness are hydration dependent. As is the case of most biological materials, the elastic modulus of the scale is strain-rate dependent. The strain-rate dependence of the elastic modulus, as expressed by the Ramberg-Osgood equation, is equal to 0.26, approximately ten times higher than that of bone. This is attributed to the higher fraction of collagen in the scales and to the high degree of hydration (30% H(2)O). Deproteinization of the scale reveals the structure of the mineral component consisting of an interconnected network of platelets with a thickness of ~50 nm and diameter of ~500 nm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. An enquiry into the method of paired comparison: reliability, scaling, and Thurstone's Law of Comparative Judgment

    Science.gov (United States)

    Thomas C. Brown; George L. Peterson

    2009-01-01

    The method of paired comparisons is used to measure individuals' preference orderings of items presented to them as discrete binary choices. This paper reviews the theory and application of the paired comparison method, describes a new computer program available for eliciting the choices, and presents an analysis of methods for scaling paired choice data to...

  5. Grammatical Structures in Cross-Cultural Comparisons

    Directory of Open Access Journals (Sweden)

    Анна Н Гладкова

    2015-12-01

    Full Text Available The article discusses how cultural information is embedded at the level of grammar and it treats grammar as inseparable from semantics and pragmatics. The study is done within the approach known as ethnosyntax. The article provides examples of cultural meaning embedded at the level of syntax relying on examples from Russian and English. In particular, it demonstrates variation in impersonal constructions in Russian and causative constructions in English. It then discusses variation in the use of grammatical structures due to the influence of cultural factors on the basis of ways of wording ‘requests’ in English and Russian. The linguistic examples in the discussion are sources from the Russian National Corpus for Russian and Collins Wordbanks Online for English. The article argues for the importance of culture-sensitive linguistic studies in language teaching.

  6. Poly aniline synthesized in pilot scale: structural and morphological characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeu, Maria Alice Carvalho; Goncalves, Emerson Sarmento, E-mail: aie.mzz@hotmail.com [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil); Gama, Adriana Medeiros [Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil); Baldan, Mauricio Ribeiro [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Faria, Lohana Komorek [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Among various conducting polymers, poly aniline (PAni) has received wide-spread attention because of its outstanding properties including simple and reversible doping–dedoping chemistry, stable electrical conduction mechanisms, high environmental stability and ease of synthesis [1]. Increasing applications require PAni at industrial scale and optimization of manufacturing processes are essential for this purpose. Since pilot scale influences hydrodynamics of the polymerizations system [2], pilot scale is an important instrument for evaluating amendments in the process. In this work, polyaniline was synthesized on pilot scale, with variation of reaction time for every synthesis, keeping the other parameters unchanged. The PAni salt first obtained was dedoped and the PAni-B (PAni in a base form, nonconductive) obtained was redoped with dodecylbenzenesulfonic acid (DBSA), when PAni-DBSA (PAni in a salt form, conductive) is obtained. The effects of synthesis conditions on the structural and morphological characteristics of PAni-B and PAni-DBSA are investigate by Raman Spectroscopy, XRD (X-ray diffractometer) and SEM (Scanning electron microscopy). Electrical conductivity was determined to redoped samples. Results were analyzed and we compare PAni forms to identifying the doping structure to PAni-DBSA by Raman spectroscopy. It was found too that reaction time can give some influence at conductivity. The XRD result showed differences in crystalline peaks of PAni-B and PAni-DBSA and this difference could be attributed mainly to the redoping process. Whereas the formation of crystals on a pilot scale may change because of effects caused by water flow, speed of polymerization could affect the formation of crystals too. The SEM pictures to PAni-B showed tiny coral reefs with globules structure and PAni-DBSA showed multilayer structure. References: 1 - Fratoddia I. et al. Sensors and Actuators B 220: 534–548 (2015); 2 - Roichman Y et al. Synthetic Metals 98

  7. Large-scale structure in the universe: Theory vs observations

    International Nuclear Information System (INIS)

    Kashlinsky, A.; Jones, B.J.T.

    1990-01-01

    A variety of observations constrain models of the origin of large scale cosmic structures. We review here the elements of current theories and comment in detail on which of the current observational data provide the principal constraints. We point out that enough observational data have accumulated to constrain (and perhaps determine) the power spectrum of primordial density fluctuations over a very large range of scales. We discuss the theories in the light of observational data and focus on the potential of future observations in providing even (and ever) tighter constraints. (orig.)

  8. Large-scale structures in turbulent Couette flow

    Science.gov (United States)

    Kim, Jung Hoon; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulation of fully developed turbulent Couette flow is performed with a large computational domain in the streamwise and spanwise directions (40 πh and 6 πh) to investigate streamwise-scale growth mechanism of the streamwise velocity fluctuating structures in the core region, where h is the channel half height. It is shown that long streamwise-scale structures (> 3 h) are highly energetic and they contribute to more than 80% of the turbulent kinetic energy and Reynolds shear stress, compared to previous studies in canonical Poiseuille flows. Instantaneous and statistical analysis show that negative-u' structures on the bottom wall in the Couette flow continuously grow in the streamwise direction due to mean shear, and they penetrate to the opposite moving wall. The geometric center of the log layer is observed in the centerline with a dominant outer peak in streamwise spectrum, and the maximum streamwise extent for structure is found in the centerline, similar to previous observation in turbulent Poiseuille flows at high Reynolds number. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure in the centerline. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  9. Biodegradation of creosote compounds: Comparison of experiments at different scales

    DEFF Research Database (Denmark)

    Broholm, K.; Arvin, Erik

    2001-01-01

    of the pyrroles on the biodegradation of benzene, and the biodegradation of benzothiophene occurs only in the presence of a primary substrate. The experiments show that some biodegradation processes of organic compounds may be common to different microorganisms.......This paper compares the results of biodegradation experiments with creosote compounds performed at different scales. The experiments include field observations, field experiments, large-scale intact laboratory column experiments, model fracture experiments, and batch experiments. Most...... of the experiments were conducted with till or ground water from the field site at Ringe on the island of Funen. Although the experiments were conducted on different scales, they revealed that some phenomena-e.g., an extensive biodegradation potential of several of the creosote compounds, the inhibitory influence...

  10. Comparison of perceived value structural models

    Directory of Open Access Journals (Sweden)

    Sunčana Piri Rajh

    2012-07-01

    Full Text Available Perceived value has been considered an important determinant of consumer shopping behavior and studied as such for a long period of time. According to one research stream, perceived value is a variable determined by perceived quality and perceived sacrifice. Another research stream suggests that the perception of value is a result of the consumer risk perception. This implies the presence of two somewhat independent research streams that are integrated by a third research stream – the one suggesting that perceived value is a result of perceived quality and perceived sacrifices while perceived (performance and financial risk mediates the relationship between perceived quality and perceived sacrifices on the one hand, and perceived value on the other. This paper describes the three approaches (models that have been mentioned. The aim of the paper is to determine which of the observed models show the most acceptable level of fit to the empirical data. Using the survey method, research involving three product categories has been conducted on a sample of Croatian consumers. Collected data was analyzed by the structural equation modeling (SEM method. Research has shown an appropriate level of fit of each observed model to the empirical data. However, the model measuring the effect of perceived risk on perceived value indicates the best level of fit, which implies that perceived performance risk and perceived financial risk are the best predictors of perceived value.

  11. A comparison of multidimensional scaling methods for perceptual mapping

    NARCIS (Netherlands)

    Bijmolt, T.H.A.; Wedel, M.

    Multidimensional scaling has been applied to a wide range of marketing problems, in particular to perceptual mapping based on dissimilarity judgments. The introduction of methods based on the maximum likelihood principle is one of the most important developments. In this article, the authors compare

  12. Comparison of thermal comfort and sensation scales : a case study

    NARCIS (Netherlands)

    Vesely, Michal; Zeiler, Wim; Li, Rongling; Loomans, M.G.L.C.; te Kulve, M.

    2015-01-01

    Thermal sensation is a conscious feeling that grades the thermal environment, while thermal comfort expresses satisfaction with this feeling. Multiple scales to quantify thermal sensation and comfort have been developed throughout the history of research on thermal comfort. In this paper, the most

  13. Geophysical mapping of complex glaciogenic large-scale structures

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie

    2013-01-01

    This thesis presents the main results of a four year PhD study concerning the use of geophysical data in geological mapping. The study is related to the Geocenter project, “KOMPLEKS”, which focuses on the mapping of complex, large-scale geological structures. The study area is approximately 100 km2...... data types and co-interpret them in order to improve our geological understanding. However, in order to perform this successfully, methodological considerations are necessary. For instance, a structure indicated by a reflection in the seismic data is not always apparent in the resistivity data...... information) can be collected. The geophysical data are used together with geological analyses from boreholes and pits to interpret the geological history of the hill-island. The geophysical data reveal that the glaciotectonic structures truncate at the surface. The directions of the structures were mapped...

  14. Spatial structure and scaling of macropores in hydrological process at small catchment scale

    Science.gov (United States)

    Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter

    2013-04-01

    During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video

  15. The limiting layer of fish scales: Structure and properties.

    Science.gov (United States)

    Arola, D; Murcia, S; Stossel, M; Pahuja, R; Linley, T; Devaraj, Arun; Ramulu, M; Ossa, E A; Wang, J

    2018-02-01

    Fish scales serve as a flexible natural armor that have received increasing attention across the materials community. Most efforts in this area have focused on the composite structure of the predominately organic elasmodine, and limited work addresses the highly mineralized external portion known as the Limiting Layer (LL). This coating serves as the first barrier to external threats and plays an important role in resisting puncture. In this investigation the structure, composition and mechanical behavior of the LL were explored for three different fish, including the arapaima (Arapaima gigas), the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio). The scales of these three fish have received the most attention within the materials community. Features of the LL were evaluated with respect to anatomical position to distinguish site-specific functional differences. Results show that there are significant differences in the surface morphology of the LL from posterior and anterior regions in the scales, and between the three fish species. The calcium to phosphorus ratio and the mineral to collagen ratios of the LL are not equivalent among the three fish. Results from nanoindentation showed that the LL of tarpon scales is the hardest, followed by the carp and the arapaima and the differences in hardness are related to the apatite structure, possibly induced by the growth rate and environment of each fish. The natural armor of fish, turtles and other animals, has become a topic of substantial scientific interest. The majority of investigations have focused on the more highly organic layer known as the elasmodine. The present study addresses the highly mineralized external portion known as the Limiting Layer (LL). Specifically, the structure, composition and mechanical behavior of the LL were explored for three different fish, including the arapaima (Arapaima gigas), the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio). Results show that there are

  16. Lagrangian space consistency relation for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-01-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space

  17. Scale and structure of capitated physician organizations in California.

    Science.gov (United States)

    Rosenthal, M B; Frank, R G; Buchanan, J L; Epstein, A M

    2001-01-01

    Physician organizations in California broke new ground in the 1980s by accepting capitated contracts and taking on utilization management functions. In this paper we present new data that document the scale, structure, and vertical affiliations of physician organizations that accept capitation in California. We provide information on capitated enrollment, the share of revenue derived by physician organizations from capitation contracts, and the scope of risk sharing with health maintenance organizations (HMOs). Capitation contracts and risk sharing dominate payment arrangements with HMOs. Physician organizations appear to have responded to capitation by affiliating with hospitals and management companies, adopting hybrid organizational structures, and consolidating into larger entities.

  18. Small Scales Structure of MHD Turbulence, Tubes or Ribbons?

    Science.gov (United States)

    Verdini, A.; Grappin, R.; Alexandrova, O.; Lion, S.

    2017-12-01

    Observations in the solar wind indicate that turbulent eddies change their anisotropy with scales [1]. At large scales eddies are elongated in direction perpendicular to the mean-field axis. This is the result of solar wind expansion that affects both the anisotropy and single-spacecraft measurments [2,3]. At small scales one recovers the anisotropy expected in strong MHD turbulence and constrained by the so-called critical balance: eddies are elongated along the mean-field axis. However, the actual eddy shape is intermediate between tubes and ribbons, preventing us to discriminate between two concurrent theories that predict 2D axysimmetric anisotropy [4] or full 3D anisotropy [5]. We analyse 10 years of WIND data and apply a numerically-derived criterion to select intervals in which solar wind expansion is expected to be negligible. By computing the anisotropy of structure functions with respect to the local mean field we obtain for the first time scaling relations that are in agreement with full 3D anisotropy, i.e. ribbons-like structures. However, we cannot obtain the expected scaling relations for the alignment angle which, according to the theory, is physically responsible for the departure from axisymmetry. In addition, a further change of anisotropy occurs well above the proton scales. We discuss the implication of our findings and how numerical simulations can help interpreting the observed spectral anisotropy. [1] Chen et al., ApJ, 768:120, 2012 [2] Verdini & Grappin, ApJL, 808:L34, 2015 [3] Vech & Chen, ApJL, 832:L16, 2016 [4] Goldreich & Shridar, ApJ, 438:763, 1995 [5] Boldyrev, ApJL, 626:L37, 2005

  19. Feelings about culture scales: development, factor structure, reliability, and validity.

    Science.gov (United States)

    Maffini, Cara S; Wong, Y Joel

    2015-04-01

    Although measures of cultural identity, values, and behavior exist in the multicultural psychological literature, there is currently no measure that explicitly assesses ethnic minority individuals' positive and negative affect toward culture. Therefore, we developed 2 new measures called the Feelings About Culture Scale--Ethnic Culture and Feelings About Culture Scale--Mainstream American Culture and tested their psychometric properties. In 6 studies, we piloted the measures, conducted factor analyses to clarify their factor structure, and examined reliability and validity. The factor structure revealed 2 dimensions reflecting positive and negative affect for each measure. Results provided evidence for convergent, discriminant, criterion-related, and incremental validity as well as the reliability of the scales. The Feelings About Culture Scales are the first known measures to examine both positive and negative affect toward an individual's ethnic culture and mainstream American culture. The focus on affect captures dimensions of psychological experiences that differ from cognitive and behavioral constructs often used to measure cultural orientation. These measures can serve as a valuable contribution to both research and counseling by providing insight into the nuanced affective experiences ethnic minority individuals have toward culture. (c) 2015 APA, all rights reserved).

  20. FACTOR STRUCTURE OF THE BRIEF NEGATIVE SYMPTOM SCALE

    OpenAIRE

    Strauss, Gregory P.; Hong, L. Elliot; Gold, James M.; Buchanan, Robert W.; McMahon, Robert P.; Keller, William R.; Fischer, Bernard A.; Catalano, Lauren T.; Culbreth, Adam J.; Carpenter, William T.; Kirkpatrick, Brian

    2012-01-01

    The current study examined the factor structure of the Brief Negative Symptom Scale (BNSS), a next-generation negative symptom rating instrument developed in response to the NIMH-sponsored Consensus Development Conference on Negative Symptoms. Participants included 146 individuals with a DSM-IV diagnosis of schizophrenia or schizoaffective disorder. Principal axis factoring indicated two distinct factors explaining 68.7% of the variance. Similar to previous findings, the factors reflected mot...

  1. [French version of structured interviews for the Glasgow Outcome Scale: guidelines and first studies of validation].

    Science.gov (United States)

    Fayol, P; Carrière, H; Habonimana, D; Preux, P-M; Dumond, J-J

    2004-05-01

    The Glasgow Outcome Scale (GOS) is the most widely used outcome measure after traumatic brain injury. The GOS's reliability is improved by a structured interview. The two aims of this paper were to present a French version of the structured interview for the five-point Glasgow Outcome Scale and the extended eight-point GOS (GOSE) and to study their validity. The French version was developed using back-translation. Concurrent validity was studied by comparison with GOS/GOSE without structured interview. Inter-rater reliability was studied by comparison between assignments made by untrained head injury observers and trained head injury observers. Strength of agreement between ratings was assessed using the Kappa statistic. The French version and the guidelines for their use are given in the Appendix. Ratings were made for 25 brain injured patients and 25 relatives. Concurrent validity was good and inter-rater reliability was excellent. Using the structured interview for the GOS will give a more reliable assessment of the outcome of brain injured patients by French-speaking rehabilitation teams and a more precise assessment with the extended GOS.

  2. Full scale dynamic testing of Kozloduy NPP unit 5 structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1999-01-01

    As described in this report, the Kozloduy NPP western site has been subjected to low level earthquake-like ground shaking - through appropriately devised underground explosions - and the resulting dynamic response of the NPP reactor Unit 5 important structures appropriately measured and digitally recorded. In-situ free-field response was measured concurrently more than 100 m aside the main structures of interest. The collected experimental data provide reference information on the actual dynamic characteristics of the Kozloduy NPPs main structures, as well as give some useful indications on the dynamic soil-structure interaction effects for the case of low level excitation. Performing the present full-scale dynamic structural testing activities took advantage of the experience gained by ISMES during similar tests, lately performed in Italy and abroad (in particular, at the Paks NPP in 1994). The IAEA promoted dynamic testing of the Kozloduy NPP Unit 5 by means of pertinently designed buried explosion-induced ground motions which has provided a large amount of data on the dynamic structural response of its major structures. In the present report, the conducted investigation is described and the acquired digital data presented. A series of preliminary analyses were undertaken for examining in detail the ground excitation levels that were produced by these weak earthquake simulation experiments, as well as for inferring some structural characteristics and behaviour information from the collected data. These analyses ascertained the high quality of the collected digital data. Presumably due to soil-structure dynamic interaction effects, reduced excitation levels were observed at the reactor building foundation raft level with respect to the concurrent free-field ground motions. measured at a 140 m distance from the reactor building centre. Further more detailed and systematic analyses are worthwhile to be performed for extracting more complete information about the

  3. The scale of population structure in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Alexander Platt

    2010-02-01

    Full Text Available The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene flow. This paper examines the detailed global population structure of Arabidopsis thaliana. Using a set of 5,707 plants collected from around the globe and genotyped at 149 SNPs, we show that while A. thaliana as a species self-fertilizes 97% of the time, there is considerable variation among local groups. This level of outcrossing greatly limits observed heterozygosity but is sufficient to generate considerable local haplotypic diversity. We also find that in its native Eurasian range A. thaliana exhibits continuous isolation by distance at every geographic scale without natural breaks corresponding to classical notions of populations. By contrast, in North America, where it exists as an exotic species, A. thaliana exhibits little or no population structure at a continental scale but local isolation by distance that extends hundreds of km. This suggests a pattern for the development of isolation by distance that can establish itself shortly after an organism fills a new habitat range. It also raises questions about the general applicability of many standard population genetics models. Any model based on discrete clusters of interchangeable individuals will be an uneasy fit to organisms like A. thaliana which exhibit continuous isolation by distance on many scales.

  4. Impact of small-scale structures on estuarine circulation

    Science.gov (United States)

    Liu, Zhuo; Zhang, Yinglong J.; Wang, Harry V.; Huang, Hai; Wang, Zhengui; Ye, Fei; Sisson, Mac

    2018-05-01

    We present a novel and challenging application of a 3D estuary-shelf model to the study of the collective impact of many small-scale structures (bridge pilings of 1 m × 2 m in size) on larger-scale circulation in a tributary (James River) of Chesapeake Bay. We first demonstrate that the model is capable of effectively transitioning grid resolution from 400 m down to 1 m near the pilings without introducing undue numerical artifact. We then show that despite their small sizes and collectively small area as compared to the total channel cross-sectional area, the pilings exert a noticeable impact on the large-scale circulation, and also create a rich structure of vortices and wakes around the pilings. As a result, the water quality and local sedimentation patterns near the bridge piling area are likely to be affected as well. However, when evaluating over the entire waterbody of the project area, the near field effects are weighed with the areal percentage which is small compared to that for the larger unaffected area, and therefore the impact on the lower James River as a whole becomes relatively insignificant. The study highlights the importance of the use of high resolution in assessing the near-field impact of structures.

  5. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  6. Universal divergenceless scaling between structural relaxation and caged dynamics in glass-forming systems.

    Science.gov (United States)

    Ottochian, A; De Michele, C; Leporini, D

    2009-12-14

    On approaching the glass transition, the microscopic kinetic unit spends increasing time rattling in the cage of the first neighbors, whereas its average escape time, the structural relaxation time tau(alpha), increases from a few picoseconds up to thousands of seconds. A thorough study of the correlation between tau(alpha) and the rattling amplitude, expressed by the Debye-Waller factor, was carried out. Molecular-dynamics simulations of both a model polymer system and a binary mixture were performed by varying the temperature, the density rho, the potential and the polymer length to consider the structural relaxation as well as both the rotational and the translation diffusion. The present simulations, together with MD studies on other glassformers, evidence the scaling between the structural relaxation and the caged dynamics. An analytic model of the master curve is developed in terms of two characteristic length scales a(2) (1/2) and sigma(a(2) ) (1/2), pertaining to the distance to be covered by the kinetic unit to reach a transition state. The model does not imply tau(alpha) divergences. The comparison with the experiments supports the numerical evidence over a range of relaxation times as wide as about eighteen orders of magnitude. A comparison with other scaling and correlation procedures is presented. In particular, the density scaling of the length scales a(2) (1/2), sigma(a(2) ) (1/2) proportional to rho(-1/3) is shown to be not supported by the present simulations. The study suggests that the equilibrium and the moderately supercooled states of the glassformers possess key information on the huge slowing-down of their relaxation close to the glass transition. The latter, according to the present simulations, exhibits features consistent with the Lindemann melting criterion and the free-volume model.

  7. Using the Karolinska Scales of Personality on male juvenile delinquents: relationships between scales and factor structure.

    Science.gov (United States)

    Dåderman, Anna M; Hellström, Ake; Wennberg, Peter; Törestad, Bertil

    2005-01-01

    The aim of the present study was to investigate relationships between scales from the Karolinska Scales of Personality (KSP) and the factor structure of the KSP in a sample of male juvenile delinquents. The KSP was administered to a group of male juvenile delinquents (n=55, mean age 17 years; standard deviation=1.2) from four Swedish national correctional institutions for serious offenders. As expected, the KSP showed appropriate correlations between the scales. Factor analysis (maximum likelihood) arrived at a four-factor solution in this sample, which is in line with previous research performed in a non-clinical sample of Swedish males. More research is needed in a somewhat larger sample of juvenile delinquents in order to confirm the present results regarding the factor solution.

  8. Prehospital Acute Stroke Severity Scale to Predict Large Artery Occlusion: Design and Comparison With Other Scales.

    Science.gov (United States)

    Hastrup, Sidsel; Damgaard, Dorte; Johnsen, Søren Paaske; Andersen, Grethe

    2016-07-01

    We designed and validated a simple prehospital stroke scale to identify emergent large vessel occlusion (ELVO) in patients with acute ischemic stroke and compared the scale to other published scales for prediction of ELVO. A national historical test cohort of 3127 patients with information on intracranial vessel status (angiography) before reperfusion therapy was identified. National Institutes of Health Stroke Scale (NIHSS) items with the highest predictive value of occlusion of a large intracranial artery were identified, and the most optimal combination meeting predefined criteria to ensure usefulness in the prehospital phase was determined. The predictive performance of Prehospital Acute Stroke Severity (PASS) scale was compared with other published scales for ELVO. The PASS scale was composed of 3 NIHSS scores: level of consciousness (month/age), gaze palsy/deviation, and arm weakness. In derivation of PASS 2/3 of the test cohort was used and showed accuracy (area under the curve) of 0.76 for detecting large arterial occlusion. Optimal cut point ≥2 abnormal scores showed: sensitivity=0.66 (95% CI, 0.62-0.69), specificity=0.83 (0.81-0.85), and area under the curve=0.74 (0.72-0.76). Validation on 1/3 of the test cohort showed similar performance. Patients with a large artery occlusion on angiography with PASS ≥2 had a median NIHSS score of 17 (interquartile range=6) as opposed to PASS <2 with a median NIHSS score of 6 (interquartile range=5). The PASS scale showed equal performance although more simple when compared with other scales predicting ELVO. The PASS scale is simple and has promising accuracy for prediction of ELVO in the field. © 2016 American Heart Association, Inc.

  9. Finite element modeling of multilayered structures of fish scales.

    Science.gov (United States)

    Chandler, Mei Qiang; Allison, Paul G; Rodriguez, Rogie I; Moser, Robert D; Kennedy, Alan J

    2014-12-01

    The interlinked fish scales of Atractosteus spatula (alligator gar) and Polypterus senegalus (gray and albino bichir) are effective multilayered armor systems for protecting fish from threats such as aggressive conspecific interactions or predation. Both types of fish scales have multi-layered structures with a harder and stiffer outer layer, and softer and more compliant inner layers. However, there are differences in relative layer thickness, property mismatch between layers, the property gradations and nanostructures in each layer. The fracture paths and patterns of both scales under microindentation loads were different. In this work, finite element models of fish scales of A. spatula and P. senegalus were built to investigate the mechanics of their multi-layered structures under penetration loads. The models simulate a rigid microindenter penetrating the fish scales quasi-statically to understand the observed experimental results. Study results indicate that the different fracture patterns and crack paths observed in the experiments were related to the different stress fields caused by the differences in layer thickness, and spatial distribution of the elastic and plastic properties in the layers, and the differences in interface properties. The parametric studies and experimental results suggest that smaller fish such as P. senegalus may have adopted a thinner outer layer for light-weighting and improved mobility, and meanwhile adopted higher strength and higher modulus at the outer layer, and stronger interface properties to prevent ring cracking and interface cracking, and larger fish such as A. spatula and Arapaima gigas have lower strength and lower modulus at the outer layers and weaker interface properties, but have adopted thicker outer layers to provide adequate protection against ring cracking and interface cracking, possibly because weight is less of a concern relative to the smaller fish such as P. senegalus. Published by Elsevier Ltd.

  10. Nonlinear evolution of large-scale structure in the universe

    International Nuclear Information System (INIS)

    Frenk, C.S.; White, S.D.M.; Davis, M.

    1983-01-01

    Using N-body simulations we study the nonlinear development of primordial density perturbation in an Einstein--de Sitter universe. We compare the evolution of an initial distribution without small-scale density fluctuations to evolution from a random Poisson distribution. These initial conditions mimic the assumptions of the adiabatic and isothermal theories of galaxy formation. The large-scale structures which form in the two cases are markedly dissimilar. In particular, the correlation function xi(r) and the visual appearance of our adiabatic (or ''pancake'') models match better the observed distribution of galaxies. This distribution is characterized by large-scale filamentary structure. Because the pancake models do not evolve in a self-similar fashion, the slope of xi(r) steepens with time; as a result there is a unique epoch at which these models fit the galaxy observations. We find the ratio of cutoff length to correlation length at this time to be lambda/sub min//r 0 = 5.1; its expected value in a neutrino dominated universe is 4(Ωh) -1 (H 0 = 100h km s -1 Mpc -1 ). At early epochs these models predict a negligible amplitude for xi(r) and could explain the lack of measurable clustering in the Lyα absorption lines of high-redshift quasars. However, large-scale structure in our models collapses after z = 2. If this collapse precedes galaxy formation as in the usual pancake theory, galaxies formed uncomfortably recently. The extent of this problem may depend on the cosmological model used; the present series of experiments should be extended in the future to include models with Ω<1

  11. Dark matter self-interactions and small scale structure

    Science.gov (United States)

    Tulin, Sean; Yu, Hai-Bo

    2018-02-01

    We review theories of dark matter (DM) beyond the collisionless paradigm, known as self-interacting dark matter (SIDM), and their observable implications for astrophysical structure in the Universe. Self-interactions are motivated, in part, due to the potential to explain long-standing (and more recent) small scale structure observations that are in tension with collisionless cold DM (CDM) predictions. Simple particle physics models for SIDM can provide a universal explanation for these observations across a wide range of mass scales spanning dwarf galaxies, low and high surface brightness spiral galaxies, and clusters of galaxies. At the same time, SIDM leaves intact the success of ΛCDM cosmology on large scales. This report covers the following topics: (1) small scale structure issues, including the core-cusp problem, the diversity problem for rotation curves, the missing satellites problem, and the too-big-to-fail problem, as well as recent progress in hydrodynamical simulations of galaxy formation; (2) N-body simulations for SIDM, including implications for density profiles, halo shapes, substructure, and the interplay between baryons and self-interactions; (3) semi-analytic Jeans-based methods that provide a complementary approach for connecting particle models with observations; (4) merging systems, such as cluster mergers (e.g., the Bullet Cluster) and minor infalls, along with recent simulation results for mergers; (5) particle physics models, including light mediator models and composite DM models; and (6) complementary probes for SIDM, including indirect and direct detection experiments, particle collider searches, and cosmological observations. We provide a summary and critical look for all current constraints on DM self-interactions and an outline for future directions.

  12. Thermodynamic comparison of three small-scale gas liquefaction systems

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Rothuizen, Erasmus Damgaard; Markussen, Wiebke Brix

    2017-01-01

    . The present work investigates three configurations suitable for small-scale applications because of their simplicity and compactness: the single-mixed refrigerant, single and dual reverse Brayton cycles. The impact of different feed compositions and refrigerant properties is analysed. A detailed assessment...... to be more efficient (1000-2000 kJ/kgLNG) than expander-based ones (2500-5000 kJ/kgLNG) over larger ranges of operating conditions, at the expense of a greater system complexity and higher thermal conductance (250-500kW/K against 80-160 kW/K). The results show that the use of different thermodynamic models...

  13. Dimuon scaling comparison at 44 and 62 GeV

    International Nuclear Information System (INIS)

    Antreasyan, D.; Becker, U.; Bellettini, G.; Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

    1982-01-01

    Measurements of pp→μ + μ - +X at √s = 44 and 62 GeV are compared. The data are taken under identical conditions utilizing clean proton-proton collisions from the CERN-intersecting storage rings and confirm scaling to 5%. The observed μ + μ - yield is a factor of 1.6 +- 0.2 larger than estimated from a simple parton model but is consistent with QCD. The P/sub T/ dependence of the muon pairs agrees well with expectations from QCD

  14. Complex modular structure of large-scale brain networks

    Science.gov (United States)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  15. Structural Quality of Service in Large-Scale Networks

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup

    , telephony and data. To meet the requirements of the different applications, and to handle the increased vulnerability to failures, the ability to design robust networks providing good Quality of Service is crucial. However, most planning of large-scale networks today is ad-hoc based, leading to highly...... complex networks lacking predictability and global structural properties. The thesis applies the concept of Structural Quality of Service to formulate desirable global properties, and it shows how regular graph structures can be used to obtain such properties.......Digitalization has created the base for co-existence and convergence in communications, leading to an increasing use of multi service networks. This is for example seen in the Fiber To The Home implementations, where a single fiber is used for virtually all means of communication, including TV...

  16. Turbulence Scaling Comparisons in the Ocean Surface Boundary Layer

    Science.gov (United States)

    Esters, L.; Breivik, Ø.; Landwehr, S.; ten Doeschate, A.; Sutherland, G.; Christensen, K. H.; Bidlot, J.-R.; Ward, B.

    2018-03-01

    Direct observations of the dissipation rate of turbulent kinetic energy, ɛ, under open ocean conditions are limited. Consequently, our understanding of what chiefly controls dissipation in the open ocean, and its functional form with depth, is poorly constrained. In this study, we report direct open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during five different cruises in the Atlantic Ocean. We then combine these data with ocean-atmosphere flux measurements and wave information in order to evaluate existing turbulence scaling theories under a diverse set of open ocean conditions. Our results do not support the presence of a "breaking" or a "transition layer," which has been previously suggested. Instead, ɛ decays as |z|-1.29 over the depth interval, which was previously defined as "transition layer," and as |z|-1.15 over the mixing layer. This depth dependency does not significantly vary between nonbreaking or breaking wave conditions. A scaling relationship based on the friction velocity, the wave age, and the significant wave height describes the observations best for daytime conditions. For conditions during which convection is important, it is necessary to take buoyancy forcing into account.

  17. Origin of the large scale structures of the universe

    International Nuclear Information System (INIS)

    Oaknin, David H.

    2004-01-01

    We revise the statistical properties of the primordial cosmological density anisotropies that, at the time of matter-radiation equality, seeded the gravitational development of large scale structures in the otherwise homogeneous and isotropic Friedmann-Robertson-Walker flat universe. Our analysis shows that random fluctuations of the density field at the same instant of equality and with comoving wavelength shorter than the causal horizon at that time can naturally account, when globally constrained to conserve the total mass (energy) of the system, for the observed scale invariance of the anisotropies over cosmologically large comoving volumes. Statistical systems with similar features are generically known as glasslike or latticelike. Obviously, these conclusions conflict with the widely accepted understanding of the primordial structures reported in the literature, which requires an epoch of inflationary cosmology to precede the standard expansion of the universe. The origin of the conflict must be found in the widespread, but unjustified, claim that scale invariant mass (energy) anisotropies at the instant of equality over comoving volumes of cosmological size, larger than the causal horizon at the time, must be generated by fluctuations in the density field with comparably large comoving wavelength

  18. Spatial structure of ion-scale plasma turbulence

    Directory of Open Access Journals (Sweden)

    Yasuhito eNarita

    2014-03-01

    Full Text Available Spatial structure of small-scale plasma turbulence is studied under different conditions of plasma parameter beta directly in the three-dimensional wave vector domain. Two independent approaches are taken: observations of turbulent magnetic field fluctuations in the solar wind measured by four Cluster spacecraft, and direct numerical simulations of plasma turbulence using the hybrid code AIKEF, both resolving turbulence on the ion kinetic scales. The two methods provide independently evidence of wave vector anisotropy as a function of beta. Wave vector anisotropy is characterized primarily by an extension of the energy spectrum in the direction perpendicular to the large-scale magnetic field. The spectrum is strongly anisotropic at lower values of beta, and is more isotropic at higher values of beta. Cluster magnetic field data analysis also provides evidence of axial asymmetry of the spectrum in the directions around the large-scale field. Anisotropy is interpreted as filament formation as plasma evolves into turbulence. Axial asymmetry is interpreted as the effect of radial expansion of the solar wind from the corona.

  19. DEMNUni: massive neutrinos and the bispectrum of large scale structures

    Science.gov (United States)

    Ruggeri, Rossana; Castorina, Emanuele; Carbone, Carmelita; Sefusatti, Emiliano

    2018-03-01

    The main effect of massive neutrinos on the large-scale structure consists in a few percent suppression of matter perturbations on all scales below their free-streaming scale. Such effect is of particular importance as it allows to constraint the value of the sum of neutrino masses from measurements of the galaxy power spectrum. In this work, we present the first measurements of the next higher-order correlation function, the bispectrum, from N-body simulations that include massive neutrinos as particles. This is the simplest statistics characterising the non-Gaussian properties of the matter and dark matter halos distributions. We investigate, in the first place, the suppression due to massive neutrinos on the matter bispectrum, comparing our measurements with the simplest perturbation theory predictions, finding the approximation of neutrinos contributing at quadratic order in perturbation theory to provide a good fit to the measurements in the simulations. On the other hand, as expected, a linear approximation for neutrino perturbations would lead to Script O(fν) errors on the total matter bispectrum at large scales. We then attempt an extension of previous results on the universality of linear halo bias in neutrino cosmologies, to non-linear and non-local corrections finding consistent results with the power spectrum analysis.

  20. Pool swell sub-scale testing and code comparison

    International Nuclear Information System (INIS)

    Elisson, K.

    1981-01-01

    The main objective of the experiment was to investigate the pool swell dynamics in general and the forces on the lowered central part of the diaphragm between drywell and wetwell in particular. Apart from the high speed camera pressure transducers and strain gauges were used to monitor the transient. Data was recorded on a 14 channel FM recorder and then digitalised and plotted. In total more than one hundred tests were performed including parametric variations of for example geometry, break flow, initial drywell pressure and initial water level. In parallel to this experiment pool swell calculations have been performed with the computer codes COPTA and STEALTH. COPTA which is a lumped mass code for pressure suppression containment analysis has a slug pool swell mode. STEALTH which is a general purpose lagrangian hydrodynamics code has been used in a 2-D axisymmetric version. The STEALTH code has been used to calculate the radial variations in the vertical displacement and velocity of the pool surface and to predict the load on the lowered central part of the diaphragm. A comparison between the calculations and the experimental data indicates that both codes are sufficiently correct in their description of the pool swell transient. (orig.)

  1. Dynamical Mechanism of Scaling Behaviors in Multifractal Structure

    Science.gov (United States)

    Kim, Kyungsik; Jung, Jae Won; Kim, Soo Yong

    2010-03-01

    The pattern of stone distribution in the game of Go (Baduk, Weiqi, or Igo) can be treated in the mathematical and physical languages of multifractals. The concepts of fractals and multifractals have relevance to many fields of science and even arts. A significant and fascinating feature of this approach is that it provides a proper interpretation for the pattern of the two-colored (black and white) stones in terms of the numerical values of the generalized dimension and the scaling exponent. For our case, these statistical quantities can be estimated numerically from the black, white, and mixed stones, assuming the excluded edge effect that the cell form of the Go game has the self-similar structure. The result from the multifractal structure allows us to find a definite and reliable fractal dimension, and it precisely verifies that the fractal dimension becomes larger, as the cell of grids increases. We also find the strength of multifractal structures from the difference in the scaling exponents in the black, white, and mixed stones.

  2. Kinetic Scale Structure of Low-frequency Waves and Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States); Araneda, Jaime A., E-mail: rlopezh@umd.edu, E-mail: yoonp@umd.edu [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile)

    2017-08-10

    The dissipation of solar wind turbulence at kinetic scales is believed to be important for the heating of the corona and for accelerating the wind. The linear Vlasov kinetic theory is a useful tool for identifying various wave modes, including kinetic Alfvén, fast magnetosonic/whistler, and ion-acoustic (or kinetic slow), and their possible roles in the dissipation. However, the kinetic mode structure in the vicinity of ion-cyclotron modes is not clearly understood. The present paper aims to further elucidate the structure of these low-frequency waves by introducing discrete particle effects through hybrid simulations and Klimontovich formalism of spontaneous emission theory. The theory and simulation of spontaneously emitted low-frequency fluctuations are employed to identify and distinguish the detailed mode structures associated with ion-Bernstein modes versus quasi-modes. The spontaneous emission theory and simulation also confirm the findings of the Vlasov theory in that the kinetic Alfvén waves can be defined over a wide range of frequencies, including the proton cyclotron frequency and its harmonics, especially for high-beta plasmas. This implies that these low-frequency modes may play predominant roles even in the fully kinetic description of kinetic scale turbulence and dissipation despite the fact that cyclotron harmonic and Bernstein modes may also play important roles in wave–particle interactions.

  3. Divergence of perturbation theory in large scale structures

    Science.gov (United States)

    Pajer, Enrico; van der Woude, Drian

    2018-05-01

    We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.

  4. Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.; Walkington, P.

    1999-02-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that

  5. Measuring Poverty in Southern India: A Comparison of Socio-Economic Scales Evaluated against Childhood Stunting.

    Directory of Open Access Journals (Sweden)

    Deepthi Kattula

    Full Text Available Socioeconomic status (SES scales measure poverty, wealth and economic inequality in a population to guide appropriate economic and public health policies. Measurement of poverty and comparison of material deprivation across nations is a challenge. This study compared four SES scales which have been used locally and internationally and evaluated them against childhood stunting, used as an indicator of chronic deprivation, in urban southern India.A door-to-door survey collected information on socio-demographic indicators such as education, occupation, assets, income and living conditions in a semi-urban slum area in Vellore, Tamil Nadu in southern India. A total of 7925 households were categorized by four SES scales-Kuppuswamy scale, Below Poverty Line scale (BPL, the modified Kuppuswamy scale, and the multidimensional poverty index (MDPI and the level of agreement compared between scales. Logistic regression was used to test the association of SES scales with stunting.The Kuppuswamy, BPL, MDPI and modified Kuppuswamy scales classified 7.1%, 1%, 5.5%, and 55.3% of families as low SES respectively, indicating conservative estimation of low SES by the BPL and MDPI scales in comparison with the modified Kuppuswamy scale, which had the highest sensitivity (89%. Children from low SES classified by all scales had higher odds of stunting, but the level of agreement between scales was very poor ranging from 1%-15%.There is great non-uniformity between existing SES scales and cautious interpretation of SES scales is needed in the context of social, cultural, and economic realities.

  6. Cosmological parameters from large scale structure - geometric versus shape information

    CERN Document Server

    Hamann, Jan; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y Y

    2010-01-01

    The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\

  7. Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    International Nuclear Information System (INIS)

    Alvarez, Marcello; Baldauf, T.; Bond, J. Richard; Dalal, N.; Putter, R. D.; Dore, O.; Green, Daniel; Hirata, Chris; Huang, Zhiqi; Huterer, Dragan; Jeong, Donghui; Johnson, Matthew C.; Krause, Elisabeth; Loverde, Marilena; Meyers, Joel; Meeburg, Daniel; Senatore, Leonardo; Shandera, Sarah; Silverstein, Eva; Slosar, Anze; Smith, Kendrick; Zaldarriaga, Matias; Assassi, Valentin; Braden, Jonathan; Hajian, Amir; Kobayashi, Takeshi; Stein, George; Engelen, Alexander van

    2014-01-01

    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large-scale structure is, however, from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude floc\

  8. Factor structure of the Brief Negative Symptom Scale.

    Science.gov (United States)

    Strauss, Gregory P; Hong, L Elliot; Gold, James M; Buchanan, Robert W; McMahon, Robert P; Keller, William R; Fischer, Bernard A; Catalano, Lauren T; Culbreth, Adam J; Carpenter, William T; Kirkpatrick, Brian

    2012-12-01

    The current study examined the factor structure of the Brief Negative Symptom Scale (BNSS), a next-generation negative symptom rating instrument developed in response to the NIMH-sponsored Consensus Development Conference on Negative Symptoms. Participants included 146 individuals with a DSM-IV diagnosis of schizophrenia or schizoaffective disorder. Principal axis factoring indicated two distinct factors explaining 68.7% of the variance. Similar to previous findings, the factors reflected motivation and pleasure and emotional expressivity. These findings provide further support for the construct validity of the BNSS, and for the existence of these two negative symptom factors. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Solving large scale structure in ten easy steps with COLA

    Energy Technology Data Exchange (ETDEWEB)

    Tassev, Svetlin [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Zaldarriaga, Matias [School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540 (United States); Eisenstein, Daniel J., E-mail: stassev@cfa.harvard.edu, E-mail: matiasz@ias.edu, E-mail: deisenstein@cfa.harvard.edu [Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 10{sup 9}M{sub s}un/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10{sup 11}M{sub s}un/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.

  10. Measuring the impostor phenomenon: a comparison of Clance's IP Scale and Harvey's I-P Scale.

    Science.gov (United States)

    Holmes, S W; Kertay, L; Adamson, L B; Holland, C L; Clance, P R

    1993-02-01

    Many of the discrepancies reported to date in empirical investigations of the impostor phenomenon (IP) may be due in part to (a) the use of different methods for identifying individuals suffering from this syndrome (impostors), (b) the common use of a median split procedure to classify subjects and (c) the fact that subjects in many studies were drawn from impostor-prone samples. In this study, we compared the scores of independently identified impostors and nonimpostors on two instruments designed to measure the IP: Harvey's I-P Scale and Clance's IP Scale. The results suggest that Clance's scale may be the more sensitive and reliable instrument. Cutoff score suggestions for both instruments are offered.

  11. The Multifractal Structure of Small-Scale Artificial Ionospheric Turbulence

    Directory of Open Access Journals (Sweden)

    Vybornov F. I.

    2013-03-01

    Full Text Available We present the results of investigation of a multifractal structure of the artificial ionospheric turbulence when the midlatitude ionosphere is affected by high-power radio waves. The experimental studies were performed on the basis of the SURA heating facility with the help of radio sounding of the disturbed region of ionospheric plasma by signals from the Earth’s orbital satellities. In the case of vertical radio sounding of the disturbed ionosphere region, the measured multipower and generalized multifractal spectra of turbulence coincide well with similar multifractal characteristics of the ionosperic turbulence under the natural conditions. In the case of oblique sounding of the disturbance region at small angles between the line of sight to the satellite and the direction of the Earth’s magnetic field, a nonuniform structure of the small-scale turbulence with a relatively narrow multipower spectrum and small variations in the generalized multifractal spectrum of the electron density was detected.

  12. Full scale dynamic testing of Paks nuclear power plant structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1995-01-01

    This report refers to the full-scale dynamic structural testing activities that have been performed in December 1994 at the Paks (H) Nuclear Power Plant, within the framework of: the IAEA Coordinated research Programme 'Benchmark Study for the Seismic Analysis and Testing of WWER-type Nuclear Power Plants, and the nuclear research activities of ENEL-WR/YDN, the Italian National Electricity Board in Rome. The specific objective of the conducted investigation was to obtain valid data on the dynamic behaviour of the plant's major constructions, under normal operating conditions, for enabling an assessment of their actual seismic safety to be made. As described in more detail hereafter, the Paks NPP site has been subjected to low level earthquake like ground shaking, through appropriately devised underground explosions, and the dynamic response of the plant's 1 st reactor unit important structures was appropriately measured and digitally recorded. In-situ free field response was measured concurrently and, moreover, site-specific geophysical and seismological data were simultaneously acquired too. The above-said experimental data is to provide basic information on the geophysical and seismological characteristics of the Paks NPP site, together with useful reference information on the true dynamic characteristics of its main structures and give some indications on the actual dynamic soil-structure interaction effects for the case of low level excitation

  13. Systematic renormalization of the effective theory of Large Scale Structure

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Mirbabayi, Mehrdad; Pajer, Enrico

    2016-01-01

    A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k 2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.

  14. Inflation and large scale structure formation after COBE

    International Nuclear Information System (INIS)

    Schaefer, R.K.; Shafi, Q.

    1992-06-01

    The simplest realizations of the new inflationary scenario typically give rise to primordial density fluctuations which deviate logarithmically from the scale free Harrison-Zeldovich spectrum. We consider a number of such examples and, in each case we normalize the amplitude of the fluctuations with the recent COBE measurement of the microwave background anisotropy. The predictions for the bulk velocities as well as anisotropies on smaller (1-2 degrees) angular scales are compared with the Harrison-Zeldovich case. Deviations from the latter range from a few to about 15 percent. We also estimate the redshift beyond which the quasars would not be expected to be seen. The inflationary quasar cutoff redshifts can vary by as much as 25% from the Harrison-Zeldovich case. We find that the inflationary scenario provides a good starting point for a theory of large scale structure in the universe provided the dark matter is a combination of cold plus (10-30%) hot components. (author). 27 refs, 1 fig., 1 tab

  15. The scaling structure of the global road network.

    Science.gov (United States)

    Strano, Emanuele; Giometto, Andrea; Shai, Saray; Bertuzzo, Enrico; Mucha, Peter J; Rinaldo, Andrea

    2017-10-01

    Because of increasing global urbanization and its immediate consequences, including changes in patterns of food demand, circulation and land use, the next century will witness a major increase in the extent of paved roads built worldwide. To model the effects of this increase, it is crucial to understand whether possible self-organized patterns are inherent in the global road network structure. Here, we use the largest updated database comprising all major roads on the Earth, together with global urban and cropland inventories, to suggest that road length distributions within croplands are indistinguishable from urban ones, once rescaled to account for the difference in mean road length. Such similarity extends to road length distributions within urban or agricultural domains of a given area. We find two distinct regimes for the scaling of the mean road length with the associated area, holding in general at small and at large values of the latter. In suitably large urban and cropland domains, we find that mean and total road lengths increase linearly with their domain area, differently from earlier suggestions. Scaling regimes suggest that simple and universal mechanisms regulate urban and cropland road expansion at the global scale. As such, our findings bear implications for global road infrastructure growth based on land-use change and for planning policies sustaining urban expansions.

  16. Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region

    Science.gov (United States)

    Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.

    2016-01-01

    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.

  17. Small-scale structure in the diffuse interstellar medium

    International Nuclear Information System (INIS)

    Meyer, D.M.

    1990-01-01

    The initial results of a study to probe the small-scale structure in the diffuse interstellar medium (ISM) through IUE and optical observations of interstellar absorption lines toward both components of resolvable binary stars is reported. The binaries (Kappa CrA, 57 Aql, 59 And, HR 1609/10, 19 Lyn, and Theta Ser) observed with IUE have projected linear separations ranging from 5700 to 700 Au. Except for Kappa CrA, the strengths of the interstellar absorption lines toward both components of these binaries agree to within 10 percent. In the case of Kappa CrA, the optically thin interstellar Mg I and Mn II lines are about 50 percent stronger toward Kappa-2 CrA than Kappa-1 CrA. Higher resolution observations of interstellar Ca II show that this difference is concentrated in the main interstellar component at V(LSR) = 9 + or - 2 km/s. Interestingly, this velocity corresponds to an intervening cloud that may be associated with the prominent Loop I shell in the local ISM. Given the separation (23 arcsec) and distance (120 pc) of Kappa CrA, the line strength variations indicate that this cloud has structure on scales of 2800 AU or less. 21 refs

  18. Individual differences on social comparison : properties of the orientation Spanish scale towards social comparison

    NARCIS (Netherlands)

    Buunk, AP; Belmonte, J; Peiro, JM; Zurriaga, R; Gibbons, FX

    2005-01-01

    This paper describes the development and the properties of the INCOM-E, the Spanish language version of the INCOM, a measure to assess individual differences in social comparison orientation that was originally developed simultaneously in English and in Dutch. In both Study 1 (including 212

  19. ASSIST: a fast versatile local structural comparison tool.

    Science.gov (United States)

    Caprari, Silvia; Toti, Daniele; Viet Hung, Le; Di Stefano, Maurizio; Polticelli, Fabio

    2014-04-01

    Structural genomics initiatives are increasingly leading to the determination of the 3D structure of target proteins whose catalytic function is not known. The aim of this work was that of developing a novel versatile tool for searching structural similarity, which allows to predict the catalytic function, if any, of these proteins. The algorithm implemented by the tool is based on local structural comparison to find the largest subset of similar residues between an input protein and known functional sites. The method uses a geometric hashing approach where information related to residue pairs from the input structures is stored in a hash table and then is quickly retrieved during the comparison step. Tests on proteins belonging to different functional classes, done using the Catalytic Site Atlas entries as targets, indicate that the algorithm is able to identify the correct functional class of the input protein in the vast majority of the cases. The application was developed in Java SE 6, with a Java Swing Graphic User Interface (GUI). The system can be run locally on any operating system (OS) equipped with a suitable Java Virtual Machine, and is available at the following URL: http://www.computationalbiology.it/software/ASSISTv1.zip.

  20. On soft limits of large-scale structure correlation functions

    International Nuclear Information System (INIS)

    Sagunski, Laura

    2016-08-01

    Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the

  1. On soft limits of large-scale structure correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Sagunski, Laura

    2016-08-15

    Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the

  2. Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads

    Science.gov (United States)

    Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.

    2001-01-01

    Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.

  3. Broadband Structural Dynamics: Understanding the Impulse-Response of Structures Across Multiple Length and Time Scales

    Science.gov (United States)

    2010-08-18

    Spectral domain response calculated • Time domain response obtained through inverse transform Approach 4: WASABI Wavelet Analysis of Structural Anomalies...differences at unity scale! Time Function Transform Apply Spectral Domain Transfer Function Time Function Inverse Transform Transform Transform  mtP

  4. Superpose3D: a local structural comparison program that allows for user-defined structure representations.

    Directory of Open Access Journals (Sweden)

    Pier Federico Gherardini

    Full Text Available Local structural comparison methods can be used to find structural similarities involving functional protein patches such as enzyme active sites and ligand binding sites. The outcome of such analyses is critically dependent on the representation used to describe the structure. Indeed different categories of functional sites may require the comparison program to focus on different characteristics of the protein residues. We have therefore developed superpose3D, a novel structural comparison software that lets users specify, with a powerful and flexible syntax, the structure description most suited to the requirements of their analysis. Input proteins are processed according to the user's directives and the program identifies sets of residues (or groups of atoms that have a similar 3D position in the two structures. The advantages of using such a general purpose program are demonstrated with several examples. These test cases show that no single representation is appropriate for every analysis, hence the usefulness of having a flexible program that can be tailored to different needs. Moreover we also discuss how to interpret the results of a database screening where a known structural motif is searched against a large ensemble of structures. The software is written in C++ and is released under the open source GPL license. Superpose3D does not require any external library, runs on Linux, Mac OSX, Windows and is available at http://cbm.bio.uniroma2.it/superpose3D.

  5. Boiling performance and material robustness of modified surfaces with multi scale structures for fuel cladding development

    Energy Technology Data Exchange (ETDEWEB)

    Jo, HangJin; Kim, Jin Man [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Yeom, Hwasung [Department of Nuclear Engineering and Engineering physics, UW-Madison, Madison, WI 53706, Unities States (United States); Lee, Gi Cheol [Department of Mechanical Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Kiyofumi, Moriyama; Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Sridharan, Kumar; Corradini, Michael [Department of Nuclear Engineering and Engineering physics, UW-Madison, Madison, WI 53706, Unities States (United States)

    2015-09-15

    Highlights: • We improved boiling performance and material robustness using surface modification. • We combined micro/millimeter post structures and nanoparticles with heat treatments. • Compactly-arranged micrometer posts had improved boiling performance. • CHF increased significantly due to capillary pumping by the deposited NP layers. • Sintering procedure increased mechanical strength of the NP coating surface. - Abstract: By regulating the geometrical characteristics of multi-scale structures and by adopting heat treatment for protective layer of nanoparticles (NPs), we improved critical heat flux (CHF), boiling heat transfer (BHT), and mechanical robustness of the modified surface. We fabricated 1-mm and 100-μm post structures and deposited NPs on the structured surface as a nano-scale structured layer and protective layer at the same time, then evaluated the CHF and BHT and material robustness of the modified surfaces. On the structured surfaces without NPs, the surface with compactly-arranged micrometer posts had improved CHF (118%) and BHT (41%). On the surface with structures on which NPs had been deposited, CHF increased significantly (172%) due to capillary pumping by the deposited NP layers. The heat treatment improved robustness of coating layer in comparison to the one of before heat treatment. In particular, low-temperature sintering increased the hardness of the modified surface by 140%. The increased mechanical strength of the NP coating is attributed to reduction in coating porosity during sintering. The combination of micrometer posts structures and sintered NP coating can increase the safety, efficiency and reliability of advanced nuclear fuel cladding.

  6. Boiling performance and material robustness of modified surfaces with multi scale structures for fuel cladding development

    International Nuclear Information System (INIS)

    Jo, HangJin; Kim, Jin Man; Yeom, Hwasung; Lee, Gi Cheol; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan; Sridharan, Kumar; Corradini, Michael

    2015-01-01

    Highlights: • We improved boiling performance and material robustness using surface modification. • We combined micro/millimeter post structures and nanoparticles with heat treatments. • Compactly-arranged micrometer posts had improved boiling performance. • CHF increased significantly due to capillary pumping by the deposited NP layers. • Sintering procedure increased mechanical strength of the NP coating surface. - Abstract: By regulating the geometrical characteristics of multi-scale structures and by adopting heat treatment for protective layer of nanoparticles (NPs), we improved critical heat flux (CHF), boiling heat transfer (BHT), and mechanical robustness of the modified surface. We fabricated 1-mm and 100-μm post structures and deposited NPs on the structured surface as a nano-scale structured layer and protective layer at the same time, then evaluated the CHF and BHT and material robustness of the modified surfaces. On the structured surfaces without NPs, the surface with compactly-arranged micrometer posts had improved CHF (118%) and BHT (41%). On the surface with structures on which NPs had been deposited, CHF increased significantly (172%) due to capillary pumping by the deposited NP layers. The heat treatment improved robustness of coating layer in comparison to the one of before heat treatment. In particular, low-temperature sintering increased the hardness of the modified surface by 140%. The increased mechanical strength of the NP coating is attributed to reduction in coating porosity during sintering. The combination of micrometer posts structures and sintered NP coating can increase the safety, efficiency and reliability of advanced nuclear fuel cladding

  7. Assessing Self-Efficacy in Infant Care: A Comparison of Two Scales

    Directory of Open Access Journals (Sweden)

    Tassanee Prasopkittikun, RN, PhD

    2008-09-01

    Conclusion: The findings suggest that correlations between SICS and two different response formats do not reach the criteria for use as alternatives to each other. However, further research is needed, with particular emphasis on the investigation of construct validity and comparisons between the two scales.

  8. Factor structure and concurrent validity of the world assumptions scale.

    Science.gov (United States)

    Elklit, Ask; Shevlin, Mark; Solomon, Zahava; Dekel, Rachel

    2007-06-01

    The factor structure of the World Assumptions Scale (WAS) was assessed by means of confirmatory factor analysis. The sample was comprised of 1,710 participants who had been exposed to trauma that resulted in whiplash. Four alternative models were specified and estimated using LISREL 8.72. A correlated 8-factor solution was the best explanation of the sample data. The estimates of reliability of eight subscales of the WAS ranged from .48 to .82. Scores from five subscales correlated significantly with trauma severity as measured by the Harvard Trauma Questionnaire, although the magnitude of the correlations was low to modest, ranging from .08 to -.43. It is suggested that the WAS has adequate psychometric properties for use in both clinical and research settings.

  9. Towards a 'standard model' of large scale structure formation

    International Nuclear Information System (INIS)

    Shafi, Q.

    1994-01-01

    We explore constraints on inflationary models employing data on large scale structure mainly from COBE temperature anisotropies and IRAS selected galaxy surveys. In models where the tensor contribution to the COBE signal is negligible, we find that the spectral index of density fluctuations n must exceed 0.7. Furthermore the COBE signal cannot be dominated by the tensor component, implying n > 0.85 in such models. The data favors cold plus hot dark matter models with n equal or close to unity and Ω HDM ∼ 0.2 - 0.35. Realistic grand unified theories, including supersymmetric versions, which produce inflation with these properties are presented. (author). 46 refs, 8 figs

  10. Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Marcello [Univ. of Toronto, ON (Canada); Baldauf, T. [Inst. of Advanced Studies, Princeton, NJ (United States); Bond, J. Richard [Univ. of Toronto, ON (Canada); Canadian Inst. for Advanced Research, Toronto, ON (Canada); Dalal, N. [Univ. of Illinois, Urbana-Champaign, IL (United States); Putter, R. D. [Jet Propulsion Lab., Pasadena, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Dore, O. [Jet Propulsion Lab., Pasadena, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Green, Daniel [Univ. of Toronto, ON (Canada); Canadian Inst. for Advanced Research, Toronto, ON (Canada); Hirata, Chris [The Ohio State Univ., Columbus, OH (United States); Huang, Zhiqi [Univ. of Toronto, ON (Canada); Huterer, Dragan [Univ. of Michigan, Ann Arbor, MI (United States); Jeong, Donghui [Pennsylvania State Univ., University Park, PA (United States); Johnson, Matthew C. [York Univ., Toronto, ON (Canada); Perimeter Inst., Waterloo, ON (Canada); Krause, Elisabeth [Stanford Univ., CA (United States); Loverde, Marilena [Univ. of Chicago, IL (United States); Meyers, Joel [Univ. of Toronto, ON (Canada); Meeburg, Daniel [Univ. of Toronto, ON (Canada); Senatore, Leonardo [Stanford Univ., CA (United States); Shandera, Sarah [Pennsylvania State Univ., University Park, PA (United States); Silverstein, Eva [Stanford Univ., CA (United States); Slosar, Anze [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Kendrick [Perimeter Inst., Waterloo, Toronto, ON (Canada); Zaldarriaga, Matias [Univ. of Toronto, ON (Canada); Assassi, Valentin [Cambridge Univ. (United Kingdom); Braden, Jonathan [Univ. of Toronto, ON (Canada); Hajian, Amir [Univ. of Toronto, ON (Canada); Kobayashi, Takeshi [Perimeter Inst., Waterloo, Toronto, ON (Canada); Univ. of Toronto, ON (Canada); Stein, George [Univ. of Toronto, ON (Canada); Engelen, Alexander van [Univ. of Toronto, ON (Canada)

    2014-12-15

    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large-scale structure is, however, from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude f$loc\\atop{NL}$ (f$eq\\atop{NL}$), natural target levels of sensitivity are Δf$loc, eq\\atop{NL}$ ≃ 1. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.

  11. Factor structure of the Japanese Interpersonal Competence Scale.

    Science.gov (United States)

    Matsudaira, Tomomi; Fukuhara, Taihei; Kitamura, Toshinori

    2008-04-01

    Assessing social competence is important for clinical and preventive interventions of depression. The aim of the present paper was to examine the factor structure of the Japanese Interpersonal Competence Scale (JICS). Exploratory and confirmatory factor analysis was performed on the survey responses of 730 participants. Simultaneous multigroup analyses were conducted to confirm factor stability across psychological health status and sex differences. Two factors, which represent Perceptive Ability and Self-Restraint, were confirmed to show a moderate correlation. Perceptive Ability involves a more cognitive aspect of social competence, while Self-Restraint involves a more behavioral aspect, both of which are considered to reflect the emotion-based relating style specific to the Japanese people: indulgent dependence (amae) and harmony (wa). In addition, Self-Restraint may be linked to social functioning. Both constructs may confound a respondent's perceived confidence. Despite its shortcomings, the JICS is a unique measure of social competence in the Japanese cultural context.

  12. Cosmological perturbations from quantum fluctuations to large scale structure

    International Nuclear Information System (INIS)

    Bardeen, J.M.

    1988-01-01

    Classical perturbation theory is developed from the 3 + 1 form of the Einstein equations. A somewhat unusual form of the perturbation equations in the synchronous gauge is recommended for carrying out computations, but interpretation is based on certain hypersurface-invariant combinations of the variables. The formalism is used to analyze the origin of density perturbations from quantum fluctuations during inflation, with particular emphasis on dealing with 'double inflation' and deviations from the Zel'dovich spectrum. The evolution of the density perturbation to the present gives the final density perturbation power spectrum, whose relationship to observed large scale structure is discussed in the context of simple cold-dark-matter biasing schemes. 86 refs

  13. Iron phosphate glasses: Bulk properties and atomic scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.; Asuvathraman, R.; Dube, Charu L.; Gandy, Amy S.; Govindan Kutty, K. V.; Jolley, Kenny; Vasudeva Rao, P. R.; Smith, Roger

    2017-10-01

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. % of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.

  14. Inflationary tensor fossils in large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Dimastrogiovanni, Emanuela [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Fasiello, Matteo [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); Jeong, Donghui [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Kamionkowski, Marc, E-mail: ema@physics.umn.edu, E-mail: mrf65@case.edu, E-mail: duj13@psu.edu, E-mail: kamion@jhu.edu [Department of Physics and Astronomy, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218 (United States)

    2014-12-01

    Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to be satisfied. We then consider several examples of inflation models, such as non-attractor and solid-inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.

  15. EFT of large scale structures in redshift space

    Science.gov (United States)

    Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco; Zhao, Cheng; Chuang, Chia-Hsun

    2018-03-01

    We further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ=6 . We find that the IR resummation allows us to correctly reproduce the baryon acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k —depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z =0.56 and up to ℓ=2 matches the data at the percent level approximately up to k ˜0.13 h Mpc-1 or k ˜0.18 h Mpc-1 , depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.

  16. Evolution of grain structure in nickel oxide scales

    International Nuclear Information System (INIS)

    Atkinson, H.V.

    1987-01-01

    In systems such as the oxidation of nickel, in which grain-boundary diffusion in the oxide can control the rate of oxidation, understanding of the factors governing the grain structure is of importance. High-purity mechanically polished polycrystalline nickel was oxidized at 700 0 C, 800 0 C, and 1000 0 C for times up to 20 hr in 1 atm O 2 . The scale microstructures were examined by parallel and transverse cross section transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Texture coefficients were found by x-ray diffraction (XRD). Each grain in the transverse section grain boundary networks was systematically analyzed for width parallel to the Ni-NiO interface and perpendicular length, for boundary radius of curvature and for number of sides. The variation of these parameters with depth in the scale was examined. In particular, grains were increasingly columnar (i.e., with ratio of grain length to width > 1) at higher temperatures and longer times. Columnar grain boundaries tended to be fairly static; the columnar grain width was less than the rate controlling grain size predicted from the oxidation rate. The mean boundary curvature per grain provided a guide to the tendency for grain growth, except in the region of the Ni-NiO interface, where the boundaries were thought to be pinned

  17. Validity and factor structure of the bodybuilding dependence scale.

    Science.gov (United States)

    Smith, D; Hale, B

    2004-04-01

    To investigate the factor structure, validity, and reliability of the bodybuilding dependence scale and to investigate differences in bodybuilding dependence between men and women and competitive and non-competitive bodybuilders. Seventy two male competitive bodybuilders, 63 female competitive bodybuilders, 87 male non-competitive bodybuilders, and 63 non-competitive female bodybuilders completed the bodybuilding dependence scale (BDS), the exercise dependence questionnaire (EDQ), and the muscle dysmorphia inventory (MDI). Confirmatory factor analysis of the BDS supported a three factor model of bodybuilding dependence, consisting of social dependence, training dependence, and mastery dependence (Q = 3.16, CFI = 0.98, SRMR = 0.04). Internal reliability of all three subscales was high (Cronbach's alpha = 0.92, 0.92, and 0.93 respectively). Significant (pbodybuilders scored significantly (pbodybuilders. However, there were no significant sex differences on any of the BDS subscales (p>0.05). The three factor BDS appears to be a reliable and valid measure of bodybuilding dependence. Symptoms of bodybuilding dependence are more prevalent in competitive bodybuilders than non-competitive ones, but there are no significant sex differences in bodybuilding dependence.

  18. Comparison of various decentralised structural and cavity feedback control strategies for transmitted noise reduction through a double panel structure

    NARCIS (Netherlands)

    Ho, J.; Berkhoff, Arthur P.

    This paper compares various decentralised control strategies, including structural and acoustic actuator–sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of

  19. Comparison of various decentralised structural and cavity feedback control strategies for transmitted noise reduction through a double panel structure

    NARCIS (Netherlands)

    Ho, J.H.; Berkhoff, A.P.

    2014-01-01

    This paper compares various decentralised control strategies, including structural and acoustic actuator-sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of

  20. A comparison of interatomic potentials for modeling tungsten nanocluster structures

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiannan; Shu, Xiaolin, E-mail: shuxlin@buaa.edu.cn; Jin, Shuo; Zhang, Xuesong; Zhang, Ying; Lu, Guang-Hong

    2017-02-15

    Molecular dynamic simulation is utilized to study the nanocluster and the fuzz structure on the PFM surface of tungsten. The polyhedral and linear cluster structures based on the icosahedron, cuboctahedron and rhombic dodecahedron are built up. Three interatomic potentials are used in calculating the relationship between the cluster energy and the number of atoms. The results are compared with first-principles calculation to show each potential’s best application scale. Furthermore, the transition between the icosahedral and the cuboctahedral clusters is observed in molecular dynamic simulation at different temperatures, which follows a critical curve for different numbers of atoms. The linear structures are proved to be stable at experimental temperatures by thermodynamics. The work presents a selection of interatomic potentials in simulating tungsten cluster systems and helps researchers understand the growth and evolution laws of clusters and the fuzz-like structure formation process in fusion devices.

  1. A comparison of interatomic potentials for modeling tungsten nanocluster structures

    International Nuclear Information System (INIS)

    Hao, Jiannan; Shu, Xiaolin; Jin, Shuo; Zhang, Xuesong; Zhang, Ying; Lu, Guang-Hong

    2017-01-01

    Molecular dynamic simulation is utilized to study the nanocluster and the fuzz structure on the PFM surface of tungsten. The polyhedral and linear cluster structures based on the icosahedron, cuboctahedron and rhombic dodecahedron are built up. Three interatomic potentials are used in calculating the relationship between the cluster energy and the number of atoms. The results are compared with first-principles calculation to show each potential’s best application scale. Furthermore, the transition between the icosahedral and the cuboctahedral clusters is observed in molecular dynamic simulation at different temperatures, which follows a critical curve for different numbers of atoms. The linear structures are proved to be stable at experimental temperatures by thermodynamics. The work presents a selection of interatomic potentials in simulating tungsten cluster systems and helps researchers understand the growth and evolution laws of clusters and the fuzz-like structure formation process in fusion devices.

  2. Reconstructing Information in Large-Scale Structure via Logarithmic Mapping

    Science.gov (United States)

    Szapudi, Istvan

    We propose to develop a new method to extract information from large-scale structure data combining two-point statistics and non-linear transformations; before, this information was available only with substantially more complex higher-order statistical methods. Initially, most of the cosmological information in large-scale structure lies in two-point statistics. With non- linear evolution, some of that useful information leaks into higher-order statistics. The PI and group has shown in a series of theoretical investigations how that leakage occurs, and explained the Fisher information plateau at smaller scales. This plateau means that even as more modes are added to the measurement of the power spectrum, the total cumulative information (loosely speaking the inverse errorbar) is not increasing. Recently we have shown in Neyrinck et al. (2009, 2010) that a logarithmic (and a related Gaussianization or Box-Cox) transformation on the non-linear Dark Matter or galaxy field reconstructs a surprisingly large fraction of this missing Fisher information of the initial conditions. This was predicted by the earlier wave mechanical formulation of gravitational dynamics by Szapudi & Kaiser (2003). The present proposal is focused on working out the theoretical underpinning of the method to a point that it can be used in practice to analyze data. In particular, one needs to deal with the usual real-life issues of galaxy surveys, such as complex geometry, discrete sam- pling (Poisson or sub-Poisson noise), bias (linear, or non-linear, deterministic, or stochastic), redshift distortions, pro jection effects for 2D samples, and the effects of photometric redshift errors. We will develop methods for weak lensing and Sunyaev-Zeldovich power spectra as well, the latter specifically targetting Planck. In addition, we plan to investigate the question of residual higher- order information after the non-linear mapping, and possible applications for cosmology. Our aim will be to work out

  3. Alignment between galaxies and large-scale structure

    International Nuclear Information System (INIS)

    Faltenbacher, A.; Li Cheng; White, Simon D. M.; Jing, Yi-Peng; Mao Shude; Wang Jie

    2009-01-01

    Based on the Sloan Digital Sky Survey DR6 (SDSS) and the Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(2θ)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L ∼ * ) galaxies out to projected separations of 60 h- 1 Mpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ∼ 25 deg. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for central galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference

  4. Probing cosmology with the homogeneity scale of the Universe through large scale structure surveys

    International Nuclear Information System (INIS)

    Ntelis, Pierros

    2017-01-01

    . It is thus possible to reconstruct the distribution of matter in 3 dimensions in gigantic volumes. We can then extract various statistical observables to measure the BAO scale and the scale of homogeneity of the universe. Using Data Release 12 CMASS galaxy catalogs, we obtained precision on the homogeneity scale reduced by 5 times compared to Wiggle Z measurement. At large scales, the universe is remarkably well described in linear order by the ΛCDM-model, the standard model of cosmology. In general, it is not necessary to take into account the nonlinear effects which complicate the model at small scales. On the other hand, at large scales, the measurement of our observables becomes very sensitive to the systematic effects. This is particularly true for the analysis of cosmic homogeneity, which requires an observational method so as not to bias the measurement. In order to study the homogeneity principle in a model independent way, we explore a new way to infer distances using cosmic clocks and type Ia Supernovae. This establishes the Cosmological Principle using only a small number of a priori assumption, i.e. the theory of General Relativity and astrophysical assumptions that are independent from Friedmann Universes and in extend the homogeneity assumption. This manuscript is as follows. After a short presentation of the knowledge in cosmology necessary for the understanding of this manuscript, presented in Chapter 1, Chapter 2 will deal with the challenges of the Cosmological Principle as well as how to overcome those. In Chapter 3, we will discuss the technical characteristics of the large scale structure surveys, in particular focusing on BOSS and eBOSS galaxy surveys. Chapter 4 presents the detailed analysis of the measurement of cosmic homogeneity and the various systematic effects likely to impact our observables. Chapter 5 will discuss how to use the cosmic homogeneity as a standard ruler to constrain dark energy models from current and future surveys. In

  5. Large scale structures in liquid crystal/clay colloids

    Science.gov (United States)

    van Duijneveldt, Jeroen S.; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M.

    2005-04-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods.

  6. Large scale structures in liquid crystal/clay colloids

    International Nuclear Information System (INIS)

    Duijneveldt, Jeroen S van; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M

    2005-01-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods

  7. Scale-adaptive surface modeling of vascular structures

    Directory of Open Access Journals (Sweden)

    Ma Xin

    2010-11-01

    Full Text Available Abstract Background The effective geometric modeling of vascular structures is crucial for diagnosis, therapy planning and medical education. These applications require good balance with respect to surface smoothness, surface accuracy, triangle quality and surface size. Methods Our method first extracts the vascular boundary voxels from the segmentation result, and utilizes these voxels to build a three-dimensional (3D point cloud whose normal vectors are estimated via covariance analysis. Then a 3D implicit indicator function is computed from the oriented 3D point cloud by solving a Poisson equation. Finally the vessel surface is generated by a proposed adaptive polygonization algorithm for explicit 3D visualization. Results Experiments carried out on several typical vascular structures demonstrate that the presented method yields both a smooth morphologically correct and a topologically preserved two-manifold surface, which is scale-adaptive to the local curvature of the surface. Furthermore, the presented method produces fewer and better-shaped triangles with satisfactory surface quality and accuracy. Conclusions Compared to other state-of-the-art approaches, our method reaches good balance in terms of smoothness, accuracy, triangle quality and surface size. The vessel surfaces produced by our method are suitable for applications such as computational fluid dynamics simulations and real-time virtual interventional surgery.

  8. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    Science.gov (United States)

    Green, David W.; Lee, Jung-Seok; Jung, Han-Sung

    2016-01-01

    The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a “water-tight” barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell–cell connections, cell–matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis. PMID:26903872

  9. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    Directory of Open Access Journals (Sweden)

    David William Green

    2016-02-01

    Full Text Available The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a water-tight barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachement complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement.. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organising cell-cell connections, cell-matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis.

  10. A multiple-scaling method of the computation of threaded structures

    International Nuclear Information System (INIS)

    Andrieux, S.; Leger, A.

    1989-01-01

    The numerical computation of threaded structures usually leads to very large finite elements problems. It was therefore very difficult to carry out some parametric studies, especially in non-linear cases involving plasticity or unilateral contact conditions. Nevertheless, these parametric studies are essential in many industrial problems, for instance for the evaluation of various repairing processes of the closure studs of PWR. It is well known that such repairing generally involves several modifications of the thread geometry, of the number of active threads, of the flange clamping conditions, and so on. This paper is devoted to the description of a two-scale method, which easily allows parametric studies. The main idea of this method consists of dividing the problem into a global part, and a local part. The local problem is solved by F.E.M. on the precise geometry of the thread of some elementary loadings. The global one is formulated on the gudgeon scale and is reduced to a monodimensional one. The resolution of this global problem leads to the unsignificant computational cost. Then, a post-processing gives the stress field at the thread scale anywhere in the assembly. After recalling some principles of the two-scales approach, the method is described. The validation by comparison with a direct F.E. computation and some further applications are presented

  11. Structural analysis under the Blanket Comparison and Selection Study

    International Nuclear Information System (INIS)

    Majumdar, S.

    1985-01-01

    Structural design procedures followed in the Blanket Comparison and Selection Study are briefly reviewed. The American Society of Mechanical Engineers Boilers and Pressure Vessels Code, Section III, Code Case N47 has been used as a design guide. Its relevance to fusion reactor applications, however, is open to question and needs to be evaluated in the future. The primary structural problem encountered in tokamak blanket designs is the high thermal stress due to surface heat flux, with fatigue being an additional concern for pulsed systems. The conflicting requirements of long erosion life and high surface heat flux capability imply that some form of stress relief in the first-wall region will be necessary. Simplified stress and fatigue crack growth analyses are presented to show that the use of orthogonally grooved first wall may be a potential solution for mitigating the thermal stress problem. A comparison of three structural alloys on the basis of both grooved and nongrooved first-wall designs is also presented. Other structural problems encountered in tokamak designs include stresses due to plasma disruptions, and magnetohydrodynamic (MHD) pressure drop in liquid-metal-cooled systems. In particular, it is shown that the maximum stress in the side wall of a uniform duct generated by MHD pressure drop cannot be reduced by increasing the wall thickness or by decreasing the span. In contract to tokamak blankets, tandem mirror blankets are far less severely stressed because of a much lower surface heat flux, coolant pressure, and also because of their axisymmetric geometry. Both blankets, however, will require detailed structural dynamics analysis to verify their ability to withstand seismic loadings if the heavy 17Li-83Pb is used as a coolant

  12. The linearly scaling 3D fragment method for large scale electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Zhengji [National Energy Research Scientific Computing Center (NERSC) (United States); Meza, Juan; Shan Hongzhang; Strohmaier, Erich; Bailey, David; Wang Linwang [Computational Research Division, Lawrence Berkeley National Laboratory (United States); Lee, Byounghak, E-mail: ZZhao@lbl.go [Physics Department, Texas State University (United States)

    2009-07-01

    The linearly scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  13. X-ray study of the structure of polyethylene at the scale of 100-200 Angstrom

    International Nuclear Information System (INIS)

    Belbeoch nee Goldsztein, B.

    1958-06-01

    Information on the structure of polyethylene is deduced from a comparison of the results obtained by central diffusion and by other X-ray methods. The structure depends on the thermal and mechanical treatment to which the samples are subjected, as well as on the observation temperature. The central diffusion due to the heterogeneity of the material at the scale of 100-200 Angstrom is bound up with the presence of both the amorphous and crystalline phases. Stretched polythene shows a more or less regular succession of orderly and disorderly regions. When released it has a structure of recrystallisation preceded by 'amorphization'. (author) [fr

  14. COMPREHENSIVE COMPARISON OF TWO IMAGE-BASED POINT CLOUDS FROM AERIAL PHOTOS WITH AIRBORNE LIDAR FOR LARGE-SCALE MAPPING

    Directory of Open Access Journals (Sweden)

    E. Widyaningrum

    2017-09-01

    Full Text Available The integration of computer vision and photogrammetry to generate three-dimensional (3D information from images has contributed to a wider use of point clouds, for mapping purposes. Large-scale topographic map production requires 3D data with high precision and accuracy to represent the real conditions of the earth surface. Apart from LiDAR point clouds, the image-based matching is also believed to have the ability to generate reliable and detailed point clouds from multiple-view images. In order to examine and analyze possible fusion of LiDAR and image-based matching for large-scale detailed mapping purposes, point clouds are generated by Semi Global Matching (SGM and by Structure from Motion (SfM. In order to conduct comprehensive and fair comparison, this study uses aerial photos and LiDAR data that were acquired at the same time. Qualitative and quantitative assessments have been applied to evaluate LiDAR and image-matching point clouds data in terms of visualization, geometric accuracy, and classification result. The comparison results conclude that LiDAR is the best data for large-scale mapping.

  15. Comparison Study of Subspace Identification Methods Applied to Flexible Structures

    Science.gov (United States)

    Abdelghani, M.; Verhaegen, M.; Van Overschee, P.; De Moor, B.

    1998-09-01

    In the past few years, various time domain methods for identifying dynamic models of mechanical structures from modal experimental data have appeared. Much attention has been given recently to so-called subspace methods for identifying state space models. This paper presents a detailed comparison study of these subspace identification methods: the eigensystem realisation algorithm with observer/Kalman filter Markov parameters computed from input/output data (ERA/OM), the robust version of the numerical algorithm for subspace system identification (N4SID), and a refined version of the past outputs scheme of the multiple-output error state space (MOESP) family of algorithms. The comparison is performed by simulating experimental data using the five mode reduced model of the NASA Mini-Mast structure. The general conclusion is that for the case of white noise excitations as well as coloured noise excitations, the N4SID/MOESP algorithms perform equally well but give better results (improved transfer function estimates, improved estimates of the output) compared to the ERA/OM algorithm. The key computational step in the three algorithms is the approximation of the extended observability matrix of the system to be identified, for N4SID/MOESP, or of the observer for the system to be identified, for the ERA/OM. Furthermore, the three algorithms only require the specification of one dimensioning parameter.

  16. Characterizing unknown systematics in large scale structure surveys

    International Nuclear Information System (INIS)

    Agarwal, Nishant; Ho, Shirley; Myers, Adam D.; Seo, Hee-Jong; Ross, Ashley J.; Bahcall, Neta; Brinkmann, Jonathan; Eisenstein, Daniel J.; Muna, Demitri; Palanque-Delabrouille, Nathalie; Yèche, Christophe; Pâris, Isabelle; Petitjean, Patrick; Schneider, Donald P.; Streblyanska, Alina; Weaver, Benjamin A.

    2014-01-01

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study

  17. Large-Scale Structure of the Carina Nebula.

    Science.gov (United States)

    Smith; Egan; Carey; Price; Morse; Price

    2000-04-01

    Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of approximately 100 pc, the thermal infrared emission from the giant H ii region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H ii region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.

  18. On soft limits of large-scale structure correlation functions

    International Nuclear Information System (INIS)

    Ben-Dayan, Ido; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura

    2014-11-01

    We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we rederive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: The time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) 'equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and 'equal-time consistency conditions' are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the 'equal-time consistency conditions' quantitatively approximates the perturbative results for the density contrast. Thus, we generalize the background method to properly incorporate the effect of curvature in the density and velocity fluctuations on short scales, and discuss the reasons behind this discrepancy. We conclude with a few comments on practical implementations and future directions.

  19. Auxiliary basis expansions for large-scale electronic structure calculations.

    Science.gov (United States)

    Jung, Yousung; Sodt, Alex; Gill, Peter M W; Head-Gordon, Martin

    2005-05-10

    One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.

  20. Characterizing unknown systematics in large scale structure surveys

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Nishant; Ho, Shirley [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Seo, Hee-Jong [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Ross, Ashley J. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Bahcall, Neta [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States); Brinkmann, Jonathan [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Muna, Demitri [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Palanque-Delabrouille, Nathalie; Yèche, Christophe [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Pâris, Isabelle [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Petitjean, Patrick [Université Paris 6 et CNRS, Institut d' Astrophysique de Paris, 98bis blvd. Arago, 75014 Paris (France); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Streblyanska, Alina [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Weaver, Benjamin A., E-mail: nishanta@andrew.cmu.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2014-04-01

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.

  1. Far field scattering pattern of differently structured butterfly scales

    NARCIS (Netherlands)

    Giraldo, M. A.; Yoshioka, S.; Stavenga, D. G.

    The angular and spectral reflectance of single scales of five different butterfly species was measured and related to the scale anatomy. The scales of the pierids Pieris rapae and Delias nigrina scatter white light randomly, in close agreement with Lambert's cosine law, which can be well understood

  2. Integrating regional and continental scale comparisons of tree composition in Amazonian terra firme forests

    Science.gov (United States)

    Honorio Coronado, E. N.; Baker, T. R.; Phillips, O. L.; Pitman, N. C. A.; Pennington, R. T.; Vásquez Martínez, R.; Monteagudo, A.; Mogollón, H.; Dávila Cardozo, N.; Ríos, M.; García-Villacorta, R.; Valderrama, E.; Ahuite, M.; Huamantupa, I.; Neill, D. A.; Laurance, W. F.; Nascimento, H. E. M.; Soares de Almeida, S.; Killeen, T. J.; Arroyo, L.; Núñez, P.; Freitas Alvarado, L.

    2009-01-01

    We contrast regional and continental-scale comparisons of the floristic composition of terra firme forest in South Amazonia, using 55 plots across Amazonia and a subset of 30 plots from northern Peru and Ecuador. Firstly, we examine the floristic patterns using both genus- or species-level data and find that the species-level analysis more clearly distinguishes different plot clusters. Secondly, we compare the patterns and causes of floristic differences at regional and continental scales. At a continental scale, ordination analysis shows that species of Lecythidaceae and Sapotaceae are gradually replaced by species of Arecaceae and Myristicaceae from eastern to western Amazonia. These floristic gradients are correlated with gradients in soil fertility and to dry season length, similar to previous studies. At a regional scale, similar patterns are found within north-western Amazonia, where differences in soil fertility distinguish plots where species of Lecythidaceae, characteristic of poor soils, are gradually replaced by species of Myristicaceae on richer soils. The main coordinate of this regional-scale ordination correlates mainly with concentrations of available calcium and magnesium. Thirdly, we ask at a regional scale within north-western Amazonia, whether soil fertility or other distance dependent processes are more important for determining variation in floristic composition. A Mantel test indicates that both soils and geographical distance have a similar and significant role in determining floristic similarity across this region. Overall, these results suggest that regional-scale variation in floristic composition can rival continental scale differences within Amazonian terra firme forests, and that variation in floristic composition at both scales is dependent on a range of processes that include both habitat specialisation related to edaphic conditions and other distance-dependent processes. To fully account for regional scale variation in continental

  3. A comparison of two instructional methods for drawing Lewis Structures

    Science.gov (United States)

    Terhune, Kari

    Two instructional methods for teaching Lewis structures were compared -- the Direct Octet Rule Method (DORM) and the Commonly Accepted Method (CAM). The DORM gives the number of bonds and the number of nonbonding electrons immediately, while the CAM involves moving electron pairs from nonbonding to bonding electrons, if necessary. The research question was as follows: Will high school chemistry students draw more accurate Lewis structures using the DORM or the CAM? Students in Regular Chemistry 1 (N = 23), Honors Chemistry 1 (N = 51) and Chemistry 2 (N = 15) at an urban high school were the study participants. An identical pretest and posttest was given before and after instruction. Students were given instruction with either the DORM (N = 45), the treatment method, or the CAM (N = 44), the control for two days. After the posttest, 15 students were interviewed, using a semistructured interview process. The pretest/posttest consisted of 23 numerical response questions and 2 to 6 free response questions that were graded using a rubric. A two-way ANOVA showed a significant interaction effect between the groups and the methods, F (1, 70) = 10.960, p = 0.001. Post hoc comparisons using the Bonferroni pairwise comparison showed that Reg Chem 1 students demonstrated larger gain scores when they had been taught the CAM (Mean difference = 3.275, SE = 1.324, p Chemistry 1 students performed better with the DORM, perhaps due to better math skills, enhanced working memory, and better metacognitive skills. Regular Chemistry 1 students performed better with the CAM, perhaps because it is more visual. Teachers may want to use the CAM or a direct-pairing method to introduce the topic and use the DORM in advanced classes when a correct structure is needed quickly.

  4. Micrometer scale guidance of mesenchymal stem cells to form structurally oriented large-scale tissue engineered cartilage.

    Science.gov (United States)

    Chou, Chih-Ling; Rivera, Alexander L; Williams, Valencia; Welter, Jean F; Mansour, Joseph M; Drazba, Judith A; Sakai, Takao; Baskaran, Harihara

    2017-09-15

    Current clinical methods to treat articular cartilage lesions provide temporary relief of the symptoms but fail to permanently restore the damaged tissue. Tissue engineering, using mesenchymal stem cells (MSCs) combined with scaffolds and bioactive factors, is viewed as a promising method for repairing cartilage injuries. However, current tissue engineered constructs display inferior mechanical properties compared to native articular cartilage, which could be attributed to the lack of structural organization of the extracellular matrix (ECM) of these engineered constructs in comparison to the highly oriented structure of articular cartilage ECM. We previously showed that we can guide MSCs undergoing chondrogenesis to align using microscale guidance channels on the surface of a two-dimensional (2-D) collagen scaffold, which resulted in the deposition of aligned ECM within the channels and enhanced mechanical properties of the constructs. In this study, we developed a technique to roll 2-D collagen scaffolds containing MSCs within guidance channels in order to produce a large-scale, three-dimensional (3-D) tissue engineered cartilage constructs with enhanced mechanical properties compared to current constructs. After rolling the MSC-scaffold constructs into a 3-D cylindrical structure, the constructs were cultured for 21days under chondrogenic culture conditions. The microstructure architecture and mechanical properties of the constructs were evaluated using imaging and compressive testing. Histology and immunohistochemistry of the constructs showed extensive glycosaminoglycan (GAG) and collagen type II deposition. Second harmonic generation imaging and Picrosirius red staining indicated alignment of neo-collagen fibers within the guidance channels of the constructs. Mechanical testing indicated that constructs containing the guidance channels displayed enhanced compressive properties compared to control constructs without these channels. In conclusion, using a novel

  5. Comparison of reconfigurable structures for flexible word-length multiplication

    Directory of Open Access Journals (Sweden)

    O. A. Pfänder

    2008-05-01

    Full Text Available Binary multiplication continues to be one of the essential arithmetic operations in digital circuits. Even though field-programmable gate arrays (FPGAs are becoming more and more powerful these days, the vendors cannot avoid implementing multiplications with high word-lengths using embedded blocks instead of configurable logic. But on the other hand, the circuit's efficiency decreases if the provided word-length of the hard-wired multipliers exceeds the precision requirements of the algorithm mapped into the FPGA. Thus it is beneficial to use multiplier blocks with configurable word-length, optimized for area, speed and power dissipation, e.g. regarding digital signal processing (DSP applications.

    In this contribution, we present different approaches and structures for the realization of a multiplication with variable precision and perform an objective comparison. This includes one approach based on a modified Baugh and Wooley algorithm and three structures using Booth's arithmetic operand recoding with different array structures. All modules have the option to compute signed two's complement fix-point numbers either as an individual computing unit or interconnected to a superior array. Therefore, a high throughput at low precision through parallelism, or a high precision through concatenation can be achieved.

  6. Monitoring engineering structures by the comparison of similar photographs

    International Nuclear Information System (INIS)

    Jones, A.

    1976-12-01

    A commonly used method of monitoring engineering structures is to compare similar photographs taken at different times. The initial part of this note deals with commercially available equipment, known as a comparascope, which enables differences between photographs to be rapidly (and reliably) detected. A series of practical tests is described in which it is established that a change in dimensions of 0.05mm can be detected between photographs. For typical camera systems, this will usually correspond to detectable displacements of the order of several mm in object space. Perhaps the most serious disadvantages of the technique is that alterations in camera attitude between photographs can cause changes in the recorded image which mask genuine movements in the structure. The changes caused by a given shift in camera attitude are, therefore, investigated theoretically. Since it is desirable that the changes are small enough to go undetected in the comparison, the established detection limit of the comparascope is included in the investigation to specify how accurately the camera attitude must be controlled for a given set of experimental circumstances. As a result, it appears that a special purpose camera mounting will nearly always be required if structural differences as small as several mm are to be reliably detected. Hand-held cameras should only be used for relatively coarse monitoring tasks. (author)

  7. Soft-Pion theorems for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2014-01-01

    Consistency relations — which relate an N-point function to a squeezed (N+1)-point function — are useful in large scale structure (LSS) because of their non-perturbative nature: they hold even if the N-point function is deep in the nonlinear regime, and even if they involve astrophysically messy galaxy observables. The non-perturbative nature of the consistency relations is guaranteed by the fact that they are symmetry statements, in which the velocity plays the role of the soft pion. In this paper, we address two issues: (1) how to derive the relations systematically using the residual coordinate freedom in the Newtonian gauge, and relate them to known results in ζ-gauge (often used in studies of inflation); (2) under what conditions the consistency relations are violated. In the non-relativistic limit, our derivation reproduces the Newtonian consistency relation discovered by Kehagias and Riotto and Peloso and Pietroni. More generally, there is an infinite set of consistency relations, as is known in ζ-gauge. There is a one-to-one correspondence between symmetries in the two gauges; in particular, the Newtonian consistency relation follows from the dilation and special conformal symmetries in ζ-gauge. We probe the robustness of the consistency relations by studying models of galaxy dynamics and biasing. We give a systematic list of conditions under which the consistency relations are violated; violations occur if the galaxy bias is non-local in an infrared divergent way. We emphasize the relevance of the adiabatic mode condition, as distinct from symmetry considerations. As a by-product of our investigation, we discuss a simple fluid Lagrangian for LSS

  8. LANDIS PRO: a landscape model that predicts forest composition and structure changes at regional scales

    Science.gov (United States)

    Wen J. Wang; Hong S. He; Jacob S. Fraser; Frank R. Thompson; Stephen R. Shifley; Martin A. Spetich

    2014-01-01

    LANDIS PRO predicts forest composition and structure changes incorporating species-, stand-, and landscape-scales processes at regional scales. Species-scale processes include tree growth, establishment, and mortality. Stand-scale processes contain density- and size-related resource competition that regulates self-thinning and seedling establishment. Landscapescale...

  9. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    Science.gov (United States)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  10. Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites

    International Nuclear Information System (INIS)

    Serrano, Pedro; Pedrini, Bill; Geralt, Michael; Jaudzems, Kristaps; Mohanty, Biswaranjan; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Tools for systematic comparisons of NMR and crystal structures developed by the JCSG were applied to two proteins with known functions: the T. maritima anti-σ factor antagonist TM1081 and the mouse γ-glutamylamine cyclotransferase A2LD1 (gi:13879369). In an attempt to exploit the complementarity of crystal and NMR data, the combined use of the two structure-determination techniques was explored for the initial steps in the challenge of searching proteins of unknown functions for putative active sites. The JCSG has recently developed a protocol for systematic comparisons of high-quality crystal and NMR structures of proteins. In this paper, the extent to which this approach can provide function-related information on the two functionally annotated proteins TM1081, a Thermotoga maritima anti-σ factor antagonist, and A2LD1 (gi:13879369), a mouse γ-glutamylamine cyclotransferase, is explored. The NMR structures of the two proteins have been determined in solution at 313 and 298 K, respectively, using the current JCSG protocol based on the software package UNIO for extensive automation. The corresponding crystal structures were solved by the JCSG at 100 K and 1.6 Å resolution and at 100 K and 1.9 Å resolution, respectively. The NMR and crystal structures of the two proteins share the same overall molecular architectures. However, the precision of the structure determination along the amino-acid sequence varies over a significantly wider range in the NMR structures than in the crystal structures. Thereby, in each of the two NMR structures about 65% of the residues have displacements below the average and in both proteins the less well ordered residues include large parts of the active sites, in addition to some highly solvent-exposed surface areas. Whereas the latter show increased disorder in the crystal and in solution, the active-site regions display increased displacements only in the NMR structures, where they undergo local conformational exchange on the

  11. Otoliths versus scales: evaluating the most suitable structure for ...

    African Journals Online (AJOL)

    The suitability of scales for ageing Micropterus salmoides was determined by comparing the precision of growth zone counts on scales with those obtained from sectioned sagittal otoliths from a sample of 496 fish collected from Wriggleswade and Mankazana Impoundments in the Eastern Cape, South Africa. Otoliths (1.4% ...

  12. Solar wind fluctuations at large scale: A comparison between low and high solar activity conditions

    International Nuclear Information System (INIS)

    Bavassano, B.; Bruno, R.

    1991-01-01

    The influence of the Sun's activity cycle on the solar wind fluctuations at time scales from 1 hour to 3 days in the inner heliosphere (0.3 to 1 AU) is investigated. Hourly averages of plasma and magnetic field data by Helios spacecraft are used. Since fluctuations behave quite differently with changing scale, the analysis is performed separately for two different ranges in time scale. Between 1 and 6 hours Alfvenic fluctuations and pressure-balanced structures are extensively observed. At low solar activity and close to 0.3 AU, Alfvenic fluctuations are more frequent than pressure-balanced structures. This predominance, however, weakens for rising solar activity and radial distance, to the point that a role exchange, in terms of occurrence rate, is found at the maximum of the cycle close to 1 AU. On the other hand, in all cases Alfvenic fluctuations have a larger amplitude than pressure-balanced structures. On the whole, the Alfvenic contribution to the solar wind energy spectrum comes out to be dominant at all solar activity conditions. At scales from 0.5 to 3 days the most important feature is the growth, as the solar wind expansion develops, of strong positive correlations between magnetic and thermal pressures. These structures are progressively built up by the interaction between different wind flows. This effect is more pronounced at low than at high activity. Our findings support the conclusion that the solar cycle evolution of the large-scale velocity pattern is the factor governing the observed variations

  13. Lessons learned from full-scale vibration tests on nuclear power plant auxiliary structure in Switzerland

    International Nuclear Information System (INIS)

    Berger, E.; Tinic, S.

    1988-01-01

    The Beznau Nuclear Power Plant is located in northern Switzerland. The plant is owned and operated by the Nordostschweizerische Kraftwerke AG (NOK) in Baden, Switzerland. It is a twin unit plant (2 x 350 MWe) which was designed in the early 1960's and placed into commercial operation between 1969 and 1971. In connection with a major backfit project, which will improve the safety of the plant against external events, the free-standing boric water tanks had to be relocated and were replaced by two boric water tanks in a new building (the so called BOTA-building). It enabled to plan and perform full scale vibration tests.The scope of experimental investigation was to determine the eigenfrequencies and damping values for fundamental soil-structure interaction. The vibration tests allowed identification of the important modes of the soil-structure system in the range 3 to 15 Hz. The excitation was strung enough to generate accelerations in the structure comparable to those of a small earthquake. From the comparisons of computed and measured results it is concluded that the rocking frequency can be reasonably well predicted by either Finite Element or Lumped Parameter models with springs simulating the soil-foundation stiffness, provided in the case of the latter the embedment is taken into account. The prediction of the amplitude of structural response appears to be more difficult, as shown by the differences in the mode shapes. In the frequency range 8 to 10 Hz the agreement between computed and test results was less satisfactory. The actual structural behaviour turned out to be more complex than expected and needs further investigation with the aid of more refined models for the soil-structure system

  14. Lessons learned from full-scale vibration tests on nuclear power plant auxiliary structure in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E [Basler and Hofmann AG, Consulting Engineers, Zurich (Switzerland); Tinic, S [Nordostschweizerische Kraftwerke AG, Baden (Switzerland)

    1988-07-01

    The Beznau Nuclear Power Plant is located in northern Switzerland. The plant is owned and operated by the Nordostschweizerische Kraftwerke AG (NOK) in Baden, Switzerland. It is a twin unit plant (2 x 350 MWe) which was designed in the early 1960's and placed into commercial operation between 1969 and 1971. In connection with a major backfit project, which will improve the safety of the plant against external events, the free-standing boric water tanks had to be relocated and were replaced by two boric water tanks in a new building (the so called BOTA-building). It enabled to plan and perform full scale vibration tests.The scope of experimental investigation was to determine the eigenfrequencies and damping values for fundamental soil-structure interaction. The vibration tests allowed identification of the important modes of the soil-structure system in the range 3 to 15 Hz. The excitation was strung enough to generate accelerations in the structure comparable to those of a small earthquake. From the comparisons of computed and measured results it is concluded that the rocking frequency can be reasonably well predicted by either Finite Element or Lumped Parameter models with springs simulating the soil-foundation stiffness, provided in the case of the latter the embedment is taken into account. The prediction of the amplitude of structural response appears to be more difficult, as shown by the differences in the mode shapes. In the frequency range 8 to 10 Hz the agreement between computed and test results was less satisfactory. The actual structural behaviour turned out to be more complex than expected and needs further investigation with the aid of more refined models for the soil-structure system.

  15. Comparison of clinical and biochemical markers of dehydration with the clinical dehydration scale in children: a case comparison trial.

    Science.gov (United States)

    Tam, Ron K; Wong, Hubert; Plint, Amy; Lepage, Nathalie; Filler, Guido

    2014-06-16

    The clinical dehydration scale (CDS) is a quick, easy-to-use tool with 4 clinical items and a score of 1-8 that serves to classify dehydration in children with gastroenteritis as no, some or moderate/severe dehydration. Studies validating the CDS (Friedman JN) with a comparison group remain elusive. We hypothesized that the CDS correlates with a wide spectrum of established markers of dehydration, making it an appropriate and easy-to-use clinical tool. This study was designed as a prospective double-cohort trial in a single tertiary care center. Children with diarrhea and vomiting, who clinically required intravenous fluids for rehydration, were compared with minor trauma patients who required intravenous needling for conscious sedation. We compared the CDS with clinical and urinary markers (urinary electrolytes, proteins, ratios and fractional excretions) for dehydration in both groups using receiver operating characteristic (ROC) curves to determine the area under the curve (AUC). We enrolled 73 children (male = 36) in the dehydration group and 143 (male = 105) in the comparison group. Median age was 32 months (range 3-214) in the dehydration and 96 months (range 2.6-214 months, p dehydration group and 0 in the comparison group (p dehydrated group: difference in heart rate, diastolic blood pressure, urine sodium/potassium ratio, urine sodium, fractional sodium excretion, serum bicarbonate, and creatinine measurements. The best markers for dehydration were urine Na and serum bicarbonate (ROC AUC = 0.798 and 0.821, respectively). CDS was most closely correlated with serum bicarbonate (Pearson r = -0.3696, p = 0.002). Although serum bicarbonate is not the gold standard for dehydration, this study provides further evidence for the usefulness of the CDS as a dehydration marker in children. Registered at ClinicalTrials.gov (NCT00462527) on April 18, 2007.

  16. Hierarchical fiber-optic-based sensing system: impact damage monitoring of large-scale CFRP structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Banshoya, Hidehiko; Takeda, Nobuo; Tsukamoto, Haruka

    2011-01-01

    This study proposes a novel fiber-optic-based hierarchical sensing concept for monitoring randomly induced damage in large-scale composite structures. In a hierarchical system, several kinds of specialized devices are hierarchically combined to form a sensing network. Specifically, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with an optical fiber network through transducing mechanisms. The distributed devices detect damage, and the fiber-optic network gathers the damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of a hierarchical sensing system through comparison with existing fiber-optic-based systems, and an impact damage detection system was then proposed to validate the new concept. The sensor devices were developed based on comparative vacuum monitoring (CVM), and Brillouin-based distributed strain measurement was utilized to identify damaged areas. Verification tests were conducted step-by-step, beginning with a basic test using a single sensor unit, and, finally, the proposed monitoring system was successfully verified using a carbon fiber reinforced plastic (CFRP) fuselage demonstrator. It was clearly confirmed that the hierarchical system has better repairability, higher robustness, and a wider monitorable area compared to existing systems

  17. Micron-scale lens array having diffracting structures

    Science.gov (United States)

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  18. NFAP calculation of pressure response of 1/6th scale model containment structure

    International Nuclear Information System (INIS)

    Costantino, C.J.; Pepper, S.; Reich, M.

    1988-01-01

    The details associated with the NFAP calculation of the pressure response of the 1/6th scale model containment structure are discussed in this paper. Comparisons are presented of some of the primary items of interest with those determined from the experiment. It was found from this comparison that the hoop response of the containment wall was adequately predicted by the NFAP finite element calculation, including the response in the high pressure, high strain range at which cracking of the concrete and yielding of the hoop reinforcement occurred. In the vertical or meridional direction, it was found that the model was significantly softer than predicted by the finite element calculation; that is, the vertical strains in the test were three to four times larger than computed in the NFAP calculation. These differences were noted even at low strain levels at which the concrete would not be expected to be cracked under tensile loadings. Simplified calculations for the containment indicate that the vertical stiffness of the wall is similar to that which would be determined by assuming the concrete fully cracked. Thus, the experiment indicates an anomalous behavior in the vertical direction

  19. Hierarchical Cantor set in the large scale structure with torus geometry

    Energy Technology Data Exchange (ETDEWEB)

    Murdzek, R. [Physics Department, ' Al. I. Cuza' University, Blvd. Carol I, Nr. 11, Iassy 700506 (Romania)], E-mail: rmurdzek@yahoo.com

    2008-12-15

    The formation of large scale structures is considered within a model with string on toroidal space-time. Firstly, the space-time geometry is presented. In this geometry, the Universe is represented by a string describing a torus surface. Thereafter, the large scale structure of the Universe is derived from the string oscillations. The results are in agreement with the cellular structure of the large scale distribution and with the theory of a Cantorian space-time.

  20. Scaling Care : An analysis of the structural, social and symbolic dimensions of scale in healthcare

    NARCIS (Netherlands)

    J.P. Postma (Jeroen)

    2015-01-01

    markdownabstract__Abstract__ “The Cabinet will promote small-scale healthcare institutions. An optimal scale of healthcare institutions will lead to more efficiency, lower costs, more integrated care, higher customer satisfaction and better care. The Cabinet will ensure the optimisation of the

  1. Modeling sediment yield in small catchments at event scale: Model comparison, development and evaluation

    Science.gov (United States)

    Tan, Z.; Leung, L. R.; Li, H. Y.; Tesfa, T. K.

    2017-12-01

    Sediment yield (SY) has significant impacts on river biogeochemistry and aquatic ecosystems but it is rarely represented in Earth System Models (ESMs). Existing SY models focus on estimating SY from large river basins or individual catchments so it is not clear how well they simulate SY in ESMs at larger spatial scales and globally. In this study, we compare the strengths and weaknesses of eight well-known SY models in simulating annual mean SY at about 400 small catchments ranging in size from 0.22 to 200 km2 in the US, Canada and Puerto Rico. In addition, we also investigate the performance of these models in simulating event-scale SY at six catchments in the US using high-quality hydrological inputs. The model comparison shows that none of the models can reproduce the SY at large spatial scales but the Morgan model performs the better than others despite its simplicity. In all model simulations, large underestimates occur in catchments with very high SY. A possible pathway to reduce the discrepancies is to incorporate sediment detachment by landsliding, which is currently not included in the models being evaluated. We propose a new SY model that is based on the Morgan model but including a landsliding soil detachment scheme that is being developed. Along with the results of the model comparison and evaluation, preliminary findings from the revised Morgan model will be presented.

  2. FFMPD scales: Comparisons with the FFM, PID-5, and CAT-PD-SF.

    Science.gov (United States)

    Crego, Cristina; Oltmanns, Joshua R; Widiger, Thomas A

    2018-01-01

    A series of 8 Five Factor Model Personality Disorder (FFMPD) scales have been developed to assess, from the perspective of the Five Factor Model (FFM), the maladaptive traits included within DSM-5 Section II personality disorders. An extensive body of FFMPD research has accumulated. However, for the most part, each study has been confined to the scales within 1 particular FFMPD Inventory. The current study considered 36 FFMPD scales, at least 1 from each of the 8 FFMPD inventories, including 8 scales considered to be from neuroticism, 8 from extraversion, 5 from openness, 8 from agreeableness, and 7 from conscientiousness. Their convergent, discriminant, and structural relationship with the FFM was considered, and compared with the structural relationship with the FFM obtained by the Personality Inventory for DSM-5 (PID-5) and the Computerized Adaptive Test-Personality Disorder-Static Form (CAT-PD-SF). Support for an FFM structure was obtained (albeit with agreeableness defining 1 factor and antagonism a separate factor). Similarities and differences across the FFMPD, PID-5, and CAT-PD-SF scales were highlighted. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Superposition of two tRNASer acceptor stem crystal structures: Comparison of structure, ligands and hydration

    International Nuclear Information System (INIS)

    Eichert, Andre; Fuerste, Jens P.; Ulrich, Alexander; Betzel, Christian; Erdmann, Volker A.; Foerster, Charlotte

    2010-01-01

    We solved the X-ray structures of two Escherichia coli tRNA Ser acceptor stem microhelices. As both tRNAs are aminoacylated by the same seryl-tRNA-synthetase, we performed a comparative structure analysis of both duplexes to investigate the helical conformation, the hydration patterns and magnesium binding sites. It is well accepted, that the hydration of RNA plays an important role in RNA-protein interactions and that the extensive solvent content of the minor groove has a special function in RNA. The detailed comparison of both tRNA Ser microhelices provides insights into the structural arrangement of the isoacceptor tRNA aminoacyl stems with respect to the surrounding water molecules and may eventually help us to understand their biological function at atomic resolution.

  4. Developement of the method for realization of spectral irradiance scale featuring system of spectral comparisons

    International Nuclear Information System (INIS)

    Skerovic, V; Zarubica, V; Aleksic, M; Zekovic, L; Belca, I

    2010-01-01

    Realization of the scale of spectral responsivity of the detectors in the Directorate of Measures and Precious Metals (DMDM) is based on silicon detectors traceable to LNE-INM. In order to realize the unit of spectral irradiance in the laboratory for photometry and radiometry of the Bureau of Measures and Precious Metals, the new method based on the calibration of the spectroradiometer by comparison with standard detector has been established. The development of the method included realization of the System of Spectral Comparisons (SSC), together with the detector spectral responsivity calibrations by means of a primary spectrophotometric system. The linearity testing and stray light analysis were preformed to characterize the spectroradiometer. Measurement of aperture diameter and calibration of transimpedance amplifier were part of the overall experiment. In this paper, the developed method is presented and measurement results with the associated measurement uncertainty budget are shown.

  5. Developement of the method for realization of spectral irradiance scale featuring system of spectral comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Skerovic, V; Zarubica, V; Aleksic, M [Directorate of measures and precious metals, Optical radiation Metrology department, Mike Alasa 14, 11000 Belgrade (Serbia); Zekovic, L; Belca, I, E-mail: vladanskerovic@dmdm.r [Faculty of Physics, Department for Applied physics and metrology, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2010-10-15

    Realization of the scale of spectral responsivity of the detectors in the Directorate of Measures and Precious Metals (DMDM) is based on silicon detectors traceable to LNE-INM. In order to realize the unit of spectral irradiance in the laboratory for photometry and radiometry of the Bureau of Measures and Precious Metals, the new method based on the calibration of the spectroradiometer by comparison with standard detector has been established. The development of the method included realization of the System of Spectral Comparisons (SSC), together with the detector spectral responsivity calibrations by means of a primary spectrophotometric system. The linearity testing and stray light analysis were preformed to characterize the spectroradiometer. Measurement of aperture diameter and calibration of transimpedance amplifier were part of the overall experiment. In this paper, the developed method is presented and measurement results with the associated measurement uncertainty budget are shown.

  6. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds.

    Directory of Open Access Journals (Sweden)

    Nicholas R Vaughn

    Full Text Available Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.

  7. Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch

    International Nuclear Information System (INIS)

    Cheng Chuntian; Liao Shengli; Tang Zitian; Zhao Mingyan

    2009-01-01

    Dynamic programming (DP) is one of classic and sophisticated optimization methods that have successfully been applied to solve the problem of hydro unit load dispatch (HULD). However, DP will be faced with the curse of dimensionality with the increase of unit number and installed generating capacity of hydropower station. With the appearance of the huge hydropower station similar to the Three George with 26 generators of 700 MW, it is hard to apply the DP to large scale HULD problem. It is crucial to seek for other optimization techniques in order to improve the operation quality and efficiency. Different with the most of literature about power generation scheduling that focused on the comparisons of novel PSO algorithms with other techniques, the paper will pay emphasis on comparison study of PSO with DP based on a case hydropower station. The objective of study is to seek for an effective and feasible method for the large scale of hydropower station of the current and future in China. This paper first compares the performance of PSO and DP using a sample load curve of the Wujiangdu hydropower plant located in the upper stream of the Yangtze River in China and contained five units with the installed capacity of 1250 MW. Next, the effect of different load interval and unit number on the optimal results and efficiency of two methods has also been implemented. The comparison results show that the PSO is feasible for HULD. Furthermore, we simulated the effect of the magnitude of unit number and load capacity on the optimal results and cost time. The simulation comparisons show that PSO has a great advantage over DP in the efficiency and will be one of effective methods for HULD problem of huge hydropower stations.

  8. Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Chuntian, E-mail: ctcheng@dlut.edu.c [Department of Civil and Hydraulic Engineering, Dalian University of Technology, 116024 Dalian (China); Liao Shengli; Tang Zitian [Department of Civil and Hydraulic Engineering, Dalian University of Technology, 116024 Dalian (China); Zhao Mingyan [Department of Environmental Science and Engineering, Tsinghua University, 100084 Beijing (China)

    2009-12-15

    Dynamic programming (DP) is one of classic and sophisticated optimization methods that have successfully been applied to solve the problem of hydro unit load dispatch (HULD). However, DP will be faced with the curse of dimensionality with the increase of unit number and installed generating capacity of hydropower station. With the appearance of the huge hydropower station similar to the Three George with 26 generators of 700 MW, it is hard to apply the DP to large scale HULD problem. It is crucial to seek for other optimization techniques in order to improve the operation quality and efficiency. Different with the most of literature about power generation scheduling that focused on the comparisons of novel PSO algorithms with other techniques, the paper will pay emphasis on comparison study of PSO with DP based on a case hydropower station. The objective of study is to seek for an effective and feasible method for the large scale of hydropower station of the current and future in China. This paper first compares the performance of PSO and DP using a sample load curve of the Wujiangdu hydropower plant located in the upper stream of the Yangtze River in China and contained five units with the installed capacity of 1250 MW. Next, the effect of different load interval and unit number on the optimal results and efficiency of two methods has also been implemented. The comparison results show that the PSO is feasible for HULD. Furthermore, we simulated the effect of the magnitude of unit number and load capacity on the optimal results and cost time. The simulation comparisons show that PSO has a great advantage over DP in the efficiency and will be one of effective methods for HULD problem of huge hydropower stations.

  9. Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch

    Energy Technology Data Exchange (ETDEWEB)

    Chun-tian Cheng; Sheng-li Liao; Zi-Tian Tang [Dept. of Civil and Hydraulic Engineering, Dalian Univ. of Technology, 116024 Dalian (China); Ming-yan Zhao [Dept. of Environmental Science and Engineering, Tsinghua Univ., 100084 Beijing (China)

    2009-12-15

    Dynamic programming (DP) is one of classic and sophisticated optimization methods that have successfully been applied to solve the problem of hydro unit load dispatch (HULD). However, DP will be faced with the curse of dimensionality with the increase of unit number and installed generating capacity of hydropower station. With the appearance of the huge hydropower station similar to the Three George with 26 generators of 700 MW, it is hard to apply the DP to large scale HULD problem. It is crucial to seek for other optimization techniques in order to improve the operation quality and efficiency. Different with the most of literature about power generation scheduling that focused on the comparisons of novel PSO algorithms with other techniques, the paper will pay emphasis on comparison study of PSO with DP based on a case hydropower station. The objective of study is to seek for an effective and feasible method for the large scale of hydropower station of the current and future in China. This paper first compares the performance of PSO and DP using a sample load curve of the Wujiangdu hydropower plant located in the upper stream of the Yangtze River in China and contained five units with the installed capacity of 1250 MW. Next, the effect of different load interval and unit number on the optimal results and efficiency of two methods has also been implemented. The comparison results show that the PSO is feasible for HULD. Furthermore, we simulated the effect of the magnitude of unit number and load capacity on the optimal results and cost time. The simulation comparisons show that PSO has a great advantage over DP in the efficiency and will be one of effective methods for HULD problem of huge hydropower stations. (author)

  10. Sediment Scaling for Mud Mountain Fish Barrier Structure

    Science.gov (United States)

    2017-06-28

    River serves as a collection point of migratory fish. Operators at the structure collect the fish and transport them upstream of Mud Mountain Dam...fixed weir does not allow for structure operations to mobilize the sediment. Thus, a new structure is desired to both mitigate sediment accumulation...gradation, respectively. This analysis should be based on a representative prototype gradation taken from non- slack water areas (Einstein 1950). For this

  11. Size structure, not metabolic scaling rules, determines fisheries reference points

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Beyer, Jan

    2015-01-01

    Impact assessments of fishing on a stock require parameterization of vital rates: growth, mortality and recruitment. For 'data-poor' stocks, vital rates may be estimated from empirical size-based relationships or from life-history invariants. However, a theoretical framework to synthesize...... these empirical relations is lacking. Here, we combine life-history invariants, metabolic scaling and size-spectrum theory to develop a general size- and trait-based theory for demography and recruitment of exploited fish stocks. Important concepts are physiological or metabolic scaled mortalities and flux...... is that larger species have a higher egg production per recruit than small species. This means that density dependence is stronger for large than for small species and has the consequence that fisheries reference points that incorporate recruitment do not obey metabolic scaling rules. This result implies...

  12. Quantum cosmological origin of large scale structures of the universe

    International Nuclear Information System (INIS)

    Anini, Y.

    1989-07-01

    In this paper, the initial quantum state of matter perturbations about de Sitter minisuperspace model is found. For a large class of boundary conditions (bcs), including those of Hartle-Hawking and Vilenkin, the resulting quantum state is the de Sitter invariant vacuum. This result is found to depend only on the regularity requirement at the euclidean origin of spacetime which is common to all reasonable (bcs). The initial value of the density perturbations implied by these quantum fluctuations are found and evaluated at the initial horizon crossing. The perturbations are found to have an almost scale independent spectrum, and an amplitude which depends on the scale at which inflation took place. The amplitude would have the right value if the scale of inflation is H ≤ 10 15 Gev. (author). 9 refs

  13. Broad-Scale Comparison of Photosynthesis in Terrestrial and Aquatic Plant Communities

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Krause-Jensen, D.

    1997-01-01

    Comparisons of photosynthesis in terrestrial and aquatic habitats have been impaired by differences in methods and time-scales of measurements. We compiled information on gross photosynthesis at high irradiance and photosynthetic efficiency at low irradiance from 109 published terrestrial studies...... communities probably due to more efficient light utilization and gas exchange in the terrestrial habitats. By contrast only small differences were found within different aquatic plant communities or within different terrestrial plant communities....... of forests, grasslands and crops and 319 aquatic studies of phytoplankton, macrophyte and attached microalgal communities to test if specific differences existed between the communities. Maximum gross photosynthesis and photosynthetic efficiency were systematically higher in terrestrial than in aquatic...

  14. Comparison of the Kyoto Scale of Psychological Development 2001 with the parent-rated Kinder Infant Development Scale (KIDS).

    Science.gov (United States)

    Aoki, Sayaka; Hashimoto, Keiji; Ikeda, Natsuha; Takekoh, Makoto; Fujiwara, Takeo; Morisaki, Naho; Mezawa, Hidetoshi; Tachibana, Yoshiyuki; Ohya, Yukihiro

    2016-05-01

    The purpose of the study was to extend our understanding of the Kyoto Scale of Psychological Development (KSPD) by comparison with a parent-rated scale, the Kinder Infant Development Scale (KIDS). The participants of this study were 229 children aged 0-4, who were referred to the Developmental Evaluation Center of the National Center for Child Health and Development, due to a suspected developmental disorder/delay. The participants were divided into subgroups, depending on age and overall DQ. For each group separately, correlation analyses were conducted between the Developmental Quotient (DQ) of each KSPD domain and DQ of each KIDS subscale. For high DQ group, in all ages, the KSPD Postural-Motor (P-M) domain DQ demonstrated a high correlation with the KIDS Physical-Motor DQ, and at young ages, it was also found to be moderately or strongly associated with the KIDS Manipulation DQ. For high DQ group, the KSPD Cognitive-Adaptive (C-A) domain DQ was most consistently related to the KIDS Manipulation DQ, and was also moderately correlated with the KIDS Physical-Motor DQ, Receptive Language DQ, Social Relationship with Adults DQ, Discipline DQ, and Feeding DQ, depending on age. For high DQ group, the KSPD Language-Social (L-S) DQ most consistently showed a moderate or high correlation with the KIDS Receptive Language DQ and the Manipulation DQ, and also related to Physical-Motor DQ, Expressive Language DQ, Language Conception DQ, Social Relationship with Adults DQ, and Social Relationship with Children DQ for some age groups. The low DQ group demonstrated stronger relationships on many of the pairs of the DQ of a KSPD subdomain and the DQ of a KIDS subscale, regardless of the type of subdomains and subscales. For high DQ group, the KSPD P-M domain was consistently related to parent-reported physical/motor development, the C-A domain primarily reflected a child's fine motor skills and his/her ability to understand and follow verbal instructions provided by adults

  15. Structural Validity of the Fear of Success Scale

    Science.gov (United States)

    Metzler, Jonathan N.; Conroy, David E.

    2004-01-01

    Fear of success is a dispositional form of anxiety that can have harmful effects on athletes' motivation and performance; however, empirical research on fear of success in sport has been limited. Zuckerman and Allison's (1976) Fear of Success Scale (FOSS) has been the most popular fear of success measure used in sport, yet it is laden with…

  16. Structures in semiclassical spectra: a question of scale

    International Nuclear Information System (INIS)

    Berry, M.V.

    1984-01-01

    Theories of semiclassical bound state spectra for systems with N freedoms are reviewed, emphasizing the different features occurring on successively finer scales of energy E, measured in terms of h/2π, and attempting to correlate these with whether the underlying classical motion is regular or irregular. (Auth.)

  17. Factor structure and gender stability in the multidimensional condom attitudes scale.

    Science.gov (United States)

    Starosta, Amy J; Berghoff, Christopher R; Earleywine, Mitch

    2015-06-01

    Sexually transmitted infections continue to trouble the United States and can be attenuated through increased condom use. Attitudes about condoms are an important multidimensional factor that can affect sexual health choices and have been successfully measured using the Multidimensional Condom Attitudes Scale (MCAS). Such attitudes have the potential to vary between men and women, yet little work has been undertaken to identify if the MCAS accurately captures attitudes without being influenced by underlying gender biases. We examined the factor structure and gender invariance on the MCAS using confirmatory factor analysis and item response theory, within-subscale differential item functioning analyses. More than 770 participants provided data via the Internet. Results of differential item functioning analyses identified three items as differentially functioning between the genders, and removal of these items is recommended. Findings confirmed the previously hypothesized multidimensional nature of condom attitudes and the five-factor structure of the MCAS even after the removal of the three problematic items. In general, comparisons across genders using the MCAS seem reasonable from a methodological standpoint. Results are discussed in terms of improving sexual health research and interventions. © The Author(s) 2014.

  18. Solar wind fluctuations at large scale - A comparison between low and high solar activity conditions

    Science.gov (United States)

    Bavassano, B.; Bruno, R.

    1991-02-01

    The influence of the sun's activity cycle on the solar wind fluctuations at time scales from 1 hour to 3 days in the inner heliosphere (0.3 to 1 AU) is investigated. Hourly averages of plasma and magnetic field data by Helios spacecraft are used. Since fluctuations behave quite differently with changing scale, the analysis is performed separately for two different ranges in time scale. Between 1 and 6 hours Alfvenic fluctuations and pressure-balanced structures are extensively observed. At low solar activity and close to 0.3 AU Alfvenic fluctuations are more frequent than pressure-balanced structures. This predominance, however, weakens for rising solar activity and radial distance, to the point that a role-exchange, in terms of occurrence rate, is found at the maximum of the cycle close to 1 AU. On the other hand, in all cases Alfvenic fluctuations have a larger amplitude than pressure-balanced structures. The Alfvenic contribution to the solar wind energy spectrum comes out to be dominant at all solar activity conditions. These findings support the conclusion that the solar cycle evolution of the large-scale velocity pattern is the factor governing the observed variations.

  19. Deep inelastic singlet structure functions and scaling violation

    Energy Technology Data Exchange (ETDEWEB)

    Wen-zhu, Li; Bing-xun, Hu

    1984-02-01

    The flavour singlet structure functions of deep inelastic scattering processes can yield more decisive tests of QCD than the non-singlet. We give analytical expression for flavour singlet structure functions through analysing the lepton-nucleon deep inelastic scattering processes by means of QCD and using Jacobi polynomials. This expression contains 4 to 5 parameters and shows the changes of the singlet structure functions with x and Q/sup 2/ very well. In QCD leading order, the conclusion is in reasonable agreement with experimental data.

  20. Personality in proportion : A bipolar proportional scale for personality assessments and its consequences for trait structure

    NARCIS (Netherlands)

    Hofstee, W.K.B.; Ten Berge, J.M.F.

    2004-01-01

    Trait structures resulting from personality assessments on Likert scales are affected by the additive and multiplicative transformations implied in interval scaling and correlational analysis. The effect comes into view on selecting a plausible alternative scale. To this end, we propose a bipolar

  1. The Student Perception of University Support and Structure Scale: Development and Validation

    Science.gov (United States)

    Wintre, Maxine G.; Gates, Shawn K. E.; Pancer, W. Mark; Pratt, Michael S.; Polivy, Janet; Birnie-Lefcovitch, S.; Adams, Gerald

    2009-01-01

    A new scale, the Student Perception of University Support and Structure Scale (SPUSS), was developed for research on the transition to university. The scale was based on concepts derived from Baumrind's (1971) theory of parenting styles. Data were obtained from two separate cohorts of freshmen (n=759 and 397) attending six Canadian universities of…

  2. Comparison between the Comfort and Hartwig sedation scales in pediatric patients undergoing mechanical lung ventilation

    Directory of Open Access Journals (Sweden)

    Werther Brunow de Carvalho

    1999-09-01

    Full Text Available CONTEXT: A high number of hospitalized children do not receive adequate sedation due to inadequate evaluation and use of such agents. With the increase in knowledge of sedation and analgesia in recent years, concern has also risen, such that it is now not acceptable that incorrect evaluations of the state of children's pain and anxiety are made. OBJECTIVE: A comparison between the Comfort and Hartwig sedation scales in pediatric patients undergoing mechanical lung ventilation. DESIGN: Prospective cohort study. SETTING: A pediatric intensive care unit with three beds at an urban teaching hospital. PATIENTS: Thirty simultaneous and independent observations were conducted by specialists on 18 patients studied. DIAGNOSTIC TEST: Comfort and Hartwig scales were applied, after 3 minutes of observation. MAIN MEASUREMENTS: Agreement rate (kappa. RESULTS: On the Comfort scale, the averages for adequately sedated, insufficiently sedated, and over-sedated were 20.28 (SD 2.78, 27.5 (SD 0.70, and 15.1 (SD 1.10, respectively, whereas on the Hartwig scale, the averages for adequately sedated, insufficiently sedated, and over-sedated were 16.35 (SD 0.77, 20.85 (SD 1.57, and 13.0 (SD 0.89, respectively. The observed agreement rate was 63% (p = 0.006 and the expected agreement rate was 44% with a Kappa coefficient of 0.345238 (z = 2.49. CONCLUSIONS: In our study there was no statistically significant difference whether the more complex Comfort scale was applied (8 physiological and behavioral parameters or the less complex Hartwig scale (5 behavioral parameters was applied to assess the sedation of mechanically ventilated pediatric patients.

  3. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Science.gov (United States)

    Gretchen H. Roffler; Sandra L. Talbot; Gordon Luikart; George K. Sage; Kristy L. Pilgrim; Layne G. Adams; Michael K. Schwartz

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale...

  4. Relationships between avian richness and landscape structure at multiple scales using multiple landscapes

    Science.gov (United States)

    Michael S. Mitchell; Scott H. Rutzmoser; T. Bently Wigley; Craig Loehle; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Roger W. Perry; Christopher L. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood

    2006-01-01

    Little is known about factors that structure biodiversity on landscape scales, yet current land management protocols, such as forest certification programs, place an increasing emphasis on managing for sustainable biodiversity at landscape scales. We used a replicated landscape study to evaluate relationships between forest structure and avian diversity at both stand...

  5. Double inflation: A possible resolution of the large-scale structure problem

    International Nuclear Information System (INIS)

    Turner, M.S.; Villumsen, J.V.; Vittorio, N.; Silk, J.; Juszkiewicz, R.

    1986-11-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Ω = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of ∼100 Mpc, while the small-scale structure over ≤ 10 Mpc resembles that in a low density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations. 38 refs., 6 figs

  6. Improved protein surface comparison and application to low-resolution protein structure data

    Directory of Open Access Journals (Sweden)

    Kihara Daisuke

    2010-12-01

    Full Text Available Abstract Background Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM, which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs. The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. Results The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Conclusions Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy.

  7. Improved protein surface comparison and application to low-resolution protein structure data.

    Science.gov (United States)

    Sael, Lee; Kihara, Daisuke

    2010-12-14

    Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM), which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs). The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy.

  8. SCOWLP classification: Structural comparison and analysis of protein binding regions

    Directory of Open Access Journals (Sweden)

    Anders Gerd

    2008-01-01

    Full Text Available Abstract Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions

  9. Rasch scaling paranormal belief and experience: structure and semantics of Thalbourne's Australian Sheep-Goat Scale.

    Science.gov (United States)

    Lange, Rense; Thalbourne, Michael A

    2002-12-01

    Research on the relation between demographic variables and paranormal belief remains controversial given the possible semantic distortions introduced by item and test level biases. We illustrate how Rasch scaling can be used to detect such biases and to quantify their effects, using the Australian Sheep-Goal Scale as a substantive example. Based on data from 1.822 respondents, this test was Rasch scalable, reliable, and unbiased at the test level. Consistent with other research in which unbiased measures of paranormal belief were used, extremely weak age and sex effects were found (partial eta2 = .005 and .012, respectively).

  10. Generic Containment: Detailed comparison of containment simulations performed on plant scale

    International Nuclear Information System (INIS)

    Kelm, St.; Klauck, M.; Beck, S.; Allelein, H.-J.; Preusser, G.; Sangiorgi, M.; Klein-Hessling, W.; Bakalov, I.; Bleyer, A.; Bentaib, A.; Kljenak, I.; Stempniewicz, M.; Kostka, P.; Morandi, S.; Ada del Corno, B.; Bratfisch, C.; Risken, T.; Denk, L.; Parduba, Z.; Paci, S.

    2014-01-01

    Highlights: • Consequent implementation of the recommendations derived from the OECD/NEA ISP-47. • Phenomenological code-to-code comparison performed on plant scale. • Systematic identification and elimination of the user effect. • Identification of fundamental differences in the model basis. • Application to PAR system analysis. - Abstract: One outcome of the OECD/NEA ISP-47 activity was the recommendation to elaborate a ‘Generic Containment’ in order to allow comparing and rating the results obtained by different lumped-parameter models on plant scale. Within the European SARNET2 project ( (http://www.sar-net.eu)), such a Generic Containment nodalisation, based on a German PWR (1300 MW el ), was defined. This agreement on the nodalisation allows investigating the remaining differences among the results, especially the ‘user-effect’, related to the modelling choices, as well as fundamental differences in the underlying model basis in detail. The methodology applied in order to compare the different code predictions consisted of a series of three benchmark steps with increasing complexity as well as a systematic comparison of characteristic variables and observations. This paper summarises the benchmark series, the lessons learned during specifying the steps, comparing and discussing the results and finally gives an outlook on future steps

  11. Measuring Cosmic Expansion and Large Scale Structure with Destiny

    Science.gov (United States)

    Benford, Dominic J.; Lauer, Tod R.

    2007-01-01

    Destiny is a simple, direct, low cost mission to determine the properties of dark energy by obtaining a cosmologically deep supernova (SN) type Ia Hubble diagram and by measuring the large-scale mass power spectrum over time. Its science instrument is a 1.65m space telescope, featuring a near-infrared survey camera/spectrometer with a large field of view. During its first two years, Destiny will detect, observe, and characterize 23000 SN Ia events over the redshift interval 0.4Destiny will be used in its third year as a high resolution, wide-field imager to conduct a weak lensing survey covering >lo00 square degrees to measure the large-scale mass power spectrum. The combination of surveys is much more powerful than either technique on its own, and will have over an order of magnitude greater sensitivity than will be provided by ongoing ground-based projects.

  12. Hydrologic response to valley-scale structure in alpine headwaters

    Science.gov (United States)

    Weekes, Anne A.; Torgersen, Christian E.; Montgomery, David R.; Woodward, Andrea; Bolton, Susan M.

    2015-01-01

    Few systematic studies of valley-scale geomorphic drivers of streamflow regimes in complex alpine headwaters have compared response between catchments. As a result, little guidance is available for regional-scale hydrological research and monitoring efforts that include assessments of ecosystem function. Physical parameters such as slope, elevation range, drainage area and bedrock geology are often used to stratify differences in streamflow response between sampling sites within an ecoregion. However, these metrics do not take into account geomorphic controls on streamflow specific to glaciated mountain headwaters. The coarse-grained nature of depositional features in alpine catchments suggests that these landforms have little water storage capacity because hillslope runoff moves rapidly just beneath the rock mantle before emerging in fluvial networks. However, recent studies show that a range of depositional features, including talus slopes, protalus ramparts and 'rock-ice' features may have more storage capacity than previously thought.

  13. Comparison of organic emissions from laboratory and full-scale thermal degradation of sewage sludge

    International Nuclear Information System (INIS)

    Tirey, D.A.; Striebich, R.C.; Dellinger, B.; Bostian, H.E.

    1991-01-01

    Samples of sewage sludge burned at one fluidized-bed and three multiple-hearth incinerators were subjected to laboratory flow reactor thermal decomposition testing in both pyrolytic and oxidative atmospheres. The time/temperature conditions of the laboratory testing were established to simulate as closely as possible full-scale incineration conditions so that a direct comparison of results could be made. The laboratory test results indicated that biomass decomposition products, not toxic industrial contaminants, comprised the majority of the emissions. Benzene, toluene, ethylbenzene, acrylonitrile, and acetonitrile were consistently the most environmentally significant products of thermal degradation. Comparison of the results from this study with those obtained in field tests was complicated by an apparent loss of volatile chlorocarbons from the sludge samples received for laboratory testing. However, qualitative comparison of emission factors derived from lab and field results for those compounds observed in both studies, showed reasonably good correlation for the pyrolysis testing. Results suggested that the upper stages of multiple-hearth units may vaporize many volatile components of the sludge before they enter the combustion stages of the incinerator and thus represent a direct source of introduction of pollutants into the atmosphere

  14. Multi-scale structural analysis of gas diffusion layers

    Science.gov (United States)

    Göbel, Martin; Godehardt, Michael; Schladitz, Katja

    2017-07-01

    The macroscopic properties of materials are strongly determined by their micro structure. Here, transport properties of gas diffusion layers (GDL) for fuel cells are considered. In order to simulate flow and thermal properties, detailed micro structural information is essential. 3D images obtained by high-resolution computed tomography using synchrotron radiation and scanning electron microscopy (SEM) combined with focused ion beam (FIB) serial slicing were used. A recent method for reconstruction of porous structures from FIB-SEM images and sophisticated morphological image transformations were applied to segment the solid structural components. The essential algorithmic steps for segmenting the different components in the tomographic data-sets are described and discussed. In this paper, two types of GDL, based on a non-woven substrate layer and a paper substrate layer were considered, respectively. More than three components are separated within the synchrotron radiation computed tomography data. That is, fiber system, polytetrafluoroethylene (PTFE) binder/impregnation, micro porous layer (MPL), inclusions within the latter, and pore space are segmented. The usage of the thus derived 3D structure data in different simulation applications can be demonstrated. Simulations of macroscopic properties such as thermal conductivity, depending on the flooding state of the GDL are possible.

  15. Assessment of the confiability and factorial structure of three scales measuring chronic procrastination

    OpenAIRE

    Doris Argumedo Bustinza; Karem Díaz Cema; Arturo Calderón García; Juan Francisco Díaz-Morales; Joseph R. Ferrari

    2005-01-01

    This study explores the confiability and factorial structure of three scales measuring chronic procrastination: Scale of General Procrastination (EPG. Lay. 1986). Adult Procrastinatio Inventory (lPA. McCown & Johnson as cited in Ferrari. Johnson & McCown. 1995) and the Scale of Procrastination in Decision-Making (PTF. Mann. 1982). The sample included 514 adults between 20 and 65 years of age from Lima. The three scales showed high levels of intemal consistency and factorial analysis s...

  16. LYα FOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT z > 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Khee-Gan; Hennawi, Joseph F.; Eilers, Anna-Christina [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Stark, Casey; White, Martin [Department of Astronomy, University of California at Berkeley, B-20 Hearst Field Annex 3411, Berkeley, CA 94720 (United States); Prochaska, J. Xavier [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Schlegel, David J. [University of California Observatories, Lick Observatory, 1156 High Street, Santa Cruz, CA 95064 (United States); Arinyo-i-Prats, Andreu [Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB), Martí Franquès 1, E-08028 Barcelona (Spain); Suzuki, Nao [Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Kashiwano-ha 5-1-5, Kashiwa-shi, Chiba (Japan); Croft, Rupert A. C. [Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Caputi, Karina I. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700-AV Groningen (Netherlands); Cassata, Paolo [Instituto de Fisica y Astronomia, Facultad de Ciencias, Universidad de Valparaiso, Av. Gran Bretana 1111, Casilla 5030, Valparaiso (Chile); Ilbert, Olivier; Le Brun, Vincent; Le Fèvre, Olivier [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Garilli, Bianca [INAF-IASF, Via Bassini 15, I-20133, Milano (Italy); Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Maccagni, Dario [INAF-Osservatorio Astronomico di Bologna, Via Ranzani,1, I-40127 Bologna (Italy); Nugent, Peter, E-mail: lee@mpia.de [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2014-11-01

    We present the first observations of foreground Lyα forest absorption from high-redshift galaxies, targeting 24 star-forming galaxies (SFGs) with z ∼ 2.3-2.8 within a 5' × 14' region of the COSMOS field. The transverse sightline separation is ∼2 h {sup –1} Mpc comoving, allowing us to create a tomographic reconstruction of the three-dimensional (3D) Lyα forest absorption field over the redshift range 2.20 ≤ z ≤ 2.45. The resulting map covers 6 h {sup –1} Mpc × 14 h {sup –1} Mpc in the transverse plane and 230 h {sup –1} Mpc along the line of sight with a spatial resolution of ≈3.5 h {sup –1} Mpc, and is the first high-fidelity map of a large-scale structure on ∼Mpc scales at z > 2. Our map reveals significant structures with ≳ 10 h {sup –1} Mpc extent, including several spanning the entire transverse breadth, providing qualitative evidence for the filamentary structures predicted to exist in the high-redshift cosmic web. Simulated reconstructions with the same sightline sampling, spectral resolution, and signal-to-noise ratio recover the salient structures present in the underlying 3D absorption fields. Using data from other surveys, we identified 18 galaxies with known redshifts coeval with our map volume, enabling a direct comparison with our tomographic map. This shows that galaxies preferentially occupy high-density regions, in qualitative agreement with the same comparison applied to simulations. Our results establish the feasibility of the CLAMATO survey, which aims to obtain Lyα forest spectra for ∼1000 SFGs over ∼1 deg{sup 2} of the COSMOS field, in order to map out the intergalactic medium large-scale structure at (z) ∼ 2.3 over a large volume (100 h {sup –1} Mpc){sup 3}.

  17. Phase space properties of local observables and structure of scaling limits

    International Nuclear Information System (INIS)

    Buchholz, D.

    1995-05-01

    For any given algebra of local observables in relativistic quantum field theory there exists an associated scaling algebra which permits one to introduce renormalization group transformations and to construct the scaling (short distance) limit of the theory. On the basis of this result it is discussed how the phase space properties of a theory determine the structure of its scaling limit. Bounds on the number of local degrees of freedom appearing in the scaling limit are given which allow one to distinguish between theories with classical and quantum scaling limits. The results can also be used to establish physically significant algebraic properties of the scaling limit theories, such as the split property. (orig.)

  18. Spatial Scales of Genetic Structure in Free-Standing and Strangler Figs (Ficus, Moraceae Inhabiting Neotropical Forests.

    Directory of Open Access Journals (Sweden)

    Katrin Heer

    Full Text Available Wind-borne pollinating wasps (Agaonidae can transport fig (Ficus sp., Moraceae pollen over enormous distances (> 100 km. Because of their extensive breeding areas, Neotropical figs are expected to exhibit weak patterns of genetic structure at local and regional scales. We evaluated genetic structure at the regional to continental scale (Panama, Costa Rica, and Peru for the free-standing fig species Ficus insipida. Genetic differentiation was detected only at distances > 300 km (Jost´s Dest = 0.68 ± 0.07 & FST = 0.30 ± 0.03 between Mesoamerican and Amazonian sites and evidence for phylogeographic structure (RST>>permuted RST was only significant in comparisons between Central and South America. Further, we assessed local scale spatial genetic structure (SGS, d ≤ 8 km in Panama and developed an agent-based model parameterized with data from F. insipida to estimate minimum pollination distances, which determine the contribution of pollen dispersal on SGS. The local scale data for F. insipida was compared to SGS data collected for an additional free-standing fig, F. yoponensis (subgenus Pharmacosycea, and two species of strangler figs, F. citrifolia and F. obtusifolia (subgenus Urostigma sampled in Panama. All four species displayed significant SGS (mean Sp = 0.014 ± 0.012. Model simulations indicated that most pollination events likely occur at distances > > 1 km, largely ruling out spatially limited pollen dispersal as the determinant of SGS in F. insipida and, by extension, the other fig species. Our results are consistent with the view that Ficus develops fine-scale SGS primarily as a result of localized seed dispersal and/or clumped seedling establishment despite extensive long-distance pollen dispersal. We discuss several ecological and life history factors that could have species- or subgenus-specific impacts on the genetic structure of Neotropical figs.

  19. Additive Manufacturing of Metal Structures at the Micrometer Scale.

    Science.gov (United States)

    Hirt, Luca; Reiser, Alain; Spolenak, Ralph; Zambelli, Tomaso

    2017-05-01

    Currently, the focus of additive manufacturing (AM) is shifting from simple prototyping to actual production. One driving factor of this process is the ability of AM to build geometries that are not accessible by subtractive fabrication techniques. While these techniques often call for a geometry that is easiest to manufacture, AM enables the geometry required for best performance to be built by freeing the design process from restrictions imposed by traditional machining. At the micrometer scale, the design limitations of standard fabrication techniques are even more severe. Microscale AM thus holds great potential, as confirmed by the rapid success of commercial micro-stereolithography tools as an enabling technology for a broad range of scientific applications. For metals, however, there is still no established AM solution at small scales. To tackle the limited resolution of standard metal AM methods (a few tens of micrometers at best), various new techniques aimed at the micrometer scale and below are presently under development. Here, we review these recent efforts. Specifically, we feature the techniques of direct ink writing, electrohydrodynamic printing, laser-assisted electrophoretic deposition, laser-induced forward transfer, local electroplating methods, laser-induced photoreduction and focused electron or ion beam induced deposition. Although these methods have proven to facilitate the AM of metals with feature sizes in the range of 0.1-10 µm, they are still in a prototype stage and their potential is not fully explored yet. For instance, comprehensive studies of material availability and material properties are often lacking, yet compulsory for actual applications. We address these items while critically discussing and comparing the potential of current microscale metal AM techniques. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Comparison of void strengthening in fcc and bcc metals: Large-scale atomic-level modelling

    International Nuclear Information System (INIS)

    Osetsky, Yu.N.; Bacon, D.J.

    2005-01-01

    Strengthening due to voids can be a significant radiation effect in metals. Treatment of this by elasticity theory of dislocations is difficult when atomic structure of the obstacle and dislocation is influential. In this paper, we report results of large-scale atomic-level modelling of edge dislocation-void interaction in fcc (copper) and bcc (iron) metals. Voids of up to 5 nm diameter were studied over the temperature range from 0 to 600 K. We demonstrate that atomistic modelling is able to reveal important effects, which are beyond the continuum approach. Some arise from features of the dislocation core and crystal structure, others involve dislocation climb and temperature effects

  1. Fine-scale crustal structure of the Azores Islands from teleseismic receiver functions

    Science.gov (United States)

    Spieker, K.; Rondenay, S.; Ramalho, R. S.; Thomas, C.; Helffrich, G. R.

    2016-12-01

    The Azores plateau is located near the Mid-Atlantic Ridge (MAR) and consists of nine islands, most of which lie east of the MAR. Various methods including seismic reflection, gravity, and passive seismic imaging have been used to investigate the crustal thickness beneath the islands. They have yielded thickness estimates that range between roughly 10 km and 30 km, but until now models of the fine-scale crustal structure have been lacking. A comparison of the crustal structure beneath the islands that lie west and east of the MAR might give further constraints on the evolution of the islands. For example, geochemical studies carried out across the region predict the existence of volcanic interfaces that should be detected seismically within the shallow crust of some of the islands. In this study, we use data from ten seismic stations located on the Azores Islands to investigate the crustal structure with teleseismic P-wave receiver functions. We query our resulting receiver functions for signals associated with the volcanic edifice, the crust-mantle boundary, and potential underplated layers beneath the various islands. The islands west of the MAR have a crustal structure comprising two discontinuities - an upper one at 1-2 km depth marking the base of the volcanic edifice, and a lower one at 10 km depth that we interpret as crust-mantle boundary. The islands east of the MAR can be subdivided into two groups. The central islands that are closer to the MAR exhibit a crustal structure similar to that of the western islands, with a volcanic edifice reaching a depth of 2 km and an average crust-mantle boundary at around 12 km depth. The easternmost islands, located on the oldest lithosphere, exhibit a more complex crustal structure with evidence for a mid-crustal interface and an underplated layer, yielding an effective crust-mantle boundary at >15 km depth. The difference in structure between proximal and distal islands might be related to the age of the plate at the

  2. An Evaluation Framework for Large-Scale Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Knudsen, Thomas Phillip; Madsen, Ole Brun

    2004-01-01

    structure is a matter of trade-offs between different desired properties, and given a specific case with specific known or expected demands and constraints, the parameters presented will be weighted differently. The decision of such a weighting is supported by a discussion of each parameter. The paper...

  3. Emergence of scale-free close-knit friendship structure in online social networks.

    Directory of Open Access Journals (Sweden)

    Ai-Xiang Cui

    Full Text Available Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four

  4. Emergence of scale-free close-knit friendship structure in online social networks.

    Science.gov (United States)

    Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan

    2012-01-01

    Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This

  5. PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES

    International Nuclear Information System (INIS)

    Fish, Vincent L.; Doeleman, Sheperd S.; Lu, Ru-Sen; Akiyama, Kazunori; Beaudoin, Christopher; Cappallo, Roger; Johnson, Michael D.; Blackburn, Lindy; Blundell, Ray; Chael, Andrew A.; Broderick, Avery E.; Psaltis, Dimitrios; Chan, Chi-Kwan; Alef, Walter; Bertarini, Alessandra; Algaba, Juan Carlos; Asada, Keiichi; Bower, Geoffrey C.; Brinkerink, Christiaan; Chamberlin, Richard

    2016-01-01

    The Galactic Center black hole Sagittarius A* (Sgr A*) is a prime observing target for the Event Horizon Telescope (EHT), which can resolve the 1.3 mm emission from this source on angular scales comparable to that of the general relativistic shadow. Previous EHT observations have used visibility amplitudes to infer the morphology of the millimeter-wavelength emission. Potentially much richer source information is contained in the phases. We report on 1.3 mm phase information on Sgr A* obtained with the EHT on a total of 13 observing nights over four years. Closure phases, which are the sum of visibility phases along a closed triangle of interferometer baselines, are used because they are robust against phase corruptions introduced by instrumentation and the rapidly variable atmosphere. The median closure phase on a triangle including telescopes in California, Hawaii, and Arizona is nonzero. This result conclusively demonstrates that the millimeter emission is asymmetric on scales of a few Schwarzschild radii and can be used to break 180° rotational ambiguities inherent from amplitude data alone. The stability of the sign of the closure phase over most observing nights indicates persistent asymmetry in the image of Sgr A* that is not obscured by refraction due to interstellar electrons along the line of sight

  6. PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Fish, Vincent L.; Doeleman, Sheperd S.; Lu, Ru-Sen; Akiyama, Kazunori; Beaudoin, Christopher; Cappallo, Roger [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Johnson, Michael D.; Blackburn, Lindy; Blundell, Ray; Chael, Andrew A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Broderick, Avery E. [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Psaltis, Dimitrios; Chan, Chi-Kwan [Steward Observatory and Department of Astronomy, University of Arizona, 933 North Cherry Ave., Tucson, AZ 85721-0065 (United States); Alef, Walter; Bertarini, Alessandra [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Algaba, Juan Carlos [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Asada, Keiichi [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Bower, Geoffrey C. [Academia Sinica Institute for Astronomy and Astrophysics, 645 N. A‘ohōkū Place, Hilo, HI 96720 (United States); Brinkerink, Christiaan [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL, Nijmegen (Netherlands); Chamberlin, Richard, E-mail: vfish@haystack.mit.edu [Caltech Submillimeter Observatory, 111 Nowelo Street, Hilo, HI 96720 (United States); and others

    2016-04-01

    The Galactic Center black hole Sagittarius A* (Sgr A*) is a prime observing target for the Event Horizon Telescope (EHT), which can resolve the 1.3 mm emission from this source on angular scales comparable to that of the general relativistic shadow. Previous EHT observations have used visibility amplitudes to infer the morphology of the millimeter-wavelength emission. Potentially much richer source information is contained in the phases. We report on 1.3 mm phase information on Sgr A* obtained with the EHT on a total of 13 observing nights over four years. Closure phases, which are the sum of visibility phases along a closed triangle of interferometer baselines, are used because they are robust against phase corruptions introduced by instrumentation and the rapidly variable atmosphere. The median closure phase on a triangle including telescopes in California, Hawaii, and Arizona is nonzero. This result conclusively demonstrates that the millimeter emission is asymmetric on scales of a few Schwarzschild radii and can be used to break 180° rotational ambiguities inherent from amplitude data alone. The stability of the sign of the closure phase over most observing nights indicates persistent asymmetry in the image of Sgr A* that is not obscured by refraction due to interstellar electrons along the line of sight.

  7. Large-scale structure in mimetic Horndeski gravity

    Science.gov (United States)

    Arroja, Frederico; Okumura, Teppei; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2018-05-01

    In this paper, we propose to use the mimetic Horndeski model as a model for the dark universe. Both cold dark matter (CDM) and dark energy (DE) phenomena are described by a single component, the mimetic field. In linear theory, we show that this component effectively behaves like a perfect fluid with zero sound speed and clusters on all scales. For the simpler mimetic cubic Horndeski model, if the background expansion history is chosen to be identical to a perfect fluid DE (PFDE) then the mimetic model predicts the same power spectrum of the Newtonian potential as the PFDE model with zero sound speed. In particular, if the background is chosen to be the same as that of LCDM, then also in this case the power spectrum of the Newtonian potential in the mimetic model becomes indistinguishable from the power spectrum in LCDM on linear scales. A different conclusion may be found in the case of non-adiabatic perturbations. We also discuss the distinguishability, using power spectrum measurements from LCDM N-body simulations as a proxy for future observations, between these mimetic models and other popular models of DE. For instance, we find that if the background has an equation of state equal to ‑0.95 then we will be able to distinguish the mimetic model from the PFDE model with unity sound speed. On the other hand, it will be hard to do this distinction with respect to the LCDM model.

  8. Wind-induced response of CN-Tower: comparison of model and full scale

    International Nuclear Information System (INIS)

    Monbaliu, J.; Ruigrok, C.; Isyumov, N.

    1985-01-01

    The approximately 555-m high CN Communications Tower in Toronto has now been operational for nearly a decade. The action of wind on this tower was extensively tested at the Boundary Layer Wind Tunnel Laboratory during the design of the tower. This study provided information on the overall wind loads and responses of the structure, the action of wind on various components, and its effects on the tower performance including transmission quality. A program of monitoring and recording the wind induced response and various meteorological data was started in 1977. This paper presents some results of that program and makes comparisons with wind tunnel model data. (author)

  9. Comparison between β-thalassemia minor and normal individuals using the Wechsler Adult Intelligence Scale.

    Science.gov (United States)

    Zangiabadi, Nasser; Yarahmadi, Fahimeh; Darekordi, Ali; Shabani, Mohammad; Dadgar, Mehrak Memaran

    2013-01-01

    The present study aimed at investigating and comparing patients suffering from β-thalassemia (β-thal) minor with normal individuals in regard to their performances in the short version of the Wechsler Adult Intelligence Scale (WAIS) test. Patients with β-thal minor are carriers of β-thal genes. They have mild microcytic and hypochromic anemia and are usually asymptomatic. In this cross-sectional study, a total of 60 individuals were divided into two equal groups of β-thal minor and normal subjects; they were then studied by the WAIS subscales. The mean performance scores of the normal group in the subtests of arithmetic and vocabulary (p <0.01) and picture completion (p <0.05) were higher than those of the thalassemia group. The mean performance score and ability of the normal group on the verbal scale was higher in comparison to the thalassemia group (p <0.05), while on the non verbal scale, there was no significant difference between the two groups. It can be concluded that β-thal minor negatively influences verbal fluency, reasoning and conceptualization, and sequencing tasks, perceptual skill, prediction of social situations and abstract thinking.

  10. LARGE-SCALE FILAMENTARY STRUCTURES AROUND THE VIRGO CLUSTER REVISITED

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk; Rey, Soo-Chang; Lee, Youngdae; Lee, Woong; Chung, Jiwon [Department of Astronomy and Space Science, Chungnam National University, 99 Daehak-ro, Daejeon 305-764 (Korea, Republic of); Bureau, Martin [Sub-department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Yoon, Hyein; Chung, Aeree [Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Jerjen, Helmut [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Lisker, Thorsten [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Jeong, Hyunjin; Sung, Eon-Chang, E-mail: screy@cnu.ac.kr, E-mail: star4citizen@kasi.re.kr [Korea Astronomy and Space Science institute, 776 Daedeokdae-ro, Daejeon 305-348 (Korea, Republic of)

    2016-12-20

    We revisit the filamentary structures of galaxies around the Virgo cluster, exploiting a larger data set, based on the HyperLeda database, than previous studies. In particular, this includes a large number of low-luminosity galaxies, resulting in better sampled individual structures. We confirm seven known structures in the distance range 4  h {sup −1} Mpc < SGY < 16  h {sup −1} Mpc, now identified as filaments, where SGY is the axis of the supergalactic coordinate system roughly along the line of sight. The Hubble diagram of the filament galaxies suggests they are infalling toward the main body of the Virgo cluster. We propose that the collinear distribution of giant elliptical galaxies along the fundamental axis of the Virgo cluster is smoothly connected to two of these filaments (Leo II A and B). Behind the Virgo cluster (16  h {sup −1} Mpc < SGY < 27  h {sup −1} Mpc), we also identify a new filament elongated toward the NGC 5353/4 group (“NGC 5353/4 filament”) and confirm a sheet that includes galaxies from the W and M clouds of the Virgo cluster (“W–M sheet”). In the Hubble diagram, the NGC 5353/4 filament galaxies show infall toward the NGC 5353/4 group, whereas the W–M sheet galaxies do not show hints of gravitational influence from the Virgo cluster. The filamentary structures identified can now be used to better understand the generic role of filaments in the build-up of galaxy clusters at z  ≈ 0.

  11. Electronic Structure of Large-Scale Graphene Nanoflakes

    OpenAIRE

    Hu, Wei; Lin, Lin; Yang, Chao; Yang, Jinlong

    2014-01-01

    With the help of the recently developed SIESTA-PEXSI method [J. Phys.: Condens. Matter \\textbf{26}, 305503 (2014)], we perform Kohn-Sham density functional theory (DFT) calculations to study the stability and electronic structure of hexagonal graphene nanoflakes (GNFs) with up to 11,700 atoms. We find the electronic properties of GNFs, including their cohesive energy, HOMO-LUMO energy gap, edge states and aromaticity, depend sensitively on the type of edges (ACGNFs and ZZGNFs), size and the n...

  12. On Soft Limits of Large-Scale Structure Correlation Functions

    OpenAIRE

    Ben-Dayan, Ido; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura

    2014-01-01

    We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we re-derive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literat...

  13. Fractals as objects with nontrivial structures at all scales

    International Nuclear Information System (INIS)

    Lacan, Francis; Tresser, Charles

    2015-01-01

    Toward the middle of 2001, the authors started arguing that fractals are important when discussing the operational resilience of information systems and related computer sciences issues such as artificial intelligence. But in order to argue along these lines it turned out to be indispensable to define fractals so as to let one recognize as fractals some sets that are very far from being self similar in the (usual) metric sense. This paper is devoted to define (in a loose sense at least) fractals in ways that allow for instance all the Cantor sets to be fractals and that permit to recognize fractality (the property of being fractal) in the context of the information technology issues that we had tried to comprehend. Starting from the meta-definition of a fractal as an “object with non-trivial structure at all scales” that we had used for long, we ended up taking these words seriously. Accordingly we define fractals in manners that depend both on the structures that the fractals are endowed with and the chosen sets of structure compatible maps, i.e., we approach fractals in a category-dependent manner. We expect that this new approach to fractals will contribute to the understanding of more of the fractals that appear in exact and other sciences than what can be handled presently

  14. Reliability analysis of large scaled structures by optimization technique

    International Nuclear Information System (INIS)

    Ishikawa, N.; Mihara, T.; Iizuka, M.

    1987-01-01

    This paper presents a reliability analysis based on the optimization technique using PNET (Probabilistic Network Evaluation Technique) method for the highly redundant structures having a large number of collapse modes. This approach makes the best use of the merit of the optimization technique in which the idea of PNET method is used. The analytical process involves the minimization of safety index of the representative mode, subjected to satisfaction of the mechanism condition and of the positive external work. The procedure entails the sequential performance of a series of the NLP (Nonlinear Programming) problems, where the correlation condition as the idea of PNET method pertaining to the representative mode is taken as an additional constraint to the next analysis. Upon succeeding iterations, the final analysis is achieved when a collapse probability at the subsequent mode is extremely less than the value at the 1st mode. The approximate collapse probability of the structure is defined as the sum of the collapse probabilities of the representative modes classified by the extent of correlation. Then, in order to confirm the validity of the proposed method, the conventional Monte Carlo simulation is also revised by using the collapse load analysis. Finally, two fairly large structures were analyzed to illustrate the scope and application of the approach. (orig./HP)

  15. Cosmological Parameter Estimation with Large Scale Structure Observations

    CERN Document Server

    Di Dio, Enea; Durrer, Ruth; Lesgourgues, Julien

    2014-01-01

    We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, $C_\\ell(z_1,z_2)$, calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard $P(k)$ analysis with the new $C_\\ell(z_1,z_2)$ method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the $P(k)$ analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, $C_0(z_1,z_2)$.

  16. Isolating relativistic effects in large-scale structure

    Science.gov (United States)

    Bonvin, Camille

    2014-12-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  17. Personality Assessment Inventory scale characteristics and factor structure in the assessment of alcohol dependency.

    Science.gov (United States)

    Schinka, J A

    1995-02-01

    Individual scale characteristics and the inventory structure of the Personality Assessment Inventory (PAI; Morey, 1991) were examined by conducting internal consistency and factor analyses of item and scale score data from a large group (N = 301) of alcohol-dependent patients. Alpha coefficients, mean inter-item correlations, and corrected item-total scale correlations for the sample paralleled values reported by Morey for a large clinical sample. Minor differences in the scale factor structure of the inventory from Morey's clinical sample were found. Overall, the findings support the use of the PAI in the assessment of personality and psychopathology of alcohol-dependent patients.

  18. Hypersingular integral equations, waveguiding effects in Cantorian Universe and genesis of large scale structures

    International Nuclear Information System (INIS)

    Iovane, G.; Giordano, P.

    2005-01-01

    In this work we introduce the hypersingular integral equations and analyze a realistic model of gravitational waveguides on a cantorian space-time. A waveguiding effect is considered with respect to the large scale structure of the Universe, where the structure formation appears as if it were a classically self-similar random process at all astrophysical scales. The result is that it seems we live in an El Naschie's o (∞) Cantorian space-time, where gravitational lensing and waveguiding effects can explain the appearing Universe. In particular, we consider filamentary and planar large scale structures as possible refraction channels for electromagnetic radiation coming from cosmological structures. From this vision the Universe appears like a large self-similar adaptive mirrors set, thanks to three numerical simulations. Consequently, an infinite Universe is just an optical illusion that is produced by mirroring effects connected with the large scale structure of a finite and not a large Universe

  19. Large-Scale Unsupervised Hashing with Shared Structure Learning.

    Science.gov (United States)

    Liu, Xianglong; Mu, Yadong; Zhang, Danchen; Lang, Bo; Li, Xuelong

    2015-09-01

    Hashing methods are effective in generating compact binary signatures for images and videos. This paper addresses an important open issue in the literature, i.e., how to learn compact hash codes by enhancing the complementarity among different hash functions. Most of prior studies solve this problem either by adopting time-consuming sequential learning algorithms or by generating the hash functions which are subject to some deliberately-designed constraints (e.g., enforcing hash functions orthogonal to one another). We analyze the drawbacks of past works and propose a new solution to this problem. Our idea is to decompose the feature space into a subspace shared by all hash functions and its complementary subspace. On one hand, the shared subspace, corresponding to the common structure across different hash functions, conveys most relevant information for the hashing task. Similar to data de-noising, irrelevant information is explicitly suppressed during hash function generation. On the other hand, in case that the complementary subspace also contains useful information for specific hash functions, the final form of our proposed hashing scheme is a compromise between these two kinds of subspaces. To make hash functions not only preserve the local neighborhood structure but also capture the global cluster distribution of the whole data, an objective function incorporating spectral embedding loss, binary quantization loss, and shared subspace contribution is introduced to guide the hash function learning. We propose an efficient alternating optimization method to simultaneously learn both the shared structure and the hash functions. Experimental results on three well-known benchmarks CIFAR-10, NUS-WIDE, and a-TRECVID demonstrate that our approach significantly outperforms state-of-the-art hashing methods.

  20. Polarization and Structure of Relativistic Parsec-Scale AGN Jets

    International Nuclear Information System (INIS)

    Lyutikov, M

    2004-01-01

    We consider the polarization properties of optically thin synchrotron radiation emitted by relativistically moving electron-positron jets carrying large-scale helical magnetic fields. In our model, the jet is cylindrical, and the emitting plasma moves parallel to the jet axis with a characteristic Lorentz factor Λ. We draw attention to the strong influence that the bulk relativistic motion of the emitting relativistic particles has on the observed polarization. Our computations predict and explain the following behavior. (1) For jets unresolved in the direction perpendicular to their direction of propagation, the position angle of the electric vector of the linear polarization has a bimodal distribution, being oriented either parallel or perpendicular to the jet. (2) If an ultra-relativistic jet with Λ >> 1 whose axis makes a small angle to the line of sight, θ ∼ 1/Λ, experiences a relatively small change in the direction of propagation, velocity or pitch angle of the magnetic fields, the polarization is likely to remain parallel or perpendicular; on the other hand, in some cases, the degree of polarization can exhibit large variations and the polarization position angle can experience abrupt 90 o changes. This change is more likely to occur in jets with flatter spectra. (3) In order for the jet polarization to be oriented along the jet axis, the intrinsic toroidal magnetic field (in the frame of the jet) should be of the order of or stronger than the intrinsic poloidal field; in this case, the highly relativistic motion of the jet implies that, in the observer's frame, the jet is strongly dominated by the toroidal magnetic field B φ /B z (ge) Λ. (4) The emission-weighted average pitch angle of the intrinsic helical field in the jet must not be too small to produce polarization along the jet axis. In force-free jets with a smooth distribution of emissivities, the emission should be generated in a limited range of radii not too close to the jet core. (5) For

  1. Comparison of steam-generator liquid holdup and core uncovery in two facilities of differing scale

    International Nuclear Information System (INIS)

    Motley, F.; Schultz, R.

    1987-01-01

    This paper reports on Run SB-CL-05, a test similar to Semiscale Run S-UT-8. The test results show that the core was uncovered briefly during the accident and that the rods overheated at certain core locations. Liquid holdup on the upflow side of the steam-generator tubes was observed. After the loop seal cleared, the core refilled and the rods cooled. These behaviors were similar to those observed in the Semiscale run. The Large-Scale Test Facility (LSTF) Run SB-CL-06 is a counterpart test to Semiscale Run S-LH-01. The comparison of the results of both tests shows similar phenomena. The similarity of phenomena in these two facilities build confidence that these results can be expected to occur in a PWR. Similar holdup has now been observed in the 6 tubes of Semiscale and in the 141 tubes of LSTF. It is now more believable that holdup may occur in a full-scale steam generator with 3000 or more tubes. These results confirm the scaling of these phenomena from Semiscale (1/1705) to LSTF (1/48). The TRAC results for SB-CL-05 are in reasonable agreement with the test data. TRAC predicted the core uncovery and resulting rod heatup. The liquid holdup on the upflow side of the steam-generator tubes was also correctly predicted. The clearing of the loop seal allowed core recovery and cooled the overheated rods just as it had in the data. The TRAC analysis results of Run SB-CL-05 are similar to those from Semiscale Run S-UT-8. The ability of the TRAC code to calculate the phenomena equally well in the two experiments of different scales confirms the scalability of the many models in the code that are important in calculating this small break

  2. Comparisons of seismic and electromagnetic structures of the MELT area

    Science.gov (United States)

    Evans, R. L.; Hirth, G.; Forsyth, D.; Baba, K.; Chave, A.

    2003-04-01

    Both seismic and electromagnetic (EM) models from the MELT experiment show similar broad scale features in the mantle beneath the Southern EPR. In all EM models, the conductivity in the upper 50-60˜km is considerably higher to the west of the ridge than to the east. Similarly, seismic models of short period Love waves are asymmetric in velocity structure, with slower velocities to the west of the ridge within the upper 60˜km. Body wave data suggest a similar asymmetry, although the depth extent is not as well defined. West of the ridge, both the higher conductivities and lower velocities have been attributed to the presence of a small melt fraction, although the anomalous regions estimated from different techniques do not entirely agree. To the east, there is a rapid increase in resistivity and S-wave velocity, indicating that within 25˜km of the axis the mantle above 70˜km is both dry and melt-free. Further away from the ridge, the boundary between a conductive asthenospheric mantle and a resistive overlying mantle flattens, at a depth around 60-80˜km. Rayleigh wave inversions also show fairly flat velocity contours with a broad minimum centered at 60-80˜km. Both of these features are consistent with a transition from dry to damp mantle. Also away from the ridge, EM data, shear-wave splitting, and Rayleigh waves all require an azimuthally anisotropic mantle consistent with the a-axis of olivine being preferentially oriented horizontally and perpendicular to the ridge. Anisotropy in EM data suggests damp mantle conditions in the 100-200˜km depth range, with enhanced conduction along the a-axis of olivine. Rayleigh waves are most sensitive to shallower structure and require anisotropy in the upper 70˜km. In the uppermost 40˜km, the most conductive and lowest velocity regions are close to the axis but offset 5-10˜km to the west. Some anisotropic inversions recover a vertically conductive feature that could be interpreted as a few percent melt distributed in

  3. On the origin of large-scale cosmological structure

    International Nuclear Information System (INIS)

    Fry, J.N.

    1987-01-01

    It should be emphasized that the authors do not know at this point with any certainty what is the ultimate origin of cosmological structure. There is a collection of assumptions that make up a more or less standard model, wherein a broad spectrum of quantum fluctuations from an early epoch, modulated by physical effects that depend on the nature of the dominant component of the mass of the universe, provide the seeds that are amplified by gravitational attraction into the structures that they see today. This at least allows some statement on what this origin is not. Although all of the individual choices involved are relatively plausible, there are many steps along the way, and the resulting construct should by no means be taken to be the only possible version of the truth. The author summarizes the more commonly held beliefs and outlines what has come to be the standard model. This paper outlines main points, with most details left to the references (which also contains some visual representations of the results of numerical simulations

  4. An Assessment of the Dimensionality and Factorial Structure of the Revised Paranormal Belief Scale.

    Science.gov (United States)

    Drinkwater, Kenneth; Denovan, Andrew; Dagnall, Neil; Parker, Andrew

    2017-01-01

    Since its introduction, the Revised Paranormal Belief Scale (RPBS) has developed into a principal measure of belief in the paranormal. Accordingly, the RPBS regularly appears within parapsychological research. Despite common usage, academic debates continue to focus on the factorial structure of the RPBS and its psychometric integrity. Using an aggregated heterogeneous sample ( N = 3,764), the present study tested the fit of 10 factorial models encompassing variants of the most commonly proposed solutions (seven, five, two, and one-factor) plus new bifactor alternatives. A comparison of competing models revealed a seven-factor bifactor solution possessed superior data-model fit (CFI = 0.945, TLI = 0.933, IFI = 0.945, SRMR = 0.046, RMSEA = 0.058), containing strong factor loadings for a general factor and weaker, albeit acceptable, factor loadings for seven subfactors. This indicated that belief in the paranormal, as measured by the RPBS, is best characterized as a single overarching construct, comprising several related, but conceptually independent subfactors. Furthermore, women reported significantly higher paranormal belief scores than men, and tests of invariance indicated that mean differences in gender are unlikely to reflect measurement bias. Results indicate that despite concerns about the content and psychometric integrity of the RPBS the measure functions well at both a global and seven-factor level. Indeed, the original seven-factors contaminate alternative solutions.

  5. An Assessment of the Dimensionality and Factorial Structure of the Revised Paranormal Belief Scale

    Directory of Open Access Journals (Sweden)

    Kenneth Drinkwater

    2017-09-01

    Full Text Available Since its introduction, the Revised Paranormal Belief Scale (RPBS has developed into a principal measure of belief in the paranormal. Accordingly, the RPBS regularly appears within parapsychological research. Despite common usage, academic debates continue to focus on the factorial structure of the RPBS and its psychometric integrity. Using an aggregated heterogeneous sample (N = 3,764, the present study tested the fit of 10 factorial models encompassing variants of the most commonly proposed solutions (seven, five, two, and one-factor plus new bifactor alternatives. A comparison of competing models revealed a seven-factor bifactor solution possessed superior data-model fit (CFI = 0.945, TLI = 0.933, IFI = 0.945, SRMR = 0.046, RMSEA = 0.058, containing strong factor loadings for a general factor and weaker, albeit acceptable, factor loadings for seven subfactors. This indicated that belief in the paranormal, as measured by the RPBS, is best characterized as a single overarching construct, comprising several related, but conceptually independent subfactors. Furthermore, women reported significantly higher paranormal belief scores than men, and tests of invariance indicated that mean differences in gender are unlikely to reflect measurement bias. Results indicate that despite concerns about the content and psychometric integrity of the RPBS the measure functions well at both a global and seven-factor level. Indeed, the original seven-factors contaminate alternative solutions.

  6. Single-field consistency relations of large scale structure

    International Nuclear Information System (INIS)

    Creminelli, Paolo; Noreña, Jorge; Simonović, Marko; Vernizzi, Filippo

    2013-01-01

    We derive consistency relations for the late universe (CDM and ΛCDM): relations between an n-point function of the density contrast δ and an (n+1)-point function in the limit in which one of the (n+1) momenta becomes much smaller than the others. These are based on the observation that a long mode, in single-field models of inflation, reduces to a diffeomorphism since its freezing during inflation all the way until the late universe, even when the long mode is inside the horizon (but out of the sound horizon). These results are derived in Newtonian gauge, at first and second order in the small momentum q of the long mode and they are valid non-perturbatively in the short-scale δ. In the non-relativistic limit our results match with [1]. These relations are a consequence of diffeomorphism invariance; they are not satisfied in the presence of extra degrees of freedom during inflation or violation of the Equivalence Principle (extra forces) in the late universe

  7. Comparison of shaker predictions with measured data from the Hualien quarter scale model experiment

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.; McClean, J.; Graves, H.

    1993-01-01

    A quarter scale model reactor containment building has been constructed at a seismically active site in Taiwan (Hualien). The reinforced concrete building is cylindrical in shape having a radius of slightly more than 17 feet and about 52 feet high and is embedded to a depth of 16.5 feet. The mass and stiffness characteristics of the structure are such that the fundamental fixed base structural frequency is about 11 cps. The underlying soil is relatively uniform having a low strain shear wave velocity of about 1000 fps. The SSI frequencies of the structure are 5 cps. 11.6 cps, and 13.5 cps respectively in the rocking, horizontal, and vertical modes. Accelerometers have been placed around the facility and in the near near free field. Pressure gages are placed at several locations on the soil-structure interface. The structure has been subjected to harmonic loadings (shaker) and measurements taken throughout. These tests have been completed for the structure without the placement of backfill and after backfill. Measurements will be taken at the site whenever a reasonable size earthquake occurs. The results obtained for the forced vibration tests before backfill are discussed in this paper

  8. TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY

    International Nuclear Information System (INIS)

    Wang Xin; Chen Xuelei; Park, Changbom

    2012-01-01

    The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.

  9. Evaporation characteristics of a hydrophilic surface with micro-scale and/or nano-scale structures fabricated by sandblasting and aluminum anodization

    International Nuclear Information System (INIS)

    Kim, Hyungmo; Kim, Joonwon

    2010-01-01

    This paper presents the results of evaporation experiments using water droplets on aluminum sheets that were either smooth or had surface structures at the micro-scale, at the nano-scale or at both micro- and nano-scales (dual-scale). The smooth surface was a polished aluminum sheet; the surface with micro-scale structures was obtained by sandblasting; the surface with nano-scale structures was obtained using conventional aluminum anodization and the surface with dual-scale structures was prepared using sandblasting and anodization sequentially. The wetting properties and evaporation rates were measured for each surface. The evaporation rates were affected by their static and dynamic wetting properties. Evaporation on the surface with dual-scale structures was fastest and the evaporation rate was analyzed quantitatively.

  10. DHS small-scale safety and thermal testing of improvised explosives-comparison of testing performance

    International Nuclear Information System (INIS)

    Reynolds, J G; Hsu, P C; Sandstrom, M M; Brown, G W; Warner, K F; Phillips, J J; Shelley, T J; Reyes, J A

    2014-01-01

    One of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of improvised materials or homemade explosives (HMEs) to SSST testing, 16 HME materials were compared to three standard military explosives in a proficiency-type round robin study among five laboratories-two DoD and three DOE-sponsored by DHS. The testing matrix has been designed to address problems encountered with improvised materials-powder mixtures, liquid suspensions, partially wetted solids, immiscible liquids, and reactive materials. More than 30 issues have been identified that indicate standard test methods may require modification when applied to HMEs to derive accurate sensitivity assessments needed for developing safe handling and storage practices. This paper presents a generalized comparison of the results among the testing participants, comparison of friction results from BAM (German Bundesanstalt für Materi-alprüfung) and ABL (Allegany Ballistics Laboratory) designed testing equipment, and an overview of the statistical results from the RDX (1,3,5-Trinitroperhydro-1,3,5-triazine) standard tested throughout the proficiency test.

  11. Comparison of Computational and Experimental Microphone Array Results for an 18%-Scale Aircraft Model

    Science.gov (United States)

    Lockard, David P.; Humphreys, William M.; Khorrami, Mehdi R.; Fares, Ehab; Casalino, Damiano; Ravetta, Patricio A.

    2015-01-01

    An 18%-scale, semi-span model is used as a platform for examining the efficacy of microphone array processing using synthetic data from numerical simulations. Two hybrid RANS/LES codes coupled with Ffowcs Williams-Hawkings solvers are used to calculate 97 microphone signals at the locations of an array employed in the NASA LaRC 14x22 tunnel. Conventional, DAMAS, and CLEAN-SC array processing is applied in an identical fashion to the experimental and computational results for three different configurations involving deploying and retracting the main landing gear and a part span flap. Despite the short time records of the numerical signals, the beamform maps are able to isolate the noise sources, and the appearance of the DAMAS synthetic array maps is generally better than those from the experimental data. The experimental CLEAN-SC maps are similar in quality to those from the simulations indicating that CLEAN-SC may have less sensitivity to background noise. The spectrum obtained from DAMAS processing of synthetic array data is nearly identical to the spectrum of the center microphone of the array, indicating that for this problem array processing of synthetic data does not improve spectral comparisons with experiment. However, the beamform maps do provide an additional means of comparison that can reveal differences that cannot be ascertained from spectra alone.

  12. Factor Structure and Validity of the Body Parts Satisfaction Scale: Results from the 1972 Psychology Today Survey

    Directory of Open Access Journals (Sweden)

    David Frederick

    2014-07-01

    Full Text Available In 1972, the first major national study on body image was conducted under the auspices of Psychology Today. Body image was assessed with the Body Parts Satisfaction Scale, which examined the dissatisfaction people experienced with 24 aspects of their bodies. Despite the continued reliance on this scale and reference to the study, data on the factor structure of this measure in a sample of adults have never been published, and citations of the original scale have relied on an unpublished manuscript (Bohrnstedt, 1977. An exploratory factor analysis conducted on 2,013 adults revealed factors for men (Face, Sex Organ, Height, Lower Body, Mid Torso, Upper Torso, Height and women (Face, Sex Organ, Height, Lower Torso, Mid Torso, Extremities, Breast. The factors were weakly to moderately intercorrelated, suggesting the scale can be analyzed by items, by subscales, or by total score. People who reported more dissatisfaction with their body also tended to report lower self-esteem and less comfort interacting with members of the other sex. The analyses provide a useful comparison point for researchers looking to examine gender differences in dissatisfaction with specific aspects of the body, as well as the factor structures linking these items.

  13. Implementation of Grid-computing Framework for Simulation in Multi-scale Structural Analysis

    Directory of Open Access Journals (Sweden)

    Data Iranata

    2010-05-01

    Full Text Available A new grid-computing framework for simulation in multi-scale structural analysis is presented. Two levels of parallel processing will be involved in this framework: multiple local distributed computing environments connected by local network to form a grid-based cluster-to-cluster distributed computing environment. To successfully perform the simulation, a large-scale structural system task is decomposed into the simulations of a simplified global model and several detailed component models using various scales. These correlated multi-scale structural system tasks are distributed among clusters and connected together in a multi-level hierarchy and then coordinated over the internet. The software framework for supporting the multi-scale structural simulation approach is also presented. The program architecture design allows the integration of several multi-scale models as clients and servers under a single platform. To check its feasibility, a prototype software system has been designed and implemented to perform the proposed concept. The simulation results show that the software framework can increase the speedup performance of the structural analysis. Based on this result, the proposed grid-computing framework is suitable to perform the simulation of the multi-scale structural analysis.

  14. A psychometric comparison of three scales and a single-item measure to assess sexual satisfaction.

    Science.gov (United States)

    Mark, Kristen P; Herbenick, Debby; Fortenberry, J Dennis; Sanders, Stephanie; Reece, Michael

    2014-01-01

    This study was designed to systematically compare and contrast the psychometric properties of three scales developed to measure sexual satisfaction and a single-item measure of sexual satisfaction. The Index of Sexual Satisfaction (ISS), Global Measure of Sexual Satisfaction (GMSEX), and the New Sexual Satisfaction Scale-Short (NSSS-S) were compared to one another and to a single-item measure of sexual satisfaction. Conceptualization of the constructs, distribution of scores, internal consistency, convergent validity, test-retest reliability, and factor structure were compared between the measures. A total of 211 men and 214 women completed the scales and a measure of relationship satisfaction, with 33% (n = 139) of the sample reassessed two months later. All scales demonstrated appropriate distribution of scores and adequate internal consistency. The GMSEX, NSSS-S, and the single-item measure demonstrated convergent validity. Test-retest reliability was demonstrated by the ISS, GMSEX, and NSSS-S, but not the single-item measure. Taken together, the GMSEX received the strongest psychometric support in this sample for a unidimensional measure of sexual satisfaction and the NSSS-S received the strongest psychometric support in this sample for a bidimensional measure of sexual satisfaction.

  15. Comparison of the Berg Balance Scale and Fullerton Advanced Balance Scale to predict falls in community-dwelling adults.

    Science.gov (United States)

    Jeon, Yong-Jin; Kim, Gyoung-Mo

    2017-02-01

    [Purpose] The purpose of this study was to investigate and compare the predictive properties of Berg Balance Scale and Fullerton Advanced Balance Scales, in a group of independently-functioning community dwelling older adults. [Subjects and Methods] Ninety-seven community-dwelling older adults (male=39, female=58) who were capable of walking independently on assessment were included in this study. A binary logistic regression analysis of the Berg Balance Scale and Fullerton Advanced Balance Scale scores was used to investigate a predictive model for fall risk. A receiver operating characteristic analysis was conducted for each, to determine the cut-off for optimal levels of sensitivity and specificity. [Results] The overall prediction success rate was 89.7%; the total Berg Balance Scale and Fullerton Advanced Balance Scale scores were significant in predicting fall risk. Receiver operating characteristic analysis determined that a cut-off score of 40 out of 56 on the Berg Balance Scale produced the highest sensitivity (0.82) and specificity (0.67), and a cut-off score of 22 out of 40 on the Fullerton Advanced Balance Scale produced the highest sensitivity (0.85) and specificity (0.65) in predicting faller status. [Conclusion] The Berg Balance Scale and Fullerton Advanced Balance Scales can predict fall risk, when used for independently-functioning community-dwelling older adults.

  16. Comparison of fall prediction by the Hessisch Oldendorf Fall Risk Scale and the Fall Risk Scale by Huhn in neurological rehabilitation: an observational study.

    Science.gov (United States)

    Hermann, Olena; Schmidt, Simone B; Boltzmann, Melanie; Rollnik, Jens D

    2018-05-01

    To calculate scale performance of the newly developed Hessisch Oldendorf Fall Risk Scale (HOSS) for classifying fallers and non-fallers in comparison with the Risk of Falling Scale by Huhn (FSH), a frequently used assessment tool. A prospective observational trail was conducted. The study was performed in a large specialized neurological rehabilitation facility. The study population ( n = 690) included neurological and neurosurgery patients during neurological rehabilitation with varying levels of disability. Around the half of the study patients were independent and dependent in the activities of daily living (ADL), respectively. Fall risk of each patient was assessed by HOSS and FSH within the first seven days after admission. Event of fall during rehabilitation was compared with HOSS and FSH scores as well as the according fall risk. Scale performance including sensitivity and specificity was calculated for both scales. A total of 107 (15.5%) patients experienced at least one fall. In general, fallers were characterized by an older age, a prolonged length of stay, and a lower Barthel Index (higher dependence in the ADL) on admission than non-fallers. The verification of fall prediction for both scales showed a sensitivity of 83% and a specificity of 64% for the HOSS scale, and a sensitivity of 98% with a specificity of 12% for the FSH scale, respectively. The HOSS shows an adequate sensitivity, a higher specificity and therefore a better scale performance than the FSH. Thus, the HOSS might be superior to existing assessments.

  17. Reliability of the factor structure of the Multidimensional Scale of Interpersonal Reactivity (EMRI

    Directory of Open Access Journals (Sweden)

    Nilton S. Formiga

    2013-10-01

    Full Text Available This study aims to check the internal consistency and factor structure evaluative of the empathy scale in a high school and college sample in the state of Minas Gerais. The instruments that measure empathy can be easily found, however, of the existing, just multidimensional scale of interpersonal reactivity (Emri is the theoretical framework that has far more and better organized, and the scale that is most commonly used to assess this construct. Participated 488 subjects, male and female, with ages from 14-54 years old, distributed in primary and college levels in Patrocínio-MG composed this study sample. The subjects answered the Multidimensional Scale of Interpersonal Reactivity and socio-demographic data. From an equation analysis and structural modeling were observed psychometric indicators that assured the structural consistency of the scale, promoting in the security of the measure theoretical construct of empathy.

  18. Femtosecond structural dynamics on the atomic length scale

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongfang

    2014-03-15

    This thesis reports on the development and application of two different but complementary ultrafast electron diffraction setups built at the Max Planck Research Department for Structural Dynamics. One is an ultra-compact femtosecond electron diffraction (FED) setup (Egun300), which is currently operational (with a maximum electron energy of 150 keV) and provides ultrashort (∝300 fs) and bright (∝10 e/μm{sup 2}) electron bunches. The other one, named as Relativistic Electron Gun for Atomic Exploration (REGAE) is a radio frequency driven 2 to 5 MeV FED setup built in collaboration with different groups from DESY. REGAE was developed as a facility that will provide high quality diffraction with sufficient coherence to even address structural protein dynamics and with electron pulses as short as 20 fs (FWHM). As one of the first students in Prof. R.J. Dwayne Miller's group, I led the femtosecond (fs) laser sub-group at REGAE being responsible for the construction of different key optical elements required to drive both of aforementioned FED systems. A third harmonic generation (THG) and a nonlinear optical parametric amplifier (NOPA) have been used for the photo-generation of ultrashort electron bursts as well as sample laser excitation. Different diagnostic tools have been constructed to monitor the performance of the fs optical system. A fast autocorrelator was developed to provide on the fly pulse duration correction. A transient-grating frequency-resolved optical gating (TG-FROG) was built to obtain detail information about the characteristics of fs optical pulse, i.e. phase and amplitude of its spectral components. In addition to these optical setups, I developed a fs optical pump-probe system, which supports broadband probe pulses. This setup was successfully applied to investigate the semiconductor-to-metal photoinduced phase transition in VO{sub 2} and the ultrafast photo-reduction mechanism of graphene oxide. In regard to FED setups, I have been

  19. Femtosecond structural dynamics on the atomic length scale

    International Nuclear Information System (INIS)

    Zhang, Dongfang

    2014-03-01

    This thesis reports on the development and application of two different but complementary ultrafast electron diffraction setups built at the Max Planck Research Department for Structural Dynamics. One is an ultra-compact femtosecond electron diffraction (FED) setup (Egun300), which is currently operational (with a maximum electron energy of 150 keV) and provides ultrashort (∝300 fs) and bright (∝10 e/μm 2 ) electron bunches. The other one, named as Relativistic Electron Gun for Atomic Exploration (REGAE) is a radio frequency driven 2 to 5 MeV FED setup built in collaboration with different groups from DESY. REGAE was developed as a facility that will provide high quality diffraction with sufficient coherence to even address structural protein dynamics and with electron pulses as short as 20 fs (FWHM). As one of the first students in Prof. R.J. Dwayne Miller's group, I led the femtosecond (fs) laser sub-group at REGAE being responsible for the construction of different key optical elements required to drive both of aforementioned FED systems. A third harmonic generation (THG) and a nonlinear optical parametric amplifier (NOPA) have been used for the photo-generation of ultrashort electron bursts as well as sample laser excitation. Different diagnostic tools have been constructed to monitor the performance of the fs optical system. A fast autocorrelator was developed to provide on the fly pulse duration correction. A transient-grating frequency-resolved optical gating (TG-FROG) was built to obtain detail information about the characteristics of fs optical pulse, i.e. phase and amplitude of its spectral components. In addition to these optical setups, I developed a fs optical pump-probe system, which supports broadband probe pulses. This setup was successfully applied to investigate the semiconductor-to-metal photoinduced phase transition in VO 2 and the ultrafast photo-reduction mechanism of graphene oxide. In regard to FED setups, I have been deeply involved in

  20. The large-scale structure of the universe

    International Nuclear Information System (INIS)

    Silk, J.

    1999-01-01

    The Big Bang is a highly predictive theory, and one that has been systematically refined as the observational data base grows. We assume that the laws an constants of physics are unchanged throughout cosmic time. Einstein's theory of gravitation and the Planck-inspired quantum theory tell us all that we need to know to describe space and time. The local universe is observed to be highly inhomogeneous. Yet if one filters the observed structure, homogeneity appears once the filter bandpass exceeds a few tens of Mpc. The universe is approximately homogeneous. It is also isotropic, there being no apparent preferred direction. Of course, these observations are made from out vantage point. The cosmological principle generalizes the appearance of homogeneity and isotropy to a set of observers distributed through the universe. One motivation behind the cosmological principle is the need to dethrone US as being privileged observers from the vantage point of the earth. The universe is assumed to be statistically isotropic at all times for sets of fundamental observers. One consequence is that the universe must be statistically homogeneous. Observations of the cosmic microwave background have vindicated the cosmological principle, originally applied by Einstein in high first derivation of a static universe, originally applied by Einstein in his first derivation of a static universe. The cosmic microwave background is isotropic to approximately 1 part in 10 5 . It originates from the early universe, and demonstrates that the matter distribution satisfied a similar level of homogeneity during the first million years of cosmic history. (author)

  1. Transferability of results of small scale experiments to real structures

    International Nuclear Information System (INIS)

    Schmitt, W.; Siegele, D.; Kordisch, H.; Baudendistel, E.

    1983-01-01

    The good agreement of the experimental J-values and the numerical J confirms the experimental procedure to evaluate J from the work done on the specimen. This is important for the application of single specimen techniques. The next logical steps in the chain of transferability will now be - after the verification of the three-dimensional crack growth calculations - the experimental and numerical analysis of configuration closer to real structures, e.g. part-through surface flaws in plates and pipes. Starting from a semi-elliptical fatigue flaw the dark regime of stable tearing does no longer follow the original elliptical shape. The explanation of this behavior can only be expected if all possible three-dimensional effects are taken into account. Those three-dimensional effects are also apparent even in compact specimens if no sidegrooves are used. In a first test of the three-dimensional crack growth capabilities of the IWM version of ADINA this experiment has been simulated and loaded up to a displacement of about half the final displacement in the test. (orig./RW)

  2. Fine-scaled human genetic structure revealed by SNP microarrays.

    Science.gov (United States)

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  3. An improved method to characterise the modulation of small-scale turbulent by large-scale structures

    Science.gov (United States)

    Agostini, Lionel; Leschziner, Michael; Gaitonde, Datta

    2015-11-01

    A key aspect of turbulent boundary layer dynamics is ``modulation,'' which refers to degree to which the intensity of coherent large-scale structures (LS) cause an amplification or attenuation of the intensity of the small-scale structures (SS) through large-scale-linkage. In order to identify the variation of the amplitude of the SS motion, the envelope of the fluctuations needs to be determined. Mathis et al. (2009) proposed to define this latter by low-pass filtering the modulus of the analytic signal built from the Hilbert transform of SS. The validity of this definition, as a basis for quantifying the modulated SS signal, is re-examined on the basis of DNS data for a channel flow. The analysis shows that the modulus of the analytic signal is very sensitive to the skewness of its PDF, which is dependent, in turn, on the sign of the LS fluctuation and thus of whether these fluctuations are associated with sweeps or ejections. The conclusion is that generating an envelope by use of a low-pass filtering step leads to an important loss of information associated with the effects of the local skewness of the PDF of the SS on the modulation process. An improved Hilbert-transform-based method is proposed to characterize the modulation of SS turbulence by LS structures

  4. Mechanism and scaling for convection of isolated structures in nonuniformly magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.; Naulin, V.

    2005-01-01

    Large-scale radial advection of isolated structures in nonuniformly magnetized plasmas is investigated. The underlying mechanism considered is due to the nonlinear evolution of interchange motions, without any presumption of plasma sheaths. Theoretical arguments supported by numerical simulations...

  5. Co-Cure-Ply Resins for High Performance, Large-Scale Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — Large-scale composite structures are commonly joined by secondary bonding of molded-and-cured thermoset components. This approach may result in unpredictable joint...

  6. On the universal character of the large scale structure of the universe

    International Nuclear Information System (INIS)

    Demianski, M.; International Center for Relativistic Astrophysics; Rome Univ.; Doroshkevich, A.G.

    1991-01-01

    We review different theories of formation of the large scale structure of the Universe. Special emphasis is put on the theory of inertial instability. We show that for a large class of initial spectra the resulting two point correlation functions are similar. We discuss also the adhesion theory which uses the Burgers equation, Navier-Stokes equation or coagulation process. We review the Zeldovich theory of gravitational instability and discuss the internal structure of pancakes. Finally we discuss the role of the velocity potential in determining the global characteristics of large scale structures (distribution of caustics, scale of voids, etc.). In the last chapter we list the main unsolved problems and main successes of the theory of formation of large scale structure. (orig.)

  7. Morphology Characterization of PP/Clay Nanocomposites Across the Length Scales of the Structural Architecture

    NARCIS (Netherlands)

    Szazdi, Laszlo; Abranyi, Agnes; Pukansky Jr, Bela; Vancso, Gyula J.; Pukanszky, B.; Pukanszky, Bela

    2006-01-01

    The structure and rheological properties of a large number of layered silicate poly(propylene) nanocomposites were studied with widely varying compositions. Morphology characterization at different length scales was achieved by SEM, TEM, and XRD. Rheological measurements supplied additional

  8. Adaptation of the Body Image after Breast Cancer Questionnaire in the Polish context: factorial structure and validity of the scale

    Directory of Open Access Journals (Sweden)

    Romuald Derbis

    2016-01-01

    Full Text Available Background Valid assessment of body image is salient in therapy and rehabilitation of women suffering from breast cancer. Adequate instruments are still lacking in this domain. To overcome this limitation two aims were formulated in the study. First, we tested the factorial structure of the Body Image after Breast Cancer Questionnaire (BIBCQ developed by Baxter (1998 in Canada, in the Polish context. Then, we tested the construct validity of the scale. The scale is based on a multidimensional concept of the body image of chronically ill individuals proposed by Vamos (1993. Participants and procedure A group of 270 women at the mean age of 55 (range of 23-81 with breast cancer who underwent conservation, mastectomy, or lumpectomy surgery was sampled in the Amazonki community. Results Confirmatory factor analysis was used to test the factorial structure of the instrument. To test the convergent validity, scales assessing body self, body image, self-esteem, and depression were used. Divergent validity was analyzed in the context of the social desirability construct. Discriminant validity was based on comparisons between women who had undergone lumpectomy or mastectomy surgery. The results showed that within two out of six subscales proposed by Baxter, two additional subscales had to be distinguished. However, some differences in comparisons with previous validation studies were also found. Conclusions The BIBCQ scale was found to be a valid multidimensional tool of body image assessment in the Polish context. The results are discussed in terms of cross-cultural differences in body image perception in breast cancer patients and guidelines for the scale’s implementation in the Polish context.

  9. Comparison of the Berg Balance Scale and Fullerton Advanced Balance Scale to predict falls in community-dwelling adults

    OpenAIRE

    Jeon, Yong-Jin; Kim, Gyoung-Mo

    2017-01-01

    [Purpose] The purpose of this study was to investigate and compare the predictive properties of Berg Balance Scale and Fullerton Advanced Balance Scales, in a group of independently-functioning community dwelling older adults. [Subjects and Methods] Ninety-seven community-dwelling older adults (male=39, female=58) who were capable of walking independently on assessment were included in this study. A binary logistic regression analysis of the Berg Balance Scale and Fullerton Advanced Balance S...

  10. Coupling Fine-Scale Root and Canopy Structure Using Ground-Based Remote Sensing

    Directory of Open Access Journals (Sweden)

    Brady S. Hardiman

    2017-02-01

    Full Text Available Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL and ground penetrating radar (GPR along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation at multiple spatial scales ≤10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.

  11. Decoupling local mechanics from large-scale structure in modular metamaterials

    Science.gov (United States)

    Yang, Nan; Silverberg, Jesse L.

    2017-04-01

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  12. Scaling behavior of columnar structure during physical vapor deposition

    Science.gov (United States)

    Meese, W. J.; Lu, T.-M.

    2018-02-01

    The statistical effects of different conditions in physical vapor deposition, such as sputter deposition, have on thin film morphology has long been the subject of interest. One notable effect is that of column development due to differential chamber pressure in the well-known empirical model called the Thornton's Structure Zone Model. The model is qualitative in nature and theoretical understanding with quantitative predictions of the morphology is still lacking due, in part, to the absence of a quantitative description of the incident flux distribution on the growth front. In this work, we propose an incident Gaussian flux model developed from a series of binary hard-sphere collisions and simulate its effects using Monte Carlo methods and a solid-on-solid growth scheme. We also propose an approximate cosine-power distribution for faster Monte Carlo sampling. With this model, it is observed that higher chamber pressures widen the average deposition angle, and similarly increase the growth of column diameters (or lateral correlation length) and the column-to-column separation (film surface wavelength). We treat both the column diameter and the surface wavelength as power laws. It is seen that both the column diameter exponent and the wavelength exponent are very sensitive to changes in pressure for low pressures (0.13 Pa to 0.80 Pa); meanwhile, both exponents saturate for higher pressures (0.80 Pa to 6.7 Pa) around a value of 0.6. These predictions will serve as guides to future experiments for quantitative description of the film morphology under a wide range of vapor pressure.

  13. The Visual Analogue Scale for Rating, Ranking and Paired-Comparison (VAS-RRP): A new technique for psychological measurement.

    Science.gov (United States)

    Sung, Yao-Ting; Wu, Jeng-Shin

    2018-04-17

    Traditionally, the visual analogue scale (VAS) has been proposed to overcome the limitations of ordinal measures from Likert-type scales. However, the function of VASs to overcome the limitations of response styles to Likert-type scales has not yet been addressed. Previous research using ranking and paired comparisons to compensate for the response styles of Likert-type scales has suffered from limitations, such as that the total score of ipsative measures is a constant that cannot be analyzed by means of many common statistical techniques. In this study we propose a new scale, called the Visual Analogue Scale for Rating, Ranking, and Paired-Comparison (VAS-RRP), which can be used to collect rating, ranking, and paired-comparison data simultaneously, while avoiding the limitations of each of these data collection methods. The characteristics, use, and analytic method of VAS-RRPs, as well as how they overcome the disadvantages of Likert-type scales, ranking, and VASs, are discussed. On the basis of analyses of simulated and empirical data, this study showed that VAS-RRPs improved reliability, response style bias, and parameter recovery. Finally, we have also designed a VAS-RRP Generator for researchers' construction and administration of their own VAS-RRPs.

  14. Factorial Structure of Rosenberg's Self-Esteem Scale among Crack-Cocaine Drug Users.

    Science.gov (United States)

    Wang, Jichuan; Siegal, Harvey A.; Falck, Russell S.; Carlson, Robert G.

    2001-01-01

    Used nine different confirmatory factor analysis models to test the factorial structure of Rosenberg's (M. Rosenberg, 1965) self-esteem scale with a sample of 430 crack-cocaine users. Results partly support earlier research to show a single global self-esteem factor underlying responses to the Rosenberg scale, method effects associated with item…

  15. A Structural Equation Modelling of the Academic Self-Concept Scale

    Science.gov (United States)

    Matovu, Musa

    2014-01-01

    The study aimed at validating the academic self-concept scale by Liu and Wang (2005) in measuring academic self-concept among university students. Structural equation modelling was used to validate the scale which was composed of two subscales; academic confidence and academic effort. The study was conducted on university students; males and…

  16. Analysis and Comparison of Magnetic Structures in a Tapped Boost Converter for LED Applications

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents an an alysis and comparison of magnetics structures in a tapped boost converter for LED applications. The magnetic structure is a coupled inductor which is analyzed in a conventional wire-wound core as well as in a planar structure for different interleaving winding arrangements...

  17. MultiSETTER: web server for multiple RNA structure comparison.

    Science.gov (United States)

    Čech, Petr; Hoksza, David; Svozil, Daniel

    2015-08-12

    Understanding the architecture and function of RNA molecules requires methods for comparing and analyzing their tertiary and quaternary structures. While structural superposition of short RNAs is achievable in a reasonable time, large structures represent much bigger challenge. Therefore, we have developed a fast and accurate algorithm for RNA pairwise structure superposition called SETTER and implemented it in the SETTER web server. However, though biological relationships can be inferred by a pairwise structure alignment, key features preserved by evolution can be identified only from a multiple structure alignment. Thus, we extended the SETTER algorithm to the alignment of multiple RNA structures and developed the MultiSETTER algorithm. In this paper, we present the updated version of the SETTER web server that implements a user friendly interface to the MultiSETTER algorithm. The server accepts RNA structures either as the list of PDB IDs or as user-defined PDB files. After the superposition is computed, structures are visualized in 3D and several reports and statistics are generated. To the best of our knowledge, the MultiSETTER web server is the first publicly available tool for a multiple RNA structure alignment. The MultiSETTER server offers the visual inspection of an alignment in 3D space which may reveal structural and functional relationships not captured by other multiple alignment methods based either on a sequence or on secondary structure motifs.

  18. Comparison of two spatially-resolved fossil fuel CO2 emissions inventories at the urban scale in four US cities

    Science.gov (United States)

    Liang, J.; Gurney, K. R.; O'Keeffe, D.; Patarasuk, R.; Hutchins, M.; Rao, P.

    2017-12-01

    Spatially-resolved fossil fuel CO2 (FFCO2) emissions are used not only in complex atmospheric modeling systems as prior scenarios to simulate concentrations of CO2 in the atmosphere, but to improve understanding of relationships with socioeconomic factors in support of sustainability policymaking. We present a comparison of ODIAC, a top-down global gridded FFCO2 emissions dataset, and Hesita, a bottom-up FFCO2 emissions dataset, in four US cities, including Los Angles, Indianapolis, Salt Lake City and Baltimore City. ODIAC was developed by downscaling national total emissions to 1km-by-1km grid cells using satellite nightlight imagery as proxy. Hesita was built from the ground up by allocating sector-specific county-level emissions to urban-level spatial surrogates including facility locations, road maps, building footprints/parcels, railroad maps and shipping lanes. The differences in methodology and data sources could lead to large discrepancies in FFCO2 estimates at the urban scale, and these discrepancies need to be taken into account in conducting atmospheric modeling or socioeconomic analysis. This comparison work is aimed at quantifying the statistical and spatial difference between the two FFCO2 inventories. An analysis of the difference in total emissions, spatial distribution and statistical distribution resulted in the following findings: (1) ODIAC agrees well with Hestia in total FFCO2 emissions estimates across the four cities with a difference from 3%-20%; (2) Small-scale areal and linear spatial features such as roads and buildings are either entirely missing or not very well represented in ODIAC, since nightlight imagery might not be able to capture these information. This might further lead to underestimated on-road FFCO2 emissions in ODIAC; (3) The statistical distribution of ODIAC is more concentrated around the mean with much less samples in the lower range. These phenomena could result from the nightlight halo and saturation effects; (4) The

  19. SELECTION OF SCALE OF PICTURE OF STRUCTURE FOR ITS MULTIFRACTAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    VOLCHUK V. N.

    2015-11-01

    Full Text Available Problem statement. Each scale level detectesthe new features of the structure of the material describing of it quality. For example, features of the grain structure are revealed in different kind of steel on microstruc ture level, and its parameters greatly influences on the strength properties of the metal. Thus, to select the scale of representation of a fractal object, for instance the elements of structure of roll iron or steel is necessary to determine the interval (1, where observed its self-similarity, and on this interval should be selected the scale, the use of which will allow him to choose adequate fractal dimension. For optimal scale structure of repose is taken one in which at least two adjacent points of the series (2, the fractal dimension is minimal differences between them. This is explained by the fact that this is best observed property of self-similarity structure. An example of the selection of the scale representation of the structure of cast iron rolls execution of SPHN (a and execution SSHN (b is shown on interval of increases in the range of x 100 to x1000 with a predetermined pitch Δl = 100. The implementation of this phase of research allowed to determine experimentally the optimal scale of representation of structure of iron roll with increasing x 200 for multifractal analysis of its elements: inclusion of the plate and nodular graphit, carbides. Purpose To determine the optimal scale structure representation for iron roll multifractal analysis of its elements: inclusion of the plate and nodular carbides. Conclusion. It was found that the fractal dimension of the structural elements of the test ranged from experimental error 5÷7%, which testifies to the universality of this assessment, and therefore reliability and economic benefits, in terms of the equipping of laboratories expensive metallurgical microscopes with higher resolution.

  20. Scales

    Science.gov (United States)

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...

  1. Conditional sampling technique to test the applicability of the Taylor hypothesis for the large-scale coherent structures

    Science.gov (United States)

    Hussain, A. K. M. F.

    1980-01-01

    Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.

  2. Development of the simulation package 'ELSES' for extra-large-scale electronic structure calculation

    International Nuclear Information System (INIS)

    Hoshi, T; Fujiwara, T

    2009-01-01

    An early-stage version of the simulation package 'ELSES' (extra-large-scale electronic structure calculation) is developed for simulating the electronic structure and dynamics of large systems, particularly nanometer-scale and ten-nanometer-scale systems (see www.elses.jp). Input and output files are written in the extensible markup language (XML) style for general users. Related pre-/post-simulation tools are also available. A practical workflow and an example are described. A test calculation for the GaAs bulk system is shown, to demonstrate that the present code can handle systems with more than one atom species. Several future aspects are also discussed.

  3. A four-scale homogenization analysis of creep of a nuclear containment structure

    Energy Technology Data Exchange (ETDEWEB)

    Tran, A.B. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME UMR 8208 CNRS, 5 bd Descartes, F-77454 Marne-la-Vallée (France); EDF R and D – Département MMC Site des Renardières – Avenue des Renardières - Ecuelles, 77818 Moret sur Loing Cedex (France); Department of Applied Informatics in Construction, National University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung District, Hanoi (Viet Nam); Yvonnet, J., E-mail: julien.yvonnet@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME UMR 8208 CNRS, 5 bd Descartes, F-77454 Marne-la-Vallée (France); He, Q.-C. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME UMR 8208 CNRS, 5 bd Descartes, F-77454 Marne-la-Vallée (France); Toulemonde, C.; Sanahuja, J. [EDF R and D – Département MMC Site des Renardières – Avenue des Renardières - Ecuelles, 77818 Moret sur Loing Cedex (France)

    2013-12-15

    A four-scale approach is proposed to predict the creep behavior of a concrete structure. The behavior of concrete is modeled through a numerical multiscale methodology, by successively homogenizing the viscoelastic behavior at different scales, starting from the cement paste. The homogenization is carried out by numerically constructing an effective relaxation tensor at each scale. In this framework, the impact of modifying the microstructural parameters can be directly observed on the structure response, like the interaction of the creep of concrete with the prestressing tendons network, and the effects of an internal pressure which might occur during a nuclear accident.

  4. A four-scale homogenization analysis of creep of a nuclear containment structure

    International Nuclear Information System (INIS)

    Tran, A.B.; Yvonnet, J.; He, Q.-C.; Toulemonde, C.; Sanahuja, J.

    2013-01-01

    A four-scale approach is proposed to predict the creep behavior of a concrete structure. The behavior of concrete is modeled through a numerical multiscale methodology, by successively homogenizing the viscoelastic behavior at different scales, starting from the cement paste. The homogenization is carried out by numerically constructing an effective relaxation tensor at each scale. In this framework, the impact of modifying the microstructural parameters can be directly observed on the structure response, like the interaction of the creep of concrete with the prestressing tendons network, and the effects of an internal pressure which might occur during a nuclear accident

  5. A new scaling approach for the mesoscale simulation of magnetic domain structures using Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, B., E-mail: radhakrishnb@ornl.gov; Eisenbach, M.; Burress, T.A.

    2017-06-15

    Highlights: • Developed new scaling technique for dipole–dipole interaction energy. • Developed new scaling technique for exchange interaction energy. • Used scaling laws to extend atomistic simulations to micrometer length scale. • Demonstrated transition from mono-domain to vortex magnetic structure. • Simulated domain wall width and transition length scale agree with experiments. - Abstract: A new scaling approach has been proposed for the spin exchange and the dipole–dipole interaction energy as a function of the system size. The computed scaling laws are used in atomistic Monte Carlo simulations of magnetic moment evolution to predict the transition from single domain to a vortex structure as the system size increases. The width of a 180° – domain wall extracted from the simulated structures is in close agreement with experimentally values for an F–Si alloy. The transition size from a single domain to a vortex structure is also in close agreement with theoretically predicted and experimentally measured values for Fe.

  6. A comparison of X-ray and calculated structures of the enzyme MTH1.

    Science.gov (United States)

    Ryan, Hannah; Carter, Megan; Stenmark, Pål; Stewart, James J P; Braun-Sand, Sonja B

    2016-07-01

    Modern computational chemistry methods provide a powerful tool for use in refining the geometry of proteins determined by X-ray crystallography. Specifically, computational methods can be used to correctly place hydrogen atoms unresolved by this experimental method and improve bond geometry accuracy. Using the semiempirical method PM7, the structure of the nucleotide-sanitizing enzyme MTH1, complete with hydrolyzed substrate 8-oxo-dGMP, was optimized and the resulting geometry compared with the original X-ray structure of MTH1. After determining hydrogen atom placement and the identification of ionized sites, the charge distribution in the binding site was explored. Where comparison was possible, all the theoretical predictions were in good agreement with experimental observations. However, when these were combined with additional predictions for which experimental observations were not available, the result was a new and alternative description of the substrate-binding site interaction. An estimate was made of the strengths and weaknesses of the PM7 method for modeling proteins on varying scales, ranging from overall structure to individual interatomic distances. An attempt to correct a known fault in PM7, the under-estimation of steric repulsion, is also described. This work sheds light on the specificity of the enzyme MTH1 toward the substrate 8-oxo-dGTP; information that would facilitate drug development involving MTH1. Graphical Abstract Overlay of the backbone traces of the two MTH1 protein chains (green and orange respectively) in PDB 3ZR0 and the equivalent PM7 structures (magenta and cyan respectively) each optimized separately.

  7. Electron Scale Structures and Magnetic Reconnection Signatures in the Turbulent Magnetosheath

    Science.gov (United States)

    Yordanova, E.; Voros, Z.; Varsani, A.; Graham, D. B.; Norgren, C.; Khotyaintsev, Yu. V.; Vaivads, A.; Eriksson, E.; Nakamura, R.; Lindqvist, P.-A.; hide

    2016-01-01

    Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The Magnetospheric Multiscale (MMS) mission provides the first serious opportunity to verify whether small ion-electron-scale reconnection, generated by turbulence, resembles the reconnection events frequently observed in the magnetotail or at the magnetopause. Here we investigate field and particle observations obtained by the MMS fleet in the turbulent terrestrial magnetosheath behind quasi-parallel bow shock geometry. We observe multiple small-scale current sheets during the event and present a detailed look of one of the detected structures. The emergence of thin current sheets can lead to electron scale structures. Within these structures, we see signatures of ion demagnetization, electron jets, electron heating, and agyrotropy suggesting that MMS spacecraft observe reconnection at these scales.

  8. x- and xi-scaling of the Nuclear Structure Function at Large x

    International Nuclear Information System (INIS)

    Arrington, J.; Armstrong, C. S.; Averett, T.; Baker, O. K.; Bever, L. de; Bochna, C. W.; Boeglin, W.; Bray, B.; Carlini, R. D.; Collins, G.; Cothran, C.; Crabb, D.; Day, D.; Dunne, J. A.; Dutta, D.; Ent, R.; Filippone, B. W.; Honegger, A.; Hughes, E. W.; Jensen, J.; Jourdan, J.; Keppel, C. E.; Koltenuk, D. M.; Lindgren, R.; Lung, A.; Mack, D. J.; McCarthy, J.; McKeown, R. D.; Meekins, D.; Mitchell, J. H.; Mkrtchyan, H. G.; Niculescu, G.; Niculescu, I.; Petitjean, T.; Rondon, O.; Sick, I.; Smith, C.; Terburg, B.; Vulcan, W. F.; Wood, S. A.; Yan, C.; Zhao, J.; Zihlmann, B.

    2001-01-01

    Inclusive electron scattering data are presented for 2 H and Fe targets at an incident electron energy of 4.045 GeV for a range of momentum transfers from Q 2 = 1 to 7 (GeV/c) 2 . Data were taken at Jefferson Laboratory for low values of energy loss, corresponding to values of Bjorken x greater than or near 1. The structure functions do not show scaling in x in this range, where inelastic scattering is not expected to dominate the cross section. The data do show scaling, however, in the Nachtmann variable ξ. This scaling may be the result of Bloom Gilman duality in the nucleon structure function combined with the Fermi motion of the nucleons in the nucleus. The resulting extension of scaling to larger values of ξ opens up the possibility of accessing nuclear structure functions in the high-x region at lower values of Q 2 than previously believed

  9. A comprehensive comparison of comparative RNA structure prediction approaches

    DEFF Research Database (Denmark)

    Gardner, P. P.; Giegerich, R.

    2004-01-01

    -finding and multiple-sequence-alignment algorithms. Results Here we evaluate a number of RNA folding algorithms using reliable RNA data-sets and compare their relative performance. Conclusions We conclude that comparative data can enhance structure prediction but structure-prediction-algorithms vary widely in terms......Background An increasing number of researchers have released novel RNA structure analysis and prediction algorithms for comparative approaches to structure prediction. Yet, independent benchmarking of these algorithms is rarely performed as is now common practice for protein-folding, gene...

  10. Factor Structure and Psychometric Properties of the Injection Phobia Scale-Anxiety

    Science.gov (United States)

    Olatunji, Bunmi O.; Sawchuk, Craig N.; Moretz, Melanie W.; David, Bieke; Armstrong, Thomas; Ciesielski, Bethany G.

    2010-01-01

    The present investigation examined the factor structure and psychometric properties of the Injection Phobia Scale-Anxiety (IPS-Anx). Principal components analysis of IPS-Anx items in Study 1 (n = 498) revealed a 2-factor structure consisting of Distal Fear and Contact Fear. However, CFA results in Study 2 (n = 567) suggest that a 1-factor…

  11. Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks

    Science.gov (United States)

    Lindy B. Mullen; H. Arthur Woods; Michael K. Schwartz; Adam J. Sepulveda; Winsor H. Lowe

    2010-01-01

    The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho...

  12. Initial condition effects on large scale structure in numerical simulations of plane mixing layers

    Science.gov (United States)

    McMullan, W. A.; Garrett, S. J.

    2016-01-01

    In this paper, Large Eddy Simulations are performed on the spatially developing plane turbulent mixing layer. The simulated mixing layers originate from initially laminar conditions. The focus of this research is on the effect of the nature of the imposed fluctuations on the large-scale spanwise and streamwise structures in the flow. Two simulations are performed; one with low-level three-dimensional inflow fluctuations obtained from pseudo-random numbers, the other with physically correlated fluctuations of the same magnitude obtained from an inflow generation technique. Where white-noise fluctuations provide the inflow disturbances, no spatially stationary streamwise vortex structure is observed, and the large-scale spanwise turbulent vortical structures grow continuously and linearly. These structures are observed to have a three-dimensional internal geometry with branches and dislocations. Where physically correlated provide the inflow disturbances a "streaky" streamwise structure that is spatially stationary is observed, with the large-scale turbulent vortical structures growing with the square-root of time. These large-scale structures are quasi-two-dimensional, on top of which the secondary structure rides. The simulation results are discussed in the context of the varying interpretations of mixing layer growth that have been postulated. Recommendations are made concerning the data required from experiments in order to produce accurate numerical simulation recreations of real flows.

  13. Large scale electronic structure calculations in the study of the condensed phase

    NARCIS (Netherlands)

    van Dam, H.J.J.; Guest, M.F.; Sherwood, P.; Thomas, J.M.H.; van Lenthe, J.H.; van Lingen, J.N.J.; Bailey, C.L.; Bush, I.J.

    2006-01-01

    We consider the role that large-scale electronic structure computations can now play in the modelling of the condensed phase. To structure our analysis, we consider four distict ways in which today's scientific targets can be re-scoped to take advantage of advances in computing resources: 1. time to

  14. Application of Exploratory Structural Equation Modeling to Evaluate the Academic Motivation Scale

    Science.gov (United States)

    Guay, Frédéric; Morin, Alexandre J. S.; Litalien, David; Valois, Pierre; Vallerand, Robert J.

    2015-01-01

    In this research, the authors examined the construct validity of scores of the Academic Motivation Scale using exploratory structural equation modeling. Study 1 and Study 2 involved 1,416 college students and 4,498 high school students, respectively. First, results of both studies indicated that the factor structure tested with exploratory…

  15. The factor structure of the self-directed learning readiness scale | de ...

    African Journals Online (AJOL)

    The factor structure of the Self-Directed Learning Readiness Scale (SDLRS) was investigated for Afrikaans and English-speaking first-year university students. Five factors were extracted and rotated to oblique simple structure for both groups. Four of the five factors were satisfactorily replicated. The fifth factor appeared to ...

  16. Comparison of the Fullerton Advanced Balance Scale, Mini-BESTest, and Berg Balance Scale to Predict Falls in Parkinson Disease.

    Science.gov (United States)

    Schlenstedt, Christian; Brombacher, Stephanie; Hartwigsen, Gesa; Weisser, Burkhard; Möller, Bettina; Deuschl, Günther

    2016-04-01

    The correct identification of patients with Parkinson disease (PD) at risk for falling is important to initiate appropriate treatment early. This study compared the Fullerton Advanced Balance (FAB) scale with the Mini-Balance Evaluation Systems Test (Mini-BESTest) and Berg Balance Scale (BBS) to identify individuals with PD at risk for falls and to analyze which of the items of the scales best predict future falls. This was a prospective study to assess predictive criterion-related validity. The study was conducted at a university hospital in an urban community. Eighty-five patients with idiopathic PD (Hoehn and Yahr stages: 1-4) participated in the study. Measures were number of falls (assessed prospectively over 6 months), FAB scale, Mini-BESTest, BBS, and Unified Parkinson's Disease Rating Scale. The FAB scale, Mini-BESTest, and BBS showed similar accuracy to predict future falls, with values for area under the curve (AUC) of the receiver operating characteristic (ROC) curve of 0.68, 0.65, and 0.69, respectively. A model combining the items "tandem stance," "rise to toes," "one-leg stance," "compensatory stepping backward," "turning," and "placing alternate foot on stool" had an AUC of 0.84 of the ROC curve. There was a dropout rate of 19/85 participants. The FAB scale, Mini-BESTest, and BBS provide moderate capacity to predict "fallers" (people with one or more falls) from "nonfallers." Only some items of the 3 scales contribute to the detection of future falls. Clinicians should particularly focus on the item "tandem stance" along with the items "one-leg stance," "rise to toes," "compensatory stepping backward," "turning 360°," and "placing foot on stool" when analyzing postural control deficits related to fall risk. Future research should analyze whether balance training including the aforementioned items is effective in reducing fall risk. © 2016 American Physical Therapy Association.

  17. Comparison of char structural characteristics and reactivity during conventional air and oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaowei; Xu, Minghou; Yao, Hong; Gu, Ying; Si, Junping; Xiong, Chao [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    The capture and sequestration of CO{sub 2} generated from large- scale stationary power plants is considered to be one of the leading technologies that could potentially have a significant impact on reducing greenhouse emissions. Among these emerging technologies, the oxy-fuel combustion is a near-zero emission technology that can be adapted to both new and existing pulverized coal-fired power stations. The goal of this work is to make a comparative study on char structural characteristics (including char yield, swelling ratio, BET surface area, pore distribution, morphology) and reactivity during conventional air and oxy-fuel combustion. Specific experimental designs include two series. One is carried out in pure N{sub 2} and CO{sub 2} (pyrolysis experiments), and another is prepared in N{sub 2} + 5%O{sub 2} and CO{sub 2} + 5%O{sub 2}. Coal samples included raw coal, low density fraction coal and medium density fraction coal in all experiments. The present study is a further effort to extend our knowledge about physical and chemical structural characteristics and reactivity of char in the presence of high concentration CO{sub 2}. Combustion and pyrolysis of a density fractionated China coal at drop tube furnace yielded the following conclusions. Compared to oxy-chars obtained under pure CO{sub 2} atmosphere, the swelling ratios of char obtained in pure N{sub 2} atmosphere are higher. When adding 5%O{sub 2}, experimental results are completely different with those of the pyrolysis experiment. In comparison with the oxy-chars obtained under CO{sub 2} + 5%O{sub 2} atmosphere, the swelling ratios of the char obtained in N{sub 2} + 5%O{sub 2} atmosphere are lower. In the pyrolysis experiment, the BET surfaces Area of the oxy-chars are about 10-20 times as much as chars. When adding 5%O{sub 2}, the BET surfaces Area of the oxy-chars are about two to four times as much as chars. During pyrolysis experiment, the total pore volumes of the oxy-chars obtained under pure CO

  18. Skin and scales of teleost fish: Simple structure but high performance and multiple functions

    Science.gov (United States)

    Vernerey, Franck J.; Barthelat, Francois

    2014-08-01

    Natural and man-made structural materials perform similar functions such as structural support or protection. Therefore they rely on the same types of properties: strength, robustness, lightweight. Nature can therefore provide a significant source of inspiration for new and alternative engineering designs. We report here some results regarding a very common, yet largely unknown, type of biological material: fish skin. Within a thin, flexible and lightweight layer, fish skins display a variety of strain stiffening and stabilizing mechanisms which promote multiple functions such as protection, robustness and swimming efficiency. We particularly discuss four important features pertaining to scaled skins: (a) a strongly elastic tensile behavior that is independent from the presence of rigid scales, (b) a compressive response that prevents buckling and wrinkling instabilities, which are usually predominant for thin membranes, (c) a bending response that displays nonlinear stiffening mechanisms arising from geometric constraints between neighboring scales and (d) a robust structure that preserves the above characteristics upon the loss or damage of structural elements. These important properties make fish skin an attractive model for the development of very thin and flexible armors and protective layers, especially when combined with the high penetration resistance of individual scales. Scaled structures inspired by fish skin could find applications in ultra-light and flexible armor systems, flexible electronics or the design of smart and adaptive morphing structures for aerospace vehicles.

  19. Dynamic Arrest in Charged Colloidal Systems Exhibiting Large-Scale Structural Heterogeneities

    International Nuclear Information System (INIS)

    Haro-Perez, C.; Callejas-Fernandez, J.; Hidalgo-Alvarez, R.; Rojas-Ochoa, L. F.; Castaneda-Priego, R.; Quesada-Perez, M.; Trappe, V.

    2009-01-01

    Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics

  20. Structural Identification and Comparison of Intelligent Mobile Learning Environment

    Science.gov (United States)

    Upadhyay, Nitin; Agarwal, Vishnu Prakash

    2007-01-01

    This paper proposes a methodology using graph theory, matrix algebra and permanent function to compare different architecture (structure) design of intelligent mobile learning environment. The current work deals with the development/selection of optimum architecture (structural) model of iMLE. This can be done using the criterion as discussed in…

  1. Comparison of parton distributions and structure functions for the proton

    International Nuclear Information System (INIS)

    Abramowicz, H.; Charchula, K.; Krawczyk, M.; Levy, A.

    1990-09-01

    A comparative study of the most popular parton parametrizations is presented. The individual parton distributions as well as the F 2 structure function are discussed with a particular emphasis on the low x region, 10 -4 -2 . The predictions of these parametrizations for the F 2 structure function have a wide spread which persists also in the HERA kinematical region. (orig.)

  2. Comparison of Cellulose Supramolecular Structures Between Nanocrystals of Different Origins

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Christopher G. Hunt; Jeffery Catchmark; E. Johan Foster; Akira Isogai

    2015-01-01

    In this study, morphologies and supramolecular structures of CNCs from wood-pulp, cotton, bacteria, tunicate, and cladophora were investigated. TEM was used to study the morphological aspects of the nanocrystals whereas Raman spectroscopy provided information on the cellulose molecular structure and its organization within a CNC. Dimensional differences between the...

  3. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2012-07-10

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  4. TRITON vs POLARIS. Comparison Between Two Modules for LWRs Modelling in SCALE 6.2

    Energy Technology Data Exchange (ETDEWEB)

    Labarile, A.; Barrachina, T.; Miró, R.; Verdú, G.

    2015-07-01

    -One of them challenges more important in the research of reactors nuclear is the development of codes of best estimate that allow decrease them uncertainties of them calculations increasing the reliability of the results. You will also need sensitivity and uncertainty analysis and validation of the implemented code. This work offers a comparison of two modules of SCALE-6.2 for the case of a reactor's water to pressure (PWR). Based is in data from plant of the reactor Three thousands Island-1 is has calculated the keff and the cross sections effective with two modules in two dimensions (2-D) of the program SCALE: TRITON and POLARIS. TRITON is a module already validated for the calculation of the transport as POLARIS is located in distribution from end of the 2014. The objective is to compare the results of keff and cross sections of two simulations, and carry out a sensitivity analysis and uncertainty of the results. In TRITON and POLARIS calculations have been made to fuel elements of the PWR Three thousand Island-1, in two different configurations (with and without control rods), condition of stop in hot (HZP) and condition of full power (HFP). The results are presented in this work. A good correlation between the results of two simulations has found and, in addition, POLARIS module has presented less computational time and good stability in the parameters. After having compared the results obtained, a sensitivity analysis has been carried out to confirm the validation of two modules and study the influence of uncertainties in the calculation of the fuel element. (Author)

  5. Scaling Professional Problems of Teachers in Turkey with Paired Comparison Method

    Directory of Open Access Journals (Sweden)

    Yasemin Duygu ESEN

    2017-03-01

    Full Text Available In this study, teachers’ professional problems was investigated and the significance level of them was measured with the paired comparison method. The study was carried out in survey model. The study group consisted of 484 teachers working in public schools which are accredited by Ministry of National Education (MEB in Turkey. “The Teacher Professional Problems Survey” developed by the researchers was used as a data collection tool. In data analysis , the scaling method with the third conditional equation of Thurstone’s law of comparative judgement was used. According to the results of study, the teachers’ professional problems include teacher training and the quality of teacher, employee rights and financial problems, decrease of professional reputation, the problems with MEB policies, the problems with union activities, workload, the problems with administration in school, physical conditions and the lack of infrastructure, the problems with parents, the problems with students. According to teachers, the most significant problem is MEB educational policies. This is followed by decrease of professional reputation, physical conditions and the lack of infrastructure, the problems with students, employee rights and financial problems, the problems with administration in school, teacher training and the quality of teacher, the problems with parents, workload, and the problems with union activities. When teachers’ professional problems were analyzed seniority variable, there was little difference in scale values. While the teachers with 0-10 years experience consider decrease of professional reputation as the most important problem, the teachers with 11-45 years experience put the problems with MEB policies at the first place.

  6. Bayesian comparison of protein structures using partial Procrustes distance.

    Science.gov (United States)

    Ejlali, Nasim; Faghihi, Mohammad Reza; Sadeghi, Mehdi

    2017-09-26

    An important topic in bioinformatics is the protein structure alignment. Some statistical methods have been proposed for this problem, but most of them align two protein structures based on the global geometric information without considering the effect of neighbourhood in the structures. In this paper, we provide a Bayesian model to align protein structures, by considering the effect of both local and global geometric information of protein structures. Local geometric information is incorporated to the model through the partial Procrustes distance of small substructures. These substructures are composed of β-carbon atoms from the side chains. Parameters are estimated using a Markov chain Monte Carlo (MCMC) approach. We evaluate the performance of our model through some simulation studies. Furthermore, we apply our model to a real dataset and assess the accuracy and convergence rate. Results show that our model is much more efficient than previous approaches.

  7. Introduction: Scaling and structure in high Reynolds number wall-bounded flows

    International Nuclear Information System (INIS)

    McKeon, B.J.; Sreenivasan, K.R.

    2007-05-01

    The papers discussed in this report are dealing with the following aspects: Fundamental scaling relations for canonical flows and asymptotic approach to infinite Reynolds numbers; large and very large scales in near-wall turbulences; the influence of roughness and finite Reynolds number effects; comparison between internal and external flows and the universality of the near-wall region; qualitative and quantitative models of the turbulent boundary layer; the neutrally stable atmospheric surface layer as a model for a canonical zero-pressure-gradient boundary layer (author)

  8. Artificial selection for structural color on butterfly wings and comparison with natural evolution.

    Science.gov (United States)

    Wasik, Bethany R; Liew, Seng Fatt; Lilien, David A; Dinwiddie, April J; Noh, Heeso; Cao, Hui; Monteiro, Antónia

    2014-08-19

    Brilliant animal colors often are produced from light interacting with intricate nano-morphologies present in biological materials such as butterfly wing scales. Surveys across widely divergent butterfly species have identified multiple mechanisms of structural color production; however, little is known about how these colors evolved. Here, we examine how closely related species and populations of Bicyclus butterflies have evolved violet structural color from brown-pigmented ancestors with UV structural color. We used artificial selection on a laboratory model butterfly, B. anynana, to evolve violet scales from UV brown scales and compared the mechanism of violet color production with that of two other Bicyclus species, Bicyclus sambulos and Bicyclus medontias, which have evolved violet/blue scales independently via natural selection. The UV reflectance peak of B. anynana brown scales shifted to violet over six generations of artificial selection (i.e., in less than 1 y) as the result of an increase in the thickness of the lower lamina in ground scales. Similar scale structures and the same mechanism for producing violet/blue structural colors were found in the other Bicyclus species. This work shows that populations harbor large amounts of standing genetic variation that can lead to rapid evolution of scales' structural color via slight modifications to the scales' physical dimensions.

  9. Scaling and comparison of fluid limits of queues applied to call centers with time-varying parameters

    NARCIS (Netherlands)

    Jiménez, T.; Koole, G.M.

    2004-01-01

    Temporary overload situations in queues can be approximated by fluid queues. We strengthen earlier results on the comparison of multi-server tandem systems with their fluid limits. At the same time we give conditions under which economies of scale hold. We apply the results to call centers. ©

  10. Structure function scaling in a Reλ = 250 turbulent mixing layer

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio

    2011-01-01

    A highly resolved Direct Numerical Simulation of a spatially developing turbulent mixing layer is presented. In the fully developed region, the flow achieves a turbulent Reynolds number Reλ = 250, high enough for a clear separation between large and dissipative scales, so for the presence of an inertial range. Structure functions have been calculated in the self-similar region using velocity time series and Taylor's frozen turbulence hypothesis. The Extended Self-Similarity (ESS) concept has been employed to evaluate relative scaling exponents. A wide range of scales with scaling exponents and intermittency levels equal to homogeneous isotropic turbulence has been identified. Moreover an additional scaling range exists for larger scales; it is characterized by smaller exponents, similar to the values reported in the literature for flows with strong shear.

  11. Statistical balance of vorticity and a new scale for vortical structures in turbulence

    International Nuclear Information System (INIS)

    Novikov, E.A.

    1993-01-01

    The balance of one-point and two-point statistical characterics of vorticity, is considered on the basis of the Navier-Stokes equations. It is shown that within the inertial range of scales (L Re -3/4 much-lt r much-lt L, L external scale, Re Reynolds number) there is a physically distinguished scale l s ∼L Re -3/10 . The balance of vortical correlations with scales r≥l s is directly affected by the large-scale motion. l s is a natural length scale for the ''vortex strings,'' observed experimentally and numerically in three-dimensional turbulent flows. The twist of vortex lines in the internal structure of vortex strings is also briefly discussed

  12. Structure function scaling in a Reλ = 250 turbulent mixing layer

    KAUST Repository

    Attili, Antonio

    2011-12-22

    A highly resolved Direct Numerical Simulation of a spatially developing turbulent mixing layer is presented. In the fully developed region, the flow achieves a turbulent Reynolds number Reλ = 250, high enough for a clear separation between large and dissipative scales, so for the presence of an inertial range. Structure functions have been calculated in the self-similar region using velocity time series and Taylor\\'s frozen turbulence hypothesis. The Extended Self-Similarity (ESS) concept has been employed to evaluate relative scaling exponents. A wide range of scales with scaling exponents and intermittency levels equal to homogeneous isotropic turbulence has been identified. Moreover an additional scaling range exists for larger scales; it is characterized by smaller exponents, similar to the values reported in the literature for flows with strong shear.

  13. Structure and dating errors in the geologic time scale and periodicity in mass extinctions

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.

  14. Characterizing the multi–scale spatial structure of remotely sensed evapotranspiration with information theory

    Directory of Open Access Journals (Sweden)

    N. A. Brunsell

    2011-08-01

    Full Text Available A more thorough understanding of the multi-scale spatial structure of land surface heterogeneity will enhance understanding of the relationships and feedbacks between land surface conditions, mass and energy exchanges between the surface and the atmosphere, and regional meteorological and climatological conditions. The objectives of this study were to (1 quantify which spatial scales are dominant in determining the evapotranspiration flux between the surface and the atmosphere and (2 to quantify how different spatial scales of atmospheric and surface processes interact for different stages of the phenological cycle. We used the ALEXI/DisALEXI model for three days (DOY 181, 229 and 245 in 2002 over the Ft. Peck Ameriflux site to estimate the latent heat flux from Landsat, MODIS and GOES satellites. We then applied a multiresolution information theory methodology to quantify these interactions across different spatial scales and compared the dynamics across the different sensors and different periods. We note several important results: (1 spatial scaling characteristics vary with day, but are usually consistent for a given sensor, but (2 different sensors give different scalings, and (3 the different sensors exhibit different scaling relationships with driving variables such as fractional vegetation and near surface soil moisture. In addition, we note that while the dominant length scale of the vegetation index remains relatively constant across the dates, the contribution of the vegetation index to the derived latent heat flux varies with time. We also note that length scales determined from MODIS are consistently larger than those determined from Landsat, even at scales that should be detectable by MODIS. This may imply an inability of the MODIS sensor to accurately determine the fine scale spatial structure of the land surface. These results aid in identifying the dominant cross-scale nature of local to regional biosphere

  15. From drones to ASO: Using 'Structure-From-Motion' photogrammetry to quantify variations in snow depth at multiple scales

    Science.gov (United States)

    Skiles, M.

    2017-12-01

    The ability to accurately measure and manage the natural snow water reservoir in mountainous regions has its challenges, namely mapping of snowpack depth and snow water equivalent (SWE). Presented here is a scalable method that differentially maps snow depth using Structure from Motion (SfM); a photogrammetric technique that uses 2d images to create a 3D model/Digital Surface Model (DSM). There are challenges with applying SfM to snow, namely, relatively uniform snow brightness can make it difficult to produce quality images needed for processing, and vegetation can limit the ability to `see' through the canopy to map both the ground and snow beneath. New techniques implemented in the method to adapt to these challenges will be demonstrated. Results include a time series at (1) the plot scale, imaged with an unmanned areal vehicle (DJI Phantom 2 adapted with Sony A5100) over the Utah Department of Transportation Atwater Study Plot in Little Cottonwood Canyon, UT, and at (2) the mountain watershed scale, imaged from the RGB camera aboard the Airborne Snow Observatory (ASO), over the headwaters of the Uncompahgre River in the San Juan Mountains, CO. At the plot scale we present comparisons to measured snow depth, and at the watershed scale we present comparisons to the ASO lidar DSM. This method is of interest due to its low cost relative to lidar, making it an accessible tool for snow research and the management of water resources. With advancing unmanned aerial vehicle technology there are implications for scalability to map snow depth, and SWE, across large basins.

  16. Comparisons of Particle Tracking Techniques and Galerkin Finite Element Methods in Flow Simulations on Watershed Scales

    Science.gov (United States)

    Shih, D.; Yeh, G.

    2009-12-01

    This paper applies two numerical approximations, the particle tracking technique and Galerkin finite element method, to solve the diffusive wave equation in both one-dimensional and two-dimensional flow simulations. The finite element method is one of most commonly approaches in numerical problems. It can obtain accurate solutions, but calculation times may be rather extensive. The particle tracking technique, using either single-velocity or average-velocity tracks to efficiently perform advective transport, could use larger time-step sizes than the finite element method to significantly save computational time. Comparisons of the alternative approximations are examined in this poster. We adapt the model WASH123D to examine the work. WASH123D is an integrated multimedia, multi-processes, physics-based computational model suitable for various spatial-temporal scales, was first developed by Yeh et al., at 1998. The model has evolved in design capability and flexibility, and has been used for model calibrations and validations over the course of many years. In order to deliver a locally hydrological model in Taiwan, the Taiwan Typhoon and Flood Research Institute (TTFRI) is working with Prof. Yeh to develop next version of WASH123D. So, the work of our preliminary cooperationx is also sketched in this poster.

  17. Ideal-MHD beta limits: scaling laws and comparison with Doublet III high-beta plasmas

    International Nuclear Information System (INIS)

    Bernard, L.C.; Bhadra, D.K.; Helton, F.J.; Lao, L.L.; Todd, T.N.

    1983-06-01

    Doublet III (DIII) recently has achieved a value for #betta#, the ratio of volume averaged plasma to magnetic pressure, of 4.5%. This #betta# value is in the range required for an economically attractive tokamak reactor, and also close to the relevant limit predicted by ideal-MHD theory. It is therefore of great interest to assess the validity of the theory by comparison with experiment and thus to have a basis for the prediction of future reactor performance. A large variety of plasma shapes have been obtained in DIII. These shapes can be divided into two classes: (1) limiter discharges, and (2) diverted discharges, which are of great interest because of their good confinement in the H-mode operation. We derive simple scaling laws from the variation of optimized ideal-MHD beta limits (#betta#/sub c/) with plasma shape parameters. The current profile is optimized for fixed plasma shapes, separately for the high-n (ballooning) and the low-n (kink) modes. Results are presented in the form of suitability normalized curves of #betta# versus poloidal beta, #betta#/sub p/, for both ballooning and kink modes in order to simultaneously compare all the DIII experimental data

  18. A scale-free structure prior for graphical models with applications in functional genomics.

    Directory of Open Access Journals (Sweden)

    Paul Sheridan

    Full Text Available The problem of reconstructing large-scale, gene regulatory networks from gene expression data has garnered considerable attention in bioinformatics over the past decade with the graphical modeling paradigm having emerged as a popular framework for inference. Analysis in a full Bayesian setting is contingent upon the assignment of a so-called structure prior-a probability distribution on networks, encoding a priori biological knowledge either in the form of supplemental data or high-level topological features. A key topological consideration is that a wide range of cellular networks are approximately scale-free, meaning that the fraction, , of nodes in a network with degree is roughly described by a power-law with exponent between and . The standard practice, however, is to utilize a random structure prior, which favors networks with binomially distributed degree distributions. In this paper, we introduce a scale-free structure prior for graphical models based on the formula for the probability of a network under a simple scale-free network model. Unlike the random structure prior, its scale-free counterpart requires a node labeling as a parameter. In order to use this prior for large-scale network inference, we design a novel Metropolis-Hastings sampler for graphical models that includes a node labeling as a state space variable. In a simulation study, we demonstrate that the scale-free structure prior outperforms the random structure prior at recovering scale-free networks while at the same time retains the ability to recover random networks. We then estimate a gene association network from gene expression data taken from a breast cancer tumor study, showing that scale-free structure prior recovers hubs, including the previously unknown hub SLC39A6, which is a zinc transporter that has been implicated with the spread of breast cancer to the lymph nodes. Our analysis of the breast cancer expression data underscores the value of the scale

  19. Validation of the Brazilian version of the Clinical Gait and Balance Scale and comparison with the Berg Balance Scale

    Directory of Open Access Journals (Sweden)

    Jussara Almeida Oliveira Baggio

    2013-09-01

    Full Text Available Objective To validate the Clinical Gait and Balance Scale (GABS for a Brazilian population of patients with Parkinson's disease (PD and to compare it to the Berg Balance Scale (BBS. Methods One hundred and seven PD patients were evaluated by shortened UPDRS motor scale (sUPDRSm, Hoehn and Yahr (HY, Schwab and England scale (SE, Falls Efficacy Scale International (FES-I, Freezing of Gait Questionnaire (FOG-Q, BBS and GABS. Results The internal consistency of the GABS was 0.94, the intra-rater and inter-rater reliability were 0.94 and 0.98 respectively. The area under the receiver operating characteristic (ROC curve was 0.72, with a sensitivity of 0.75 and specificity of 0.6, to discriminate patients with a history of falls in the last twelve months, for a cut-off score of 13 points. Conclusions Our study shows that the Brazilian version of the GABS is a reliable and valid instrument to assess gait and balance in PD.

  20. Macroscopic High-Temperature Structural Analysis Model of Small-Scale PCHE Prototype (II)

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, Heong Yeon; Hong, Sung Deok; Park, Hong Yoon

    2011-01-01

    The IHX (intermediate heat exchanger) of a VHTR (very high-temperature reactor) is a core component that transfers the high heat generated by the VHTR at 950 .deg. C to a hydrogen production plant. Korea Atomic Energy Research Institute manufactured a small-scale prototype of a PCHE (printed circuit heat exchanger) that was being considered as a candidate for the IHX. In this study, as a part of high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the small-scale PCHE prototype under small-scale gas-loop test conditions. The modeling and analysis were performed as a precedent study prior to the performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE. Moreover, these results will be used in the design of a medium-scale PCHE prototype

  1. Identification of the underlying factor structure of the Derriford Appearance Scale 24

    Directory of Open Access Journals (Sweden)

    Timothy P. Moss

    2015-07-01

    Full Text Available Background. The Derriford Appearance Scale24 (DAS24 is a widely used measure of distress and dysfunction in relation to self-consciousness of appearance. It has been used in clinical and research settings, and translated into numerous European and Asian languages. Hitherto, no study has conducted an analysis to determine the underlying factor structure of the scale.Methods. A large (n = 1,265 sample of community and hospital patients with a visible difference were recruited face to face or by post, and completed the DAS24.Results. A two factor solution was generated. An evaluation of the congruence of the factor solutions on each of the the hospital and the community samples using Tucker’s Coefficient of Congruence (rc = .979 and confirmatory factor analysis, which demonstrated a consistent factor structure. A main factor, general self consciousness (GSC, was represented by 18 items. Six items comprised a second factor, sexual and body self-consciousness (SBSC. The SBSC scale demonstrated greater sensitivity and specificity in identifying distress for sexually significant areas of the body.Discussion. The factor structure of the DAS24 facilitates a more nuanced interpretation of scores using this scale. Two conceptually and statistically coherent sub-scales were identified. The SBSC sub-scale offers a means of identifying distress and dysfunction around sexually significant areas of the body not previously possible with this scale.

  2. Using linear algebra for protein structural comparison and classification.

    Science.gov (United States)

    Gomide, Janaína; Melo-Minardi, Raquel; Dos Santos, Marcos Augusto; Neshich, Goran; Meira, Wagner; Lopes, Júlio César; Santoro, Marcelo

    2009-07-01

    In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.

  3. Using linear algebra for protein structural comparison and classification

    Directory of Open Access Journals (Sweden)

    Janaína Gomide

    2009-01-01

    Full Text Available In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD and Latent Semantic Indexing (LSI techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.

  4. Wind/seismic comparison for upgrading existing structures

    International Nuclear Information System (INIS)

    Giller, R.A.

    1989-01-01

    This paper depicts the analysis procedures and methods used to evaluate three existing building structures for extreme wind loads. The three structures involved in this evaluation are located at the US Department of Energy's Hanford Site near Richland, Washington. This site is characterized by open flat grassland with few surrounding obstructions and has extreme winds in lieu of tornados as a design basis accident condition. This group of buildings represents a variety of construction types, including a concrete stack, a concrete load-bearing wall structure, and a rigid steel-frame building. The three structures included in this group have recently been evaluated for response to the design basis earthquake that included non-linear time history effects. The resulting loads and stresses from the wind analyses were compared to the loads and stresses resulting from seismic analyses. This approach eliminated the need to prepare additional capacity calculations that were already contained in the seismic evaluations

  5. STRUCTURAL SCALE LIFE PREDICTION OF AERO STRUCTURES EXPERIENCING COMBINED EXTREME ENVIRONMENTS

    Science.gov (United States)

    2017-07-01

    complex loading environments. Today’s state of the art methods cannot address structural reliability under combined environment conditions due to...probabilistically assess the structural life under complex loading environments. Today’s state of the art methods cannot address structural reliability...Institute of Aeronautics and Astronautics, San Diego, CA, January 4th‐8th, 2016. Clark, L. D., Bae, H., Gobal, K., and Penmetsa, R., “ Engineering

  6. Comparison of cadmium and chromium bioconcentration factors between scaled and scale less fish species: common carp and sutchi (striped catfish

    Directory of Open Access Journals (Sweden)

    Sideh Zainab Abedi

    2014-10-01

    Full Text Available Background: Water-borne, indissoluble heavy metals are bioaccumulated in fish (human food source. In this research, chromium (Cr and cadmium (Cd bioconcentration factors (BCFs in the skin, gills, scales, livers and muscles of two widely-consumed fish species, scaled common carp Cyprinus carpio and scaleless catfish Pangasius hypophthalmus were compared. Material and Methods: Lethal concentrations of Cd and Cr (64.89 & 7.46, and 84.8 & 17.05 mg/L for the catfish and carp, respectively were determined during 96 hrs (96 h LC50, and the fishes were exposed for 15 days. Then the tissue samples were chemically digested and the contents of Cd and Cr were determined using atomic absorption. Results: Total contents of Cr and Cd in the catfish's tissues were 2286.11 & 360.73, and those of Cr & Cd in carp were 734.71 & 725.67 μg/g.dw (excluding the scales, respectively. Metal concentrations in the water residues (day 15 revealed lower Cr and Cd (0.059 & 0.0036 mg/L in the catfish than those in the carp media (0.1 & 0.0412 mg/L, respectively. In common carp, BCF of Cd was as liver > skin > gills > muscle > scales, and those in the catfish marked as liver>muscle >gills >skin. The BCF of Cr in common carp ranked as gills>liver>skin>scales>muscle, and the catfish showing a BCF pattern of Cr as liver> muscle>skin>gills. Conclusion: This study signifies that small amounts of cadmium and chromium with high BCFs especially in the muscles of scale less fish (catfish threat consumers’ health.

  7. Molecular-scale noncontact atomic force microscopy contrasts in topography and energy dissipation on c(4x2) superlattice structures of alkanethiol self-assembled monolayers

    OpenAIRE

    Fukuma, Takeshi; Ichii, Takashi; Kobayashi, Kei; Yamada, Hirofumi; Matsushige, Kazumi

    2004-01-01

    Alkanethiol self-assembledmonolayers formed on Au(111) surfaces were investigated by noncontact atomic force microscopy (NC-AFM). Dodecanethiol monolayers prepared at 78 °C were imaged by NC-AFM, which revealed that the film is composed predominantly of two different phases of c(4×2)superlattice structures. The obtained molecular-scale NC-AFM contrasts are discussed in comparison with previously reported scanning tunneling microscopy images. We found that the energy dissipation image exhibits...

  8. Improving the seismic small-scale modelling by comparison with numerical methods

    Science.gov (United States)

    Pageot, Damien; Leparoux, Donatienne; Le Feuvre, Mathieu; Durand, Olivier; Côte, Philippe; Capdeville, Yann

    2017-10-01

    The potential of experimental seismic modelling at reduced scale provides an intermediate step between numerical tests and geophysical campaigns on field sites. Recent technologies such as laser interferometers offer the opportunity to get data without any coupling effects. This kind of device is used in the Mesures Ultrasonores Sans Contact (MUSC) measurement bench for which an automated support system makes possible to generate multisource and multireceivers seismic data at laboratory scale. Experimental seismic modelling would become a great tool providing a value-added stage in the imaging process validation if (1) the experimental measurement chain is perfectly mastered, and thus if the experimental data are perfectly reproducible with a numerical tool, as well as if (2) the effective source is reproducible along the measurement setup. These aspects for a quantitative validation concerning devices with piezoelectrical sources and a laser interferometer have not been yet quantitatively studied in published studies. Thus, as a new stage for the experimental modelling approach, these two key issues are tackled in the proposed paper in order to precisely define the quality of the experimental small-scale data provided by the bench MUSC, which are available in the scientific community. These two steps of quantitative validation are dealt apart any imaging techniques in order to offer the opportunity to geophysicists who want to use such data (delivered as free data) of precisely knowing their quality before testing any imaging technique. First, in order to overcome the 2-D-3-D correction usually done in seismic processing when comparing 2-D numerical data with 3-D experimental measurement, we quantitatively refined the comparison between numerical and experimental data by generating accurate experimental line sources, avoiding the necessity of geometrical spreading correction for 3-D point-source data. The comparison with 2-D and 3-D numerical modelling is based on

  9. Iranian Version of the Mini-Mental Adjustment to Cancer Scale: Factor Structure and Psychometric Properties.

    Science.gov (United States)

    Patoo, Mozhgan; Allahyari, Abbas Ali; Moradi, Ali Reza; Payandeh, Mehrdad

    2015-01-01

    Mental adjustment to cancer is known as a psychological, physical, and psychological health variable among cancer patients. The present study examines the factor structure and psychometric properties of the Mini-Mental Adjustment to Cancer scale (Mini-MAC) in a sample of Iranian adults who suffer from cancer. The sample consists of 320 cancer patients selected through non-random convenient sampling procedure from the hospitals and clinics in the cities of Kermanshah and Shiraz in Iran, using the Mini-MAC scale. One hundred of these patients also completed the Hospital Anxiety and Depression scale. Statistical methods used to analyze the data included confirmatory and exploratory factor analysis, discriminate validity, and Cronbach alpha coefficients for internal consistency. Factor analysis confirms five factors in the Mini-MAC. The values of fit indices are within the acceptable range. Significant correlations between the Mini-MAC and other measures also show that this scale has discriminate validity. Alpha coefficients for the subscales are Helplessness/Hopelessness,.94; Cognitive Avoidance.76; Anxious Preoccupation,.90; Fatalism,.77; Fighting Spirit.80; and total scale.84, respectively. The results confirm the five-factor structure of the Persian Mini-MAC scale and also prove that it is a reliable and valid scale. They show that this scale has sufficient power to measure different aspects of mental adjustment in patients with cancer.

  10. SSI response of a typical shear wall structure. Appendix B. In-structure response spectra comparisons. Volume 2

    International Nuclear Information System (INIS)

    Johnson, J.J.; Schewe, E.C.; Maslenikov, O.R.

    1984-04-01

    The objectives of this study were two-fold: (1) develop building response calibration factors, i.e., factors which relate best estimate or median level response to responses calculated by selected design procedures. Soil-structure interaction was the phenomenon of interest because significant simplifications are frequently introduced in its treatment; and (2) the second objective can be viewed in the context of a question: what effect does placing an identical structure on different sites and with different foundation conditions have on structure response. The structure selected for this study is a part of the Zion AFT complex. Only the auxiliary, fuel-handling, and diesel generator buildings were studied. This structure is a connected group of shear-wall buildings constructed of reinforced concrete, typical of nuclear power plant structures. The bases of comparison for this study were structure responses: peak in-structure accelerations (27 components), and peak wall forces and moments (111 components). In-structure response spectra were also considered. This appendix contains in-structure response spectra comparisons in detail

  11. Assessing insomnia in adolescents: comparison of Insomnia Severity Index, Athens Insomnia Scale and Sleep Quality Index.

    Science.gov (United States)

    Chung, Ka-Fai; Kan, Katherine Ka-Ki; Yeung, Wing-Fai

    2011-05-01

    To compare the psychometric properties of the Chinese versions of Insomnia Severity Index (ISI), Athens Insomnia Scale (AIS) and Sleep Quality Index (SQI) for assessment and screening of insomnia in adolescents. This is a school-based survey of 1516 adolescents aged 12-19 years. Sleep-wake habit questionnaire, ISI, AIS, SQI, Epworth Sleepiness Scale (ESS) and 12-item General Health Questionnaire (GHQ-12) were administered. Insomnia Interview Schedule was used to assess the severity of insomnia symptoms and DSM-IV-TR diagnosis of insomnia. The Cronbach's alpha of ISI, AIS and SQI were 0.83, 0.81 and 0.65, respectively, and the 2-week test-retest reliability were 0.79, 0.80 and 0.72. All three scales had a 2-factor structure, and their scores were significantly correlated with sleep-wake variables, ESS and GHQ-12 scores, smoking and drinking habits, and academic performance. The areas under curve of ISI, AIS and SQI for detecting clinical insomnia were 0.85, 0.80 and 0.85, respectively. The optimal cut-offs for ISI, AIS and SQI were a total score of nine (sensitivity/specificity: 0.87/0.75), seven (sensitivity/specificity: 0.78/0.74) and five (sensitivity/specificity: 0.83/0.79), respectively. The Chinese versions of ISI, AIS and SQI are reliable and valid instruments. The ISI and AIS appear to have better psychometric properties than the SQI. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Comparison of the spatial and temporal structure of type-I ELMs

    International Nuclear Information System (INIS)

    Kirk, A; Beurskens, M; Counsell, G F; Fundamenski, W; Lisgo, S; Asakura, N; Kamada, Y; Oyama, N; Boedo, J A; Eich, T; Herrmann, A; Schmid, A; Leonard, A W; Loarte, A; Pitts, R A; Wilson, H R

    2008-01-01

    A comparison of the spatial and temporal evolution of the filamentary structures observed during type I ELMs is presented from a variety of diagnostics and machines. There is evidence that these filaments can be detected inside the LCFS prior to ELMs. The filaments do not have a circular cross section instead they are elongated in the perpendicular (poloidal) direction and this size appears to increase linearly with the minor radius of the machine. The filaments start off rotating toroidally/poloidally with velocities close to that of the pedestal. This velocity then decreases as the filaments propagate radially. By comparing the results from all measurements and from comparison with models it is most likely that the filaments have at least their initial radial velocity when they are far out into the SOL and before they have interacted with the nearest limiter surface. There is a general consensus that the dominant loss mechanism in the separated filaments is through parallel transport and that the transport to the wall is through the radial propagation of these filaments. Measurements of the filament energy content show that each filament contains up to 2.5% of the energy released by the ELM at the time it separates from the LCFS, assuming Ti = Te. The parallel flux e-folding length measured on DIII-D, AUG and MAST has a weaker scaling with normalised ELM size than appears to be necessary to explain the deficit in the ELM energy arriving in the divertor on JET, assuming a purely exponential decay of the filament energy with time

  13. Dual linear structured support vector machine tracking method via scale correlation filter

    Science.gov (United States)

    Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen

    2018-01-01

    Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.

  14. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    Science.gov (United States)

    Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-11-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.

  15. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    International Nuclear Information System (INIS)

    Kurucz, Charles N.; Waite, Thomas D.; Otano, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-01-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1 ) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60 Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater

  16. Comparison study of inelastic analysis codes for high temperature structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Lee, H. Y.; Park, C. K.; Geon, G. P.; Lee, J. H

    2004-02-01

    LMR high temperature structures subjected to operating and transient loadings may exhibit very complex deformation behaviors due to the use of ductile material such as 316SS and the systematic analysis technology of high temperature structure for reliable safety assessment is essential. In this project, comparative study with developed inelastic analysis program NONSTA and the existing analysis codes was performed applying various types of loading including non-proportional loading. The performance of NONSTA was confirmed and the effect of inelastic constants on the analysis result was analyzed. Also, the applicability of the inelastic analysis was enlarged as a result of applying both the developed program and the existing codes to the analyses of the enhanced creep behavior and the elastic follow-up behavior of high temperature structures and the necessary items for improvements were deduced. Further studies on the improvement of NONSTA program and the decision of the proper values of inelastic constants are necessary.

  17. Wage Structure and Gender Earnings Differentials: An International Comparison.

    OpenAIRE

    Blau, Francine D; Kahn, Lawrence M

    1996-01-01

    Using microdata to analyze the gender pay gap in ten industrialized nations, the authors focus on the role of wage structure--the prices of labor market skills in influencing the gender gap. They find wage structure enormously important in explaining why the U.S. gender gap is higher than that in most other countries. The authors conclude that the U.S. gap would be similar to that in Sweden and Australia (the countries with the smallest gaps) if the United States had their levels of wage ineq...

  18. Comparison of electronic structure between monolayer silicenes on Ag (111)

    Science.gov (United States)

    Chun-Liang, Lin; Ryuichi, Arafune; Maki, Kawai; Noriaki, Takagi

    2015-08-01

    The electronic structures of monolayer silicenes (4 × 4 and ) grown on Ag (111) surface are studied by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states. The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations. Project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (Grant Nos. 24241040 and 25110008) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.

  19. Scaling of the first-passage time of biased diffusion on hierarchical comb structures

    International Nuclear Information System (INIS)

    Lin Zhifang; Tao Ruibao.

    1989-12-01

    Biased diffusion on hierarchical comb structures is studied within an exact renormalization group scheme. The scaling exponents of the moments of the first-passage time for random walks are obtained. It is found that the scaling properties of the diffusion depend only on the direction of bias. In this particular case, the presence of bias may give rise to a new multifractality. (author). 7 refs, 2 figs

  20. Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations

    Directory of Open Access Journals (Sweden)

    José Gaite

    2013-05-01

    Full Text Available Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.

  1. Development and reliability of a structured interview guide for the Montgomery Asberg Depression Rating Scale (SIGMA).

    Science.gov (United States)

    Williams, Janet B W; Kobak, Kenneth A

    2008-01-01

    The Montgomery-Asberg Depression Rating Scale (MADRS) is often used in clinical trials to select patients and to assess treatment efficacy. The scale was originally published without suggested questions for clinicians to use in gathering the information necessary to rate the items. Structured and semi-structured interview guides have been found to improve reliability with other scales. To describe the development and test-retest reliability of a structured interview guide for the MADRS (SIGMA). A total of 162 test-retest interviews were conducted by 81 rater pairs. Each patient was interviewed twice, once by each rater conducting an independent interview. The intraclass correlation for total score between raters using the SIGMA was r=0.93, Preliability. Use of the SIGMA can result in high reliability of MADRS scores in evaluating patients with depression.

  2. The three-point function as a probe of models for large-scale structure

    International Nuclear Information System (INIS)

    Frieman, J.A.; Gaztanaga, E.

    1993-01-01

    The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard Ω = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R p ∼20 h -1 Mpc, e.g., low-matter-density (non-zero cosmological constant) models, open-quote tilted close-quote primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q J at large scales, r approx-gt R p . Current observational constraints on the three-point amplitudes Q 3 and S 3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales

  3. Partial gasification of coal in a fluidized bed reactor: Comparison of a laboratory and pilot scale reactors

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, R.; Shen, L.H.; Zhang, M.Y.; Jin, B.S.; Xiong, Y.Q.; Duan, Y.F.; Zhong, Z.P.; Zhou, H.C.; Chen, X.P.; Huang, Y.J. [Southeast University, Nanjing (China)

    2007-01-15

    A 0.1 MWth lab-scale and 2 MWth pilot-scale experimental rigs were constructed to demonstrate the technical feasibility of a new process. The aim of the lab-scale study is to optimize coal partial gasification reactions operating conditions, which were applied in the pilot-scale tests. A comparison between the laboratory and pilot scale experimental results is presented in this paper in order to provide valuable information for scaling-up of the PFB coal partial reactor to industrial applications. The results show that trends and phenomena obtained in the laboratory reactor are confirmed in a pilot plant operating at similar conditions. However, many differences are observed in the two reactors. The higher heat loss in the lab-scale reactor is responsible for higher equivalence ratio (ER) and lower gas heating value at the similar reactor temperature. With respect to the pilot-scale reactor, mass transfer limitation between bubbles and emulsion phase may become important. Hence, longer contact time is required to achieve the same conversions as in the lab-scale reactor. This difference is explained by a significant change of the hydrodynamic conditions due to the formation of larger bubbles.

  4. Comparison of Attachment theory and Cognitive-Motivational Structure theory.

    Science.gov (United States)

    Malerstein, A J

    2005-01-01

    Attachment theory and Cognitive-Motivational Structure (CMS) are similar in most respects. They differ primarily in their proposal of when, during development, one's sense of the self and of the outside world are formed. I propose that the theories supplement each other after about age seven years--when Attachment theory's predictions of social function become unreliable, CMS theory comes into play.

  5. Comparison of Suspended Solid Separation in Advanced Storm Overflow Structures

    DEFF Research Database (Denmark)

    Larsen, Torben; Sørensen, Morten Steen

    1990-01-01

    This paper describes a laboratory investigation of the separation of suspended solids in a circular weir overflow and a vortex separator. The basic idea is to evaluate the efficiency of a vortical flow in the overflow chamber, and to compare these results with other overflow structures....

  6. Achievement Motivation: A Cross-Cultural Comparison Of Structure ...

    African Journals Online (AJOL)

    The objective of this study is to analyze the structure of the achievement motive domain for samples from five states in Nigeria. It was hypothesized that data collected from the various samples will reflect the basic facets suggested by the definitional framework of achievement motivation. It was also hypothesized that the ...

  7. Comparison of the population structure and life-history parameters ...

    African Journals Online (AJOL)

    Blacktail seabream Diplodus capensis were sampled from proximate (10 km apart) exploited and unexploited areas in southern Angola to compare their population structures and life-history parameters. Females dominated the larger size and older age classes in the unexploited area. In the exploited area the length and ...

  8. Quasi-static elastography comparison of hyaline cartilage structures

    Science.gov (United States)

    McCredie, A. J.; Stride, E.; Saffari, N.

    2009-11-01

    Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.

  9. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa; Mochrie, S. G. J.; Peppin, S. S. L.; Wettlaufer, J. S.

    2011-01-01

    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  10. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa

    2011-02-01

    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  11. Scaling behavior in urban development process of Tokyo City and hierarchical dynamical structure

    International Nuclear Information System (INIS)

    Matsuba, Ikuo; Namatame, Masanori

    2003-01-01

    We study a geometric structure of urban development process which pays particular attention to scaling properties in the settlement area and inhabitant population through changes in the scaling exponents. Both the degree to which the space is fulfilled and the rate at which it is filled are obtained for the residential development in Tokyo. For distances larger than the city boundary, there is a sharp cross-over to a suburban region with a quite intriguing variation with a distance from the center of the city. The population densities in this region are found to collapse into a single scaling function with the scaling exponent 0.678 in the early 1990s in which the growth of the population attenuates. We propose a cellular automata model using the simulated annealing method that succeeds in reproducing the qualitative similar structural complexity of the actual city by taking into account the transportation system, especially railroad network. Finally, a possible theoretical consideration is given in analogous with fluid dynamics. Scaling of the population density is obtained assuming that there is a dynamical hierarchical structure in the scaling region where the stationarity is fulfilled. The theoretically obtained exponent 2/3 agrees well with the observed one

  12. Practical guidelines to select and scale earthquake records for nonlinear response history analysis of structures

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2010-01-01

    Earthquake engineering practice is increasingly using nonlinear response history analysis (RHA) to demonstrate performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. Presented herein is a modal-pushover-based scaling (MPS) method to scale ground motions for use in nonlinear RHA of buildings and bridges. In the MPS method, the ground motions are scaled to match (to a specified tolerance) a target value of the inelastic deformation of the first-'mode' inelastic single-degree-of-freedom (SDF) system whose properties are determined by first-'mode' pushover analysis. Appropriate for first-?mode? dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-'mode' SDF system in selecting a subset of the scaled ground motions. Based on results presented for two bridges, covering single- and multi-span 'ordinary standard' bridge types, and six buildings, covering low-, mid-, and tall building types in California, the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  13. Development of porous structure simulator for multi-scale simulation of irregular porous catalysts

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Suzuki, Ai; Sahnoun, Riadh; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A.; Miyamoto, Akira

    2008-01-01

    Efficient development of highly functional porous materials, used as catalysts in the automobile industry, demands a meticulous knowledge of the nano-scale interface at the electronic and atomistic scale. However, it is often difficult to correlate the microscopic interfacial interactions with macroscopic characteristics of the materials; for instance, the interaction between a precious metal and its support oxide with long-term sintering properties of the catalyst. Multi-scale computational chemistry approaches can contribute to bridge the gap between micro- and macroscopic characteristics of these materials; however this type of multi-scale simulations has been difficult to apply especially to porous materials. To overcome this problem, we have developed a novel mesoscopic approach based on a porous structure simulator. This simulator can construct automatically irregular porous structures on a computer, enabling simulations with complex meso-scale structures. Moreover, in this work we have developed a new method to simulate long-term sintering properties of metal particles on porous catalysts. Finally, we have applied the method to the simulation of sintering properties of Pt on alumina support. This newly developed method has enabled us to propose a multi-scale simulation approach for porous catalysts

  14. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    International Nuclear Information System (INIS)

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f NL in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology

  15. Fractal properties and small-scale structure of cosmic string networks

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.; Shellard, E.P.S.

    2006-01-01

    We present results from a detailed numerical study of the small-scale and loop production properties of cosmic string networks, based on the largest and highest resolution string simulations to date. We investigate the nontrivial fractal properties of cosmic strings, in particular, the fractal dimension and renormalized string mass per unit length, and we also study velocity correlations. We demonstrate important differences between string networks in flat (Minkowski) spacetime and the two very similar expanding cases. For high resolution matter era network simulations, we provide strong evidence that small-scale structure has converged to 'scaling' on all dynamical length scales, without the need for other radiative damping mechanisms. We also discuss preliminary evidence that the dominant loop production size is also approaching scaling

  16. Assessment of the confiability and factorial structure of three scales measuring chronic procrastination

    Directory of Open Access Journals (Sweden)

    Doris Argumedo Bustinza

    2005-06-01

    Full Text Available This study explores the confiability and factorial structure of three scales measuring chronic procrastination: Scale of General Procrastination (EPG. Lay. 1986. Adult Procrastinatio Inventory (lPA. McCown & Johnson as cited in Ferrari. Johnson & McCown. 1995 and the Scale of Procrastination in Decision-Making (PTF. Mann. 1982. The sample included 514 adults between 20 and 65 years of age from Lima. The three scales showed high levels of intemal consistency and factorial analysis showed three factors for EPG and IPA and one factor for PTD A second degree factorial analysis suggested the presence of only one factor based on the grouping of items of the EPG and IPA scales The study did not find theoretically relevant dlfferences in chronic procrastination according to gender, age or education level. However,with respect to socioeconomic status. there were higher levels of chronic procrastmation in the poorest sector

  17. Application and comparison of the SCS-CN-based rainfall-runoff model in meso-scale watershed and field scale

    Science.gov (United States)

    Luo, L.; Wang, Z.

    2010-12-01

    Soil Conservation Service Curve Number (SCS-CN) based hydrologic model, has widely been used for agricultural watersheds in recent years. However, there will be relative error when applying it due to differentiation of geographical and climatological conditions. This paper introduces a more adaptable and propagable model based on the modified SCS-CN method, which specializes into two different scale cases of research regions. Combining the typical conditions of the Zhanghe irrigation district in southern part of China, such as hydrometeorologic conditions and surface conditions, SCS-CN based models were established. The Xinbu-Qiao River basin (area =1207 km2) and the Tuanlin runoff test area (area =2.87 km2)were taken as the study areas of basin scale and field scale in Zhanghe irrigation district. Applications were extended from ordinary meso-scale watershed to field scale in Zhanghe paddy field-dominated irrigated . Based on actual measurement data of land use, soil classification, hydrology and meteorology, quantitative evaluation and modifications for two coefficients, i.e. preceding loss and runoff curve, were proposed with corresponding models, table of CN values for different landuse and AMC(antecedent moisture condition) grading standard fitting for research cases were proposed. The simulation precision was increased by putting forward a 12h unit hydrograph of the field area, and 12h unit hydrograph were simplified. Comparison between different scales show that it’s more effectively to use SCS-CN model on field scale after parameters calibrated in basin scale These results can help discovering the rainfall-runoff rule in the district. Differences of established SCS-CN model's parameters between the two study regions are also considered. Varied forms of landuse and impacts of human activities were the important factors which can impact the rainfall-runoff relations in Zhanghe irrigation district.

  18. On Hierarchical Extensions of Large-Scale 4-regular Grid Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Patel, A.; Knudsen, Thomas Phillip

    2004-01-01

    dependencies between the number of nodes and the distances in the structures. The perfect square mesh is introduced for hierarchies, and it is shown that applying ordered hierarchies in this way results in logarithmic dependencies between the number of nodes and the distances, resulting in better scaling...... structures. For example, in a mesh of 391876 nodes the average distance is reduced from 417.33 to 17.32 by adding hierarchical lines. This is gained by increasing the number of lines by 4.20% compared to the non-hierarchical structure. A similar hierarchical extension of the torus structure also results...

  19. Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM

    Science.gov (United States)

    Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.

    2008-12-01

    The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.

  20. Tracking of large-scale structures in turbulent channel with direct numerical simulation of low Prandtl number passive scalar

    Science.gov (United States)

    Tiselj, Iztok

    2014-12-01

    Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and

  1. COMPARISON OF LASER SCANNING, PHOTOGRAMMETRY AND SFM-MVS PIPELINE APPLIED IN STRUCTURES AND ARTIFICIAL SURFACES

    Directory of Open Access Journals (Sweden)

    D. Skarlatos

    2012-07-01

    Full Text Available The merging of photogrammetry and computer vision has raised discussions regarding its ability to produce very dense point clouds, comparable, under circumstances to terrestrial laser scanning (TLS. This paper approaches this issue in terms of accuracy, density, methodology and ease to use. Three tests have been conducted to evaluate the process as well as data density, quality, registration and methodology. At the first test a 300 mm sphere with texture has been used as a reference object is order to address data quality using image based techniques. Menci's Zscan was tested against the Bundler-PMVS work flow. The second test is a flat building facade, where Zscan, TLS and Bundler-PMVS are compared directly. The last test was contacted in an electricity power station which was an extremely complex structure. Two TLS stations were compared against 212 Bundler-PMVS photos. Quantitative comparisons based on several criteria are presented. For small and medium size objects and distances Bundler-PMVS seems to have an advantage in terms of methodology and accuracy. In large scale objects TLS is better in terms of quality and processing time.

  2. Comparison of the Vineland Adaptive Behavior Scales, Second Edition, and the Bayley Scales of Infant and Toddler Development, Third Edition.

    Science.gov (United States)

    Scattone, Dorothy; Raggio, Donald J; May, Warren

    2011-10-01

    The Vineland Adaptive Behavior Scales, Second Edition (Vineland-II), and Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III) were administered to 65 children between the ages of 12 and 42 months referred for developmental delays. Standard scores and age equivalents were compared across instruments. Analyses showed no statistical difference between Vineland-II ABC standard scores and cognitive levels obtained from the Bayley-III. However, Vineland-II Communication and Motor domain standard scores were significantly higher than corresponding scores on the Bayley-III. In addition, age equivalent scores were significantly higher on the Vineland-II for the fine motor subdomain. Implications for early intervention are discussed.

  3. Structural Color Model Based on Surface Morphology of MORPHO Butterfly Wing Scale

    Science.gov (United States)

    Huang, Zhongjia; Cai, Congcong; Wang, Gang; Zhang, Hui; Huttula, Marko; Cao, Wei

    2016-05-01

    Color production through structural coloration is created by micrometer and sub-micrometer surface textures which interfere with visible light. The shiny blue of morpho menelaus is a typical example of structural coloring. Modified from morphology of the morpho scale, a structure of regular windows with two side offsets was constructed on glass substrates. Optical properties of the bioinspired structure were studied through numerical simulations of light scattering. Results show that the structure can generate monochromatic light scattering. Wavelength of scattered light is tunable via changing the spacing between window shelves. Compared to original butterfly model, the modified one possesses larger illumination scopes in azimuthal distributions despite being less in polar directions. Present bionic structure is periodically repeated and is easy to fabricate. It is hoped that the computational materials design work can inspire future experimental realizations of such a structure in photonics applications.

  4. Large-scale seismic test for soil-structure interaction research in Hualien, Taiwan

    International Nuclear Information System (INIS)

    Ueshima, T.; Kokusho, T.; Okamoto, T.

    1995-01-01

    It is important to evaluate dynamic soil-structure interaction more accurately in the aseismic design of important facilities such as nuclear power plants. A large-scale model structure with about 1/4th of commercial nuclear power plants was constructed on the gravelly layers in seismically active Hualien, Taiwan. This international joint project is called 'the Hualien LSST Project', where 'LSST' is short for Large-Scale Seismic Test. In this paper, research tasks and responsibilities, the process of the construction work and research tasks along the time-line, main results obtained up to now, and so on in this Project are described. (J.P.N.)

  5. Dye-sensitized solar cells: Atomic scale investigation of interface structure and dynamics

    International Nuclear Information System (INIS)

    Ma Wei; Zhang Fan; Meng Sheng

    2014-01-01

    Recent progress in dye-sensitized solar cells (DSC) research is reviewed, focusing on atomic-scale investigations of the interface electronic structures and dynamical processes, including the structure of dye adsorption onto TiO 2 , ultrafast electron injection, hot-electron injection, multiple-exciton generation, and electron—hole recombination. Advanced experimental techniques and theoretical approaches are briefly summarized, and then progressive achievements in photovoltaic device optimization based on insights from atomic scale investigations are introduced. Finally, some challenges and opportunities for further improvement of dye solar cells are presented. (invited review — international conference on nanoscience and technology, china 2013)

  6. Primordial Non-Gaussianity in the Large-Scale Structure of the Universe

    Directory of Open Access Journals (Sweden)

    Vincent Desjacques

    2010-01-01

    generated the cosmological fluctuations observed today. Any detection of significant non-Gaussianity would thus have profound implications for our understanding of cosmic structure formation. The large-scale mass distribution in the Universe is a sensitive probe of the nature of initial conditions. Recent theoretical progress together with rapid developments in observational techniques will enable us to critically confront predictions of inflationary scenarios and set constraints as competitive as those from the Cosmic Microwave Background. In this paper, we review past and current efforts in the search for primordial non-Gaussianity in the large-scale structure of the Universe.

  7. Comparison of MMPI-2 Validity Scales among Compensation-Seeking Caucasian and Asian American Medical Patients

    Science.gov (United States)

    Tsushima, William T.; Tsushima, Vincent G.

    2009-01-01

    Validity scales of the Minnesota Multiphasic Personality Inventory--2 (MMPI-2) are widely used for the detection of exaggerated psychological complaints, although little is known about the results of these scales with racial or ethnic minority individuals. Five validity scales derived from the MMPI-2, including the F Scale, the Back Infrequency…

  8. Detecting Multi-scale Structures in Chandra Images of Centaurus A

    Science.gov (United States)

    Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.

    1999-12-01

    Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.

  9. Comparison and validation of community structures in complex networks

    Science.gov (United States)

    Gustafsson, Mika; Hörnquist, Michael; Lombardi, Anna

    2006-07-01

    The issue of partitioning a network into communities has attracted a great deal of attention recently. Most authors seem to equate this issue with the one of finding the maximum value of the modularity, as defined by Newman. Since the problem formulated this way is believed to be NP-hard, most effort has gone into the construction of search algorithms, and less to the question of other measures of community structures, similarities between various partitionings and the validation with respect to external information. Here we concentrate on a class of computer generated networks and on three well-studied real networks which constitute a bench-mark for network studies; the karate club, the US college football teams and a gene network of yeast. We utilize some standard ways of clustering data (originally not designed for finding community structures in networks) and show that these classical methods sometimes outperform the newer ones. We discuss various measures of the strength of the modular structure, and show by examples features and drawbacks. Further, we compare different partitions by applying some graph-theoretic concepts of distance, which indicate that one of the quality measures of the degree of modularity corresponds quite well with the distance from the true partition. Finally, we introduce a way to validate the partitionings with respect to external data when the nodes are classified but the network structure is unknown. This is here possible since we know everything of the computer generated networks, as well as the historical answer to how the karate club and the football teams are partitioned in reality. The partitioning of the gene network is validated by use of the Gene Ontology database, where we show that a community in general corresponds to a biological process.

  10. The seesaw space, a vector space to identify and characterize large-scale structures at 1 AU

    Science.gov (United States)

    Lara, A.; Niembro, T.

    2017-12-01

    We introduce the seesaw space, an orthonormal space formed by the local and the global fluctuations of any of the four basic solar parameters: velocity, density, magnetic field and temperature at any heliospheric distance. The fluctuations compare the standard deviation of a moving average of three hours against the running average of the parameter in a month (consider as the local fluctuations) and in a year (global fluctuations) We created this new vectorial spaces to identify the arrival of transients to any spacecraft without the need of an observer. We applied our method to the one-minute resolution data of WIND spacecraft from 1996 to 2016. To study the behavior of the seesaw norms in terms of the solar cycle, we computed annual histograms and fixed piecewise functions formed by two log-normal distributions and observed that one of the distributions is due to large-scale structures while the other to the ambient solar wind. The norm values in which the piecewise functions change vary in terms of the solar cycle. We compared the seesaw norms of each of the basic parameters due to the arrival of coronal mass ejections, co-rotating interaction regions and sector boundaries reported in literature. High seesaw norms are due to large-scale structures. We found three critical values of the norms that can be used to determined the arrival of coronal mass ejections. We present as well general comparisons of the norms during the two maxima and the minimum solar cycle periods and the differences of the norms due to large-scale structures depending on each period.

  11. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    International Nuclear Information System (INIS)

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  12. Tribological analysis of the ventral scale structure in a Python regius in relation to laser textured surfaces

    International Nuclear Information System (INIS)

    Abdel-Aal, H A; El Mansori, M

    2013-01-01

    Laser texturing is one of the leading technologies applied to modify surface topography. To date, however, a standardized procedure to generate deterministic textures is virtually non-existent. In nature, especially in squamata, there are many examples of deterministic structured textures that allow species to control friction and condition their tribological response for efficient function. In this work, we draw a comparison between industrial surfaces and reptilian surfaces. We chose the Python regius species as a bio-analogue with a deterministic surface. We first study the structural make up of the ventral scales of the snake (both construction and metrology). We further compare the metrological features of the ventral scales to experimentally recommended performance indicators of industrial surfaces extracted from open literature. The results indicate the feasibility of engineering a laser textured surface based on the reptilian ornamentation constructs. It is shown that the metrological features, key to efficient function of a rubbing deterministic surface, are already optimized in the reptile. We further show that optimization in reptilian surfaces is based on synchronizing surface form, textures and aspects to condition the frictional response. Mimicking reptilian surfaces, we argue, may form a design methodology potentially capable of generating advanced deterministic surface constructs capable of efficient tribological function. (paper)

  13. Probing the Magnetic Field Structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Roman; McKinney, Jonathan C. [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States); Johnson, Michael D.; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-10

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford–Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.

  14. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Science.gov (United States)

    Roffler, Gretchen H.; Talbot, Sandra L.; Luikart, Gordon; Sage, George K.; Pilgrim, Kristy L.; Adams, Layne G.; Schwartz, Michael K.

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

  15. On the renormalization of the effective field theory of large scale structures

    International Nuclear Information System (INIS)

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P in ∼ k n . After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections

  16. On the renormalization of the effective field theory of large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Pajer, Enrico [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Zaldarriaga, Matias, E-mail: enrico.pajer@gmail.com, E-mail: matiasz@ias.edu [Institute for Advanced Study, Princeton, NJ 08544 (United States)

    2013-08-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P{sub in} ∼ k{sup n}. After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections.

  17. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.1; monometallic clusters

    International Nuclear Information System (INIS)

    Bazin, D.C.; Sayers, D.A.

    1993-01-01

    The structural information found using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to nanometer scale metallic clusters. (author)

  18. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.2; bimetallic clusters

    International Nuclear Information System (INIS)

    Bazin, D.; Sayers, D.

    1993-01-01

    The structural information obtained using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to the study of nanometer scale bimetallic clusters. (author)

  19. Comparison of optimization methods for electronic-structure calculations

    International Nuclear Information System (INIS)

    Garner, J.; Das, S.G.; Min, B.I.; Woodward, C.; Benedek, R.

    1989-01-01

    The performance of several local-optimization methods for calculating electronic structure is compared. The fictitious first-order equation of motion proposed by Williams and Soler is integrated numerically by three procedures: simple finite-difference integration, approximate analytical integration (the Williams-Soler algorithm), and the Born perturbation series. These techniques are applied to a model problem for which exact solutions are known, the Mathieu equation. The Williams-Soler algorithm and the second Born approximation converge equally rapidly, but the former involves considerably less computational effort and gives a more accurate converged solution. Application of the method of conjugate gradients to the Mathieu equation is discussed

  20. Soil structure interaction calculations: a comparison of methods

    International Nuclear Information System (INIS)

    Wight, L.; Zaslawsky, M.

    1976-01-01

    Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes

  1. Soil structure interaction calculations: a comparison of methods

    Energy Technology Data Exchange (ETDEWEB)

    Wight, L.; Zaslawsky, M.

    1976-07-22

    Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes.

  2. IMPLEMENTATION AND COMPARISON OF DIFFERENT CIC FILTER STRUCTURE FOR DECIMATION

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2013-06-01

    Full Text Available This paper briefs an implementation of different CIC filter architectures for decimation. The different decimation filter structures are implemented using cascaded integrator-comb filter to work for the down sampling ratio of 8. The prototype is designed with MATLAB Simulink model and it is converted to VHDL code using Xilinx system generator. Prototype is implemented in Virtex V- XC5VLX110T-3ff1136 FPGA kit and simulation results and device utilization reports are generated and tabulated. Finally different architectures are compared using number of used LUTs, Registers, Power consumption etc.

  3. Phosphorylation variation during the cell cycle scales with structural propensities of proteins.

    Directory of Open Access Journals (Sweden)

    Stefka Tyanova

    Full Text Available Phosphorylation at specific residues can activate a protein, lead to its localization to particular compartments, be a trigger for protein degradation and fulfill many other biological functions. Protein phosphorylation is increasingly being studied at a large scale and in a quantitative manner that includes a temporal dimension. By contrast, structural properties of identified phosphorylation sites have so far been investigated in a static, non-quantitative way. Here we combine for the first time dynamic properties of the phosphoproteome with protein structural features. At six time points of the cell division cycle we investigate how the variation of the amount of phosphorylation correlates with the protein structure in the vicinity of the modified site. We find two distinct phosphorylation site groups: intrinsically disordered regions tend to contain sites with dynamically varying levels, whereas regions with predominantly regular secondary structures retain more constant phosphorylation levels. The two groups show preferences for different amino acids in their kinase recognition motifs - proline and other disorder-associated residues are enriched in the former group and charged residues in the latter. Furthermore, these preferences scale with the degree of disorderedness, from regular to irregular and to disordered structures. Our results suggest that the structural organization of the region in which a phosphorylation site resides may serve as an additional control mechanism. They also imply that phosphorylation sites are associated with different time scales that serve different functional needs.

  4. The Social Interaction Anxiety Scale (SIAS) and the Social Phobia Scale (SPS): a comparison of two short-form versions.

    Science.gov (United States)

    Fergus, Thomas A; Valentiner, David P; Kim, Hyun-Soo; McGrath, Patrick B

    2014-12-01

    The widespread use of Mattick and Clarke's (1998) Social Interaction Anxiety Scale (SIAS) and Social Phobia Scale (SPS) led 2 independent groups of researchers to develop short forms of these measures (Fergus, Valentiner, McGrath, Gier-Lonsway, & Kim, 2012; Peters, Sunderland, Andrews, Rapee, & Mattick, 2012). This 3-part study examined the psychometric properties of Fergus et al.'s and Peters et al.'s short forms of the SIAS and SPS using an American nonclinical adolescent sample in Study 1 (N = 98), American patient sample with an anxiety disorder in Study 2 (N = 117), and both a South Korean college student sample (N = 341) and an American college student sample (N = 550) in Study 3. Scores on both sets of short forms evidenced adequate internal consistency, interitem correlations, and measurement invariance. Scores on Fergus et al.'s short forms, particularly their SIAS short form, tended to capture more unique variance in scores of criterion measures than did scores on Peters et al.'s short forms. Implications for the use of these 2 sets of short forms are discussed. (c) 2014 APA, all rights reserved.

  5. Comparison between full- and small-scale sensory assessments of air quality

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Sabikova, J.; Lagercrantz, Love Per

    2002-01-01

    Thirty-nine untrained subjects made small- and full-scale evaluations of the acceptability of the quality of air at 22 deg.C and 40% RH, polluted by either carpet, felt floor covering, painted gypsum board, linoleum or chipboard. Small-scale evaluations were made on the air extracted from 200-L......-scale sensory ratings of acceptability of air polluted by carpet and by linoleum were systematically better than small-scale assessments, but not for the other three materials. Calculated sensory emission rates from carpet and linoleum were significantly lower in full scale than in small scale. When modelling...

  6. Mariner 9 photographs of small-scale volcanic structures on Mars

    Science.gov (United States)

    Greeley, R.

    1972-01-01

    Surface features on the flanks of Martian shield volcanoes photographed by Mariner 9 are identified as lava flow channels, rift zones, and partly collapsed lava tubes by comparisons with similar structures on the flanks of Mauna Loa shield volcano, Hawaii. From these identifications, the composition of the Martian lava flows is interpreted to be basaltic, with viscosities ranging from those of fluid pahoehoe to more viscous aa.

  7. Patch-Scale Effects of Equine Disturbance on Arthropod Assemblages and Vegetation Structure in Subalpine Wetlands

    Science.gov (United States)

    Holmquist, Jeffrey G.; Schmidt-Gengenbach, Jutta; Ballenger, Elizabeth A.

    2014-06-01

    Assessments of vertebrate disturbance to plant and animal assemblages often contrast grazed versus ungrazed meadows or other larger areas of usage, and this approach can be powerful. Random sampling of such habitats carries the potential, however, for smaller, more intensely affected patches to be missed and for other responses that are only revealed at smaller scales to also escape detection. We instead sampled arthropod assemblages and vegetation structure at the patch scale (400-900 m2 patches) within subalpine wet meadows of Yosemite National Park (USA), with the goal of determining if there were fine-scale differences in magnitude and directionality of response at three levels of grazing intensity. Effects were both stronger and more nuanced than effects evidenced by previous random sampling of paired grazed and ungrazed meadows: (a) greater negative effects on vegetation structure and fauna in heavily used patches, but (b) some positive effects on fauna in lightly grazed patches, suggested by trends for mean richness and total and population abundances. Although assessment of disturbance at either patch or landscape scales should be appropriate, depending on the management question at hand, our patch-scale work demonstrated that there can be strong local effects on the ecology of these wetlands that may not be detected by comparing larger scale habitats.

  8. Scaling for deuteron structure functions in a relativistic light-front model

    International Nuclear Information System (INIS)

    Polyzou, W.N.; Gloeckle, W.

    1996-01-01

    Scaling limits of the structure functions [B.D. Keister, Phys. Rev. C 37, 1765 (1988)], W 1 and W 2 , are studied in a relativistic model of the two-nucleon system. The relativistic model is defined by a unitary representation, U(Λ,a), of the Poincaracute e group which acts on the Hilbert space of two spinless nucleons. The representation is in Dirac close-quote s [P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949)] light-front formulation of relativistic quantum mechanics and is designed to give the experimental deuteron mass and n-p scattering length. A model hadronic current operator that is conserved and covariant with respect to this representation is used to define the structure tensor. This work is the first step in a relativistic extension of the results of Hueber, Gloeckle, and Boemelburg. The nonrelativistic limit of the model is shown to be consistent with the nonrelativistic model of Hueber, Gloeckle, and Boemelburg. [D. Hueber et al. Phys. Rev. C 42, 2342 (1990)]. The relativistic and nonrelativistic scaling limits, for both Bjorken and y scaling are compared. The interpretation of y scaling in the relativistic model is studied critically. The standard interpretation of y scaling requires a soft wave function which is not realized in this model. The scaling limits in both the relativistic and nonrelativistic case are related to probability distributions associated with the target deuteron. copyright 1996 The American Physical Society

  9. Uniform functional structure across spatial scales in an intertidal benthic assemblage.

    Science.gov (United States)

    Barnes, R S K; Hamylton, Sarah

    2015-05-01

    To investigate the causes of the remarkable similarity of emergent assemblage properties that has been demonstrated across disparate intertidal seagrass sites and assemblages, this study examined whether their emergent functional-group metrics are scale related by testing the null hypothesis that functional diversity and the suite of dominant functional groups in seagrass-associated macrofauna are robust structural features of such assemblages and do not vary spatially across nested scales within a 0.4 ha area. This was carried out via a lattice of 64 spatially referenced stations. Although densities of individual components were patchily dispersed across the locality, rank orders of importance of the 14 functional groups present, their overall functional diversity and evenness, and the proportions of the total individuals contained within each showed, in contrast, statistically significant spatial uniformity, even at areal scales functional groups in their geospatial context also revealed weaker than expected levels of spatial autocorrelation, and then only at the smaller scales and amongst the most dominant groups, and only a small number of negative correlations occurred between the proportional importances of the individual groups. In effect, such patterning was a surface veneer overlying remarkable stability of assemblage functional composition across all spatial scales. Although assemblage species composition is known to be homogeneous in some soft-sediment marine systems over equivalent scales, this combination of patchy individual components yet basically constant functional-group structure seems as yet unreported. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A comparison of a patient-rated visual analogue scale with the Liebowitz Social Anxiety Scale for social anxiety disorder: A cross-sectional study

    OpenAIRE

    興津, 裕美

    2014-01-01

    博士(医学) 乙第2814号, 著者名:Hiromi Okitsu・Jitsuki Sawamura・Katsuji Nishimura・Yasuto Sato・Jun Ishigooka,タイトル:A comparison of a patient-rated visual analogue scale with the Liebowitz Social Anxiety Scale for social anxiety disorder: A cross-sectional study,掲載誌:Open Journal of Psychiatry (2161-7325),巻・頁・年:4巻1号 p.68~74 (2014),著作権関連情報:Copyright © 2014 by authors and Scientific Research Publishing Inc.,DOI:10.4236/ojpsych.2014.41010...

  11. Factor Structure of the Acute Stress Disorder Scale in a Sample of Hurricane Katrina Evacuees

    Science.gov (United States)

    Edmondson, Donald; Mills, Mary Alice; Park, Crystal L.

    2010-01-01

    Acute stress disorder (ASD) is a poorly understood and controversial diagnosis (A. G. Harvey & R. A. Bryant, 2002). The present study used confirmatory factor analysis (CFA) to test the factor structure of the most widely used self-report measure of ASD, the Acute Stress Disorder Scale (R. A. Bryant, M. L. Moulds, & R. M. Guthrie, 2000),…

  12. Factor Structure and Measurement Invariance of the Need-Supportive Teaching Style Scale for Physical Education.

    Science.gov (United States)

    Liu, Jing-Dong; Chung, Pak-Kwong

    2017-08-01

    The purpose of the current study was to examine the factor structure and measurement invariance of a scale measuring students' perceptions of need-supportive teaching (Need-Supportive Teaching Style Scale in Physical Education; NSTSSPE). We sampled 615 secondary school students in Hong Kong, 200 of whom also completed a follow-up assessment two months later. Factor structure of the scale was examined through exploratory structural equation modeling (ESEM). Further, nomological validity of the NSTSSPE was evaluated by examining the relationships between need-supportive teaching style and student satisfaction of psychological needs. Finally, four measurement models-configural, metric invariance, scalar invariance, and item uniqueness invariance-were assessed using multiple group ESEM to test the measurement invariance of the scale across gender, grade, and time. ESEM results suggested a three-factor structure of the NSTSSPE. Nomological validity was supported, and weak, strong, and strict measurement invariance of the NSTSSPE was evidenced across gender, grade, and time. The current study provides initial psychometric support for the NSTSSPE to assess student perceptions of teachers' need-supportive teaching style in physical education classes.

  13. Mapping the MMPI-2-RF Specific Problems Scales Onto Extant Psychopathology Structures.

    Science.gov (United States)

    Sellbom, Martin

    2017-01-01

    A main objective in developing the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008 ) was to link the hierarchical structure of the instrument's scales to contemporary psychopathology and personality models for greater enhancement of construct validity. Initial evidence published with the Restructured Clinical scales has indicated promising results in that the higher order structure of these measures maps onto those reported in the extant psychopathology literature. This study focused on evaluating the internal structure of the Specific Problems and Interest scales, which have not yet been examined in this manner. Two large, mixed-gender outpatient and correctional samples were used. Exploratory factor analyses revealed consistent evidence for a 4-factor structure representing somatization, negative affect, externalizing, and social detachment. Convergent and discriminant validity analyses in the outpatient sample yielded a pattern of results consistent with expectations. These findings add further evidence to indicate that the MMPI-2-RF hierarchy of scales map onto extant psychopathology literature, and also add support to the notion that somatization and detachment should be considered important higher order domains in the psychopathology literature.

  14. Factor Structure of the Social Appearance Anxiety Scale in Turkish Early Adolescents

    Science.gov (United States)

    Sahin, Ertugrul; Topkaya, Nursel

    2015-01-01

    Although the Social Appearance Anxiety Scale (SAAS) is most often validated with the use of confirmatory factor analysis (CFA) on undergraduate students, exploratory factor analysis and multiple factor retention decision criteria necessitate the analysis of underlying factor structure to prevent over and under factoring as well as to reveal…

  15. Sidewall patterning - A new wafer-scale method for accurate patterning of vertical silicon structures

    NARCIS (Netherlands)

    Westerik, P. J.; Vijselaar, W. J.C.; Berenschot, J. W.; Tas, N. R.; Huskens, J.; Gardeniers, J. G.E.

    2018-01-01

    For the definition of wafer scale micro- and nanostructures, in-plane geometry is usually controlled by optical lithography. However, options for precisely patterning structures in the out-of-plane direction are much more limited. In this paper we present a versatile self-aligned technique that

  16. Enhanced Strain in Functional Nanoporous Gold with a Dual Microscopic Length Scale Structure

    NARCIS (Netherlands)

    Detsi, Eric; Punzhin, Sergey; Rao, Jiancun; Onck, Patrick R.; De Hosson, Jeff Th. M.

    We have synthesized nanoporous Au with a dual microscopic length scale by exploiting the crystal structure of the alloy precursor. The synthesized mesoscopic material is characterized by stacked Au layers of submicrometer thickness. In addition, each layer displays nanoporosity through the entire

  17. Bifactor Structure of the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition

    Science.gov (United States)

    Watkins, Marley W.; Beaujean, A. Alexander

    2014-01-01

    The Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV; Wechsler, 2012) represents a substantial departure from its predecessor, including omission of 4 subtests, addition of 5 new subtests, and modification of the contents of the 5 retained subtests. Wechsler (2012) explicitly assumed a higher-order structure with…

  18. The Factor Structure of Preschool Learning Behaviors Scale Scores in Peruvian Children

    Science.gov (United States)

    Hahn, Kathryn R.; Schaefer, Barbara A.; Merino, Cesar; Worrell, Frank C.

    2009-01-01

    The factor structure of the Escala de Conductas de Aprendizaje Preescolar (ECAP), a Spanish translation of the Preschool Learning Behaviors Scale (PLBS), was examined in this study. Children aged 2 to 6 years (N = 328) enrolled in public and private preschools in the Republic of Peru were rated by classroom teachers on the frequency of observable,…

  19. Scaling relations between structure and rheology of ageing casein particle gels

    NARCIS (Netherlands)

    Mellema, M.

    2000-01-01

    Mellema, M. (Michel), Scaling relations between structure and rheology of ageing casein particle gels , PhD Thesis, Wageningen University, 150 + 10 pages, references by chapter, English and Dutch summaries (2000).

    The relation between (colloidal)

  20. An Evaluation of the Factor Structure of the Frost Multidimensional Perfectionism Scale

    Science.gov (United States)

    Harvey, Bronwyn; Pallant, Julie; Harvey, David

    2004-01-01

    The purpose of the study was to investigate whether the six-factor structure of the Frost Multidimensional Perfectionism Scale could be replicated in a community-based sample. A sample of 255 adult participants (55.7% female, 44.3% male) ranging in age from 18 to 78 (mean = 37.0) completed the questionnaire. Based on the screen test and parallel…

  1. Large-scale structural alteration of brain in epileptic children with SCN1A mutation

    Directory of Open Access Journals (Sweden)

    Yun-Jeong Lee

    2017-01-01

    Significance: This study showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients. Further longitudinal MRI studies with larger cohorts are required to confirm the effect of SCN1A gene mutation on structural brain development.

  2. Atomic-scale structure of single-layer MoS2 nanoclusters

    DEFF Research Database (Denmark)

    Helveg, S.; Lauritsen, J. V.; Lægsgaard, E.

    2000-01-01

    We have studied using scanning tunneling microscopy (STM) the atomic-scale realm of molybdenum disulfide (MoS2) nanoclusters, which are of interest as a model system in hydrodesulfurization catalysis. The STM gives the first real space images of the shape and edge structure of single-layer MoS2...

  3. Photonic Crystal Structure and Coloration of Wing Scales of Butterflies Exhibiting Selective Wavelength Iridescence

    Czech Academy of Sciences Publication Activity Database

    Mika, Filip; Matějková-Plšková, J.; Jiwajinda, S.; Dechkrong, P.; Shiojiri, M.

    2012-01-01

    Roč. 5, č. 5 (2012), s. 754-771 ISSN 1996-1944 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : butterfly scale * structure color * natural photonic crystal * E. mulciber * S. charonda * C. ataxus * T. aeacus Subject RIV: JJ - Other Materials Impact factor: 2.247, year: 2012

  4. Performance and scaling of locally-structured grid methods forpartial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Colella, Phillip; Bell, John; Keen, Noel; Ligocki, Terry; Lijewski, Michael; Van Straalen, Brian

    2007-07-19

    In this paper, we discuss some of the issues in obtaining high performance for block-structured adaptive mesh refinement software for partial differential equations. We show examples in which AMR scales to thousands of processors. We also discuss a number of metrics for performance and scalability that can provide a basis for understanding the advantages and disadvantages of this approach.

  5. Factor Structure of the Restricted Academic Situation Scale: Implications for ADHD

    Science.gov (United States)

    Karama, Sherif; Amor, Leila Ben; Grizenko, Natalie; Ciampi, Antonio; Mbekou, Valentin; Ter-Stepanian, Marina; Lageix, Philippe; Baron, Chantal; Schwartz, George; Joober, Ridha

    2009-01-01

    Background: To study the factor structure of the Restricted Academic Situation Scale (RASS), a psychometric tool used to assess behavior in children with ADHD, 117 boys and 21 girls meeting "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.; "DSM-IV") criteria for ADHD and aged between 6 and 12 years were recruited. Assessments were…

  6. The Factor Structure and Screening Utility of the Social Interaction Anxiety Scale

    Science.gov (United States)

    Rodebaugh, Thomas L.; Woods, Carol M.; Heimberg, Richard G.; Liebowitz, Michael R.; Schneier, Franklin R.

    2006-01-01

    The widely used Social Interaction Anxiety Scale (SIAS; R. P. Mattick & J. C. Clarke, 1998) possesses favorable psychometric properties, but questions remain concerning its factor structure and item properties. Analyses included 445 people with social anxiety disorder and 1,689 undergraduates. Simple unifactorial models fit poorly, and models that…

  7. Confirming the Three-Factor Structure of the Disgust Scale-Revised in Eight Countries

    NARCIS (Netherlands)

    Olatunji, Bunmi O.; Moretz, Melanie W.; Mckay, Dean; Bjorklund, Fredrik; de Jong, Peter J.; Haidt, Jonathan; Hursti, Timo J.; Imada, Sumio; Koller, Silvia; Mancini, Francesco; Page, Andrew C.; Schienle, Anne

    The current study evaluates the factor structure of the Disgust Scale-Revised (DS-R) in eight countries: Australia, Brazil, Germany, Italy, Japan, the Netherlands, Sweden, and the United States (N = 2,606). Confirmatory factor analysis is used to compare two different models of the DS-R and to

  8. Hierarchical formation of large scale structures of the Universe: observations and models

    International Nuclear Information System (INIS)

    Maurogordato, Sophie

    2003-01-01

    In this report for an Accreditation to Supervise Research (HDR), the author proposes an overview of her research works in cosmology. These works notably addressed the large scale distribution of the Universe (with constraints on the scenario of formation, and on the bias relationship, and the structuring of clusters), the analysis of galaxy clusters during coalescence, mass distribution within relaxed clusters [fr

  9. Factorial Structure of the French Version of the Rosenberg Self-Esteem Scale among the Elderly

    Science.gov (United States)

    Gana, Kamel; Alaphilippe, Daniel; Bailly, Nathalie

    2005-01-01

    Ten different confirmatory factor analysis models, including ones with correlated traits correlated methods, correlated traits correlated uniqueness, and correlated traits uncorrelated methods, were proposed to examine the factorial structure of the French version of the Rosenberg Self-Esteem Scale (Rosenberg, 1965). In line with previous studies…

  10. Clonal growth and fine-scale genetic structure in tanoak (Notholithocarpus densiflorus: Fagaceae)

    Science.gov (United States)

    Richard S. Dodd; Wasima Mayer; Alejandro Nettel; Zara Afzal-Rafii

    2013-01-01

    The combination of sprouting and reproduction by seed can have important consequences on fine-scale spatial distribution of genetic structure (SGS). SGS is an important consideration for species’ restoration because it determines the minimum distance among seed trees to maximize genetic diversity while not prejudicing locally adapted genotypes. Local environmental...

  11. An approach to large scale identification of non-obvious structural similarities between proteins

    Science.gov (United States)

    Cherkasov, Artem; Jones, Steven JM

    2004-01-01

    Background A new sequence independent bioinformatics approach allowing genome-wide search for proteins with similar three dimensional structures has been developed. By utilizing the numerical output of the sequence threading it establishes putative non-obvious structural similarities between proteins. When applied to the testing set of proteins with known three dimensional structures the developed approach was able to recognize structurally similar proteins with high accuracy. Results The method has been developed to identify pathogenic proteins with low sequence identity and high structural similarity to host analogues. Such protein structure relationships would be hypothesized to arise through convergent evolution or through ancient horizontal gene transfer events, now undetectable using current sequence alignment techniques. The pathogen proteins, which could mimic or interfere with host activities, would represent candidate virulence factors. The developed approach utilizes the numerical outputs from the sequence-structure threading. It identifies the potential structural similarity between a pair of proteins by correlating the threading scores of the corresponding two primary sequences against the library of the standard folds. This approach allowed up to 64% sensitivity and 99.9% specificity in distinguishing protein pairs with high structural similarity. Conclusion Preliminary results obtained by comparison of the genomes of Homo sapiens and several strains of Chlamydia trachomatis have demonstrated the potential usefulness of the method in the identification of bacterial proteins with known or potential roles in virulence. PMID:15147578

  12. An approach to large scale identification of non-obvious structural similarities between proteins

    Directory of Open Access Journals (Sweden)

    Cherkasov Artem

    2004-05-01

    Full Text Available Abstract Background A new sequence independent bioinformatics approach allowing genome-wide search for proteins with similar three dimensional structures has been developed. By utilizing the numerical output of the sequence threading it establishes putative non-obvious structural similarities between proteins. When applied to the testing set of proteins with known three dimensional structures the developed approach was able to recognize structurally similar proteins with high accuracy. Results The method has been developed to identify pathogenic proteins with low sequence identity and high structural similarity to host analogues. Such protein structure relationships would be hypothesized to arise through convergent evolution or through ancient horizontal gene transfer events, now undetectable using current sequence alignment techniques. The pathogen proteins, which could mimic or interfere with host activities, would represent candidate virulence factors. The developed approach utilizes the numerical outputs from the sequence-structure threading. It identifies the potential structural similarity between a pair of proteins by correlating the threading scores of the corresponding two primary sequences against the library of the standard folds. This approach allowed up to 64% sensitivity and 99.9% specificity in distinguishing protein pairs with high structural similarity. Conclusion Preliminary results obtained by comparison of the genomes of Homo sapiens and several strains of Chlamydia trachomatis have demonstrated the potential usefulness of the method in the identification of bacterial proteins with known or potential roles in virulence.

  13. On the Soft Limit of the Large Scale Structure Power Spectrum: UV Dependence

    CERN Document Server

    Garny, Mathias; Porto, Rafael A; Sagunski, Laura

    2015-01-01

    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agr...

  14. CFD RANS Simulations on a Generic Conventional Scale Model Submarine: Comparison between Fluent and OpenFOAM

    Science.gov (United States)

    2015-09-01

    UNCLASSIFIED UNCLASSIFIED CFD RANS Simulations on a Generic Conventional Scale Model Submarine: Comparison between Fluent and OpenFOAM ... OpenFOAM to replace some of the Fluent simulations. The fidelity of the Fluent code has been carefully validated, but the accuracy of parts of the... OpenFOAM code have not been so extensively tested. To test the accuracy of the OpenFOAM software, CFD simulations have been performed on the DSTO

  15. What Shapes the Phylogenetic Structure of Anuran Communities in a Seasonal Environment? The Influence of Determinism at Regional Scale to Stochasticity or Antagonistic Forces at Local Scale.

    Science.gov (United States)

    Martins, Clarissa de Araújo; Roque, Fabio de Oliveira; Santos, Bráulio A; Ferreira, Vanda Lúcia; Strüssmann, Christine; Tomas, Walfrido Moraes

    2015-01-01

    Ecological communities are structured by both deterministic and stochastic processes. We investigated phylogenetic patterns at regional and local scales to understand the influences of seasonal processes in shaping the structure of anuran communities in the southern Pantanal wetland, Brazil. We assessed the phylogenetic structure at different scales, using the Net Relatedness Index (NRI), the Nearest Taxon Index (NTI), and phylobetadiversity indexes, as well as a permutation test, to evaluate the effect of seasonality. The anuran community was represented by a non-random set of species with a high degree of phylogenetic relatedness at the regional scale. However, at the local scale the phylogenetic structure of the community was weakly related with the seasonality of the system, indicating that oriented stochastic processes (e.g. colonization, extinction and ecological drift) and/or antagonist forces drive the structure of such communities in the southern Pantanal.

  16. Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure.

    Directory of Open Access Journals (Sweden)

    Ana-Maria Florescu

    2016-06-01

    Full Text Available Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes.

  17. Valx: A System for Extracting and Structuring Numeric Lab Test Comparison Statements from Text.

    Science.gov (United States)

    Hao, Tianyong; Liu, Hongfang; Weng, Chunhua

    2016-05-17

    To develop an automated method for extracting and structuring numeric lab test comparison statements from text and evaluate the method using clinical trial eligibility criteria text. Leveraging semantic knowledge from the Unified Medical Language System (UMLS) and domain knowledge acquired from the Internet, Valx takes seven steps to extract and normalize numeric lab test expressions: 1) text preprocessing, 2) numeric, unit, and comparison operator extraction, 3) variable identification using hybrid knowledge, 4) variable - numeric association, 5) context-based association filtering, 6) measurement unit normalization, and 7) heuristic rule-based comparison statements verification. Our reference standard was the consensus-based annotation among three raters for all comparison statements for two variables, i.e., HbA1c and glucose, identified from all of Type 1 and Type 2 diabetes trials in ClinicalTrials.gov. The precision, recall, and F-measure for structuring HbA1c comparison statements were 99.6%, 98.1%, 98.8% for Type 1 diabetes trials, and 98.8%, 96.9%, 97.8% for Type 2 diabetes trials, respectively. The precision, recall, and F-measure for structuring glucose comparison statements were 97.3%, 94.8%, 96.1% for Type 1 diabetes trials, and 92.3%, 92.3%, 92.3% for Type 2 diabetes trials, respectively. Valx is effective at extracting and structuring free-text lab test comparison statements in clinical trial summaries. Future studies are warranted to test its generalizability beyond eligibility criteria text. The open-source Valx enables its further evaluation and continued improvement among the collaborative scientific community.

  18. A Comparison of the McCarthy Scales of Children's Abilities and the WISC-R.

    Science.gov (United States)

    Goh, David S.; Youngquist, James

    1979-01-01

    The study involving 40 learning disabled children (6-8 years old) investigated the relationships between the various indexes of the McCarthy Scales of Children's Abilities (MSCA) and the scales of the Wechsler Intelligence Scale for Children-Revised (WISC-R), and the comparability between the MSCA General Cognitive Index and the WISC-R Full Scale…

  19. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison.

    Science.gov (United States)

    Prestele, Reinhard; Alexander, Peter; Rounsevell, Mark D A; Arneth, Almut; Calvin, Katherine; Doelman, Jonathan; Eitelberg, David A; Engström, Kerstin; Fujimori, Shinichiro; Hasegawa, Tomoko; Havlik, Petr; Humpenöder, Florian; Jain, Atul K; Krisztin, Tamás; Kyle, Page; Meiyappan, Prasanth; Popp, Alexander; Sands, Ronald D; Schaldach, Rüdiger; Schüngel, Jan; Stehfest, Elke; Tabeau, Andrzej; Van Meijl, Hans; Van Vliet, Jasper; Verburg, Peter H

    2016-12-01

    Model-based global projections of future land-use and land-cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global-scale LULC change models representing a wide range of assumptions of future biophysical and socioeconomic conditions. We attribute components of uncertainty to input data, model structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios, we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g., boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process and improving the allocation mechanisms of LULC change models remain important challenges. Current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches, and many studies ignore the uncertainty in LULC projections in assessments of LULC

  20. Comparison between scaling-root-planing (SRP and SRP/photodynamic therapy: six-month study

    Directory of Open Access Journals (Sweden)

    Berakdar Mohammad

    2012-04-01

    Full Text Available Abstract Introduction The purpose of this long-term clinical study was to examine the additional efficacy of photodynamic therapy (PDT to scaling and root planing (SRP in patients with chronic periodontal disease. Methods A total of 22 patients (mean age: 59.3 ± 11.7 years with chronic periodontal disease and four teeth with probing depth ≥ 5 mm were enrolled in the study. Inclusion criteria were: no systemic disease, no smoking, no pregnancy and no long-term medication. Beside the anamnesis, the following clinical parameters were assessed at baseline (one week before therapy, and one, three and six months after the therapy: bleeding on probing (BOP, plaque index (PI probing depth (PD, and clinical attachment loss. All measurements were done by the same examiner with a fixed periodontal probe (PCP 12, Hu-Friedy at six measurements/tooth. In each patient, two teeth were treated with SRP alone and two teeth with SRP and PDT (Periowave, Ondine Biopharma, Vancouver, Canada. The nonparametric Wilcoxon test for paired samples was used for comparison of the effect of the two treatments (p ≤ 0.05. Results After both types of treatment, the number of teeth positive for BOP declined. At baseline, the CAL measured 7.2 ± 1.2 mm (SRP or 8.1 ± 1.3 mm (SRP/PDT; one, three and six months after both types of treatment an improvement was observed. At baseline, the probing depth was 5.9 ± 0.8 mm (SRP or 6.4 ± 0.8 mm (SRP/PDT; after six months, an improvement of 2.4 ± 0.6 mm (SRP or 2.9 ± 0.8 mm (SRP/PDT was found. The greater reduction of the PD, achieved by a combination of SRP/PDT, was statistically significant after six months (p = 0.007. Conclusion This clinical study demonstrates that SRP in combination with PDT seems to be effective and is therefore suitable as an adjuvant therapy to the mechanical conditioning of the periodontal pockets in patients with chronic periodontal diseases.

  1. Comparison of residual NAPL source removal techniques in 3D metric scale experiments

    Science.gov (United States)

    Atteia, O.; Jousse, F.; Cohen, G.; Höhener, P.

    2017-07-01

    the contaminant fluxes, which were different for each technique. This paper presents the first comparison of four remediation techniques at the scale of 1 m3 tanks including heterogeneities. Sparging, persulfate and surfactant only remove 50% of the mass, while it is more than 99% for thermal. In terms of flux removal oxidant addition performs better when density effects are used.

  2. A European collaboration research programme to study and test large scale base isolated structures

    International Nuclear Information System (INIS)

    Renda, V.; Verzeletti, G.; Papa, L.

    1995-01-01

    The improvement of the technology of innovative anti-seismic mechanisms, as those for base isolation and energy dissipation, needs of testing capability for large scale models of structures integrated with these mechanisms. These kind experimental tests are of primary importance for the validation of design rules and the setting up of an advanced earthquake engineering for civil constructions of relevant interest. The Joint Research Centre of the European Commission offers the European Laboratory for Structural Assessment located at Ispra - Italy, as a focal point for an international european collaboration research programme to test large scale models of structure making use of innovative anti-seismic mechanisms. A collaboration contract, opened to other future contributions, has been signed with the national italian working group on seismic isolation (Gruppo di Lavoro sull's Isolamento Sismico GLIS) which includes the national research centre ENEA, the national electricity board ENEL, the industrial research centre ISMES and producer of isolators ALGA. (author). 3 figs

  3. Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces

    International Nuclear Information System (INIS)

    Saito, M.; Suzuki, S.; Kimura, M.; Suzuki, T.; Kihira, H.; Waseda, Y.

    2005-01-01

    Quantitative X-ray structural analysis coupled with anomalous X-ray scattering has been used for characterizing the atomic-scale structure of rust formed on steel surfaces. Samples were prepared from rust layers formed on the surfaces of two commercial steels. X-ray scattered intensity profiles of the two samples showed that the rusts consisted mainly of two types of ferric oxyhydroxide, α-FeOOH and γ-FeOOH. The amounts of these rust components and the realistic atomic arrangements in the components were estimated by fitting both the ordinary and the environmental interference functions with a model structure calculated using the reverse Monte Carlo simulation technique. The two rust components were found to be the network structure formed by FeO 6 octahedral units, the network structure itself deviating from the ideal case. The present results also suggest that the structural analysis method using anomalous X-ray scattering and the reverse Monte Carlo technique is very successful in determining the atomic-scale structure of rusts formed on the steel surfaces

  4. A cross-cultural investigation into the dimensional structure and stability of the Barriers to Research and Utilization Scale (BARRIERS Scale).

    Science.gov (United States)

    Williams, Brett; Brown, Ted; Costello, Shane

    2015-10-24

    It is important that scales exhibit strong measurement properties including those related to the investigation of issues that impact evidence-based practice. The validity of the Barriers to Research Utilization Scale (BARRIERS Scale) has recently been questioned in a systematic review. This study investigated the dimensional structure and stability of the 28 item BARRIERS Scale when completed by three groups of participants from three different cross-cultural environments. Data from the BARRIERS Scale completed by 696 occupational therapists from Australia (n = 137), Taiwan (n = 413), and the United Kingdom (n = 144) were analysed using principal components analysis, followed by Procrustes Transformation. Poorly fitting items were identified by low communalities, cross-loading, and theoretically inconsistent primary loadings, and were systematically removed until good fit was achieved. The cross-cultural stability of the component structure of the BARRIERS Scale was examined. A four component, 19 item version of the BARRIERS Scale emerged that demonstrated an improved dimensional fit and stability across the three participant groups. The resulting four components were consistent with the BARRIERS Scale as originally conceptualised. Findings from the study suggest that the four component, 19 item version of the BARRIERS Scale is a robust and valid measure for identifying barriers to research utilization for occupational therapists in paediatric health care settings across Australia, United Kingdom, and Taiwan. The four component 19 item version of the BARRIERS Scale exhibited good dimensional structure, internal consistency, and stability.

  5. Scaling exponents of the velocity structure functions in the interplanetary medium

    Directory of Open Access Journals (Sweden)

    V. Carbone

    Full Text Available We analyze the scaling exponents of the velocity structure functions, obtained from the velocity fluctuations measured in the interplanetary space plasma. Using the expression for the energy transfer rate which seems the most relevant in describing the evolution of the pseudo-energy densities in the interplanetary medium, we introduce an energy cascade model derived from a simple fragmentation process, which takes into account the intermittency effect. In the absence and in the presence of the large-scale magnetic field decorrelation effect the model reduces to the fluid and the hydromagnetic p-model, respectively. We show that the scaling exponents of the q-th power of the velocity structure functions, as obtained by the model in the absence of the decorrelation effect, furnishes the best-fit to the data analyzed from the Voyager 2 velocity field measurements at 8.5 AU. Our results allow us to hypothesize a new kind of scale-similarity for magnetohydrodynamic turbulence when the decorrelation effect is at work, related to the fourth-order velocity structure function.

  6. A multi-scaled approach to evaluating the fish assemblage structure within southern Appalachian streams USA.

    Science.gov (United States)

    Kirsch, Joseph; Peterson, James T.

    2014-01-01

    There is considerable uncertainty about the relative roles of stream habitat and landscape characteristics in structuring stream-fish assemblages. We evaluated the relative importance of environmental characteristics on fish occupancy at the local and landscape scales within the upper Little Tennessee River basin of Georgia and North Carolina. Fishes were sampled using a quadrat sample design at 525 channel units within 48 study reaches during two consecutive years. We evaluated species–habitat relationships (local and landscape factors) by developing hierarchical, multispecies occupancy models. Modeling results suggested that fish occupancy within the Little Tennessee River basin was primarily influenced by stream topology and topography, urban land coverage, and channel unit types. Landscape scale factors (e.g., urban land coverage and elevation) largely controlled the fish assemblage structure at a stream-reach level, and local-scale factors (i.e., channel unit types) influenced fish distribution within stream reaches. Our study demonstrates the utility of a multi-scaled approach and the need to account for hierarchy and the interscale interactions of factors influencing assemblage structure prior to monitoring fish assemblages, developing biological management plans, or allocating management resources throughout a stream system.

  7. On Spatial Resolution in Habitat Models: Can Small-scale Forest Structure Explain Capercaillie Numbers?

    Directory of Open Access Journals (Sweden)

    Ilse Storch

    2002-06-01

    Full Text Available This paper explores the effects of spatial resolution on the performance and applicability of habitat models in wildlife management and conservation. A Habitat Suitability Index (HSI model for the Capercaillie (Tetrao urogallus in the Bavarian Alps, Germany, is presented. The model was exclusively built on non-spatial, small-scale variables of forest structure and without any consideration of landscape patterns. The main goal was to assess whether a HSI model developed from small-scale habitat preferences can explain differences in population abundance at larger scales. To validate the model, habitat variables and indirect sign of Capercaillie use (such as feathers or feces were mapped in six study areas based on a total of 2901 20 m radius (for habitat variables and 5 m radius sample plots (for Capercaillie sign. First, the model's representation of Capercaillie habitat preferences was assessed. Habitat selection, as expressed by Ivlev's electivity index, was closely related to HSI scores, increased from poor to excellent habitat suitability, and was consistent across all study areas. Then, habitat use was related to HSI scores at different spatial scales. Capercaillie use was best predicted from HSI scores at the small scale. Lowering the spatial resolution of the model stepwise to 36-ha, 100-ha, 400-ha, and 2000-ha areas and relating Capercaillie use to aggregated HSI scores resulted in a deterioration of fit at larger scales. Most importantly, there were pronounced differences in Capercaillie abundance at the scale of study areas, which could not be explained by the HSI model. The results illustrate that even if a habitat model correctly reflects a species' smaller scale habitat preferences, its potential to predict population abundance at larger scales may remain limited.

  8. The role of categorization and scale endpoint comparisons in numerical information processing: A two-process model.

    Science.gov (United States)

    Tao, Tao; Wyer, Robert S; Zheng, Yuhuang

    2017-03-01

    We propose a two-process conceptualization of numerical information processing to describe how people form impressions of a score that is described along a bounded scale. According to the model, people spontaneously categorize a score as high or low. Furthermore, they compare the numerical discrepancy between the score and the endpoint of the scale to which it is closer, if they are not confident of their categorization, and use implications of this comparison as a basis for judgment. As a result, their evaluation of the score is less extreme when the range of numbers along the scale is large (e.g., from 0 to 100) than when it is small (from 0 to 10). Six experiments support this two-process model and demonstrate its generalizability. Specifically, the magnitude of numbers composing the scale has less impact on judgments (a) when the score being evaluated is extreme, (b) when individuals are unmotivated to engage in endpoint comparison processes (i.e., they are low in need for cognition), and (c) when they are unable to do so (i.e., they are under cognitive load). Moreover, the endpoint to which individuals compare the score can depend on their regulatory focus. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Scale-Dependence of Processes Structuring Dung Beetle Metacommunities Using Functional Diversity and Community Deconstruction Approaches

    Science.gov (United States)

    da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution

  10. Identification and comparison of structural factors of innovation capability in ESCO with desirable status

    Directory of Open Access Journals (Sweden)

    Fatemeh Jalali

    2014-12-01

    Full Text Available The present study describes the identification and comparison of structural factors of innovation capability in Esfahan Steel Company (ESCO. Innovation is a crucial factor in growth, success, and survival of organizations. Since the innovation for organizations is not possible without the level of innovation capabilities and the need for steel products and imports of goods from developed countries has greatly increased, this study intends to investigate the factors affecting the subject that may be able to increase the production and reduce the need to import it. Evaluation of the innovation capability factors of ESCO compared with its desired status in industry can help companies develop innovative strategies and also achieve organizational goals. Statistical analysis methods and mean comparison test by examining the structure of the innovation capability in the form of a standard questionnaire was employed. The findings suggest that the innovation capability in the existing situation of ESCO in comparison with the desired situation is significantly different.

  11. Distance metric learning for complex networks: Towards size-independent comparison of network structures

    Science.gov (United States)

    Aliakbary, Sadegh; Motallebi, Sadegh; Rashidian, Sina; Habibi, Jafar; Movaghar, Ali

    2015-02-01

    Real networks show nontrivial topological properties such as community structure and long-tail degree distribution. Moreover, many network analysis applications are based on topological comparison of complex networks. Classification and clustering of networks, model selection, and anomaly detection are just some applications of network comparison. In these applications, an effective similarity metric is needed which, given two complex networks of possibly different sizes, evaluates the amount of similarity between the structural features of the two networks. Traditional graph comparison approaches, such as isomorphism-based methods, are not only too time consuming but also inappropriate to compare networks with different sizes. In this paper, we propose an intelligent method based on the genetic algorithms for integrating, selecting, and weighting the network features in order to develop an effective similarity measure for complex networks. The proposed similarity metric outperforms state of the art methods with respect to different evaluation criteria.

  12. Structural comparison of hazardous and non-hazardous coals based on gas sorption experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Toth, J. [Research Lab. for Mining Chemistry, Hungarian Academy of Sciences, Miskolc-Egyetemvaros (Hungary); Radnai-Gyoengyoes, Z. [Geopard Ltd., Pecs (Hungary); Bokanyi, L. [Miskolc Univ., Miskolc-Egyetemvaros (Hungary). Dept. of Process Engineering

    1997-12-31

    Comparison of carbon-dioxide and propane sorption at ambient temperature was used for characterising the difference of the structure of hazardous and non hazardous coals. However, hazardous coals were found more microporous or contain more closed pores than non hazardous ones, this difference couldn`t have been enlarged and attributed to one petrographic component by producing the density fractions. Gas sorption isobars (nitrogen, methane, ethane) are proposed to make a distinction between fine pore structure of coals. (orig.)

  13. Anomalous scaling of structure functions and dynamic constraints on turbulence simulations

    International Nuclear Information System (INIS)

    Yakhot, Victor; Sreenivasan, Katepalli R.

    2006-12-01

    The connection between anomalous scaling of structure functions (intermittency) and numerical methods for turbulence simulations is discussed. It is argued that the computational work for direct numerical simulations (DNS) of fully developed turbulence increases as Re 4 , and not as Re 3 expected from Kolmogorov's theory, where Re is a large-scale Reynolds number. Various relations for the moments of acceleration and velocity derivatives are derived. An infinite set of exact constraints on dynamically consistent subgrid models for Large Eddy Simulations (LES) is derived from the Navier-Stokes equations, and some problems of principle associated with existing LES models are highlighted. (author)

  14. Determination of αS from scaling violations of truncated moments of structure functions

    International Nuclear Information System (INIS)

    Forte, Stefano; Latorre, J.I.; Magnea, Lorenzo; Piccione, Andrea

    2002-01-01

    We determine the strong coupling α S (M Z ) from scaling violations of truncated moments of the nonsinglet deep inelastic structure function F 2 . Truncated moments are determined from BCDMS and NMC data using a neural network parametrization which retains the full experimental information on errors and correlations. Our method minimizes all sources of theoretical uncertainty and bias which characterize extractions of α S from scaling violations. We obtain α S (M Z )=0.124 +0.004 -0.007 (exp.) +0.003 -0.004 (th.)

  15. 2MASS Constraints on the Local Large-Scale Structure: A Challenge to LCDM?

    OpenAIRE

    Frith, W. J.; Shanks, T.; Outram, P. J.

    2004-01-01

    We investigate the large-scale structure of the local galaxy distribution using the recently completed 2 Micron All Sky Survey (2MASS). First, we determine the K-band number counts over the 4000 sq.deg. APM survey area where evidence for a large-scale `local hole' has previously been detected and compare them to a homogeneous prediction. Considering a LCDM form for the 2-point angular correlation function, the observed deficiency represents a 5 sigma fluctuation in the galaxy distribution. We...

  16. Coherent structures at ion scales in fast and slow solar wind: Cluster observations

    Science.gov (United States)

    Perrone, D.; Alexandrova, O.; Zouganelis, Y.; Roberts, O.; Lion, S.; Escoubet, C. P.; Walsh, A. P.; Maksimovic, M.; Lacombe, C.

    2017-12-01

    Spacecraft measurements generally reveal that solar wind electromagnetic fluctuations are in a state of fully-developed turbulence. Turbulence represents a very complex problem in plasmas since cross-scale coupling and kinetic effects are present. Moreover, the intermittency phenomenon, i.e. the manifestation of the non-uniform and inhomogeneous energy transfer and dissipation in a turbulent system, represents a very important aspect of the solar wind turbulent cascade. Here, we study coherent structures responsible for solar wind intermittency around ion characteristic scales. We find that, in fast solar wind, intermittency is due to Alfvén vortex-like structures and current sheets. In slow solar wind, we observe as well compressive structures like magnetic solitons, holes and shocks. By using high-time resolution magnetic field data of multi-point measurements of Cluster spacecraft, we characterize the observed coherent structures in terms of topology and propagation speed. We show that all structures around ion characteristic scales, both in fast and slow solar wind, are characterized by a strong wave-vector anisotropy in the perpendicular direction with respect to the local magnetic field. Moreover, some of them propagate in the plasma rest frame in the direction perpendicular to the local field. Finally, a further analysis on the electron and ion velocity distributions shows a high variability; in particular, close to coherent structures the electron and ion distribution functions appear strongly deformed and far from the thermodynamic equilibrium. Possible interpretations of the observed structures and their role in the heating process of the plasma are also discussed.

  17. Comparison of various decentralised structural and cavity feedback control strategies for transmitted noise reduction through a double panel structure

    Science.gov (United States)

    Ho, Jen-Hsuan; Berkhoff, Arthur

    2014-03-01

    This paper compares various decentralised control strategies, including structural and acoustic actuator-sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of two panels with air in between and offers the advantages of low sound transmission at high frequencies, low heat transmission, and low weight. The double panel structure is widely used, such as in the aerospace and automotive industries. Nevertheless, the resonance of the cavity and the poor sound transmission loss at low frequencies limit the double panel's noise control performance. Applying active structural acoustic control to the panels or active noise control to the cavity has been discussed in many papers. In this paper, the resonances of the panels and the cavity are considered simultaneously to further reduce the transmitted noise through an existing double panel structure. A structural-acoustic coupled model is developed to investigate and compare various structural control and cavity control methods. Numerical analysis and real-time control results show that structural control should be applied to both panels. Three types of cavity control sources are presented and compared. The results indicate that the largest noise reduction is obtained with cavity control by loudspeakers modified to operate as incident pressure sources.

  18. Experimental investigation of torque scaling and coherent structures in turbulent Taylor–Couette flow

    International Nuclear Information System (INIS)

    Tokgoz, S; Elsinga, G E; Delfos, R; Westerweel, J

    2011-01-01

    The effect of flow structures to the torque values of fully turbulent Taylor-Couette flow was experimentally studied using tomographic PIV. The measurements were performed for various relative cylinder rotation speeds and Reynolds numbers, based on a study of Ravelet et al. (2010). We confirmed that the flow structures are strongly influenced by the rotation number. Our analyses using time-averaged mean flow showed the presence of Taylor vortices for the two smallest rotation numbers that were studied. Increasing the rotation number initially resulted in the shape deformation of the Taylor vortices. Further increment towards only outer cylinder rotation, showed transition to the dominance of the small scale vortices and absence of Taylor vortex-like structures. We compared the transition of the flow structures with the curves of dimensionless torque. Sudden changes of the flow structures confirmed the presence of transition points on the torque curve, where the dominance of small and large scale vortical structures on the mean flow interchanges.

  19. FINE-SCALE STRUCTURES OF FLUX ROPES TRACKED BY ERUPTING MATERIAL

    Energy Technology Data Exchange (ETDEWEB)

    Li Ting; Zhang Jun, E-mail: liting@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-06-20

    We present Solar Dynamics Observatory observations of two flux ropes tracked out by material from a surge and a failed filament eruption on 2012 July 29 and August 4, respectively. For the first event, the interaction between the erupting surge and a loop-shaped filament in the east seems to 'peel off' the filament and add bright mass into the flux rope body. The second event is associated with a C-class flare that occurs several minutes before the filament activation. The two flux ropes are, respectively, composed of 85 {+-} 12 and 102 {+-} 15 fine-scale structures, with an average width of about 1.''6. Our observations show that two extreme ends of the flux rope are rooted in opposite polarity fields and each end is composed of multiple footpoints (FPs) of fine-scale structures. The FPs of the fine-scale structures are located at network magnetic fields, with magnetic fluxes from 5.6 Multiplication-Sign 10{sup 18} Mx to 8.6 Multiplication-Sign 10{sup 19} Mx. Moreover, almost half of the FPs show converging motion of smaller magnetic structures over 10 hr before the appearance of the flux rope. By calculating the magnetic fields of the FPs, we deduce that the two flux ropes occupy at least 4.3 Multiplication-Sign 10{sup 20} Mx and 7.6 Multiplication-Sign 10{sup 20} Mx magnetic fluxes, respectively.

  20. A large-scale soil-structure interaction experiment: Design and construction

    International Nuclear Information System (INIS)

    Tang, H.T.; Tang, Y.K.; Stepp, J.C.; Wall, I.B.; Lin, E.; Cheng, S.C.; Lee, S.K.

    1989-01-01

    This paper describes the design and construction phase of the Large-Scale Soil-Structure Interaction Experiment project jointly sponsored by EPRI and Taipower. The project has two objectives: 1. to obtain an earthquake database which can be used to substantiate soil-structure interaction (SSI) models and analysis methods; and 2. to quantify nuclear power plant reactor containment and internal components seismic margin based on earthquake experience data. These objectives were accomplished by recording and analyzing data from two instrumented, scaled down, reinforced concrete containment structures during seismic events. The two model structures are sited in a high seismic region in Taiwan (SMART-1). A strong-motion seismic array network is located at the site. The containment models (1/4- and 1/12-scale) were constructed and instrumented specially for this experiment. Construction was completed and data recording began in September 1985. By November 1986, 18 strong motion earthquakes ranging from Richter magnitude 4.5 to 7.0 were recorded. (orig./HP)