WorldWideScience

Sample records for scale malaria transmission

  1. Hydrological and geomorphological controls of malaria transmission

    Science.gov (United States)

    Smith, M. W.; Macklin, M. G.; Thomas, C. J.

    2013-01-01

    Malaria risk is linked inextricably to the hydrological and geomorphological processes that form vector breeding sites. Yet environmental controls of malaria transmission are often represented by temperature and rainfall amounts, ignoring hydrological and geomorphological influences altogether. Continental-scale studies incorporate hydrology implicitly through simple minimum rainfall thresholds, while community-scale coupled hydrological and entomological models do not represent the actual diversity of the mosquito vector breeding sites. The greatest range of malaria transmission responses to environmental factors is observed at the catchment scale where seemingly contradictory associations between rainfall and malaria risk can be explained by hydrological and geomorphological processes that govern surface water body formation and persistence. This paper extends recent efforts to incorporate ecological factors into malaria-risk models, proposing that the same detailed representation be afforded to hydrological and, at longer timescales relevant for predictions of climate change impacts, geomorphological processes. We review existing representations of environmental controls of malaria and identify a range of hydrologically distinct vector breeding sites from existing literature. We illustrate the potential complexity of interactions among hydrology, geomorphology and vector breeding sites by classifying a range of water bodies observed in a catchment in East Africa. Crucially, the mechanisms driving surface water body formation and destruction must be considered explicitly if we are to produce dynamic spatial models of malaria risk at catchment scales.

  2. Hysteresis in simulations of malaria transmission

    Science.gov (United States)

    Yamana, Teresa K.; Qiu, Xin; Eltahir, Elfatih A. B.

    2017-10-01

    Malaria transmission is a complex system and in many parts of the world is closely related to climate conditions. However, studies on environmental determinants of malaria generally consider only concurrent climate conditions and ignore the historical or initial conditions of the system. Here, we demonstrate the concept of hysteresis in malaria transmission, defined as non-uniqueness of the relationship between malaria prevalence and concurrent climate conditions. We show the dependence of simulated malaria transmission on initial prevalence and the initial level of human immunity in the population. Using realistic time series of environmental variables, we quantify the effect of hysteresis in a modeled population. In a set of numerical experiments using HYDREMATS, a field-tested mechanistic model of malaria transmission, the simulated maximum malaria prevalence depends on both the initial prevalence and the initial level of human immunity in the population. We found the effects of initial conditions to be of comparable magnitude to the effects of interannual variability in environmental conditions in determining malaria prevalence. The memory associated with this hysteresis effect is longer in high transmission settings than in low transmission settings. Our results show that efforts to simulate and forecast malaria transmission must consider the exposure history of a location as well as the concurrent environmental drivers.

  3. Fine-Scale Mapping by Spatial Risk Distribution Modeling for Regional Malaria Endemicity and Its Implications under the Low-to-Moderate Transmission Setting in Western Cambodia.

    Science.gov (United States)

    Okami, Suguru; Kohtake, Naohiko

    2016-01-01

    The disease burden of malaria has decreased as malaria elimination efforts progress. The mapping approach that uses spatial risk distribution modeling needs some adjustment and reinvestigation in accordance with situational changes. Here we applied a mathematical modeling approach for standardized morbidity ratio (SMR) calculated by annual parasite incidence using routinely aggregated surveillance reports, environmental data such as remote sensing data, and non-environmental anthropogenic data to create fine-scale spatial risk distribution maps of western Cambodia. Furthermore, we incorporated a combination of containment status indicators into the model to demonstrate spatial heterogeneities of the relationship between containment status and risks. The explanatory model was fitted to estimate the SMR of each area (adjusted Pearson correlation coefficient R2 = 0.774; Akaike information criterion AIC = 149.423). A Bayesian modeling framework was applied to estimate the uncertainty of the model and cross-scale predictions. Fine-scale maps were created by the spatial interpolation of estimated SMRs at each village. Compared with geocoded case data, corresponding predicted values showed conformity [Spearman's rank correlation r = 0.662 in the inverse distance weighed interpolation and 0.645 in ordinal kriging (95% confidence intervals of 0.414-0.827 and 0.368-0.813, respectively), Welch's t-test; Not significant]. The proposed approach successfully explained regional malaria risks and fine-scale risk maps were created under low-to-moderate malaria transmission settings where reinvestigations of existing risk modeling approaches were needed. Moreover, different representations of simulated outcomes of containment status indicators for respective areas provided useful insights for tailored interventional planning, considering regional malaria endemicity.

  4. Fine-Scale Mapping by Spatial Risk Distribution Modeling for Regional Malaria Endemicity and Its Implications under the Low-to-Moderate Transmission Setting in Western Cambodia.

    Directory of Open Access Journals (Sweden)

    Suguru Okami

    Full Text Available The disease burden of malaria has decreased as malaria elimination efforts progress. The mapping approach that uses spatial risk distribution modeling needs some adjustment and reinvestigation in accordance with situational changes. Here we applied a mathematical modeling approach for standardized morbidity ratio (SMR calculated by annual parasite incidence using routinely aggregated surveillance reports, environmental data such as remote sensing data, and non-environmental anthropogenic data to create fine-scale spatial risk distribution maps of western Cambodia. Furthermore, we incorporated a combination of containment status indicators into the model to demonstrate spatial heterogeneities of the relationship between containment status and risks. The explanatory model was fitted to estimate the SMR of each area (adjusted Pearson correlation coefficient R2 = 0.774; Akaike information criterion AIC = 149.423. A Bayesian modeling framework was applied to estimate the uncertainty of the model and cross-scale predictions. Fine-scale maps were created by the spatial interpolation of estimated SMRs at each village. Compared with geocoded case data, corresponding predicted values showed conformity [Spearman's rank correlation r = 0.662 in the inverse distance weighed interpolation and 0.645 in ordinal kriging (95% confidence intervals of 0.414-0.827 and 0.368-0.813, respectively, Welch's t-test; Not significant]. The proposed approach successfully explained regional malaria risks and fine-scale risk maps were created under low-to-moderate malaria transmission settings where reinvestigations of existing risk modeling approaches were needed. Moreover, different representations of simulated outcomes of containment status indicators for respective areas provided useful insights for tailored interventional planning, considering regional malaria endemicity.

  5. Climate, environment and transmission of malaria.

    Science.gov (United States)

    Rossati, Antonella; Bargiacchi, Olivia; Kroumova, Vesselina; Zaramella, Marco; Caputo, Annamaria; Garavelli, Pietro Luigi

    2016-06-01

    Malaria, the most common parasitic disease in the world, is transmitted to the human host by mosquitoes of the genus Anopheles. The transmission of malaria requires the interaction between the host, the vector and the parasite.The four species of parasites responsible for human malaria are Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae and Plasmodium vivax. Occasionally humans can be infected by several simian species, like Plasmodium knowlesi, recognised as a major cause of human malaria in South-East Asia since 2004. While P. falciparum is responsible for most malaria cases, about 8% of estimated cases globally are caused by P. vivax. The different Plasmodia are not uniformly distributed although there are areas of species overlap. The life cycle of all species of human malaria parasites is characterised by an exogenous sexual phase in which multiplication occurs in several species of Anopheles mosquitoes, and an endogenous asexual phase in the vertebrate host. The time span required for mature oocyst development in the salivary glands is quite variable (7-30 days), characteristic of each species and influenced by ambient temperature. The vector Anopheles includes 465 formally recognised species. Approximately 70 of these species have the capacity to transmit Plasmodium spp. to humans and 41 are considered as dominant vector capable of transmitting malaria. The intensity of transmission is dependent on the vectorial capacity and competence of local mosquitoes. An efficient system for malaria transmission needs strong interaction between humans, the ecosystem and infected vectors. Global warming induced by human activities has increased the risk of vector-borne diseases such as malaria. Recent decades have witnessed changes in the ecosystem and climate without precedent in human history although the emphasis in the role of temperature on the epidemiology of malaria has given way to predisposing conditions such as ecosystem changes, political

  6. Outdoor malaria transmission in forested villages of Cambodia

    National Research Council Canada - National Science Library

    Durnez, Lies; Mao, Sokny; Denis, Leen; Roelants, Patricia; Sochantha, Tho; Coosemans, Marc

    2013-01-01

    ...), targeting indoor- and late-biting malaria vectors only. The present study evaluated the vector density, early biting activity and malaria transmission of outdoor-biting malaria vectors in two forested regions in Cambodia...

  7. Transgenic mosquitoes and malaria transmission

    National Research Council Canada - National Science Library

    George K. Christophides

    2005-01-01

    Summary As the malaria burden persists in most parts of the developing world, the concept of implementation of new strategies such as the use of genetically modified mosquitoes to control the disease...

  8. Modelling climate change and malaria transmission.

    Science.gov (United States)

    Parham, Paul E; Michael, Edwin

    2010-01-01

    The impact of climate change on human health has received increasing attention in recent years, with potential impacts due to vector-borne diseases only now beginning to be understood. As the most severe vector-borne disease, with one million deaths globally in 2006, malaria is thought most likely to be affected by changes in climate variables due to the sensitivity of its transmission dynamics to environmental conditions. While considerable research has been carried out using statistical models to better assess the relationship between changes in environmental variables and malaria incidence, less progress has been made on developing process-based climate-driven mathematical models with greater explanatory power. Here, we develop a simple model of malaria transmission linked to climate which permits useful insights into the sensitivity of disease transmission to changes in rainfall and temperature variables. Both the impact of changes in the mean values of these key external variables and importantly temporal variation in these values are explored. We show that the development and analysis of such dynamic climate-driven transmission models will be crucial to understanding the rate at which P. falciparum and P. vivax may either infect, expand into or go extinct in populations as local environmental conditions change. Malaria becomes endemic in a population when the basic reproduction number R0 is greater than unity and we identify an optimum climate-driven transmission window for the disease, thus providing a useful indicator for determing how transmission risk may change as climate changes. Overall, our results indicate that considerable work is required to better understand ways in which global malaria incidence and distribution may alter with climate change. In particular, we show that the roles of seasonality, stochasticity and variability in environmental variables, as well as ultimately anthropogenic effects, require further study. The work presented here

  9. Malaria infection during pregnancy in area of stable transmission ...

    African Journals Online (AJOL)

    Placental parasitemia is estimated to contribute up to 30% of preventable low birthweight (LBW), a leading cause of neonatal death in areas of stable malaria transmission. This review discusses the effects of plasmodium falciparum malaria (p.falciparum) in pregnancy in areas of stable malaria transmission and the effective ...

  10. Identification of hot spots of malaria transmission for targeted malaria control.

    NARCIS (Netherlands)

    Bousema, T.; Drakeley, C.; Gesase, S.; Hashim, R.; Magesa, S.; Mosha, F.; Otieno, S.; Carneiro, I.; Cox, J.; Msuya, E.; Kleinschmidt, I.; Maxwell, C.; Greenwood, B.; Riley, E.; Sauerwein, R.W.; Chandramohan, D.; Gosling, R.

    2010-01-01

    BACKGROUND: Variation in the risk of malaria within populations is a frequently described but poorly understood phenomenon. This heterogeneity creates opportunities for targeted interventions but only if hot spots of malaria transmission can be easily identified. METHODS: We determined spatial

  11. Malaria transmission blocking immunity and sexual stage vaccines for interrupting malaria transmission in Latin America

    Directory of Open Access Journals (Sweden)

    Myriam Arévalo-Herrera

    2011-08-01

    Full Text Available Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB immunity (TBI and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV, would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America.

  12. Malaria transmission blocking immunity and sexual stage vaccines for interrupting malaria transmission in Latin America

    Science.gov (United States)

    Arévalo-Herrera, Myriam; Solarte, Yezid; Marin, Catherin; Santos, Mariana; Castellanos, Jenniffer; Beier, John C; Valencia, Sócrates Herrera

    2016-01-01

    Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America. PMID:21881775

  13. The antibody response to well-defined malaria antigens after acute malaria in individuals living under continuous malaria transmission

    DEFF Research Database (Denmark)

    Petersen, E; Høgh, B; Dziegiel, M

    1992-01-01

    , and a synthetic peptide (EENV)6 representing the C-terminal repeats from Pf155/RESA, were investigated longitudinally in 13 children and 7 adults living under conditions of continuous, intense malaria transmission. Some subjects did not recognize the antigens after malaria infection, and in subjects recognizing...... elicited by natural malaria infection in previously primed donors....

  14. Knowledge, Attitude and Practice about Malaria Transmission and ...

    African Journals Online (AJOL)

    Background: Knowledge about the modes of transmission and preventive measures of malaria are important preceding factors for the acceptance and use of proven control tools by the community. Objective: To assess knowledge, attitude and practices (KAP) about modes of malaria transmission and preventive methods in ...

  15. Mapping malaria transmission in West and Central Africa.

    Science.gov (United States)

    Gemperli, Armin; Sogoba, Nafomon; Fondjo, Etienne; Mabaso, Musawenkosi; Bagayoko, Magaran; Briët, Olivier J T; Anderegg, Dan; Liebe, Jens; Smith, Tom; Vounatsou, Penelope

    2006-07-01

    We have produced maps of Plasmodium falciparum malaria transmission in West and Central Africa using the Mapping Malaria Risk in Africa (MARA) database comprising all malaria prevalence surveys in these regions that could be geolocated. The 1846 malaria surveys analysed were carried out during different seasons, and were reported using different age groupings of the human population. To allow comparison between these, we used the Garki malaria transmission model to convert the malaria prevalence data at each of the 976 locations sampled to a single estimate of transmission intensity E, making use of a seasonality model based on Normalized Difference Vegetation Index (NDVI), temperature and rainfall data. We fitted a Bayesian geostatistical model to E using further environmental covariates and applied Bayesian kriging to obtain smooth maps of E and hence of age-specific prevalence. The product is the first detailed empirical map of variations in malaria transmission intensity that includes Central Africa. It has been validated by expert opinion and in general confirms known patterns of malaria transmission, providing a baseline against which interventions such as insecticide-treated nets programmes and trends in drug resistance can be evaluated. There is considerable geographical variation in the precision of the model estimates and, in some parts of West Africa, the predictions differ substantially from those of other risk maps. The consequent uncertainties indicate zones where further survey data are needed most urgently. Malaria risk maps based on compilations of heterogeneous survey data are highly sensitive to the analytical methodology.

  16. Modelling heterogeneity in malaria transmission using large sparse spatio-temporal entomological data.

    Science.gov (United States)

    Rumisha, Susan Fred; Smith, Thomas; Abdulla, Salim; Masanja, Honorath; Vounatsou, Penelope

    2014-01-01

    Malaria transmission is measured using entomological inoculation rate (EIR), number of infective mosquito bites/person/unit time. Understanding heterogeneity of malaria transmission has been difficult due to a lack of appropriate data. A comprehensive entomological database compiled by the Malaria Transmission Intensity and Mortality Burden across Africa (MTIMBA) project (2001-2004) at several sites is the most suitable dataset for studying malaria transmission-mortality relations. The data are sparse and large, with small-scale spatial-temporal variation. This work demonstrates a rigorous approach for analysing large and highly variable entomological data for the study of malaria transmission heterogeneity, measured by EIR, within the Rufiji Demographic Surveillance System (DSS), MTIMBA project site in Tanzania. Bayesian geostatistical binomial and negative binomial models with zero inflation were fitted for sporozoite rates (SRs) and mosquito density, respectively. The spatial process was approximated from a subset of locations. The models were adjusted for environmental effects, seasonality and temporal correlations and assessed based on their predictive ability. EIR was calculated using model-based predictions of SR and density. Malaria transmission was mostly influenced by rain and temperature, which significantly reduces the probability of observing zero mosquitoes. High transmission was observed at the onset of heavy rains. Transmission intensity reduced significantly during Year 2 and 3, contrary to the Year 1, pronouncing high seasonality and spatial variability. The southern part of the DSS showed high transmission throughout the years. A spatial shift of transmission intensity was observed where an increase in households with very low transmission intensity and significant reduction of locations with high transmission were observed over time. Over 68 and 85% of the locations selected for validation for SR and density, respectively, were correctly

  17. Clinical algorithm for malaria during low and high transmission seasons

    OpenAIRE

    Muhe, L.; Oljira, B.; Degefu, H.; Enquesellassie, F.; Weber, M.

    1999-01-01

    OBJECTIVES—To assess the proportion of children with febrile disease who suffer from malaria and to identify clinical signs and symptoms that predict malaria during low and high transmission seasons.
STUDY DESIGN—2490 children aged 2 to 59 months presenting to a health centre in rural Ethiopia with fever had their history documented and the following investigations: clinical examination, diagnosis, haemoglobin measurement, and a blood smear for malaria parasites. Clinical...

  18. Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data.

    Science.gov (United States)

    Ruktanonchai, Nick W; DeLeenheer, Patrick; Tatem, Andrew J; Alegana, Victor A; Caughlin, T Trevor; Zu Erbach-Schoenberg, Elisabeth; Lourenço, Christopher; Ruktanonchai, Corrine W; Smith, David L

    2016-04-01

    Humans move frequently and tend to carry parasites among areas with endemic malaria and into areas where local transmission is unsustainable. Human-mediated parasite mobility can thus sustain parasite populations in areas where they would otherwise be absent. Data describing human mobility and malaria epidemiology can help classify landscapes into parasite demographic sources and sinks, ecological concepts that have parallels in malaria control discussions of transmission foci. By linking transmission to parasite flow, it is possible to stratify landscapes for malaria control and elimination, as sources are disproportionately important to the regional persistence of malaria parasites. Here, we identify putative malaria sources and sinks for pre-elimination Namibia using malaria parasite rate (PR) maps and call data records from mobile phones, using a steady-state analysis of a malaria transmission model to infer where infections most likely occurred. We also examined how the landscape of transmission and burden changed from the pre-elimination setting by comparing the location and extent of predicted pre-elimination transmission foci with modeled incidence for 2009. This comparison suggests that while transmission was spatially focal pre-elimination, the spatial distribution of cases changed as burden declined. The changing spatial distribution of burden could be due to importation, with cases focused around importation hotspots, or due to heterogeneous application of elimination effort. While this framework is an important step towards understanding progressive changes in malaria distribution and the role of subnational transmission dynamics in a policy-relevant way, future work should account for international parasite movement, utilize real time surveillance data, and relax the steady state assumption required by the presented model.

  19. Early warnings of the potential for malaria transmission in Rural Africa using the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS)

    Science.gov (United States)

    Yamana, T. K.; Eltahir, E. A.

    2010-12-01

    Early warnings of malaria transmission allow health officials to better prepare for future epidemics. Monitoring rainfall is recognized as an important part of malaria early warning systems, as outlined by the Roll Back Malaria Initiative. The Hydrology, Entomology and Malaria Simulator (HYDREMATS) is a mechanistic model that relates rainfall to malaria transmission, and could be used to provide early warnings of malaria epidemics. HYDREMATS is used to make predictions of mosquito populations and vectorial capacity for 2005, 2006, and 2007 in Banizoumbou village in western Niger. HYDREMATS is forced by observed rainfall, followed by a rainfall prediction based on the seasonal mean rainfall for a period two or four weeks into the future. Predictions made using this method provided reasonable estimates of mosquito populations and vectorial capacity, two to four weeks in advance. The predictions were significantly improved compared to those made when HYDREMATS was forced with seasonal mean rainfall alone.

  20. Maternal malaria and perinatal HIV transmission, western Kenya

    NARCIS (Netherlands)

    Ayisi, John G.; van Eijk, Anna M.; Newman, Robert D.; ter Kuile, Feiko O.; Shi, Ya Ping; Yang, Chunfu; Kolczak, Margarette S.; Otieno, Juliana A.; Misore, Ambrose O.; Kager, Piet A.; Lal, Renu B.; Steketee, Richard W.; Nahlen, Bernard L.

    2004-01-01

    To determine whether maternal placental malaria is associated with an increased risk for perinatal mother-to-child HIV transmission (MTCT), we studied HIV-positive women in western Kenya. We enrolled 512 mother-infant pairs; 128 (25.0%) women had placental malaria, and 102 (19.9%) infants acquired

  1. A review of malaria transmission dynamics in forest ecosystems

    Science.gov (United States)

    2014-01-01

    Malaria continues to be a major health problem in more than 100 endemic countries located primarily in tropical and sub-tropical regions around the world. Malaria transmission is a dynamic process and involves many interlinked factors, from uncontrollable natural environmental conditions to man-made disturbances to nature. Almost half of the population at risk of malaria lives in forest areas. Forests are hot beds of malaria transmission as they provide conditions such as vegetation cover, temperature, rainfall and humidity conditions that are conducive to distribution and survival of malaria vectors. Forests often lack infrastructure and harbor tribes with distinct genetic traits, socio-cultural beliefs and practices that greatly influence malaria transmission dynamics. Here we summarize the various topographical, entomological, parasitological, human ecological and socio-economic factors, which are crucial and shape malaria transmission in forested areas. An in-depth understanding and synthesis of the intricate relationship of these parameters in achieving better malaria control in various types of forest ecosystems is emphasized. PMID:24912923

  2. Optimal temperature for malaria transmission is dramaticallylower than previously predicted

    Science.gov (United States)

    Mordecai, Eerin A.; Paaijmans, Krijin P.; Johnson, Leah R.; Balzer, Christian; Ben-Horin, Tal; de Moor, Emily; McNally, Amy; Pawar, Samraat; Ryan, Sadie J.; Smith, Thomas C.; Lafferty, Kevin D.

    2013-01-01

    The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.

  3. Malaria on the move: human population movement and malaria transmission.

    OpenAIRE

    Martens, P; Hall, L

    2000-01-01

    Reports of malaria are increasing in many countries and in areas thought free of the disease. One of the factors contributing to the reemergence of malaria is human migration. People move for a number of reasons, including environmental deterioration, economic necessity, conflicts, and natural disasters. These factors are most likely to affect the poor, many of whom live in or near malarious areas. Identifying and understanding the influence of these population movements can improve preventio...

  4. Potential effect of climate change on malaria transmission in Africa.

    Science.gov (United States)

    Tanser, Frank C; Sharp, Brian; le Sueur, David

    2003-11-29

    Climate change is likely to affect transmission of vector-borne diseases such as malaria. We quantitatively estimated current malaria exposure and assessed the potential effect of projected climate scenarios on malaria transmission. We produced a spatiotemporally validated (against 3791 parasite surveys) model of Plasmodium falciparum malaria transmission in Africa. Using different climate scenarios from the Hadley Centre global climate model (HAD CM3) climate experiments, we projected the potential effect of climate change on transmission patterns. Our model showed sensitivity and specificity of 63% and 96%, respectively (within 1 month temporal accuracy), when compared with the parasite surveys. We estimate that on average there are 3.1 billion person-months of exposure (445 million people exposed) in Africa per year. The projected scenarios would estimate a 5-7% potential increase (mainly altitudinal) in malaria distribution with surprisingly little increase in the latitudinal extents of the disease by 2100. Of the overall potential increase (although transmission will decrease in some countries) of 16-28% in person-months of exposure (assuming a constant population), a large proportion will be seen in areas of existing transmission. The effect of projected climate change indicates that a prolonged transmission season is as important as geographical expansion in correct assessment of the effect of changes in transmission patterns. Our model constitutes a valid baseline against which climate scenarios can be assessed and interventions planned.

  5. Perception of malaria risk in a setting of reduced malaria transmission: a qualitative study in Zanzibar

    Directory of Open Access Journals (Sweden)

    Bauch Julie A

    2013-02-01

    Full Text Available Abstract Background Malaria transmission has declined dramatically in Zanzibar in recent years. Continuing use of preventive measures such as long-lasting insecticidal-treated nets (LLINs, and use of malaria rapid diagnostic tests (RDTs are essential to prevent malaria resurgence. This study employed qualitative methods to explore community perceptions of malaria risk and adherence to prevention measures in two districts in Zanzibar. Methods Key informant interviews with 24 primary health care providers and 24 focus group discussions with local residents in Zanzibar districts Wete and Central were conducted during April and May 2012 focusing on perception of malaria risk, current preventive practices used, reasons for using preventive practices and effective strategies for malaria control. Results Health care providers and residents appear to be aware of the decreasing incidence of malaria. Both groups continue the use of malaria preventive practices in this low and seasonal transmission setting. The most important preventive measures identified were LLINs, indoor residual spraying (IRS, and education. Barriers to malaria prevention include: lack of staff at clinics, insufficient number of LLINs distributed, and inadequate malaria education. Reasons for continued use of preventive practices include: fear of malaria returning to high levels, presence of mosquitoes during rainy seasons, and concern about local cases from other villages or imported cases from mainland Tanzania. Mosques, clinics, schools and community meetings were listed as most important sources of education. However, residents express the desire for more education. Conclusion Health care providers and residents generally reported consistent use of malaria preventive measures. However, maintaining and continuing to reduce malaria transmission will require ongoing education for both health care providers and residents to reinforce the importance of using preventive measures

  6. Clinical pattern of severe Plasmodium falciparum malaria in Sudan in an area characterized by seasonal and unstable malaria transmission

    DEFF Research Database (Denmark)

    Giha, H A; Elghazali, G; A-Elgadir, T M E

    2005-01-01

    A hospital-based study was carried out in Gedarif town, eastern Sudan, an area of markedly unstable malaria transmission. Among the 2488 diagnosed malaria patients, 4.4% fulfilled the WHO criteria for severe malaria, and seven died of cerebral malaria. The predominant complication was severe...

  7. Malaria Host Candidate Genes Validated by Association With Current, Recent, and Historical Measures of Transmission Intensity.

    Science.gov (United States)

    Sepúlveda, Nuno; Manjurano, Alphaxard; Campino, Susana G; Lemnge, Martha; Lusingu, John; Olomi, Raimos; Rockett, Kirk A; Hubbart, Christina; Jeffreys, Anna; Rowlands, Kate; Clark, Taane G; Riley, Eleanor M; Drakeley, Chris J

    2017-07-01

    Human malaria susceptibility is determined by multiple genetic factors. It is unclear, however, which genetic variants remain important over time. Genetic associations of 175 high-quality polymorphisms within several malaria candidate genes were examined in a sample of 8096 individuals from northeast Tanzania using altitude, seroconversion rates, and parasite rates as proxies of historical, recent, and current malaria transmission intensity. A principal component analysis was used to derive 2 alternative measures of overall malaria propensity of a location across different time scales. Common red blood cell polymorphisms (ie, hemoglobin S, glucose-6-phosphate dehydrogenase, and α-thalassemia) were the only ones to be associated with all 3 measures of transmission intensity and the first principal component. Moderate associations were found between some immune response genes (ie, IL3 and IL13) and parasite rates, but these could not be reproduced using the alternative measures of malaria propensity. We have demonstrated the potential of using altitude and seroconversion rate as measures of malaria transmission capturing medium- to long-term time scales to detect genetic associations that are likely to persist over time. These measures also have the advantage of minimizing the deleterious effects of random factors affecting parasite rates on the respective association signals.

  8. The effects of urbanization on global Plasmodium vivax malaria transmission.

    Science.gov (United States)

    Qi, Qiuyin; Guerra, Carlos A; Moyes, Catherine L; Elyazar, Iqbal R F; Gething, Peter W; Hay, Simon I; Tatem, Andrew J

    2012-12-05

    Many recent studies have examined the impact of urbanization on Plasmodium falciparum malaria endemicity and found a general trend of reduced transmission in urban areas. However, none has examined the effect of urbanization on Plasmodium vivax malaria, which is the most widely distributed malaria species and can also cause severe clinical syndromes in humans. In this study, a set of 10,003 community-based P. vivax parasite rate (PvPR) surveys are used to explore the relationships between PvPR in urban and rural settings. The PvPR surveys were overlaid onto a map of global urban extents to derive an urban/rural assignment. The differences in PvPR values between urban and rural areas were then examined. Groups of PvPR surveys inside individual city extents (urban) and surrounding areas (rural) were identified to examine the local variations in PvPR values. Finally, the relationships of PvPR between urban and rural areas within the ranges of 41 dominant Anopheles vectors were examined. Significantly higher PvPR values in rural areas were found globally. The relationship was consistent at continental scales when focusing on Africa and Asia only, but in the Americas, significantly lower values of PvPR in rural areas were found, though the numbers of surveys were small. Moreover, except for the countries in the Americas, the same trends were found at national scales in African and Asian countries, with significantly lower values of PvPR in urban areas. However, the patterns at city scales among 20 specific cities where sufficient data were available were less clear, with seven cities having significantly lower PvPR values in urban areas and two cities showing significantly lower PvPR in rural areas. The urban-rural PvPR differences within the ranges of the dominant Anopheles vectors were generally, in agreement with the regional patterns found. Except for the Americas, the patterns of significantly lower P. vivax transmission in urban areas have been found globally

  9. Factors associated with high heterogeneity of malaria at fine spatial scale in the Western Kenyan highlands.

    OpenAIRE

    Baidjoe, A.Y.; Stevenson, J.; Knight, P; Stone, W.J.R.; Stresman, G.; Osoti, V; Makori, E; OWAGA, C.; Odongo, W; China, P; Shagari, S; Kariuki, S; Drakeley, C; Cox, J; Bousema, T.

    2016-01-01

    Background The East African highlands are fringe regions between stable and unstable malaria transmission. What factors contribute to the heterogeneity of malaria exposure on different spatial scales within larger foci has not been extensively studied. In a comprehensive, community-based cross-sectional survey an attempt was made to identify factors that drive the macro- and micro epidemiology of malaria in a fringe region using parasitological and serological outcomes. Methods A large cross-...

  10. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology

    OpenAIRE

    Tompkins, Adrian M; Ermert, Volker

    2013-01-01

    Background The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. Methods A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall driv...

  11. Malaria control and the intensity of Plasmodium falciparum transmission in Namibia 1969-1992.

    Directory of Open Access Journals (Sweden)

    Abdisalan M Noor

    Full Text Available Historical evidence of the levels of intervention scale up and its relationships to changing malaria risks provides important contextual information for current ambitions to eliminate malaria in various regions of Africa today.Community-based Plasmodium falciparum prevalence data from 3,260 geo-coded time-space locations between 1969 and 1992 were assembled from archives covering an examination of 230,174 individuals located in northern Namibia. These data were standardized the age-range 2 to less than 10 years and used within a Bayesian model-based geo-statistical framework to examine the changes of malaria risk in the years 1969, 1974, 1979, 1984 and 1989 at 5×5 km spatial resolution. This changing risk was described against rainfall seasons and the wide-scale use of indoor-residual house-spraying and mass drug administration.Most areas of Northern Namibia experienced low intensity transmission during a ten-year period of wide-scale control activities between 1969 and 1979. As control efforts waned, flooding occurred, drug resistance emerged and the war for independence intensified the spatial extent of moderate-to-high malaria transmission expanded reaching a peak in the late 1980s.Targeting vectors and parasite in northern Namibia was likely to have successfully sustained a situation of low intensity transmission, but unraveled quickly to a peak of transmission intensity following a sequence of events by the early 1990s.

  12. SHORT COMMUNICATION Knowledge on malaria transmission and ...

    African Journals Online (AJOL)

    its prevention methods, but are not well—intorrned ofthe benefits of using l'ii'Ns. More education and advocacies on use of. lTNs to parents and children is needed. Key words: malaria. prevention, .... population were sleeping under mosquito nets in. Tanzania in 2003; while only 25% of the households had at least one ITN ...

  13. Effectiveness of reactive case detection for malaria elimination in three archetypical transmission settings: a modelling study.

    Science.gov (United States)

    Gerardin, Jaline; Bever, Caitlin A; Bridenbecker, Daniel; Hamainza, Busiku; Silumbe, Kafula; Miller, John M; Eisele, Thomas P; Eckhoff, Philip A; Wenger, Edward A

    2017-06-12

    Reactive case detection could be a powerful tool in malaria elimination, as it selectively targets transmission pockets. However, field operations have yet to demonstrate under which conditions, if any, reactive case detection is best poised to push a region to elimination. This study uses mathematical modelling to assess how baseline transmission intensity and local interconnectedness affect the impact of reactive activities in the context of other possible intervention packages. Communities in Southern Province, Zambia, where elimination operations are currently underway, were used as representatives of three archetypes of malaria transmission: low-transmission, high household density; high-transmission, low household density; and high-transmission, high household density. Transmission at the spatially-connected household level was simulated with a dynamical model of malaria transmission, and local variation in vectorial capacity and intervention coverage were parameterized according to data collected from the area. Various potential intervention packages were imposed on each of the archetypical settings and the resulting likelihoods of elimination by the end of 2020 were compared. Simulations predict that success of elimination campaigns in both low- and high-transmission areas is strongly dependent on stemming the flow of imported infections, underscoring the need for regional-scale strategies capable of reducing transmission concurrently across many connected areas. In historically low-transmission areas, treatment of clinical malaria should form the cornerstone of elimination operations, as most malaria infections in these areas are symptomatic and onward transmission would be mitigated through health system strengthening; reactive case detection has minimal impact in these settings. In historically high-transmission areas, vector control and case management are crucial for limiting outbreak size, and the asymptomatic reservoir must be addressed through

  14. Malaria Prevalence and Local Beliefs in Transmission and Control ...

    African Journals Online (AJOL)

    , too much exposure to sunlight 25.3%, eating of oily foods 16.7%, cold weather 14.2% and witchcraft 1.2%. There was a statistical difference among the local beliefs on transmission. Local beliefs associated with malaria prevention in the ...

  15. Analysis of a malaria model with mosquito-dependent transmission ...

    Indian Academy of Sciences (India)

    In this paper, we discuss an ordinary differential equation mathematical model for the spread of malaria in human and mosquito population. We suppose the human population to act as a reservoir. Both the species follow a logistic population model. The transmission coefficient or the interaction coefficient of humans is ...

  16. An indigenous malaria transmission in the outskirts of Addis Ababa ...

    African Journals Online (AJOL)

    Background: In recent years malaria is becoming endemic in highland areas beyond its previously known upper limit of transmission. Assessment of the situation of the disease in such areas is necessary in order to institute appropriate control activities. Objectives: The objectives of the study were to determine the ...

  17. Simulation of the Impact of Climate Variability on Malaria Transmission in the Sahel

    Science.gov (United States)

    Bomblies, A.; Eltahir, E.; Duchemin, J.

    2007-12-01

    A coupled hydrology and entomology model for simulation of malaria transmission and malaria transmitting mosquito population dynamics is presented. Model development and validation is done using field data and observations collected at Banizoumbou and Zindarou, Niger spanning three wet seasons, from 2005 through 2007. The primary model objective is the accurate determination of climate variability effects on village scale malaria transmission. Malaria transmission dependence on climate variables is highly nonlinear and complex. Temperature and humidity affect mosquito longevity, temperature controls parasite development rates in the mosquito as well as subadult mosquito development rates, and precipitation determines the formation and persistence of adequate breeding pools. Moreover, unsaturated zone hydrology influences overland flow, and climate controlled evapotranspiration rates and root zone uptake therefore also influence breeding pool formation. High resolution distributed hydrologic simulation allows representation of the small-scale ephemeral pools that constitute the primary habitat of Anopheles gambiae mosquitoes, the dominant malaria vectors in the Niger Sahel. Remotely sensed soil type, vegetation type, and microtopography rasters are used to assign the distributed parameter fields for simulation of the land surface hydrologic response to precipitation and runoff generation. Predicted runoff from each cell flows overland and into topographic depressions, with explicit representation of infiltration and evapotranspiration. The model's entomology component interacts with simulated pools. Subadult (aquatic stage) mosquito breeding is simulated in the pools, and water temperature dependent stage advancement rates regulate adult mosquito emergence into the model domain. Once emerged, adult mosquitoes are tracked as independent individual agents that interact with their immediate environment. Attributes relevant to malaria transmission such as gonotrophic

  18. Plasmodium knowlesi transmission: integrating quantitative approaches from epidemiology and ecology to understand malaria as a zoonosis.

    Science.gov (United States)

    Brock, P M; Fornace, K M; Parmiter, M; Cox, J; Drakeley, C J; Ferguson, H M; Kao, R R

    2016-04-01

    The public health threat posed by zoonotic Plasmodium knowlesi appears to be growing: it is increasingly reported across South East Asia, and is the leading cause of malaria in Malaysian Borneo. Plasmodium knowlesi threatens progress towards malaria elimination as aspects of its transmission, such as spillover from wildlife reservoirs and reliance on outdoor-biting vectors, may limit the effectiveness of conventional methods of malaria control. The development of new quantitative approaches that address the ecological complexity of P. knowlesi, particularly through a focus on its primary reservoir hosts, will be required to control it. Here, we review what is known about P. knowlesi transmission, identify key knowledge gaps in the context of current approaches to transmission modelling, and discuss the integration of these approaches with clinical parasitology and geostatistical analysis. We highlight the need to incorporate the influences of fine-scale spatial variation, rapid changes to the landscape, and reservoir population and transmission dynamics. The proposed integrated approach would address the unique challenges posed by malaria as a zoonosis, aid the identification of transmission hotspots, provide insight into the mechanistic links between incidence and land use change and support the design of appropriate interventions.

  19. Factors associated with high heterogeneity of malaria at fine spatial scale in the Western Kenyan highlands.

    Science.gov (United States)

    Baidjoe, Amrish Y; Stevenson, Jennifer; Knight, Philip; Stone, William; Stresman, Gillian; Osoti, Victor; Makori, Euniah; Owaga, Chrispin; Odongo, Wycliffe; China, Pauline; Shagari, Shehu; Kariuki, Simon; Drakeley, Chris; Cox, Jonathan; Bousema, Teun

    2016-06-04

    The East African highlands are fringe regions between stable and unstable malaria transmission. What factors contribute to the heterogeneity of malaria exposure on different spatial scales within larger foci has not been extensively studied. In a comprehensive, community-based cross-sectional survey an attempt was made to identify factors that drive the macro- and micro epidemiology of malaria in a fringe region using parasitological and serological outcomes. A large cross-sectional survey including 17,503 individuals was conducted across all age groups in a 100 km(2) area in the Western Kenyan highlands of Rachuonyo South district. Households were geo-located and prevalence of malaria parasites and malaria-specific antibodies were determined by PCR and ELISA. Household and individual risk-factors were recorded. Geographical characteristics of the study area were digitally derived using high-resolution satellite images. Malaria antibody prevalence strongly related to altitude (1350-1600 m, p malaria infections were apparently asymptomatic. Malaria parasite prevalence was associated with age, bed net use, house construction features, altitude and topographical wetness index. Antibody prevalence was associated with all these factors and distance to the nearest water body. Altitude was a major driver of malaria transmission in this study area, even across narrow altitude bands. The large proportion of asymptomatic parasite carriers at all altitudes and the age-dependent acquisition of malaria antibodies indicate stable malaria transmission; the strong correlation between current parasite carriage and serological markers of malaria exposure indicate temporal stability of spatially heterogeneous transmission.

  20. Transmission blocking malaria vaccines: Assays and candidates in clinical development.

    Science.gov (United States)

    Sauerwein, R W; Bousema, T

    2015-12-22

    Stimulated by recent advances in malaria control and increased funding, the elimination of malaria is now considered to be an attainable goal for an increasing number of malaria-endemic regions. This has boosted the interest in transmission-reducing interventions including vaccines that target sexual, sporogenic, and/or mosquito-stage antigens to interrupt malaria transmission (SSM-VIMT). SSM-VIMT aim to prevent human malaria infection in vaccinated communities by inhibiting parasite development within the mosquito after a blood meal taken from a gametocyte carrier. Only a handful of target antigens are in clinical development and progress has been slow over the years. Major stumbling blocks include (i) the expression of appropriately folded target proteins and their downstream purification, (ii) insufficient induction of sustained functional blocking antibody titers by candidate vaccines in humans, and (iii) validation of a number of (bio)-assays as correlate for blocking activity in the field. Here we discuss clinical manufacturing and testing of current SSM-VIMT candidates and the latest bio-assay development for clinical evaluation. New testing strategies are discussed that may accelerate the evaluation and application of SSM-VIMT. Copyright © 2015. Published by Elsevier Ltd.

  1. High entomological inoculation rate of malaria vectors in area of high coverage of interventions in southwest Ethiopia: Implication for residual malaria transmission

    Directory of Open Access Journals (Sweden)

    Misrak Abraham

    2017-05-01

    Finally, there was an indoor residual malaria transmission in a village of high coverage of bed nets and where the principal malaria vector is susceptibility to propoxur and bendiocarb; insecticides currently in use for indoor residual spraying. The continuing indoor transmission of malaria in such village implies the need for new tools to supplement the existing interventions and to reduce indoor malaria transmission.

  2. Malaria morbidity in high and seasonal malaria transmission area of Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Alphonse Ouédraogo

    Full Text Available Malariometric parameters are often primary endpoints of efficacy trials of malaria vaccine candidates. This study aims to describe the epidemiology of malaria prior to the conduct of a series of drug and vaccine trials in a rural area of Burkina Faso.Malaria incidence was prospectively evaluated over one year follow-up among two cohorts of children aged 0-5 years living in the Saponé health district. The parents of 1089 children comprising a passive case detection cohort were encouraged to seek care from the local health clinic at any time their child felt sick. Among this cohort, 555 children were randomly selected for inclusion in an active surveillance sub-cohort evaluated for clinical malaria during twice weekly home visits. Malaria prevalence was evaluated by cross-sectional survey during the low and high transmission seasons.Number of episodes per child ranged from 0 to 6 per year. Cumulative incidence was 67.4% in the passive and 86.2% in the active cohort and was highest among children 0-1 years. Clinical malaria prevalence was 9.8% in the low and 13.0% in the high season (p>0.05. Median days to first malaria episode ranged from 187 (95% CI 180-193 among children 0-1 years to 228 (95% CI 212, 242 among children 4-5 years. The alternative parasite thresholds for the malaria case definition that achieved optimal sensitivity and specificity (70-80% were 3150 parasites/µl in the high and 1350 parasites/µl in the low season.Clinical malaria burden was highest among the youngest age group children, who may represent the most appropriate target population for malaria vaccine candidate development. The pyrogenic threshold of parasitaemia varied markedly by season, suggesting a value for alternative parasitaemia levels in the malaria case defintion. Regional epidemiology of malaria described, Sapone area field centers are positioned for future conduct of malaria vaccine trials.

  3. Analysis of a vector-bias model on malaria transmission.

    Science.gov (United States)

    Chamchod, Farida; Britton, Nicholas F

    2011-03-01

    We incorporate a vector-bias term into a malaria-transmission model to account for the greater attractiveness of infectious humans to mosquitoes in terms of differing probabilities that a mosquito arriving at a human at random picks that human depending on whether he is infectious or susceptible. We prove that transcritical bifurcation occurs at the basic reproductive ratio equalling 1 by projecting the flow onto the extended centre manifold. We next study the dynamics of the system when incubation time of malaria parasites in mosquitoes is included, and find that the longer incubation time reduces the prevalence of malaria. Also, we incorporate a random movement of mosquitoes as a diffusion term and a chemically directed movement of mosquitoes to humans expressed in terms of sweat and body odour as a chemotaxis term to study the propagation of infected population to uninfected population. We find that a travelling wave occurs; its speed is calculated numerically and estimated for the lower bound analytically.

  4. Malaria Derived Glycosylphosphatidylinositol Anchor Enhances Anti-Pfs25 Functional Antibodies That Block Malaria Transmission.

    Science.gov (United States)

    Kapoor, Neeraj; Vanjak, Ivana; Rozzelle, James; Berges, Aym; Chan, Wei; Yin, Gang; Tran, Cuong; Sato, Aaron K; Steiner, Alexander R; Pham, Thao P; Birkett, Ashley J; Long, Carole A; Fairman, Jeff; Miura, Kazutoyo

    2018-01-16

    Malaria, one of the most common vector borne human diseases, is a major world health issue. In 2015 alone, more than 200 million people were infected with malaria, out of which, 429 000 died. Even though artemisinin-based combination therapies (ACT) are highly effective at treating malaria infections, novel efforts toward development of vaccines to prevent transmission are still needed. Pfs25, a postfertilization stage parasite surface antigen, is a leading transmission-blocking vaccine (TBV) candidate. It is postulated that Pfs25 anchors to the cell membrane using a glycosylphosphatidylinositol (GPI) linker, which itself possesses pro-inflammatory properties. In this study, Escherichia coli derived extract (XtractCF+TM) was used in cell free protein synthesis [CFPS] to successfully express >200 mg/L of recombinant Pfs25 with a C-terminal non-natural amino acid (nnAA), namely, p-azidomethyl phenylalanine (pAMF), which possesses a reactive azide group. Thereafter, a unique conjugate vaccine (CV), namely, Pfs25-GPI was generated with dibenzocyclooctyne (DBCO) derivatized glycan core of malaria GPI using a simple but highly efficient copper free click chemistry reaction. In mice immunized with Pfs25 or Pfs25-GPI, the Pfs25-GPI group showed significantly higher titers compared to the Pfs25 group. Moreover, only purified IgGs from Pfs25-GPI group were able to significantly block transmission of parasites to mosquitoes, as judged by a standard membrane feeding assay [SMFA]. To our knowledge, this is the first report of the generation of a CV using Pfs25 and malaria specific GPI where the GPI is shown to enhance the ability of Pfs25 to elicit transmission blocking antibodies.

  5. Scaling up Intermittent Rice Irrigation for Malaria Control on the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Scaling up Intermittent Rice Irrigation for Malaria Control on the North Coast of Peru. New research aims to help control malaria in one watershed in northern Peru. Malaria is widespread in Peru's arid North Coast because of the extensive irrigation required to support rice paddies. Rice growing in the region accounts for ...

  6. Urban malaria treatment behaviour in the context of low levels of malaria transmission in Lagos, Nigeria.

    Science.gov (United States)

    Brieger, W R; Sesay, H R; Adesina, H; Mosanya, M E; Ogunlade, P B; Ayodele, J O; Orisasona, S A

    2001-01-01

    Urban malaria in West Africa is not well documented. While rapid urbanisation may create environmental conditions that favour mosquito breeding, urban pollution may inhibit the growth of Anopheles species. In 1996, the Basic Support for Institutionalizing Child Survival (BASICS) Project of the U.S. Agency for International Development (USAID) started building urban community health coalitions in Lagos, Nigeria, to empower communities to provide prompt treatment and appropriate prevention for major causes of childhood morbidity and mortality, including malaria, diarrhoeal disease, acute respiratory infections and vaccine preventable diseases. Intervention against malaria was predicated on national policies that assumed Nigeria was holo-endemic for malaria and that prompt treatment of febrile illness with anti-malarial drugs was an appropriate action. At the suggestion and with the assistance of another USAID programme, the Environmental Health Project (EHP), BASICS embarked on a rapid assessment of the epidemiological, entomological and sociological situation of malaria transmission and case management in three Lagos communities. During April and May 1998, blood film investigation of 916 children between the ages of 6 months and 5 years yielded a parasite prevalence rate of 0.9%. Night knockdown collections of mosquitoes in rooms yielded only C. quinquefasciatus and A. aegypti. The same results were obtained for night landing collections on human bait. Very low densities of A. gambiae larvae were found in breeding sites in Lagos Island (0.7) and Ajegunle (0.3). In contrast, community members, during focus group discussion identified malaria, in it various culturally defined forms, as a major health problem. Among the children examined clinically, 186 (20.3%) reported an illness, which they called "malaria" in the previous two weeks, and 180 had sought treatment for this illness. Data obtained from 303 shops in the area documented that a minimum of US dollars 4

  7. Geographical patterns of malaria transmission based on serological markers for falciparum and vivax malaria in Ratanakiri, Cambodia

    Directory of Open Access Journals (Sweden)

    Karen Kerkhof

    2016-10-01

    Full Text Available Abstract Background Malaria transmission is highly heterogeneous, especially in low endemic countries, such as Cambodia. This results in geographical clusters of residual transmission in the dry, low transmission season, which can fuel the transmission to wider areas or populations during the wet season. A better understanding of spatial clustering of malaria can lead to a more efficient, targeted strategy to reduce malaria transmission. This study aims to evaluate the potential of the use of serological markers to define spatial patterns in malaria exposure. Methods Blood samples collected in a community-based randomized trial performed in 98 high endemic communities in Ratanakiri province, north-eastern Cambodia, were screened with a multiplex serological assay for five serological markers (three Plasmodium falciparum and two Plasmodium vivax. The antibody half-lives range from approximately six months until more than two years. Geographical heterogeneity in malaria transmission was examined using a spatial scan statistic on serology, PCR prevalence and malaria incidence rate data. Furthermore, to identify behavioural patterns or intrinsic factors associated with malaria exposure (antibody levels, risk factor analyses were performed by using multivariable random effect logistic regression models. The serological outcomes were then compared to PCR prevalence and malaria incidence data. Results A total of 6502 samples from two surveys were screened in an area where the average parasite prevalence estimated by PCR among the selected villages is 3.4 %. High-risk malaria pockets were observed adjacent to the ‘Tonle San River’ and neighbouring Vietnam for all three sets of data (serology, PCR prevalence and malaria incidence rates. The main risk factors for all P. falciparum antigens and P. vivax MSP1.19 are age, ethnicity and staying overnight at the plot hut. Conclusion It is possible to identify similar malaria pockets of higher malaria

  8. Referral Patterns of Community Health Workers Diagnosing and Treating Malaria: Cluster-Randomized Trials in Two Areas of High- and Low-Malaria Transmission in Southwestern Uganda.

    Science.gov (United States)

    Lal, Sham; Ndyomugenyi, Richard; Magnussen, Pascal; Hansen, Kristian S; Alexander, Neal D; Paintain, Lucy; Chandramohan, Daniel; Clarke, Siân E

    2016-12-07

    Malaria-endemic countries have implemented community health worker (CHW) programs to provide malaria diagnosis and treatment to populations living beyond the reach of health systems. However, there is limited evidence describing the referral practices of CHWs. We examined the impact of malaria rapid diagnostic tests (mRDTs) on CHW referral in two cluster-randomized trials, one conducted in a moderate-to-high malaria transmission setting and one in a low-transmission setting in Uganda, between January 2010 and July 2012. All CHWs were trained to prescribe artemisinin-based combination therapy (ACT) for malaria and recognize signs and symptoms for referral to health centers. CHWs in the control arm used a presumptive diagnosis for malaria based on clinical symptoms, whereas intervention arm CHWs used mRDTs. CHWs recorded ACT prescriptions, mRDT results, and referral in patient registers. An intention-to-treat analysis was undertaken using multivariable logistic regression. Referral was more frequent in the intervention arm versus the control arm (moderate-to-high transmission, P < 0.001; low transmission, P < 0.001). Despite this increase, referral advice was not always given when ACTs or prereferral rectal artesunate were prescribed: 14% prescribed rectal artesunate in the moderate-to-high setting were not referred. In addition, CHWs considered factors alongside mRDTs when referring. Child visits during the weekends or the rainy season were less likely to be referred, whereas visits to CHWs more distant from health centers were more likely to be referred (low transmission only). CHWs using mRDTs and ACTs increased referral compared with CHWs using a presumptive diagnosis. To address these concerns, referral training should be emphasized in CHW programs as they are scaled-up. © The American Society of Tropical Medicine and Hygiene.

  9. The epidemiology of febrile malaria episodes in an area of unstable and seasonal transmission

    DEFF Research Database (Denmark)

    Giha, H A; Rosthoj, S; Dodoo, D

    2000-01-01

    This study investigated the epidemiology of uncomplicated falciparum malaria in an area of unstable and seasonal transmission in eastern Sudan. About 90% of malaria morbidity in this region occurs in the months of September to November, and very few malaria cases occur during the intensely arid...... Sudanese dry season and during years of drought. The malaria situation in the study site, the village of Daraweesh, was analysed during 3 consecutive malaria seasons in 1993-95 during which the 457 inhabitants suffered at total of 436 episodes of falciparum malaria. Using an Andersen-Gill proportional...

  10. Development of malaria vaccines that block transmission of parasites by mosquito vectors

    OpenAIRE

    Hisaeda, Hajime; Yasutomo, Koji

    2002-01-01

    Malaria is still one of the infectious diseases urgently requiring control and causes socioeconomic burdens on people residing in developing countries. Malaria vaccines are expected to control the disease. However, there is no effective vaccine available despite the intense efforts of malaria scientists. One strategy for a malaria vaccine is to prevent parasite spread by means of interfering with parasite development in mosquito vectors, which is the so-called transmission-blocking vaccine (T...

  11. The antibody response to well-defined malaria antigens after acute malaria in individuals living under continuous malaria transmission

    DEFF Research Database (Denmark)

    Petersen, E; Høgh, B; Dziegiel, Morten Hanefeld

    1992-01-01

    the antigens, the responses were often short-lived. In adults, the antibody responses to the GLURP489-1271 fusion protein and the (EENV)6 peptide peaked after 2 weeks, and not all individuals responded to all antigens. The antibody response, even against large fragments of conserved antigens, is not uniformly......The IgG and IgM antibody responses to the C-terminal 783 amino acids of the P. falciparum glutamate-rich protein, GLURP489-1271, expressed as an E. coli fusion protein, the IgG response to a 18-mer synthetic peptide EDKNEKGQHEIVEVEEIL (GLURP899-916) representing the C-terminal repeats of GLURP......, and a synthetic peptide (EENV)6 representing the C-terminal repeats from Pf155/RESA, were investigated longitudinally in 13 children and 7 adults living under conditions of continuous, intense malaria transmission. Some subjects did not recognize the antigens after malaria infection, and in subjects recognizing...

  12. Ivermectin to reduce malaria transmission: a research agenda for a promising new tool for elimination

    NARCIS (Netherlands)

    Chaccour, C.J.; Kobylinski, K.C.; Bassat, Q.; Bousema, T.; Drakeley, C.; Alonso, P.; Foy, B.D.

    2013-01-01

    BACKGROUND: The heterogeneity of malaria transmission makes widespread elimination a difficult goal to achieve. Most of the current vector control measures insufficiently target outdoor transmission. Also, insecticide resistance threatens to diminish the efficacy of the most prevalent measures,

  13. Adult vector control, mosquito ecology and malaria transmission.

    Science.gov (United States)

    Brady, Oliver J; Godfray, H Charles J; Tatem, Andrew J; Gething, Peter W; Cohen, Justin M; McKenzie, F Ellis; Alex Perkins, T; Reiner, Robert C; Tusting, Lucy S; Scott, Thomas W; Lindsay, Steven W; Hay, Simon I; Smith, David L

    2015-03-01

    Standard advice regarding vector control is to prefer interventions that reduce the lifespan of adult mosquitoes. The basis for this advice is a decades-old sensitivity analysis of 'vectorial capacity', a concept relevant for most malaria transmission models and based solely on adult mosquito population dynamics. Recent advances in micro-simulation models offer an opportunity to expand the theory of vectorial capacity to include both adult and juvenile mosquito stages in the model. In this study we revisit arguments about transmission and its sensitivity to mosquito bionomic parameters using an elasticity analysis of developed formulations of vectorial capacity. We show that reducing adult survival has effects on both adult and juvenile population size, which are significant for transmission and not accounted for in traditional formulations of vectorial capacity. The elasticity of these effects is dependent on various mosquito population parameters, which we explore. Overall, control is most sensitive to methods that affect adult mosquito mortality rates, followed by blood feeding frequency, human blood feeding habit, and lastly, to adult mosquito population density. These results emphasise more strongly than ever the sensitivity of transmission to adult mosquito mortality, but also suggest the high potential of combinations of interventions including larval source management. This must be done with caution, however, as policy requires a more careful consideration of costs, operational difficulties and policy goals in relation to baseline transmission. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  14. Spatio-temporal analysis of malaria within a transmission season in Bandiagara, Mali

    OpenAIRE

    Coulibaly, Drissa; Rebaudet, Stanislas; Travassos, Mark; Tolo, Youssouf; Laurens, Matthew; Kone, AK; Traore, Karim; Guindo, Ando; Diarra, Issa; Niangaly, Amadou; Daou, Modibo; Dembele, Ahmadou; Sissoko, Mody; Kouriba, Bourema; Dessay, Nadine

    2013-01-01

    International audience; Background: Heterogeneous patterns of malaria transmission are thought to be driven by factors including host genetics, distance to mosquito breeding sites, housing construction, and socio-behavioural characteristics. Evaluation of local transmission epidemiology to characterize malaria risk is essential for planning malaria control and elimination programmes. The use of geographical information systems (GIS) techniques has been a major asset to this approach. To asses...

  15. Attributing Climate Conditions for Stable Malaria Transmission to Human Activity in sub-Saharan Africa

    Science.gov (United States)

    Sheldrake, L.; Mitchell, D.; Allen, M. R.

    2015-12-01

    Temperature and precipitation limit areas of stable malaria transmission, but the effects of climate change on the disease remain controversial. Previously, studies have not separated the influence of anthropogenic climate change and natural variability, despite being an essential step in the attribution of climate change impacts. Ensembles of 2900 simulations of regional climate in sub-Saharan Africa for the year 2013, one representing realistic conditions and the other how climate might have been in the absence of human influence, were used to force a P.falciparium climate suitability model developed by the Mapping Malaria Risk in Africa project. Strongest signals were detected in areas of unstable transmission, indicating their heightened sensitivity to climatic factors. Evidently, impacts of human-induced climate change were unevenly distributed: the probability of conditions being suitable for stable malaria transmission were substantially reduced (increased) in the Sahel (Greater Horn of Africa (GHOA), particularly in the Ethiopian and Kenyan highlands). The length of the transmission season was correspondingly shortened in the Sahel and extended in the GHOA, by 1 to 2 months, including in Kericho (Kenya), where the role of climate change in driving recent malaria occurrence is hotly contested. Human-induced warming was primarily responsible for positive anomalies in the GHOA, while reduced rainfall caused negative anomalies in the Sahel. The latter was associated with anthropogenic impacts on the West African Monsoon, but uncertainty in the RCM's ability to reproduce precipitation trends in the region weakens confidence in the result. That said, outputs correspond well with broad-scale changes in observed endemicity, implying a potentially important contribution of anthropogenic climate change to the malaria burden during the past century. Results support the health-framing of climate risk and help indicate hotspots of climate vulnerability, providing

  16. Regionalization of a Landscape-Based Hazard Index of Malaria Transmission: An Example of the State of Amapá, Brazil

    Directory of Open Access Journals (Sweden)

    Zhichao Li

    2017-11-01

    Full Text Available Identifying and assessing the relative effects of the numerous determinants of malaria transmission, at different spatial scales and resolutions, is of primary importance in defining control strategies and reaching the goal of the elimination of malaria. In this context, based on a knowledge-based model, a normalized landscape-based hazard index (NLHI was established at a local scale, using a 10 m spatial resolution forest vs. non-forest map, landscape metrics and a spatial moving window. Such an index evaluates the contribution of landscape to the probability of human-malaria vector encounters, and thus to malaria transmission risk. Since the knowledge-based model is tailored to the entire Amazon region, such an index might be generalized at large scales for establishing a regional view of the landscape contribution to malaria transmission. Thus, this study uses an open large-scale land use and land cover dataset (i.e., the 30 m TerraClass maps and proposes an automatic data-processing chain for implementing NLHI at large-scale. First, the impact of coarser spatial resolution (i.e., 30 m on NLHI values was studied. Second, the data-processing chain was established using R language for customizing the spatial moving window and computing the landscape metrics and NLHI at large scale. This paper presents the results in the State of Amapá, Brazil. It offers the possibility of monitoring a significant determinant of malaria transmission at regional scale.

  17. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies.

    Science.gov (United States)

    Griffin, Jamie T; Hollingsworth, T Deirdre; Okell, Lucy C; Churcher, Thomas S; White, Michael; Hinsley, Wes; Bousema, Teun; Drakeley, Chris J; Ferguson, Neil M; Basáñez, María-Gloria; Ghani, Azra C

    2010-08-10

    Over the past decade malaria intervention coverage has been scaled up across Africa. However, it remains unclear what overall reduction in transmission is achievable using currently available tools. We developed an individual-based simulation model for Plasmodium falciparum transmission in an African context incorporating the three major vector species (Anopheles gambiae s.s., An. arabiensis, and An. funestus) with parameters obtained by fitting to parasite prevalence data from 34 transmission settings across Africa. We incorporated the effect of the switch to artemisinin-combination therapy (ACT) and increasing coverage of long-lasting insecticide treated nets (LLINs) from the year 2000 onwards. We then explored the impact on transmission of continued roll-out of LLINs, additional rounds of indoor residual spraying (IRS), mass screening and treatment (MSAT), and a future RTS,S/AS01 vaccine in six representative settings with varying transmission intensity (as summarized by the annual entomological inoculation rate, EIR: 1 setting with low, 3 with moderate, and 2 with high EIRs), vector-species combinations, and patterns of seasonality. In all settings we considered a realistic target of 80% coverage of interventions. In the low-transmission setting (EIR approximately 3 ibppy [infectious bites per person per year]), LLINs have the potential to reduce malaria transmission to low levels (DDT coupled with MSAT could drive parasite prevalence below a 1% threshold. However, in the third (EIR = 46) with An. arabiensis prevailing, these interventions are insufficient to reach this threshold. In both high-transmission settings (EIR approximately 586 and 675 ibppy), either unrealistically high coverage levels (>90%) or novel tools and/or substantial social improvements will be required, although considerable reductions in prevalence can be achieved with existing tools and realistic coverage levels. Interventions using current tools can result in major reductions in P

  18. Community health workers adherence to referral guidelines: evidence from studies introducing RDTs in two malaria transmission settings in Uganda.

    Science.gov (United States)

    Lal, Sham; Ndyomugenyi, Richard; Paintain, Lucy; Alexander, Neal D; Hansen, Kristian S; Magnussen, Pascal; Chandramohan, Daniel; Clarke, Siân E

    2016-11-24

    Many malaria-endemic countries have implemented national community health worker (CHW) programmes to serve remote populations that have poor access to malaria diagnosis and treatment. Despite mounting evidence of CHWs' ability to adhere to malaria rapid diagnostic tests (RDTs) and treatment guidelines, there is limited evidence whether CHWs adhere to the referral guidelines and refer severely ill children for further management. In southwest Uganda, this study examined whether CHWs referred children according to training guidelines and described factors associated with adherence to the referral guideline. A secondary analysis was undertaken of data collected during two cluster-randomized trials conducted between January 2010 and July 2011, one in a moderate-to-high malaria transmission setting and the other in a low malaria transmission setting. All CHWs were trained to prescribe artemisinin-based combination therapy (ACT) and recognize symptoms in children that required immediate referral to the nearest health centre. Intervention arm CHWs had additional training on how to conduct an RDT; CHWs in the control arm used a presumptive diagnosis for malaria using clinical signs and symptoms. CHW treatment registers were reviewed to identify children eligible for referral according to training guidelines (temperature of ≥38.5 °C), to assess whether CHWs adhered to the guidelines and referred them. Factors associated with adherence were examined with logistic regression models. CHWs failed to refer 58.8% of children eligible in the moderate-to-high transmission and 31.2% of children in the low transmission setting. CHWs using RDTs adhered to the referral guidelines more frequently than CHWs not using RDTs (moderate-to-high transmission: 50.1 vs 18.0%, p = 0.003; low transmission: 88.5 vs 44.1%, p sign and symptoms. As many countries scale up CHW programmes, routine monitoring of reported data should be examined carefully to assess whether CHWs adhere to referral

  19. Parasite threshold associated with clinical malaria in areas of different transmission intensities in north eastern Tanzania

    DEFF Research Database (Denmark)

    Mmbando, Bruno P; Lusingu, John P; Vestergaard, Lasse S

    2009-01-01

    BACKGROUND: In Sub-Sahara Africa, malaria due to Plasmodium falciparum is the main cause of ill health. Evaluation of malaria interventions, such as drugs and vaccines depends on clinical definition of the disease, which is still a challenge due to lack of distinct malaria specific clinical...... features. Parasite threshold is used in definition of clinical malaria in evaluation of interventions. This however, is likely to be influenced by other factors such as transmission intensity as well as individual level of immunity against malaria. METHODS: This paper describes step function and dose...... response model with threshold parameter as a tool for estimation of parasite threshold for onset of malaria fever in highlands (low transmission) and lowlands (high transmission intensity) strata. These models were fitted using logistic regression stratified by strata and age groups (0-1, 2-3, 4-5, 6...

  20. Thrombocytopenia in pregnant women with Plasmodium falciparum malaria in an area of unstable malaria transmission in eastern Sudan

    Directory of Open Access Journals (Sweden)

    Adam Mayyada B

    2012-08-01

    Full Text Available Abstract Background Blood platelet levels are being evaluated as predictive and prognostic indicators of the severity of malaria infections in humans. However, there are few studies on platelets and Plasmodium falciparum malaria during pregnancy. Methods A case–control study was conducted at Gadarif Hospital in Eastern Sudan, an area characterized by unstable malaria transmission. The aim of the study was to investigate thrombocytopenia in pregnant women with P. falciparum malaria (cases and healthy pregnant women (controls. Results The median (interquartile platelet counts were significantly lower in patients with malaria (N = 60 than in the controls (N = 60, 61, 000 (43,000–85,000 vs. 249,000 (204,000–300,000/μL, respectively, p P. falciparum malaria (N = 12 compared with those patients with uncomplicated P. falciparum malaria (N = 48, 68, 000 (33,000-88,000/μL vs. 61, 000 (45,000–85,000/μL, respectively, p = 0.8. While none of the control group had thrombocytopenia (platelet count p P. falciparum malaria, compared with the pregnant healthy control group, were at higher risk (OR = 10.1, 95% CI = 4.1–25.18; p  Conclusion P. falciparum malaria is associated with thrombocytopenia in pregnant women in this setting. More research is needed.

  1. Conditions of malaria transmission in Dakar from 2007 to 2010

    Directory of Open Access Journals (Sweden)

    Sokhna Cheikh

    2011-10-01

    Full Text Available Abstract Background Previous studies in Dakar have highlighted the spatial and temporal heterogeneity of Anopheles gambiae s.l. biting rates. In order to improve the knowledge of the determinants of malaria transmission in this city, the present study reports the results of an extensive entomological survey that was conducted in 45 areas in Dakar from 2007 to 2010. Methods Water collections were monitored for the presence of anopheline larvae. Adult mosquitoes were sampled by human landing collection. Plasmodium falciparum circumsporozoïte (CSP protein indexes were measured by ELISA (enzyme-linked immunosorbent assay, and the entomological inoculation rates were calculated. Results The presence of anopheline larvae were recorded in 1,015 out of 2,683 observations made from 325 water collections. A water pH of equal to or above 8.0, a water temperature that was equal to or above 30°C, the absence of larvivorous fishes, the wet season, the presence of surface vegetation, the persistence of water and location in a slightly urbanised area were significantly associated with the presence of anopheline larvae and/or with a higher density of anopheline larvae. Most of the larval habitats were observed in public areas, i.e., freely accessible. A total of 496,310 adult mosquitoes were caught during 3096 person-nights, and 44967 of these specimens were identified as An.gambiae s.l. The mean An. gambiae s.l. human-biting rate ranged from 0.1 to 248.9 bites per person per night during the rainy season. Anopheles arabiensis (93.14%, Anopheles melas (6.83% and An. gambiae s.s. M form (0.03% were the three members of the An. gambiae complex. Fifty-two An. arabiensis and two An. melas specimens were CSP-positive, and the annual CSP index was 0.64% in 2007, 0.09% in 2008-2009 and 0.12% in 2009-2010. In the studied areas, the average EIR ranged from 0 to 17.6 infected bites per person during the entire transmission season. Conclusion The spatial and temporal

  2. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies.

    Directory of Open Access Journals (Sweden)

    Jamie T Griffin

    2010-08-01

    Full Text Available Over the past decade malaria intervention coverage has been scaled up across Africa. However, it remains unclear what overall reduction in transmission is achievable using currently available tools.We developed an individual-based simulation model for Plasmodium falciparum transmission in an African context incorporating the three major vector species (Anopheles gambiae s.s., An. arabiensis, and An. funestus with parameters obtained by fitting to parasite prevalence data from 34 transmission settings across Africa. We incorporated the effect of the switch to artemisinin-combination therapy (ACT and increasing coverage of long-lasting insecticide treated nets (LLINs from the year 2000 onwards. We then explored the impact on transmission of continued roll-out of LLINs, additional rounds of indoor residual spraying (IRS, mass screening and treatment (MSAT, and a future RTS,S/AS01 vaccine in six representative settings with varying transmission intensity (as summarized by the annual entomological inoculation rate, EIR: 1 setting with low, 3 with moderate, and 2 with high EIRs, vector-species combinations, and patterns of seasonality. In all settings we considered a realistic target of 80% coverage of interventions. In the low-transmission setting (EIR approximately 3 ibppy [infectious bites per person per year], LLINs have the potential to reduce malaria transmission to low levels (90% or novel tools and/or substantial social improvements will be required, although considerable reductions in prevalence can be achieved with existing tools and realistic coverage levels.Interventions using current tools can result in major reductions in P. falciparum malaria transmission and the associated disease burden in Africa. Reduction to the 1% parasite prevalence threshold is possible in low- to moderate-transmission settings when vectors are primarily endophilic (indoor-resting, provided a comprehensive and sustained intervention program is achieved through

  3. Chronic Plasmodium falciparum infections in an area of low intensity malaria transmission in the Sudan

    DEFF Research Database (Denmark)

    Hamad, A A; El Hassan, I M; El Khalifa, A A

    2000-01-01

    Chronic Plasmodium falciparum malaria infections in a Sudanese village, in an area of seasonal and unstable malaria transmission, were monitored and genetically characterized to study the influence of persistent infection on the immunology and epidemiology of low endemicity malaria. During...... the October-December malaria season of 1996, 51 individuals out of a population of 420 had confirmed and treated P. falciparum malaria in the village of Daraweesh in eastern Sudan. In a cross-sectional survey carried out in December 1996, an additional 6 individuals were found to harbour a microscopically...

  4. Optimal Population-Level Infection Detection Strategies for Malaria Control and Elimination in a Spatial Model of Malaria Transmission

    Science.gov (United States)

    Gerardin, Jaline; Bever, Caitlin A.; Hamainza, Busiku; Miller, John M.; Eckhoff, Philip A.; Wenger, Edward A.

    2016-01-01

    Mass campaigns with antimalarial drugs are potentially a powerful tool for local elimination of malaria, yet current diagnostic technologies are insufficiently sensitive to identify all individuals who harbor infections. At the same time, overtreatment of uninfected individuals increases the risk of accelerating emergence of drug resistance and losing community acceptance. Local heterogeneity in transmission intensity may allow campaign strategies that respond to index cases to successfully target subpatent infections while simultaneously limiting overtreatment. While selective targeting of hotspots of transmission has been proposed as a strategy for malaria control, such targeting has not been tested in the context of malaria elimination. Using household locations, demographics, and prevalence data from a survey of four health facility catchment areas in southern Zambia and an agent-based model of malaria transmission and immunity acquisition, a transmission intensity was fit to each household based on neighborhood age-dependent malaria prevalence. A set of individual infection trajectories was constructed for every household in each catchment area, accounting for heterogeneous exposure and immunity. Various campaign strategies—mass drug administration, mass screen and treat, focal mass drug administration, snowball reactive case detection, pooled sampling, and a hypothetical serological diagnostic—were simulated and evaluated for performance at finding infections, minimizing overtreatment, reducing clinical case counts, and interrupting transmission. For malaria control, presumptive treatment leads to substantial overtreatment without additional morbidity reduction under all but the highest transmission conditions. Compared with untargeted approaches, selective targeting of hotspots with drug campaigns is an ineffective tool for elimination due to limited sensitivity of available field diagnostics. Serological diagnosis is potentially an effective tool for

  5. Spatio-temporal analysis of malaria within a transmission season in Bandiagara, Mali.

    Science.gov (United States)

    Coulibaly, Drissa; Rebaudet, Stanislas; Travassos, Mark; Tolo, Youssouf; Laurens, Matthew; Kone, Abdoulaye K; Traore, Karim; Guindo, Ando; Diarra, Issa; Niangaly, Amadou; Daou, Modibo; Dembele, Ahmadou; Sissoko, Mody; Kouriba, Bourema; Dessay, Nadine; Gaudart, Jean; Piarroux, Renaud; Thera, Mahamadou A; Plowe, Christopher V; Doumbo, Ogobara K

    2013-03-01

    Heterogeneous patterns of malaria transmission are thought to be driven by factors including host genetics, distance to mosquito breeding sites, housing construction, and socio-behavioural characteristics. Evaluation of local transmission epidemiology to characterize malaria risk is essential for planning malaria control and elimination programmes. The use of geographical information systems (GIS) techniques has been a major asset to this approach. To assess time and space distribution of malaria disease in Bandiagara, Mali, within a transmission season, data were used from an ongoing malaria incidence study that enrolled 300 participants aged under six years old". Children's households were georeferenced using a handheld global position system. Clinical malaria was defined as a positive blood slide for Plasmodium falciparum asexual stages associated with at least one of the following signs: headache, body aches, fever, chills and weakness. Daily rainfall was measured at the local weather station.Landscape features of Bandiagara were obtained from satellite images and field survey. QGIS™ software was used to map malaria cases, affected and non-affected children, and the number of malaria episodes per child in each block of Bandiagara. Clusters of high or low risk were identified under SaTScan(®) software according to a Bernoulli model. From June 2009 to May 2010, 296 clinical malaria cases were recorded. Though clearly temporally related to the rains, Plasmodium falciparum occurrence persisted late in the dry season. Two "hot spots" of malaria transmission also found, notably along the Yamé River, characterized by higher than expected numbers of malaria cases, and high numbers of clinical episodes per child. Conversely, the north-eastern sector of the town had fewer cases despite its proximity to a large body of standing water which was mosquito habitat. These results confirm the existence of a marked spatial heterogeneity of malaria transmission in Bandiagara

  6. Algae-Produced Pfs25 Elicits Antibodies That Inhibit Malaria Transmission

    Science.gov (United States)

    Gregory, James A.; Li, Fengwu; Tomosada, Lauren M.; Cox, Chesa J.; Topol, Aaron B.; Vinetz, Joseph M.; Mayfield, Stephen

    2012-01-01

    Subunit vaccines are significantly more expensive to produce than traditional vaccines because they are based primarily on recombinant proteins that must be purified from the expression system. Despite the increased cost, subunit vaccines are being developed because they are safe, effective, and can elicit antibodies that confer protection against diseases that are not currently vaccine-preventable. Algae are an attractive platform for producing subunit vaccines because they are relatively inexpensive to grow, genetically tractable, easily scaled to large volumes, have a short generation time, and are devoid of inflammatory, viral, or prion contaminants often present in other systems. We tested whether algal chloroplasts can produce malaria transmission blocking vaccine candidates, Plasmodium falciparum surface protein 25 (Pfs25) and 28 (Pfs28). Antibodies that recognize Pfs25 and Pfs28 disrupt the sexual development of parasites within the mosquito midgut, thus preventing transmission of malaria from one human host to the next. These proteins have been difficult to produce in traditional recombinant systems because they contain tandem repeats of structurally complex epidermal growth factor-like domains, which cannot be produced in bacterial systems, and because they are not glycosylated, so they must be modified for production in eukaryotic systems. Production in algal chloroplasts avoids these issues because chloroplasts can fold complex eukaryotic proteins and do not glycosylate proteins. Here we demonstrate that algae are the first recombinant system to successfully produce an unmodified and aglycosylated version of Pfs25 or Pfs28. These antigens are structurally similar to the native proteins and antibodies raised to these recombinant proteins recognize Pfs25 and Pfs28 from P. falciparum. Furthermore, antibodies to algae-produced Pfs25 bind the surface of in-vitro cultured P. falciparum sexual stage parasites and exhibit transmission blocking activity. Thus

  7. Invasive Salmonella infections in areas of high and low malaria transmission intensity in Tanzania.

    Science.gov (United States)

    Biggs, Holly M; Lester, Rebecca; Nadjm, Behzad; Mtove, George; Todd, Jim E; Kinabo, Grace D; Philemon, Rune; Amos, Ben; Morrissey, Anne B; Reyburn, Hugh; Crump, John A

    2014-03-01

     The epidemiology of Salmonella Typhi and invasive nontyphoidal Salmonella (NTS) differs, and prevalence of these pathogens among children in sub-Saharan Africa may vary in relation to malaria transmission intensity.  We compared the prevalence of bacteremia among febrile pediatric inpatients aged 2 months to 13 years recruited at sites of high and low malaria endemicity in Tanzania. Enrollment at Teule Hospital, the high malaria transmission site, was from June 2006 through May 2007, and at Kilimanjaro Christian Medical Centre (KCMC), the low malaria transmission site, from September 2007 through August 2008. Automated blood culture, malaria microscopy with Giemsa-stained blood films, and human immunodeficiency virus testing were performed.  At Teule, 3639 children were enrolled compared to 467 at KCMC. Smear-positive malaria was detected in 2195 of 3639 (60.3%) children at Teule and 11 of 460 (2.4%) at KCMC (P Salmonella Typhi was isolated from 11 (0.3%) children at Teule and 6 (1.3%) at KCMC (P = .008). With NTS excluded, the prevalence of bacteremia at Teule was 5.0% and at KCMC 4.1% (P = .391).  Where malaria transmission was intense, invasive NTS was common and Salmonella Typhi was uncommon, whereas the inverse was observed at a low malaria transmission site. The relationship between these pathogens, the environment, and the host is a compelling area for further research.

  8. Projected impacts of climate change on environmental suitability for malaria transmission in West Africa.

    Science.gov (United States)

    Yamana, Teresa K; Eltahir, Elfatih A B

    2013-10-01

    Climate change is expected to affect the distribution of environmental suitability for malaria transmission by altering temperature and rainfall patterns; however, the local and global impacts of climate change on malaria transmission are uncertain. We assessed the effect of climate change on malaria transmission in West Africa. We coupled a detailed mechanistic hydrology and entomology model with climate projections from general circulation models (GCMs) to predict changes in vectorial capacity, an indication of the risk of human malaria infections, resulting from changes in the availability of mosquito breeding sites and temperature-dependent development rates. Because there is strong disagreement in climate predictions from different GCMs, we focused on the GCM projections that produced the best and worst conditions for malaria transmission in each zone of the study area. Simulation-based estimates suggest that in the desert fringes of the Sahara, vectorial capacity would increase under the worst-case scenario, but not enough to sustain transmission. In the transitional zone of the Sahel, climate change is predicted to decrease vectorial capacity. In the wetter regions to the south, our estimates suggest an increase in vectorial capacity under all scenarios. However, because malaria is already highly endemic among human populations in these regions, we expect that changes in malaria incidence would be small. Our findings highlight the importance of rainfall in shaping the impact of climate change on malaria transmission in future climates. Even under the GCM predictions most conducive to malaria transmission, we do not expect to see a significant increase in malaria prevalence in this region.

  9. Patterns of inflammatory responses and parasite tolerance vary with malaria transmission intensity.

    Science.gov (United States)

    Ademolue, Temitope W; Aniweh, Yaw; Kusi, Kwadwo A; Awandare, Gordon A

    2017-04-11

    In individuals living in malaria-endemic regions, parasitaemia thresholds for the onset of clinical symptoms vary with transmission intensity. The mechanisms that mediate this relationship are however, unclear. Since inflammatory responses to parasite infection contribute to the clinical manifestation of malaria, this study investigated inflammatory cytokine responses in children with malaria from areas of different transmission intensities (ranging from low to high). Blood samples were obtained from children confirmed with malaria at community hospitals in three areas with differing transmission intensities. Cytokine levels were assessed using the Luminex®-based magnetic bead array system, and levels were compared across sites using appropriate statistical tests. The relative contributions of age, gender, parasitaemia and transmission intensity on cytokine levels were investigated using multivariate regression analysis. Parasite density increased with increasing transmission intensity in children presenting to hospital with symptomatic malaria, indicating that the parasitaemia threshold for clinical malaria increases with increasing transmission intensity. Furthermore, levels of pro-inflammatory cytokines, including tumour necrosis factor alpha (TNF-α), interferon-gamma (IFN-γ), interleukin (IL)-1β, IL-2, IL-6, IL-8, and IL-12, decreased with increasing transmission intensity, and correlated significantly with parasitaemia levels in the low transmission area but not in high transmission areas. Similarly, levels of anti-inflammatory cytokines, including IL-4, IL-7, IL-10 and IL-13, decreased with increasing transmission intensity, with IL-10 showing strong correlation with parasitaemia levels in the low transmission area. Multiple linear regression analyses revealed that transmission intensity was a stronger predictor of cytokine levels than age, gender and parasitaemia. Taken together, the data demonstrate a strong relationship between the prevailing

  10. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine

    DEFF Research Database (Denmark)

    Theisen, Michael; Jore, Matthijs M; Sauerwein, Robert

    2017-01-01

    Introduction: Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which...... are essential for the transmission to the mosquito vector. A vaccine targeting the sexual stages of the parasite and thus blocking transmission will be instrumental for the eradication of malaria. One of the leading transmission blocking vaccine candidates is the sexual stage antigen Pfs48/45. Areas covered...

  11. Highly effective therapy for maternal malaria associated with a lower risk of vertical transmission.

    Science.gov (United States)

    Poespoprodjo, J R; Fobia, W; Kenangalem, E; Hasanuddin, A; Sugiarto, P; Tjitra, E; Anstey, N M; Price, R N

    2011-11-15

    The epidemiology of congenital malaria was investigated in a hospital-based malaria surveillance study in Papua, Indonesia. From April 2005 to January 2010, 4878 delivering women and their newborns underwent prospective clinical review and malaria screening by peripheral blood microscopy. Congenital malaria occurred in 8 per 1000 (38/4884) live births, with Plasmodium falciparum accounting for 76.3% (29) and P. vivax for 15.8% (6) of infections. Maternal malaria at delivery (adjusted odds ratio [AOR], 9.5; 95% confidence interval [CI], 4.2-21.5; P < .001), age ≤ 16 years (AOR, 4; 95% CI, 1.4-12.1; P = .011), and prior malaria during pregnancy (AOR, 2.2; 95% CI, 1.1-4.4, P = .022) were independent risk factors for vertical transmission. Of 29 mothers and neonates with contemporaneous peripheral parasitemia, 17% (5) had discordant parasite species, suggesting possible antenatal malaria transmission. Newborns with malaria were at significantly greater risk of low birth weight (AOR, 2.8; 95% CI, 1.2-6.6; P = .002). Following introduction of dihydroartemisinin-piperaquine for uncomplicated malaria in the second and third trimesters of pregnancy, congenital malaria incidence fell from 3.2% to 0.2% (odds ratio, 0.07; 95% CI, .03-.15; P < .001). Congenital malaria is an important cause of neonatal morbidity in this region co-endemic for P. falciparum and P. vivax malaria. The introduction of artemisinin-combination therapy was associated with a significant risk reduction in the vertical transmission of malaria.

  12. The incidence of malaria in travellers to South-East Asia: is local malaria transmission a useful risk indicator?

    Directory of Open Access Journals (Sweden)

    Jänisch Thomas

    2010-10-01

    Full Text Available Abstract Background The presence of ongoing local malaria transmission, identified though local surveillance and reported to regional WHO offices, by S-E Asian countries, forms the basis of national and international chemoprophylaxis recommendations in western countries. The study was designed to examine whether the strategy of using malaria transmission in a local population was an accurate estimate of the malaria threat faced by travellers and a correlate of malaria in returning travellers. Methods Malaria endemicity was described from distribution and intensity in the local populations of ten S-E Asian destination countries over the period 2003-2008 from regionally reported cases to WHO offices. Travel acquired malaria was collated from malaria surveillance reports from the USA and 12 European countries over the same period. The numbers of travellers visiting the destination countries was based on immigration and tourism statistics collected on entry of tourists to the destination countries. Results In the destination countries, mean malaria rates in endemic countries ranged between 0.01 in Korea to 4:1000 population per year in Lao PDR, with higher regional rates in a number of countries. Malaria cases imported into the 13 countries declined by 47% from 140 cases in 2003 to 66 in 2008. A total of 608 cases (27.3% Plasmodium falciparum (Pf were reported over the six years, the largest number acquired in Indonesia, Thailand and Korea. Four countries had an incidence > 1 case per 100,000 traveller visits; Burma (Myanmar, Indonesia, Cambodia and Laos (range 1 to 11.8-case per 100,000 visits. The remaining six countries rates were Conclusion The intensity of malaria transmission particularly sub-national activity did not correlate with the risk of travellers acquiring malaria in the large numbers of arriving visitors. It is proposed to use a threshold incidence of > 1 case per 100,000 visits to consider targeted malaria prophylaxis

  13. One-year delayed effect of fog on malaria transmission: a time-series analysis in the rain forest area of Mengla County, south-west China

    Directory of Open Access Journals (Sweden)

    Goggins William B

    2008-06-01

    Full Text Available Abstract Background Malaria is a major public health burden in the tropics with the potential to significantly increase in response to climate change. Analyses of data from the recent past can elucidate how short-term variations in weather factors affect malaria transmission. This study explored the impact of climate variability on the transmission of malaria in the tropical rain forest area of Mengla County, south-west China. Methods Ecological time-series analysis was performed on data collected between 1971 and 1999. Auto-regressive integrated moving average (ARIMA models were used to evaluate the relationship between weather factors and malaria incidence. Results At the time scale of months, the predictors for malaria incidence included: minimum temperature, maximum temperature, and fog day frequency. The effect of minimum temperature on malaria incidence was greater in the cool months than in the hot months. The fog day frequency in October had a positive effect on malaria incidence in May of the following year. At the time scale of years, the annual fog day frequency was the only weather predictor of the annual incidence of malaria. Conclusion Fog day frequency was for the first time found to be a predictor of malaria incidence in a rain forest area. The one-year delayed effect of fog on malaria transmission may involve providing water input and maintaining aquatic breeding sites for mosquitoes in vulnerable times when there is little rainfall in the 6-month dry seasons. These findings should be considered in the prediction of future patterns of malaria for similar tropical rain forest areas worldwide.

  14. Changing malaria transmission and implications in China towards National Malaria Elimination Programme between 2010 and 2012.

    Directory of Open Access Journals (Sweden)

    Jian-hai Yin

    Full Text Available BACKGROUND: Towards the implementation of national malaria elimination programme in China since 2010, the epidemiology of malaria has changed dramatically, and the lowest malaria burden was achieved yearly. It is time to analyze the changes of malaria situation based on surveillance data from 2010 to 2012 to reconsider the strategies for malaria elimination. METHODS AND PRINCIPAL FINDINGS: Malaria epidemiological data was extracted from the provincial annual reports in China between 2010 and 2012. The trends of the general, autochthonous and imported malaria were analyzed, and epidemic areas were reclassified according to Action Plan of China Malaria Elimination (2010-2020. As a result, there reported 2743 malaria cases with a continued decline in 2012, and around 7% autochthonous malaria cases accounted. Three hundred and fifty-three individual counties from 19 provincial regions had autochthonous malaria between 2010 and 2012, and only one county was reclassified into Type I (local infections detected in 3 consecutive years and the annual incidences ≥ 1/10,000 again. However, the imported malaria cases reported of each year were widespread, and 598 counties in 29 provinces were suffered in 2012. CONCLUSIONS/SIGNIFICANCE: Malaria was reduced significantly from 2010 to 2012 in China, and malaria importation became an increasing challenge. It is necessary to adjust or update the interventions for subsequent malaria elimination planning and resource allocation.

  15. A mathematical model for malaria transmission relating global warming and local socioeconomic conditions

    Directory of Open Access Journals (Sweden)

    Hyun M Yang

    2001-06-01

    Full Text Available OBJECTIVE: Sensitivity analysis was applied to a mathematical model describing malaria transmission relating global warming and local socioeconomic conditions. METHODS: A previous compartment model was proposed to describe the overall transmission of malaria. This model was built up on several parameters and the prevalence of malaria in a community was characterized by the values assigned to them. To assess the control efforts, the model parameters can vary on broad intervals. RESULTS: By performing the sensitivity analysis on equilibrium points, which represent the level of malaria infection in a community, the different possible scenarios are obtained when the parameters are changed. CONCLUSIONS: Depending on malaria risk, the efforts to control its transmission can be guided by a subset of parameters used in the mathematical model.

  16. Projecting environmental suitable areas for malaria transmission in China under climate change scenarios.

    Science.gov (United States)

    Hundessa, Samuel; Li, Shanshan; Liu, De Li; Guo, Jinpeng; Guo, Yuming; Zhang, Wenyi; Williams, Gail

    2018-04-01

    The proportion of imported malaria cases in China has increased over recent years, and has presented challenges for the malaria elimination program in China. However, little is known about the geographic distribution and environmental suitability for malaria transmission under projected climate change scenarios. Using the MaxEnt model based on malaria presence-only records, we produced environmental suitability maps and examined the relative contribution of topographic, demographic, and environmental risk factors for P. vivax and P. falciparum malaria in China. The MaxEnt model estimated that environmental suitability areas (ESAs) for malaria cover the central, south, southwest, east and northern regions, with a slightly wider range of ESAs extending to the northeast region for P. falciparum. There was spatial agreement between the location of imported cases and area environmentally suitable for malaria transmission. The ESAs of P. vivax and P. falciparum are projected to increase in some parts of southwest, south, central, north and northeast regions in the 2030s, 2050s, and 2080s, by a greater amount for P. falciparum under the RCP8.5 scenario. Temperature and NDVI values were the most influential in defining the ESAs for P. vivax, and temperature and precipitation the most influential for P. falciparum malaria. This study estimated that the ESA for malaria transmission in China will increase with climate change and highlights the potential establishment of further local transmission. This model should be used to support malaria control by targeting areas where interventions on malaria transmission need to be enhanced. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Submicroscopic malaria cases play role in local transmission in Trenggalek district, East Java Province, Indonesia.

    Science.gov (United States)

    Arwati, Heny; Yotopranoto, Subagyo; Rohmah, Etik Ainun; Syafruddin, Din

    2018-01-05

    Trenggalek district is a hypoendemic malaria area with mainly imported cases brought by migrant workers from islands outside Java. During malaria surveillance in 2015, no malaria cases were found microscopically, but some cases were positive by PCR. Therefore, a study was conducted to prove that local malaria transmission still occur. The adult villagers were invited to the house of the head of this village to be screened for malaria using aseptic venipuncture of 1 mL blood upon informed consent. Thin and thick blood films as well as blood spots on filter paper were made for each subject. The blood films were stained with Giemsa and the blood spots were used to extract DNA for polymerase chain reaction (PCR) amplification to determine the malaria infection. In addition, the history of malaria infection and travel to malaria endemic areas were recorded. Entomologic survey to detect the existence of anopheline vector was also conducted. Of the total 64 subjects that participated in the survey, no malaria parasites were found through microscopic examination of the blood films. The PCR analysis found six positive cases (two Plasmodium falciparum, one Plasmodium vivax and two mixed infection of both species), and two of them had no history of malaria and have never travelled to malaria endemic area. Entomologic survey using human bait trap detected the existence of Anopheles indefinitus that was found to be positive for P. vivax by PCR. The results indicated that although we did not find any microscopically slide positive cases, six PCR positive subjects were found. The fact that 2 of the 6 malaria positive subjects have never travelled to malaria endemic area together with the existence of the vector confirm the occurence of local transmission of malaria in the area.

  18. Epidemic and Endemic Malaria Transmission Related to Fish Farming Ponds in the Amazon Frontier.

    Directory of Open Access Journals (Sweden)

    Izabel Cristina Dos Reis

    Full Text Available Fish farming in the Amazon has been stimulated as a solution to increase economic development. However, poorly managed fish ponds have been sometimes associated with the presence of Anopheles spp. and consequently, with malaria transmission. In this study, we analyzed the spatial and temporal dynamics of malaria in the state of Acre (and more closely within a single county to investigate the potential links between aquaculture and malaria transmission in this region. At the state level, we classified the 22 counties into three malaria endemicity patterns, based on the correlation between notification time series. Furthermore, the study period (2003-2013 was divided into two phases (epidemic and post-epidemic. Higher fish pond construction coincided both spatially and temporally with increased rate of malaria notification. Within one malaria endemic county, we investigated the relationship between the geolocation of malaria cases (2011-2012 and their distance to fish ponds. Entomological surveys carried out in these ponds provided measurements of anopheline abundance that were significantly associated with the abundance of malaria cases within 100 m of the ponds (P < 0.005; r = 0.39. These results taken together suggest that fish farming contributes to the maintenance of high transmission levels of malaria in this region.

  19. Epidemic and Endemic Malaria Transmission Related to Fish Farming Ponds in the Amazon Frontier.

    Science.gov (United States)

    Reis, Izabel Cristina Dos; Honório, Nildimar Alves; Barros, Fábio Saito Monteiro de; Barcellos, Christovam; Kitron, Uriel; Camara, Daniel Cardoso Portela; Pereira, Glaucio Rocha; Keppeler, Erlei Cassiano; da Silva-Nunes, Mônica; Codeço, Cláudia Torres

    2015-01-01

    Fish farming in the Amazon has been stimulated as a solution to increase economic development. However, poorly managed fish ponds have been sometimes associated with the presence of Anopheles spp. and consequently, with malaria transmission. In this study, we analyzed the spatial and temporal dynamics of malaria in the state of Acre (and more closely within a single county) to investigate the potential links between aquaculture and malaria transmission in this region. At the state level, we classified the 22 counties into three malaria endemicity patterns, based on the correlation between notification time series. Furthermore, the study period (2003-2013) was divided into two phases (epidemic and post-epidemic). Higher fish pond construction coincided both spatially and temporally with increased rate of malaria notification. Within one malaria endemic county, we investigated the relationship between the geolocation of malaria cases (2011-2012) and their distance to fish ponds. Entomological surveys carried out in these ponds provided measurements of anopheline abundance that were significantly associated with the abundance of malaria cases within 100 m of the ponds (P < 0.005; r = 0.39). These results taken together suggest that fish farming contributes to the maintenance of high transmission levels of malaria in this region.

  20. Variation in malaria transmission dynamics in three different sites in Western Kenya

    NARCIS (Netherlands)

    Imbahale, S.S.; Mukabana, W.R.; Orindi, B.; Githeko, A.K.; Takken, W.

    2012-01-01

    The main objective was to investigate malaria transmission dynamics in three different sites, two highland villages (Fort Ternan and Lunyerere) and a lowland peri-urban area (Nyalenda) of Kisumu city. Adult mosquitoes were collected using PSC and CDC light trap while malaria parasite incidence data

  1. Rationale for short course primaquine in Africa to interrupt malaria transmission

    NARCIS (Netherlands)

    Eziefula, A.C.; Gosling, R.; Hwang, J.; Hsiang, M.S.; Bousema, J.T.; von Seidlein, L.; Drakeley, C.; on behalf of the Primaquine in Africa Discussion, G.

    2012-01-01

    ABSTRACT: Following the recent successes of malaria control in sub-Saharan Africa, the gametocytocidal drug primaquine needs evaluation as a tool to further reduce the transmission of Plasmodium falciparum malaria. The drug has scarcely been used in Africa because of concerns about its safety in

  2. Assessing malaria transmission in a low endemicity area of north-western Peru

    DEFF Research Database (Denmark)

    Rosas-Aguirre, Angel; Llanos-Cuentas, Alejandro; Speybroeck, Niko

    2013-01-01

    Where malaria endemicity is low, control programmes need increasingly sensitive tools for monitoring malaria transmission intensity (MTI) and to better define health priorities. A cross-sectional survey was conducted in a low endemicity area of the Peruvian north-western coast to assess the MTI u...

  3. The impact of endemic and epidemic malaria on the risk of stillbirth in two areas of Tanzania with different malaria transmission patterns

    NARCIS (Netherlands)

    Wort, Ulrika Uddenfeldt; Hastings, Ian; Mutabingwa, T. K.; Brabin, Bernard J.

    2006-01-01

    BACKGROUND: The impact of malaria on the risk of stillbirth is still under debate. The aim of the present analysis was to determine comparative changes in stillbirth prevalence between two areas of Tanzania with different malaria transmission patterns in order to estimate the malaria attributable

  4. Perspective Piece: Needs for Monitoring Mosquito Transmission of Malaria in a Pre-Elimination World

    NARCIS (Netherlands)

    James, S.; Takken, W.; Collins, F.H.; Gottlieb, M.

    2014-01-01

    As global efforts to eliminate malaria intensify, accurate information on vector populations and transmission dynamics is critical for directing control efforts, developing new control tools, and predicting the effects of these interventions under various conditions. Currently, available sampling

  5. The potential for fungal biopesticides to reduce malaria transmission under diverse environmental conditions.

    Science.gov (United States)

    Heinig, R L; Paaijmans, Krijn P; Hancock, Penelope A; Thomas, Matthew B

    2015-12-01

    The effectiveness of conventional malaria vector control is being threatened by the spread of insecticide resistance. One promising alternative to chemicals is the use of naturally-occurring insect-killing fungi. Numerous laboratory studies have shown that isolates of fungal pathogens such as Beauveria bassiana can infect and kill adult mosquitoes, including those resistant to chemical insecticides.Unlike chemical insecticides, fungi may take up to a week or more to kill mosquitoes following exposure. This slow kill speed can still reduce malaria transmission because the malaria parasite itself takes at least eight days to complete its development within the mosquito. However, both fungal virulence and parasite development rate are strongly temperature-dependent, so it is possible that biopesticide efficacy could vary across different transmission environments.We examined the virulence of a candidate fungal isolate against two key malaria vectors at temperatures from 10-34 °C. Regardless of temperature, the fungus killed more than 90% of exposed mosquitoes within the predicted duration of the malarial extrinsic incubation period, a result that was robust to realistic diurnal temperature variation.We then incorporated temperature sensitivities of a suite of mosquito, parasite and fungus life-history traits that are important determinants of malaria transmission into a stage-structured malaria transmission model. The model predicted that, at achievable daily fungal infection rates, fungal biopesticides have the potential to deliver substantial reductions in the density of malaria-infectious mosquitoes across all temperatures representative of malaria transmission environments.Synthesis and applications. Our study combines empirical data and theoretical modelling to prospectively evaluate the potential of fungal biopesticides to control adult malaria vectors. Our results suggest that Beauveria bassiana could be a potent tool for malaria control and support further

  6. A multi-stage malaria vaccine candidate targeting both transmission and asexual parasite life-cycle stages

    DEFF Research Database (Denmark)

    Theisen, Michael; Roeffen, Will; Singh, Susheel K

    2014-01-01

    Effective control and eventual eradication of malaria drives the imperative need for clinical development of a malaria vaccine. Asexual parasite forms are responsible for clinical disease and death while apathogenic gametocytes are responsible for transmission from man to mosquito. Vaccines...

  7. Urban Malaria: Understanding its Epidemiology, Ecology, and Transmission Across Seven Diverse ICEMR Network Sites.

    Science.gov (United States)

    Wilson, Mark L; Krogstad, Donald J; Arinaitwe, Emmanuel; Arevalo-Herrera, Myriam; Chery, Laura; Ferreira, Marcelo U; Ndiaye, Daouda; Mathanga, Don P; Eapen, Alex

    2015-09-01

    A major public health question is whether urbanization will transform malaria from a rural to an urban disease. However, differences about definitions of urban settings, urban malaria, and whether malaria control should differ between rural and urban areas complicate both the analysis of available data and the development of intervention strategies. This report examines the approach of the International Centers of Excellence for Malaria Research (ICEMR) to urban malaria in Brazil, Colombia, India (Chennai and Goa), Malawi, Senegal, and Uganda. Its major theme is the need to determine whether cases diagnosed in urban areas were imported from surrounding rural areas or resulted from transmission within the urban area. If infections are being acquired within urban areas, malaria control measures must be targeted within those urban areas to be effective. Conversely, if malaria cases are being imported from rural areas, control measures must be directed at vectors, breeding sites, and infected humans in those rural areas. Similar interventions must be directed differently if infections were acquired within urban areas. The hypothesis underlying the ICEMR approach to urban malaria is that optimal control of urban malaria depends on accurate epidemiologic and entomologic information about transmission. © The American Society of Tropical Medicine and Hygiene.

  8. Assessing the Role of Climate Change in Malaria Transmission in Africa.

    Science.gov (United States)

    Ngarakana-Gwasira, E T; Bhunu, C P; Masocha, M; Mashonjowa, E

    2016-01-01

    The sensitivity of vector borne diseases like malaria to climate continues to raise considerable concern over the implications of climate change on future disease dynamics. The problem of malaria vectors shifting from their traditional locations to invade new zones is of important concern. A mathematical model incorporating rainfall and temperature is constructed to study the transmission dynamics of malaria. The reproduction number obtained is applied to gridded temperature and rainfall datasets for baseline climate and future climate with aid of GIS. As a result of climate change, malaria burden is likely to increase in the tropics, the highland regions, and East Africa and along the northern limit of falciparum malaria. Falciparum malaria will spread into the African highlands; however it is likely to die out at the southern limit of the disease.

  9. Standardizing operational vector sampling techniques for measuring malaria transmission intensity: evaluation of six mosquito collection methods in western Kenya

    OpenAIRE

    Wong, Jacklyn; Bayoh, Nabie; Olang, George; Killeen, Gerry; Hamel, Mary J; Vulule, John M.; Gimnig, John E.

    2013-01-01

    Background\\ud Operational vector sampling methods lack standardization, making quantitative comparisons of malaria transmission across different settings difficult. Human landing catch (HLC) is considered the research gold standard for measuring human-mosquito contact, but is unsuitable for large-scale sampling. This study assessed mosquito catch rates of CDC light trap (CDC-LT), Ifakara tent trap (ITT), window exit trap (WET), pot resting trap (PRT), and box resting trap (BRT) relative to HL...

  10. Relationship between child survival and malaria transmission: an analysis of the malaria transmission intensity and mortality burden across Africa (MTIMBA) project data in Rufiji demographic surveillance system, Tanzania.

    Science.gov (United States)

    Rumisha, Susan F; Smith, Thomas A; Masanja, Honorati; Abdulla, Salim; Vounatsou, Penelope

    2014-03-28

    The precise nature of the relationship between malaria mortality and levels of transmission is unclear. Due to methodological limitations, earlier efforts to assess the linkage have lead to inconclusive results. The malaria transmission intensity and mortality burden across Africa (MTIMBA) project initiated by the INDEPTH Network collected longitudinally entomological data within a number of sites in sub-Saharan Africa to study this relationship. This work linked the MTIMBA entomology database with the routinely collected vital events within the Rufiji Demographic Surveillance System to analyse the transmission-mortality relation in the region. Bayesian Bernoulli spatio-temporal Cox proportional hazards models with village clustering, adjusted for age and insecticide-treated nets (ITNs), were fitted to assess the relation between mortality and malaria transmission measured by entomology inoculation rate (EIR). EIR was predicted at household locations using transmission models and it was incorporated in the model as a covariate with measure of uncertainty. Effects of covariates estimated by the model are reported as hazard ratios (HR) with 95% Bayesian confidence interval (BCI) and spatial and temporal parameters are presented. Separate analysis was carried out for neonates, infants and children 1-4 years of age. No significant relation between all-cause mortality and intensity of malaria transmission was indicated at any age in childhood. However, a strong age effect was shown. Comparing effects of ITN and EIR on mortality at different age categories, a decrease in protective efficacy of ITN was observed (i.e. neonates: HR = 0.65; 95% BCI:0.39-1.05; infants: HR = 0.72; 95% BCI:0.48-1.07; children 1-4 years: HR = 0.88; 95% BCI:0.62-1.23) and reduction on the effect of malaria transmission exposure was detected (i.e. neonates: HR = 1.15; 95% BCI:0.95-1.36; infants: HR = 1.13; 95% BCI:0.98-1.25; children 1-4 years: HR = 1.04; 95% BCI:0.89-1.18). A very strong spatial

  11. Multiple causes of an unexpected malaria outbreak in a high-transmission area in Madagascar.

    Science.gov (United States)

    Kesteman, Thomas; Rafalimanantsoa, Solofoniaina A; Razafimandimby, Harimahefa; Rasamimanana, Heriniaina H; Raharimanga, Vaomalala; Ramarosandratana, Benjamin; Ratsimbasoa, Arsene; Ratovonjato, Jocelyn; Elissa, Nohal; Randrianasolo, Laurence; Finlay, Alyssa; Rogier, Christophe; Randrianarivelojosia, Milijaona

    2016-02-02

    The malaria burden in Madagascar dropped down last decade, largely due to scale-up of control measures. Nevertheless, a significant rise of malaria cases occurred in 2011-2012 in two regions of the rainy South-Eastern Madagascar, where malaria is considered as mesoendemic and the population is supposed to be protected by its acquired immunity against Plasmodium. A multidisciplinary investigation was conducted in order to identify the causes of the outbreak. In March 2012, a cross-sectional study was conducted in 20 randomly selected clusters, involving the rapid diagnostic testing of all ≥6 month-old members of households and a questionnaire about socio-demographic data and exposure to malaria control interventions. Changes in environmental conditions were evaluated by qualitative interview of local authorities, climatic conditions were evaluated by remote-sensing, and stock outs of malaria supplies in health facilities were evaluated by quantitative means. Two long-lasting insecticidal nets (LLINs) were sampled in each cluster in order to evaluate their condition and the remanence of their insecticidal activity. The entomological investigation also encompassed the collection Anopheles vectors in two sites, and the measure of their sensitivity to deltamethrin. The cross-sectional survey included 1615 members of 440 households. The mean Plasmodium infection rate was 25.6 % and the mean bed net use on the day before survey was 71.1 %. The prevalence of Plasmodium infections was higher in 6-14 year-old children (odds ratio (OR) 7.73 [95 % CI 3.58-16.68]), in rural areas (OR 6.25 [4.46-8.76]), in poorest socio-economic tercile (OR 1.54 [1.13-2.08]), and it was lower in individuals sleeping regularly under the bed net (OR 0.51 [0.32-0.82]). Stock outs of anti-malarial drugs in the last 6 months have been reported in two third of health facilities. Rainfalls were increased as compared with the three previous rainy seasons. Vectors collected were sensitive to

  12. Is there a risk of suburban transmission of malaria in Selangor, Malaysia?

    Directory of Open Access Journals (Sweden)

    Kamil A Braima

    Full Text Available BACKGROUND: The suburban transmission of malaria in Selangor, Malaysia's most developed and populous state still remains a concern for public health in this region. Despite much successful control efforts directed at its reduction, sporadic cases, mostly brought in by foreigners have continued to occur. In addition, cases of simian malaria caused by Plasmodium knowlesi, some with fatal outcome have caused grave concern to health workers. The aim of this study was to investigate the possibility of local malaria transmission in suburban regions of Selangor, which are adjacent to secondary rainforests. FINDINGS: A malaria survey spanning 7 years (2006 - 2012 was conducted in Selangor. A total of 1623 laboratory confirmed malaria cases were reported from Selangor's nine districts. While 72.6% of these cases (1178/1623 were attributed to imported malaria (cases originating from other countries, 25.5% (414/1623 were local cases and 1.9% (31/1623 were considered as relapse and unclassified cases combined. In this study, the most prevalent infection was P. vivax (1239 cases, prevalence 76.3% followed by P. falciparum (211, 13.0%, P. knowlesi (75, 4.6%, P. malariae (71, 4.4% and P. ovale (1, 0.06%. Mixed infections comprising of P. vivax and P. falciparum were confirmed (26, 1.6%. Entomological surveys targeting the residences of malaria patients' showed that the most commonly trapped Anopheles species was An. maculatus. No oocysts or sporozoites were found in the An. maculatus collected. Nevertheless, the possibility of An. maculatus being the malaria vector in the investigated locations was high due to its persistent occurrence in these areas. CONCLUSIONS: Malaria cases reported in this study were mostly imported cases. However the co-existence of local cases and potential Plasmodium spp. vectors should be cause for concern. The results of this survey reflect the need of maintaining closely monitored malaria control programs and continuous extensive

  13. Is there a risk of suburban transmission of malaria in Selangor, Malaysia?

    Science.gov (United States)

    Braima, Kamil A; Sum, Jia-Siang; Ghazali, Amir-Ridhwan M; Muslimin, Mustakiza; Jeffery, John; Lee, Wenn-Chyau; Shaker, Mohammed R; Elamin, Alaa-Eldeen M; Jamaiah, Ibrahim; Lau, Yee-Ling; Rohela, Mahmud; Kamarulzaman, Adeeba; Sitam, Frankie; Mohd-Noh, Rosnida; Abdul-Aziz, Noraishah M

    2013-01-01

    The suburban transmission of malaria in Selangor, Malaysia's most developed and populous state still remains a concern for public health in this region. Despite much successful control efforts directed at its reduction, sporadic cases, mostly brought in by foreigners have continued to occur. In addition, cases of simian malaria caused by Plasmodium knowlesi, some with fatal outcome have caused grave concern to health workers. The aim of this study was to investigate the possibility of local malaria transmission in suburban regions of Selangor, which are adjacent to secondary rainforests. A malaria survey spanning 7 years (2006 - 2012) was conducted in Selangor. A total of 1623 laboratory confirmed malaria cases were reported from Selangor's nine districts. While 72.6% of these cases (1178/1623) were attributed to imported malaria (cases originating from other countries), 25.5% (414/1623) were local cases and 1.9% (31/1623) were considered as relapse and unclassified cases combined. In this study, the most prevalent infection was P. vivax (1239 cases, prevalence 76.3%) followed by P. falciparum (211, 13.0%), P. knowlesi (75, 4.6%), P. malariae (71, 4.4%) and P. ovale (1, 0.06%). Mixed infections comprising of P. vivax and P. falciparum were confirmed (26, 1.6%). Entomological surveys targeting the residences of malaria patients' showed that the most commonly trapped Anopheles species was An. maculatus. No oocysts or sporozoites were found in the An. maculatus collected. Nevertheless, the possibility of An. maculatus being the malaria vector in the investigated locations was high due to its persistent occurrence in these areas. Malaria cases reported in this study were mostly imported cases. However the co-existence of local cases and potential Plasmodium spp. vectors should be cause for concern. The results of this survey reflect the need of maintaining closely monitored malaria control programs and continuous extensive malaria surveillance in Peninsula Malaysia.

  14. Is There a Risk of Suburban Transmission of Malaria in Selangor, Malaysia?

    Science.gov (United States)

    Braima, Kamil A.; Sum, Jia-Siang; Ghazali, Amir-Ridhwan M.; Muslimin, Mustakiza; Jeffery, John; Lee, Wenn-Chyau; Shaker, Mohammed R.; Elamin, Alaa-Eldeen M.; Jamaiah, Ibrahim; Lau, Yee-Ling; Rohela, Mahmud; Kamarulzaman, Adeeba; Sitam, Frankie; Mohd-Noh, Rosnida; Abdul-Aziz, Noraishah M.

    2013-01-01

    Background The suburban transmission of malaria in Selangor, Malaysia’s most developed and populous state still remains a concern for public health in this region. Despite much successful control efforts directed at its reduction, sporadic cases, mostly brought in by foreigners have continued to occur. In addition, cases of simian malaria caused by Plasmodium knowlesi, some with fatal outcome have caused grave concern to health workers. The aim of this study was to investigate the possibility of local malaria transmission in suburban regions of Selangor, which are adjacent to secondary rainforests. Findings A malaria survey spanning 7 years (2006 - 2012) was conducted in Selangor. A total of 1623 laboratory confirmed malaria cases were reported from Selangor’s nine districts. While 72.6% of these cases (1178/1623) were attributed to imported malaria (cases originating from other countries), 25.5% (414/1623) were local cases and 1.9% (31/1623) were considered as relapse and unclassified cases combined. In this study, the most prevalent infection was P. vivax (1239 cases, prevalence 76.3%) followed by P. falciparum (211, 13.0%), P. knowlesi (75, 4.6%), P. malariae (71, 4.4%) and P. ovale (1, 0.06%). Mixed infections comprising of P. vivax and P. falciparum were confirmed (26, 1.6%). Entomological surveys targeting the residences of malaria patients’ showed that the most commonly trapped Anopheles species was An. maculatus. No oocysts or sporozoites were found in the An. maculatus collected. Nevertheless, the possibility of An. maculatus being the malaria vector in the investigated locations was high due to its persistent occurrence in these areas. Conclusions Malaria cases reported in this study were mostly imported cases. However the co-existence of local cases and potential Plasmodium spp. vectors should be cause for concern. The results of this survey reflect the need of maintaining closely monitored malaria control programs and continuous extensive malaria

  15. Malaria burden in a birth cohort of HIV-exposed uninfected Ugandan infants living in a high malaria transmission setting

    Directory of Open Access Journals (Sweden)

    Abel Kakuru

    2016-10-01

    the same area. Conclusion The burden of malaria in this birth cohort of HEU infants living in a high-transmission setting and taking daily TS prophylaxis was relatively low. Alternative etiologies of fever should be considered in HEU-infants taking daily TS prophylaxis who present with fever. Trial Registration NCT00993031, registered 8 October, 2009

  16. Malaria burden in a birth cohort of HIV-exposed uninfected Ugandan infants living in a high malaria transmission setting.

    Science.gov (United States)

    Kakuru, Abel; Natureeba, Paul; Muhindo, Mary K; Clark, Tamara D; Havlir, Diane V; Cohan, Deborah; Dorsey, Grant; Kamya, Moses R; Ruel, Theodore

    2016-10-18

    HIV-exposed, uninfected (HEU) infants suffer high morbidity and mortality in the first year of life compared to HIV-unexposed, uninfected (HUU) infants, but accurate data on the contribution of malaria are limited. The incidence of febrile illnesses and malaria were evaluated in a birth cohort of HEU infants. Infants were prescribed daily trimethoprim-sulfamethoxazole (TS) prophylaxis from 6 weeks of age until exclusion of HIV-infection after cessation of breastfeeding. Infants were followed for all illnesses using passive surveillance and routine blood smears were done monthly. Malaria was diagnosed as a positive blood smear plus fever. Placental malaria was determined by histopathology, placental blood smear and PCR. Risk factors for time to first episode of malaria were assessed using a Cox proportional hazards model. Malaria incidence among HEU infants aged 6-12 months was compared to that in other cohorts of HEU and HUU infants from the same region. Among 361 HEU infants enrolled, 248 completed 12 months of follow-up resulting in 1562 episodes of febrile illness and 253 episodes of malaria after 305 person-years of follow-up. The incidence of febrile illness was 5.12 episodes per person-year (PPY), ranging from 4.13 episodes PPY in the first 4 months of life to 5.71 episodes PPY between 5 and 12 months of age. The overall malaria incidence was 0.83 episodes per person-year (PPY), increasing from 0.03 episodes PPY in the first 2 months of life to 2.00 episodes PPY between 11 and 12 months of age. There were no episodes of complicated malaria. The prevalence of asymptomatic parasitaemia was 1.2 % (19 of 1568 routine smears positive). Infants born to mothers with parasites detected from placental blood smears were at higher risk of malaria (hazard ratio = 4.51, P malaria compared to HUU infants in other cohort studies from the same area. The burden of malaria in this birth cohort of HEU infants living in a high-transmission setting and taking daily TS

  17. Characterizing the malaria rural-to-urban transmission interface: The importance of reactive case detection.

    Directory of Open Access Journals (Sweden)

    Karen Molina Gómez

    2017-07-01

    Full Text Available Reported urban malaria cases are increasing in Latin America, however, evidence of such trend remains insufficient. Here, we propose an integrated approach that allows characterizing malaria transmission at the rural-to-urban interface by combining epidemiological, entomological, and parasite genotyping methods.A descriptive study that combines active (ACD, passive (PCD, and reactive (RCD case detection was performed in urban and peri-urban neighborhoods of Quibdó, Colombia. Heads of households were interviewed and epidemiological surveys were conducted to assess malaria prevalence and identify potential risk factors. Sixteen primary cases, eight by ACD and eight by PCD were recruited for RCD. Using the RCD strategy, prevalence of 1% by microscopy (6/604 and 9% by quantitative polymerase chain reaction (qPCR (52/604 were found. A total of 73 houses and 289 volunteers were screened leading to 41 secondary cases, all of them in peri-urban settings (14% prevalence. Most secondary cases were genetically distinct from primary cases indicating that there were independent occurrences. Plasmodium vivax was the predominant species (76.3%, 71/93, most of them being asymptomatic (46/71. Urban and peri-urban neighborhoods had significant sociodemographic differences. Twenty-four potential breeding sites were identified, all in peri-urban areas. The predominant vectors for 1,305 adults were Anopheles nuneztovari (56,2% and An. Darlingi (42,5%. One An. nuneztovari specimen was confirmed naturally infected with P. falciparum by ELISA.This study found no evidence supporting the existence of urban malaria transmission in Quibdó. RCD strategy was more efficient for identifying malaria cases than ACD alone in areas where malaria transmission is variable and unstable. Incorporating parasite genotyping allows discovering hidden patterns of malaria transmission that cannot be detected otherwise. We propose to use the term "focal case" for those primary cases that

  18. Characterizing the malaria rural-to-urban transmission interface: The importance of reactive case detection.

    Science.gov (United States)

    Molina Gómez, Karen; Caicedo, M Alejandra; Gaitán, Alexandra; Herrera-Varela, Manuela; Arce, María Isabel; Vallejo, Andrés F; Padilla, Julio; Chaparro, Pablo; Pacheco, M Andreína; Escalante, Ananias A; Arevalo-Herrera, Myriam; Herrera, Sócrates

    2017-07-01

    Reported urban malaria cases are increasing in Latin America, however, evidence of such trend remains insufficient. Here, we propose an integrated approach that allows characterizing malaria transmission at the rural-to-urban interface by combining epidemiological, entomological, and parasite genotyping methods. A descriptive study that combines active (ACD), passive (PCD), and reactive (RCD) case detection was performed in urban and peri-urban neighborhoods of Quibdó, Colombia. Heads of households were interviewed and epidemiological surveys were conducted to assess malaria prevalence and identify potential risk factors. Sixteen primary cases, eight by ACD and eight by PCD were recruited for RCD. Using the RCD strategy, prevalence of 1% by microscopy (6/604) and 9% by quantitative polymerase chain reaction (qPCR) (52/604) were found. A total of 73 houses and 289 volunteers were screened leading to 41 secondary cases, all of them in peri-urban settings (14% prevalence). Most secondary cases were genetically distinct from primary cases indicating that there were independent occurrences. Plasmodium vivax was the predominant species (76.3%, 71/93), most of them being asymptomatic (46/71). Urban and peri-urban neighborhoods had significant sociodemographic differences. Twenty-four potential breeding sites were identified, all in peri-urban areas. The predominant vectors for 1,305 adults were Anopheles nuneztovari (56,2%) and An. Darlingi (42,5%). One An. nuneztovari specimen was confirmed naturally infected with P. falciparum by ELISA. This study found no evidence supporting the existence of urban malaria transmission in Quibdó. RCD strategy was more efficient for identifying malaria cases than ACD alone in areas where malaria transmission is variable and unstable. Incorporating parasite genotyping allows discovering hidden patterns of malaria transmission that cannot be detected otherwise. We propose to use the term "focal case" for those primary cases that lead to

  19. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology.

    Science.gov (United States)

    Tompkins, Adrian M; Ermert, Volker

    2013-02-18

    The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions.

  20. Substantial asymptomatic submicroscopic Plasmodium carriage during dry season in low transmission areas in Senegal: Implications for malaria control and elimination.

    Science.gov (United States)

    Niang, Makhtar; Thiam, Laty Gaye; Sane, Rokhaya; Diagne, Nafissatou; Talla, Cheikh; Doucoure, Souleymane; Faye, Joseph; Diop, Fode; Badiane, Abdoulaye; Diouf, Babacar; Camara, Diogop; Diene-Sarr, Fatoumata; Sokhna, Cheikh; Richard, Vincent; Toure-Balde, Aissatou

    2017-01-01

    In the progress towards malaria elimination, the accurate diagnosis of low-density asymptomatic infections is critical. Low-density asymptomatic submicroscopic malaria infections may act as silent reservoirs that maintain low-level residual malaria transmission in the community. Light microscopy, the gold standard in malaria diagnosis lacks the sensitivity to detect low-level parasitaemia. In this study, the presence and prevalence of submicroscopic Plasmodium carriage were investigated to estimate the parasites reservoir among asymptomatic individuals living in low transmission areas in Dielmo and Ndiop, Senegal during the dry season. A total of 2,037 blood samples were collected during cross-sectional surveys prior the malaria transmission season in July 2013 (N = 612), June 2014 (N = 723) and June 2015 (N = 702) from asymptomatic individuals living in Dielmo and Ndiop, Senegal. Samples were used to determine the prevalence of submicroscopic Plasmodium carriage by real time PCR (qPCR) in comparison to microscopy considered as gold standard. The prevalence of submicroscopic Plasmodium carriage was 3.75% (23/612), 12.44% (90/723) and 6.41% (45/702) in 2013, 2014 and 2015, respectively. No Plasmodium carriage was detected by microscopy in 2013 while microscopy-based prevalence of Plasmodium carriage accounted for only 0.27% (2/723) and 0.14% (1/702) in 2014 and 2015, respectively. Plasmodium falciparum accounted for the majority of submicroscopic infections and represented 86.95% (20/23), 81.11% (73/90) and 95.55 (43/45) of infections in 2013, 2014 and 2015 respectively. Low-density submicroscopic asymptomatic Plasmodium carriage is common in the study areas during the dry season indicating that traditional measures are insufficient to assess the scale of parasite reservoir when transmission reaches very low level. Control and elimination strategies may wish to consider using molecular methods to identify parasites carriers to guide Mass screening and Treatment

  1. Meteorological, environmental remote sensing and neural network analysis of the epidemiology of malaria transmission in Thailand

    Directory of Open Access Journals (Sweden)

    Richard Kiang

    2006-11-01

    Full Text Available In many malarious regions malaria transmission roughly coincides with rainy seasons, which provide for more abundant larval habitats. In addition to precipitation, other meteorological and environmental factors may also influence malaria transmission. These factors can be remotely sensed using earth observing environmental satellites and estimated with seasonal climate forecasts. The use of remote sensing usage as an early warning tool for malaria epidemics have been broadly studied in recent years, especially for Africa, where the majority of the world’s malaria occurs. Although the Greater Mekong Subregion (GMS, which includes Thailand and the surrounding countries, is an epicenter of multidrug resistant falciparum malaria, the meteorological and environmental factors affecting malaria transmissions in the GMS have not been examined in detail. In this study, the parasitological data used consisted of the monthly malaria epidemiology data at the provincial level compiled by the Thai Ministry of Public Health. Precipitation, temperature, relative humidity, and vegetation index obtained from both climate time series and satellite measurements were used as independent variables to model malaria. We used neural network methods, an artificial-intelligence technique, to model the dependency of malaria transmission on these variables. The average training accuracy of the neural network analysis for three provinces (Kanchanaburi, Mae Hong Son, and Tak which are among the provinces most endemic for malaria, is 72.8% and the average testing accuracy is 62.9% based on the 1994-1999 data. A more complex neural network architecture resulted in higher training accuracy but also lower testing accuracy. Taking into account of the uncertainty regarding reported malaria cases, we divided the malaria cases into bands (classes to compute training accuracy. Using the same neural network architecture on the 19 most endemic provinces for years 1994 to 2000, the

  2. Serology reveals heterogeneity of Plasmodium falciparum transmission in northeastern South Africa: implications for malaria elimination.

    Science.gov (United States)

    Biggs, Joseph; Raman, Jaishree; Cook, Jackie; Hlongwana, Khumbulani; Drakeley, Chris; Morris, Natashia; Serocharan, Ishen; Agubuzo, Eunice; Kruger, Philip; Mabuza, Aaron; Zitha, Alpheus; Machaba, Elliot; Coetzee, Maureen; Kleinschmidt, Immo

    2017-01-26

    It is widely acknowledged that modifications to existing control interventions are required if South Africa is to achieve malaria elimination. Targeting indoor residual spraying (IRS) to areas where cases have been detected is one strategy currently under investigation in northeastern South Africa. This seroprevalence baseline study, nested within a targeted IRS trial, was undertaken to provide insights into malaria transmission dynamics in South Africa and evaluate whether sero-epidemiological practices have the potential to be routinely incorporated into elimination programmes. Filter-paper blood spots, demographic and household survey data were collected from 2710 randomly selected households in 56 study wards located in the municipalities of Ba-Phalaborwa and Bushbuckridge. Blood spots were assayed for Plasmodium falciparum apical membrane antigen-1 and merozoite surface protein-119 blood-stage antigens using an enzyme linked immunosorbent assay. Seroprevalence data were analysed using a reverse catalytic model to determine malaria seroconversion rates (SCR). Geospatial cluster analysis was used to investigate transmission heterogeneity while random effects logistic regression identified risk factors associated with malaria exposure. The overall SCR across the entire study site was 0.012 (95% CI 0.008-0.017) per year. Contrasting SCRs, corresponding to distinct geographical regions across the study site, ranging from transmission heterogeneity. Geospatial cluster analysis of household seroprevalence and age-adjusted antibody responses detected statistically significant (p transmission intensity and exposure to malaria was low across both study sites, malaria transmission intensity was highly heterogeneous and associated with low socio-economic status in the region. Findings suggest focal targeting of interventions has the potential to be an appropriate strategy to deploy in South Africa. Furthermore, routinely incorporating sero-epidemiological practices into

  3. Prevalence of malaria and social determinants of transmission ...

    African Journals Online (AJOL)

    Thick and thin blood smears stained with field stains A and B were made on grease-free slides and examined microscopically for the presence of malaria parasites. Structured questionnaires were used to gather socio-demographic data and knowledge, attitude and practices of the respondents regarding malaria. Out of the ...

  4. Vector incrimination and effects of antimalarial drugs on malaria transmission and control in the Amazon Basin of Brazil

    Directory of Open Access Journals (Sweden)

    T. A. Klein

    1992-01-01

    Full Text Available World ecosystems differ significantly and a multidisciplinary malaria control approach must be adjusted to meet these requirements. These include a comprehensive understanding of the malaria vectors, their behavior, seasonal distribution and abundance, susceptibility to insecticides (physiological and behavioral, methods to reduce the numbers of human gametocyte carriers through effective health care systems and antimalarial drug treatment, urban malaria transmission versus rural or forest malaria transmission, and the impact of vaccine development. Many malaria vectors are members of species complexes and individual relationship to malaria transmission, seasonal distribution, bitting behavior, etc. is poorly understood. Additionaly, malaria patients are not examined for circulating gametocytes and both falciparum and vivax malaria patients may be highly infective to mosquitoes after treatment with currently used antimalarial drugs. Studies on the physiological and behavioral effects of DDT and other insecticides are inconclusive and need to be evalusted.

  5. Cytophilic antibodies to Plasmodium falciparum glutamate rich protein are associated with malaria protection in an area of holoendemic transmission

    DEFF Research Database (Denmark)

    Lusingu, John P A; Vestergaard, Lasse S; Alifrangis, Michael

    2005-01-01

    of intense malaria transmission. METHODS: A six month longitudinal study was conducted in an area of holoendemic malaria transmission in north-eastern Tanzania, where the incidence of febrile malaria decreased sharply by the age of three years, and anaemia constituted a significant part of the malaria......BACKGROUND: Several studies conducted in areas of medium or low malaria transmission intensity have found associations between malaria immunity and plasma antibody levels to glutamate rich protein (GLURP). This study was conducted to analyse if a similar relationship could be documented in an area...... disease burden. Plasma antibodies to glutamate rich protein (GLURP) were analysed and related with protection against malaria morbidity in models correcting for the effect of age. RESULTS: The risk of febrile malaria episodes was reduced significantly in children with measurable anti-GLURP IgG1 antibodies...

  6. Risk factors for low birth-weight in areas with varying malaria transmission in Korogwe, Tanzania: implications for malaria control

    DEFF Research Database (Denmark)

    Mmbando, Bruno Paul; Cole-Lewis, H; Sembuche, S

    2008-01-01

    Low birth weight (LBW) is a risk factor for infant mortality, morbidity, growth retardation, poor cognitive development, and chronic diseases. Maternal exposure to diseases such as malaria, HIV, and syphilis has been shown to have a significant impact on birth weight (BW). This study was aimed...... babies compared to first parity women (OR=0.44, 95% CI 0.19-0.98, P=0.045). Similarly, the risk of LBW was higher in women who had delayed MCH gestational booking and in women who conceived during high malaria transmission seasons. There was high degree of preference of digits ending with 0...

  7. The role of spatial mobility in malaria transmission in the Brazilian Amazon: The case of Porto Velho municipality, Rondônia, Brazil (2010-2012.

    Directory of Open Access Journals (Sweden)

    Jussara Rafael Angelo

    Full Text Available This study aims to describe the role of mobility in malaria transmission by discussing recent changes in population movements in the Brazilian Amazon and developing a flow map of disease transmission in this region.This study presents a descriptive analysis using an ecological approach on regional and local scales. The study location was the municipality of Porto Velho, which is the capital of Rondônia state, Brazil. Our dataset was obtained from the official health database, the population census and an environmental database. During 2000-2007 and 2007-2010, the Porto Velho municipality had an annual population growth of 1.42% and 5.07%, respectively. This population growth can be attributed to migration, which was driven by the construction of the Madeira River hydroelectric complex. From 2010 to 2012, 63,899 malaria-positive slides were reported for residents of Porto Velho municipality; 92% of the identified samples were autochthonous, and 8% were allochthonous. The flow map of patients' movements between residential areas and areas of suspected infection showed two patterns of malaria transmission: 1 commuting between residential areas and the Jirau hydropower dam reservoir, and 2 movements between urban areas and farms and resorts in rural areas. It was also observed that areas with greater occurrences of malaria were characterized by a low rate of deforestation.The Porto Velho municipality exhibits high malaria endemicity and plays an important role in disseminating the parasite to other municipalities in the Amazon and even to non-endemic areas of the country. Migration remains an important factor for the occurrence of malaria. However, due to recent changes in human occupation of the Brazilian Amazon, characterized by intense expansion of transportation networks, commuting has also become an important factor in malaria transmission. The magnitude of this change necessitates a new model to explain malaria transmission in the Brazilian

  8. Relationship between exposure to malaria and haemoglobin level of children 2-9 years old in low malaria transmission settings.

    Science.gov (United States)

    Birhanu, Zewdie; Yihdego, Yemane Ye-Ebiyo; Emana, Daniel; Feyissa, Damtew; Kenate, Silashi; Kebede, Estifanos; Getahun, Kefelegn; Yewhalaw, Delenasaw

    2017-09-01

    In the context of reduced transmission of malaria, it is essential to examine the association between exposure to malaria and haemoglobin level. This study measured the Haemoglobin level of children 2-9 years of age and examined its association with malariometric indices. A cross sectional study was conducted, during June 2016, on 763 children 2-9 years old, recruited from ten sites representing different malaria transmission settings in Ethiopia. Haemoglobin concentration was determined using HemoCue analyzer. Malariometric indices (splenomegaly rate, parasite rate and serological marker) were measured. The overall prevalence of anaemia was 17.3% (95% CI: 14.6-19.9) in the study population. Mild, moderate and severe anaemia accounted for 7.3%, 7.2% and 2.8% respectively. Of the children with anaemia (132), only 7 (5.3%) had malaria parasitaemia. The prevalence of malaria parasitaemia was 3.6% (2/56), 9.1% (5/55) and 0.0% (0/21) among children with mild, moderate and severe anaemia, respectively. Malaria reactive antibody and anaemia co-occurred in 3.13% (21/672) of the samples. Seroprevalence and parasitaemia did not have significant association with anaemia (p>0.05). However, splenomegaly was significantly associated with increased risk of anaemia (AOR=14.93; p=0.001). Anaemia was significantly higher among children 2-4 years old (22.2%), and children living in households without any insecticide treated bed net (34.0%). The prevalence of anaemia was lower by 55.0% among children living in households with at least one net (AOR=0.45, 95% CI: 0.21-0.96). Repeated exposure to malaria infections (seropositive) and parasitaemia was less likely to contribute to development of anaemia among children 2-9 years in this study setting. Thus, in low malaria endemic settings, anaemia prevention and control program required to reconsider the historical evidence that suggests malaria is one of the major risk factor for anaemia. Copyright © 2017. Published by Elsevier B.V.

  9. Impact of permethrin-treated bed nets on malaria and all-cause morbidity in young children in an area of intense perennial malaria transmission in western Kenya: cross-sectional survey

    NARCIS (Netherlands)

    ter Kuile, Feiko O.; Terlouw, Dianne J.; Phillips-Howard, Penelope A.; Hawley, William A.; Friedman, Jennifer F.; Kolczak, Margarette S.; Kariuki, Simon K.; Shi, Ya Ping; Kwena, Arthur M.; Vulule, John M.; Nahlen, Bernard L.

    2003-01-01

    Information on the impact of insecticide (permethrin)-treated bed nets (ITNs) from randomized controlled trials in areas of intense perennial malaria transmission is limited. As part of a large-scale, community-based, group-randomized controlled trial of the effect of ITNs on childhood mortality in

  10. Effect of transmission intensity on hotspots and micro-epidemiology of malaria in sub-Saharan Africa.

    Science.gov (United States)

    Mogeni, Polycarp; Omedo, Irene; Nyundo, Christopher; Kamau, Alice; Noor, Abdisalan; Bejon, Philip

    2017-06-30

    Malaria transmission intensity is heterogeneous, complicating the implementation of malaria control interventions. We provide a description of the spatial micro-epidemiology of symptomatic malaria and asymptomatic parasitaemia in multiple sites. We assembled data from 19 studies conducted between 1996 and 2015 in seven countries of sub-Saharan Africa with homestead-level geospatial data. Data from each site were used to quantify spatial autocorrelation and examine the temporal stability of hotspots. Parameters from these analyses were examined to identify trends over varying transmission intensity. Significant hotspots of malaria transmission were observed in most years and sites. The risk ratios of malaria within hotspots were highest at low malaria positive fractions (MPFs) and decreased with increasing MPF (p malaria across all sites, suggesting varying degrees of temporal stability. We observed geographical micro-variation in malaria transmission at sites with a variety of transmission intensities across sub-Saharan Africa. Hotspots are marked at lower transmission intensity, but it becomes difficult to show statistical significance when cases are sparse at very low transmission intensity. Given the predictability with which hotspots occur as transmission intensity falls, malaria control programmes should have a low threshold for responding to apparent clustering of cases.

  11. Random forest variable selection in spatial malaria transmission modelling in Mpumalanga Province, South Africa.

    Science.gov (United States)

    Kapwata, Thandi; Gebreslasie, Michael T

    2016-11-16

    Malaria is an environmentally driven disease. In order to quantify the spatial variability of malaria transmission, it is imperative to understand the interactions between environmental variables and malaria epidemiology at a micro-geographic level using a novel statistical approach. The random forest (RF) statistical learning method, a relatively new variable-importance ranking method, measures the variable importance of potentially influential parameters through the percent increase of the mean squared error. As this value increases, so does the relative importance of the associated variable. The principal aim of this study was to create predictive malaria maps generated using the selected variables based on the RF algorithm in the Ehlanzeni District of Mpumalanga Province, South Africa. From the seven environmental variables used [temperature, lag temperature, rainfall, lag rainfall, humidity, altitude, and the normalized difference vegetation index (NDVI)], altitude was identified as the most influential predictor variable due its high selection frequency. It was selected as the top predictor for 4 out of 12 months of the year, followed by NDVI, temperature and lag rainfall, which were each selected twice. The combination of climatic variables that produced the highest prediction accuracy was altitude, NDVI, and temperature. This suggests that these three variables have high predictive capabilities in relation to malaria transmission. Furthermore, it is anticipated that the predictive maps generated from predictions made by the RF algorithm could be used to monitor the progression of malaria and assist in intervention and prevention efforts with respect to malaria.

  12. Random forest variable selection in spatial malaria transmission modelling in Mpumalanga Province, South Africa

    Directory of Open Access Journals (Sweden)

    Thandi Kapwata

    2016-11-01

    Full Text Available Malaria is an environmentally driven disease. In order to quantify the spatial variability of malaria transmission, it is imperative to understand the interactions between environmental variables and malaria epidemiology at a micro-geographic level using a novel statistical approach. The random forest (RF statistical learning method, a relatively new variable-importance ranking method, measures the variable importance of potentially influential parameters through the percent increase of the mean squared error. As this value increases, so does the relative importance of the associated variable. The principal aim of this study was to create predictive malaria maps generated using the selected variables based on the RF algorithm in the Ehlanzeni District of Mpumalanga Province, South Africa. From the seven environmental variables used [temperature, lag temperature, rainfall, lag rainfall, humidity, altitude, and the normalized difference vegetation index (NDVI], altitude was identified as the most influential predictor variable due its high selection frequency. It was selected as the top predictor for 4 out of 12 months of the year, followed by NDVI, temperature and lag rainfall, which were each selected twice. The combination of climatic variables that produced the highest prediction accuracy was altitude, NDVI, and temperature. This suggests that these three variables have high predictive capabilities in relation to malaria transmission. Furthermore, it is anticipated that the predictive maps generated from predictions made by the RF algorithm could be used to monitor the progression of malaria and assist in intervention and prevention efforts with respect to malaria.

  13. Transplacental Transmission of Plasmodium falciparum in a Highly Malaria Endemic Area of Burkina Faso

    Directory of Open Access Journals (Sweden)

    Alphonse Ouédraogo

    2012-01-01

    Full Text Available Malaria congenital infection constitutes a major risk in malaria endemic areas. In this study, we report the prevalence of transplacental malaria in Burkina Faso. In labour and delivery units, thick and thin blood films were made from maternal, placental, and umbilical cord blood to determine malaria infection. A total of 1,309 mother/baby pairs were recruited. Eighteen cord blood samples (1.4% contained malaria parasites (Plasmodium falciparum. Out of the 369 (28.2% women with peripheral positive parasitemia, 211 (57.2% had placental malaria and 14 (3.8% had malaria parasites in their umbilical cord blood. The umbilical cord parasitemia levels were statistically associated with the presence of maternal peripheral parasitemia (OR=9.24, ≪0.001, placental parasitemia (OR=10.74, ≪0.001, high-density peripheral parasitemia (OR=9.62, ≪0.001, and high-density placental parasitemia (OR=4.91, =0.03. In Burkina Faso, the mother-to-child transmission rate of malaria appears to be low.

  14. Transplacental Transmission of Plasmodium falciparum in a Highly Malaria Endemic Area of Burkina Faso

    Science.gov (United States)

    Ouédraogo, Alphonse; Tiono, Alfred B.; Diarra, Amidou; Bougouma, Edith C. Christiane; Nébié, Issa; Konaté, Amadou T.; Sirima, Sodiomon B.

    2012-01-01

    Malaria congenital infection constitutes a major risk in malaria endemic areas. In this study, we report the prevalence of transplacental malaria in Burkina Faso. In labour and delivery units, thick and thin blood films were made from maternal, placental, and umbilical cord blood to determine malaria infection. A total of 1,309 mother/baby pairs were recruited. Eighteen cord blood samples (1.4%) contained malaria parasites (Plasmodium falciparum). Out of the 369 (28.2%) women with peripheral positive parasitemia, 211 (57.2%) had placental malaria and 14 (3.8%) had malaria parasites in their umbilical cord blood. The umbilical cord parasitemia levels were statistically associated with the presence of maternal peripheral parasitemia (OR = 9.24, P ≪ 0.001), placental parasitemia (OR = 10.74, P ≪ 0.001), high-density peripheral parasitemia (OR = 9.62, P ≪ 0.001), and high-density placental parasitemia (OR = 4.91, P = 0.03). In Burkina Faso, the mother-to-child transmission rate of malaria appears to be low. PMID:22174725

  15. A controlled human malaria infection model enabling evaluation of transmission-blocking interventions.

    Science.gov (United States)

    Collins, Katharine A; Wang, Claire Yt; Adams, Matthew; Mitchell, Hayley; Rampton, Melanie; Elliott, Suzanne; Reuling, Isaie J; Bousema, Teun; Sauerwein, Robert; Chalon, Stephan; Möhrle, Jörg J; McCarthy, James S

    2018-02-01

    Drugs and vaccines that can interrupt the transmission of Plasmodium falciparum will be important for malaria control and elimination. However, models for early clinical evaluation of candidate transmission-blocking interventions are currently unavailable. Here we describe a new model for evaluating malaria transmission from humans to Anopheles mosquitoes using controlled human malaria infection (CHMI). Seventeen healthy malaria-naïve volunteers underwent CHMI by intravenous inoculation of P. falciparum-infected erythrocytes to initiate blood-stage infection. Seven to eight days after inoculation participants received piperaquine (480 mg) to attenuate asexual parasite replication while allowing gametocytes to develop and mature. Primary endpoints were development of gametocytemia, the transmissibility of gametocytes from humans to mosquitoes, and the safety and tolerability of the CHMI transmission model. To investigate in-vivo gametocytocidal drug activity in this model, participants were either given an experimental antimalarial, artefenomel (500 mg), a known gametocytocidal drug, primaquine (15 mg), or remained untreated during the period of gametocyte carriage. Male and female gametocytes were detected in all participants, and transmission to mosquitoes was achieved from 8/11 (73%) participants evaluated. Compared to untreated controls (n = 7), primaquine (15 mg, n = 5) significantly reduced gametocyte burden (P = 0.01), while artefenomel (500 mg, n = 4) had no effect. Adverse events (AEs) were mostly mild or moderate. Three AEs were assessed as severe - fatigue, elevated alanine aminotransferase, and elevated aspartate aminotransferase - and were attributed to malaria infection. Transaminase elevations were transient, asymptomatic, and resolved without intervention. We report the safe and reproducible induction of P. falciparum gametocytes in healthy malaria-naïve volunteers at densities infectious to mosquitoes, thereby demonstrating the potential for

  16. Agro-ecosystems impact malaria prevalence: large-scale irrigation drives vector population in western Ethiopia.

    Science.gov (United States)

    Jaleta, Kassahun T; Hill, Sharon R; Seyoum, Emiru; Balkew, Meshesha; Gebre-Michael, Teshome; Ignell, Rickard; Tekie, Habte

    2013-10-02

    Development strategies in Ethiopia have largely focused on the expansion of irrigated agriculture in the last decade to reduce poverty and promote economic growth. However, such irrigation schemes can worsen the socio-economic state by aggravating the problem of mosquito-borne diseases. In this study, the effect of agro-ecosystem practices on malaria prevalence and the risk of malaria transmission by the primary vector mosquito, Anopheles arabiensis, in Ethiopia were investigated. In three villages in western Ethiopia practising large-scale sugarcane irrigation, traditional smallholder irrigation and non-irrigated farming, cross-sectional parasitological surveys were conducted during the short rains, after the long rains and during the dry season. Entomological surveys were undertaken monthly (February 2010-January 2011) in each village using light traps, pyrethrum spray collections and artificial pit shelters. Malaria prevalence and the risk of transmission by An. arabiensis assessed by the average human biting rate, mean sporozoite rate and estimated annual entomological inoculation rate were significantly higher in the irrigated sugarcane agro-ecosystem compared to the traditionally irrigated and non-irrigated agro-ecosystems. The average human biting rate was significantly elevated by two-fold, while the mean sporozoite rate was 2.5-fold higher, and the annual entomological inoculation rate was 4.6 to 5.7-fold higher in the irrigated sugarcane compared to the traditional and non-irrigated agro-ecosystems. Active irrigation clearly affected malaria prevalence by increasing the abundance of host seeking Anopheles mosquitoes year-round and thus increasing the risk of infective bites. The year-round presence of sporozoite-infected vectors due to irrigation practices was found to strengthen the coupling between rainfall and risk of malaria transmission, both on- and off-season. This study demonstrates the negative impact of large-scale irrigation expansion on

  17. Malaria transmission potential by Anopheles sinensis in the Republic of Korea.

    Science.gov (United States)

    Lee, H I; Lee, J S; Shin, E H; Lee, W J; Kim, Y Y; Lee, K R

    2001-06-01

    To evaluate the factors that determine the transmission level of vivax malaria using vectorial capacity, entomological surveys were conducted from June to August, 2000. From 6 nights of human-bait collection in Paju, the human biting rate (ma) was counted as 87.5 bites/man/night. The parity of Anopheles sinensis from human baiting collections fluctuated from 41% to 71% (average 48.8%) of which the rate gradually increased as time passed on: 35.2% in Jun.; 55.0% in July; 66.2% in Aug. From this proportion of parous, we could estimate the probability of daily survival rate of An. sinensis to be 0.79 assumed with 3 days gonotrophic cycle and the expectancy of infective life through 11 days could be defined as 0.073. Blood meal analysis was performed using ELISA to determine the blood meal source. Only 0.8% of blood meals were from human hosts. We could conclude that An. sinensis is highly zoophilic (cow 61.8%). Malaria is highly unstable (stability index malaria transmission potential is very low due to a low human blood index. Therefore, we could conclude that malaria transmission by An. sinensis is resulted by high population density, not by high transmission potential. For this reason, we need more effort to decrease vector population and vector-human contact to eradicate malaria in Korea.

  18. Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa.

    Science.gov (United States)

    Snow, R W; Omumbo, J A; Lowe, B; Molyneux, C S; Obiero, J O; Palmer, A; Weber, M W; Pinder, M; Nahlen, B; Obonyo, C; Newbold, C; Gupta, S; Marsh, K

    1997-06-07

    Malaria remains a major cause of mortality and morbidity in Africa. Many approaches to malaria control involve reducing the chances of infection but little is known of the relations between parasite exposure and the development of effective clinical immunity so the long-term effect of such approaches to control on the pattern and frequency of malaria cannot be predicted. We have prospectively recorded paediatric admissions with severe malaria over three to five years from five discrete communities in The Gambia and Kenya. Demographic analysis of the communities exposed to disease risk allowed the estimation of age-specific rates for severe malaria. Within each community the exposure to Plasmodium falciparum infection was determined through repeated parasitological and serological surveys among children and infants. We used acute respiratory-tract infections (ARI) as a comparison. 3556 malaria admissions were recorded for the five sites. Marked differences were observed in age, clinical spectrum and rates of severe malaria between the five sites. Paradoxically, the risks of severe disease in childhood were lowest among populations with the highest transmission intensities, and the highest disease risks were observed among populations exposed to low-to-moderate intensities of transmission. For severe malaria, for example, admission rates (per 1000 per year) for children up to their 10th birthday were estimated as 3.9, 25.8, 25.9, 16.7, and 18.0 in the five communities; the forces of infection estimated for those communities (new infections per infant per month) were 0.001, 0.034, 0.050, 0.093, and 0.176, respectively. Similar trends were noted for cerebral malaria and for severe malaria anaemia but not for ARI. Mean age of disease decreased with increasing transmission intensity. We propose that a critical determinant of life-time disease risk is the ability to develop clinical immunity early in life during a period when other protective mechanisms may operate. In

  19. Modern immunological approaches to assess malaria transmission and immunity and to diagnose plasmodial infection

    Directory of Open Access Journals (Sweden)

    C. T. Daniel-Ribeiro

    1992-01-01

    Full Text Available The present paper reviews our recent data concerning the use of immunological methods employing monoclonal antibodies and synthetic peptides to study malaria transmission and immunity and to diagnose plasmodial infection. As concerns malaria transmission, we studied the main vectors of human malaria and the plasmodial species transmitted in endemic areas of Rondônia state, Brazil. The natural infection on anopheline was evaluated by immunoradiometric assay (IRMA using monoclonal antibodies to an immunodominant sporozoite surface antigen (CS protein demonstrated to be species specific. Our results showed that among six species of Anopheles found infected, An. darlingi was the main vector transmitting Plasmodium falciparum and P. vivax malaria in the immediate vicinity of houses. In order to assess the level of anti-CS antibodies we studied, by IRMA using the synthetic peptide corresponding to the repetitive epitope of the sporozoite CS protein, sera of individuals living in the same areas where the entomological survey has been performed. In this assay the prevalence of anti-CS antibodies was very low and did not reflect the malaria transmission rate in the studied areas. In relation to malaria diagnosis, a monoclonal antibody specific to an epitope of a 50 kDa exoantigen, the major component of supernatant collected at the time of schizont rupture, was used as a probe for the detection of P. falciparum antigens. This assay seemed to be more sensitive than parasitological examination for malaria diagnosis since it was able to detect plasmodial antigens in both symptomatic and asymtomatic individuals with negative thick blood smear at different intervals after a last parasitologically confirmed confirmed attack of malaria.

  20. Combined DNA extraction and antibody elution from filter papers for the assessment of malaria transmission intensity in epidemiological studies

    NARCIS (Netherlands)

    Baidjoe, A.; Stone, W.; Ploemen, I.; Shagari, S.; Grignard, L.; Osoti, V.; Makori, E.; Stevenson, J.; Kariuki, S.; Sutherland, C.; Sauerwein, R.; Cox, J.; Drakeley, C.; Bousema, T.

    2013-01-01

    BACKGROUND: Informing and evaluating malaria control efforts relies on knowledge of local transmission dynamics. Serological and molecular tools have demonstrated great sensitivity to quantify transmission intensity in low endemic settings where the sensitivity of traditional methods is limited.

  1. Detecting Foci of Malaria Transmission with School Surveys: A Pilot Study in the Gambia.

    Directory of Open Access Journals (Sweden)

    Ebako N Takem

    Full Text Available In areas of declining malaria transmission such as in The Gambia, the identification of malaria infected individuals becomes increasingly harder. School surveys may be used to identify foci of malaria transmission in the community.The survey was carried out in May-June 2011, before the beginning of the malaria transmission season. Thirty two schools in the Upper River Region of The Gambia were selected with probability proportional to size; in each school approximately 100 children were randomly chosen for inclusion in the study. Each child had a finger prick blood sample collected for the determination of antimalarial antibodies by ELISA, malaria infection by microscopy and PCR, and for haemoglobin measurement. In addition, a simple questionnaire on socio-demographic variables and the use of insecticide-treated bed nets was completed. The cut-off for positivity for antimalarial antibodies was obtained using finite mixture models. The clustered nature of the data was taken into account in the analyses.A total of 3,277 children were included in the survey. The mean age was 10 years (SD = 2.7 [range 4-21], with males and females evenly distributed. The prevalence of malaria infection as determined by PCR was 13.6% (426/3124 [95% CI = 12.2-16.3] with marked variation between schools (range 3-25%, p<0.001, while the seroprevalence was 7.8% (234/2994 [95%CI = 6.4-9.8] for MSP119, 11.6% (364/2997 [95%CI = 9.4-14.5] for MSP2, and 20.0% (593/2973 [95% CI = 16.5-23.2 for AMA1. The prevalence of all the three antimalarial antibodies positive was 2.7% (79/2920.This survey shows that malaria prevalence and seroprevalence before the transmission season were highly heterogeneous.

  2. Malaria vectors and transmission dynamics in coastal south-western Cameroon

    Directory of Open Access Journals (Sweden)

    Titanji Vincent PK

    2007-01-01

    Full Text Available Abstract Background Malaria is a major public health problem in Cameroon. Unlike in the southern forested areas where the epidemiology of malaria has been better studied prior to the implementation of control activities, little is known about the distribution and role of anophelines in malaria transmission in the coastal areas. Methods A 12-month longitudinal entomological survey was conducted in Tiko, Limbe and Idenau from August 2001 to July 2002. Mosquitoes captured indoors on human volunteers were identified morphologically. Species of the Anopheles gambiae complex were identified using the polymerase chain reaction (PCR. Mosquito infectivity was detected by the enzyme-linked immunosorbent assay and PCR. Malariometric indices (plasmodic index, gametocytic index, parasite species prevalence were determined in three age groups (15 yrs and followed-up once every three months. Results In all, 2,773 malaria vectors comprising Anopheles gambiae (78.2%, Anopheles funestus (17.4% and Anopheles nili (7.4% were captured. Anopheles melas was not anthropophagic. Anopheles gambiae had the highest infection rates. There were 287, 160 and 149 infective bites/person/year in Tiko, Limbe and Idenau, respectively. Anopheles gambiae accounted for 72.7%, An. funestus for 23% and An. nili for 4.3% of the transmission. The prevalence of malaria parasitaemia was 41.5% in children 15 years, and Plasmodium falciparum was the predominant parasite species. Conclusion Malaria transmission is perennial, rainfall dependent and An. melas does not contribute to transmission. These findings are important in the planning and implementation of malaria control activities in coastal Cameroon and West Africa.

  3. An integrated risk and vulnerability assessment framework for climate change and malaria transmission in East Africa.

    Science.gov (United States)

    Onyango, Esther Achieng; Sahin, Oz; Awiti, Alex; Chu, Cordia; Mackey, Brendan

    2016-11-11

    Malaria is one of the key research concerns in climate change-health relationships. Numerous risk assessments and modelling studies provide evidence that the transmission range of malaria will expand with rising temperatures, adversely impacting on vulnerable communities in the East African highlands. While there exist multiple lines of evidence for the influence of climate change on malaria transmission, there is insufficient understanding of the complex and interdependent factors that determine the risk and vulnerability of human populations at the community level. Moreover, existing studies have had limited focus on the nature of the impacts on vulnerable communities or how well they are prepared to cope. In order to address these gaps, a systems approach was used to present an integrated risk and vulnerability assessment framework for studies of community level risk and vulnerability to malaria due to climate change. Drawing upon published literature on existing frameworks, a systems approach was applied to characterize the factors influencing the interactions between climate change and malaria transmission. This involved structural analysis to determine influential, relay, dependent and autonomous variables in order to construct a detailed causal loop conceptual model that illustrates the relationships among key variables. An integrated assessment framework that considers indicators of both biophysical and social vulnerability was proposed based on the conceptual model. A major conclusion was that this integrated assessment framework can be implemented using Bayesian Belief Networks, and applied at a community level using both quantitative and qualitative methods with stakeholder engagement. The approach enables a robust assessment of community level risk and vulnerability to malaria, along with contextually relevant and targeted adaptation strategies for dealing with malaria transmission that incorporate both scientific and community perspectives.

  4. Detecting Foci of Malaria Transmission with School Surveys: A Pilot Study in the Gambia.

    Science.gov (United States)

    Takem, Ebako N; Affara, Muna; Amambua-Ngwa, Alfred; Okebe, Joseph; Ceesay, Serign J; Jawara, Musa; Oriero, Eniyou; Nwakanma, Davis; Pinder, Margaret; Clifford, Caitlin; Taal, Makie; Sowe, Momodou; Suso, Penda; Mendy, Alphonse; Mbaye, Amicoleh; Drakeley, Chris; D'Alessandro, Umberto

    2013-01-01

    In areas of declining malaria transmission such as in The Gambia, the identification of malaria infected individuals becomes increasingly harder. School surveys may be used to identify foci of malaria transmission in the community. The survey was carried out in May-June 2011, before the beginning of the malaria transmission season. Thirty two schools in the Upper River Region of The Gambia were selected with probability proportional to size; in each school approximately 100 children were randomly chosen for inclusion in the study. Each child had a finger prick blood sample collected for the determination of antimalarial antibodies by ELISA, malaria infection by microscopy and PCR, and for haemoglobin measurement. In addition, a simple questionnaire on socio-demographic variables and the use of insecticide-treated bed nets was completed. The cut-off for positivity for antimalarial antibodies was obtained using finite mixture models. The clustered nature of the data was taken into account in the analyses. A total of 3,277 children were included in the survey. The mean age was 10 years (SD = 2.7) [range 4-21], with males and females evenly distributed. The prevalence of malaria infection as determined by PCR was 13.6% (426/3124) [95% CI = 12.2-16.3] with marked variation between schools (range 3-25%, p<0.001), while the seroprevalence was 7.8% (234/2994) [95%CI = 6.4-9.8] for MSP119, 11.6% (364/2997) [95%CI = 9.4-14.5] for MSP2, and 20.0% (593/2973) [95% CI = 16.5-23.2) for AMA1. The prevalence of all the three antimalarial antibodies positive was 2.7% (79/2920). This survey shows that malaria prevalence and seroprevalence before the transmission season were highly heterogeneous.

  5. Evaluation of a laboratory quality assurance pilot programme for malaria diagnostics in low-transmission areas of Kenya, 2013.

    Science.gov (United States)

    Wanja, Elizabeth; Achilla, Rachel; Obare, Peter; Adeny, Rose; Moseti, Caroline; Otieno, Victor; Morang'a, Collins; Murigi, Ephantus; Nyamuni, John; Monthei, Derek R; Ogutu, Bernhards; Buff, Ann M

    2017-05-25

    One objective of the Kenya National Malaria Strategy 2009-2017 is scaling access to prompt diagnosis and effective treatment. In 2013, a quality assurance (QA) pilot was implemented to improve accuracy of malaria diagnostics at selected health facilities in low-transmission counties of Kenya. Trends in malaria diagnostic and QA indicator performance during the pilot are described. From June to December 2013, 28 QA officers provided on-the-job training and mentoring for malaria microscopy, malaria rapid diagnostic tests and laboratory QA/quality control (QC) practices over four 1-day visits at 83 health facilities. QA officers observed and recorded laboratory conditions and practices and cross-checked blood slides for malaria parasite presence, and a portion of cross-checked slides were confirmed by reference laboratories. Eighty (96%) facilities completed the pilot. Among 315 personnel at pilot initiation, 13% (n = 40) reported malaria diagnostics training within the previous 12 months. Slide positivity ranged from 3 to 7%. Compared to the reference laboratory, microscopy sensitivity ranged from 53 to 96% and positive predictive value from 39 to 53% for facility staff and from 60 to 96% and 52 to 80%, respectively, for QA officers. Compared to reference, specificity ranged from 88 to 98% and negative predictive value from 98 to 99% for health-facility personnel and from 93 to 99% and 99%, respectively, for QA officers. The kappa value ranged from 0.48-0.66 for facility staff and 0.57-0.84 for QA officers compared to reference. The only significant test performance improvement observed for facility staff was for specificity from 88% (95% CI 85-90%) to 98% (95% CI 97-99%). QA/QC practices, including use of positive-control slides, internal and external slide cross-checking and recording of QA/QC activities, all increased significantly across the pilot (p malaria QA/QC practices over the pilot. However, these advances did not translate into improved accuracy of

  6. Pharmacotherapy follow-up: Role in active malaria surveillance in a travel medicine centre outside the transmission area in Brazil.

    Science.gov (United States)

    Pedro, R S; Brasil, P; Pina-Costa, A; Machado, C R; Damasceno, L S; Daniel-Ribeiro, C T; Guaraldo, L

    2017-12-01

    Malaria is a potentially severe disease, widespread in tropical and subtropical areas. Apart from parasite drug resistance, which receives the largest share of attention, several factors directly influence the response to antimalarial treatment such as incorrect doses, adverse drug events, lack of adherence to treatment, drug quality and drug-drug interactions. Pharmacotherapy follow-up can be used to monitor and improve the effectiveness of treatment, prevent drug-related problems and ensure patient safety. The aim of this study was to describe the results of the implementation of pharmacotherapy follow-up of patients with malaria seen at a reference centre for malaria diagnosis and treatment (CPD-Mal) located in the city of Rio de Janeiro, an area without malaria transmission. A descriptive study was conducted from January 2009 to September 2013 at the Instituto Nacional de Infectologia Evandro Chagas (INI) of the Fundação Oswaldo Cruz (Fiocruz). All malaria patients enrolled in the study were treated according to the Brazilian Malaria Therapy Guidelines. Data collected during pharmacotherapy follow-up were recorded in a standardized form. The variables included were age, gender, comorbidities, antimalarials and concomitant medications used, adverse drug reactions (ADR), clinical and parasitological cure times, and treatment outcomes classified as success, recurrence (recrudescence or relapse); and lost to follow-up. The ADR were classified by severity (DAIDS-NIH), organ system affected (WHO-ART) and likelihood to be caused by drugs (Naranjo scale). One hundred thirteen cases of malaria were included. Patients were aged between 13 and 66 years and the majority of them (75.2%) were male. Ninety-four ADR were observed, most classified as mild (85.1%), related to disorders of the gastrointestinal system (63.8%), such as nausea and vomiting, and assessed as "possibly" caused by the antimalarial drugs (91.5%). The majority of clinical (90.9%) and parasitological

  7. Reduction of malaria during pregnancy by permethrin-treated bed nets in an area of intense perennial malaria transmission in western Kenya

    NARCIS (Netherlands)

    ter Kuile, Feiko O.; Terlouw, Dianne J.; Phillips-Howard, Penelope A.; Hawley, William A.; Friedman, Jennifer F.; Kariuki, Simon K.; Shi, Ya Ping; Kolczak, Margarette S.; Lal, Altaf A.; Vulule, John M.; Nahlen, Bernard L.

    2003-01-01

    The impact of insecticide (permethrin)-treated bed nets (ITNs) on malaria in pregnancy was studied in a rural area in western Kenya with intense perennial malaria transmission. All households in 40 of 79 villages were randomized to receive ITNs by January 1997. The ITNs were distributed in control

  8. Effects of permethrin-treated bed nets on immunity to malaria in western Kenya II. Antibody responses in young children in an area of intense malaria transmission

    NARCIS (Netherlands)

    Kariuki, Simon K.; Lal, Altaf A.; Terlouw, Dianne J.; ter Kuile, Feiko O.; Ong'echa, John M. O.; Phillips-Howard, Penelope A.; Orago, Alloys S. S.; Kolczak, Margarette S.; Hawley, William A.; Nahlen, Bernard L.; Shi, Ya Ping

    2003-01-01

    As part of a large community-based trial on the impact of insecticide (permethrin)-treated bed nets (ITNs) on childhood morbidity and mortality in an area of intense perennial malaria transmission in western Kenya, we assessed the effects of ITNs on malaria-specific humoral responses in young

  9. Variation in Malaria Transmission Dynamics in Three Different Sites in Western Kenya

    Directory of Open Access Journals (Sweden)

    S. S. Imbahale

    2012-01-01

    Full Text Available The main objective was to investigate malaria transmission dynamics in three different sites, two highland villages (Fort Ternan and Lunyerere and a lowland peri-urban area (Nyalenda of Kisumu city. Adult mosquitoes were collected using PSC and CDC light trap while malaria parasite incidence data was collected from a cohort of children on monthly basis. Rainfall, humidity and temperature data were collected by automated weather stations. Negative binomial and Poisson generalized additive models were used to examine the risk of being infected, as well as the association with the weather variables. Anopheles gambiae s.s. was most abundant in Lunyerere, An. arabiensis in Nyalenda and An. funestus in Fort Ternan. The CDC light traps caught a higher proportion of mosquitoes (52.3% than PSC (47.7%, although not significantly different (P=0.689. The EIR’s were 0, 61.79 and 6.91 bites/person/year for Fort Ternan, Lunyerere and Nyalenda. Site, month and core body temperature were all associated with the risk of having malaria parasites (P<0.0001. Rainfall was found to be significantly associated with the occurrence of P. falciparum malaria parasites, but not relative humidity and air temperature. The presence of malaria parasite-infected children in all the study sites provides evidence of local malaria transmission.

  10. Analysis of a malaria model with mosquito-dependent transmission ...

    Indian Academy of Sciences (India)

    Malaria is caused by four species of protozoa in the genus. Plasmodium. The parasites are transmitted to humans, only by female mosquitoes belong- ing to certain species of the genus anopheles, each time the infected insect takes a blood meal. Conversely, the female mosquito can pick up the infection when they bite ...

  11. Entomological and transmission risk indices of malaria vectors in ...

    African Journals Online (AJOL)

    Baseline survey is an integral component of a malaria vector control programme, providing valuable information on mosquito behaviour that guide the suitability of chosen interventions. A need assessment of baseline entomological indices towards the future implementation of indoor residual spray (IRS) was conducted in ...

  12. Entomological and parasitological indices of malaria transmission in ...

    African Journals Online (AJOL)

    Out of 445 blood samples examined for malaria parasite 315 (70.80%) were positive while 130 (29.20%) were negative (p<0.05). This study provides useful baseline data for designing strategies for the control of mosquito-borne diseases in Minna and its environs. Keywords: pyrethroid, diversity, abundance, Anopheles sp., ...

  13. 68 Transmission intensity and malaria vector population structure in ...

    African Journals Online (AJOL)

    economic activities include crop agriculture and livestock keeping. Adult mosquito collection and ... Based on the sequence of nucleotide amplified, An. arabiensis with 315bp, An. gambiae s.s with 390bp DNA fragments were .... for the design and implementation of malaria control strategies. Like in our study, studies.

  14. Mapping Risk of Malaria Transmission in Mainland Portugal Using a Mathematical Modelling Approach

    Science.gov (United States)

    Capinha, César; Rocha, Jorge; Sousa, Carla

    2016-01-01

    Malaria is currently one of the world´s major health problems. About a half-million deaths are recorded every year. In Portugal, malaria cases were significantly high until the end of the 1950s but the disease was considered eliminated in 1973. In the past few years, endemic malaria cases have been recorded in some European countries. With the increasing human mobility from countries with endemic malaria to Portugal, there is concern about the resurgence of this disease in the country. Here, we model and map the risk of malaria transmission for mainland Portugal, considering 3 different scenarios of existing imported infections. This risk assessment resulted from entomological studies on An. atroparvus, the only known mosquito capable of transmitting malaria in the study area. We used the malariogenic potential (determined by receptivity, infectivity and vulnerability) applied over geospatial data sets to estimate spatial variation in malaria risk. The results suggest that the risk exists, and the hotspots are concentrated in the northeast region of the country and in the upper and lower Alentejo regions. PMID:27814371

  15. High Iron Stores in the Low Malaria Season Increase Malaria Risk in the High Transmission Season in a Prospective Cohort of Rural Zambian Children.

    Science.gov (United States)

    Barffour, Maxwell A; Schulze, Kerry J; Coles, Christian L; Chileshe, Justin; Kalungwana, Ng'andwe; Arguello, Margia; Siamusantu, Ward; Moss, William J; West, Keith P; Palmer, Amanda C

    2017-08-01

    Background: Higher iron stores, defined by serum ferritin (SF) concentration, may increase malaria risk. Objective: We evaluated the association between SF assessed during low malaria season and the risk of malaria during high malaria season, controlling for inflammation. Methods: Data for this prospective study were collected from children aged 4-8 y ( n = 745) participating in a biofortified maize efficacy trial in rural Zambia. All malaria cases were treated at baseline (September 2012). We used baseline SF and malaria status indicated by positive microscopy at endline (March 2013) to define exposure and outcome, respectively. Iron status was defined as deficient (corrected or uncorrected SF malaria in the high transmission seasons (endline) as a function of iron status assessed in the low malaria seasons (baseline). Results: We observed an age-dependent, positive dose-response association between ferritin in the low malaria season and malaria incidence during the high malaria season in younger children. In children aged malaria risk in the moderate iron status [incidence rate ratio (IRR) with SF: 1.56; 95% CI: 0.64, 3.86; IRR with inflammation-corrected SF: 1.92; 95% CI: 0.75, 4.93] and high iron status (IRR with SF: 2.66; 95% CI: 1.10, 6.43; or IRR with corrected SF: 2.93; 95% CI: 1.17, 7.33) categories compared with the deficient iron status category. The relative increase in malaria risk for children with high iron status was statistically significant only among those with a concurrently normal serum soluble transferrin receptor concentration (malaria risk. Our findings underscore the need to integrate iron interventions with malaria control programs. This trial was registered at clinicaltrials.gov as NCT01695148. © 2017 American Society for Nutrition.

  16. Development of a transmission-blocking malaria vaccine: progress, challenges, and the path forward.

    Science.gov (United States)

    Nunes, Julia K; Woods, Colleen; Carter, Terrell; Raphael, Theresa; Morin, Merribeth J; Diallo, Diadier; Leboulleux, Didier; Jain, Sanjay; Loucq, Christian; Kaslow, David C; Birkett, Ashley J

    2014-09-29

    New interventions are needed to reduce morbidity and mortality associated with malaria, as well as to accelerate elimination and eventual eradication. Interventions that can break the cycle of parasite transmission, and prevent its reintroduction, will be of particular importance in achieving the eradication goal. In this regard, vaccines that interrupt malaria transmission (VIMT) have been highlighted as an important intervention, including transmission-blocking vaccines that prevent human-to-mosquito transmission by targeting the sexual, sporogonic, or mosquito stages of the parasite (SSM-VIMT). While the significant potential of this vaccine approach has been appreciated for decades, the development and licensure pathways for vaccines that target transmission and the incidence of infection, as opposed to prevention of clinical malaria disease, remain ill-defined. This article describes the progress made in critical areas since 2010, highlights key challenges that remain, and outlines important next steps to maximize the potential for SSM-VIMTs to contribute to the broader malaria elimination and eradication objectives. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Can antibodies against flies alter malaria transmission in birds by changing vector behavior?

    Science.gov (United States)

    Ghosh, Suma; Waite, Jessica L; Clayton, Dale H; Adler, Frederick R

    2014-10-07

    Transmission of insect-borne diseases is shaped by the interactions among parasites, vectors, and hosts. Any factor that alters movement of infected vectors from infected to uninfeced hosts will in turn alter pathogen spread. In this paper, we study one such pathogen-vector-host system, avian malaria in pigeons transmitted by fly ectoparasites, where both two-way and three-way interactions play a key role in shaping disease spread. Bird immune defenses against flies can decrease malaria prevalence by reducing fly residence time on infected birds or increase disease prevalence by enhancing fly movement and thus infection transmission. We develop a mathematical model that illustrates how these changes in vector behavior influence pathogen transmission and show that malaria prevalence is maximized at an intermediate level of defense avoidance by the flies. Understanding how host immune defenses indirectly alter disease transmission by influencing vector behavior has implications for reducing the transmission of human malaria and other vectored pathogens. Published by Elsevier Ltd.

  18. Simplified models of vector control impact upon malaria transmission by zoophagic mosquitoes.

    Directory of Open Access Journals (Sweden)

    Samson S Kiware

    Full Text Available BACKGROUND: High coverage of personal protection measures that kill mosquitoes dramatically reduce malaria transmission where vector populations depend upon human blood. However, most primary malaria vectors outside of sub-Saharan Africa can be classified as "very zoophagic," meaning they feed occasionally (<10% of blood meals upon humans, so personal protection interventions have negligible impact upon their survival. METHODS AND FINDINGS: We extended a published malaria transmission model to examine the relationship between transmission, control, and the baseline proportion of bloodmeals obtained from humans (human blood index. The lower limit of the human blood index enables derivation of simplified models for zoophagic vectors that (1 Rely on only three field-measurable parameters. (2 Predict immediate and delayed (with and without assuming reduced human infectivity, respectively impacts of personal protection measures upon transmission. (3 Illustrate how appreciable indirect communal-level protection for non-users can be accrued through direct personal protection of users. (4 Suggest the coverage and efficacy thresholds required to attain epidemiological impact. The findings suggest that immediate, indirect, community-wide protection of users and non-users alike may linearly relate to the efficacy of a user's direct personal protection, regardless of whether that is achieved by killing or repelling mosquitoes. High protective coverage and efficacy (≥80% are important to achieve epidemiologically meaningful impact. Non-users are indirectly protected because the two most common species of human malaria are strict anthroponoses. Therefore, the small proportion of mosquitoes that are killed or diverted while attacking humans can represent a large proportion of those actually transmitting malaria. CONCLUSIONS: Simplified models of malaria transmission by very zoophagic vectors may be used by control practitioners to predict intervention impact

  19. Malaria epidemiology in an area of stable transmission in tribal population of Jharkhand, India

    DEFF Research Database (Denmark)

    Das, Manoj K; Prajapati, Brijesh K; Tiendrebeogo, Régis W

    2017-01-01

    BACKGROUND: Malaria remains an important health problem in India with approximately 1 million cases in 2014. Of these, 7% occurred in the Jharkhand state mainly in the tribal population. METHODS: This study was conducted in Dumargarhi, a tribal village about 42 km east of Ranchi city, Jharkhand...... or complete out of phase pattern of the vector density peaks together with a high prevalence of parasite positive individuals in the study population explains the year-round malaria transmission in the study region. CONCLUSIONS: The collection of clinical data from a well-characterized tribal cohort from...... Jharkhand, India, has provided evidence for naturally acquired immunity against malaria in this hyperendemic region. The study also suggests that enforcement of existing control programmes can reduce the malaria burden further....

  20. Border Malaria Associated with Multidrug Resistance on Thailand-Myanmar and Thailand-Cambodia Borders: Transmission Dynamic, Vulnerability, and Surveillance

    Directory of Open Access Journals (Sweden)

    Adisak Bhumiratana

    2013-01-01

    Full Text Available This systematic review elaborates the concepts and impacts of border malaria, particularly on the emergence and spread of Plasmodium falciparum and Plasmodium vivax multidrug resistance (MDR malaria on Thailand-Myanmar and Thailand-Cambodia borders. Border malaria encompasses any complex epidemiological settings of forest-related and forest fringe-related malaria, both regularly occurring in certain transmission areas and manifesting a trend of increased incidence in transmission prone areas along these borders, as the result of interconnections of human settlements and movement activities, cross-border population migrations, ecological changes, vector population dynamics, and multidrug resistance. For regional and global perspectives, this review analyzes and synthesizes the rationales pertaining to transmission dynamics and the vulnerabilities of border malaria that constrain surveillance and control of the world’s most MDR falciparum and vivax malaria on these chaotic borders.

  1. Border Malaria Associated with Multidrug Resistance on Thailand-Myanmar and Thailand-Cambodia Borders: Transmission Dynamic, Vulnerability, and Surveillance

    Science.gov (United States)

    Bhumiratana, Adisak; Intarapuk, Apiradee; Sorosjinda-Nunthawarasilp, Prapa; Maneekan, Pannamas; Koyadun, Surachart

    2013-01-01

    This systematic review elaborates the concepts and impacts of border malaria, particularly on the emergence and spread of Plasmodium falciparum and Plasmodium vivax multidrug resistance (MDR) malaria on Thailand-Myanmar and Thailand-Cambodia borders. Border malaria encompasses any complex epidemiological settings of forest-related and forest fringe-related malaria, both regularly occurring in certain transmission areas and manifesting a trend of increased incidence in transmission prone areas along these borders, as the result of interconnections of human settlements and movement activities, cross-border population migrations, ecological changes, vector population dynamics, and multidrug resistance. For regional and global perspectives, this review analyzes and synthesizes the rationales pertaining to transmission dynamics and the vulnerabilities of border malaria that constrain surveillance and control of the world's most MDR falciparum and vivax malaria on these chaotic borders. PMID:23865048

  2. Rapid assessment of malaria transmission using age-specific sero-conversion rates.

    Directory of Open Access Journals (Sweden)

    Laveta Stewart

    2009-06-01

    Full Text Available Malaria transmission intensity is a crucial determinant of malarial disease burden and its measurement can help to define health priorities. Rapid, local estimates of transmission are required to focus resources better but current entomological and parasitological methods for estimating transmission intensity are limited in this respect. An alternative is determination of antimalarial antibody age-specific sero-prevalence to estimate sero-conversion rates (SCR, which have been shown to correlate with transmission intensity. This study evaluated SCR generated from samples collected from health facility attendees as a tool for a rapid assessment of malaria transmission intensity.The study was conducted in north east Tanzania. Antibodies to Plasmodium falciparum merozoite antigens MSP-1(19 and AMA-1 were measured by indirect ELISA. Age-specific antibody prevalence was analysed using a catalytic conversion model based on maximum likelihood to generate SCR. A pilot study, conducted near Moshi, found SCRs for AMA-1 were highly comparable between samples collected from individuals in a conventional cross-sectional survey and those collected from attendees at a local health facility. For the main study, 3885 individuals attending village health facilities in Korogwe and Same districts were recruited. Both malaria parasite prevalence and sero-positivity were higher in Korogwe than in Same. MSP-1(19 and AMA-1 SCR rates for Korogwe villages ranged from 0.03 to 0.06 and 0.07 to 0.21 respectively. In Same district there was evidence of a recent reduction in transmission, with SCR among those born since 1998 [MSP-1(19 0.002 to 0.008 and AMA-1 0.005 to 0.014 ] being 5 to 10 fold lower than among individuals born prior to 1998 [MSP-1(19 0.02 to 0.04 and AMA-1 0.04 to 0.13]. Current health facility specific estimates of SCR showed good correlations with malaria incidence rates in infants in a contemporaneous clinical trial (MSP-1(19 r(2 = 0.78, p<0.01 & AMA-1 r

  3. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites.

    Science.gov (United States)

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E; Yoshida, Shigeto

    2014-10-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Development of malaria transmission-blocking vaccines: from concept to product.

    Science.gov (United States)

    Wu, Yimin; Sinden, Robert E; Churcher, Thomas S; Tsuboi, Takafumi; Yusibov, Vidadi

    2015-06-01

    Despite decades of effort battling against malaria, the disease is still a major cause of morbidity and mortality. Transmission-blocking vaccines (TBVs) that target sexual stage parasite development could be an integral part of measures for malaria elimination. In the 1950s, Huff et al. first demonstrated the induction of transmission-blocking immunity in chickens by repeated immunizations with Plasmodium gallinaceum-infected red blood cells. Since then, significant progress has been made in identification of parasite antigens responsible for transmission-blocking activity. Recombinant technologies accelerated evaluation of these antigens as vaccine candidates, and it is possible to induce effective transmission-blocking immunity in humans both by natural infection and now by immunization with recombinant vaccines. This chapter reviews the efforts to produce TBVs, summarizes the current status and advances and discusses the remaining challenges and approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Immune response and insulin signalling alter mosquito feeding behaviour to enhance malaria transmission potential.

    Science.gov (United States)

    Cator, Lauren J; Pietri, Jose E; Murdock, Courtney C; Ohm, Johanna R; Lewis, Edwin E; Read, Andrew F; Luckhart, Shirley; Thomas, Matthew B

    2015-07-08

    Malaria parasites alter mosquito feeding behaviour in a way that enhances parasite transmission. This is widely considered a prime example of manipulation of host behaviour to increase onward transmission, but transient immune challenge in the absence of parasites can induce the same behavioural phenotype. Here, we show that alterations in feeding behaviour depend on the timing and dose of immune challenge relative to blood ingestion and that these changes are functionally linked to changes in insulin signalling in the mosquito gut. These results suggest that altered phenotypes derive from insulin signalling-dependent host resource allocation among immunity, blood feeding, and reproduction in a manner that is not specific to malaria parasite infection. We measured large increases in mosquito survival and subsequent transmission potential when feeding patterns are altered. Leveraging these changes in physiology, behaviour and life history could promote effective and sustainable control of female mosquitoes responsible for transmission.

  6. Malaria, Leishmaniasis and Shistosomiasis Vector Ecology, Transmission, Immunology and Prophylaxis in Kenya

    Science.gov (United States)

    1994-01-27

    these fly species could be involved in the transmission of cutaneous leishmaniasis caused by L. infantum and/or L. tropica. Conclusions: The isolation...of L. infantum from 1 of 6 giant rats (Cricetomys gambianus) captured at a case site of human cutaneous leishmaniasis in Kenya, provide insight on the...AD-A285 556 AD GRANT NOS: DAMD17-87-G-7016 and DAMD17-89-Z-9032 TITLE: MALARIA, LEISHMANIASIS & SHISTOSOMIASIS VECTOR ECOLOGY, TRANSMISSION

  7. On Taking a Different Route: An Unlikely Case of Malaria by Nosocomial Transmission.

    Science.gov (United States)

    Gruell, Henning; Hamacher, Laura; Jennissen, Veronika; Tuchscherer, Armin; Ostendorf, Norbert; Löffler, Thorsten; Hallek, Michael; Kochanek, Matthias; Tannich, Egbert; Böll, Boris; Fätkenheuer, Gerd

    2017-10-15

    Vector-borne diseases can be contracted by exposure to contaminated material. This mode of transmission is not geographically restricted to the presence of a vector. Unexpected infection in regions of low incidence potentially delays diagnosis. We report a case of severe falciparum malaria following nosocomial Plasmodium falciparum transmission in nonendemic Germany. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  8. The use of insecticide-treated nets for reducing malaria morbidity among children aged 6-59 months, in an area of high malaria transmission in central Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    Nsanzabana Christian

    2010-09-01

    Full Text Available Abstract Background Long-lasting insecticidal nets (LLINs are an important tool for controlling malaria. Much attention has been devoted to determine both the effect of LLINs on the reduction of Plasmodium infection rate and on clinically-confirmed malaria cases in sub-Saharan Africa. We carried out an epidemiological study to investigate whether LLINs impact on Plasmodium prevalence rate and the proportion of clinically-confirmed malaria cases, in five villages in the district of Toumodi, central Côte d'Ivoire. Methods From April 2007 to November 2008, a community-based malaria control programme was implemented in the study villages, which involved large-scale distribution of LLINs, and training and sensitization activities within the community. We determined the effect of this programme on Plasmodium prevalence rate, clinically-confirmed malaria cases and proportion of high parasitaemia rates in children aged 6-59 months through a series of cross-sectional surveys starting in April 2007 and repeated once every 6 months. Results We observed a significant decrease in the mean P. falciparum prevalence rate from April 2007 to April 2008 (p = 0.029. An opposite trend was observed from November 2007 to November 2008 when P. falciparum prevalence rate increased significantly (p = 0.003. Highly significant decreases in the proportions of clinical malaria cases were observed between April 2007 and April 2008 (p Conclusions Large-scale distribution of LLINs, accompanied by training and sensitization activities, significantly reduced Plasmodium prevalence rates among young children in the first year of the project, whereas overall clinical malaria rates dropped over the entire 18-month project period. A decrease in community motivation to sleep under bed nets, perhaps along with changing patterns of malaria transmission, might explain the observed increase in the Plasmodium prevalence rate between November 2007 and November 2008.

  9. Intricacies of using temperature of different niches for assessing impact on malaria transmission

    Directory of Open Access Journals (Sweden)

    Poonam Singh

    2016-01-01

    Full Text Available Background & objectives: The influence of temperature on the life cycle of mosquitoes as well as on development of malaria parasite in mosquitoes is well studied. Most of the studies use outdoor temperature for understanding the transmission dynamics and providing projections of malaria. As the mosquitoes breed in water and rest usually indoors, it is logical to relate the transmission dynamics with temperature of micro-niche. The present study was, therefore, undertaken to understand the influence of different formats of temperature of different micro-niches on transmission of malaria for providing more realistic projections. Methods: The study was conducted in one village each of Assam and Uttarakhand s0 tates of India. Temperatures recorded from outdoor (air as well as indoor habitats (resting place of mosquito were averaged into daily, fortnightly and monthly and were used for determination of transmission windows (TWs for Plasmodium vivax (Pv and P. falciparum (Pf based on minimum temperature threshold required for transmission. Results: The daily temperature was found more useful for calculation of sporogony than fortnightly and monthly temperatures. Monthly TWs were further refined using fortnightly temperature, keeping in view the completion of more than one life cycle of malaria vectors and sporogony of malaria parasite in a month. A linear regression equation was generated to find out the relationship between outdoor and indoor temperatures and R [2] to predict the percentage of variation in indoor temperature as a function of outdoor temperature at both localities. Interpretation & conclusions: The study revealed that the indoor temperature was more than outdoors in stable malarious area (Assam but fluctuating in low endemic area like Uttarakhand. Transmission windows of malaria should be determined by transforming outdoor data to indoor and preferably at fortnightly interval. With daily recorded temperature, sporogonic and

  10. Intricacies of using temperature of different niches for assessing impact on malaria transmission.

    Science.gov (United States)

    Singh, Poonam; Yadav, Yogesh; Saraswat, Shweta; Dhiman, Ramesh C

    2016-07-01

    The influence of temperature on the life cycle of mosquitoes as well as on development of malaria parasite in mosquitoes is well studied. Most of the studies use outdoor temperature for understanding the transmission dynamics and providing projections of malaria. As the mosquitoes breed in water and rest usually indoors, it is logical to relate the transmission dynamics with temperature of micro-niche. The present study was, therefore, undertaken to understand the influence of different formats of temperature of different micro-niches on transmission of malaria for providing more realistic projections. The study was conducted in one village each of Assam and Uttarakhand s0 tates of India. Temperatures recorded from outdoor (air) as well as indoor habitats (resting place of mosquito) were averaged into daily, fortnightly and monthly and were used for determination of transmission windows (TWs) for Plasmodium vivax (Pv) and P. falciparum (Pf) based on minimum temperature threshold required for transmission. The daily temperature was found more useful for calculation of sporogony than fortnightly and monthly temperatures. Monthly TWs were further refined using fortnightly temperature, keeping in view the completion of more than one life cycle of malaria vectors and sporogony of malaria parasite in a month. A linear regression equation was generated to find out the relationship between outdoor and indoor temperatures and R [2] to predict the percentage of variation in indoor temperature as a function of outdoor temperature at both localities. The study revealed that the indoor temperature was more than outdoors in stable malarious area (Assam) but fluctuating in low endemic area like Uttarakhand. Transmission windows of malaria should be determined by transforming outdoor data to indoor and preferably at fortnightly interval. With daily recorded temperature, sporogonic and gonotrophic cycles can also be calculated which is otherwise not possible with monthly data. The

  11. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa.

    Science.gov (United States)

    Ebhuoma, Osadolor; Gebreslasie, Michael

    2016-06-14

    Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of Knowledge(SM) databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical

  12. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Osadolor Ebhuoma

    2016-06-01

    Full Text Available Malaria is a serious public health threat in Sub-Saharan Africa (SSA, and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI Web of KnowledgeSM databases (PubMed, Web of Science and ScienceDirect was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI derived from either the National Oceanic and Atmospheric Administration (NOAA Advanced Very High Resolution Radiometer (AVHRR or Moderate-resolution Imaging Spectrometer (MODIS satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical

  13. The impact of endemic and epidemic malaria on the risk of stillbirth in two areas of Tanzania with different malaria transmission patterns

    Directory of Open Access Journals (Sweden)

    Mutabingwa TK

    2006-10-01

    Full Text Available Abstract Background The impact of malaria on the risk of stillbirth is still under debate. The aim of the present analysis was to determine comparative changes in stillbirth prevalence between two areas of Tanzania with different malaria transmission patterns in order to estimate the malaria attributable component. Methods A retrospective analysis was completed of stillbirth differences between primigravidae and multigravidae in relation to malaria cases and transmission patterns for two different areas of Tanzania with a focus on the effects of the El Niño southern climatic oscillation (ENSO. One area, Kagera, experiences outbreaks of malaria, and the other area, Morogoro, is holoendemic. Delivery and malaria data were collected over a six year period from records of the two district hospitals in these locations. Results There was a significantly higher prevalence of low birthweight in primigravidae compared to multigravidae for both data sets. Low birthweight and stillbirth prevalence (17.5% and 4.8% were significantly higher in Kilosa compared to Ndolage (11.9% and 2.4%. There was a significant difference in stillbirth prevalence between Ndolage and Kilosa between malaria seasons (2.4% and 5.6% respectively, p Conclusion Malaria exposure during pregnancy has a delayed effect on birthweight outcomes, but a more acute effect on stillbirth risk.

  14. Re-imagining malaria: heterogeneity of human and mosquito behaviour in relation to residual malaria transmission in Cambodia.

    Science.gov (United States)

    Gryseels, Charlotte; Durnez, Lies; Gerrets, René; Uk, Sambunny; Suon, Sokha; Set, Srun; Phoeuk, Pisen; Sluydts, Vincent; Heng, Somony; Sochantha, Tho; Coosemans, Marc; Peeters Grietens, Koen

    2015-04-24

    In certain regions in Southeast Asia, where malaria is reduced to forested regions populated by ethnic minorities dependent on slash-and-burn agriculture, malaria vector populations have developed a propensity to feed early and outdoors, limiting the effectiveness of long-lasting insecticide-treated nets (LLIN) and indoor residual spraying (IRS). The interplay between heterogeneous human, as well as mosquito behaviour, radically challenges malaria control in such residual transmission contexts. This study examines human behavioural patterns in relation to the vector behaviour. The anthropological research used a sequential mixed-methods study design in which quantitative survey research methods were used to complement findings from qualitative ethnographic research. The qualitative research existed of in-depth interviews and participant observation. For the entomological research, indoor and outdoor human landing collections were performed. All research was conducted in selected villages in Ratanakiri province, Cambodia. Variability in human behaviour resulted in variable exposure to outdoor and early biting vectors: (i) indigenous people were found to commute between farms in the forest, where malaria exposure is higher, and village homes; (ii) the indoor/outdoor biting distinction was less clear in forest housing often completely or partly open to the outside; (iii) reported sleeping times varied according to the context of economic activities, impacting on the proportion of infections that could be accounted for by early or nighttime biting; (iv) protection by LLINs may not be as high as self-reported survey data indicate, as observations showed around 40% (non-treated) market net use while (v) unprotected evening resting and deep forest activities impacted further on the suboptimal use of LLINs. The heterogeneity of human behaviour and the variation of vector densities and biting behaviours may lead to a considerable proportion of exposure occurring during

  15. Unstable malaria in Sudan: the influence of the dry season. Malaria in areas of unstable and seasonal transmission. Lessons from Daraweesh

    DEFF Research Database (Denmark)

    Theander, T G

    1999-01-01

    Most studies of the natural history of Plasmodium falciparum infection have been performed in areas of stable malaria transmission and the acquisition of immunity to malaria in individuals who live in such areas is well documented. For the past 10 years, we have monitored host-parasite relationsh......Most studies of the natural history of Plasmodium falciparum infection have been performed in areas of stable malaria transmission and the acquisition of immunity to malaria in individuals who live in such areas is well documented. For the past 10 years, we have monitored host......-parasite relationships in an area characterized by unstable and seasonal malaria of low transmission intensity. The work was performed in the village Daraweesh located in north-eastern Sudan 16 km from Gedaref town. The climate of the region is characterized by well-defined wet and dry periods with a short rainy season...... followed by a long dry season. In some years the rains fail and there is little precipitation even during the wet season. Malaria cases are rare in the dry season and during droughts. In years with rains, falciparum malaria sweeps through Daraweesh during the wet season and 20-40% of the entire population...

  16. Study protocol for a three-armed randomized controlled trial to assess whether house screening can reduce exposure to malaria vectors and reduce malaria transmission in The Gambia

    Directory of Open Access Journals (Sweden)

    Milligan Paul J

    2008-06-01

    Full Text Available Abstract Background Mosquito-proofing homes was one of the principal methods of environmental management in the early 1900s. House screening provides protection against malaria by reducing exposure to malaria parasites and has the added benefit of protecting everyone sleeping in the house, avoiding issues of inequity within the household. The aim of this study is to determine whether house screening protects people against malaria in Africa. It is hoped that this study will mark the beginning of a series of trials assessing a range of environmental interventions for malaria control in Africa. Design A 3-armed randomised-controlled trial will be conducted in and around Farafenni town in The Gambia, West Africa, to assess whether screening windows, doors and closing eaves or installing netting ceilings in local houses can substantially reduce malaria transmission and anaemia compared to homes with no screening. Eligible houses will be sorted and stratified by location and the number of children in each house, then randomly allocated to the interventions in blocks of 5 houses (2 with full screening, 2 with screened ceilings and 1 control house without screening. Risk of malaria transmission will be assessed in each house by routine collections of mosquitoes using light traps and an anaemia prevalence study in children at the end of the main transmission period. Discussion Practical issues concerning intervention implementation, as well as the potential benefits and risks of the study, are discussed. Trial Registration ISRCTN51184253 – Screening-homes to prevent malaria

  17. Prevalence of malaria infection in pregnant women compared with children for tracking malaria transmission in sub-Saharan Africa: a systematic review and meta-analysis.

    Science.gov (United States)

    van Eijk, Anna M; Hill, Jenny; Noor, Abdisalan M; Snow, Robert W; ter Kuile, Feiko O

    2015-10-01

    In malarious areas, pregnant women are more likely to have detectable malaria than are their non-pregnant peers, and the excess risk of infection varies with gravidity. Pregnant women attending antenatal clinic for their first visit are a potential pragmatic sentinel group to track the intensity of malaria transmission; however, the relation between malaria prevalence in children, a standard measure to estimate malaria endemicity, and pregnant women has never been compared. We obtained data on malaria prevalence in pregnancy from the Malaria in Pregnancy Library (January, 2015) and data for children (0-59 months) were obtained from recently published work on parasite prevalence in Africa and the Malaria in Pregnancy Library. We used random effects meta-analysis to obtain a pooled prevalence ratio (PPR) of malaria in children versus pregnant women (during pregnancy, not at delivery) and by gravidity, and we used meta-regression to assess factors affecting the prevalence ratio. We used data from 18 sources that included 57 data points. There was a strong linear relation between the prevalence of malaria infection in pregnant women and children (r=0·87, ppregnant women is strongly correlated with prevalence data in children obtained from household surveys, and could provide a pragmatic adjunct to survey strategies to track trends in malaria transmission in Africa. The Malaria in Pregnancy Consortium, which is funded through a grant from the Bill & Melinda Gates Foundation to the Liverpool School of Tropical Medicine, UK; US Centers for Disease Control and Prevention; and Wellcome Trust, UK. Copyright © 2015 van Eijk et al. Open access article published under the terms of CC BY. Published by Elsevier Ltd.. All rights reserved.

  18. Delayed mortality effects cut the malaria transmission potential of insecticide-resistant mosquitoes.

    Science.gov (United States)

    Viana, Mafalda; Hughes, Angela; Matthiopoulos, Jason; Ranson, Hilary; Ferguson, Heather M

    2016-08-09

    Malaria transmission has been substantially reduced across Africa through the distribution of long-lasting insecticidal nets (LLINs). However, the emergence of insecticide resistance within mosquito vectors risks jeopardizing the future efficacy of this control strategy. The severity of this threat is uncertain because the consequences of resistance for mosquito fitness are poorly understood: while resistant mosquitoes are no longer immediately killed upon contact with LLINs, their transmission potential may be curtailed because of longer-term fitness costs that persist beyond the first 24 h after exposure. Here, we used a Bayesian state-space model to quantify the immediate (within 24 h of exposure) and delayed (>24 h after exposure) impact of insecticides on daily survival and malaria transmission potential of moderately and highly resistant laboratory populations of the major African malaria vector Anopheles gambiae Contact with LLINs reduced the immediate survival of moderately and highly resistant An. gambiae strains by 60-100% and 3-61%, respectively, and delayed mortality impacts occurring beyond the first 24 h after exposure further reduced their overall life spans by nearly one-half. In total, insecticide exposure was predicted to reduce the lifetime malaria transmission potential of insecticide-resistant vectors by two-thirds, with delayed effects accounting for at least one-half of this reduction. The existence of substantial, previously unreported, delayed mortality effects within highly resistant malaria vectors following exposure to insecticides does not diminish the threat of growing resistance, but posits an explanation for the apparent paradox of continued LLIN effectiveness in the presence of high insecticide resistance.

  19. Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics.

    Science.gov (United States)

    Okuneye, Kamaldeen; Gumel, Abba B

    2017-05-01

    A new non-autonomous model is designed and used to assess the impact of variability in temperature and rainfall on the transmission dynamics of malaria in a population. In addition to adding age-structure in the host population and the dynamics of immature malaria mosquitoes, a notable feature of the new model is that recovered individuals do not revert to wholly-susceptible class (that is, recovered individuals enjoy reduced susceptibility to new malaria infection). In the absence of disease-induced mortality, the disease-free solution of the model is shown to be globally-asymptotically stable when the associated reproduction ratio is less than unity. The model has at least one positive periodic solution when the reproduction ratio exceeds unity (and the disease persists in the community in this case). Detailed uncertainty and sensitivity analysis, using mean monthly temperature and rainfall data from KwaZulu-Natal province of South Africa, shows that the top three parameters of the model that have the most influence on the disease transmission dynamics are the mosquito carrying capacity, transmission probability per contact for susceptible mosquitoes and human recovery rate. Numerical simulations of the model show that, for the KwaZulu-Natal province, malaria burden increases with increasing mean monthly temperature and rainfall in the ranges ([17-25]°C and [32-110] mm), respectively (and decreases with decreasing mean monthly temperature and rainfall values). In particular, transmission is maximized for mean monthly temperature and rainfall in the ranges [21-25]°C and [95-125] mm. This occurs for a six-month period in KwaZulu-Natal (hence, this study suggests that anti-malaria control efforts should be intensified during this period). It is shown, for the fixed mean monthly temperature of KwaZulu-Natal, that malaria burden decreases whenever the amount of rainfall exceeds a certain threshold value. It is further shown (through sensitivity analysis and

  20. Genetic evidence that the Makira region in northeastern Madagascar is a hotspot of malaria transmission.

    Science.gov (United States)

    Rice, Benjamin L; Golden, Christopher D; Anjaranirina, Evelin Jean Gasta; Botelho, Carolina Mastella; Volkman, Sarah K; Hartl, Daniel L

    2016-12-20

    Encouraging advances in the control of Plasmodium falciparum malaria have been observed across much of Africa in the past decade. However, regions of high relative prevalence and transmission that remain unaddressed or unrecognized provide a threat to this progress. Difficulties in identifying such localized hotspots include inadequate surveillance, especially in remote regions, and the cost and labor needed to produce direct estimates of transmission. Genetic data can provide a much-needed alternative to such empirical estimates, as the pattern of genetic variation within malaria parasite populations is indicative of the level of local transmission. Here, genetic data were used to provide the first empirical estimates of P. falciparum malaria prevalence and transmission dynamics for the rural, remote Makira region of northeastern Madagascar. Longitudinal surveys of a cohort of 698 total individuals (both sexes, 0-74 years of age) were performed in two communities bordering the Makira Natural Park protected area. Rapid diagnostic tests, with confirmation by molecular methods, were used to estimate P. falciparum prevalence at three seasonal time points separated by 4-month intervals. Genomic loci in a panel of polymorphic, putatively neutral markers were genotyped for 94 P. falciparum infections and used to characterize genetic parameters known to correlate with transmission levels. Overall, 27.8% of individuals tested positive for P. falciparum over the 10-month course of the study, a rate approximately sevenfold higher than the countrywide average for Madagascar. Among those P. falciparum infections, a high level of genotypic diversity and a high frequency of polygenomic infections (68.1%) were observed, providing a pattern consistent with high and stable transmission. Prevalence and genetic diversity data indicate that the Makira region is a hotspot of P. falciparum transmission in Madagascar. This suggests that the area should be highlighted for future

  1. Dynamics of forest malaria transmission in Balaghat district, Madhya Pradesh, India.

    Directory of Open Access Journals (Sweden)

    Neeru Singh

    Full Text Available BACKGROUND: An epidemiological and entomological study was carried out in Balaghat district, Madhya Pradesh, India to understand the dynamics of forest malaria transmission in a difficult and hard to reach area where indoor residual spray and insecticide treated nets were used for vector control. METHODS: This community based cross-sectional study was undertaken from January 2010 to December 2012 in Baihar and Birsa Community Health Centres of district Balaghat for screening malaria cases. Entomological surveillance included indoor resting collections, pyrethrum spray catches and light trap catches. Anophelines were assayed by ELISA for detection of Plasmodium circumsporozoite protein. FINDINGS: Plasmodium falciparum infection accounted for >80% of all infections. P. vivax 16.5%, P. malariae 0.75% and remaining were mixed infections of P. falciparum, P. vivax and P. malariae. More than, 30% infections were found in infants under 6 months of age. Overall, an increasing trend in malaria positivity was observed from 2010 to 2012 (chi-square for trend  =  663.55; P<0.0001. Twenty five Anopheles culicifacies (sibling species C, D and E were positive for circumsporozoite protein of P. falciparum (44% and P. vivax (56%. Additionally, 2 An. fluviatilis, were found positive for P. falciparum and 1 for P. vivax (sibling species S and T. An. fluviatilis sibling species T was found as vector in forest villages for the first time in India. CONCLUSION: These results showed that the study villages are experiencing almost perennial malaria transmission inspite of indoor residual spray and insecticide treated nets. Therefore, there is a need for new indoor residual insecticides which has longer residual life or complete coverage of population with long lasting insecticide treated nets or both indoor residual spray and long lasting bed nets for effective vector control. There is a need to undertake a well designed case control study to evaluate the efficacy

  2. An inter-laboratory comparison of standard membrane-feeding assays for evaluation of malaria transmission-blocking vaccines

    NARCIS (Netherlands)

    Miura, K.; Stone, W.J.R.; Koolen, K.M.; Deng, B.; Zhou, L; Gemert, G.J.A. van; Locke, E.; Morin, M.; Bousema, T.; Sauerwein, R.W.; Long, C.A.; Dechering, K.J.

    2016-01-01

    BACKGROUND: An effective malaria transmission-blocking vaccine may play an important role in malaria elimination efforts, and a robust biological assay is essential for its development. The standard membrane-feeding assay (SMFA) for Plasmodium falciparum infection of mosquitoes is considered a "gold

  3. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine.

    Science.gov (United States)

    Theisen, Michael; Jore, Matthijs M; Sauerwein, Robert

    2017-04-01

    Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which are essential for the transmission to the mosquito vector. A vaccine targeting the sexual stages of the parasite and thus blocking transmission will be instrumental for the eradication of malaria. One of the leading transmission blocking vaccine candidates is the sexual stage antigen Pfs48/45. Areas covered: PubMed was searched to review the progress and future prospects for clinical development of a Pfs48/45-based subunit vaccine. We will focus on biological function, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production of recombinant protein and preclinical studies. Expert commentary: Pfs48/45 is one of the lead-candidates for a transmission blocking vaccine and should be further explored in clinical trials.

  4. Estimating air temperature and its influence on malaria transmission across Africa.

    Science.gov (United States)

    Garske, Tini; Ferguson, Neil M; Ghani, Azra C

    2013-01-01

    Malaria transmission is strongly influenced by climatic conditions which determine the abundance and seasonal dynamics of the Anopheles vector. In particular, water temperature influences larval development rates whereas air temperature determines adult longevity as well as the rate of parasite development within the adult mosquito. Although data on land surface temperature exist at a spatial resolution of approximately 1 km globally with four time steps per day, comparable data are not currently available for air temperature. In order to address this gap and demonstrate the importance of using the right type of temperature data, we fitted simple models of the relationship between land-surface and air temperature at lower resolution to obtain a high resolution estimate of air temperature across Africa. We then used these estimates to calculate some crucial malaria transmission parameters that strongly depend on air temperatures. Our results demonstrate substantial differences between air and surface temperatures that impact temperature-based maps of areas suitable for transmission. We present high resolution maps of the malaria transmission parameters driven by air temperature and their seasonal variation. The fitted air temperature datasets are made publicly available alongside this publication.

  5. Health systems readiness and management of febrile outpatients under low malaria transmission in Vanuatu.

    Science.gov (United States)

    Zurovac, Dejan; Guintran, Jean-Olivier; Donald, Wesley; Naket, Esau; Malinga, Josephine; Taleo, George

    2015-12-02

    Vanuatu, an archipelago country in Western Pacific harbouring low Plasmodium falciparum and Plasmodium vivax malaria transmission, has been implementing a malaria case management policy, recommending parasitological testing of patients with fever and anti-malarial treatment for test-positive only patients. A health facility survey to evaluate the health systems readiness to implement the policy and the quality of outpatient management for patients with fever was undertaken. A cross-sectional, cluster sample survey, using a range of quality-of-care methods, included all health centres and hospitals in Vanuatu. The main outcome measures were coverage of health facilities and health workers with commodities and support interventions, adherence to test and treatment recommendations, and factors influencing malaria testing. The survey was undertaken in 2014 during the low malaria season and included 41 health facilities, 67 health workers and 226 outpatient consultations for patients with fever. All facilities had capacity for parasitological diagnosis, 95.1 % stocked artemether-lumefantrine and 63.6 % primaquine. The coverage of health workers with support interventions ranged from 50 to 70 %. Health workers' knowledge was high only regarding treatment policy for uncomplicated P. falciparum malaria (83.4 %). History taking and clinical examination practices were sub-optimal. Some 35.0 % (95 % CI 23.4-48.6) of patients with fever were tested for malaria, of which all results were negative and only one patient received anti-malarial treatment. Testing was significantly higher for patients age 5 years and older (OR = 2.33; 95 % CI 1.48-5.02), seen by less qualified health workers (OR = 2.73; 95 % CI 1.48-5.02), health workers who received malaria case management training (OR = 2.39; 95 % CI 1.28-4.47) and patients with increased temperature (OR = 2.56; 95 % CI 1.17-5.57), main complaint of fever (OR = 5.82; 95 % CI 1.26-26.87) and without runny nose (OR = 3.75; 95 % CI 1

  6. Indoor residual spraying of insecticide and malaria morbidity in a high transmission intensity area of Uganda.

    Science.gov (United States)

    Kigozi, Ruth; Baxi, Sanjiv M; Gasasira, Anne; Sserwanga, Asadu; Kakeeto, Stella; Nasr, Sussann; Rubahika, Denis; Dissanayake, Gunawardena; Kamya, Moses R; Filler, Scott; Dorsey, Grant

    2012-01-01

    Recently the use of indoor residual spraying of insecticide (IRS) has greatly increased in Africa; however, limited data exist on the quantitative impacts of IRS on health outcomes in highly malaria endemic areas. Routine data were collected on more than 90,000 patient visits at a single health facility over a 56 month period covering five rounds of IRS using three different insecticides. Temporal associations between the timing of IRS and the probability of a patient referred for microscopy having laboratory confirmed malaria were estimated controlling for seasonality and age. Considering patients less than five years of age there was a modest decrease in the odds of malaria following the 1(st) round of IRS using DDT (OR = 0.76, p<0.001) and the 2(nd) round using alpha-cypermethrin (OR = 0.83, p = 0.002). Following rounds 3-5 using bendiocarb there was a much greater decrease in the odds of malaria (ORs 0.34, 0.16, 0.17 respectively, p<0.001 for all comparisons). Overall, the impact of IRS was less pronounced among patients 5 years or older. IRS was associated with a reduction in malaria morbidity in an area of high transmission intensity in Uganda and the benefits appeared to be greatest after switching to a carbamate class of insecticide.

  7. Indoor residual spraying of insecticide and malaria morbidity in a high transmission intensity area of Uganda.

    Directory of Open Access Journals (Sweden)

    Ruth Kigozi

    Full Text Available Recently the use of indoor residual spraying of insecticide (IRS has greatly increased in Africa; however, limited data exist on the quantitative impacts of IRS on health outcomes in highly malaria endemic areas.Routine data were collected on more than 90,000 patient visits at a single health facility over a 56 month period covering five rounds of IRS using three different insecticides. Temporal associations between the timing of IRS and the probability of a patient referred for microscopy having laboratory confirmed malaria were estimated controlling for seasonality and age. Considering patients less than five years of age there was a modest decrease in the odds of malaria following the 1(st round of IRS using DDT (OR = 0.76, p<0.001 and the 2(nd round using alpha-cypermethrin (OR = 0.83, p = 0.002. Following rounds 3-5 using bendiocarb there was a much greater decrease in the odds of malaria (ORs 0.34, 0.16, 0.17 respectively, p<0.001 for all comparisons. Overall, the impact of IRS was less pronounced among patients 5 years or older.IRS was associated with a reduction in malaria morbidity in an area of high transmission intensity in Uganda and the benefits appeared to be greatest after switching to a carbamate class of insecticide.

  8. A Vectorial Capacity Product to Monitor Changing Malaria Transmission Potential in Epidemic Regions of Africa

    Directory of Open Access Journals (Sweden)

    Pietro Ceccato

    2012-01-01

    Full Text Available Rainfall and temperature are two of the major factors triggering malaria epidemics in warm semi-arid (desert-fringe and high altitude (highland-fringe epidemic risk areas. The ability of the mosquitoes to transmit Plasmodium spp. is dependent upon a series of biological features generally referred to as vectorial capacity. In this study, the vectorial capacity model (VCAP was expanded to include the influence of rainfall and temperature variables on malaria transmission potential. Data from two remote sensing products were used to monitor rainfall and temperature and were integrated into the VCAP model. The expanded model was tested in Eritrea and Madagascar to check the viability of the approach. The analysis of VCAP in relation to rainfall, temperature and malaria incidence data in these regions shows that the expanded VCAP correctly tracks the risk of malaria both in regions where rainfall is the limiting factor and in regions where temperature is the limiting factor. The VCAP maps are currently offered as an experimental resource for testing within Malaria Early Warning applications in epidemic prone regions of sub-Saharan Africa. User feedback is currently being collected in preparation for further evaluation and refinement of the VCAP model.

  9. Impact of land-use on malaria transmission in the Plateau region, southeastern Benin.

    Science.gov (United States)

    Sovi, Arthur; Govoétchan, Renaud; Tokponnon, Filémon; Hounkonnou, Hermine; Aïkpon, Rock; Agossa, Fiacre; Gnanguenon, Virgile; Salako, Albert S; Agossou, Christian; Ossè, Razaki; Okè, Mariam; Gbénou, Dina; Massougbodji, Achille; Akogbéto, Martin

    2013-12-12

    The goal of the study is to investigate if local agricultural practices have an impact on malaria transmission in four villages located in the same geographical area within a radius of 15 kilometers. Among the villages, one (Itassoumba) is characterized by the presence of a large market garden and fishpond basins, the three others (Itakpako, Djohounkollé and Ko-koumolou) are characterized by traditional food-producing agriculture. Malaria transmission was evaluated using human-landing catches, both indoors and outdoors, two nights per month for 12 months. Field collected females An. gambiae s.l. were exposed for 1 hour to 0.75% permethrin and 0.05% deltamethrin using WHO insecticide susceptibility test kits and procedures. The presence of the kdr mutation was analyzed by PCR. Anopheles gambiae s.s form M (93.65%), was identified as the main malaria vector. Its susceptibility level to pyrethroids was the same (p > 0.05) in all villages. kdr mutation frequencies are 81.08 in Itakpako, 85 in Itassoumba, 79.73 in Djohounkollé and 86.84 in Ko-Koumolou (p = 0.63). The entomological inoculation rate ranged from 9.62 to 21.65 infected bites of An. gambiae per human per year in Djohounkollé, Itakpako and Ko-Koumolou against 1159.62 in Itassoumba (p < 0.0001). The level of resistance of An. gambiae to pyrethroids was the same in the four villages. The heterogeneous character of malaria epidemiology was confirmed. The creation of fishponds basins and the development of market-gardening activities increased drastically the malaria transmission in Itassoumba.

  10. Patterns and seasonality of malaria transmission in the forest-savannah transitional zones of Ghana

    Directory of Open Access Journals (Sweden)

    Wilson Mike

    2010-11-01

    Full Text Available Abstract Background Knowledge of the local pattern of malaria transmission and the effect of season on transmission is essential for the planning and evaluation of malaria interventions. Therefore, entomological surveys were carried out in the forest-savannah transitional belt of Ghana (Kintampo from November 2003 to November 2005 in preparation for drug and vaccine trials. Results A total of 23,406 mosquitoes were caught from 919 traps over the two-year period (November 2003 to November 2005: 54.3% were Culicines, 36.2% Anopheles funestus, and 9.4% Anopheles gambiae. Infection rates with Plasmodium falciparum were 4.7% and 1.5% for Anopheles gambiae and Anopheles funestus, respectively. Entomological inoculation rates (EIRs were 269 infective bites per person per year in the first year (November 2003-October 2004 and 231 the following year (November 2004-November 2005. Polymerase Chain Reaction (PCR analysis detected only Anopheles gambiae s.s. Nineteen mosquitoes were tested by PCR in the wet season; 16 were S-molecular form, 2 M-molecular form and 1 hybrid (S/M. In the dry season, sixteen mosquitoes were tested; 11 S-molecular form, 2 M-molecular form and 3 S/M hybrids. The frequency of knock down resistance (kdr genotypes F(R was 0.60. Conclusion The dynamics and seasonal abundance of malaria vectors in the Kintampo area was influenced by micro-ecology, rainfall and temperature patterns. Transmission patterns did not differ significantly between the two years (2004 and 2005 and both Anopheles gambiae and Anopheles funestus were identified as effective vectors. EIR estimates in 2004/2005 were between 231 and 269 infective bites per person per year. The information provided by the study will help in planning intensified malaria control activities as well as evaluating the impact of malaria interventions in the middle belt of Ghana.

  11. Spatiotemporal Modeling for Fine-Scale Maps of Regional Malaria Endemicity and Its Implications for Transitional Complexities in a Routine Surveillance Network in Western Cambodia.

    Science.gov (United States)

    Okami, Suguru; Kohtake, Naohiko

    2017-01-01

    Due to the associated and substantial efforts of many stakeholders involved in malaria containment, the disease burden of malaria has dramatically decreased in many malaria-endemic countries in recent years. Some decades after the past efforts of the global malaria eradication program, malaria elimination has again featured on the global health agenda. While risk distribution modeling and a mapping approach are effective tools to assist with the efficient allocation of limited health-care resources, these methods need some adjustment and reexamination in accordance with changes occurring in relation to malaria elimination. Limited available data, fine-scale data inaccessibility (for example, household or individual case data), and the lack of reliable data due to inefficiencies within the routine surveillance system, make it difficult to create reliable risk maps for decision-makers or health-care practitioners in the field. Furthermore, the risk of malaria may dynamically change due to various factors such as the progress of containment interventions and environmental changes. To address the complex and dynamic nature of situations in low-to-moderate malaria transmission settings, we built a spatiotemporal model of a standardized morbidity ratio (SMR) of malaria incidence, calculated through annual parasite incidence, using routinely reported surveillance data in combination with environmental indices such as remote sensing data, and the non-environmental regional containment status, to create fine-scale risk maps. A hierarchical Bayesian frame was employed to fit the transitioning malaria risk data onto the map. The model was set to estimate the SMRs of every study location at specific time intervals within its uncertainty range. Using the spatial interpolation of estimated SMRs at village level, we created fine-scale maps of two provinces in western Cambodia at specific time intervals. The maps presented different patterns of malaria risk distribution at

  12. Toward the development of effective transmission-blocking vaccines for malaria.

    Science.gov (United States)

    Nikolaeva, Daria; Draper, Simon J; Biswas, Sumi

    2015-05-01

    The continued global burden of malaria can in part be attributed to a complex lifecycle, with both human hosts and mosquito vectors serving as transmission reservoirs. In preclinical models of vaccine-induced immunity, antibodies to parasite sexual-stage antigens, ingested in the mosquito blood meal, can inhibit parasite survival in the insect midgut as judged by ex vivo functional studies such as the membrane feeding assay. In an era of renewed political momentum for malaria elimination and eradication campaigns, such observations have fueled support for the development and implementation of so-called transmission-blocking vaccines. While leading candidates are being evaluated using a variety of promising vaccine platforms, the field is also beginning to capitalize on global '-omics' data for the rational genome-based selection and unbiased characterization of parasite and mosquito proteins to expand the candidate list. This review covers the progress and prospects of these recent developments.

  13. Optimal Control of Malaria Transmission using Insecticide Treated Nets and Spraying

    Science.gov (United States)

    Athina, D.; Bakhtiar, T.; Jaharuddin

    2017-03-01

    In this paper, we consider a model of the transmission of malaria which was developed by Silva and Torres equipped with two control variables, namely the use of insecticide treated nets (ITN) to reduce the number of human beings infected and spraying to reduce the number of mosquitoes. Pontryagin maximum principle was applied to derive the differential equation system as optimality conditions which must be satisfied by optimal control variables. The Mangasarian sufficiency theorem shows that Pontryagin maximum principle is necessary as well as sufficient conditions for optimization problem. The 4th-order Runge Kutta method was then performed to solve the differential equations system. The numerical results show that both controls given at once can reduce the number of infected individuals as well as the number of mosquitoes which reduce the impact of malaria transmission.

  14. Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System

    Directory of Open Access Journals (Sweden)

    Quiñones Martha L

    2006-08-01

    Full Text Available Abstract Background Malaria has recently re-emerged as a public health burden in Colombia. Although the problem seems to be climate-driven, there remain significant gaps of knowledge in the understanding of the complexity of malaria transmission, which have motivated attempts to develop a comprehensive model. Methods The mathematical tool was applied to represent Plasmodium falciparum malaria transmission in two endemic-areas. Entomological exogenous variables were estimated through field campaigns and laboratory experiments. Availability of breeding places was included towards representing fluctuations in vector densities. Diverse scenarios, sensitivity analyses and instabilities cases were considered during experimentation-validation process. Results Correlation coefficients and mean square errors between observed and modelled incidences reached 0.897–0.668 (P > 0.95 and 0.0002–0.0005, respectively. Temperature became the most relevant climatic parameter driving the final incidence. Accordingly, malaria outbreaks are possible during the favourable epochs following the onset of El Niño warm events. Sporogonic and gonotrophic cycles showed to be the entomological key-variables controlling the transmission potential of mosquitoes' population. Simulation results also showed that seasonality of vector density becomes an important factor towards understanding disease transmission. Conclusion The model constitutes a promising tool to deepen the understanding of the multiple interactions related to malaria transmission conducive to outbreaks. In the foreseeable future it could be implemented as a tool to diagnose possible dynamical patterns of malaria incidence under several scenarios, as well as a decision-making tool for the early detection and control of outbreaks. The model will be also able to be merged with forecasts of El Niño events to provide a National Malaria Early Warning System.

  15. Malaria.

    Science.gov (United States)

    Dupasquier, Isabelle

    1989-01-01

    Malaria, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part malaria is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of malaria which have developed because of…

  16. Rationale for short course primaquine in Africa to interrupt malaria transmission

    Directory of Open Access Journals (Sweden)

    Eziefula Alice C

    2012-10-01

    Full Text Available Abstract Following the recent successes of malaria control in sub-Saharan Africa, the gametocytocidal drug primaquine needs evaluation as a tool to further reduce the transmission of Plasmodium falciparum malaria. The drug has scarcely been used in Africa because of concerns about its safety in people with glucose-6-phosphate dehydrogenase (G6PD deficiency. The evidence base for the use of primaquine as a transmission blocker is limited by a lack of comparable clinical and parasitological endpoints between trials. In March 2012, a group of experts met in London to discuss the existing evidence on the ability of primaquine to block malaria transmission, to define the roadblocks to the use of primaquine in Africa and to develop a roadmap to enable its rapid, safe and effective deployment. The output of this meeting is a strategic plan to optimize trial design to reach desired goals efficiently. The roadmap includes suggestions for a series of phase 1, 2, 3 and 4 studies to address specific hurdles to primaquine’s deployment. These include ex-vivo studies on efficacy, primaquine pharmacokinetics and pharmacodynamics and dose escalation studies for safety in high-risk groups. Phase 3 community trials are proposed, along with Phase 4 studies to evaluate safety, particularly in pregnancy, through pharmacovigilance in areas where primaquine is already deployed. In parallel, efforts need to be made to address issues in drug supply and regulation, to map G6PD deficiency and to support the evaluation of alternative gametocytocidal compounds.

  17. Prospective malaria control using entomopathogenic fungi: comparative evaluation of impact on transmission and selection for resistance

    Directory of Open Access Journals (Sweden)

    Lynch Penelope A

    2012-11-01

    Full Text Available Abstract Background Chemical insecticides against adult mosquitoes are a key element in most malaria management programmes, but their efficacy is threatened by the evolution of insecticide-resistant mosquitoes. By killing only older mosquitoes, entomopathogenic fungi can in principle significantly impact parasite transmission while imposing much less selection for resistance. Here an assessment is made as to which of the wide range of possible virulence characteristics for fungal biopesticides best realise this potential. Methods With mathematical models that capture relevant timings and survival probabilities within successive feeding cycles, transmission and resistance-management metrics are used to compare susceptible and resistant mosquitoes exposed to no intervention, to conventional instant-kill interventions, and to delayed-action biopesticides with a wide range of virulence characteristics. Results Fungal biopesticides that generate high rates of mortality at around the time mosquitoes first become able to transmit the malaria parasite offer potential for large reductions in transmission while imposing low fitness costs. The best combinations of control and resistance management are generally accessed at high levels of coverage. Strains which have high virulence in malaria-infected mosquitoes but lower virulence in malaria-free mosquitoes offer the ultimate benefit in terms of minimizing selection pressure whilst maximizing impact on transmission. Exploiting this phenotype should be a target for product development. For indoor residual spray programmes, biopesticides may offer substantial advantages over the widely used pyrethroid-based insecticides. Not only do fungal biopesticides provide substantial resistance management gains in the long term, they may also provide greater reductions in transmission before resistance has evolved. This is because fungal spores do not have contact irritancy, reducing the chances that a blood

  18. Prospective malaria control using entomopathogenic fungi: comparative evaluation of impact on transmission and selection for resistance.

    Science.gov (United States)

    Lynch, Penelope A; Grimm, Uwe; Thomas, Matthew B; Read, Andrew F

    2012-11-22

    Chemical insecticides against adult mosquitoes are a key element in most malaria management programmes, but their efficacy is threatened by the evolution of insecticide-resistant mosquitoes. By killing only older mosquitoes, entomopathogenic fungi can in principle significantly impact parasite transmission while imposing much less selection for resistance. Here an assessment is made as to which of the wide range of possible virulence characteristics for fungal biopesticides best realise this potential. With mathematical models that capture relevant timings and survival probabilities within successive feeding cycles, transmission and resistance-management metrics are used to compare susceptible and resistant mosquitoes exposed to no intervention, to conventional instant-kill interventions, and to delayed-action biopesticides with a wide range of virulence characteristics. Fungal biopesticides that generate high rates of mortality at around the time mosquitoes first become able to transmit the malaria parasite offer potential for large reductions in transmission while imposing low fitness costs. The best combinations of control and resistance management are generally accessed at high levels of coverage. Strains which have high virulence in malaria-infected mosquitoes but lower virulence in malaria-free mosquitoes offer the ultimate benefit in terms of minimizing selection pressure whilst maximizing impact on transmission. Exploiting this phenotype should be a target for product development. For indoor residual spray programmes, biopesticides may offer substantial advantages over the widely used pyrethroid-based insecticides. Not only do fungal biopesticides provide substantial resistance management gains in the long term, they may also provide greater reductions in transmission before resistance has evolved. This is because fungal spores do not have contact irritancy, reducing the chances that a blood-fed mosquito can survive an encounter and thus live long enough to

  19. Assessment of malaria transmission changes in Africa, due to the climate impact of land use change using Coupled Model Intercomparison Project Phase 5 earth system models.

    Science.gov (United States)

    Tompkins, Adrian M; Caporaso, Luca

    2016-03-31

    Using mathematical modelling tools, we assessed the potential for land use change (LUC) associated with the Intergovernmental Panel on Climate Change low- and high-end emission scenarios (RCP2.6 and RCP8.5) to impact malaria transmission in Africa. To drive a spatially explicit, dynamical malaria model, data from the four available earth system models (ESMs) that contributed to the LUC experiment of the Fifth Climate Model Intercomparison Project are used. Despite the limited size of the ESM ensemble, stark differences in the assessment of how LUC can impact climate are revealed. In three out of four ESMs, the impact of LUC on precipitation and temperature over the next century is limited, resulting in no significant change in malaria transmission. However, in one ESM, LUC leads to increases in precipitation under scenario RCP2.6, and increases in temperature in areas of land use conversion to farmland under both scenarios. The result is a more intense transmission and longer transmission seasons in the southeast of the continent, most notably in Mozambique and southern Tanzania. In contrast, warming associated with LUC in the Sahel region reduces risk in this model, as temperatures are already above the 25-30°C threshold at which transmission peaks. The differences between the ESMs emphasise the uncertainty in such assessments. It is also recalled that the modelling framework is unable to adequately represent local-scale changes in climate due to LUC, which some field studies indicate could be significant.

  20. Large-scale malaria survey in Cambodia: Novel insights on species distribution and risk factors

    Directory of Open Access Journals (Sweden)

    Doung Socheat

    2007-03-01

    Full Text Available Abstract Background In Cambodia, estimates of the malaria burden rely on a public health information system that does not record cases occurring among remote populations, neither malaria cases treated in the private sector nor asymptomatic carriers. A global estimate of the current malaria situation and associated risk factors is, therefore, still lacking. Methods A large cross-sectional survey was carried out in three areas of multidrug resistant malaria in Cambodia, enrolling 11,652 individuals. Fever and splenomegaly were recorded. Malaria prevalence, parasite densities and spatial distribution of infection were determined to identify parasitological profiles and the associated risk factors useful for improving malaria control programmes in the country. Results Malaria prevalence was 3.0%, 7.0% and 12.3% in Sampovloun, Koh Kong and Preah Vihear areas. Prevalences and Plasmodium species were heterogeneously distributed, with higher Plasmodium vivax rates in areas of low transmission. Malaria-attributable fevers accounted only for 10–33% of malaria cases, and 23–33% of parasite carriers were febrile. Multivariate multilevel regression analysis identified adults and males, mostly involved in forest activities, as high risk groups in Sampovloun, with additional risks for children in forest-fringe villages in the other areas along with an increased risk with distance from health facilities. Conclusion These observations point to a more complex malaria situation than suspected from official reports. A large asymptomatic reservoir was observed. The rates of P. vivax infections were higher than recorded in several areas. In remote areas, malaria prevalence was high. This indicates that additional health facilities should be implemented in areas at higher risk, such as remote rural and forested parts of the country, which are not adequately served by health services. Precise malaria risk mapping all over the country is needed to assess the

  1. School-based surveys of malaria in Oromia Regional State, Ethiopia: a rapid survey method for malaria in low transmission settings

    Directory of Open Access Journals (Sweden)

    Pullan Rachel L

    2011-02-01

    Full Text Available Abstract Background In Ethiopia, malaria transmission is seasonal and unstable, with both Plasmodium falciparum and Plasmodium vivax endemic. Such spatial and temporal clustering of malaria only serves to underscore the importance of regularly collecting up-to-date malaria surveillance data to inform decision-making in malaria control. Cross-sectional school-based malaria surveys were conducted across Oromia Regional State to generate up-to-date data for planning malaria control interventions, as well as monitoring and evaluation of operational programme implementation. Methods Two hundred primary schools were randomly selected using a stratified and weighted sampling frame; 100 children aged five to 18 years were then randomly chosen within each school. Surveys were carried out in May 2009 and from October to December 2009, to coincide with the peak of malaria transmission in different parts of Oromia. Each child was tested for malaria by expert microscopy, their haemoglobin measured and a simple questionnaire completed. Satellite-derived environmental data were used to assess ecological correlates of Plasmodium infection; Bayesian geostatistical methods and Kulldorff's spatial scan statistic were employed to investigate spatial heterogeneity. Results A total 20,899 children from 197 schools provided blood samples, two selected schools were inaccessible and one school refused to participate. The overall prevalence of Plasmodium infection was found to be 0.56% (95% CI: 0.46-0.67%, with 53% of infections due to P. falciparum and 47% due to P. vivax. Of children surveyed, 17.6% (95% CI: 17.0-18.1% were anaemic, while 46% reported sleeping under a mosquito net the previous night. Malaria was found at 30 (15% schools to a maximum elevation of 2,187 metres, with school-level Plasmodium prevalence ranging between 0% and 14.5%. Although environmental variables were only weakly associated with P. falciparum and P. vivax infection, clusters of infection

  2. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India.

    Science.gov (United States)

    Cator, Lauren J; Thomas, Shalu; Paaijmans, Krijn P; Ravishankaran, Sangamithra; Justin, Johnson A; Mathai, Manu T; Read, Andrew F; Thomas, Matthew B; Eapen, Alex

    2013-03-02

    Environmental temperature is an important driver of malaria transmission dynamics. Both the parasite and vector are sensitive to mean ambient temperatures and daily temperature variation. To understand transmission ecology, therefore, it is important to determine the range of microclimatic temperatures experienced by malaria vectors in the field. A pilot study was conducted in the Indian city of Chennai to determine the temperature variation in urban microclimates and characterize the thermal ecology of the local transmission setting. Temperatures were measured in a range of probable indoor and outdoor resting habitats of Anopheles stephensi in two urban slum malaria sites. Mean temperatures and daily temperature fluctuations in local transmission sites were compared with standard temperature measures from the local weather station. The biological implications of the different temperatures were explored using temperature-dependent parasite development models to provide estimates of the extrinsic incubation period (EIP) of Plasmodium vivax and Plasmodium falciparum. Mean daily temperatures within the urban transmission sites were generally warmer than those recorded at the local weather station. The main reason was that night-time temperatures were higher (and hence diurnal temperature ranges smaller) in the urban settings. Mean temperatures and temperature variation also differed between specific resting sites within the transmission environments. Most differences were of the order of 1-3°C but were sufficient to lead to important variation in predicted EIPs and hence, variation in estimates of transmission intensity. Standard estimates of environmental temperature derived from local weather stations do not necessarily provide realistic measures of temperatures within actual transmission environments. Even the small differences in mean temperatures or diurnal temperature ranges reported in this study can lead to large variations in key mosquito and/or parasite

  3. The Effect of Indoor Residual Spraying on the Prevalence of Malaria Parasite Infection, Clinical Malaria and Anemia in an Area of Perennial Transmission and Moderate Coverage of Insecticide Treated Nets in Western Kenya.

    Directory of Open Access Journals (Sweden)

    John E Gimnig

    Full Text Available Insecticide treated nets (ITNs and indoor residual spraying (IRS have been scaled up for malaria prevention in sub-Saharan Africa. However, there are few studies on the benefit of implementing IRS in areas with moderate to high coverage of ITNs. We evaluated the impact of an IRS program on malaria related outcomes in western Kenya, an area of intense perennial malaria transmission and moderate ITN coverage (55-65% use of any net the previous night.The Kenya Division of Malaria Control, with support from the US President's Malaria Initiative, conducted IRS in one lowland endemic district with moderate coverage of ITNs. Surveys were conducted in the IRS district and a neighboring district before IRS, after one round of IRS in July-Sept 2008 and after a second round of IRS in April-May 2009. IRS was conducted with pyrethroid insecticides. At each survey, 30 clusters were selected for sampling and within each cluster, 12 compounds were randomly selected. The primary outcomes measured in all residents of selected compounds included malaria parasitemia, clinical malaria (P. falciparum infection plus history of fever and anemia (Hb<8 of all residents in randomly selected compounds. At each survey round, individuals from the IRS district were matched to those from the non-IRS district using propensity scores and multivariate logistic regression models were constructed based on the matched dataset.At baseline and after one round of IRS, there were no differences between the two districts in the prevalence of malaria parasitemia, clinical malaria or anemia. After two rounds of IRS, the prevalence of malaria parasitemia was 6.4% in the IRS district compared to 16.7% in the comparison district (OR = 0.36, 95% CI = 0.22-0.59, p<0.001. The prevalence of clinical malaria was also lower in the IRS district (1.8% vs. 4.9%, OR = 0.37, 95% CI = 0.20-0.68, p = 0.001. The prevalence of anemia was lower in the IRS district but only in children under 5 years of age (2

  4. Modelling the impact of artemisinin combination therapy and long-acting treatments on malaria transmission intensity.

    Directory of Open Access Journals (Sweden)

    Lucy C Okell

    2008-11-01

    Full Text Available Artemisinin derivatives used in recently introduced combination therapies (ACTs for Plasmodium falciparum malaria significantly lower patient infectiousness and have the potential to reduce population-level transmission of the parasite. With the increased interest in malaria elimination, understanding the impact on transmission of ACT and other antimalarial drugs with different pharmacodynamics becomes a key issue. This study estimates the reduction in transmission that may be achieved by introducing different types of treatment for symptomatic P. falciparum malaria in endemic areas.We developed a mathematical model to predict the potential impact on transmission outcomes of introducing ACT as first-line treatment for uncomplicated malaria in six areas of varying transmission intensity in Tanzania. We also estimated the impact that could be achieved by antimalarials with different efficacy, prophylactic time, and gametocytocidal effects. Rates of treatment, asymptomatic infection, and symptomatic infection in the six study areas were estimated using the model together with data from a cross-sectional survey of 5,667 individuals conducted prior to policy change from sulfadoxine-pyrimethamine to ACT. The effects of ACT and other drug types on gametocytaemia and infectiousness to mosquitoes were independently estimated from clinical trial data. Predicted percentage reductions in prevalence of infection and incidence of clinical episodes achieved by ACT were highest in the areas with low initial transmission. A 53% reduction in prevalence of infection was seen if 100% of current treatment was switched to ACT in the area where baseline slide-prevalence of parasitaemia was lowest (3.7%, compared to an 11% reduction in the highest-transmission setting (baseline slide prevalence = 57.1%. Estimated percentage reductions in incidence of clinical episodes were similar. The absolute size of the public health impact, however, was greater in the highest-transmission

  5. Mapping Malaria Transmission Risk in Northern Morocco Using Entomological and Environmental Data

    Directory of Open Access Journals (Sweden)

    E. Adlaoui

    2011-01-01

    Full Text Available Malaria resurgence risk in Morocco depends, among other factors, on environmental changes as well as the introduction of parasite carriers. The aim of this paper is to analyze the receptivity of the Loukkos area, large wetlands in Northern Morocco, to quantify and to map malaria transmission risk in this region using biological and environmental data. This risk was assessed on entomological risk basis and was mapped using environmental markers derived from satellite imagery. Maps showing spatial and temporal variations of entomological risk for Plasmodium vivax and P. falciparum were produced. Results showed this risk to be highly seasonal and much higher in rice fields than in swamps. This risk is lower for Afrotropical P. falciparum strains because of the low infectivity of Anopheles labranchiae, principal malaria vector in Morocco. However, it is very high for P. vivax mainly during summer corresponding to the rice cultivation period. Although the entomological risk is high in Loukkos region, malaria resurgence risk remains very low, because of the low vulnerability of the area.

  6. Accuracy of a rapid diagnostic test on the diagnosis of malaria infection and of malaria - attributable fever during low and high transmission season in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Tinto Halidou

    2010-07-01

    Full Text Available Abstract Background Malaria management policies currently recommend that the treatment should only be administered after laboratory confirmation. Where microscopy is not available, rapid diagnostic tests (RDTs are the usual alternative. Conclusive evidence is still lacking on the safety of a test-based strategy for children. Moreover, no formal attempt has been made to estimate RDTs accuracy on malaria-attributable fever. This study aims at estimating the accuracy of a RDT for the diagnosis of both malaria infection and malaria - attributable fever, in a region of Burkina Faso with a typically seasonal malaria transmission pattern. Methods Cross-sectional study. Subjects: all patients aged > 6 months consulting during the study periods. Gold standard for the diagnosis of malaria infection was microscopy. Gold standard for malaria-attributable fever was the number of fevers attributable to malaria, estimated by comparing parasite densities of febrile versus non-febrile subjects. Exclusion criteria: severe clinical condition needing urgent care. Results In the dry season, 186/852 patients with fever (22% and 213/1,382 patients without fever (15% had a Plasmodium falciparum infection. In the rainy season, this proportion was 841/1,317 (64% and 623/1,669 (37%, respectively. The attributable fraction of fever to malaria was 11% and 69%, respectively. The RDT was positive in 113/400 (28.3% fever cases in the dry season, and in 443/650 (68.2% in the rainy season. In the dry season, the RDT sensitivity and specificity for malaria infection were 86% and 90% respectively. In the rainy season they were 94% and 78% respectively. In the dry season, the RDT sensitivity and specificity for malaria-attributable fever were 94% and 75%, the positive predictive value (PPV was 9% and the negative predictive value (NPV was 99.8%. In the rainy season the test sensitivity for malaria-attributable fever was 97% and specificity was 55%. The PPV ranged from 38% for

  7. Association of sub-microscopic malaria parasite carriage with transmission intensity in north-eastern Tanzania

    Directory of Open Access Journals (Sweden)

    Manjurano Alphaxard

    2011-12-01

    Full Text Available Abstract Background In malaria endemic areas, individuals are frequently asymptomatic and may be undetected by conventional microscopy or newer, rapid diagnostic tests. Molecular techniques allow a more accurate assessment of this asymptomatic parasite burden, the extent of which is important for malaria control. This study examines the relative prevalence of sub-microscopic level parasite carriage and clonal complexity of infections (multiplicity of infection over a range of endemicities in a region of north-eastern Tanzania where altitude is an established proxy of malaria transmission. The PCR prevalence was then compared against other measures of transmission intensity collected in the same area. Methods This study used 1,121 blood samples collected from a previously conducted cross-sectional malario-metric survey during the short rainy season in 2001 from 13 villages (three at 1,200 m in altitude above sea level. Samples were analysed by PCR for carriage of parasites and multiplicity of infection. These data were compared with other measures of transmission intensity collected from the same area. Results Parasite prevalence was 34.7% by PCR and 13.6% by microscopy; a 2.5-fold difference in line with other recent observations. This fold difference was relatively consistent at the different altitude bands despite a marked decrease in parasite prevalence with altitude: vs 28.6, 600-1,200 m 35.5 vs 9.9, > 1,200 m 15.8 vs 5.9. The difference between parasite prevalence by PCR was 3.2 in individuals aged between 15 and 45 years (34.5 vs 10.9 compared with 2.5 in those aged 1-5 (34.0 vs 13.5 though this was not statistically significant. Multiplicity of infection (MOI ranged from 1.2 to 3.7 and was positively associated with parasite prevalence assessed by both PCR and microscopy. There was no association of MOI and age. Village level PCR parasite prevalence was strongly correlated with altitude, sero-conversion rate and predicted entomological

  8. Bionomics of Anopheline species and malaria transmission dynamics along an altitudinal transect in Western Cameroon

    Directory of Open Access Journals (Sweden)

    Toto Jean-Claude

    2010-05-01

    Full Text Available Abstract Background Highland areas of Africa are mostly malaria hypoendemic, due to climate which is not appropriate for anophelines development and their reproductive fitness. In view of designing a malaria control strategy in Western Cameroon highlands, baseline data on anopheline species bionomics were collected. Methods Longitudinal entomological surveys were conducted in three localities at different altitudinal levels. Mosquitoes were captured when landing on human volunteers and by pyrethrum spray catches. Sampled Anopheles were tested for the presence of Plasmodium circumsporozoite proteins and their blood meal origin with ELISA. Entomological parameters of malaria epidemiology were assessed using Mac Donald's formula. Results Anopheline species diversity and density decreased globally from lowland to highland. The most aggressive species along the altitudinal transect was Anopheles gambiae s.s. of S molecular form, followed in the lowland and on the plateau by An. funestus, but uphill by An. hancocki. An. gambiae and An. ziemanni exhibited similar seasonal biting patterns at the different levels, whereas different features were observed for An. funestus. Only indoor resting species could be captured uphill; it is therefore likely that endophilic behaviour is necessary for anophelines to climb above a certain threshold. Of the ten species collected along the transect, only An. gambiae and An. funestus were responsible for malaria transmission, with entomological inoculation rates (EIR of 90.5, 62.8 and zero infective bites/human/year in the lowland, on the plateau and uphill respectively. The duration of gonotrophic cycle was consistently one day shorter for An. gambiae as compared to An. funestus at equal altitude. Altitudinal climate variations had no effect on the survivorship and the subsequent life expectancy of the adult stage of these malaria vectors, but most probably on aquatic stages. On the contrary increasing altitude

  9. Partnering for impact: Integrated transmission assessment surveys for lymphatic filariasis, soil transmitted helminths and malaria in Haiti.

    Science.gov (United States)

    Knipes, Alaine Kathryn; Lemoine, Jean Frantz; Monestime, Franck; Fayette, Carl R; Direny, Abdel N; Desir, Luccene; Beau de Rochars, Valery E; Streit, Thomas G; Renneker, Kristen; Chu, Brian K; Chang, Michelle A; Mace, Kimberly E; Won, Kimberly Y; Lammie, Patrick J

    2017-02-01

    Since 2001, Haiti's National Program for the Elimination of Lymphatic Filariasis (NPELF) has worked to reduce the transmission of lymphatic filariasis (LF) through annual mass drug administration (MDA) with diethylcarbamazine and albendazole. The NPELF reached full national coverage with MDA for LF in 2012, and by 2014, a total of 14 evaluation units (48 communes) had met WHO eligibility criteria to conduct LF transmission assessment surveys (TAS) to determine whether prevalence had been reduced to below a threshold, such that transmission is assumed to be no longer sustainable. Haiti is also endemic for malaria and many communities suffer a high burden of soil transmitted helminths (STH). Heeding the call from WHO for integration of neglected tropical diseases (NTD) activities, Haiti's NPELF worked with the national malaria control program (NMCP) and with partners to develop an integrated TAS (LF-STH-malaria) to include assessments for malaria and STH. The aim of this study was to evaluate the feasibility of using TAS surveys for LF as a platform to collect information about STH and malaria. Between November 2014 and June 2015, TAS were conducted in 14 evaluation units (EUs) including 1 TAS (LF-only), 1 TAS-STH-malaria, and 12 TAS-malaria, with a total of 16,655 children tested for LF, 14,795 tested for malaria, and 298 tested for STH. In all, 12 of the 14 EUs passed the LF TAS, allowing the program to stop MDA for LF in 44 communes. The EU where children were also tested for STH will require annual school-based treatment with albendazole to maintain reduced STH levels. Finally, only 12 of 14,795 children tested positive for malaria by RDT in 38 communes. Haiti's 2014-2015 Integrated TAS surveys provide evidence of the feasibility of using the LF TAS as a platform for integration of assessments for STH and or malaria.

  10. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    Directory of Open Access Journals (Sweden)

    Paulo FP Pimenta

    2015-02-01

    Full Text Available In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.

  11. cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission.

    Directory of Open Access Journals (Sweden)

    Ghania Ramdani

    2015-05-01

    Full Text Available Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites.

  12. Malaria and Travelers

    Science.gov (United States)

    ... a CDC Malaria Branch clinician. malaria@cdc.gov Malaria and Travelers Recommend on Facebook Tweet Share Compartir ... may be at risk for infection. Determine if malaria transmission occurs at the destinations Obtain a detailed ...

  13. Role of asymptomatic carriers and weather variables in persistent transmission of malaria in an endemic district of Assam, India

    Science.gov (United States)

    Das, Nani Gopal; Dhiman, Sunil; Talukdar, Pranab Kumar; Goswami, Diganta; Rabha, Bipul; Baruah, Indra; Veer, Vijay

    2015-01-01

    Background Malaria transmission is perennial in the Assam–Arunachal Pradesh interstate border areas in the Sonitpur district of Assam, India. A yearlong study was carried out on the incidence of symptomatic and asymptomatic malaria and the role of asymptomatic malaria carriers in persistent transmission of the disease. The relationships between malaria incidence and weather parameters were also investigated. Methods Active and mass blood surveys were conducted on a monthly basis in Bengenajuli, Sapairaumari Pathar, and Nigam villages near the Assam–Arunachal Pradesh border. Epidemiological indices were estimated for malaria-positive cases. Multiple linear regression between monthly malaria incidence and monthly average temperature, and relative humidity along with monthly total rainfall was carried out. The known malaria vectors collected in CDC light traps were identified and recorded. Results Slide positivity rate (SPR) and Plasmodium falciparum percent (Pf%) for symptomatic malaria were 26.1 and 79.8, respectively. Prevalence of malaria vectors was observed throughout the year with varying density. Anopheles philippinensis/nivipes and A. annularis were predominant among the seven known vector species recorded currently. Asymptomatic parasitemia was detected throughout the year with SPR ranging from 4.8 to 5.3. Monthly rainfall with 1-month lag had the highest correlation (r=0.92) with SPR. The relationship between SPR and weather factors was established as SPR=−114.22+0.58 T min+1.38 RH+0.03 RF (R 2=0.89; p=0.00). Conclusion Low and relatively constant levels of asymptomatic parasitemia was present in the study area. High malaria vector density and presence of asymptomatic malaria parasite carriers were responsible for persistent malaria transmission in the region. This study concludes that passive detection and prompt treatment of asymptomatic carriers is essential for preventing persistent disease transmission. Rainfall along with some other weather

  14. Role of asymptomatic carriers and weather variables in persistent transmission of malaria in an endemic district of Assam, India

    Directory of Open Access Journals (Sweden)

    Nani Gopal Das

    2015-01-01

    Full Text Available Background: Malaria transmission is perennial in the Assam–Arunachal Pradesh interstate border areas in the Sonitpur district of Assam, India. A yearlong study was carried out on the incidence of symptomatic and asymptomatic malaria and the role of asymptomatic malaria carriers in persistent transmission of the disease. The relationships between malaria incidence and weather parameters were also investigated. Methods: Active and mass blood surveys were conducted on a monthly basis in Bengenajuli, Sapairaumari Pathar, and Nigam villages near the Assam–Arunachal Pradesh border. Epidemiological indices were estimated for malaria-positive cases. Multiple linear regression between monthly malaria incidence and monthly average temperature, and relative humidity along with monthly total rainfall was carried out. The known malaria vectors collected in CDC light traps were identified and recorded. Results: Slide positivity rate (SPR and Plasmodium falciparum percent (Pf% for symptomatic malaria were 26.1 and 79.8, respectively. Prevalence of malaria vectors was observed throughout the year with varying density. Anopheles philippinensis/nivipes and A. annularis were predominant among the seven known vector species recorded currently. Asymptomatic parasitemia was detected throughout the year with SPR ranging from 4.8 to 5.3. Monthly rainfall with 1-month lag had the highest correlation (r=0.92 with SPR. The relationship between SPR and weather factors was established as SPR=−114.22+0.58 Tmin+1.38 RH+0.03 RF (R2=0.89; p=0.00. Conclusion: Low and relatively constant levels of asymptomatic parasitemia was present in the study area. High malaria vector density and presence of asymptomatic malaria parasite carriers were responsible for persistent malaria transmission in the region. This study concludes that passive detection and prompt treatment of asymptomatic carriers is essential for preventing persistent disease transmission. Rainfall along with some

  15. Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control

    Directory of Open Access Journals (Sweden)

    Ndenga Bryson A

    2006-11-01

    Full Text Available Abstract Background Recent resurgence of malaria in the highlands of Western Kenya has called for a more comprehensive understanding of the previously neglected complex highland vector ecology. Besides other drivers of malaria epidemiology, topography is likely to have a major effect on spatial vector and parasite distribution. The aim of this study was to determine the effects of topography on malaria spatial vector distribution and parasite prevalence. Methodology Indoor resting adult malaria vectors and blood parasites were collected in three villages along a 4 km transect originating from the valley bottom and ending at the hilltop for 13 months. Members of the Anopheles gambiae complex were identified by PCR. Blood parasites were collected from children 6–13 years old and densities categorized by site of home location and age of the children. Results Ninety eight percent (98% of An. gambiae s.s. and (99% Anopheles funestus were collected in houses located at the edge of the valley bottom, whereas 1% of An. gambiae s.s. were collected at mid hill and at the hilltop respectively. No An. funestus were collected at the hilltop. Malaria prevalence was 68% at the valley bottom, 40.2% at mid hill and 26.7% at the hilltop. Children aged six years and living at the edge of the valley bottom had an annual geometric mean number of 66.1 trophozoites for every 200 white blood cells, while those living at mid-hill had a mean of 84.8, and those living at hilltop had 199.5 trophozoites. Conclusion Malaria transmission in this area is mainly confined to the valley bottom. Effective vector control could be targeted at the foci. However, the few vectors observed at mid-hill maintained a relatively high prevalence rate. The higher variability in blood parasite densities and their low correlation with age in children living at the hilltop suggests a lower stability of transmission than at the mid-hill and valley bottom.

  16. Impact of permethrin-treated bed nets on malaria, anemia, and growth in infants in an area of intense perennial malaria transmission in western Kenya

    NARCIS (Netherlands)

    ter Kuile, Feiko O.; Terlouw, Dianne J.; Kariuki, Simon K.; Phillips-Howard, Penelope A.; Mirel, Lisa B.; Hawley, William A.; Friedman, Jennifer F.; Shi, Ya Ping; Kolczak, Margarette S.; Lal, Altaf A.; Vulule, John M.; Nahlen, Bernard L.

    2003-01-01

    As part of a community-based, group-randomized, controlled trial of insecticide-treated bed nets (ITNs) in an area with intense malaria transmission in western Kenya, a birth cohort (n = 833) was followed monthly until the age of 24 months to determine the potential beneficial and adverse effects of

  17. Malaria treatment-seeking behaviour and drug prescription practices in an area of low transmission in Uganda

    DEFF Research Database (Denmark)

    Ndyomugyenyi, Richard; Magnussen, Pascal; Clarke, Siân

    2007-01-01

    Knowledge of malaria and treatment-seeking behaviour was investigated in an area of low transmission in Uganda to help health services to plan for appropriate interventions to control malaria. Although knowledge of malaria symptoms, preventive methods and malaria risks was widespread, few were...... actually using insecticide-treated nets. Many patients (25%) had received treatment prior to visiting a health facility, with drug shops and general stores being the main sources of treatment. Some shops dispensed quinine, a second-line drug recommended for complicated malaria. Prescription practices...... of health staff often did not comply with guidelines. Only 30% of patients received treatment at a health facility within 24h of onset of symptoms. Findings indicate a need for community-level information campaigns on prompt treatment and introduction of home-based management of fever. Measures are needed...

  18. Malaria

    Science.gov (United States)

    ... deadly type occurs in Africa south of the Sahara Desert. Malaria symptoms include chills, flu-like symptoms, fever, vomiting, diarrhea, and jaundice. A blood test can diagnose it. It can be life-threatening. However, you can treat malaria with drugs. ...

  19. The impact of hotspot-targeted interventions on malaria transmission: study protocol for a cluster-randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Bousema Teun

    2013-02-01

    Full Text Available Abstract Background Malaria transmission is highly heterogeneous in most settings, resulting in the formation of recognizable malaria hotspots. Targeting these hotspots might represent a highly efficacious way of controlling or eliminating malaria if the hotspots fuel malaria transmission to the wider community. Methods/design Hotspots of malaria will be determined based on spatial patterns in age-adjusted prevalence and density of antibodies against malaria antigens apical membrane antigen-1 and merozoite surface protein-1. The community effect of interventions targeted at these hotspots will be determined. The intervention will comprise larviciding, focal screening and treatment of the human population, distribution of long-lasting insecticide-treated nets and indoor residual spraying. The impact of the intervention will be determined inside and up to 500 m outside the targeted hotspots by PCR-based parasite prevalence in cross-sectional surveys, malaria morbidity by passive case detection in selected facilities and entomological monitoring of larval and adult Anopheles populations. Discussion This study aims to provide direct evidence for a community effect of hotspot-targeted interventions. The trial is powered to detect large effects on malaria transmission in the context of ongoing malaria interventions. Follow-up studies will be needed to determine the effect of individual components of the interventions and the cost-effectiveness of a hotspot-targeted approach, where savings made by reducing the number of compounds that need to receive interventions should outweigh the costs of hotspot-detection. Trial registration NCT01575613. The protocol was registered online on 20 March 2012; the first community was randomized on 26 March 2012.

  20. Kinase signalling in Plasmodium sexual stages and interventions to stop malaria transmission.

    Science.gov (United States)

    Morahan, Belinda; Garcia-Bustos, Jose

    2014-01-01

    The symptoms of malaria, one of the infectious diseases with the highest mortality and morbidity world-wide, are caused by asexual parasites replicating inside red blood cells. Disease transmission, however, is effected by non-replicating cells which have differentiated into male or female gametocytes. These are the forms infectious to mosquito vectors and the insects are the only hosts where parasite sexual reproduction can take place. Malaria is thus a complex infection in which pharmacological treatment of symptoms may still allow transmission for long periods, while pharmacological blockage of infectivity may not cure symptoms. The process of parasite sexual differentiation and development is still being revealed but it is clear that kinase-mediated signalling mechanisms play a significant role. This review attempts to summarise our limited current knowledge on the signalling mechanisms involved in the transition from asexual replication to sexual differentiation and reproduction, with a brief mention to the effects of current treatments on the sexual stages and to some of the difficulties inherent in developing pharmacological interventions to curtail disease transmission. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission.

    Science.gov (United States)

    Dawes, Emma J; Churcher, Thomas S; Zhuang, Shijie; Sinden, Robert E; Basáñez, María-Gloria

    2009-10-12

    Daily mortality is an important determinant of a vector's ability to transmit pathogens. Original simplifying assumptions in malaria transmission models presume vector mortality is independent of age, infection status and parasite load. Previous studies illustrate conflicting evidence as to the importance of Plasmodium-induced vector mortality, but very few studies to date have considered the effect of infection density on mosquito survival. A series of three experiments were conducted, each consisting of four cages of 400-1,000 Anopheles stephensi mosquitoes fed on blood infected with different Plasmodium berghei ookinete densities per microlitre of blood. Twice daily the numbers of dead mosquitoes in each group were recorded, and on alternate days a sample of live mosquitoes from each group were dissected to determine parasite density in both midgut and salivary glands. Survival analyses indicate that mosquito mortality is both age- and infection intensity-dependent. Mosquitoes experienced an initially high, partly feeding-associated, mortality rate, which declined to a minimum before increasing with mosquito age and parasite intake. As a result, the life expectancy of a mosquito is shown to be dependent on both insect age and the density of Plasmodium infection. These results contribute to understanding in greater detail the processes that influence sporogony in the mosquito, indicate the impact that parasite density could have on malaria transmission dynamics, and have implications for the design, development, and evaluation of transmission-blocking strategies.

  2. Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission

    Directory of Open Access Journals (Sweden)

    Sinden Robert E

    2009-10-01

    Full Text Available Abstract Background Daily mortality is an important determinant of a vector's ability to transmit pathogens. Original simplifying assumptions in malaria transmission models presume vector mortality is independent of age, infection status and parasite load. Previous studies illustrate conflicting evidence as to the importance of Plasmodium-induced vector mortality, but very few studies to date have considered the effect of infection density on mosquito survival. Methods A series of three experiments were conducted, each consisting of four cages of 400-1,000 Anopheles stephensi mosquitoes fed on blood infected with different Plasmodium berghei ookinete densities per microlitre of blood. Twice daily the numbers of dead mosquitoes in each group were recorded, and on alternate days a sample of live mosquitoes from each group were dissected to determine parasite density in both midgut and salivary glands. Results Survival analyses indicate that mosquito mortality is both age- and infection intensity-dependent. Mosquitoes experienced an initially high, partly feeding-associated, mortality rate, which declined to a minimum before increasing with mosquito age and parasite intake. As a result, the life expectancy of a mosquito is shown to be dependent on both insect age and the density of Plasmodium infection. Conclusion These results contribute to understanding in greater detail the processes that influence sporogony in the mosquito, indicate the impact that parasite density could have on malaria transmission dynamics, and have implications for the design, development, and evaluation of transmission-blocking strategies.

  3. Development of a Pfs25-EPA malaria transmission blocking vaccine as a chemically conjugated nanoparticle.

    Science.gov (United States)

    Shimp, Richard L; Rowe, Christopher; Reiter, Karine; Chen, Beth; Nguyen, Vu; Aebig, Joan; Rausch, Kelly M; Kumar, Krishan; Wu, Yimin; Jin, Albert J; Jones, David S; Narum, David L

    2013-06-19

    Successful efforts to control infectious diseases have often required the use of effective vaccines. The current global strategy for control of malaria, including elimination and eradication will also benefit from the development of an effective vaccine that interrupts malaria transmission. To this end, a vaccine that disrupts malaria transmission within the mosquito host has been investigated for several decades targeting a 25 kDa ookinete specific surface protein, identified as Pfs25. Phase 1 human trial results using a recombinant Pfs25H/Montanide ISA51 formulation demonstrated that human Pfs25 specific antibodies block parasite infectivity to mosquitoes; however, the extent of blocking was likely insufficient for an effective transmission blocking vaccine. To overcome the poor immunogenicity, processes to produce and characterize recombinant Pfs25H conjugated to a detoxified form of Pseudomonas aeruginosa exoprotein A (EPA) have been developed and used to manufacture a cGMP pilot lot for use in human clinical trials. The Pfs25-EPA conjugate appears as a nanoparticle with an average molar mass in solution of approximately 600 kDa by static light scattering with an average diameter 20 nm (range 10-40 nm) by dynamic light scattering. The molar ratio of Pfs25H to EPA is about 3 to 1 by amino acid analysis, respectively. Outbred mice immunized with the Pfs25-EPA conjugated nanoparticle formulated on Alhydrogel(®) had a 75-110 fold increase in Pfs25H specific antibodies when compared to an unconjugated Pfs25H/Alhydrogel(®) formulation. A phase 1 human trial using the Pfs25-EPA/Alhydrogel(®) formulation is ongoing in the United States. Published by Elsevier Ltd.

  4. Malaria in pregnancy: a passive surveillance study of pregnant women in low transmission areas of Colombia, Latin America.

    Science.gov (United States)

    Lopez-Perez, Mary; Pacheco, M Andreína; Buriticá, Lucía; Escalante, Ananias A; Herrera, Sócrates; Arévalo-Herrera, Myriam

    2016-02-05

    Malaria causes a significant burden in highly endemic areas where children and pregnant women are more susceptible to severe disease and death, however, in low transmission settings malaria in pregnant women is less frequent. The aim of this study was to provide information of clinical profile, anti-parasite host immune responses and parasite genotyping of pregnant women with malaria in low endemic areas of Colombia. This was a descriptive study conducted through passive surveillance in 1328 individuals from three endemic areas of Córdoba, Nariño and Chocó departments between 2011 and 2013. Trained physicians confirmed the pregnancy status and recorded clinical and epidemiological information. Haematological parameters, as well as hepatic and renal function, anti-malarial antibodies and parasite genotypes were evaluated. A total of 582 women presented with malaria infection, 34 of whom were pregnant (5.8 %), and most were infected by Plasmodium falciparum (n = 24). In 44 % (n = 15) of the women, the infection occurred during the first half of pregnancy. Although uncomplicated disease and parasitaemia ≤20,000 parasites/µL were common (n = 31), three women (8.8 %) infected by P. falciparum were classified as severe cases. Mild to moderate anaemia (68 %) and mild thrombocytopaenia (41 %) were the most frequent blood alterations and in four women acute renal failure was observed. Six women presented a second malaria episode during pregnancy mainly caused by P. vivax (n = 5), although no direct evidence of relapse was found by genotyping. Two out of the six women presenting a second malaria episode had severe malaria. A low prevalence of specific anti-parasite antibodies was found. Microsatellites indicated that all P. vivax infections involved multiple lineages whereas all but one P. falciparum infections harboured single genotypes. Most malaria infected pregnant women displayed uncomplicated malaria, although a few of them with a second malaria episode presented

  5. Malaria vectors and transmission dynamics in Goulmoun, a rural city in south-western Chad

    Directory of Open Access Journals (Sweden)

    Awono-Ambene Parfait

    2009-05-01

    Full Text Available Abstract Background Knowledge of some baseline entomological data such as Entomological Inoculation Rates (EIR is crucially needed to assess the epidemiological impact of malaria control activities directed either against parasites or vectors. In Chad, most published surveys date back to the 1960's. In this study, anopheline species composition and their relation to malaria transmission were investigated in a dry Sudanian savannas area of Chad. Methods A 12-month longitudinal survey was conducted in the irrigated rice-fields area of Goulmoun in south western Chad. Human landing catches were performed each month from July 2006 to June 2007 in three compounds (indoors and outdoors and pyrethrum spray collections were conducted in July, August and October 2006 in 10 randomly selected rooms. Mosquitoes belonging to the Anopheles gambiae complex and to the An. funestus group were identified by molecular diagnostic tools. Plasmodium falciparum infection and blood meal sources were detected by ELISA. Results Nine anopheline species were collected by the two sampling methods. The most aggressive species were An. arabiensis (51 bites/human/night, An. pharoensis (12.5 b/h/n, An. funestus (1.5 b/h/n and An. ziemanni (1.3 b/h/n. The circumsporozoite protein rate was 1.4% for An. arabiensis, 1.4% for An. funestus, 0.8% for An. pharoensis and 0.5% for An. ziemanni. Malaria transmission is seasonal, lasting from April to December. However, more than 80% of the total EIR was concentrated in the period from August to October. The overall annual EIR was estimated at 311 bites of infected anophelines/human/year, contributed mostly by An. arabiensis (84.5% and An. pharoensis (12.2%. Anopheles funestus and An. ziemanni played a minor role. Parasite inoculation occurred mostly after 22:00 hours but around 20% of bites of infected anophelines were distributed earlier in the evening. Conclusion The present study revealed the implication of An. pharoensis in malaria

  6. Seroprevalence of Antibodies against Plasmodium falciparum Sporozoite Antigens as Predictive Disease Transmission Markers in an Area of Ghana with Seasonal Malaria Transmission.

    Directory of Open Access Journals (Sweden)

    Kwadwo A Kusi

    Full Text Available As an increasing number of malaria-endemic countries approach the disease elimination phase, sustenance of control efforts and effective monitoring are necessary to ensure success. Mathematical models that estimate anti-parasite antibody seroconversion rates are gaining relevance as more sensitive transmission intensity estimation tools. Models however estimate yearly seroconversion and seroreversion rates and usually predict long term changes in transmission, occurring years before the time of sampling. Another challenge is the identification of appropriate antigen targets since specific antibody levels must directly reflect changes in transmission patterns. We therefore investigated the potential of antibodies to sporozoite and blood stage antigens for detecting short term differences in malaria transmission in two communities in Northern Ghana with marked, seasonal transmission.Cross-sectional surveys were conducted during the rainy and dry seasons in two communities, one in close proximity to an irrigation dam and the other at least 20 Km away from the dam. Antibodies against the sporozoite-specific antigens circumsporozoite protein (CSP and Cell traversal for ookinetes and sporozoites (CelTOS and the classical blood stage antigen apical membrane antigen 1 (AMA1 were measured by indirect ELISA. Antibody levels and seroprevalence were compared between surveys and between study communities. Antibody seroprevalence data were fitted to a modified reversible catalytic model to estimate the seroconversion and seroreversion rates.Changes in sporozoite-specific antibody levels and seroprevalence directly reflected differences in parasite prevalence between the rainy and dry seasons and hence the extent of malaria transmission. Seroconversion rate estimates from modelled seroprevalence data did not however support the above observation.The data confirms the potential utility of sporozoite-specific antigens as useful markers for monitoring short term

  7. Congenital malaria with atypical presentation: A case report from low transmission area in India

    Directory of Open Access Journals (Sweden)

    Biswas Sukla

    2007-04-01

    Full Text Available Abstract Background Malaria during first few months of life may be due to transplacental transfer of parasitized maternal erythrocytes. Although IgG and IgM antimalarial antibodies can be detected in maternal blood, only IgG antibodies are present in the infant's blood. These antibodies can delay and modify the onset of clinical manifestations. Case Presentation An infant is described who presented with irritability and feeding problems. Clinical examination and investigations revealed that the infant was afebrile, had jaundice, hepatosplenomegaly and haemolytic anaemia. Peripheral smear demonstrated Plasmodium vivax. While the mother had significant levels of immunoglobulin G (IgG, the infant was found negative for IgG and had low immunoglobulin M (IgM levels. The mother had a history of febrile illness during pregnancy and her peripheral smear was also positive for P. vivax. Both were successfully treated with chloroquine in the dose of 25 mg/kg/day over three days. Conclusion The case emphasizes the importance of considering the diagnosis of malaria even in infants in low transmission area, who may not present with typical symptoms of malaria, such as fever, but have other clinical manifestations like jaundice and haemolytic anaemia.

  8. Malaria transmission pattern resilience to climatic variability is mediated by insecticide-treated nets

    Directory of Open Access Journals (Sweden)

    Taleo George

    2008-06-01

    Full Text Available Abstract Background Malaria is an important public-health problem in the archipelago of Vanuatu and climate has been hypothesized as important influence on transmission risk. Beginning in 1988, a major intervention using insecticide-treated bed nets (ITNs was implemented in the country in an attempt to reduce Plasmodium transmission. To date, no study has addressed the impact of ITN intervention in Vanuatu, how it may have modified the burden of disease, and whether there were any changes in malaria incidence that might be related to climatic drivers. Methods and findings Monthly time series (January 1983 through December 1999 of confirmed Plasmodium falciparum and Plasmodium vivax infections in the archipelago were analysed. During this 17 year period, malaria dynamics underwent a major regime shift around May 1991, following the introduction of bed nets as a control strategy in the country. By February of 1994 disease incidence from both parasites was reduced by at least 50%, when at most 20% of the population at risk was covered by ITNs. Seasonal cycles, as expected, were strongly correlated with temperature patterns, while inter-annual cycles were associated with changes in precipitation. Following the bed net intervention, the influence of environmental drivers of malaria dynamics was reduced by 30–80% for climatic forces, and 33–54% for other factors. A time lag of about five months was observed for the qualitative change ("regime shift" between the two parasites, the change occurring first for P. falciparum. The latter might be explained by interspecific interactions between the two parasites within the human hosts and their distinct biology, since P. vivax can relapse after a primary infection. Conclusion The Vanuatu ITN programme represents an excellent example of implementing an infectious disease control programme. The distribution was undertaken to cover a large, local proportion (~80% of people in villages where malaria was

  9. Malaria morbidity and immunity among residents of villages with different Plasmodium falciparum transmission intensity in North-Eastern Tanzania

    DEFF Research Database (Denmark)

    Lusingu, John P A; Vestergaard, Lasse S; Mmbando, Bruno P

    2004-01-01

    and febrile malaria episodes was conducted among individuals aged below 20 years, residing in three villages of different altitude in areas of high, moderate and low malaria transmission intensity in North-Eastern Tanzania. RESULTS: The burden of anaemia and malarial fever fell mainly on the youngest children...... and was highest in the village with high transmission intensity. Although a considerable percentage of individuals in all villages carried intestinal worms, logistic regression models indicated that Plasmodium falciparum was the only significant parasitic determinant of anaemia. Interestingly, children who...... carried low-density parasitaemia at the start of the study had a lower risk of contracting a febrile malaria episode but a higher risk of anaemia during the study period, than children who were slide negative at this point in time. CONCLUSION: Young children living in the high transmission village carried...

  10. Knowledge, attitudes and practices on malaria transmission in Mamfene, KwaZulu-Natal Province, South Africa 2015.

    Science.gov (United States)

    Manana, Pinky N; Kuonza, Lazarus; Musekiwa, Alfred; Mpangane, Hluphi D; Koekemoer, Lizette L

    2017-07-20

    In South Africa malaria is endemic in Mpumalanga, Limpopo and the north-eastern areas of KwaZulu-Natal provinces. South Africa has set targets to eliminate malaria by 2018 and research into complementary vector control tools such as the Sterile Insect Technique (SIT) is ongoing. It is important to understand community perceptions regarding malaria transmission and control interventions to enable development of community awareness campaign messages appropriate to the needs of the community. We aimed to assess knowledge, attitudes, and practices regarding malaria transmission to inform a public awareness campaign for SIT in Jozini Local Municipality, Mamfene in KwaZulu-Natal province. We conducted a cross-sectional survey in three communities in Mamfene, KwaZulu-Natal during 2015. A structured field piloted questionnaire was administered to 400 randomly selected heads of households. Descriptive statistics were used to summarize data. Of the 400 participants interviewed, 99% had heard about malaria and correctly associated it with mosquito bites. The sources of malaria information were the local health facility (53%), radio (16%) and community meetings (7%). Approximately 63% of the participants were able to identify three or four symptoms of malaria. The majority (76%) were confident that indoor residual spraying (IRS) kills mosquitoes and prevents infection. Bed nets were used by 2% of the participants. SIT knowledge was poor (9%), however 63% of the participants were supportive of mosquito releases for research purposes. The remaining 37% raised concerns and fears, including fear of the unknown and lack of information on the SIT. Appropriate knowledge, positive attitude and acceptable treatment-seeking behaviour for malaria were demonstrated by members of the community. Community involvement will be crucial in achieving success of the SIT and future studies should further investigate concerns raised by the community. The existing communication channels used by the

  11. Vectors and malaria transmission in deforested, rural communities in north-central Vietnam

    Directory of Open Access Journals (Sweden)

    Do Manh Cuong

    2010-09-01

    Full Text Available Abstract Background Malaria is still prevalent in rural communities of central Vietnam even though, due to deforestation, the primary vector Anopheles dirus is uncommon. In these situations little is known about the secondary vectors which are responsible for maintaining transmission. Basic information on the identification of the species in these rural communities is required so that transmission parameters, such as ecology, behaviour and vectorial status can be assigned to the appropriate species. Methods In two rural villages - Khe Ngang and Hang Chuon - in Truong Xuan Commune, Quang Binh Province, north central Vietnam, a series of longitudinal entomological surveys were conducted during the wet and dry seasons from 2003 - 2007. In these surveys anopheline mosquitoes were collected in human landing catches, paired human and animal bait collections, and from larval surveys. Specimens belonging to species complexes were identified by PCR and sequence analysis, incrimination of vectors was by detection of circumsporozoite protein using an enzyme-linked immunosorbent assay. Results Over 80% of the anopheline fauna was made up of Anopheles sinensis, Anopheles aconitus, Anopheles harrisoni, Anopheles maculatus, Anopheles sawadwongporni, and Anopheles philippinensis. PCR and sequence analysis resolved identification issues in the Funestus Group, Maculatus Group, Hyrcanus Group and Dirus Complex. Most species were zoophilic and while all species could be collected biting humans significantly higher densities were attracted to cattle and buffalo. Anopheles dirus was the most anthropophilic species but was uncommon making up only 1.24% of all anophelines collected. Anopheles sinensis, An. aconitus, An. harrisoni, An. maculatus, An. sawadwongporni, Anopheles peditaeniatus and An. philippinensis were all found positive for circumsporozoite protein. Heterogeneity in oviposition site preference between species enabled vector densities to be high in both

  12. Estimating malaria transmission intensity from Plasmodium falciparum serological data using antibody density models.

    Science.gov (United States)

    Pothin, Emilie; Ferguson, Neil M; Drakeley, Chris J; Ghani, Azra C

    2016-02-09

    Serological data are increasingly being used to monitor malaria transmission intensity and have been demonstrated to be particularly useful in areas of low transmission where traditional measures such as EIR and parasite prevalence are limited. The seroconversion rate (SCR) is usually estimated using catalytic models in which the measured antibody levels are used to categorize individuals as seropositive or seronegative. One limitation of this approach is the requirement to impose a fixed cut-off to distinguish seropositive and negative individuals. Furthermore, the continuous variation in antibody levels is ignored thereby potentially reducing the precision of the estimate. An age-specific density model which mimics antibody acquisition and loss was developed to make full use of the information provided by serological measures of antibody levels. This was fitted to blood-stage antibody density data from 12 villages at varying transmission intensity in Northern Tanzania to estimate the exposure rate as an alternative measure of transmission intensity. The results show a high correlation between the exposure rate estimates obtained and the estimated SCR obtained from a catalytic model (r = 0.95) and with two derived measures of EIR (r = 0.74 and r = 0.81). Estimates of exposure rate obtained with the density model were also more precise than those derived from catalytic models. This approach, if validated across different epidemiological settings, could be a useful alternative framework for quantifying transmission intensity, which makes more complete use of serological data.

  13. Re-imagining malaria: heterogeneity of human and mosquito behaviour in relation to residual malaria transmission in Cambodia

    NARCIS (Netherlands)

    Gryseels, C.; Durnez, L.; Gerrets, R.; Uk, S.; Suon, S.; Set, S.; Phoeuk, P.; Sluydts, V.; Heng, S.; Sochantha, T.; Coosemans, M.; Peeters Grietens, K.

    2015-01-01

    Background: In certain regions in Southeast Asia, where malaria is reduced to forested regions populated by ethnic minorities dependent on slash-and-burn agriculture, malaria vector populations have developed a propensity to feed early and outdoors, limiting the effectiveness of long-lasting

  14. Intermittent preventive treatment for the prevention of malaria during pregnancy in high transmission areas

    Directory of Open Access Journals (Sweden)

    Massougbodji Achille

    2007-12-01

    Full Text Available Abstract Malaria in pregnancy is one of the major causes of maternal morbidity and adverse birth outcomes. In high transmission areas, its prevention has recently changed, moving from a weekly or bimonthly chemoprophylaxis to intermittent preventive treatment (IPTp. IPTp consists in the administration of a single curative dose of an efficacious anti-malarial drug at least twice during pregnancy – regardless of whether the woman is infected or not. The drug is administered under supervision during antenatal care visits. Sulphadoxine-pyrimethamine (SP is the drug currently recommended by the WHO. While SP-IPTp seems an adequate strategy, there are many issues still to be explored to optimize it. This paper reviewed data on IPTp efficacy and discussed how to improve it. In particular, the determination of both the optimal number of doses and time of administration of the drug is essential, and this has not yet been done. As both foetal growth and deleterious effects of malaria are maximum in late pregnancy women should particularly be protected during this period. Monitoring of IPTp efficacy should be applied to all women, and not only to primi- and secondigravidae, as it has not been definitively established that multigravidae are not at risk for malaria morbidity and mortality. In HIV-positive women, there is an urgent need for specific information on drug administration patterns (need for higher doses, possible interference with sulpha-based prophylaxis of opportunistic infections. Because of the growing level of resistance of parasites to SP, alternative drugs for IPTp are urgently needed. Mefloquine is presently one of the most attractive options because of its long half life, high efficacy in sub-Saharan Africa and safety during pregnancy. Also, efforts should be made to increase IPTp coverage by improving the practices of health care workers, the motivation of women and their perception of malaria complications in pregnancy. Because IPTp

  15. SPECIES COMPOSITION OF MALARIAL MOSQUITOES KHARKIV REGION. NATURAL FACTORS OF MALARIA TRANSMISSION

    Directory of Open Access Journals (Sweden)

    Gazzawi - Rogozinа L. V.

    2015-05-01

    .5-4 months, and Preimaginal stages in reservoirs - about 4.5 months. The maximum number of species observed in mid-July. Due to the high number of attacks and activity in the summer , as well as the confinement of breeding sites to human settlements , An.maculipennis, An. messeae pose the greatest epidemiological risk. Conclusion. All of the above demonstrates the improvement of environmental conditions for the spread of malaria : growth of the transporter , the increase in precipitation , temperature longer transmission period of invasion .

  16. Assessing malaria transmission in a low endemicity area of north-western Peru.

    Science.gov (United States)

    Rosas-Aguirre, Angel; Llanos-Cuentas, Alejandro; Speybroeck, Niko; Cook, Jackie; Contreras-Mancilla, Juan; Soto, Veronica; Gamboa, Dionicia; Pozo, Edwar; Ponce, Oscar J; Pereira, Mayne O; Soares, Irene S; Theisen, Michael; D'Alessandro, Umberto; Erhart, Annette

    2013-09-22

    Where malaria endemicity is low, control programmes need increasingly sensitive tools for monitoring malaria transmission intensity (MTI) and to better define health priorities. A cross-sectional survey was conducted in a low endemicity area of the Peruvian north-western coast to assess the MTI using both molecular and serological tools. Epidemiological, parasitological and serological data were collected from 2,667 individuals in three settlements of Bellavista district, in May 2010. Parasite infection was detected using microscopy and polymerase chain reaction (PCR). Antibodies to Plasmodium vivax merozoite surface protein-119 (PvMSP1₁₉) and to Plasmodium falciparum glutamate-rich protein (PfGLURP) were detected by ELISA. Risk factors for exposure to malaria (seropositivity) were assessed by multivariate survey logistic regression models. Age-specific antibody prevalence of both P. falciparum and P. vivax were analysed using a previously published catalytic conversion model based on maximum likelihood for generating seroconversion rates (SCR). The overall parasite prevalence by microscopy and PCR were extremely low: 0.3 and 0.9%, respectively for P. vivax, and 0 and 0.04%, respectively for P. falciparum, while seroprevalence was much higher, 13.6% for P. vivax and 9.8% for P. falciparum. Settlement, age and occupation as moto-taxi driver during previous year were significantly associated with P. falciparum exposure, while age and distance to the water drain were associated with P. vivax exposure. Likelihood ratio tests supported age seroprevalence curves with two SCR for both P. vivax and P. falciparum indicating significant changes in the MTI over time. The SCR for PfGLURP was 19-fold lower after 2002 as compared to before (λ1 = 0.022 versus λ2 = 0.431), and the SCR for PvMSP1₁₉ was four-fold higher after 2006 as compared to before (λ1 = 0.024 versus λ2 = 0.006). Combining molecular and serological tools considerably enhanced the capacity of

  17. The drug sensitivity and transmission dynamics of human malaria on Nias Island, North Sumatra, Indonesia.

    Science.gov (United States)

    Fryauff, D J; Leksana, B; Masbar, S; Wiady, I; Sismadi, P; Susanti, A I; Nagesha, H S; Syafruddin; Atmosoedjono, S; Bangs, M J; Baird, J K

    2002-07-01

    Nias Island, off the north-western coast of Sumatra, Indonesia, was one of the first locations in which chloroquine-resistant Plasmodium vivax malaria was reported. This resistance is of particular concern because its ancient megalithic culture and the outstanding surfing conditions make the island a popular tourist destination. International travel to and from the island could rapidly spread chloroquine-resistant strains of P. vivax across the planet. The threat posed by such strains, locally and internationally, has led to the routine and periodic re-assessment of the efficacy of antimalarial drugs and transmission potential on the island. Active case detection identified malaria in 124 (17%) of 710 local residents whereas passive case detection, at the central health clinic, confirmed malaria in 77 (44%) of 173 cases of presumed 'clinical malaria'. Informed consenting volunteers who had malarial parasitaemias were treated, according to the Indonesian Ministry of Health's recommendations, with sulfadoxine-pyrimethamine (SP) on day 0 (for P. falciparum) or with chloroquine (CQ) on days 0, 1 and 2 (for P. vivax). Each volunteer was then monitored for clinical and parasite response until day 28. Recurrent parasitaemia by day 28 treatment was seen in 29 (83%) of the 35 P. falciparum cases given SP (14, 11 and four cases showing RI, RII and RIII resistance, respectively). Recurrent parasitaemia was also observed, between day 11 and day 21, in six (21%) of the 28 P. vivax cases given CQ. Although the results of quantitative analysis confirmed only low prevalences of CQ-resistant P. vivax malaria, the prevalence of SP resistance among the P. falciparum cases was among the highest seen in Indonesia. When the parasites present in the volunteers with P. falciparum infections were genotyped, mutations associated with pyrimethamine resistance were found at high frequency in the dhfr gene but there was no evidence of selection for sulfadoxine resistance in the dhps gene

  18. Unstable Malaria Transmission in the Southern Peruvian Amazon and Its Association with Gold Mining, Madre de Dios, 2001-2012.

    Science.gov (United States)

    Sanchez, Juan F; Carnero, Andres M; Rivera, Esteban; Rosales, Luis A; Baldeviano, G Christian; Asencios, Jorge L; Edgel, Kimberly A; Vinetz, Joseph M; Lescano, Andres G

    2017-02-08

    The reemergence of malaria in the last decade in Madre de Dios, southern Peruvian Amazon basin, was accompanied by ecological, political, and socioeconomic changes related to the proliferation of illegal gold mining. We conducted a secondary analysis of passive malaria surveillance data reported by the health networks in Madre de Dios between 2001 and 2012. We calculated the number of cases of malaria by year, geographic location, intensity of illegal mining activities, and proximity of health facilities to the Peru-Brazil Interoceanic Highway. During 2001-2012, 203,773 febrile cases were identified in Madre de Dios, of which 30,811 (15.1%) were confirmed cases of malaria; all but 10 cases were due to Plasmodium vivax Cases of malaria rose rapidly between 2004 and 2007, reached 4,469 cases in 2005, and then declined after 2010 to pre-2004 levels. Health facilities located in areas of intense illegal gold mining reported 30-fold more cases than those in non-mining areas (ratio = 31.54, 95% confidence interval [CI] = 19.28, 51.60). Finally, health facilities located > 1 km from the Interoceanic Highway reported significantly more cases than health facilities within this distance (ratio = 16.20, 95% CI = 8.25, 31.80). Transmission of malaria in Madre de Dios is unstable, geographically heterogeneous, and strongly associated with illegal gold mining. These findings highlight the importance of spatially oriented interventions to control malaria in Madre de Dios, as well as the need for research on malaria transmission in illegal gold mining camps. © The American Society of Tropical Medicine and Hygiene.

  19. Urbanization and the global malaria recession.

    Science.gov (United States)

    Tatem, Andrew J; Gething, Peter W; Smith, David L; Hay, Simon I

    2013-04-17

    The past century has seen a significant contraction in the global extent of malaria transmission, resulting in over 50 countries being declared malaria free, and many regions of currently endemic countries eliminating the disease. Moreover, substantial reductions in transmission have been seen since 1900 in those areas that remain endemic today. Recent work showed that this malaria recession was unlikely to have been driven by climatic factors, and that control measures likely played a significant role. It has long been considered, however, that economic development, and particularly urbanization, has also been a causal factor. The urbanization process results in profound socio-economic and landscape changes that reduce malaria transmission, but the magnitude and extent of these effects on global endemicity reductions are poorly understood. Global data at subnational spatial resolution on changes in malaria transmission intensity and urbanization trends over the past century were combined to examine the relationships seen over a range of spatial and temporal scales. A consistent pattern of increased urbanization coincident with decreasing malaria transmission and elimination over the past century was found. Whilst it remains challenging to untangle whether this increased urbanization resulted in decreased transmission, or that malaria reductions promoted development, the results point to a close relationship between the two, irrespective of national wealth. The continuing rapid urbanization in malaria-endemic regions suggests that such malaria declines are likely to continue, particularly catalyzed by increasing levels of direct malaria control.

  20. Placental malaria among HIV-infected and uninfected women receiving anti-folates in a high transmission area of Uganda

    Directory of Open Access Journals (Sweden)

    Dorsey Grant

    2009-11-01

    Full Text Available Abstract Background HIV infection increases the risk of placental malaria, which is associated with poor maternal and infant outcomes. Recommendations in Uganda are for HIV-infected pregnant women to receive daily trimethoprim-sulphamethoxazole (TS and HIV-uninfected women to receive intermittent sulphadoxine-pyrimethamine (SP. TS decreases the risk of malaria in HIV-infected adults and children but has not been evaluated among pregnant women. Methods This was a cross sectional study comparing the prevalence of placental malaria between HIV-infected women prescribed TS and HIV-uninfected women prescribed intermittent preventive therapy with sulphadoxine-pyrimethamine (IPT-SP in a high malaria transmission area in Uganda. Placental blood was evaluated for malaria using smear and PCR. Results Placentas were obtained from 150 HIV-infected women on TS and 336 HIV-uninfected women on IPT-SP. The proportion of HIV-infected and HIV-uninfected women with placental malaria was 19% vs. 26% for those positive by PCR and 6% vs. 9% for those positive by smear, respectively. Among all infants, smear+ placental malaria was most predictive of low birth weight (LBW. Primigravidae were at higher risk than multigravidae of having placental malaria among HIV-uninfected, but not HIV-infected, women. Adjusting for gravidity, age, and season at the time of delivery, HIV-infected women on TS were not at increased risk for placental malaria compared to HIV-uninfected women on IPT-SP, regardless of the definition used. Conclusion Prevalence of placental malaria was similar in HIV-infected women on TS and HIV-uninfected women on IPT-SP. Nonetheless, while nearly all of the women in this study were prescribed anti-folates, the overall risk of placental malaria and LBW was unacceptably high. The population attributable risk of placental malaria on LBW was substantial, suggesting that future interventions that further diminish the risk of placental malaria may have a

  1. Malaria.

    Science.gov (United States)

    Fletcher, Tom E; Beeching, N J

    2013-09-01

    Malaria is a life-threatening disease, with its largest impact being due to Plasmodium falciparum infection in Africa. Military populations continue to be at a high risk of malaria and reported case series have frequently revealed poor compliance with preventative measures. The symptoms of malaria are non-specific and its management depends on awareness of the diagnosis and early recognition and treatment. This is aided by new and simple rapid diagnostic tests, but these should not replace the examination of blood films if these are available. Artemisinin combination therapy provides a more rapid and dependable cure of uncomplicated P falciparum infection, with artesunate now being the drug of choice in severe infection.

  2. Age-specific malaria seroprevalence rates: a cross-sectional analysis of malaria transmission in the Ouest and Sud-Est departments of Haiti.

    Science.gov (United States)

    von Fricken, Michael E; Weppelmann, Thomas A; Lam, Brandon; Eaton, Will T; Schick, Laura; Masse, Roseline; Beau De Rochars, Madsen V; Existe, Alexandre; Larkin, Joseph; Okech, Bernard A

    2014-09-14

    Malaria transmission continues to occur in Haiti, with 25,423 confirmed cases of Plasmodium falciparum and 161,236 suspected infections reported in 2012. At low prevalence levels, passive surveillance measures, which rely primarily on reports from health systems, becomes less appropriate for capturing annual malaria incidence. To improve understanding of malaria transmission in Haiti, participants from the Ouest and Sud-Est departments were screened using a highly sensitive enzyme-linked immunosorbent assay (ELISA). Between February and May 2013, samples were collected from four different sites including a rural community, two schools, and a clinic located in the Ouest and Sud-Est departments of Haiti. A total of 815 serum samples were screened for malaria antibodies using an indirect ELISA coated with vaccine candidates apical membrane antigen (AMA-1) and merozoite surface protein-1 (MSP-119). The classification of previous exposure was established by using a threshold value that fell three standard deviations above the mean absorbance for suspected seronegative population members (OD of 0.32 and 0.26 for AMA-1 and MSP-1, respectively). The observed seroprevalence values were used to fit a modified reverse catalytic model to yield estimates of seroconversion rates. Of the samples screened, 172 of 815 (21.1%) were AMA-1 positive, 179 of 759 (23.6%) were MSP-119 positive, and 247 of 815 (30.3%) were positive for either AMA-1 or MSP-1; indicating rates of previous infections between 21.1% and 30.3%. Not surprisingly, age was highly associated with the likelihood of previous infection (p-value Haiti, transmission has remained relatively low over multiple decades. Elimination in Haiti appears to be feasible; however, surveillance must continue to be strengthened in order to respond to areas with high transmission and measure the impact of future interventions.

  3. Correctly folded Pfs48/45 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in mice.

    NARCIS (Netherlands)

    Outchkourov, N.S.; Roeffen, W.; Kaan, A.; Jansen, Josephine; Luty, A.; Schuiffel, D.; Gemert, G.J.A. van; Vegte-Bolmer, M van de; Sauerwein, R.W.; Stunnenberg, H.G.

    2008-01-01

    Malaria kills >1 million people each year, in particular in sub-Saharan Africa. Although asexual forms are directly responsible for disease and death, sexual stages account for the transmission of Plasmodium parasites from human to the mosquito vector and therefore the spread of the parasite in the

  4. The cost-effectiveness of permethrin-treated bed nets in an area of intense malaria transmission in western Kenya

    NARCIS (Netherlands)

    Wiseman, Virginia; Hawley, William A.; ter Kuile, Feiko O.; Phillips-Howard, Penelope A.; Vulule, John M.; Nahlen, Bernard L.; Mills, Anne J.

    2003-01-01

    This study compared the costs and effects of insecticide (permethrin)-treated bed net (ITN) use in children less than five years of age in an area of intense, perennial malaria transmission in western Kenya. The data were derived from a group-randomized controlled trial of ITNs conducted between

  5. Amazon Anopheles Biology. 12. Occurrence of Anopheles Species, Malaria Control and Transmission Dynamics in the Urban Zone of Ariquemes (Rondonia)

    Science.gov (United States)

    1988-01-01

    PETERSON, N.E. 7 PINHEIRO, F.P. - Programa multidisciplinario de vigilancia de las enfermedades infecciosas en zonas colindantes con la carretera...identificada por teste imunoenzimatico. In: CONGRESSO DA SOCIEDADE BRASILEIRA DE MEDICINA TROPICAL. Dynamics of malaria transmission in Rond6nia and

  6. Reductions in malaria and anaemia case and death burden at hospitals following scale-up of malaria control in Zanzibar, 1999-2008

    NARCIS (Netherlands)

    M.W. Aregawi (Maru); A.S. Ali (Abdullah); A.-W. Al-Mafazy; F. Molteni (Fabrizio); S. Katikiti (Samson); M. Warsame (Marian); R.J. Njau; R. Komatsu (Ryuichi); E.L. Korenromp (Eline); M. Hosseini (Mehran); D. Low-Beer (Daniel); A. Bjorkman (Anders); U. D'Alessandro (Umberto); M. Coosemans (Marc); M. Otten (Mac)

    2011-01-01

    textabstractBackground: In Zanzibar, the Ministry of Health and partners accelerated malaria control from September 2003 onwards. The impact of the scale-up of insecticide-treated nets (ITN), indoor-residual spraying (IRS) and artemisinin-combination therapy (ACT) combined on malaria burden was

  7. The Development of Plasmodium falciparum-Specific IL10 CD4 T Cells and Protection from Malaria in Children in an Area of High Malaria Transmission

    Directory of Open Access Journals (Sweden)

    Michelle J. Boyle

    2017-10-01

    Full Text Available Cytokine-producing CD4 T cells have important roles in immunity against Plasmodium falciparum (Pf malaria. However, the factors influencing functional differentiation of Pf-specific CD4 T cells in naturally exposed children are not well understood. Moreover, it is not known which CD4 T-cell cytokine-producing subsets are most critical for protection. We measured Pf-specific IFNγ-, IL10-, and TNFα-producing CD4 T-cell responses by multi-parametric flow cytometry in 265 children aged 6 months to 10 years enrolled in a longitudinal observational cohort in a high malaria transmission site in Uganda. We found that both age and parasite burden were independently associated with cytokine production by CD4 T cells. IL10 production by IFNγ+ CD4 T cells was higher in younger children and in those with high-parasite burden during recent infection. To investigate the role of CD4 T cells in immunity to malaria, we measured associations of Pf-specific CD4 cytokine-producing cells with the prospective risk of Pf infection and clinical malaria, adjusting for household exposure to Pf-infected mosquitos. Overall, the prospective risk of infection was not associated with the total frequency of Pf-specific CD4 T cells, nor of any cytokine-producing CD4 subset. However, the frequency of CD4 cells producing IL10 but not inflammatory cytokines (IFNγ and TNFα was associated with a decreased risk of clinical malaria once infected. These data suggest that functional polarization of the CD4 T-cell response may modulate the clinical manifestations of malaria and play a role in naturally acquired immunity.

  8. Dynamics of malaria transmission and susceptibility to clinical malaria episodes following treatment of Plasmodium falciparum asymptomatic carriers: results of a cluster-randomized study of community-wide screening and treatment, and a parallel entomology study.

    Science.gov (United States)

    Tiono, Alfred B; Guelbeogo, Moussa W; Sagnon, N Falé; Nébié, Issa; Sirima, Sodiomon B; Mukhopadhyay, Amitava; Hamed, Kamal

    2013-11-12

    In malaria-endemic countries, large proportions of individuals infected with Plasmodium falciparum are asymptomatic and constitute a reservoir of parasites for infection of newly hatched mosquitoes. Two studies were run in parallel in Burkina Faso to evaluate the impact of systematic identification and treatment of asymptomatic carriers of P. falciparum, detected by rapid diagnostic test, on disease transmission and susceptibility to clinical malaria episodes. A clinical study assessed the incidence of symptomatic malaria episodes with a parasite density >5,000/μL after three screening and treatment campaigns ~1 month apart before the rainy season; and an entomological study determined the effect of these campaigns on malaria transmission as measured by entomological inoculation rate. The intervention arm had lower prevalence of asymptomatic carriers of asexual parasites and lower prevalence of gametocyte carriers during campaigns 2 and 3 as compared to the control arm. During the entire follow-up period, out of 13,767 at-risk subjects, 2,516 subjects (intervention arm 1,332; control arm 1,184) had symptomatic malaria. Kaplan-Meier analysis of the incidence of first symptomatic malaria episode with a parasite density >5,000/μL showed that, in the total population, the two treatment arms were similar until Week 11-12 after campaign 3, corresponding with the beginning of the malaria transmission season, after which the probability of being free of symptomatic malaria was lower in the intervention arm (logrank p entomological inoculation rate was comparable in both arms, with September peaks in both indices. Community screening and targeted treatment of asymptomatic carriers of P. falciparum had no effect on the dynamics of malaria transmission, but seemed to be associated with an increase in the treated community's susceptibility to symptomatic malaria episodes after the screening campaigns had finished. These results highlight the importance of further

  9. Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector

    Directory of Open Access Journals (Sweden)

    Hyun M Yang

    2000-06-01

    Full Text Available OBJECTIVE: Describe the overall transmission of malaria through a compartmental model, considering the human host and mosquito vector. METHODS: A mathematical model was developed based on the following parameters: human host immunity, assuming the existence of acquired immunity and immunological memory, which boosts the protective response upon reinfection; mosquito vector, taking into account that the average period of development from egg to adult mosquito and the extrinsic incubation period of parasites (transformation of infected but non-infectious mosquitoes into infectious mosquitoes are dependent on the ambient temperature. RESULTS: The steady state equilibrium values obtained with the model allowed the calculation of the basic reproduction ratio in terms of the model's parameters. CONCLUSIONS: The model allowed the calculation of the basic reproduction ratio, one of the most important epidemiological variables.

  10. Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector

    Directory of Open Access Journals (Sweden)

    Yang Hyun M

    2000-01-01

    Full Text Available OBJECTIVE: Describe the overall transmission of malaria through a compartmental model, considering the human host and mosquito vector. METHODS: A mathematical model was developed based on the following parameters: human host immunity, assuming the existence of acquired immunity and immunological memory, which boosts the protective response upon reinfection; mosquito vector, taking into account that the average period of development from egg to adult mosquito and the extrinsic incubation period of parasites (transformation of infected but non-infectious mosquitoes into infectious mosquitoes are dependent on the ambient temperature. RESULTS: The steady state equilibrium values obtained with the model allowed the calculation of the basic reproduction ratio in terms of the model's parameters. CONCLUSIONS: The model allowed the calculation of the basic reproduction ratio, one of the most important epidemiological variables.

  11. Malaria burden in a birth cohort of HIV-exposed uninfected Ugandan infants living in a high malaria transmission setting

    OpenAIRE

    Abel Kakuru; Paul Natureeba; Muhindo, Mary K.; Clark, Tamara D.; Havlir, Diane V.; Deborah Cohan; Grant Dorsey; Kamya, Moses R; Theodore Ruel

    2016-01-01

    Abstract Background HIV-exposed, uninfected (HEU) infants suffer high morbidity and mortality in the first year of life compared to HIV-unexposed, uninfected (HUU) infants, but accurate data on the contribution of malaria are limited. Methods The incidence of febrile illnesses and malaria were evaluated in a birth cohort of HEU infants. Infants were prescribed daily trimethoprim–sulfamethoxazole (TS) prophylaxis from 6 weeks of age until exclusion of HIV-infection after cessation of breastfee...

  12. Potential of household environmental resources and practices in eliminating residual malaria transmission: a case study of Tanzania, Burundi, Malawi and Liberia.

    Science.gov (United States)

    Semakula, Henry M; Song, Guobao; Zhang, Shushen; Achuu, Simon P

    2015-09-01

    The increasing protection gaps of insecticide-treated nets and indoor-residual spraying methods against malaria have led to an emergence of residual transmission in sub-Saharan Africa and thus, supplementary strategies to control mosquitoes are urgently required. To assess household environmental resources and practices that increase or reduce malaria risk among children under-five years of age in order to identify those aspects that can be adopted to control residual transmission. Household environmental resources, practices and malaria test results were extracted from Malaria Indicators Survey datasets for Tanzania, Burundi, Malawi and Liberia with 16,747 children from 11,469 households utilised in the analysis. Logistic regressions were performed to quantify the contribution of each factor to malaria occurrence. Cattle rearing reduced malaria risk between 26%-49% while rearing goats increased the risk between 26%-32%. All piped-water systems reduced malaria risk between 30%-87% (Tanzania), 48%-95% (Burundi), 67%-77% (Malawi) and 58%-73 (Liberia). Flush toilets reduced malaria risk between 47%-96%. Protected-wells increased malaria risk between 19%-44%. Interestingly, boreholes increased malaria risk between 19%-75%. Charcoal use reduced malaria risk between 11%-49%. Vector control options for tackling mosquitoes were revealed based on their risk levels. These included cattle rearing, installation of piped-water systems and flush toilets as well as use of smokeless fuels.

  13. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria.

    Directory of Open Access Journals (Sweden)

    Lillian L M Shapiro

    2017-10-01

    Full Text Available Malaria transmission is known to be strongly impacted by temperature. The current understanding of how temperature affects mosquito and parasite life history traits derives from a limited number of empirical studies. These studies, some dating back to the early part of last century, are often poorly controlled, have limited replication, explore a narrow range of temperatures, and use a mixture of parasite and mosquito species. Here, we use a single pairing of the Asian mosquito vector, An. stephensi and the human malaria parasite, P. falciparum to conduct a comprehensive evaluation of the thermal performance curves of a range of mosquito and parasite traits relevant to transmission. We show that biting rate, adult mortality rate, parasite development rate, and vector competence are temperature sensitive. Importantly, we find qualitative and quantitative differences to the assumed temperature-dependent relationships. To explore the overall implications of temperature for transmission, we first use a standard model of relative vectorial capacity. This approach suggests a temperature optimum for transmission of 29°C, with minimum and maximum temperatures of 12°C and 38°C, respectively. However, the robustness of the vectorial capacity approach is challenged by the fact that the empirical data violate several of the model's simplifying assumptions. Accordingly, we present an alternative model of relative force of infection that better captures the observed biology of the vector-parasite interaction. This model suggests a temperature optimum for transmission of 26°C, with a minimum and maximum of 17°C and 35°C, respectively. The differences between the models lead to potentially divergent predictions for the potential impacts of current and future climate change on malaria transmission. The study provides a framework for more detailed, system-specific studies that are essential to develop an improved understanding on the effects of temperature

  14. Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000-2012: a high-resolution spatiotemporal prediction.

    Science.gov (United States)

    Weiss, Daniel J; Bhatt, Samir; Mappin, Bonnie; Van Boeckel, Thomas P; Smith, David L; Hay, Simon I; Gething, Peter W

    2014-05-03

    Temperature suitability for malaria transmission is a useful predictor variable for spatial models of malaria infection prevalence. Existing continental or global models, however, are synoptic in nature and so do not characterize inter-annual variability in seasonal patterns of temperature suitability, reducing their utility for predicting malaria risk. A malaria Temperature Suitability Index (TSI) was created by first modeling minimum and maximum air temperature with an eight-day temporal resolution from gap-filled MODerate Resolution Imaging Spectroradiometer (MODIS) daytime and night-time Land Surface Temperature (LST) datasets. An improved version of an existing biological model for malaria temperature suitability was then applied to the resulting temperature information for a 13-year data series. The mechanism underlying this biological model is simulation of emergent mosquito cohorts on a two-hour time-step and tracking of each cohort throughout its life to quantify the impact air temperature has on both mosquito survival and sporozoite development. The results of this research consist of 154 monthly raster surfaces that characterize spatiotemporal patterns in TSI across Africa from April 2000 through December 2012 at a 1 km spatial resolution. Generalized TSI patterns were as expected, with consistently high values in equatorial rain forests, seasonally variable values in tropical savannas (wet and dry) and montane areas, and low values in arid, subtropical regions. Comparisons with synoptic approaches demonstrated the additional information available within the dynamic TSI dataset that is lost in equivalent synoptic products derived from long-term monthly averages. The dynamic TSI dataset presented here provides a new product with far richer spatial and temporal information than any other presently available for Africa. As spatiotemporal malaria modeling endeavors evolve, dynamic predictor variables such as the malaria temperature suitability data developed

  15. Malaria transmission in Bissau, Guinea-Bissau between 1995 and 2012

    DEFF Research Database (Denmark)

    Ursing, Johan; Rombo, Lars; Rodrigues, Amabelia

    2014-01-01

    per 2 people and 97% usage. All-cause mortality decreased from post-war peaks in 1999 until 2012 in all age groups and was not negatively affected by malaria resurgence. CONCLUSION: The cause of decreasing malaria incidence (1995-2007) was probably multifactorial and coincident with the use...... curtailed malaria epidemics. All-cause mortality was not negatively affected by malaria resurgence.......INTRODUCTION: As Plasmodium falciparum prevalence decreases in many parts of Sub-Saharan Africa, so does immunity resulting in larger at risk populations and increased risk of malaria resurgence. In Bissau, malaria prevalence decreased from ∼50% to 3% between 1995 and 2003. The epidemiological...

  16. Impact of insecticide-treated bed nets on malaria transmission indices on the south coast of Kenya

    Directory of Open Access Journals (Sweden)

    Mutuku Francis M

    2011-12-01

    Full Text Available Abstract Background Besides significantly reducing malaria vector densities, prolonged usage of bed nets has been linked to decline of Anopheles gambiae s.s. relative to Anopheles arabiensis, changes in host feeding preference of malaria vectors, and behavioural shifts to exophagy (outdoor biting for the two important malaria vectors in Africa, An. gambiae s.l. and Anopheles funestus. In southern coastal Kenya, bed net use was negligible in 1997-1998 when Anopheles funestus and An. gambiae s.s. were the primary malaria vectors, with An. arabiensis and Anopheles merus playing a secondary role. Since 2001, bed net use has increased progressively and reached high levels by 2009-2010 with corresponding decline in malaria transmission. Methods To evaluate the impact of the substantial increase in household bed net use within this area on vector density, vector composition, and human-vector contact, indoor and outdoor resting mosquitoes were collected in the same region during 2009-2010 using pyrethrum spray catches and clay pots for indoor and outdoor collections respectively. Information on bed net use per sleeping spaces and factors influencing mosquito density were determined in the same houses using Poisson regression analysis. Species distribution was determined, and number of mosquitoes per house, human-biting rates (HBR, and entomological inoculation rate (EIR were compared to those reported for the same area during 1997-1998, when bed net coverage had been minimal. Results Compared to 1997-1998, a significant decline in the relative proportion of An. gambiae s.s. among collected mosquitoes was noted, coupled with a proportionate increase of An. arabiensis. Following > 5 years of 60-86% coverage with bed nets, the density, human biting rate and EIR of indoor resting mosquitoes were reduced by more than 92% for An. funestus and by 75% for An. gambiae s.l. In addition, the host feeding choice of both vectors shifted more toward non

  17. Melanotic pathology and vertical transmission of the gut commensal Elizabethkingia meningoseptica in the major malaria vector Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Idir G Akhouayri

    Full Text Available The resident gut flora is known to have significant impacts on the life history of the host organism. Endosymbiotic bacterial species in the Anopheles mosquito gut are potent modulators of sexual development of the malaria parasite, Plasmodium, and thus proposed as potential control agents of malaria transmission.Here we report a melanotic pathology in the major African malaria vector Anopheles gambiae, caused by the dominant mosquito endosymbiont Elizabethkingiameningoseptica. Transfer of melanised tissues into the haemolymph of healthy adult mosquitoes or direct haemolymph inoculation with isolated E. meningoseptica bacteria were the only means for transmission and de novo formation of melanotic lesions, specifically in the fat body tissues of recipient individuals. We show that E. meningoseptica can be vertically transmitted from eggs to larvae and that E. meningoseptica-mono-associated mosquitoes display significant mortality, which is further enhanced upon Plasmodium infection, suggesting a synergistic impact of E. meningoseptica and Plasmodium on mosquito survival.The high pathogenicity and permanent association of E. meningoseptica with An. Gambiae through vertical transmission constitute attractive characteristics towards the potential design of novel mosquito/malaria biocontrol strategies.

  18. Design of a Phase III cluster randomized trial to assess the efficacy and safety of a malaria transmission blocking vaccine.

    Science.gov (United States)

    Delrieu, Isabelle; Leboulleux, Didier; Ivinson, Karen; Gessner, Bradford D

    2015-03-24

    Vaccines interrupting Plasmodium falciparum malaria transmission targeting sexual, sporogonic, or mosquito-stage antigens (SSM-VIMT) are currently under development to reduce malaria transmission. An international group of malaria experts was established to evaluate the feasibility and optimal design of a Phase III cluster randomized trial (CRT) that could support regulatory review and approval of an SSM-VIMT. The consensus design is a CRT with a sentinel population randomly selected from defined inner and buffer zones in each cluster, a cluster size sufficient to assess true vaccine efficacy in the inner zone, and inclusion of ongoing assessment of vaccine impact stratified by distance of residence from the cluster edge. Trials should be conducted first in areas of moderate transmission, where SSM-VIMT impact should be greatest. Sample size estimates suggest that such a trial is feasible, and within the range of previously supported trials of malaria interventions, although substantial issues to implementation exist. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Clinical signs and symptoms cannot reliably predict Plasmodium falciparum malaria infection in pregnant women living in an area of high seasonal transmission

    OpenAIRE

    Marc C. Tahita; Tinto, Halidou; Menten, Joris; Ouedraogo, Jean-Bosco; Guiguemde, Robert T.; van Geertruyden, Jean Pierre; Erhart, Annette; D’Alessandro, Umberto

    2013-01-01

    Background Malaria in pregnancy is a major public health problem in endemic countries. Though the signs and symptoms of malaria among pregnant women have been already described, clinical presentation may vary according to intensity of transmission and local perceptions. Therefore, determining common signs and symptoms among pregnant women with a malaria infection may be extremely useful to identify those in need of further investigation by rapid diagnostic test or microscopy. Methods Six hund...

  20. Scale-up of community-based malaria control can be achieved without degrading community health workers' service quality: the Village Malaria Worker project in Cambodia

    National Research Council Canada - National Science Library

    Yasuoka, Junko; Poudel, Krishna C; Ly, Po; Nguon, Chea; Socheat, Duong; Jimba, Masamine

    2012-01-01

    .... Cambodia recently scaled up their Village Malaria Worker (VMW) project by substantially increasing the number of VMWs and expanding the project's health services to include treatment of fever, diarrhoea, and Acute Respiratory Infections (ARI...

  1. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Andrew S Bell

    Full Text Available The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  2. Ape malaria transmission and potential for ape-to-human transfers in Africa.

    Science.gov (United States)

    Makanga, Boris; Yangari, Patrick; Rahola, Nil; Rougeron, Virginie; Elguero, Eric; Boundenga, Larson; Moukodoum, Nancy Diamella; Okouga, Alain Prince; Arnathau, Céline; Durand, Patrick; Willaume, Eric; Ayala, Diego; Fontenille, Didier; Ayala, Francisco J; Renaud, François; Ollomo, Benjamin; Prugnolle, Franck; Paupy, Christophe

    2016-05-10

    Recent studies have highlighted the large diversity of malaria parasites infecting African great apes (subgenus Laverania) and their strong host specificity. Although the existence of genetic incompatibilities preventing the cross-species transfer may explain host specificity, the existence of vectors with a high preference for a determined host represents another possibility. To test this hypothesis, we undertook a 15-mo-long longitudinal entomological survey in two forest regions of Gabon, where wild apes live, at different heights under the canopy. More than 2,400 anopheline mosquitoes belonging to 18 species were collected. Among them, only three species of Anopheles were found infected with ape Plasmodium: Anopheles vinckei, Anopheles moucheti, and Anopheles marshallii Their role in transmission was confirmed by the detection of the parasites in their salivary glands. Among these species, An. vinckei showed significantly the highest prevalence of infection and was shown to be able to transmit parasites of both chimpanzees and gorillas. Transmission was also shown to be conditioned by seasonal factors and by the heights of capture under the canopy. Moreover, human landing catches of sylvan Anopheles demonstrated the propensity of these three vector species to feed on humans when available. Our results suggest therefore that the strong host specificity observed in the Laveranias is not linked to a specific association between the vertebrate host and the vector species and highlight the potential role of these vectors as bridge between apes and humans.

  3. A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission

    NARCIS (Netherlands)

    Depinay, J.M.O.; Mbogo, C.M.; Killeen, G.; Knols, B.G.J.; Beier, J.; Carlson, J.; Dushoff, J.; Billingsley, P.; Mwambi, H.; Githure, J.; Toure, A.M.; McKenzie, F.E.

    2004-01-01

    Background: Malaria is one of the oldest and deadliest infectious diseases in humans. Many mathematical models of malaria have been developed during the past century, and applied to potential interventions. However, malaria remains uncontrolled and is increasing in many areas, as are vector and

  4. Experimental evaluation of the relationship between lethal or non-lethal virulence and transmission success in malaria parasite infections

    Directory of Open Access Journals (Sweden)

    Nithiuthai S

    2004-09-01

    Full Text Available Abstract Background Evolutionary theory suggests that the selection pressure on parasites to maximize their transmission determines their optimal host exploitation strategies and thus their virulence. Establishing the adaptive basis to parasite life history traits has important consequences for predicting parasite responses to public health interventions. In this study we examine the extent to which malaria parasites conform to the predicted adaptive trade-off between transmission and virulence, as defined by mortality. The majority of natural infections, however, result in sub-lethal virulent effects (e.g. anaemia and are often composed of many strains. Both sub-lethal effects and pathogen population structure have been theoretically shown to have important consequences for virulence evolution. Thus, we additionally examine the relationship between anaemia and transmission in single and mixed clone infections. Results Whereas there was a trade-off between transmission success and virulence as defined by host mortality, contradictory clone-specific patterns occurred when defining virulence by anaemia. A negative relationship between anaemia and transmission success was found for one of the parasite clones, whereas there was no relationship for the other. Notably the two parasite clones also differed in a transmission phenotype (gametocyte sex ratio that has previously been shown to respond adaptively to a changing blood environment. In addition, as predicted by evolutionary theory, mixed infections resulted in increased anaemia. The increased anaemia was, however, not correlated with any discernable parasite trait (e.g. parasite density or with increased transmission. Conclusions We found some evidence supporting the hypothesis that there is an adaptive basis correlating virulence (as defined by host mortality and transmission success in malaria parasites. This confirms the validity of applying evolutionary virulence theory to biomedical

  5. Using the entomological inoculation rate to assess the impact of vector control on malaria parasite transmission and elimination

    Directory of Open Access Journals (Sweden)

    McKenzie F Ellis

    2010-05-01

    Full Text Available Abstract Background Prior studies have shown that annual entomological inoculation rates (EIRs must be reduced to less than one to substantially reduce the prevalence of malaria infection. In this study, EIR values were used to quantify the impact of insecticide-treated bed nets (ITNs, indoor residual spraying (IRS, and source reduction (SR on malaria transmission. The analysis of EIR was extended through determining whether available vector control tools can ultimately eradicate malaria. Method The analysis is based primarily on a review of all controlled studies that used ITN, IRS, and/or SR and reported their effects on the EIR. To compare EIRs between studies, the percent difference in EIR between the intervention and control groups was calculated. Results Eight vector control intervention studies that measured EIR were found: four ITN studies, one IRS study, one SR study, and two studies with separate ITN and IRS intervention groups. In both the Tanzania study and the Solomon Islands study, one community received ITNs and one received IRS. In the second year of the Tanzania study, EIR was 90% lower in the ITN community and 93% lower in the IRS community, relative to the community without intervention; the ITN and IRS effects were not significantly different. In contrast, in the Solomon Islands study, EIR was 94% lower in the ITN community and 56% lower in the IRS community. The one SR study, in Dar es Salaam, reported a lower EIR reduction (47% than the ITN and IRS studies. All of these vector control interventions reduced EIR, but none reduced it to zero. Conclusion These studies indicate that current vector control methods alone cannot ultimately eradicate malaria because no intervention sustained an annual EIR less than one. While researchers develop new tools, integrated vector management may make the greatest impact on malaria transmission. There are many gaps in the entomological malaria literature and recommendations for future

  6. Seasonal malaria chemoprevention in an area of extended seasonal transmission in Ashanti, Ghana: an individually randomised clinical trial.

    Science.gov (United States)

    Tagbor, Harry; Antwi, Gifty Dufie; Acheampong, Princess Ruhama; Bart Plange, Constance; Chandramohan, Daniel; Cairns, Matthew

    2016-02-01

    To investigate the effectiveness of seasonal malaria chemoprevention (SMC) and community case management with long-acting artemisinin-based combination therapies (ACTs) for the control of malaria in areas of extended seasonal malaria transmission. Individually randomised, placebo-controlled trial in the Ashanti Region of Ghana. A total of 2400 children aged 3-59 months received either: (i) a short-acting ACT for case management of malaria (artemether-lumefantrine, AL) plus placebo SMC, or (ii) a long-acting ACT (dihydroartemisinin-piperaquine, DP) for case management plus placebo SMC or (iii) AL for case management plus active SMC with sulphadoxine-pyrimethamine and amodiaquine. SMC or placebo was delivered on five occasions during the rainy season. Malaria cases were managed by community health workers, who used rapid diagnostic tests to confirm infection prior to treatment. The incidence of malaria was lower in children given SMC during the rainy season. Compared to those given placebo SMC and AL for case management, the adjusted hazard ratio (aHR) was 0.62 (95% CI: 0.41, 0.93), P = 0.020 by intention to treat and 0.53 (95% CI: 0.29, 0.95), P = 0.033 among children given five SMC courses. There were no major differences between groups given different ACTs for case management (aHR DP vs. AL 1.18 (95% CI 0.83, 1.67), P = 0.356). SMC may have an important public health impact in areas with a longer transmission season, but further optimisation of SMC schedules is needed to maximise its impact in such settings. © 2015 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  7. Malaria diagnostic testing and treatment practices in three different Plasmodium falciparum transmission settings in Tanzania: before and after a government policy change

    NARCIS (Netherlands)

    Bastiaens, G.J.H.; Schaftenaar, E.; Ndaro, A.; Keuter, M.; Bousema, T.; Shekalaghe, S.

    2011-01-01

    BACKGROUND: Patterns of decreasing malaria transmission intensity make presumptive treatment of malaria an unjustifiable approach in many African settings. The controlled use of anti-malarials after laboratory confirmed diagnosis is preferable in low endemic areas. Diagnosis may be facilitated by

  8. Recombinant Pvs48/45 antigen expressed in E. coli generates antibodies that block malaria transmission in Anopheles albimanus mosquitoes.

    Directory of Open Access Journals (Sweden)

    Myriam Arévalo-Herrera

    Full Text Available Transmission of malaria parasites from humans to Anopheles mosquitoes can be inhibited by specific antibodies elicited during malaria infection, which target surface Plasmodium gametocyte/gamete proteins. Some of these proteins may have potential for vaccine development. Pvs48/45 is a P. vivax gametocyte surface antigen orthologous to Pfs48/45, which may play a role during parasite fertilization and thus has potential for transmission blocking (TB activity. Here we describe the expression of a recombinant Pvs48/45 protein expressed in Escherichia coli as a ∼60kDa construct which we tested for antigenicity using human sera and for its immunogenicity and transmission blocking activity of specific anti-mouse and anti-monkey Pvs48/45 antibodies. The protein reacted with sera of individuals from malaria-endemic areas and in addition induced specific IgG antibody responses in BALB/c mice and Aotus l. griseimembra monkeys. Sera from both immunized animal species recognized native P. vivax protein in Western blot (WB and immunofluorescence assays. Moreover, sera from immunized mice and monkeys produced significant inhibition of parasite transmission to An. Albimanus mosquitoes as shown by membrane feeding assays. Results indicate the presence of reactive epitopes in the Pvs48/45 recombinant product that induce antibodies with TB activity. Further testing of this protein is ongoing to determine its vaccine potential.

  9. A pre-intervention study of malaria vector abundance in Rio Muni, Equatorial Guinea: Their role in malaria transmission and the incidence of insecticide resistance alleles

    Directory of Open Access Journals (Sweden)

    Mohloai Peter

    2008-09-01

    Full Text Available Abstract Background Following the success of the malaria control intervention on the island of Bioko, malaria control by the use of indoor residual spraying (IRS and long-lasting insecticide-treated nets (LLITN was extended to Rio Muni, on the mainland part of Equatorial Guinea. This manuscript reports on the malaria vectors present and the incidence of insecticide resistant alleles prior to the onset of the programme. Methods Anopheles mosquitoes were captured daily using window traps at 30 sentinel sites in Rio Muni, from December 2006 to July 2007. The mosquitoes were identified to species and their sporozoite rates, knockdown resistance (kdr and acetylcholinesterase (AChE sensitivity measured, to define the role of vector species in malaria transmission and their potential susceptibility to insecticides. Results A total of 6,162 Anopheles mosquitoes were collected of which 4,808 were morphologically identified as Anopheles gambiae s.l., 120 Anopheles funestus, 1,069 Anopheles moucheti, and 165 Anopheles nili s.l.. Both M and S molecular forms of Anopheles gambiae s.s. and Anopheles melas were identified. Anopheles ovengensis and Anopheles carnevalei were the only two members of the An. nili group to be identified. Using the species-specific sporozoite rates and the average number of mosquitoes per night, the number of infective mosquitoes per trap per 100 nights for each species complex was calculated as a measure of transmission risk. Both kdr-w and kdr-e alleles were present in the S-form of An. gambiae s.s. (59% and 19% respectively and at much lower frequencies in the M-form (9.7% and 1.8% respectively. The kdr-w and kdr-e alleles co-occurred in 103 S-form and 1 M-form specimens. No insensitive AChE was detected. Conclusion Anopheles gambiae s.s, a member of the Anopheles gambiae complex was shown to be the major vector in Rio Muni with the other three groups playing a relatively minor role in transmission. The demonstration of a high

  10. Assessment of the effect of larval source management and house improvement on malaria transmission when added to standard malaria control strategies in southern Malawi: study protocol for a cluster-randomised controlled trial.

    Science.gov (United States)

    McCann, Robert S; van den Berg, Henk; Diggle, Peter J; van Vugt, Michèle; Terlouw, Dianne J; Phiri, Kamija S; Di Pasquale, Aurelio; Maire, Nicolas; Gowelo, Steven; Mburu, Monicah M; Kabaghe, Alinune N; Mzilahowa, Themba; Chipeta, Michael G; Takken, Willem

    2017-09-22

    Due to outdoor and residual transmission and insecticide resistance, long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) will be insufficient as stand-alone malaria vector control interventions in many settings as programmes shift toward malaria elimination. Combining additional vector control interventions as part of an integrated strategy would potentially overcome these challenges. Larval source management (LSM) and structural house improvements (HI) are appealing as additional components of an integrated vector management plan because of their long histories of use, evidence on effectiveness in appropriate settings, and unique modes of action compared to LLINs and IRS. Implementation of LSM and HI through a community-based approach could provide a path for rolling-out these interventions sustainably and on a large scale. We will implement community-based LSM and HI, as additional interventions to the current national malaria control strategies, using a randomised block, 2 × 2 factorial, cluster-randomised design in rural, southern Malawi. These interventions will be continued for two years. The trial catchment area covers about 25,000 people living in 65 villages. Community participation is encouraged by training community volunteers as health animators, and supporting the organisation of village-level committees in collaboration with The Hunger Project, a non-governmental organisation. Household-level cross-sectional surveys, including parasitological and entomological sampling, will be conducted on a rolling, 2-monthly schedule to measure outcomes over two years (2016 to 2018). Coverage of LSM and HI will also be assessed throughout the trial area. Combining LSM and/or HI together with the interventions currently implemented by the Malawi National Malaria Control Programme is anticipated to reduce malaria transmission below the level reached by current interventions alone. Implementation of LSM and HI through a community

  11. Variation of malaria transmission and morbidity with altitude in Tanzania and with introduction of alphacypermethrin treated nets

    Science.gov (United States)

    Maxwell, Caroline A; Chambo, William; Mwaimu, Mathew; Magogo, Frank; Carneiro, Ilona A; Curtis, Christopher F

    2003-01-01

    Background Highland areas with naturally less intense malaria transmission may provide models of how lowland areas might become if transmission was permanently reduced by sustained vector control. It has been argued that vector control should not be attempted in areas of intense transmission. Methods Mosquitoes were sampled with light traps, pyrethrum spray and window exit traps. They were tested by ELISA for sporozoites. Incidence of malaria infection was measured by clearing existing infections from children with chlorproguanil-dapsone and then taking weekly blood samples. Prevalence of malaria infection and fever, anaemia and splenomegaly were measured in children of different age groups. All these measurements were made in highland and lowland areas of Tanzania before and after provision of bednets treated with alphacypermethrin. Results Entomological inoculation rates (EIR) were about 17 times greater in a lowland than a highland area, but incidence of infection only differed by about 2.5 times. Malaria morbidity was significantly less prevalent in the highlands than the lowlands. Treated nets in the highlands and lowlands led to 69–75% reduction in EIR. Malaria morbidity showed significant decline in younger children at both altitudes after introduction of treated nets. In children aged 6–12 the decline was only significant in the highlands Conclusions There was no evidence that the health benefits to young children due to the nets in the lowlands were "paid for" by poorer health later in life. Our data support the idea of universal provision of treated nets, not a focus on areas of natural hypo-endemicity. PMID:14585106

  12. Variation of malaria transmission and morbidity with altitude in Tanzania and with introduction of alphacypermethrin treated nets

    Directory of Open Access Journals (Sweden)

    Magogo Frank

    2003-09-01

    Full Text Available Abstract Background Highland areas with naturally less intense malaria transmission may provide models of how lowland areas might become if transmission was permanently reduced by sustained vector control. It has been argued that vector control should not be attempted in areas of intense transmission. Methods Mosquitoes were sampled with light traps, pyrethrum spray and window exit traps. They were tested by ELISA for sporozoites. Incidence of malaria infection was measured by clearing existing infections from children with chlorproguanil-dapsone and then taking weekly blood samples. Prevalence of malaria infection and fever, anaemia and splenomegaly were measured in children of different age groups. All these measurements were made in highland and lowland areas of Tanzania before and after provision of bednets treated with alphacypermethrin. Results Entomological inoculation rates (EIR were about 17 times greater in a lowland than a highland area, but incidence of infection only differed by about 2.5 times. Malaria morbidity was significantly less prevalent in the highlands than the lowlands. Treated nets in the highlands and lowlands led to 69–75% reduction in EIR. Malaria morbidity showed significant decline in younger children at both altitudes after introduction of treated nets. In children aged 6–12 the decline was only significant in the highlands Conclusions There was no evidence that the health benefits to young children due to the nets in the lowlands were "paid for" by poorer health later in life. Our data support the idea of universal provision of treated nets, not a focus on areas of natural hypo-endemicity.

  13. Quantifying behavioural interactions between humans and mosquitoes: Evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania

    Directory of Open Access Journals (Sweden)

    Mathenge Evan

    2006-11-01

    Full Text Available Abstract Background African malaria vectors bite predominantly indoors at night so sleeping under an Insecticide-Treated Net (ITN can greatly reduce malaria risk. Behavioural adaptation by mosquitoes to increasing ITN coverage could allow vector mosquitoes to bite outside of peak sleeping hours and undermine efficacy of this key malaria prevention measure. Methods High coverage with largely untreated nets has been achieved in the Kilombero Valley, southern Tanzania through social marketing programmes. Direct surveys of nightly biting activity by An. gambiae Giles were conducted in the area before (1997 and after (2004 implementation of ITN promotion. A novel analytical model was applied to estimate the effective protection provided by an ITN, based on published experimental hut trials combined with questionnaire surveys of human sleeping behaviour and recorded mosquito biting patterns. Results An. gambiae was predominantly endophagic and nocturnal in both surveys: Approximately 90% and 80% of exposure occurred indoors and during peak sleeping hours, respectively. ITNs consistently conferred >70% protection against exposure to malaria transmission for users relative to non-users. Conclusion As ITN coverage increases, behavioural adaptation by mosquitoes remains a future possibility. The approach described allows comparison of mosquito biting patterns and ITN efficacy at multiple study sites and times. Initial results indicate ITNs remain highly effective and should remain a top-priority intervention. Combined with recently developed transmission models, this approach allows rapid, informative and cost-effective preliminary comparison of diverse control strategies in terms of protection against exposure before more costly and intensive clinical trials.

  14. Scale-up of community-based malaria control can be achieved without degrading community health workers' service quality: the Village Malaria Worker project in Cambodia

    Directory of Open Access Journals (Sweden)

    Yasuoka Junko

    2012-01-01

    Full Text Available Abstract Background Malaria control has been scaled up in many developing countries in their efforts to achieve the Millennium Development Goals. Cambodia recently scaled up their Village Malaria Worker (VMW project by substantially increasing the number of VMWs and expanding the project's health services to include treatment of fever, diarrhoea, and Acute Respiratory Infections (ARI in children under five. This study examined if the scale-up interfered with VMWs' service quality, actions, and knowledge of malaria control, and analysed VMWs' overall achievements and perceptions of the newly added health services. Methods Structured interviews were conducted pre scale-up in February-March 2008 with 251 VMWs and post scale-up in July-August 2010 with 252 VMWs. Comparing the pre and post scale-up survey results (n = 195, changes were examined in terms of VMWs' 1 service quality, 2 malaria prevention and vector control actions, and 3 knowledge of malaria epidemiology and vector ecology. In addition, VMWs' newly added health services were descriptively analysed based on the post scale-up survey (n = 252. Results VMWs' service quality and actions significantly improved overall during the scale-up of the VMW project (mean index score: +0.805, p p p Conclusions The Cambodian experience clearly demonstrated that a nationwide scale-up of community-based malaria control can be achieved without degrading community health workers' service quality. The government's strategy to expand VMWs' health services, while providing sufficient training to maintain the quality of their original malaria control services, could have contributed to the improvement of VMW's service quality, actions, and knowledge in spite of the rapid scale-up of the project.

  15. High mosquito burden and malaria transmission in a district of the city of Douala, Cameroon.

    Science.gov (United States)

    Antonio-Nkondjio, Christophe; Defo-Talom, Blaise; Tagne-Fotso, Romuald; Tene-Fossog, Billy; Ndo, Cyrille; Lehman, Leopold Gustave; Tchuinkam, Timoléon; Kengne, Pierre; Awono-Ambene, Parfait

    2012-10-30

    Rapid demographic growth in Douala city, Cameroon, has resulted in profound ecological and environmental changes. Although demographic changes can affect anopheline mosquito breeding sites, there is a lack of understanding about the epidemiological impact that such changes might have on vector ecology and malaria transmission. A 12-month entomological study was conducted in a highly populated district of Douala called Ndogpassi. Adult mosquitoes were collected using two methods: 1) human landing catches (HLC); and 2) Centers for Disease Control and Prevention (CDC) light traps; these methods were used twice monthly from January to December 2011. Mosquito genus and species were identified with morphological and molecular diagnostic tools. The sampling efficiency of the CDC light trap and HLC were compared. Anopheles gambiae infection with Plasmodium falciparum was detected using ELISA. Susceptibility to DDT, permethrin, and deltamethrin insecticides were also determined. A total of 6923 mosquitoes were collected by HLC (5198) and CDC light traps (1725). There was no equivalence in the sampling efficiency between light traps and human landing catches (P > 0.01). With 51% of the total, Culex was the most common, followed by Anopheles (26.14%), Mansonia (22.7%) and Aedes (0.1%). An. gambiae ss (M form) comprised ~98% of the total anophelines collected. An. gambiae had a biting rate of 0.25 to 49.25 bites per human per night, and was the only species found to be infected with P. falciparum. A P. falciparum infection rate of 0.5% was calculated (based on enzyme-linked immunosorbent assays using the circumsporozoite surface protein). The entomological inoculation rate was estimated at 31 infective bites per annum. Insecticide susceptibility tests on An. gambiae females revealed a mortality rate of 33%, 76% and 98% for DDT, permethrin and deltamethrin, respectively. The West African kdr allele (L1014F) was detected in 38 of the 61 An. gambiae analyzed (62.3%). The present

  16. High mosquito burden and malaria transmission in a district of the city of Douala, Cameroon

    Directory of Open Access Journals (Sweden)

    Antonio-Nkondjio Christophe

    2012-10-01

    Full Text Available Abstract Background Rapid demographic growth in Douala city, Cameroon, has resulted in profound ecological and environmental changes. Although demographic changes can affect anopheline mosquito breeding sites, there is a lack of understanding about the epidemiological impact that such changes might have on vector ecology and malaria transmission. Methods A 12-month entomological study was conducted in a highly populated district of Douala called Ndogpassi. Adult mosquitoes were collected using two methods: 1 human landing catches (HLC; and 2 Centers for Disease Control and Prevention (CDC light traps; these methods were used twice monthly from January to December 2011. Mosquito genus and species were identified with morphological and molecular diagnostic tools. The sampling efficiency of the CDC light trap and HLC were compared. Anopheles gambiae infection with Plasmodium falciparum was detected using ELISA. Susceptibility to DDT, permethrin, and deltamethrin insecticides were also determined. Results A total of 6923 mosquitoes were collected by HLC (5198 and CDC light traps (1725. There was no equivalence in the sampling efficiency between light traps and human landing catches (P > 0.01. With 51% of the total, Culex was the most common, followed by Anopheles (26.14%, Mansonia (22.7% and Aedes (0.1%. An. gambiae ss (M form comprised ~98% of the total anophelines collected. An. gambiae had a biting rate of 0.25 to 49.25 bites per human per night, and was the only species found to be infected with P. falciparum. A P. falciparum infection rate of 0.5% was calculated (based on enzyme-linked immunosorbent assays using the circumsporozoite surface protein. The entomological inoculation rate was estimated at 31 infective bites per annum. Insecticide susceptibility tests on An. gambiae females revealed a mortality rate of 33%, 76% and 98% for DDT, permethrin and deltamethrin, respectively. The West African kdr allele (L1014F was detected in 38 of

  17. Reductions in malaria and anaemia case and death burden at hospitals following scale-up of malaria control in Zanzibar, 1999-2008

    Directory of Open Access Journals (Sweden)

    Hosseini Mehran

    2011-02-01

    Full Text Available Abstract Background In Zanzibar, the Ministry of Health and partners accelerated malaria control from September 2003 onwards. The impact of the scale-up of insecticide-treated nets (ITN, indoor-residual spraying (IRS and artemisinin-combination therapy (ACT combined on malaria burden was assessed at six out of seven in-patient health facilities. Methods Numbers of outpatient and inpatient cases and deaths were compared between 2008 and the pre-intervention period 1999-2003. Reductions were estimated by segmented log-linear regression, adjusting the effect size for time trends during the pre-intervention period. Results In 2008, for all age groups combined, malaria deaths had fallen by an estimated 90% (95% confidence interval 55-98%(p Conclusions Scaling-up effective malaria interventions reduced malaria-related burden at health facilities by over 75% within 5 years. In high-malaria settings, intensified malaria control can substantially contribute to reaching the Millennium Development Goal 4 target of reducing under-five mortality by two-thirds between 1990 and 2015.

  18. Use of an Anopheles Salivary Biomarker to Assess Malaria Transmission Risk Along the Thailand-Myanmar Border.

    Science.gov (United States)

    Ya-Umphan, Phubeth; Cerqueira, Dominique; Parker, Daniel M; Cottrell, Gilles; Poinsignon, Anne; Remoue, Franck; Brengues, Cecile; Chareonviriyaphap, Theeraphap; Nosten, Francois; Corbel, Vincent

    2017-02-01

    The modalities of malaria transmission along the Thailand-Myanmar border are poorly understood. Here we address the relevance of using a specific Anopheles salivary biomarker to measure the risk among humans of exposure to Anopheles bites. Serologic surveys were conducted from May 2013 to December 2014 in 4 sentinel villages. More than 9400 blood specimens were collected in filter papers from all inhabitants at baseline and then every 3 months thereafter, for up to 18 months, for analysis by enzyme-linked immunosorbent assay. The relationship between the intensity of the human antibody response and entomological indicators of transmission (human biting rates and entomological inoculation rates [EIRs]) was studied using a multivariate 3-level mixed model analysis. Heat maps for human immunoglobulin G (IgG) responses for each village and survey time point were created using QGIS 2.4. The levels of IgG response among participants varied significantly according to village, season, and age (P<.001) and were positively associated with the abundance of total Anopheles species and primary malaria vectors and the EIR (P<.001). Spatial clusters of high-IgG responders were identified across space and time within study villages. The gSG6-P1 biomarker has great potential to address the risk of transmission along the Thailand-Myanmar border and represents a promising tool to guide malaria interventions.

  19. Most outdoor malaria transmission by behaviourally-resistant Anopheles arabiensis is mediated by mosquitoes that have previously been inside houses.

    Science.gov (United States)

    Killeen, Gerry F; Govella, Nicodem J; Lwetoijera, Dickson W; Okumu, Fredros O

    2016-04-19

    Anopheles arabiensis is stereotypical of diverse vectors that mediate residual malaria transmission globally, because it can feed outdoors upon humans or cattle, or enter but then rapidly exit houses without fatal exposure to insecticidal nets or sprays. Life histories of a well-characterized An. arabiensis population were simulated with a simple but process-explicit deterministic model and relevance to other vectors examined through sensitivity analysis. Where most humans use bed nets, two thirds of An. arabiensis blood feeds and half of malaria transmission events were estimated to occur outdoors. However, it was also estimated that most successful feeds and almost all (>98 %) transmission events are preceded by unsuccessful attempts to attack humans indoors. The estimated proportion of vector blood meals ultimately obtained from humans indoors is dramatically attenuated by availability of alternative hosts, or partial ability to attack humans outdoors. However, the estimated proportion of mosquitoes old enough to transmit malaria, and which have previously entered a house at least once, is far less sensitive to both variables. For vectors with similarly modest preference for cattle over humans and similar ability to evade fatal indoor insecticide exposure once indoors, >80 % of predicted feeding events by mosquitoes old enough to transmit malaria are preceded by at least one house entry event, so long as ≥40 % of attempts to attack humans occur indoors and humans outnumber cattle ≥4-fold. While the exact numerical results predicted by such a simple deterministic model should be considered only approximate and illustrative, the derived conclusions are remarkably insensitive to substantive deviations from the input parameter values measured for this particular An. arabiensis population. This life-history analysis, therefore, identifies a clear, broadly-important opportunity for more effective suppression of residual malaria transmission by An. arabiensis

  20. Prevalence of glucose-6-phosphate dehydrogenase deficiency and haemoglobin S in high and moderate malaria transmission areas of Muheza, north-eastern Tanzania

    DEFF Research Database (Denmark)

    Segeja, M D; Mmbando, Bruno Paul; Kamugisha, M L

    2008-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency and haemoglobin S (HbS) are very common genetic disorders in sub Saharan Africa, where malaria is endemic. These genetic disorders have been associated with protection against malaria and are therefore under strong selection pressure by the dise......Glucose-6-phosphate dehydrogenase (G6PD) deficiency and haemoglobin S (HbS) are very common genetic disorders in sub Saharan Africa, where malaria is endemic. These genetic disorders have been associated with protection against malaria and are therefore under strong selection pressure...... by the disease. In November-December 2003, we conducted a cross-sectional survey to determine the prevalence of G6PD deficiency and HbS in the population and relate these to malaria infection and haemoglobin levels in lowland and highland areas of differing malaria transmission patterns of Muheza, Tanzania...

  1. The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmission.

    OpenAIRE

    Flahault Antoine; McKenzie F Ellis; Menach Arnaud; Smith David L

    2005-01-01

    Abstract Background Mosquitoes commute between blood-meal hosts and water. Thus, heterogeneity in human biting reflects underlying spatial heterogeneity in the distribution and suitability of larval habitat as well as inherent differences in the attractiveness, suitability and distribution of blood-meal hosts. One of the possible strategies of malaria control is to identify local vector species and then attack water bodies that contain their larvae. Methods Biting and host seeking, not ovipos...

  2. Malaria Transmission Risk Factor In West Java (Epidemiology Study About Vector, Plasmodium parasite and Environmental Risk Factors For Malaria Cases

    Directory of Open Access Journals (Sweden)

    Lukman Hakim

    2010-06-01

    Full Text Available Since the territory is divided with the province of Banten, in West Java there are five regencies that defined as malaria endemic area, there are Ciamis, Tasikmalaya, Garut, Cianjur and Sukabumi. Sufferer, concentrated in southern coastal areas (Indonesian Ocean starting from the beach of Kalipucang at Ciamis up to coast of Cikakak at Sukabumi which borders the province of Banten and also mountain and plantations areas. Malaria morbidity incidence risk factors is differ in each of these endemic areas. In general is the presence of malaria patients without symptoms who can be a source of infection that so difficult to know its existence. Still the number of standing water that can become mosqui-to breeding places of Anopheles spp, such as fish pond, small puddle on the riverside, shrimp pond, mangrove forests that potentially at the beginning of the rainy season, the fields during rice that potential when the rice growing and the river that potential in the dry season. The existence of high population mobility and also the number of vegetation in the surrounding residential population and the existence of cattle are placed close to settle-ments.

  3. Survivorship Of Anopheles gambiae In Relation To Malaria Transmission In Ilorin, Nigeria

    Directory of Open Access Journals (Sweden)

    Israel Kayode Olayemi

    2008-11-01

    Full Text Available For the first time in Africa, an entomological study went beyond the conventional practice of determining parity and survival rates of field-collected adult anopheline mosquitoes but also related these variables to duration of Plasmodium sporogony and estimated the expectation of infective life. Blood-seeking female mosquitoes were collected in Ilorin, Nigeria, from January 2005 to December 2006, and dissected for ovarian tracheations following WHO recommended techniques. The results indicated an annual mean parous rate of 70.92%, and significantly higher parous rates in the rainy than dry season, which also had very low densities. Mean probability of daily survival of the mosquitoes was 0.80, with annual mean life expectancy of 12.24 days. The probability of surviving the sporogonic cycle was low (< 0.4 but the expectation of infective life was long, especially in the rainy season (mean = 8.31 days. The epidemiological implications of these results were discussed. The An. gambiae population in Ilorin is dominated by older mosquitoes with high survival rates thus, suggesting a high vector potential for the species in the area. These information on the survival rates of An. gambiae in relation to malaria transmission would enhance the development of a more focused and informed vector control interventions

  4. Impact of permethrin-treated bed nets on entomologic indices in an area of intense year-round malaria transmission

    NARCIS (Netherlands)

    Gimnig, John E.; Vulule, John M.; Lo, Terrence Q.; Kamau, Luna; Kolczak, Margarette S.; Phillips-Howard, Penelope A.; Mathenge, Evan M.; ter Kuile, Feiko O.; Nahlen, Bernard L.; Hightower, Allen W.; Hawley, William A.

    2003-01-01

    The effect of permethrin-treated bed nets (ITNs) on malaria vectors was studied as part of a large-scale, randomized, controlled trial in western Kenya. Indoor resting densities of fed Anopheles gambiae s.l. and An. funestus in intervention houses were 58.5% (P = 0.010) and 94.5% (P = 0.001) lower,

  5. Occupational Activities Associated with a Reported History of Malaria among Women Working in Small-Scale Agriculture in South Africa

    OpenAIRE

    Naidoo, Saloshni; London, Leslie; Burdorf, Alex; Naidoo, Rajen N.; Kromhout, Hans

    2011-01-01

    Malaria-endemic agricultural communities are at risk for this disease because of crop and agricultural activities. A cross-sectional survey among women in small-scale agriculture on irrigated and dryland areas in Makhatini Flats, KwaZulu-Natal South Africa explored associations with self-reported history of malaria, including demographics, crop production, and specific agricultural activities. Ninety-eight (15.2%) of 644 women reported malaria while working in agriculture. More women working ...

  6. Household-based malaria control in a highly endemic area of Africa (Tanzania: determinants of transmission and disease and indicators for monitoring - Kilombero Malaria Project

    Directory of Open Access Journals (Sweden)

    Thomas Teuscher

    1992-01-01

    Full Text Available The Kilombero Malaria Project (KMP attemps to define opperationally useful indicators of levels of transmission and disease and health system relevant monitoring indicators to evaluate the impact of disease control at the community or health facility level. The KMP is longitudinal community based study (N = 1024 in rural Southern Tanzania, investigating risk factors for malarial morbidity and developing household based malaria control strategies. Biweekly morbidity and bimonthly serological, parasitological and drug consumption surveys are carried out in all study households. Mosquito densities are measured biweekly in 50 sentinel houses by timed light traps. Determinants of transmission and indicators of exposure were not strongly aggregated within households. Subjective morbidity (recalled fever, objective morbidity (elevated body temperature and high parasitaemia and chloroquine consumption were strongly aggregated within a few households. Nested analysis of anti-NANP40 antibody suggest that only approximately 30% of the titer variance can explained by household clustering and that the largest proportion of antibody titer variability must be explained by non-measured behavioral determinants relating to an individual's level of exposure within a household. Indicators for evaluation and monitoring and outcome measures are described within the context of health service management to describe control measure output in terms of community effectiveness.

  7. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting

    Directory of Open Access Journals (Sweden)

    Harris Ivor

    2010-09-01

    Full Text Available Abstract Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR and rapid diagnostic tests (RDTs. The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%, indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162 compared to P. falciparum (36/118. The malaria RDT detected the 12 microscopy and

  8. National malaria vector control policy: an analysis of the decision to scale-up larviciding in Nigeria.

    Science.gov (United States)

    Tesfazghi, Kemi; Hill, Jenny; Jones, Caroline; Ranson, Hilary; Worrall, Eve

    2016-02-01

    New vector control tools are needed to combat insecticide resistance and reduce malaria transmission. The World Health Organization (WHO) endorses larviciding as a supplementary vector control intervention using larvicides recommended by the WHO Pesticides Evaluation Scheme (WHOPES). The decision to scale-up larviciding in Nigeria provided an opportunity to investigate the factors influencing policy adoption and assess the role that actors and evidence play in the policymaking process, in order to draw lessons that help accelerate the uptake of new methods for vector control. A retrospective policy analysis was carried out using in-depth interviews with national level policy stakeholders to establish normative national vector control policy or strategy decision-making processes and compare these with the process that led to the decision to scale-up larviciding. The interviews were transcribed, then coded and analyzed using NVivo10. Data were coded according to pre-defined themes from an analytical policy framework developed a priori. Stakeholders reported that the larviciding decision-making process deviated from the normative vector control decision-making process. National malaria policy is normally strongly influenced by WHO recommendations, but the potential of larviciding to contribute to national economic development objectives through larvicide production in Nigeria was cited as a key factor shaping the decision. The larviciding decision involved a restricted range of policy actors, and notably excluded actors that usually play advisory, consultative and evidence generation roles. Powerful actors limited the access of some actors to the policy processes and content. This may have limited the influence of scientific evidence in this policy decision. This study demonstrates that national vector control policy change can be facilitated by linking malaria control objectives to wider socioeconomic considerations and through engaging powerful policy champions to

  9. An experimental hut study to quantify the effect of DDT and airborne pyrethroids on entomological parameters of malaria transmission

    Science.gov (United States)

    2014-01-01

    Background Current malaria vector control programmes rely on insecticides with rapid contact toxicity. However, spatial repellents can also be applied to reduce man-vector contact, which might ultimately impact malaria transmission. The aim of this study was to quantify effects of airborne pyrethroids from coils and DDT used an indoor residual spray (IRS) on entomological parameters that influence malaria transmission. Methods The effect of Transfluthrin and Metofluthrin coils compared to DDT on house entry, exit and indoor feeding behaviour of Anopheles gambiae sensu lato were measured in experimental huts in the field and in the semi-field. Outcomes were deterrence - reduction in house entry of mosquitoes; irritancy or excito-repellency – induced premature exit of mosquitoes; blood feeding inhibition and effect on mosquito fecundity. Results Transfluthrin coils, Metofluthrin coils and DDT reduced human vector contact through deterrence by 38%, 30% and 8%, respectively and induced half of the mosquitoes to leave huts before feeding (56%, 55% and 48%, respectively). Almost all mosquitoes inside huts with Metofluthrin and Transfluthrin coils and more than three quarters of mosquitoes in the DDT hut did not feed, almost none laid eggs and 67%, 72% and 70% of all mosquitoes collected from Transfluthrin, Metofluthrin and DDT huts, respectively had died after 24 hours. Conclusion This study highlights that airborne pyrethroids and DDT affect a range of anopheline mosquito behaviours that are important parameters in malaria transmission, namely deterrence, irritancy/excito-repellency and blood-feeding inhibition. These effects are in addition to significant toxicity and reduced mosquito fecundity that affect mosquito densities and, therefore, provide community protection against diseases for both users and non-users. Airborne insecticides and freshly applied DDT had similar effects on deterrence, irritancy and feeding inhibition. Therefore, it is suggested that

  10. Local mate competition and transmission bottlenecks: a new model for understanding malaria parasite and other sex ratios.

    Science.gov (United States)

    Neal, Allison T; Taylor, Peter D

    2014-12-21

    The local mate competition model from sex ratio theory predicts female-biased sex ratios in populations that are highly subdivided during mating, and is thought to accord well with the population structure of malaria parasites. However, the selective advantage of female-biased sex ratios comes from the resulting increase in total reproductive output, an advantage the transmission biology of malaria parasite likely reduces. We develop a mathematical model to determine how bottlenecks in transmission that cause diminishing fitness returns from female production affect sex ratio evolution. We develop four variations of this model that incorporate whether or not parasite clones have the ability to detect others that occupy the same host and whether or not the number of clones affects the total mating population size. Our model indicates that transmission bottlenecks favor less female-biased sex ratios than those predicted under LMC. This effect is particularly pronounced if clones have no information about the presence of coexisting clones and the number of mating individuals per patch is fixed. The model could extend our understanding of malaria parasite sex ratios in three main ways. First, it identifies inconsistencies between the theoretical predictions and the data presented in a previous study, and proposes revised predictions that are more consistent with underlying biology of the parasite. Second, it may account for the positive association between parasite density and sex ratio observed within and between some species. Third, it predicts a relationship between mortality rates in the vector and sex ratios, which appears to be supported by the little existing data we have. While the inspiration for this model came from malaria parasites, it should apply to any system in which per capita dispersal success diminishes with increasing numbers of females in a patch. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Malaria control at a gold mine in Sadiola District, Mali, and impact on transmission over 10 years.

    Science.gov (United States)

    Wragge, Sue-Ellen; Toure, Dramane; Coetzee, Marelize; Gilbert, Allison; Christian, Riann; Segoea, Godira; Hunt, Richard H; Coetzee, Maureen

    2015-12-01

    The SEMOS gold mine's malaria vector control programme forms part of the company's community responsibilities with the programme being managed by the mine's health department since 2005. Data from approximately 10 years of malaria vector control for the Sadiola District are given: namely malaria vector control methods used by the control programme, positive malaria case data and entomological surveys from 2006, 2011 and 2014. Distribution of pyrethroid-treated bed nets and indoor residual spraying (IRS) with deltamethrin were implemented by the programme from 2005-2011. No IRS was done in 2012. Spraying with the organophosphate, pirimiphos-methyl resumed in 2013 and 2014 and was followed by a 70% drop in malaria cases in 2014. Anopheles arabiensis was the major vector present in 2006 and was susceptible to deltamethrin. In 2011 and 2014, An. gambiae s.s. was the most abundant vector with deltamethrin 24 h mortality of 68% and 19%, respectively. Resistance to the pyrethroid deltamethrin has increased in An. gambiae s.s. since 2011, possibly due to the scale-up in distribution of long-lasting insecticide-treated bed nets. Resistance management strategies are recommended using different classes of insecticides for IRS, and including the distribution of new-generation bed nets. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Climate change unlikely to increase malaria burden in West Africa

    Science.gov (United States)

    Yamana, Teresa K.; Bomblies, Arne; Eltahir, Elfatih A. B.

    2016-11-01

    The impact of climate change on malaria transmission has been hotly debated. Recent conclusions have been drawn using relatively simple biological models and statistical approaches, with inconsistent predictions. Consequently, the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) echoes this uncertainty, with no clear guidance for the impacts of climate change on malaria transmission, yet recognizing a strong association between local climate and malaria. Here, we present results from a decade-long study involving field observations and a sophisticated model simulating village-scale transmission. We drive the malaria model using select climate models that correctly reproduce historical West African climate, and project reduced malaria burden in a western sub-region and insignificant impact in an eastern sub-region. Projected impacts of climate change on malaria transmission in this region are not of serious concern.

  13. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine

    NARCIS (Netherlands)

    Theisen, M.; Jore, M.M.; Sauerwein, R.

    2017-01-01

    INTRODUCTION: Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which

  14. Diagnosis and treatment of malaria in peripheral health facilities in Uganda: findings from an area of low transmission in south-western Uganda

    Directory of Open Access Journals (Sweden)

    Clarke Siân

    2007-04-01

    Full Text Available Abstract Background Early recognition of symptoms and signs perceived as malaria are important for effective case management, as few laboratories are available at peripheral health facilities. The validity and reliability of clinical signs and symptoms used by health workers to diagnose malaria were assessed in an area of low transmission in south-western Uganda. Methods The study had two components: 1 passive case detection where all patients attending the out patient clininc with a febrile illness were included and 2 a longitudinal active malaria case detection survey was conducted in selected villages. A malaria case was defined as any slide-confirmed parasitaemia in a person with an axillary temperature ≥ 37.5°C or a history of fever within the last 24 hrs and no signs suggestive of other diseases. Results Cases of malaria were significantly more likely to report joint pains, headache, vomiting and abdominal pains. However, due to the low prevalence of malaria, the predictive values of these individual signs alone, or in combination, were poor. Only 24.8% of 1627 patients had malaria according to case definition and > 75% of patients were unnecessarily treated for malaria and few slide negative cases received alternative treatment. Conclusion In low-transmission areas, more attention needs to be paid to differential diagnosis of febrile illnesses In view of suggested changes in anti-malarial drug policy, introducing costly artemisinin combination therapy accurate, rapid diagnostic tools are necessary to target treatment to people in need.

  15. Clinical signs and symptoms cannot reliably predict Plasmodium falciparum malaria infection in pregnant women living in an area of high seasonal transmission.

    Science.gov (United States)

    Tahita, Marc C; Tinto, Halidou; Menten, Joris; Ouedraogo, Jean-Bosco; Guiguemde, Robert T; van Geertruyden, Jean Pierre; Erhart, Annette; D'Alessandro, Umberto

    2013-12-27

    Malaria in pregnancy is a major public health problem in endemic countries. Though the signs and symptoms of malaria among pregnant women have been already described, clinical presentation may vary according to intensity of transmission and local perceptions. Therefore, determining common signs and symptoms among pregnant women with a malaria infection may be extremely useful to identify those in need of further investigation by rapid diagnostic test or microscopy. Six hundred pregnant women attending the maternity clinic of Nanoro District Hospital, Burkina Faso were recruited, 200 with suspected clinical malaria and 400 as controls. Cases were matched with controls by gestational age and parity. Signs and symptoms were collected and a blood sample taken for rapid diagnostic test, microscopy and haemoglobin measurement. A multivariate model was used to assess the predictive value of signs and symptoms for malaria infection. The overall prevalence of malaria was 42.6% (256/600) while anaemia was found in 60.8% (365/600) of the women. Nearly half (49%) of the cases and 39.5% of the controls had a malaria infection (p = 0.03). The most common signs and symptoms among the cases were fever (36%,72/200), history of fever (29%,58/200) and headache (52%,104/200). The positive predictive value for fever was 53% (95% CI:41-64), history of fever 58% (95% CI:37-63) and headache 51% (95% CI:41-61). Signs and symptoms suggestive of malaria are frequent among pregnant women living in areas of intense transmission. Common malaria symptoms are not strong predictors of infection. For a better management of malaria in pregnancy, active screening to detect and treat malaria infection early should be performed on all pregnant women attending a health facility.

  16. An essential role of the basal body protein SAS-6 in Plasmodium male gamete development and malaria transmission.

    Science.gov (United States)

    Marques, Sara R; Ramakrishnan, Chandra; Carzaniga, Raffaella; Blagborough, Andrew M; Delves, Michael J; Talman, Arthur M; Sinden, Robert E

    2015-02-01

    Gametocytes are the sole Plasmodium parasite stages that infect mosquitoes; therefore development of functional gametes is required for malaria transmission. Flagellum assembly of the Plasmodium male gamete differs from that of most other eukaryotes in that it is intracytoplasmic but retains a key conserved feature: axonemes assemble from basal bodies. The centriole/basal body protein SAS-6 normally regulates assembly and duplication of these organelles and its depletion causes severe flagellar/ciliary abnormalities in a diverse array of eukaryotes. Since basal body and flagellum assembly are intimately coupled to male gamete development in Plasmodium, we hypothesized that SAS-6 disruption may cause gametogenesis defects and perturb transmission. We show that Plasmodium berghei sas6 knockouts display severely abnormal male gametogenesis presenting reduced basal body numbers, axonemal assembly defects and abnormal nuclear allocation. The defects in gametogenesis reduce fertilization and render Pbsas6 knockouts less infectious to mosquitoes. Additionally, we show that lack of Pbsas6 blocks transmission from mosquito to vertebrate host, revealing an additional yet undefined role in ookinete to sporulating oocysts transition. These findings underscore the vulnerability of the basal body/SAS-6 to malaria transmission blocking interventions. © 2014 The Authors. Cellular Microbiology published by John Wiley & Sons Ltd.

  17. Climate change and altitudinal structuring of malaria vectors in south-western Cameroon: their relation to malaria transmission.

    Science.gov (United States)

    Tanga, M C; Ngundu, W I; Judith, N; Mbuh, J; Tendongfor, N; Simard, Frédéric; Wanji, S

    2010-07-01

    An entomological survey was conducted in Cameroon between October 2004 and September 2005, in nine localities targeted for malaria vector control based on adult productivity and variability. Mosquitoes were collected by human-landing catches (HLCs) and pyrethrum spray catches. A total of 12 500 anophelines were collected and dissected: Anopheles gambiae s.l. (56.86%), An. funestus s.l. (32.57%), An. hancocki (9.38%), and An. nili (1.18%). Applying PCR revealed that specimens of the An. funestus group were An. funestus s.s. and An. gambiae complex were mostly An. melas and An. gambiae s.s. of the M and S molecular forms with the M forms being the most predominant. The natural distribution patterns of Anopheles species were largely determined by altitude with some species having unique environmental tolerance limits. A human blood index (HBI) of 99.05% was recorded. Mean probability of daily survival of the malaria vectors was 0.92, with annual mean life expectancy of 21.9 days and the expectation of infective life was long with a mean of 7.4 days. The high survival rates suggest a high vector potential for the species. This information enhances the development of a more focused and informed vector control intervention. Copyright 2010 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  18. Scale-up of home-based management of malaria based on rapid diagnostic tests and artemisinin-based combination therapy in a resource-poor country: results in Senegal

    Directory of Open Access Journals (Sweden)

    Thiam Sylla

    2012-09-01

    Full Text Available Abstract Background Effective case management of malaria requires prompt diagnosis and treatment within 24 hours. Home-based management of malaria (HMM improves access to treatment for populations with limited access to health facilities. In Senegal, an HMM pilot study in 2008 demonstrated the feasibility of integrated use of RDTs and ACT in remote villages by volunteer Home Care Providers (HCP. Scale-up of the strategy began in 2009, reaching 408 villages in 2009 and 861 villages in 2010. This paper reports the results of the scale-up in the targeted communities and the impact of the strategy on malaria in the formal health sector. Methods Data reported by the HCPs were used to assess their performance in 2009 and 2010, while routine malaria morbidity and mortality data were used to assess the impact of the HMM programme. Two high transmission regions where HMM was not implemented until 2010 were used as a comparison. Results and discussion From July 2009 through May 2010, 12582 suspected cases were managed by HCPs, 93% (11672 of whom were tested with an RDT. Among those tested, 37% (4270 had a positive RDT, 97% (4126 of whom were reported treated and cured. Home care providers referred 6871 patients to health posts for management: 6486 with a negative RDT, 119 infants  Conclusion Home-based management of malaria including diagnosis with RDT and treatment based on test results is a promising strategy to improve the access of remote populations to prompt and effective management of uncomplicated malaria and to decrease mortality due to malaria. When scaled-up to serve remote village communities in the regions of Senegal with the highest malaria prevalence, home care providers demonstrated excellent adherence to guidelines, potentially contributing to a decrease in hospital deaths attributed to malaria.

  19. Effectiveness of intermittent preventive treatment with sulfadoxine-pyrimethamine during pregnancy on placental malaria, maternal anaemia and birthweight in areas with high and low malaria transmission intensity in Tanzania.

    Science.gov (United States)

    Mosha, Dominic; Chilongola, Jaffu; Ndeserua, Rabi; Mwingira, Felista; Genton, Blaise

    2014-09-01

    To assess the effectiveness of IPTp in two areas with different malaria transmission intensities. Prospective observational study recruiting pregnant women in two health facilities in areas with high and low malaria transmission intensities. A structured questionnaire was used for interview. Maternal clinic cards and medical logs were assessed to determine drug intake. Placental parasitaemia was screened using both light microscopy and real-time quantitative PCR. Of 350 pregnant women were recruited and screened for placental parasitaemia, 175 from each area. Prevalence of placental parasitaemia was 16.6% (CI 11.4-22.9) in the high transmission area and 2.3% (CI 0.6-5.7) in the low transmission area. Being primigravida and residing in a high transmission area were significant risk factors for placental malaria (OR 2.4; CI 1.1-5.0; P = 0.025) and (OR 9.4; CI 3.2-27.7; P < 0.001), respectively. IPTp was associated with a lower risk of placental malaria (OR 0.3; CI 0.1-1.0; P = 0.044); the effect was more pronounced in the high transmission area (OR 0.2; CI 0.06-0.7; P = 0.015) than in the low transmission area (OR 0.4; CI 0.04-4.5; P = 0.478). IPTp use was not associated with reduced risk of maternal anaemia or low birthweight, regardless of transmission intensity. The number needed to treat (NNT) was four (CI 2-6) women in the high transmission area and 33 (20-50) in the low transmission area to prevent one case of placental malaria. IPTp may have an effect on lowering the risk of placental malaria in areas of high transmission, but this effect did not translate into a benefit on risks of maternal anaemia or low birthweight. The NNT needs to be considered, and weighted against that of other protective measures, eventually targeting areas which are above a certain threshold of malaria transmission to maximise the benefit. © 2014 John Wiley & Sons Ltd.

  20. Combined DNA extraction and antibody elution from filter papers for the assessment of malaria transmission intensity in epidemiological studies.

    Science.gov (United States)

    Baidjoe, Amrish; Stone, Will; Ploemen, Ivo; Shagari, Shehu; Grignard, Lynn; Osoti, Victor; Makori, Euniah; Stevenson, Jennifer; Kariuki, Simon; Sutherland, Colin; Sauerwein, Robert; Cox, Jonathan; Drakeley, Chris; Bousema, Teun

    2013-08-02

    Informing and evaluating malaria control efforts relies on knowledge of local transmission dynamics. Serological and molecular tools have demonstrated great sensitivity to quantify transmission intensity in low endemic settings where the sensitivity of traditional methods is limited. Filter paper blood spots are commonly used a source of both DNA and antibodies. To enhance the operational practicability of malaria surveys, a method is presented for combined DNA extraction and antibody elution. Filter paper blood spots were collected as part of a large cross-sectional survey in the Kenyan highlands. DNA was extracted using a saponin/chelex method. The eluate of the first wash during the DNA extraction process was used for antibody detection and compared with previously validated antibody elution procedures. Antibody elution efficiency was assessed by total IgG ELISA for malaria antigens apical membrane antigen-1 (AMA-1) and merozoite-surface protein-1 (MSP-142). The sensitivity of nested 18S rRNA and cytochrome b PCR assays and the impact of doubling filter paper material for PCR sensitivity were determined. The distribution of cell material and antibodies throughout filter paper blood spots were examined using luminescent and fluorescent reporter assays. Antibody levels measured after the combined antibody/DNA extraction technique were strongly correlated to those measured after standard antibody elution (p DNA extraction increased sensitivity. The concentration of cell and antibody material was not homogenously distributed throughout blood spots. Combined DNA extraction and antibody elution is an operationally attractive approach for high throughput assessment of cumulative malaria exposure and current infection prevalence in endemic settings. Estimates of antibody prevalence are unaffected by the combined extraction and elution procedure. The choice of target gene and the amount and source of filter paper material for DNA extraction can have a marked impact on

  1. A potent malaria transmission blocking vaccine based on codon harmonized full length Pfs48/45 expressed in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Debabani Roy Chowdhury

    2009-07-01

    Full Text Available Malaria caused by Plasmodium falciparum is responsible for nearly 1 million deaths annually. Although much progress has been made in the recent past, the development of a safe, effective and affordable malaria vaccine has remained a challenge. A vaccine targeting sexual stages of the parasite will not only reduce malaria transmission by female Anopheles mosquitoes, but also reduce the spread of parasites able to evade immunity elicited by vaccines targeting pre-erythrocytic and erythrocytic asexual stages. We focused our studies on Pfs48/45, a protein expressed in the sexual stages developing within an infected person and one of the most promising transmission-blocking vaccine targets. Functional immunogenicity of Pfs48/45 protein requires proper disulfide bond formation, consequently evaluation of the immunogenicity of recombinant full-length Pfs48/45 has been hampered by difficulties in expressing properly folded protein to date. Here we present a strategy involving harmonization of codons for successful recombinant expression of full length Pfs48/45 in Escherichia coli. The purified protein, designated CH-rPfs48/45, was recognized by monoclonal antibodies directed against reduction-sensitive conformational epitopes in the native protein. Immunogenicity evaluation in mice revealed potent transmission blocking activity in membrane feeding assays of antisera elicited by CH-rPfs48/45 formulated in three different adjuvants, i.e. Alum, Montanide ISA-51 and complete Freund's adjuvant. More importantly, CH-rPfs48/45 formulated with Montanide ISA-51 when administered to nonhuman primates (Olive baboons, Papio anubis resulted in uniformly high antibody responses (ELISA titers >2 million in all five animals. Sera from these animals displayed greater than 93% blocking activity in membrane feeding assays after a single immunization, reaching nearly complete blocking after a booster dose of the vaccine. The relative ease of expression and induction of

  2. Framework for evaluating the health impact of the scale-up of malaria control interventions on all-cause child mortality in Sub-Saharan Africa

    NARCIS (Netherlands)

    Y. Ye (Yazoume); Eisele, T.P. (Thomas P.); Eckert, E. (Erin); E.L. Korenromp (Eline); Shah, J.A. (Jui A.); Hershey, C.L. (Christine L.); Ivanovich, E. (Elizabeth); Newby, H. (Holly); Carvajal-Velez, L. (Liliana); Lynch, M. (Michael); R. Komatsu (Ryuichi); R.E. Cibulskis (Richard E); Moore, Z. (Zhuzhi); Bhattarai, A. (Achuyt)

    2017-01-01

    textabstractConcerted efforts from national and international partners have scaled up malaria control interventions, including insecticide-treated nets, indoor residual spraying, diagnostics, prompt and effective treatment of malaria cases, and intermittent preventive treatment during pregnancy in

  3. Scaling up Prevention of Mother to Child Transmission of HIV ...

    African Journals Online (AJOL)

    Nigeria is scaling up prevention of mother-to-child transmission (PMTCT) of HIV interventions to primary health care centres (PHCs). This retrospective study of PMTCT was at two PHCs in Northwest Nigeria with the main outcome measure being HIV infection rate of exposed infants at 6 weeks of life. Of 10,289 women who ...

  4. Scaling up Prevention of Mother to Child Transmission of HIV ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    Jigawa State, 3Federal Medical Centre Katsina, Katsina State.4Takai Comprehensive Health Centre, Takai, Kano State. 5Maternal ... Nigeria is scaling up prevention of mother-to-child transmission (PMTCT) of HIV interventions to primary health care centres. (PHCs). ..... stigma, inability to afford transport cost and long.

  5. Occupational activities associated with a reported history of malaria among women working in small-scale agriculture in South Africa.

    Science.gov (United States)

    Naidoo, Saloshni; London, Leslie; Burdorf, Alex; Naidoo, Rajen N; Kromhout, Hans

    2011-11-01

    Malaria-endemic agricultural communities are at risk for this disease because of crop and agricultural activities. A cross-sectional survey among women in small-scale agriculture on irrigated and dryland areas in Makhatini Flats, KwaZulu-Natal South Africa explored associations with self-reported history of malaria, including demographics, crop production, and specific agricultural activities. Ninety-eight (15.2%) of 644 women reported malaria while working in agriculture. More women working in drylands than women working in irrigation scheme reported disease (18.4% versus 10.9%; P history of malaria while working in agriculture. This study suggests that certain agricultural activities and types of crop production may increase the risk for malaria among women working in small-scale agriculture.

  6. Six years of experience in entomological surveillance of indoor residual spraying against malaria transmission in Benin: lessons learned, challenges and outlooks.

    Science.gov (United States)

    Akogbéto, Martin C; Aïkpon, Rock Y; Azondékon, Roseric; Padonou, Gil G; Ossè, Razaki A; Agossa, Fiacre R; Beach, Raymond; Sèzonlin, Michel

    2015-06-12

    From 2008 to 2013, a prevention intervention against malaria based on indoor residual spraying (IRS) was implemented in Benin. From 2008 to 2012, Ficam M(®), a bendiocarb-containing product was used for house spraying, in association with pirimiphos methyl EC (Actellic EC) in 2013. This operation aimed to strengthen the effectiveness of treated nets so as to expedite the achievement of Millennium Development Goals (MDGs): the reduction of morbidity and mortality due to malaria by 75 % from 2000 to 2015. Monitoring and evaluation (M&E) was implemented in order to evaluate the impact of IRS intervention on malaria transmission. Anopheles gambiae s.l. populations were sampled by human landing catch. In addition, window exit traps and pyrethrum spray catches were performed to assess exophagic behaviour of Anopheles vectors the main malaria vector in the treated areas. The residual activity of insecticide in the treated walls was also assessed using WHO bioassay test. The purpose of this project was to draw attention to new challenges and future prospects for the success of IRS in Benin. The main strength of the intervention was a large-scale operation in which more than 80 % of the houses were treated due to the strong adhesion of population. In addition, a significant reduction of the EIR in areas under IRS were observed. However, there were many challenges including the high cost of IRS implementation and the identification of suitable areas to implement IRS. This was because of the low and short residual effect of the insecticides recommended for IRS and the management strategy for vector resistance to insecticides. This indicated that challenges are accompanied by suggested solutions. For the cost of IRS to be accessible to states, then local organizations need to be created in partnership with the National Malaria Control Programme (NMCP) in order to ensure relevant planning and implementation of IRS. As an anticipatory measure against vector resistance, this

  7. Low prevalence of Plasmodium and absence of malaria transmission in Conakry, Guinea: prospects for elimination

    National Research Council Canada - National Science Library

    Kouassi, Bernard L; de Souza, Dziedzom K; Goepogui, Andre; Balde, Siradiou M; Diakité, Lamia; Sagno, Arsène; Djameh, Georgina I; Chammartin, Frédérique; Vounatsou, Penelope; Bockarie, Moses J; Utzinger, Jürg; Koudou, Benjamin G

    2016-01-01

    .... in the city of Conakry, Guinea, and discusses the prospect for malaria elimination. Water bodies were prospected to identify potential mosquito breeding sites for 6 days each in the dry season (January 2013...

  8. The dynamics of transmission and spatial distribution of malaria in riverside areas of Porto Velho, Rondonia, in the Amazon region of Brazil.

    Directory of Open Access Journals (Sweden)

    Tony Hiroshi Katsuragawa

    Full Text Available UNLABELLED: The study area in Rondônia was the site of extensive malaria epidemic outbreaks in the 19(th and 20(th centuries related to environmental impacts, with large immigration flows. The present work analyzes the transmission dynamics of malaria in these areas to propose measures for avoiding epidemic outbreaks due to the construction of two Hydroelectric Power Plants. A population based baseline demographic census and a malaria prevalence follow up were performed in two river side localities in the suburbs of Porto Velho city and in its rural vicinity. The quantification and nature of malaria parasites in clinical patients and asymptomatic parasite carriers were performed using microscopic and Real Time PCR methodologies. Anopheles densities and their seasonal variation were done by monthly captures for defining HBR (hourly biting rate values. MAIN RESULTS: (i malaria among residents show the riverside profile, with population at risk represented by children and young adults; (ii asymptomatic vivax and falciparum malaria parasite carriers correspond to around 15% of adults living in the area; (iii vivax malaria relapses were responsible for 30% of clinical cases; (iv malaria risk for the residents was evaluated as 20-25% for vivax and 5-7% for falciparum malaria; (v anopheline densities shown outdoors HBR values 5 to 10 fold higher than indoors and reach 10.000 bites/person/year; (vi very high incidence observed in one of the surveyed localities was explained by a micro epidemic outbreak affecting visitors and temporary residents. Temporary residents living in tents or shacks are accessible to outdoors transmission. Seasonal fishermen were the main group at risk in the study and were responsible for a 2.6 fold increase in the malaria incidence in the locality. This situation illustrates the danger of extensive epidemic outbreaks when thousands of workers and secondary immigrant population will arrive attracted by opportunities opened by

  9. The Dynamics of Transmission and Spatial Distribution of Malaria in Riverside Areas of Porto Velho, Rondônia, in the Amazon Region of Brazil

    Science.gov (United States)

    Katsuragawa, Tony Hiroshi; Gil, Luiz Herman Soares; Tada, Mauro Shugiro; de Almeida e Silva, Alexandre; Costa, Joana D'Arc Neves; da Silva Araújo, Maisa; Escobar, Ana Lúcia; Pereira da Silva, Luiz Hildebrando

    2010-01-01

    The study area in Rondônia was the site of extensive malaria epidemic outbreaks in the 19th and 20th centuries related to environmental impacts, with large immigration flows. The present work analyzes the transmission dynamics of malaria in these areas to propose measures for avoiding epidemic outbreaks due to the construction of two Hydroelectric Power Plants. A population based baseline demographic census and a malaria prevalence follow up were performed in two river side localities in the suburbs of Porto Velho city and in its rural vicinity. The quantification and nature of malaria parasites in clinical patients and asymptomatic parasite carriers were performed using microscopic and Real Time PCR methodologies. Anopheles densities and their seasonal variation were done by monthly captures for defining HBR (hourly biting rate) values. Main results: (i) malaria among residents show the riverside profile, with population at risk represented by children and young adults; (ii) asymptomatic vivax and falciparum malaria parasite carriers correspond to around 15% of adults living in the area; (iii) vivax malaria relapses were responsible for 30% of clinical cases; (iv) malaria risk for the residents was evaluated as 20–25% for vivax and 5–7% for falciparum malaria; (v) anopheline densities shown outdoors HBR values 5 to 10 fold higher than indoors and reach 10.000 bites/person/year; (vi) very high incidence observed in one of the surveyed localities was explained by a micro epidemic outbreak affecting visitors and temporary residents. Temporary residents living in tents or shacks are accessible to outdoors transmission. Seasonal fishermen were the main group at risk in the study and were responsible for a 2.6 fold increase in the malaria incidence in the locality. This situation illustrates the danger of extensive epidemic outbreaks when thousands of workers and secondary immigrant population will arrive attracted by opportunities opened by the Hydroelectric Power

  10. Genetic surveillance detects both clonal and epidemic transmission of malaria following enhanced intervention in Senegal.

    Directory of Open Access Journals (Sweden)

    Rachel Daniels

    Full Text Available Using parasite genotyping tools, we screened patients with mild uncomplicated malaria seeking treatment at a clinic in Thiès, Senegal, from 2006 to 2011. We identified a growing frequency of infections caused by genetically identical parasite strains, coincident with increased deployment of malaria control interventions and decreased malaria deaths. Parasite genotypes in some cases persisted clonally across dry seasons. The increase in frequency of genetically identical parasite strains corresponded with decrease in the probability of multiple infections. Further, these observations support evidence of both clonal and epidemic population structures. These data provide the first evidence of a temporal correlation between the appearance of identical parasite types and increased malaria control efforts in Africa, which here included distribution of insecticide treated nets (ITNs, use of rapid diagnostic tests (RDTs for malaria detection, and deployment of artemisinin combination therapy (ACT. Our results imply that genetic surveillance can be used to evaluate the effectiveness of disease control strategies and assist a rational global malaria eradication campaign.

  11. Standardizing operational vector sampling techniques for measuring malaria transmission intensity: evaluation of six mosquito collection methods in western Kenya.

    Science.gov (United States)

    Wong, Jacklyn; Bayoh, Nabie; Olang, George; Killeen, Gerry F; Hamel, Mary J; Vulule, John M; Gimnig, John E

    2013-04-30

    Operational vector sampling methods lack standardization, making quantitative comparisons of malaria transmission across different settings difficult. Human landing catch (HLC) is considered the research gold standard for measuring human-mosquito contact, but is unsuitable for large-scale sampling. This study assessed mosquito catch rates of CDC light trap (CDC-LT), Ifakara tent trap (ITT), window exit trap (WET), pot resting trap (PRT), and box resting trap (BRT) relative to HLC in western Kenya to 1) identify appropriate methods for operational sampling in this region, and 2) contribute to a larger, overarching project comparing standardized evaluations of vector trapping methods across multiple countries. Mosquitoes were collected from June to July 2009 in four districts: Rarieda, Kisumu West, Nyando, and Rachuonyo. In each district, all trapping methods were rotated 10 times through three houses in a 3 × 3 Latin Square design. Anophelines were identified by morphology and females classified as fed or non-fed. Anopheles gambiae s.l. were further identified as Anopheles gambiae s.s. or Anopheles arabiensis by PCR. Relative catch rates were estimated by negative binomial regression. When data were pooled across all four districts, catch rates (relative to HLC indoor) for An. gambiae s.l (95.6% An. arabiensis, 4.4% An. gambiae s.s) were high for HLC outdoor (RR = 1.01), CDC-LT (RR = 1.18), and ITT (RR = 1.39); moderate for WET (RR = 0.52) and PRT outdoor (RR = 0.32); and low for all remaining types of resting traps (PRT indoor, BRT indoor, and BRT outdoor; RR type varied from district to district. ITT, CDC-LT, and WET appear to be effective methods for large-scale vector sampling in western Kenya. Ultimately, choice of collection method for operational surveillance should be driven by trap efficacy and scalability, rather than fine-scale precision with respect to HLC. When compared with recent, similar trap evaluations in Tanzania and Zambia, these data suggest

  12. Severe Flooding and Malaria Transmission in the Western Ugandan Highlands: Implications for Disease Control in an Era of Global Climate Change.

    Science.gov (United States)

    Boyce, Ross; Reyes, Raquel; Matte, Michael; Ntaro, Moses; Mulogo, Edgar; Metlay, Joshua P; Band, Lawrence; Siedner, Mark J

    2016-11-01

     There are several mechanisms by which global climate change may impact malaria transmission. We sought to assess how the increased frequency of extreme precipitation events associated with global climate change will influence malaria transmission in highland areas of East Africa.  We used a differences-in-differences, quasi-experimental design to examine spatial variability in the incidence rate of laboratory-confirmed malaria cases and malaria-related hospitalizations between villages (1) at high versus low elevations, (2) with versus without rivers, and (3) upstream versus downstream before and after severe flooding that occurred in Kasese District, Western Region, Uganda, in May 2013.  During the study period, 7596 diagnostic tests were performed, and 1285 patients were admitted with a diagnosis of malaria. We observed that extreme flooding resulted in an increase of approximately 30% in the risk of an individual having a positive result of a malaria diagnostic test in the postflood period in villages bordering a flood-affected river, compared with villages farther from a river, with a larger relative impact on upstream versus downstream villages (adjusted rate ratio, 1.91 vs 1.33).  Extreme precipitation such as the flooding described here may pose significant challenges to malaria control programs and will demand timely responses to mitigate deleterious impacts on human health. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  13. The fibrinogen-like domain of FREP1 protein is a broad-spectrum malaria transmission-blocking vaccine antigen.

    Science.gov (United States)

    Niu, Guodong; Franc A, Caio; Zhang, Genwei; Roobsoong, Wanlapa; Nguitragool, Wang; Wang, Xiaohong; Prachumsri, Jetsumon; Butler, Noah S; Li, Jun

    2017-07-14

    FREP1 in mosquito midguts facilitates Plasmodium falciparum parasite transmission. The fibrinogen-like (FBG) domain of FREP1 is highly conserved (>90% identical) among Anopheles species from different continents, suggesting that anti-FBG antibodies may block malaria transmission to all anopheline mosquitoes. Using standard membrane-feeding assays, anti-FREP1 polyclonal antibodies significantly blocked transmission of Plasmodium berghei and Plasmodium vivax to Anopheles gambiae and Anopheles dirus , respectively. Furthermore, in vivo studies of mice immunized with FBG achieved >75% blocking efficacy of P. berghei to A. gambiae without triggering immunopathology. Anti-FBG serum also reduced >81% of P. falciparum infection to A. gambiae Finally, we showed that FBG interacts with Plasmodium gametocytes and ookinetes, revealing the molecular mechanism of its antibody transmission-blocking activity. Collectively, our data support that FREP1-mediated Plasmodium transmission to mosquitoes is a conserved pathway and that targeting the FBG domain of FREP1 will limit the transmission of multiple Plasmodium species to multiple Anopheles species. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Long-run relative importance of temperature as the main driver to malaria transmission in Limpopo Province, South Africa: a simple econometric approach.

    Science.gov (United States)

    Komen, Kibii; Olwoch, Jane; Rautenbach, Hannes; Botai, Joel; Adebayo, Adetunji

    2015-03-01

    Malaria in Limpopo Province of South Africa is shifting and now observed in originally non-malaria districts, and it is unclear whether climate change drives this shift. This study examines the distribution of malaria at district level in the province, determines direction and strength of the linear relationship and causality between malaria with the meteorological variables (rainfall and temperature) and ascertains their short- and long-run variations. Spatio-temporal method, Correlation analysis and econometric methods are applied. Time series monthly meteorological data (1998-2007) were obtained from South Africa Weather Services, while clinical malaria data came from Malaria Control Centre in Tzaneen (Limpopo Province) and South African Department of Health. We find that malaria changes and pressures vary in different districts with a strong positive correlation between temperature with malaria, r = 0.5212, and a weak positive relationship for rainfall, r = 0.2810. Strong unidirectional causality runs from rainfall and temperature to malaria cases (and not vice versa): F (1, 117) = 3.89, ρ = 0.0232 and F (1, 117) = 20.08, P < 0.001 and between rainfall and temperature, a bi-directional causality exists: F (1, 117) = 19.80; F (1,117) = 17.14, P < 0.001, respectively, meaning that rainfall affects temperature and vice versa. Results show evidence of strong existence of a long-run relationship between climate variables and malaria, with temperature maintaining very high level of significance than rainfall. Temperature, therefore, is more important in influencing malaria transmission in Limpopo Province.

  15. Malaria hotspots drive hypoendemic transmission in the Chittagong Hill Districts of Bangladesh.

    Directory of Open Access Journals (Sweden)

    Sabeena Ahmed

    Full Text Available BACKGROUND: Malaria is endemic in 13 of 64 districts of Bangladesh, representing a population at risk of about 27 million people. The highest rates of malaria in Bangladesh occur in the Chittagong Hill Districts, and Plasmodium falciparum (predominately chloroquine resistant is the most prevalent species. METHODS: The objective of this research was to describe the epidemiology of symptomatic P. falciparum malaria in an area of Bangladesh following the introduction of a national malaria control program. We carried out surveillance for symptomatic malaria due to P. falciparum in two demographically defined unions of the Chittagong Hill Districts in Bangladesh, bordering western Myanmar, between October 2009 and May 2012. The association between sociodemographics and temporal and climate factors with symptomatic P. falciparum infection over two years of surveillance data was assessed. Risk factors for infection were determined using a multivariate regression model. RESULTS: 472 cases of symptomatic P. falciparum malaria cases were identified among 23,372 residents during the study period. Greater than 85% of cases occurred during the rainy season from May to October, and cases were highly clustered geographically within these two unions with more than 80% of infections occurring in areas that contain approximately one-third of the total population. Risk factors statistically associated with infection in a multivariate logistic regression model were living in the areas of high incidence, young age, and having an occupation including jhum cultivation and/or daily labor. Use of long lasting insecticide-treated bed nets was high (89.3%, but its use was not associated with decreased incidence of infection. CONCLUSION: Here we show that P. falciparum malaria continues to be hypoendemic in the Chittagong Hill Districts of Bangladesh, is highly seasonal, and is much more common in certain geographically limited hot spots and among certain occupations.

  16. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania.

    Science.gov (United States)

    Kaindoa, Emmanuel W; Matowo, Nancy S; Ngowo, Halfan S; Mkandawile, Gustav; Mmbando, Arnold; Finda, Marcelina; Okumu, Fredros O

    2017-01-01

    Malaria is transmitted by many Anopheles species whose proportionate contributions vary across settings. We re-assessed the roles of Anopheles arabiensis and Anopheles funestus, and examined potential benefits of species-specific interventions in an area in south-eastern Tanzania, where malaria transmission persists, four years after mass distribution of long-lasting insecticide-treated nets (LLINs). Monthly mosquito sampling was done in randomly selected households in three villages using CDC light traps and back-pack aspirators, between January-2015 and January-2016, four years after the last mass distribution of LLINs in 2011. Multiplex polymerase chain reaction (PCR) was used to identify members of An. funestus and Anopheles gambiae complexes. Enzyme-linked immunosorbent assay (ELISA) was used to detect Plasmodium sporozoites in mosquito salivary glands, and to identify sources of mosquito blood meals. WHO susceptibility assays were done on wild caught female An. funestus s.l, and physiological ages approximated by examining mosquito ovaries for parity. A total of 20,135 An. arabiensis and 4,759 An. funestus were collected. The An. funestus group consisted of 76.6% An. funestus s.s, 2.9% An. rivulorum, 7.1% An. leesoni, and 13.4% unamplified samples. Of all mosquitoes positive for Plasmodium, 82.6% were An. funestus s.s, 14.0% were An. arabiensis and 3.4% were An. rivulorum. An. funestus and An. arabiensis contributed 86.21% and 13.79% respectively, of annual entomological inoculation rate (EIR). An. arabiensis fed on humans (73.4%), cattle (22.0%), dogs (3.1%) and chicken (1.5%), but An. funestus fed exclusively on humans. The An. funestus populations were 100% susceptible to organophosphates, pirimiphos methyl and malathion, but resistant to permethrin (10.5% mortality), deltamethrin (18.7%), lambda-cyhalothrin (18.7%) and DDT (26.2%), and had reduced susceptibility to bendiocarb (95%) and propoxur (90.1%). Parity rate was higher in An. funestus (65.8%) than

  17. Remote sensing of anophelines in rice-cropping villages in Mali: Patterns of vector abundance and malaria transmission

    Science.gov (United States)

    Diuk Wasser, Maria Ana

    The explosive population growth and widespread urbanization in Africa requires a significant increase in food production. Crop irrigation is therefore expected to increase in the future, although it is often blamed for aggravating the health risk of local communities---by providing habitats suitable for mosquitoes vectors of malaria (Anopheles gambiae s.l. and An. funestus in our study area) and other diseases. An epidemiological paradox sometimes occurs, however, when an increase in vector numbers is accompanied by a reduction of the risk of infection, due to a reduction in mosquito longevity and of their tendency to bite human (vs. animals). The objective of this dissertation was to determine how agricultural patterns mapped using satellite data affected vector densities and malaria transmission parameters in 18 rice-cropping villages in Mali. I used a combination of optical (Landsat ETM+) and synthetic aperture radar (ERS-2 SAR). Using Landsat data, rice was distinguished from other land uses with 98% accuracy and rice cohorts were discriminated with 84% accuracy (three classes) or 94% (two classes). ERS-2 SAR backscatter was correlated with the height and biomass of rice plants and was therefore useful to distinguish among rice growth stages. As in previous studies, the early vegetative stage was associated with higher larval production. SAR was further able to distinguish between agronomic practices linked to high and low-production within those early stages. The landcover maps were integrated with archived data on adult and larval anopheline densities and malaria transmission parameters. The area of several landcovers explained up to 89% of the variability in mosquito numbers. The maximum correlation was obtained when landcover was measured in a 1-km buffer area. Vector density was negatively associated to parity and anthropophilic rates. An. gambiae showed higher vectorial capacity (VC) than An. funestus , with seasonal variations. Peak VC for both species

  18. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania.

    Directory of Open Access Journals (Sweden)

    Emmanuel W Kaindoa

    Full Text Available Malaria is transmitted by many Anopheles species whose proportionate contributions vary across settings. We re-assessed the roles of Anopheles arabiensis and Anopheles funestus, and examined potential benefits of species-specific interventions in an area in south-eastern Tanzania, where malaria transmission persists, four years after mass distribution of long-lasting insecticide-treated nets (LLINs. Monthly mosquito sampling was done in randomly selected households in three villages using CDC light traps and back-pack aspirators, between January-2015 and January-2016, four years after the last mass distribution of LLINs in 2011. Multiplex polymerase chain reaction (PCR was used to identify members of An. funestus and Anopheles gambiae complexes. Enzyme-linked immunosorbent assay (ELISA was used to detect Plasmodium sporozoites in mosquito salivary glands, and to identify sources of mosquito blood meals. WHO susceptibility assays were done on wild caught female An. funestus s.l, and physiological ages approximated by examining mosquito ovaries for parity. A total of 20,135 An. arabiensis and 4,759 An. funestus were collected. The An. funestus group consisted of 76.6% An. funestus s.s, 2.9% An. rivulorum, 7.1% An. leesoni, and 13.4% unamplified samples. Of all mosquitoes positive for Plasmodium, 82.6% were An. funestus s.s, 14.0% were An. arabiensis and 3.4% were An. rivulorum. An. funestus and An. arabiensis contributed 86.21% and 13.79% respectively, of annual entomological inoculation rate (EIR. An. arabiensis fed on humans (73.4%, cattle (22.0%, dogs (3.1% and chicken (1.5%, but An. funestus fed exclusively on humans. The An. funestus populations were 100% susceptible to organophosphates, pirimiphos methyl and malathion, but resistant to permethrin (10.5% mortality, deltamethrin (18.7%, lambda-cyhalothrin (18.7% and DDT (26.2%, and had reduced susceptibility to bendiocarb (95% and propoxur (90.1%. Parity rate was higher in An. funestus (65

  19. Magnitude of Malaria and Factors among Febrile Cases in Low Transmission Areas of Hadiya Zone, Ethiopia: A Facility Based Cross Sectional Study.

    Science.gov (United States)

    Delil, Romedan Kedir; Dileba, Temesgen Kale; Habtu, Yitagesu Aweke; Gone, Terefe Fuge; Leta, Taye Janfa

    2016-01-01

    Despite a remarkable decline in morbidity and mortality since the era of malaria roll back strategy, it still poses a huge challenge in Ethiopia in general and in Hadiya Zone in particular. Although, there are data from routine health management information on few indicators, there is scarcity of data showing magnitude of malaria and associated factors including knowledge and practice in the study area. Therefore, the aim of this study was to assess magnitude and factors affecting malaria in low transmission areas among febrile cases attending public health facilities in Hadiya Zone, Ethiopia. A facility based cross-sectional study was conducted in Hadiya Zone from May 15 to June 15, 2014. Simple random sampling was used to select the health facility while systematic random sampling technique was used to reach febrile patients attending public health facilities. Data were collected by a pre-tested structured questionnaire containing sections of socio demographic risk factors and knowledge and prevention practices of malaria. Data were entered to Epi-Info software version 3.5.4 and exported to SPSS version 16 for descriptive and logistic regression analysis. One hundred six (25.8%) of participating febrile patients attending at sampled health facilities were found to have malaria by microscopy. Of which, P.vivax, P.falciparum and mixed infection accounted for 76(71. 7%), 27 (25.5%) and 3 (2.8%), respectively. History of travel to malaria endemic area, [AOR: 2.59, 95% CI: (1.24, 5.38)], not using bed net, [AOR: 4.67, 95%CI:, (2.11, 10.37)], poor practice related to malaria prevention and control, [AOR: 2.28, (95%CI: (1.10, 4.74)], poor knowledge about malaria, [AOR: 5.09,95%CI: (2.26,11.50)] and estimated distance of stagnant water near to the residence, [AOR: 3.32, (95%CI: (1.13, 9.76)] were significantly associated factors of malaria positivity in the study. The present study revealed that malaria is still a major source of morbidity in the study area among febrile

  20. Magnitude of Malaria and Factors among Febrile Cases in Low Transmission Areas of Hadiya Zone, Ethiopia: A Facility Based Cross Sectional Study.

    Directory of Open Access Journals (Sweden)

    Romedan Kedir Delil

    Full Text Available Despite a remarkable decline in morbidity and mortality since the era of malaria roll back strategy, it still poses a huge challenge in Ethiopia in general and in Hadiya Zone in particular. Although, there are data from routine health management information on few indicators, there is scarcity of data showing magnitude of malaria and associated factors including knowledge and practice in the study area. Therefore, the aim of this study was to assess magnitude and factors affecting malaria in low transmission areas among febrile cases attending public health facilities in Hadiya Zone, Ethiopia.A facility based cross-sectional study was conducted in Hadiya Zone from May 15 to June 15, 2014. Simple random sampling was used to select the health facility while systematic random sampling technique was used to reach febrile patients attending public health facilities. Data were collected by a pre-tested structured questionnaire containing sections of socio demographic risk factors and knowledge and prevention practices of malaria. Data were entered to Epi-Info software version 3.5.4 and exported to SPSS version 16 for descriptive and logistic regression analysis.One hundred six (25.8% of participating febrile patients attending at sampled health facilities were found to have malaria by microscopy. Of which, P.vivax, P.falciparum and mixed infection accounted for 76(71. 7%, 27 (25.5% and 3 (2.8%, respectively. History of travel to malaria endemic area, [AOR: 2.59, 95% CI: (1.24, 5.38], not using bed net, [AOR: 4.67, 95%CI:, (2.11, 10.37], poor practice related to malaria prevention and control, [AOR: 2.28, (95%CI: (1.10, 4.74], poor knowledge about malaria, [AOR: 5.09,95%CI: (2.26,11.50] and estimated distance of stagnant water near to the residence, [AOR: 3.32, (95%CI: (1.13, 9.76] were significantly associated factors of malaria positivity in the study.The present study revealed that malaria is still a major source of morbidity in the study area among

  1. Therapeutic efficacy of artemether-lumefantrine against uncomplicated Plasmodium falciparum malaria in a high-transmission area in northwest Ethiopia.

    Science.gov (United States)

    Teklemariam, Michael; Assefa, Ashenafi; Kassa, Moges; Mohammed, Hussien; Mamo, Hassen

    2017-01-01

    Malaria, particularly due to Plasmodium falciparum, remains a major public health threat in Ethiopia. Artemether-lumefantine (AL) has been the first-line antimalarial drug against uncomplicated P. falciparum malaria in the country since 2004. Regular monitoring of antimalarial drugs is recommended by the World Health Organization (WHO) to help early detection of drug resistant strains of the parasite and contain their rapid spread. The objective of this study was to assess the therapeutic efficacy of AL in a high-transmission setting in Ethiopia. The study site was Setit Humera, northwest Ethiopia. Single-arm prospective study of a 28-day follow-up was conducted from October 2014 to January 2015 according to the revised WHO 2009 drug efficacy study protocol. Study end-points were classified into primary end-point and secondary end-point. While the primary end-point was the day-28 adequate clinical and parasitological response the secondary end-points were clinical and parasitological evaluations (parasite, fever and gametocyte clearance rate, incidence of drug adverse events) and the relative increment in hemoglobin (Hb) level from baseline to day (D) 14 and D28. A total of 92 patients were enrolled and 79 had completed the 28-day follow-up period. The overall cure rate was 98.8% with 95% confidence interval of 0.915-0.998 without polymerase chain reaction correction. The parasite clearance rate was high with fast resolution of clinical symptoms; 100% of the study participants cleared parasitaemia and fever on D3. Gametocyte carriage was reduced from 7% on D0 to 1% on D3 and complete clearance was achieved on D14. Mean Hb concentration significantly increased on D28 compared to that on D14. There was no serious adverse event. AL was efficacious and safe in a high-transmission setting for treatment of uncomplicated falciparum malaria.

  2. Large-scale use of mosquito larval source management for malaria control in Africa: a cost analysis

    Directory of Open Access Journals (Sweden)

    Worrall Eve

    2011-11-01

    Full Text Available Abstract Background At present, large-scale use of two malaria vector control methods, long-lasting insecticidal nets (LLINs and indoor residual spraying (IRS is being scaled up in Africa with substantial funding from donors. A third vector control method, larval source management (LSM, has been historically very successful and is today widely used for mosquito control globally, except in Africa. With increasing risk of insecticide resistance and a shift to more exophilic vectors, LSM is now under re-evaluation for use against afro-tropical vector species. Here the costs of this intervention were evaluated. Methods The 'ingredients approach' was used to estimate the economic and financial costs per person protected per year (pppy for large-scale LSM using microbial larvicides in three ecologically diverse settings: (1 the coastal metropolitan area of Dar es Salaam in Tanzania, (2 a highly populated Kenyan highland area (Vihiga District, and (3 a lakeside setting in rural western Kenya (Mbita Division. Two scenarios were examined to investigate the cost implications of using alternative product formulations. Sensitivity analyses on product prices were carried out. Results The results show that for programmes using the same granular formulation larviciding costs the least pppy in Dar es Salaam (US$0.94, approximately 60% more in Vihiga District (US$1.50 and the most in Mbita Division (US$2.50. However, these costs are reduced substantially if an alternative water-dispensable formulation is used; in Vihiga, this would reduce costs to US$0.79 and, in Mbita Division, to US$1.94. Larvicide and staff salary costs each accounted for approximately a third of the total economic costs per year. The cost pppy depends mainly on: (1 the type of formulation required for treating different aquatic habitats, (2 the human population density relative to the density of aquatic habitats and (3 the potential to target the intervention in space and/or time. Conclusion

  3. Large-scale use of mosquito larval source management for malaria control in Africa: a cost analysis.

    Science.gov (United States)

    Worrall, Eve; Fillinger, Ulrike

    2011-11-08

    At present, large-scale use of two malaria vector control methods, long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) is being scaled up in Africa with substantial funding from donors. A third vector control method, larval source management (LSM), has been historically very successful and is today widely used for mosquito control globally, except in Africa. With increasing risk of insecticide resistance and a shift to more exophilic vectors, LSM is now under re-evaluation for use against afro-tropical vector species. Here the costs of this intervention were evaluated. The 'ingredients approach' was used to estimate the economic and financial costs per person protected per year (pppy) for large-scale LSM using microbial larvicides in three ecologically diverse settings: (1) the coastal metropolitan area of Dar es Salaam in Tanzania, (2) a highly populated Kenyan highland area (Vihiga District), and (3) a lakeside setting in rural western Kenya (Mbita Division). Two scenarios were examined to investigate the cost implications of using alternative product formulations. Sensitivity analyses on product prices were carried out. The results show that for programmes using the same granular formulation larviciding costs the least pppy in Dar es Salaam (US$0.94), approximately 60% more in Vihiga District (US$1.50) and the most in Mbita Division (US$2.50). However, these costs are reduced substantially if an alternative water-dispensable formulation is used; in Vihiga, this would reduce costs to US$0.79 and, in Mbita Division, to US$1.94. Larvicide and staff salary costs each accounted for approximately a third of the total economic costs per year. The cost pppy depends mainly on: (1) the type of formulation required for treating different aquatic habitats, (2) the human population density relative to the density of aquatic habitats and (3) the potential to target the intervention in space and/or time. Costs for LSM compare favourably with costs for IRS

  4. A Malaria Transmission-Blocking (+)-Usnic Acid Derivative Prevents Plasmodium Zygote-to-Ookinete Maturation in the Mosquito Midgut.

    Science.gov (United States)

    Pastrana-Mena, Rebecca; Mathias, Derrick K; Delves, Michael; Rajaram, Krithika; King, Jonas G; Yee, Rebecca; Trucchi, Beatrice; Verotta, Luisella; Dinglasan, Rhoel R

    2016-12-16

    The evolution of drug resistance is a recurrent problem that has plagued efforts to treat and control malaria. Recent emergence of artemisinin resistance in Southeast Asia underscores the need to develop novel antimalarials and identify new targetable pathways in Plasmodium parasites. Transmission-blocking approaches, which typically target gametocytes in the host bloodstream or parasite stages in the mosquito gut, are recognized collectively as a strategy that when used in combination with antimalarials that target erythrocytic stages will not only cure malaria but will also prevent subsequent transmission. We tested four derivatives of (+)-usnic acid, a metabolite isolated from lichens, for transmission-blocking activity against Plasmodium falciparum using the standard membrane feeding assay. For two of the derivatives, BT37 and BT122, we observed a consistent dose-response relationship between concentration in the blood meal and oocyst intensity in the midgut. To explore their mechanism of action, we used the murine model Plasmodium berghei and found that both derivatives prevent ookinete maturation. Using fluorescence microscopy, we demonstrated that in the presence of each compound zygote vitality was severely affected, and those that did survive failed to elongate and mature into ookinetes. The observed phenotypes were similar to those described for mutants of specific kinases (NEK2/NEK4) and of inner membrane complex 1 (IMC1) proteins, which are all vital to the zygote-to-ookinete transition. We discuss the implications of our findings and our high-throughput screening approach to identifying next generation, transmission-blocking antimalarials based on the scaffolds of these (+)-usnic acid derivatives.

  5. Appropriate targeting of artemisinin-based combination therapy by community health workers using malaria rapid diagnostic tests: findings from randomized trials in two contrasting areas of high and low malaria transmission in south-western Uganda.

    Science.gov (United States)

    Ndyomugyenyi, Richard; Magnussen, Pascal; Lal, Sham; Hansen, Kristian; Clarke, Siân E

    2016-09-01

    To compare the impact of malaria rapid diagnostic tests (mRDTs), used by community health workers (CHWs), on the proportion of children decisions by CHWs were validated by microscopy on a reference blood slide collected at the time of consultation, to compare the proportion of children <5 years receiving appropriately targeted ACT treatment, defined as patients with microscopically-confirmed presence of parasites in a peripheral blood smear receiving artemether-lumefantrine or rectal artesunate, and patients with no malaria parasites not given ACT. In the moderate-to-high transmission area, ACT treatment was appropriately targeted in 79.3% (520/656) of children seen by CHWs using mRDTs to diagnose malaria, vs. 30.8% (215/699) of children seen by CHWs using presumptive diagnosis (P < 0.001). In the low transmission area, 90.1% (363/403) children seen by CHWs using mRDTs received appropriately targeted ACT treatment vs. 7.8% (64/817) seen by CHWs using presumptive diagnosis (P < 0.001). Low mRDT sensitivity in children with low-density parasitaemia (<200 parasites/μl) was identified as a potential concern. When equipped with mRDTs, ACT treatments delivered by CHWs are more accurately targeted to children with malaria parasites. mRDT use could play an important role in reducing overdiagnosis of malaria and improving fever case management within iCCM, in both moderate-to-high and low transmission areas. Nonetheless, missed treatments due to the low sensitivity of current mRDTs in patients with low parasite density are a concern. For community-based treatment in areas of low transmission and/or non-immune populations, presumptive treatment of all fevers as malaria may be advisable, until more sensitive diagnostic assays, suitable for routine use by CHWs in remote settings, become available. © 2016 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  6. Seasonal vaccination against malaria: a potential use for an imperfect malaria vaccine.

    Science.gov (United States)

    Greenwood, Brian; Dicko, Alassane; Sagara, Issaka; Zongo, Issaka; Tinto, Halidou; Cairns, Matthew; Kuepfer, Irene; Milligan, Paul; Ouedraogo, Jean-Bosco; Doumbo, Ogobara; Chandramohan, Daniel

    2017-05-02

    In many parts of the African Sahel and sub-Sahel, where malaria remains a major cause of mortality and morbidity, transmission of the infection is highly seasonal. Seasonal malaria chemoprevention (SMC), which involves administration of a full course of malaria treatment to young children at monthly intervals during the high transmission season, is proving to be an effective malaria control measure in these areas. However, SMC does not provide complete protection and it is demanding to deliver for both families and healthcare givers. Furthermore, there is a risk of the emergence in the future of resistance to the drugs, sulfadoxine-pyrimethamine and amodiaquine, that are currently being used for SMC. Substantial progress has been made in the development of malaria vaccines during the past decade and one malaria vaccine, RTS,S/AS01, has received a positive opinion from the European Medicines Authority and will soon be deployed in large-scale, pilot implementation projects in sub-Saharan Africa. A characteristic feature of this vaccine, and potentially of some of the other malaria vaccines under development, is that they provide a high level of efficacy during the period immediately after vaccination, but that this wanes rapidly, perhaps because it is difficult to develop effective immunological memory to malaria antigens in subjects exposed previously to malaria infection. A potentially effective way of using malaria vaccines with high initial efficacy but which provide only a short period of protection could be annual, mass vaccination campaigns shortly before each malaria transmission season in areas where malaria transmission is confined largely to a few months of the year.

  7. Additional burden of asymptomatic and sub-patent malaria infections during low transmission season in forested tribal villages in Chhattisgarh, India.

    Science.gov (United States)

    Chourasia, Mehul Kumar; Raghavendra, Kamaraju; Bhatt, Rajendra M; Swain, Dipak Kumar; Meshram, Hemraj M; Meshram, Jayant K; Suman, Shrity; Dubey, Vinita; Singh, Gyanendra; Prasad, Kona Madhavinadha; Kleinschmidt, Immo

    2017-08-08

    The burden of sub-patent malaria is difficult to recognize in low endemic areas due to limitation of diagnostic tools, and techniques. Polymerase chain reaction (PCR), a molecular based technique, is one of the key methods for detection of low parasite density infections. The study objective was to assess the additional burden of asymptomatic and sub-patent malaria infection among tribal populations inhabiting three endemic villages in Keshkal sub-district, Chhattisgarh, India. A cross-sectional survey was conducted in March-June 2016, during the low transmission season, to measure and compare prevalence of malaria infection using three diagnostics: rapid diagnostic test, microscopy and nested-PCR. Out of 437 individuals enrolled in the study, 103 (23.6%) were malaria positive by PCR and/or microscopy of whom 89.3% were Plasmodium falciparum cases, 77.7% were afebrile and 35.9% had sub-patent infections. A substantial number of asymptomatic and sub-patent malaria infections were identified in the survey. Hence, strategies for identifying and reducing the hidden burden of asymptomatic and sub-patent infections should focus on forest rural tribal areas using more sensitive molecular diagnostic methods to curtail malaria transmission.

  8. Heterogeneous malaria transmission in long-term Afghan refugee populations: a cross-sectional study in five refugee camps in northern Pakistan.

    Science.gov (United States)

    Wahid, Sobia; Stresman, Gillian H; Kamal, Syed Sajid; Sepulveda, Nuno; Kleinschmidt, Immo; Bousema, Teun; Drakeley, Chris

    2016-04-27

    Afghan refugees in northern Pakistan have been resident for over 30 years and current information on malaria in this population is sparse. Understanding malaria risk and distribution in refugee camps is important for effective management both in camps and on return to Afghanistan. Cross-sectional malariometric surveys were conducted in five Afghan refugee camps to determine infection and exposure to both Plasmodium falciparum and Plasmodium vivax. Factors associated with malaria infection and exposure were analysed using logistic regression, and spatial heterogeneity within camps was investigated with SatScan. In this low-transmission setting, prevalence of infection in the five camps ranged from 0-0.2 to 0.4-9 % by rapid diagnostic test and 0-1.39 and 5-15 % by polymerase chain reaction for P. falciparum and P. vivax, respectively. Prevalence of anti-malarial antibodies to P. falciparum antigens was 3-11 and 17-45 % for P. vivax antigens. Significant foci of P. vivax infection and exposure were detected in three of the five camps. Hotspots of P. falciparum were also detected in three camps, only one of which also showed evidence of P. vivax hotspots. There is low and spatially heterogeneous malaria transmission in the refugee camps in northern Pakistan. Understanding malaria risk in refugee camps is important so the malaria risk faced by these populations in the camps and upon their return to Afghanistan can be effectively managed.

  9. Potential threat of malaria epidemics in a low transmission area, as exemplified by São Tomé and Príncipe

    Science.gov (United States)

    2010-01-01

    Background Plasmodium falciparum is the major cause of malaria infection in the island of São Tomé, in the Republic of São Tomé and Príncipe (STP), with an incidence of 40 - 50% before 2004. Since 2004, through the coordination of the Ministry of Health of STP and their Centro Nacional de Endemias (CNE), an integrated malaria control programme has been intensively deployed on the island of São Tomé. Malaria morbidity and mortality decreased by 95% after three years of effective intervention. In the low transmission settings, however, malaria seasonal fluctuation can be a potential problem directly related to epidemics if ongoing control measures are interrupted. Studies on a number of associated factors with malaria epidemics and the measures taken to respond to outbreaks are presented. Methods The integrated malaria control programme included indoor residual spraying (IRS), long-lasting insecticidal nets (LLINs), intermittent preventive therapy for pregnant women, as well as early diagnosis and prompt treatment with artemisinin-based combination therapy (ACT). Regular implementation of an island-wide IRS programme was carried out yearly in 2004-2007, and enhanced throughout the island in 2009. Malaria incidence and prevalence were estimated based on passive case detection and mass screening, respectively. Slide positivity rates were used for monitoring the beginning of a malaria epidemic or a seasonal peak. Results A steep decline of ca. 95% of malaria morbidity and mortality was observed between 2004 and 2008 with use of the combined control methods. Malaria incidence was 2.0%, 1.5%, and 3.0% for 2007, 2008, and 2009, respectively. In April 2008, a cross-sectional country-wide surveillance showed malaria prevalence of 3.5%, of which 95% cases were asymptomatic carriers. Only 50% of asymptomatic carriers were cured with ACT treatment, while 90% of the symptomatic patients were cured by ACT treatment as confirmed with a follow up study. Malaria morbidity

  10. Pharmacokinetics, pharmacodynamics, and allometric scaling of chloroquine in a murine malaria model.

    Science.gov (United States)

    Moore, Brioni R; Page-Sharp, Madhu; Stoney, Jillian R; Ilett, Kenneth F; Jago, Jeffrey D; Batty, Kevin T

    2011-08-01

    Chloroquine (CQ) is an important antimalarial drug for the treatment of special patient groups and as a comparator for preclinical testing of new drugs. Pharmacokinetic data for CQ in animal models are limited; thus, we conducted a three-part investigation, comprising (i) pharmacodynamic studies of CQ and CQ plus dihydroartemisinin (DHA) in Plasmodium berghei-infected mice, (ii) pharmacokinetic studies of CQ in healthy and malaria-infected mice, and (iii) interspecies allometric scaling for CQ from 6 animal and 12 human studies. The single-dose pharmacodynamic study (10 to 50 mg CQ/kg of body weight) showed dose-related reduction in parasitemia (5- to >500-fold) and a nadir 2 days after the dose. Multiple-dose regimens (total dose, 50 mg/kg CQ) demonstrated a lower nadir and longer survival time than did the same single dose. The CQ-DHA combination provided an additive effect compared to each drug alone. The elimination half-life (t(1/2)), clearance (CL), and volume of distribution (V) of CQ were 46.6 h, 9.9 liters/h/kg, and 667 liters/kg, respectively, in healthy mice and 99.3 h, 7.9 liters/h/kg, and 1,122 liters/kg, respectively, in malaria-infected mice. The allometric equations for CQ in healthy mammals (CL = 3.86 × W(0.56), V = 230 × W(0.94), and t(1/2) = 123 × W(0.2)) were similar to those for malaria-infected groups. CQ showed a delayed dose-response relationship in the murine malaria model and additive efficacy when combined with DHA. The biphasic pharmacokinetic profiles of CQ are similar across mammalian species, and scaling of specific parameters is plausible for preclinical investigations.

  11. Pharmacokinetics, Pharmacodynamics, and Allometric Scaling of Chloroquine in a Murine Malaria Model▿

    Science.gov (United States)

    Moore, Brioni R.; Page-Sharp, Madhu; Stoney, Jillian R.; Ilett, Kenneth F.; Jago, Jeffrey D.; Batty, Kevin T.

    2011-01-01

    Chloroquine (CQ) is an important antimalarial drug for the treatment of special patient groups and as a comparator for preclinical testing of new drugs. Pharmacokinetic data for CQ in animal models are limited; thus, we conducted a three-part investigation, comprising (i) pharmacodynamic studies of CQ and CQ plus dihydroartemisinin (DHA) in Plasmodium berghei-infected mice, (ii) pharmacokinetic studies of CQ in healthy and malaria-infected mice, and (iii) interspecies allometric scaling for CQ from 6 animal and 12 human studies. The single-dose pharmacodynamic study (10 to 50 mg CQ/kg of body weight) showed dose-related reduction in parasitemia (5- to >500-fold) and a nadir 2 days after the dose. Multiple-dose regimens (total dose, 50 mg/kg CQ) demonstrated a lower nadir and longer survival time than did the same single dose. The CQ-DHA combination provided an additive effect compared to each drug alone. The elimination half-life (t1/2), clearance (CL), and volume of distribution (V) of CQ were 46.6 h, 9.9 liters/h/kg, and 667 liters/kg, respectively, in healthy mice and 99.3 h, 7.9 liters/h/kg, and 1,122 liters/kg, respectively, in malaria-infected mice. The allometric equations for CQ in healthy mammals (CL = 3.86 × W0.56, V = 230 × W0.94, and t1/2 = 123 × W0.2) were similar to those for malaria-infected groups. CQ showed a delayed dose-response relationship in the murine malaria model and additive efficacy when combined with DHA. The biphasic pharmacokinetic profiles of CQ are similar across mammalian species, and scaling of specific parameters is plausible for preclinical investigations. PMID:21646487

  12. Characterizing microscopic and submicroscopic malaria parasitaemia at three sites with varied transmission intensity in Uganda

    NARCIS (Netherlands)

    Rek, J.; Katrak, S.; Obasi, H.; Nayebare, P.; Katureebe, A.; Kakande, E.; Arinaitwe, E.; Nankabirwa, J.I.; Jagannathan, P.; Drakeley, C.; Staedke, S.G.; Smith, D.L.; Bousema, T.; Kamya, M.; Rosenthal, P.J.; Dorsey, G.; Greenhouse, B.

    2016-01-01

    BACKGROUND: Parasite prevalence is a key metric used to quantify the burden of malaria and assess the impact of control strategies. Most published estimates of parasite prevalence are based on microscopy and likely underestimate true prevalence. METHODS: Thick smear microscopy was performed in

  13. Efficacy of malaria prevention during pregnancy in an area of low and unstable transmission

    DEFF Research Database (Denmark)

    Ndyomugyenyi, Richard; Clarke, Siân E; Hutchison, Coll L.

    2011-01-01

    -randomised placebo-controlled trial involving 5775 women of all parities examined the effect of IPTp, ITNs alone, or ITNs used in combination with IPTp on maternal anaemia and low birth weight (LBW) in a highland area of southwestern Uganda. The overall prevalence of malaria infection, maternal anaemia and LBW...

  14. Plasmodium-infected Anopheles mosquitoes collected in Virginia and Maryland following local transmission of Plasmodium vivax malaria in Loudoun County, Virginia.

    Science.gov (United States)

    Robert, Leon L; Santos-Ciminera, Patricia D; Andre, Richard G; Schultz, George W; Lawyer, Phillip G; Nigro, Joseph; Masuoka, Penny; Wirtz, Robert A; Neely, John; Gaines, David; Cannon, Charles E; Pettit, Denise; Garvey, Carol W; Goodfriend, David; Roberts, Donald R

    2005-06-01

    Two recent outbreaks of locally acquired, mosquito-transmitted malaria in Virginia in 1998 and 2002 demonstrate the continued risk of endemic mosquito-transmitted malaria in heavily populated areas of the eastern United States. Increasing immigration, growth in global travel, and the presence of competent anopheline vectors throughout the eastern United States contribute to the increasing risk of malaria importation and transmission. On August 23 and 25, 2002, Plasmodium vivax malaria was diagnosed in 2 teenagers in Loudoun County, Virginia. The Centers for Disease Control and Prevention (CDC) deemed these cases to be locally acquired because of the lack of risk factors for malaria, such as international travel, blood transfusion, organ transplantation, or needle sharing. The patients lived approximately 0.5 mi apart; however, 1 patient reported numerous visits to friends who lived directly across the street from the other patient. Two Anopheles quadrimaculatus s.l. female pools collected in Loudoun County, Virginia, and 1 An. punctipennis female pool collected in Fairfax County, Virginia, tested positive for P. vivax 210 with the VecTest panel assay and enzyme-linked immunosorbent assay (ELISA). In addition, 2 An. quadrimaculatus s.l. female pools collected in Montgomery, Maryland, tested positive for P. vivax 210. The CDC confirmed these initial results with the circumsporozoite ELISA. The authors believe that this is the 1st demonstration of Plasmodium-infected mosquitoes collected in association with locally acquired human malaria in the United States since the current national malaria surveillance system began in 1957.

  15. Comparing ownership and use of bed nets at two sites with differential malaria transmission in western Kenya.

    Science.gov (United States)

    Ernst, Kacey C; Hayden, Mary H; Olsen, Heather; Cavanaugh, Jamie L; Ruberto, Irene; Agawo, Maurice; Munga, Stephen

    2016-04-14

    Challenges persist in ensuring access to and optimal use of long-lasting, insecticidal bed nets (LLINs). Factors associated with ownership and use may differ depending on the history of malaria and prevention control efforts in a specific region. Understanding how the cultural and social-environmental context of bed net use may differ between high- and low-risk regions is important when identifying solutions to improve uptake and appropriate use. Community forums and a household, cross-sectional survey were used to collect information on factors related to bed net ownership and use in western Kenya. Sites with disparate levels of transmission were selected, including an endemic lowland area, Miwani, and a highland epidemic-prone area, Kapkangani. Analysis of ownership was stratified by site. A combined site analysis was conducted to examine factors associated with use of all available bed nets. Logistic regression modelling was used to determine factors associated with ownership and use of owned bed nets. Access to bed nets as the leading barrier to their use was identified in community forums and cross-sectional surveys. While disuse of available bed nets was discussed in the forums, it was a relatively rare occurrence in both sites. Factors associated with ownership varied by site. Education, perceived risk of malaria and knowledge of individuals who had died of malaria were associated with higher bed net ownership in the highlands, while in the lowlands individuals reporting it was easy to get a bed net were more likely to own one. A combined site analysis indicated that not using an available bed net was associated with the attitudes that taking malaria drugs is easier than using a bed net and that use of a bed net will not prevent malaria. In addition, individuals with an unused bed net in the household were more likely to indicate that bed nets are difficult to use, that purchased bed nets are better than freely distributed ones, and that bed nets should only

  16. Malaria successes and challenges in Asia.

    Science.gov (United States)

    Bhatia, Rajesh; Rastogi, Rakesh Mani; Ortega, Leonard

    2013-12-01

    Asia ranks second to Africa in terms of malaria burden. In 19 countries of Asia, malaria is endemic and 2.31 billion people or 62% of the total population in these countries are at risk of malaria. In 2010, WHO estimated around 34.8 million cases and 45,600 deaths due to malaria in Asia. In 2011, 2.7 million cases and > 2000 deaths were reported. India, Indonesia, Myanmar and Pakistan are responsible for >85% of the reported cases (confirmed) and deaths in Asia. In last 10 yr, due to availability of donor's fund specially from Global fund, significant progress has been made by the countries in Asia in scaling-up malaria control interventions which were instrumental in reducing malaria morbidity and mortality significantly. There is a large heterogeneity in malaria epidemiology in Asia. As a result, the success in malaria control/elimination is also diverse. As compared to the data of the year 2000, out of 19 malaria endemic countries, 12 countries were able to reduce malaria incidence (microscopically confirmed cases only) by 75%. Two countries, namely Bangladesh and Malaysia are projected to reach 75% reduction by 2015 while India is projected to reach 50-75% only by 2015. The trend could not be assessed in four countries, namely Indonesia, Myanmar, Pakistan and Timor-Leste due to insufficient consistent data. Numerous key challenges need to be addressed to sustain the gains and eliminate malaria in most parts of Asia. Some of these are to control the spread of resistance in Plasmodium falciparum to artemisinin, control of outdoor transmission, control of vivax malaria and ensuring universal coverage of key interventions. Asia has the potential to influence the malaria epidemiology all over the world as well as to support the global efforts in controlling and eliminating malaria through production of quality-assured ACTs, RDTs and long-lasting insecticidal nets.

  17. The impact of the expansion of urban vegetable farming on malaria transmission in major cities of Benin.

    Science.gov (United States)

    Yadouléton, Anges; N'guessan, Raphael; Allagbé, Hyacinthe; Asidi, Alex; Boko, Michel; Osse, Razack; Padonou, Gil; Kindé, Gazard; Akogbéto, Martin

    2010-12-12

    Urban agricultural practices are expanding in several cities of the Republic of Benin. This study aims to assess the impact of such practices on transmission of the malaria parasite in major cities of Benin. A cross sectional entomological study was carried out from January to December 2009 in two vegetable farming sites in southern Benin (Houeyiho and Acron) and one in the northern area (Azèrèkè). The study was based on sampling of mosquitoes by Human Landing Catches (HLC) in households close to the vegetable farms and in others located far from the farms. During the year of study, 71,678 female mosquitoes were caught by HLC of which 25% (17,920/71,678) were Anopheles species. In the areas surveyed, the main malaria parasite, Plasmodium falciparum was transmitted in the south by Anopheles gambiae s.s. Transmission was high during the two rainy seasons (April to July and October to November) but declined in the two dry seasons (December to March and August to September). In the north, transmission occurred from June to October during the rainy season and was vehicled by two members of the An. gambiae complex: Anopheles gambiae s.s. (98%) and Anopheles arabiensis (2%).At Houeyiho, Acron and Azèrèkè, the Entomological Inoculation Rates (EIRs) and the Human Biting Rates (HBRs) were significantly higher during the dry season in Households Close to Vegetable Farms (HCVF) than in those located far from the vegetable areas (HFVF) (p 0.05).The knock-down resistance (kdr) mutation was the main resistance mechanism detected at high frequency (0.86 to 0.91) in An. gambiae s.l. at all sites. The ace-1R mutation was also found but at a very low frequency (< 0.1). These findings showed that communities living close to vegetable farms are permanently exposed to malaria throughout the year, whereas the risk in those living far from such agricultural practices is limited and only critical during the rainy seasons. Measures must be taken by African governments to create

  18. The impact of the expansion of urban vegetable farming on malaria transmission in major cities of Benin

    Directory of Open Access Journals (Sweden)

    Kindé Gazard

    2010-12-01

    Full Text Available Abstract Background Urban agricultural practices are expanding in several cities of the Republic of Benin. This study aims to assess the impact of such practices on transmission of the malaria parasite in major cities of Benin. Method A cross sectional entomological study was carried out from January to December 2009 in two vegetable farming sites in southern Benin (Houeyiho and Acron and one in the northern area (Azèrèkè. The study was based on sampling of mosquitoes by Human Landing Catches (HLC in households close to the vegetable farms and in others located far from the farms. Results During the year of study, 71,678 female mosquitoes were caught by HLC of which 25% (17,920/71,678 were Anopheles species. In the areas surveyed, the main malaria parasite, Plasmodium falciparum was transmitted in the south by Anopheles gambiae s.s. Transmission was high during the two rainy seasons (April to July and October to November but declined in the two dry seasons (December to March and August to September. In the north, transmission occurred from June to October during the rainy season and was vehicled by two members of the An. gambiae complex: Anopheles gambiae s.s. (98% and Anopheles arabiensis (2%. At Houeyiho, Acron and Azèrèkè, the Entomological Inoculation Rates (EIRs and the Human Biting Rates (HBRs were significantly higher during the dry season in Households Close to Vegetable Farms (HCVF than in those located far from the vegetable areas (HFVF (p 0.05. The knock-down resistance (kdr mutation was the main resistance mechanism detected at high frequency (0.86 to 0.91 in An. gambiae s.l. at all sites. The ace-1R mutation was also found but at a very low frequency ( Conclusion These findings showed that communities living close to vegetable farms are permanently exposed to malaria throughout the year, whereas the risk in those living far from such agricultural practices is limited and only critical during the rainy seasons. Measures must be

  19. Unexpectedly long incubation period of Plasmodium vivax malaria, in the absence of chemoprophylaxis, in patients diagnosed outside the transmission area in Brazil

    Directory of Open Access Journals (Sweden)

    da Silveira Bressan Clarisse

    2011-05-01

    Full Text Available Abstract Background In 2010, Brazil recorded 3343,599 cases of malaria, with 99.6% of them concentrated in the Amazon region. Plasmodium vivax accounts for 86% of the cases circulating in the country. The extra-Amazonian region, where transmission does not occur, recorded about 566 cases imported from the Amazonian area in Brazil and South America, from Central America, Asia and African countries. Prolonged incubation periods have been described for P. vivax malaria in temperate climates. The diversity in essential biological characteristics is traditionally considered as one possible explanation to the emergence of relapse in malaria and to the differences in the duration of the incubation period, which can also be explained by the use of chemoprophylaxis. Studying the reported cases of P. vivax malaria in Rio de Janeiro, where there is no vector transmission, has made it possible to evaluate the extension of the incubation period and to notice that it may be extended in some cases. Methods Descriptive study of every malaria patients who visited the clinic in the last five years. The mean, standard deviation, median, minimum and maximum of all incubation periods were analysed. Results From the total of 80 patients seen in the clinic during the study time, with confirmed diagnosis of malaria, 49 (63% were infected with P. vivax. Between those, seven had an estimated incubation period varying from three to 12 months and were returned travellers from Brazilian Amazonian states (6 and Indonesia (1. None of them had taken malarial chemoprophylaxis. Conclusions The authors emphasize that considering malaria as a possible cause of febrile syndrome should be a post-travel routine, independent of the time elapsed after exposure in the transmission area, even in the absence of malaria chemoprophylaxis. They speculate that, since there is no current and detailed information about the biological cycle of human malaria plasmodia's in Brazil, it is possible

  20. The potential for fungal biopesticides to reduce malaria transmission under diverse environmental conditions

    OpenAIRE

    Heinig, Rebecca L.; Paaijmans, Krijn P.; Hancock, Penelope A.; Thomas, Matthew B

    2015-01-01

    Summary The effectiveness of conventional malaria vector control is being threatened by the spread of insecticide resistance. One promising alternative to chemicals is the use of naturally occurring insect?killing fungi. Numerous laboratory studies have shown that isolates of fungal pathogens such as Beauveria bassiana can infect and kill adult mosquitoes, including those resistant to chemical insecticides. Unlike chemical insecticides, fungi may take up to a week or more to kill mosquitoes f...

  1. Ape malaria transmission and potential for ape-to-human transfers in Africa

    OpenAIRE

    Makanga, B; Yangari, P.; Rahola, N; Rougeron, V.; Elguero, E; Boundenga, L; Moukodoum, ND; Okouga, AP; Arnathau, C; Durand, P; Willaume, E.; Ayala, D; D. Fontenille; Ayala, FJ; Renaud, F.

    2016-01-01

    Recent studies have highlighted the large diversity of malaria parasites infecting African great apes (subgenus Laverania) and their strong host specificity. Although the existence of genetic incompatibilities preventing the cross-species transfer may explain host specificity, the existence of vectors with a high preference for a determined host represents another possibility. To test this hypothesis, we undertook a 15-mo-long longitudinal entomological survey in two forest regions of Gabon, ...

  2. The drug sensitivity and transmission dynamics of human malaria on Nias Island, North Sumatra, Indonesia.

    OpenAIRE

    Syafruddin

    2002-01-01

    Nias Island, off the north-western coast of Sumatra, Indonesia, was one of the first locations in which chloroquine-resistant Plasmodium vivax malaria was reported. This resistance is of particular concern because its ancient megalithic culture and the outstanding surfing conditions make the island a popular tourist destination. International travel to and from the island could rapidly spread chloroquine-resistant strains of P. vivax across the planet. The threat posed by such strains, locall...

  3. Improving the malaria transmission-blocking activity of a Plasmodium falciparum 48/45 based vaccine antigen by SpyTag/SpyCatcher mediated virus-like display

    DEFF Research Database (Denmark)

    Singh, Susheel K; Thrane, Susan; Janitzek, Christoph M

    2017-01-01

    Malaria is a devastating disease caused by Plasmodium parasites, resulting in almost 0.5 million deaths per year. The Pfs48/45 protein exposed on the P. falciparum sexual stages is one of the most advanced antigen candidates for a transmission-blocking (TB) vaccine in the clinical pipeline. However...

  4. Cost-Effectiveness Analysis of Test-Based versus Presumptive Treatment of Uncomplicated Malaria in Children under Five Years in an Area of High Transmission in Central Ghana.

    Directory of Open Access Journals (Sweden)

    Theresa Tawiah

    Full Text Available The presumptive approach of confirming malaria in health facilities leads to over-diagnosis of malaria, over use of anti-malaria drugs and the risk of drug resistance development. WHO recommends parasitological confirmation before treatment with artemisinin-based combination therapy (ACT in all suspected malaria patients. The use of malaria rapid diagnostic tests (mRDTs would make it possible for prescribers to diagnose malaria at point-of-care and better target the use of antimalarials. Therefore, a cost-effectiveness analysis was performed on the introduction of mRDTs for management of malaria in under-five children in a high transmission area in Ghana where presumptive diagnosis was the norm in public health centres.A cluster-randomised controlled trial where thirty-two health centres were randomised into test-based diagnosis of malaria using mRDTs (intervention or clinical judgement (control was used to measure the effect of mRDTs on appropriate treatment: 'a child with a positive reference diagnosis prescribed a course of ACT or a child with a negative reference diagnosis not given an ACT'. Cost data was collected from five purposively selected health centres and used to estimate the health sector costs of performing an mRDT and treat children for malaria and other common febrile illnesses. Costs of training healthcare personnel and supervision in the study period were also collected. A sample of caregivers to children participating in the trial was interviewed about household cost incurred on transport, drugs, fees, and special food during a period of one week after the health centre visit as well as days unable to work. A decision model approach was used to calculate the incremental cost-effectiveness ratios (ICERs. Univariate and multivariate sensitivity analyses were applied to assess the robustness of ICERs.The availability of mRDTs for malaria diagnosis resulted in fewer ACT treatments compared to the clinical judgement approach (73

  5. Predictability of Malaria Transmission Intensity in the Mpumalanga Province, South Africa, Using Land Surface Climatology and Autoregressive Analysis

    Science.gov (United States)

    Grass, David; Jasinski, Michael F.; Govere, John

    2003-01-01

    There has been increasing effort in recent years to employ satellite remotely sensed data to identify and map vector habitat and malaria transmission risk in data sparse environments. In the current investigation, available satellite and other land surface climatology data products are employed in short-term forecasting of infection rates in the Mpumalanga Province of South Africa, using a multivariate autoregressive approach. The climatology variables include precipitation, air temperature and other land surface states computed by the Off-line Land-Surface Global Assimilation System (OLGA) including soil moisture and surface evaporation. Satellite data products include the Normalized Difference Vegetation Index (NDVI) and other forcing data used in the Goddard Earth Observing System (GEOS-1) model. Predictions are compared to long- term monthly records of clinical and microscopic diagnoses. The approach addresses the high degree of short-term autocorrelation in the disease and weather time series. The resulting model is able to predict 11 of the 13 months that were classified as high risk during the validation period, indicating the utility of applying antecedent climatic variables to the prediction of malaria incidence for the Mpumalanga Province.

  6. Mapping hotspots of malaria transmission from pre-existing hydrology, geology and geomorphology data in the pre-elimination context of Zanzibar, United Republic of Tanzania.

    Science.gov (United States)

    Hardy, Andrew; Mageni, Zawadi; Dongus, Stefan; Killeen, Gerry; Macklin, Mark G; Majambare, Silas; Ali, Abdullah; Msellem, Mwinyi; Al-Mafazy, Abdul-Wahiyd; Smith, Mark; Thomas, Chris

    2015-01-22

    Larval source management strategies can play an important role in malaria elimination programmes, especially for tackling outdoor biting species and for eliminating parasite and vector populations when they are most vulnerable during the dry season. Effective larval source management requires tools for identifying geographic foci of vector proliferation and malaria transmission where these efforts may be concentrated. Previous studies have relied on surface topographic wetness to indicate hydrological potential for vector breeding sites, but this is unsuitable for karst (limestone) landscapes such as Zanzibar where water flow, especially in the dry season, is subterranean and not controlled by surface topography. We examine the relationship between dry and wet season spatial patterns of diagnostic positivity rates of malaria infection amongst patients reporting to health facilities on Unguja, Zanzibar, with the physical geography of the island, including land cover, elevation, slope angle, hydrology, geology and geomorphology in order to identify transmission hot spots using Boosted Regression Trees (BRT) analysis. The distribution of both wet and dry season malaria infection rates can be predicted using freely available static data, such as elevation and geology. Specifically, high infection rates in the central and southeast regions of the island coincide with outcrops of hard dense limestone which cause locally elevated water tables and the location of dolines (shallow depressions plugged with fine-grained material promoting the persistence of shallow water bodies). This analysis provides a tractable tool for the identification of malaria hotspots which incorporates subterranean hydrology, which can be used to target larval source management strategies.

  7. Bayesian variable selection in modelling geographical heterogeneity in malaria transmission from sparse data: an application to Nouna Health and Demographic Surveillance System (HDSS) data, Burkina Faso.

    Science.gov (United States)

    Diboulo, Eric; Sié, Ali; Diadier, Diallo A; Karagiannis Voules, Dimitrios A; Yé, Yazoume; Vounatsou, Penelope

    2015-02-22

    Quantification of malaria heterogeneity is very challenging, partly because of the underlying characteristics of mosquitoes and also because malaria is an environmentally driven disease. Furthermore, in order to assess the spatial and seasonal variability in malaria transmission, vector data need to be collected repeatedly over time (at fixed geographical locations). Measurements collected at locations close to each other and over time tend to be correlated because of common exposures such as environmental or climatic conditions. Non- spatial statistical methods, when applied to analyze such data, may lead to biased estimates. We developed rigorous methods for analyzing sparse and spatially correlated data. We applied Bayesian variable selection to identify the most important predictors as well as the elapsing time between climate suitability and changes in entomological indices. Bayesian geostatistical zero-inflated binomial and negative binomial models including harmonic seasonal terms, temporal trends and climatic remotely sensed proxies were applied to assess spatio-temporal variation of sporozoite rate and mosquito density in the study area. Bayesian variable selection was employed to determine the most important climatic predictors and elapsing (lag) time between climatic suitability and malaria transmission. Bayesian kriging was used to predict mosquito density and sporozoite rate at unsampled locations. These estimates were converted to covariate and season-adjusted maps of entomological inoculation rates. Models were fitted using Markov chain Monte Carlo simulation. The results show that Anophele. gambiae is the most predominant vector (79.29%) and is more rain-dependant than its sibling Anophele. funestus (20.71%). Variable selection suggests that the two species react differently to different climatic conditions. Prediction maps of entomological inoculation rate (EIR) depict a strong spatial and temporal heterogeneity in malaria transmission risk despite

  8. Landscape Ecology and Epidemiology of Malaria Associated with Rubber Plantations in Thailand: Integrated Approaches to Malaria Ecotoping

    Directory of Open Access Journals (Sweden)

    Wuthichai Kaewwaen

    2015-01-01

    Full Text Available The agricultural land use changes that are human-induced changes in agroforestry ecosystems and in physical environmental conditions contribute substantially to the potential risks for malaria transmission in receptive areas. Due to the pattern and extent of land use change, the risks or negatively ecosystemic outcomes are the results of the dynamics of malaria transmission, the susceptibility of human populations, and the geographical distribution of malaria vectors. This review focused basically on what are the potential effects of agricultural land use change as a result of the expansion of rubber plantations in Thailand and how significant the ecotopes of malaria-associated rubber plantations (MRP are. More profoundly, this review synthesized the novel concepts and perspectives on applied landscape ecology and epidemiology of malaria, as well as approaches to determine the degree to which an MRP ecotope as fundamental landscape scale can establish malaria infection pocket(s. Malaria ecotoping encompasses the integrated approaches and tools applied to or used in modeling malaria transmission. The scalability of MRP ecotope depends upon its unique landscape structure as it is geographically associated with the infestation or reinfestation of Anopheles vectors, along with the attributes that are epidemiologically linked with the infections. The MRP ecotope can be depicted as the hotspot such that malaria transmission is modeled upon the MRP factors underlying human settlements and movement activities, health behaviors, land use/land cover change, malaria vector population dynamics, and agrienvironmental and climatic conditions. The systemic and uniform approaches to malaria ecotoping underpin the stratification of the potential risks for malaria transmission by making use of remotely sensed satellite imagery or landscape aerial photography using unmanned aerial vehicle (UAV, global positioning systems (GPS, and geographical information systems

  9. Adapting reactive case detection strategies for falciparum malaria in a low-transmission area in Cambodia.

    Science.gov (United States)

    Rossi, Gabriele; Van den Bergh, Rafael; Nguon, Chea; Debackere, Mark; Vernaeve, Lieven; Khim, Nimol; Kim, Saorin; Menard, Didier; De Smet, Martin; Kindermans, Jean-Marie

    2017-09-04

    Reactive case detection (RACD) around falciparum malaria cases in Cambodia is performed as rapid diagnostic test-based household screening around index cases, typically with a low detection rate. We improved RACD by including individuals occupationally co-exposed with index cases and PCR-based diagnosis. The positivity rate increased 20-fold, from 0.16% to 3.9%. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  10. Differences in human antibody reactivity to Plasmodium falciparum variant surface antigens are dependent on age and malaria transmission intensity in northeastern Tanzania

    DEFF Research Database (Denmark)

    Vestergaard, Lasse S; Lusingu, John P; Nielsen, Morten A

    2008-01-01

    at population level, we conducted an immunoepidemiological study in nearby communities in northeastern Tanzania, situated at different altitudes and therefore exposed to different levels of P. falciparum transmission intensity. Samples of plasma and infected red blood cells (IRBC) were collected from 759......-VSA IgG response developed dramatically in individuals at 1 to 2 years of age in the high-transmission area, reaching a maximum level at around 10 years of age; only a modest further increase was observed among older children and adults. In contrast, at lower levels of malaria transmission, anti-VSA Ig...... and functional characteristics of the variant-specific antibody response, which is likely to be important for protection against malaria....

  11. Determinants of variant surface antigen antibody response in severe Plasmodium falciparum malaria in an area of low and unstable malaria transmission

    DEFF Research Database (Denmark)

    A-Elgadir, T M E; Theander, T G; Elghazali, G

    2006-01-01

    The variant surface antigens (VSA) of infected erythrocytes are important pathogenic markers, a set of variants (VSA(SM)), were assumed to be associated with severe malaria (SM), while SM constitutes clinically diverse forms, such as, severe malarial anemia (SMA) and cerebral malaria (CM). This s......The variant surface antigens (VSA) of infected erythrocytes are important pathogenic markers, a set of variants (VSA(SM)), were assumed to be associated with severe malaria (SM), while SM constitutes clinically diverse forms, such as, severe malarial anemia (SMA) and cerebral malaria (CM...... range of isolates had a higher level of VSA Ab against the recognized isolates (correlation coefficient, 0.727, PSMA (P....001). Parasites obtained from patients with SMA or from children were better recognized than isolates obtained from patients with uncomplicated malaria or from adults, P

  12. Community-based environmental management for malaria control: evidence from a small-scale intervention in Dar es Salaam, Tanzania

    Directory of Open Access Journals (Sweden)

    Kannady Khadija

    2009-04-01

    -sectoral collaboration. Such effort not only is expected to reduce malaria transmission, but has the potential to empower communities, improve health and environmental conditions, and ultimately contribute to poverty alleviation and sustainable development.

  13. Community-based environmental management for malaria control: evidence from a small-scale intervention in Dar es Salaam, Tanzania.

    Science.gov (United States)

    Castro, Marcia C; Tsuruta, Atsuko; Kanamori, Shogo; Kannady, Khadija; Mkude, Sixbert

    2009-04-08

    Historically, environmental management has brought important achievements in malaria control and overall improvements of health conditions. Currently, however, implementation is often considered not to be cost-effective. A community-based environmental management for malaria control was conducted in Dar es Salaam between 2005 and 2007. After community sensitization, two drains were cleaned followed by maintenance. This paper assessed the impact of the intervention on community awareness, prevalence of malaria infection, and Anopheles larval presence in drains. A survey was conducted in neighbourhoods adjacent to cleaned drains; for comparison, neighbourhoods adjacent to two drains treated with larvicides and two drains under no intervention were also surveyed. Data routinely collected by the Urban Malaria Control Programme were also used. Diverse impacts were evaluated through comparison of means, odds ratios (OR), logistic regression, and time trends calculated by moving averages. Individual awareness of health risks and intervention goals were significantly higher among sensitized neighbourhoods. A reduction in the odds of malaria infection during the post-cleaning period in intervention neighbourhoods was observed when compared to the pre-cleaning period (OR = 0.12, 95% CI 0.05-0.3, p authoritarian/colonial regimes or by industries/corporations, its successful implementation as part of an integrated vector management framework for malaria control under democratic governments can be possible if four conditions are observed: political will and commitment, community sensitization and participation, provision of financial resources for initial cleaning and structural repairs, and inter-sectoral collaboration. Such effort not only is expected to reduce malaria transmission, but has the potential to empower communities, improve health and environmental conditions, and ultimately contribute to poverty alleviation and sustainable development.

  14. Two strategies for the delivery of IPTc in an area of seasonal malaria transmission in the Gambia: a randomised controlled trial.

    Directory of Open Access Journals (Sweden)

    Kalifa A Bojang

    2011-02-01

    Full Text Available The Expanded Programme on Immunisation (EPI provides an effective way of delivering intermittent preventive treatment for malaria (IPT to infants. However, it is uncertain how IPT can be delivered most effectively to older children. Therefore, we have compared two approaches to the delivery of IPT to Gambian children: distribution by village health workers (VHWs or through reproductive and child health (RCH trekking teams. In rural areas, RCH trekking teams provide most of the health care to children under the age of 5 years in the Infant Welfare Clinic, and provide antenatal care for pregnant women.During the 2006 malaria transmission season, the catchment populations of 26 RCH trekking clinics in The Gambia, each with 400-500 children 6 years of age and under, were randomly allocated to receive IPT from an RCH trekking team or from a VHW. Treatment with a single dose of sulfadoxine pyrimethamine (SP plus three doses of amodiaquine (AQ were given at monthly intervals during the malaria transmission season. Morbidity from malaria was monitored passively throughout the malaria transmission season in all children, and a random sample of study children from each cluster was examined at the end of the malaria transmission season. The primary study endpoint was the incidence of malaria. Secondary endpoints included coverage of IPTc, mean haemoglobin (Hb concentration, and the prevalence of asexual malaria parasitaemia at the end of malaria transmission period. Financial and economic costs associated with the two delivery strategies were collected and incremental cost and effects were compared. A nested case-control study was used to estimate efficacy of IPT treatment courses. Treatment with SP plus AQ was safe and well tolerated. There were 49 cases of malaria with parasitaemia above 5,000/µl in the areas where IPT was delivered through RCH clinics and 21 cases in the areas where IPT was delivered by VHWs, (incidence rates 2.8 and 1.2 per 1

  15. Clonal diversity of a lizard malaria parasite, Plasmodium mexicanum, in its vertebrate host, the western fence lizard: role of variation in transmission intensity over time and space.

    Science.gov (United States)

    Vardo, A M; Schall, J J

    2007-07-01

    Within the vertebrate host, infections of a malaria parasite (Plasmodium) could include a single genotype of cells (single-clone infections) or two to several genotypes (multiclone infections). Clonal diversity of infection plays an important role in the biology of the parasite, including its life history, virulence, and transmission. We determined the clonal diversity of Plasmodium mexicanum, a lizard malaria parasite at a study region in northern California, using variable microsatellite markers, the first such study for any malaria parasite of lizards or birds (the most common hosts for Plasmodium species). Multiclonal infections are common (50-88% of infections among samples), and measures of genetic diversity for the metapopulation (expected heterozygosity, number of alleles per locus, allele length variation, and effective population size) all indicated a substantial overall genetic diversity. Comparing years with high prevalence (1996-1998 = 25-32% lizards infected), and years with low prevalence (2001-2005 = 6-12%) found fewer alleles in samples taken from the low-prevalence years, but no reduction in overall diversity (H = 0.64-0.90 among loci). In most cases, rare alleles appeared to be lost as prevalence declined. For sites chronically experiencing low transmission intensity (prevalence approximately 1%), overall diversity was also high (H = 0.79-0.91), but there were fewer multiclonal infections. Theory predicts an apparent excess in expected heterozygosity follows a genetic bottleneck. Evidence for such a distortion in genetic diversity was observed after the drop in parasite prevalence under the infinite alleles mutation model but not for the stepwise mutation model. The results are similar to those reported for the human malaria parasite, Plasmodium falciparum, worldwide, and support the conclusion that malaria parasites maintain high genetic diversity in host populations despite the potential for loss in alleles during the transmission cycle or

  16. Spontaneous transmission of chirality through multiple length scales.

    Science.gov (United States)

    Iski, Erin V; Tierney, Heather L; Jewell, April D; Sykes, E Charles H

    2011-06-20

    The hierarchical transfer of chirality in nature, from the nano-, to meso-, to macroscopic length scales, is very complex, and as of yet, not well understood. The advent of scanning probes has allowed chirality to be monitored at the single molecule or monolayer level and has opened up the possibility to track enantiospecific interactions and chiral self-assembly with molecular-scale detail. This paper describes the self-assembly of a simple, model molecule (naphtho[2,3-a]pyrene) that is achiral in the gas phase, but becomes chiral when adsorbed on a surface. This polyaromatic hydrocarbon forms a stable and reversibly ordered system on Cu(111) in which the transmission of chirality from single surface-bound molecules to complex 2D chiral architectures can be monitored as a function of molecular packing density and surface temperature. In addition to the point chirality of the surface-bound molecule, the unit cell of the molecular domains was also found to be chiral due to the incommensurate alignment of the molecular rows with respect to the underlying metal lattice. These molecular domains always aggregated in groups of three, all of the same chirality, but with different rotational orientations, forming homochiral "tri-lobe" ensembles. At a larger length scale, these tri-lobe ensembles associated with nearest-neighbor tri-lobe units of opposite chirality at lower packing densities before forming an extended array of homochiral tri-lobe ensembles at higher converges. This system displayed chirality at a variety of size scales from the molecular (≈1 nm) and domain (≈5 nm) to the tri-lobe ensemble (≈10 nm) and extended array (>25 nm) levels. The chirality of the tri-lobe ensembles dictated how the overall surface packing occurred and both homo- and heterochiral arrays could be reproducibly and reversibly formed and interchanged as a function of surface coverage. Finally, these chirally templated surfaces displayed remarkable enantiospecificity for

  17. Transmission of chirality through space and across length scales

    Science.gov (United States)

    Morrow, Sarah M.; Bissette, Andrew J.; Fletcher, Stephen P.

    2017-05-01

    Chirality is a fundamental property and vital to chemistry, biology, physics and materials science. The ability to use asymmetry to operate molecular-level machines or macroscopically functional devices, or to give novel properties to materials, may address key challenges at the heart of the physical sciences. However, how chirality at one length scale can be translated to asymmetry at a different scale is largely not well understood. In this Review, we discuss systems where chiral information is translated across length scales and through space. A variety of synthetic systems involve the transmission of chiral information between the molecular-, meso- and macroscales. We show how fundamental stereochemical principles may be used to design and understand nanoscale chiral phenomena and highlight important recent advances relevant to nanotechnology. The survey reveals that while the study of stereochemistry on the nanoscale is a rich and dynamic area, our understanding of how to control and harness it and dial-up specific properties is still in its infancy. The long-term goal of controlling nanoscale chirality promises to be an exciting journey, revealing insight into biological mechanisms and providing new technologies based on dynamic physical properties.

  18. T-Regulatory Cells and Inflammatory and Inhibitory Cytokines in Malawian Children Residing in an Area of High and an Area of Low Malaria Transmission During Acute Uncomplicated Malaria and in Convalescence.

    Science.gov (United States)

    Nyirenda, Tonney S; Molyneux, Malcolm E; Kenefeck, Rupert; Walker, Lucy S K; MacLennan, Calman A; Heyderman, Robert S; Mandala, Wilson L

    2015-09-01

    Malaria still infects many Malawian children, and it is a cause of death in some of them. Regulatory T cells (Tregs) help in negating immune-related pathology, it but can also favor multiplication of malaria parasites. The question remains whether children recovering from uncomplicated malaria (UCM) have higher Tregs and interleukin (IL)-10 levels in convalescence. We recruited children between the ages of 6 and 60 months presenting with acute UCM in Blantyre (low transmission area) and Chikwawa (high transmission area). We observed the children after 1 month and 3 months and analyzed their blood samples for parasitemia, lymphocyte subsets, and levels of the cytokines interferon (IFN)-γ, IL-10, and transforming growth factor (TGF)-β. Blood samples from age-matched controls were also analyzed for the same parameters. Compared with controls, acute UCM was associated with mild lymphopenia, splenomegaly, and high levels of IFN-γ, tumor necrosis factor-α, and IL-10, which normalized in convalescence. In Chikwawa, Treg counts were significantly (P < .0001) higher in convalescence compared with acute disease, whereas in Blantyre, these were as low as in healthy controls both during acute disease and in convalescence. Blantyre had a higher percentage of parasiteamic children (15% versus 12%) in convalescence compared with Chikwawa, but none of these developed symptomatic malaria during the study duration. Concentrations of TGF-β were higher at time points for the study participants and in controls from Blantyre compared with those recruited in Chikwawa. The high transmission area was associated with high Tregs counts and IL-10 concentrations in convalescence, which could have an effect on parasite clearance. We recommend that children recovering from UCM, especially those from high transmission area, should sleep under insecticide-treated nets, be screened for parasitemia, and a provision of antimalarial prophylaxis should be considered.

  19. Forecasting paediatric malaria admissions on the Kenya Coast using rainfall.

    Science.gov (United States)

    Karuri, Stella Wanjugu; Snow, Robert W

    2016-01-01

    Malaria is a vector-borne disease which, despite recent scaled-up efforts to achieve control in Africa, continues to pose a major threat to child survival. The disease is caused by the protozoan parasite Plasmodium and requires mosquitoes and humans for transmission. Rainfall is a major factor in seasonal and secular patterns of malaria transmission along the East African coast. The goal of the study was to develop a model to reliably forecast incidences of paediatric malaria admissions to Kilifi District Hospital (KDH). In this article, we apply several statistical models to look at the temporal association between monthly paediatric malaria hospital admissions, rainfall, and Indian Ocean sea surface temperatures. Trend and seasonally adjusted, marginal and multivariate, time-series models for hospital admissions were applied to a unique data set to examine the role of climate, seasonality, and long-term anomalies in predicting malaria hospital admission rates and whether these might become more or less predictable with increasing vector control. The proportion of paediatric admissions to KDH that have malaria as a cause of admission can be forecast by a model which depends on the proportion of malaria admissions in the previous 2 months. This model is improved by incorporating either the previous month's Indian Ocean Dipole information or the previous 2 months' rainfall. Surveillance data can help build time-series prediction models which can be used to anticipate seasonal variations in clinical burdens of malaria in stable transmission areas and aid the timing of malaria vector control.

  20. Epidemiology of Plasmodium vivax Malaria in Peru

    Science.gov (United States)

    Rosas-Aguirre, Angel; Gamboa, Dionicia; Manrique, Paulo; Conn, Jan E.; Moreno, Marta; Lescano, Andres G.; Sanchez, Juan F.; Rodriguez, Hugo; Silva, Hermann; Llanos-Cuentas, Alejandro; Vinetz, Joseph M.

    2016-01-01

    Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s–2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005–2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine–primaquine for P. vivax. Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax. Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination. PMID:27799639

  1. Epidemiology of Plasmodium vivax Malaria in Peru.

    Science.gov (United States)

    Rosas-Aguirre, Angel; Gamboa, Dionicia; Manrique, Paulo; Conn, Jan E; Moreno, Marta; Lescano, Andres G; Sanchez, Juan F; Rodriguez, Hugo; Silva, Hermann; Llanos-Cuentas, Alejandro; Vinetz, Joseph M

    2016-12-28

    Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s-2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005-2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine-primaquine for P. vivax Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination. © The American Society of Tropical Medicine and Hygiene.

  2. Detecting transmission areas of malaria parasites in a migratory bird species.

    Science.gov (United States)

    Garcia-Longoria, Luz; Hellgren, Olof; Bensch, Staffan; de Lope, Florentino; Marzal, Alfonso

    2015-08-01

    The identification of the regions where vector-borne diseases are transmitted is essential to study transmission patterns and to recognize future changes in environmental conditions that may potentially influence the transmission areas. SGS1, one of the lineages of Plasmodium relictum, is known to have active transmission in tropical Africa and temperate regions of Europe. Nuclear sequence data from isolates infected with SGS1 (based on merozoite surface protein 1 (MSP1) allelic diversity) have provided new insights on the distribution and transmission areas of these allelic variants. For example, MSP1 alleles transmitted in Africa differ from those transmitted in Europe, suggesting the existence of two populations of SGS1 lineages. However, no study has analysed the distribution of African and European transmitted alleles in Afro-Palearctic migratory birds. With this aim, we used a highly variable molecular marker to investigate whether juvenile house martins become infected in Europe before their first migration to Africa. We explored the MSP1 allelic diversity of P. relictum in adult and juvenile house martins. We found that juveniles were infected with SGS1 during their first weeks of life, confirming active transmission of SGS1 to house martins in Europe. Moreover, we found that all the juveniles and most of adults were infected with one European transmitted MSP1 allele, whereas two adult birds were infected with two African transmitted MSP1 alleles. These findings suggest that house martins are exposed to different strains of P. relictum in their winter and breeding quarters.

  3. Prevalence of malaria infection in pregnant women compared with children for tracking malaria transmission in sub-Saharan Africa: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Anna M van Eijk, PhD

    2015-10-01

    Funding: The Malaria in Pregnancy Consortium, which is funded through a grant from the Bill & Melinda Gates Foundation to the Liverpool School of Tropical Medicine, UK; US Centers for Disease Control and Prevention; and Wellcome Trust, UK.

  4. Malaria in pregnant women living in areas of low transmission on the southeast Brazilian Coast: molecular diagnosis and humoural immunity profile

    Directory of Open Access Journals (Sweden)

    Angélica Domingues Hristov

    2014-12-01

    Full Text Available Studies on autochthonous malaria in low-transmission areas in Brazil have acquired epidemiological relevance because they suggest continued transmission in what remains of the Atlantic Forest. In the southeastern portion of the state of São Paulo, outbreaks in the municipality of Juquitiba have been the focus of studies on the prevalence of Plasmodium, including asymptomatic cases. Data on the occurrence of the disease or the presence of antiplasmodial antibodies in pregnant women from this region have not previously been described. Although Plasmodium falciparum in pregnant women has been widely addressed in the literature, the interaction of Plasmodium vivax and Plasmodium malariae with this cohort has been poorly explored to date. We monitored the circulation of Plasmodium in pregnant women in health facilities located in Juquitiba using thick blood film and molecular protocols, as well as immunological assays, to evaluate humoural immune parameters. Through real-time and nested polymerase chain reaction, P. vivax and P. malariae were detected for the first time in pregnant women, with a positivity of 5.6%. Immunoassays revealed the presence of IgG antibodies: 44% for ELISA-Pv, 38.4% for SD-Bioline-Pv and 18.4% for indirect immunofluorescence assay-Pm. The high prevalence of antibodies showed significant exposure of this population to Plasmodium. In regions with similar profiles, testing for a malaria diagnosis might be indicated in prenatal care.

  5. Macrophage migration inhibitory factor and placental malaria infection in an area characterized by unstable malaria transmission in central Sudan [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Reem Eltayeb

    2015-09-01

    Full Text Available Background: The pathogenesis of malaria during pregnancy is not fully understood. A proinflammatory cytokine, macrophage migration inhibitory factor (MIF is suggested as a factor involved in the pathogenesis of malaria during pregnancy. Methods: A cross-sectional study was conducted in Medani Hospital, Sudan to investigate MIF levels in placental malaria. Obstetrical and medical characteristics were gathered from each parturient woman using questionnaires. All women (151 were investigated for malaria using blood film and placental histology. MIF levels were measured using ELISA in paired maternal and cord blood samples. Results: There were no P. falciparum-positive blood films obtained from maternal peripheral blood, placenta or cord samples. Out of 151 placentae, four (2.6%, one (0.7%, 32 (21.2% showed acute, chronic and past infection on histopathology examinations respectively, while the rest (114; 75.5% of them showed no signs of infection.There was no significant difference in the median (interquartile of maternal [5.0 (3.7─8.8 vs 6.2(3.5─12.0 ng/ml, P=0.643] and cord [8.1(3.3─16.9 vs 8.3(4.2─16.9, ng/ml, P= 0.601] MIF levels between women with a positive result for placental malaria infection (n=37 and women with a negative result for placental malaria infection (n=114. In regression models placental malaria was not associated with maternal MIF, hemoglobin or birth weight. MIF was not associated with hemoglobin or birth weight. Conclusion: There was no association between maternal and cord MIF levels, placental malaria, maternal hemoglobin and birth weight.

  6. Community-based intermittent mass testing and treatment for malaria in an area of high transmission intensity, western Kenya: study design and methodology for a cluster randomized controlled trial.

    Science.gov (United States)

    Samuels, Aaron M; Awino, Nobert; Odongo, Wycliffe; Abong'o, Benard; Gimnig, John; Otieno, Kephas; Shi, Ya Ping; Were, Vincent; Allen, Denise Roth; Were, Florence; Sang, Tony; Obor, David; Williamson, John; Hamel, Mary J; Patrick Kachur, S; Slutsker, Laurence; Lindblade, Kim A; Kariuki, Simon; Desai, Meghna

    2017-06-07

    Most human Plasmodium infections in western Kenya are asymptomatic and are believed to contribute importantly to malaria transmission. Elimination of asymptomatic infections requires active treatment approaches, such as mass testing and treatment (MTaT) or mass drug administration (MDA), as infected persons do not seek care for their infection. Evaluations of community-based approaches that are designed to reduce malaria transmission require careful attention to study design to ensure that important effects can be measured accurately. This manuscript describes the study design and methodology of a cluster-randomized controlled trial to evaluate a MTaT approach for malaria transmission reduction in an area of high malaria transmission. Ten health facilities in western Kenya were purposively selected for inclusion. The communities within 3 km of each health facility were divided into three clusters of approximately equal population size. Two clusters around each health facility were randomly assigned to the control arm, and one to the intervention arm. Three times per year for 2 years, after the long and short rains, and again before the long rains, teams of community health volunteers visited every household within the intervention arm, tested all consenting individuals with malaria rapid diagnostic tests, and treated all positive individuals with an effective anti-malarial. The effect of mass testing and treatment on malaria transmission was measured through population-based longitudinal cohorts, outpatient visits for clinical malaria, periodic population-based cross-sectional surveys, and entomological indices.

  7. Occupational activities associated with a reported history of malaria among women working in small-scale agriculture in South Africa

    NARCIS (Netherlands)

    S. Naidoo (Steven); L. London (Leslie); A. Burdorf (Alex); S. Naidoo (Steven); H. Kromhout (Hans)

    2011-01-01

    textabstractMalaria-endemic agricultural communities are at risk for this disease because of crop and agricultural activities. A cross-sectional survey among women in small-scale agriculture on irrigated and dryland areas in Makhatini Flats, KwaZulu-Natal South Africa explored associations with

  8. Methodological Considerations for Use of Routine Health Information System Data to Evaluate Malaria Program Impact in an Era of Declining Malaria Transmission.

    Science.gov (United States)

    Ashton, Ruth A; Bennett, Adam; Yukich, Joshua; Bhattarai, Achuyt; Keating, Joseph; Eisele, Thomas P

    2017-09-01

    Coverage of malaria control interventions is increasing dramatically across endemic countries. Evaluating the impact of malaria control programs and specific interventions on health indicators is essential to enable countries to select the most effective and appropriate combination of tools to accelerate progress or proceed toward malaria elimination. When key malaria interventions have been proven effective under controlled settings, further evaluations of the impact of the intervention using randomized approaches may not be appropriate or ethical. Alternatives to randomized controlled trials are therefore required for rigorous evaluation under conditions of routine program delivery. Routine health management information system (HMIS) data are a potentially rich source of data for impact evaluation, but have been underused in impact evaluation due to concerns over internal validity, completeness, and potential bias in estimates of program or intervention impact. A range of methodologies were identified that have been used for impact evaluations with malaria outcome indicators generated from HMIS data. Methods used to maximize internal validity of HMIS data are presented, together with recommendations on reducing bias in impact estimates. Interrupted time series and dose-response analyses are proposed as the strongest quasi-experimental impact evaluation designs for analysis of malaria outcome indicators from routine HMIS data. Interrupted time series analysis compares the outcome trend and level before and after the introduction of an intervention, set of interventions or program. The dose-response national platform approach explores associations between intervention coverage or program intensity and the outcome at a subnational (district or health facility catchment) level.

  9. A viral vectored prime-boost immunization regime targeting the malaria Pfs25 antigen induces transmission-blocking activity.

    Directory of Open Access Journals (Sweden)

    Anna L Goodman

    Full Text Available The ookinete surface protein Pfs25 is a macrogamete-to-ookinete/ookinete stage antigen of Plasmodium falciparum, capable of exerting high-level anti-malarial transmission-blocking activity following immunization with recombinant protein-in-adjuvant formulations. Here, this antigen was expressed in recombinant chimpanzee adenovirus 63 (ChAd63, human adenovirus serotype 5 (AdHu5 and modified vaccinia virus Ankara (MVA viral vectored vaccines. Two immunizations were administered to mice in a heterologous prime-boost regime. Immunization of mice with AdHu5 Pfs25 at week 0 and MVA Pfs25 at week 10 (Ad-MVA Pfs25 resulted in high anti-Pfs25 IgG titers, consisting of predominantly isotypes IgG1 and IgG2a. A single priming immunization with ChAd63 Pfs25 was as effective as AdHu5 Pfs25 with respect to ELISA titers at 8 weeks post-immunization. Sera from Ad-MVA Pfs25 immunized mice inhibited the transmission of P. falciparum to the mosquito both ex vivo and in vivo. In a standard membrane-feeding assay using NF54 strain P. falciparum, oocyst intensity in Anopheles stephensi mosquitoes was significantly reduced in an IgG concentration-dependent manner when compared to control feeds (96% reduction of intensity, 78% reduction in prevalence at a 1 in 5 dilution of sera. In addition, an in vivo transmission-blocking effect was also demonstrated by direct feeding of immunized mice infected with Pfs25DR3, a chimeric P. berghei line expressing Pfs25 in place of endogenous Pbs25. In this assay the density of Pfs25DR3 oocysts was significantly reduced when mosquitoes were fed on vaccinated as compared to control mice (67% reduction of intensity, 28% reduction in prevalence and specific IgG titer correlated with efficacy. These data confirm the utility of the adenovirus-MVA vaccine platform for the induction of antibodies with transmission-blocking activity, and support the continued development of this alternative approach to transmission-blocking malaria subunit

  10. Relationship between altitude and intensity of malaria transmission in the Usambara Mountains, Tanzania

    DEFF Research Database (Denmark)

    Bødker, Rene; Akida, J.; Shayo, D.

    2003-01-01

    in the Usambara Mountains, Tanzania, from 300 m to 1700 m. Routine entomological collections were made using spray catches and light traps for 15 mo. Direct estimates of entomological inoculation rates and indirect estimates of vectorial capacity suggested a >1000-fold reduction in transmission intensity between...

  11. Genetic polymorphisms associated with anti-malarial antibody levels in a low and unstable malaria transmission area in southern Sri Lanka

    Directory of Open Access Journals (Sweden)

    Dewasurendra Rajika L

    2012-08-01

    Full Text Available Abstract Background The incidence of malaria in Sri Lanka has significantly declined in recent years. Similar trends were seen in Kataragama, a known malaria endemic location within the southern province of the country, over the past five years. This is a descriptive study of anti-malarial antibody levels and selected host genetic mutations in residents of Kataragama, under low malaria transmission conditions. Methods Sera were collected from 1,011 individuals residing in Kataragama and anti-malarial antibodies and total IgE levels were measured by a standardized ELISA technique. Host DNA was extracted and used for genotyping of selected SNPs in known genes associated with malaria. The antibody levels were analysed in relation to the past history of malaria (during past 10 years, age, sex, the location of residence within Kataragama and selected host genetic markers. Results A significant increase in antibodies against Plasmodium falciparum antigens AMA1, MSP2, NANP and Plasmodium vivax antigen MSP1 in individuals with past history of malaria were observed when compared to those who did not. A marked increase of anti-MSP1(Pf and anti-AMA1(Pv was also evident in individuals between 45–59 years (when compared to other age groups. Allele frequencies for two SNPs in genes that code for IL-13 and TRIM-5 were found to be significantly different between those who have experienced one or more malaria attacks within past 10 years and those who did not. When antibody levels were classified into a low-high binary trait, significant associations were found with four SNPs for anti-AMA1(Pf; two SNPs for anti-MSP1(Pf; eight SNPs for anti-NANP(Pf; three SNPs for anti-AMA1(Pv; seven SNPs for anti-MSP1(Pv; and nine SNPs for total IgE. Eleven of these SNPs with significant associations with anti-malarial antibody levels were found to be non–synonymous. Conclusions Evidence is suggestive of an age–acquired immunity in this study population in spite of

  12. Malaria has no effect on birth weight in Rwanda

    NARCIS (Netherlands)

    Rulisa, S.; Mens, P.F.; Karema, C.; Schallig, H.D.F.H.; Kaligirwa, N.; Vyankandondera, J.; de Vries, P.J.

    2009-01-01

    Background: Malaria has a negative effect on pregnancy outcome, causing low birth weight, premature birth and stillbirths, particularly in areas with high malaria transmission. In Rwanda, malaria transmission intensity ranges from high to nil, probably associated with variable altitudes. Overall,

  13. An optimised age-based dosing regimen for single low-dose primaquine for blocking malaria transmission in Cambodia.

    Science.gov (United States)

    Leang, Rithea; Khu, Naw Htee; Mukaka, Mavuto; Debackere, Mark; Tripura, Rupam; Kheang, Soy Ty; Chy, Say; Kak, Neeraj; Buchy, Philippe; Tarantola, Arnaud; Menard, Didier; Roca-Felterer, Arantxa; Fairhurst, Rick M; Kheng, Sim; Muth, Sinoun; Ngak, Song; Dondorp, Arjen M; White, Nicholas J; Taylor, Walter Robert John

    2016-10-27

    In 2012, the World Health Organization recommended the addition of single low-dose primaquine (SLDPQ, 0.25 mg base/kg body weight) to artemisinin combination therapies to block the transmission of Plasmodium falciparum without testing for glucose-6-phosphate dehydrogenase deficiency. The targeted group was non-pregnant patients aged ≥ 1 year (later changed to ≥ 6 months) with acute uncomplicated falciparum malaria, primarily in countries with artemisinin-resistant P. falciparum (ARPf). No dosing regimen was suggested, leaving malaria control programmes and clinicians in limbo. Therefore, we designed a user-friendly, age-based SLDPQ regimen for Cambodia, the country most affected by ARPf. By reviewing primaquine's pharmacology, we defined a therapeutic dose range of 0.15-0.38 mg base/kg (9-22.5 mg in a 60-kg adult) for a therapeutic index of 2.5. Primaquine doses (1-20 mg) were tested using a modelled, anthropometric database of 28,138 Cambodian individuals (22,772 healthy, 4119 with malaria and 1247 with other infections); age distributions were: 0.5-4 years (20.0 %, n = 5640), 5-12 years (9.1 %, n = 2559), 13-17 years (9.1 %, n = 2550), and ≥ 18 years (61.8 %, n = 17,389). Optimal age-dosing groups were selected according to calculated mg base/kg doses and proportions of individuals receiving a therapeutic dose. Four age-dosing bands were defined: (1) 0.5-4 years, (2) 5-9 years, (3) 10-14 years, and (4) ≥15 years to receive 2.5, 5, 7.5, and 15 mg of primaquine base, resulting in therapeutic doses in 97.4 % (5494/5640), 90.5 % (1511/1669), 97.7 % (1473/1508), and 95.7 % (18,489/19,321) of individuals, respectively. Corresponding median (1st-99th centiles) mg base/kg doses of primaquine were (1) 0.23 (0.15-0.38), (2) 0.29 (0.18-0.45), (3) 0.27 (0.15-0.39), and (4) 0.29 (0.20-0.42). This age-based SLDPQ regimen could contribute substantially to malaria elimination and requires urgent evaluation in Cambodia and

  14. The effect of insecticide-treated bed nets on the incidence and prevalence of malaria in children in an area of unstable seasonal transmission in western Myanmar.

    Science.gov (United States)

    Smithuis, Frank M; Kyaw, Moe Kyaw; Phe, U Ohn; van der Broek, Ingrid; Katterman, Nina; Rogers, Colin; Almeida, Patrick; Kager, Piet A; Stepniewska, Kasia; Lubell, Yoel; Simpson, Julie A; White, Nicholas J

    2013-10-11

    Insecticide-treated bed nets (ITN) reduce malaria morbidity and mortality consistently in Africa, but their benefits have been less consistent in Asia. This study's objective was to evaluate the malaria protective efficacy of village-wide usage of ITN in Western Myanmar and estimate the cost-effectiveness of ITN compared with extending early diagnosis and treatment services. A cluster-randomized controlled trial was conducted in Rakhine State to assess the efficacy of ITNs in preventing malaria and anaemia in children and their secondary effects on nutrition and development. The data were aggregated for each village to obtain cluster-level infection rates. In total 8,175 children under 10 years of age were followed up for 10 months, which included the main malaria transmission period. The incidence and prevalence of Plasmodium falciparum and Plasmodium vivax infections, and the biting behaviour of Anopheles mosquitoes in the area were studied concurrently. The trial data along with costs for current recommended treatment practices were modelled to estimate the cost-effectiveness of ITNs compared with, or in addition to extending the coverage of early diagnosis and treatment services. In aggregate, malaria infections, spleen rates, haemoglobin concentrations, and weight for height, did not differ significantly during the study period between villages with and without ITNs, with a weighted mean difference of -2.6 P. falciparum episodes per 1,000 weeks at risk (95% Confidence Interval -7 to 1.8). In areas with a higher incidence of malaria there was some evidence ITN protective efficacy. The economic analysis indicated that, despite the uncertainty and variability in their protective efficacy in the different study sites, ITN could still be cost-effective, but not if they displaced funding for early diagnosis and effective treatment which is substantially more cost-effective. In Western Myanmar deployment of ITNs did not provide consistent protection against malaria

  15. Establishment of the Ivermectin Research for Malaria Elimination Network: updating the research agenda

    NARCIS (Netherlands)

    Chaccour, C.J.; Rabinovich, N.R.; Slater, H.; Canavati, S.E.; Bousema, T.; Lacerda, M.; Kuile, F. ter; Drakeley, C.; Bassat, Q.; Foy, B.D.; Kobylinski, K.

    2015-01-01

    The potential use of ivermectin as an additional vector control tool is receiving increased attention from the malaria elimination community, driven by the increased importance of outdoor/residual malaria transmission and the threat of insecticide resistance where vector tools have been scaled-up.

  16. The impact of an intervention to introduce malaria rapid diagnostic tests on fever case management in a high transmission setting in Uganda: A mixed-methods cluster-randomized trial (PRIME).

    Science.gov (United States)

    Chandler, Clare I R; Webb, Emily L; Maiteki-Sebuguzi, Catherine; Nayiga, Susan; Nabirye, Christine; DiLiberto, Deborah D; Ssemmondo, Emmanuel; Dorsey, Grant; Kamya, Moses R; Staedke, Sarah G

    2017-01-01

    Rapid diagnostic tests for malaria (mRDTs) have been scaled-up widely across Africa. The PRIME study evaluated an intervention aiming to improve fever case management using mRDTs at public health centers in Uganda. A cluster-randomized trial was conducted from 2010-13 in Tororo, a high malaria transmission setting. Twenty public health centers were randomized in a 1:1 ratio to intervention or control. The intervention included training in health center management, fever case management with mRDTs, and patient-centered services; plus provision of mRDTs and artemether-lumefantrine (AL) when stocks ran low. Three rounds of Interviews were conducted with caregivers of children under five years of age as they exited health centers (N = 1400); reference mRDTs were done in children with fever (N = 1336). Health worker perspectives on mRDTs were elicited through semi-structured questionnaires (N = 49) and in-depth interviews (N = 10). The primary outcome was inappropriate treatment of malaria, defined as the proportion of febrile children who were not treated according to guidelines based on the reference mRDT. There was no difference in inappropriate treatment of malaria between the intervention and control arms (24.0% versus 29.7%, adjusted risk ratio 0.81 [95% CI: 0.56, 1.17] p = 0.24). Most children (76.0%) tested positive by reference mRDT, but many were not prescribed AL (22.5% intervention versus 25.9% control, p = 0.53). Inappropriate treatment of children testing negative by reference mRDT with AL was also common (31.3% invention vs 42.4% control, p = 0.29). Health workers appreciated mRDTs but felt that integrating testing into practice was challenging given constraints on time and infrastructure. The PRIME intervention did not have the desired impact on inappropriate treatment of malaria for children under five. In this high transmission setting, use of mRDTs did not lead to the reductions in antimalarial prescribing seen elsewhere. Broader investment in health

  17. Human movement data for malaria control and elimination strategic planning.

    Science.gov (United States)

    Pindolia, Deepa K; Garcia, Andres J; Wesolowski, Amy; Smith, David L; Buckee, Caroline O; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J

    2012-06-18

    Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.

  18. Human movement data for malaria control and elimination strategic planning

    Directory of Open Access Journals (Sweden)

    Pindolia Deepa K

    2012-06-01

    Full Text Available Abstract Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i discuss relevant types of HPM across spatial and temporal scales, (ii document where datasets exist to quantify HPM, (iii highlight where data gaps remain and (iv briefly put forward methods for integrating these datasets in a Geographic Information System (GIS framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.

  19. A rapid murine coma and behavior scale for quantitative assessment of murine cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Ryan W Carroll

    Full Text Available BACKGROUND: Cerebral malaria (CM is a neurological syndrome that includes coma and seizures following malaria parasite infection. The pathophysiology is not fully understood and cannot be accounted for by infection alone: patients still succumb to CM, even if the underlying parasite infection has resolved. To that effect, there is no known adjuvant therapy for CM. Current murine CM (MCM models do not allow for rapid clinical identification of affected animals following infection. An animal model that more closely mimics the clinical features of human CM would be helpful in elucidating potential mechanisms of disease pathogenesis and evaluating new adjuvant therapies. METHODOLOGY/PRINCIPAL FINDINGS: A quantitative, rapid murine coma and behavior scale (RMCBS comprised of 10 parameters was developed to assess MCM manifested in C57BL/6 mice infected with Plasmodium berghei ANKA (PbA. Using this method a single mouse can be completely assessed within 3 minutes. The RMCBS enables the operator to follow the evolution of the clinical syndrome, validated here by correlations with intracerebral hemorrhages. It provides a tool by which subjects can be identified as symptomatic prior to the initiation of trial treatment. CONCLUSIONS/SIGNIFICANCE: Since the RMCBS enables an operator to rapidly follow the course of disease, label a subject as affected or not, and correlate the level of illness with neuropathologic injury, it can ultimately be used to guide the initiation of treatment after the onset of cerebral disease (thus emulating the situation in the field. The RMCBS is a tool by which an adjuvant therapy can be objectively assessed.

  20. Plasmodium Cysteine Repeat Modular Proteins 3 and 4 are essential for malaria parasite transmission from the mosquito to the host

    Directory of Open Access Journals (Sweden)

    Mota Maria M

    2011-03-01

    Full Text Available Abstract Background The Plasmodium Cysteine Repeat Modular Proteins (PCRMP are a family of four conserved proteins of malaria parasites, that contain a number of motifs implicated in host-parasite interactions. Analysis of mutants of the rodent parasite Plasmodium berghei lacking expression of PCRMP1 or 2 showed that these proteins are essential for targeting of P. berghei sporozoites to the mosquito salivary gland and, hence, for transmission from the mosquito to the mouse. Methods In this work, the role of the remaining PCRMP family members, PCRMP3 and 4, has been investigated throughout the Plasmodium life cycle by generation and analysis of P. berghei gene deletion mutants, Δpcrmp3 and Δpcrmp4. The role of PCRMP members during the transmission and hepatic stages of the Plasmodium lifecycle has been evaluated by light- and electron microscopy and by analysis of liver stage development in HEPG2 cells in vitro and by infecting mice with mutant sporozoites. In addition, mice were immunized with live Δpcrmp3 and Δpcrmp4 sporozoites to evaluate their immunization potential as a genetically-attenuated parasite-based vaccine. Results Disruption of pcrmp3 and pcrmp4 in P. berghei revealed that they are also essential for transmission of the parasite through the mosquito vector, although acting in a distinct way to pbcrmp1 and 2. Mutants lacking expression of PCRMP3 or PCRMP4 show normal blood stage development and oocyst formation in the mosquito and develop into morphologically normal sporozoites, but these have a defect in egress from oocysts and do not enter the salivary glands. Sporozoites extracted from oocysts perform gliding motility and invade and infect hepatocytes but do not undergo further development and proliferation. Furthermore, the study shows that immunization with Δcrmp3 and Δcrmp4 sporozoites does not confer protective immunity upon subsequent challenge. Conclusions PCRMP3 and 4 play multiple roles during the Plasmodium life

  1. Artemisinin-based combination therapy does not measurably reduce human infectiousness to vectors in a setting of intense malaria transmission

    NARCIS (Netherlands)

    Huho, Bernadette J.; Killeen, Gerard F.; Ferguson, Heather M.; Tami, Adriana; Lengeler, Christian; Charlwood, J. Derek; Kihonda, Aniset; Kihonda, Japhet; Kachur, S. Patrick; Smith, Thomas A.; Abdulla, Salim M. K.

    2012-01-01

    Background: Artemisinin-based combination therapy (ACT) for treating malaria has activity against immature gametocytes. In theory, this property may complement the effect of terminating otherwise lengthy malaria infections and reducing the parasite reservoir in the human population that can infect

  2. Prevalence of malaria infection in pregnant women compared with children for tracking malaria transmission in sub-Saharan Africa: a systematic review and meta-analysis

    NARCIS (Netherlands)

    van Eijk, Anna M.; Hill, Jenny; Noor, Abdisalan M.; Snow, Robert W.; ter Kuile, Feiko O.

    2015-01-01

    Background In malarious areas, pregnant women are more likely to have detectable malaria than are their nonpregnant peers, and the excess risk of infection varies with gravidity. Pregnant women attending antenatal clinic for their first visit are a potential pragmatic sentinel group to track the

  3. Distribution of members of Anopheles quadrimaculatus say s.l. (Diptera: Culicidae) and implications for their roles in malaria transmission in the United States.

    Science.gov (United States)

    Levine, Rebecca S; Peterson, A Townsend; Benedict, Mark Q

    2004-07-01

    The Anopheles quadrimaculatus s.l. (Say) complex consists of at least five species distinguished by distribution, genetic incompatibility, and allele frequencies. However, the distributions of the members have only been described by collection locations. Building on this information and environmental data, preliminary predictions of their distribution were produced using a genetic algorithm and point occurrence data. Based on resulting predicted border areas and undersampled regions, we obtained and analyzed additional geo-referenced specimens and compared their distribution with our preliminary predictions. We found good agreement between the preliminary predictions and the subsequent collections, regardless of the fact that additional specimens were deliberately sought from areas most likely to reveal inconsistencies. Final predicted distributions describe widespread distribution of A.quadrimaculatus throughout the eastern United States. A. maverlius and A. smaragdinus have similar predicted ranges limited to the southeastern United States. The predicted ranges of the sister taxa A. diluvialis and A. inundatus were similar to one another along the southeastern coast even though they seem to be allopatric. The historical role of A. quadrimaculatus s.l. in transmission of malaria was also examined. We conclude that A. quadrimaculatus s.s. was the only species of the complex capable of vectoring malaria in the United States throughout the area in which malaria occurred. However, any or all the members of the complex may have been regionally important, particularly in areas of most intense transmission.

  4. Assessing the effects of global warming and local social and economic conditions on the malaria transmission Quantificando os efeitos do aquecimento global e das condições socioeconômicas locais na transmissão de malária

    Directory of Open Access Journals (Sweden)

    Hyun M Yang

    2000-06-01

    Full Text Available OBJECTIVE: To show how a mathematical model can be used to describe and to understand the malaria transmission. METHODS: The effects on malaria transmission due to the impact of the global temperature changes and prevailing social and economic conditions in a community were assessed based on a previously presented compartmental model, which describes the overall transmission of malaria. RESULTS/CONCLUSIONS: The assessments were made from the scenarios produced by the model both in steady state and dynamic analyses. Depending on the risk level of malaria, the effects on malaria transmission can be predicted by the temperature ambient or local social and-economic conditions.OBJETIVO: Apresenta-se um modelo matemático mostrando como esse instrumento pode ser importante para descrever a transmissão de malária. MÉTODOS: Baseado no modelo proposto previamente, foram quantificados os efeitos de dois fatores que podem afetar a transmissão da malaria: a temperatura ambiente e as condições socioeconômicas locais. RESULTADOS/CONCLUSÕES: A quantificação foi feita estudando o modelo proposto no estado estacionário e na sua dinâmica. Dependendo do nível de risco de malária, os principais efeitos na transmissão de malária são devidos à temperatura ambiente ou às condições socioeconômicas.

  5. Annual variations in the number of malaria cases related to two different patterns of Anopheles darlingi transmission potential in the Maroni area of French Guiana

    Directory of Open Access Journals (Sweden)

    Issaly Jean

    2010-03-01

    Full Text Available Abstract Background With an Annual Parasite Incidence (API of 132.1, in the high and moderate risks zones, the Maroni area of French Guiana has the second highest malaria incidence of South-America after Guyana (API = 183.54 and far above Brazil (API = 28.25. Malaria transmission is occurring despite strong medical assistance and active vector control, based on general WHO recommendations. This situation is generated by two main factors that are the social and cultural characteristics of this border area, where several ethnic groups are living, and the lack of understanding of transmission dynamics of the main mosquito vector, Anopheles darlingi. In this context, entomological data collected in two villages belonging to two different ethnic groups of the French border of the Maroni River, were retrospectively analysed to find out how the mosquito bionomics are related to the malaria transmission patterns. Methods Data were provided by human landing catches of mosquitoes carried out each month for two years in two villages belonging to two ethnic groups, the Amerindians Wayanas and the Aloukous of African origin. The mosquitoes were sorted by species, sex, date, hour and place of collection and processed for Plasmodium sp. parasite detection. The data were compiled to provide the following variables: human biting rates (HBR, parity rates (PR, numbers of infective bites (IB, entomological inoculation rates (EIR and numbers of infected mosquitoes surviving enough to transmit (IMT. Spatial and temporal differences of variables between locations and during the night were tested by the Kruskall-Wallis analysis of variance to find out significant variations. Results The populations of the main mosquito vector An. darlingi showed significant variations in the spatial and temporal HBR/person/night and HBR/person/hour, IB/person/month and IB/person/hour, and IMT/village/night and IMT/village/hour. In the village of Loca (Aloukous, the IMT peaked from June

  6. Characterization of malaria vectors in Huye District, Southern Rwanda

    African Journals Online (AJOL)

    user

    with other vectors playing a secondary role in malaria transmission. Malaria interventions need to be strengthened to reduce even further the malaria transmission in the area. Keywords: malaria, mosquito, composition, larval habitats, Rwanda. Introduction. Malaria remains a leading cause of mortality and morbidity ...

  7. [Vectorial transmission of malaria in a village along the Niger River and its fishing hamlet (Kéniéroba and Fourda, Mali)].

    Science.gov (United States)

    Keïta, M; Baber, I; Sogoba, N; Maïga, H M; Diallo, M'b; Doumbia, S; Traoré, S F

    2014-12-01

    A better understanding of malaria transmission dynamics is an essential element in the development of any targeted vector control strategy. The objective of this study was to better understand malaria transmission dynamics along the Niger River in Sudan savanna zone of Mali. Trough cross-sectional surveys, Anopheline larvae were collected by WHO standard dipping technique, and vector adults by Human Landing and pyrethrum spray catches methods. The vector population was composed of An. gambiae s.l. (> 99%) and An. funestus (hamlet Fourda) compared to farther inland Kéniéroba. The average infection rate of An. gambiae s.l. was 3.63% and 4.06% in Kéniéroba and Fourda respectively. The average entomological inoculation rate (EIR) during the study period was almost similar in Kéniéroba (0.70 infective bites/person/month) and Fourda (0.69 infective bites/person/month). The means EIRs over each of the rainy season 2006 and 2007 were always higher than the one of the dry season 2007 in both localities, with much smaller amplitude in Fourda than in Kéniéroba. However, the level of the transmission was 2.31 (0.37/0.16) times higher in Fourda than in Kéniéroba during the dry season.We conclude that in Sudan savanna zone of Mali, malaria transmission along the river is continuous throughout the year, but it is more intense in the immediate vicinity of the river during the dry season than during the rainy season in opposition to more distant localities to the river and vector control should not be focused only on the rainy in such setting.

  8. Estimated impact on birth weight of scaling up intermittent preventive treatment of malaria in pregnancy given sulphadoxine-pyrimethamine resistance in Africa: A mathematical model.

    Science.gov (United States)

    Walker, Patrick G T; Floyd, Jessica; Ter Kuile, Feiko; Cairns, Matt

    2017-02-01

    estimates of resistance. Forty-four percent of these pregnancies (23% of all pregnancies) were not receiving any IPTp-SP despite making ≥3 ANC visits, representing 160,000 (94,000-236,000 95% crI) preventable low birthweight (LBW) deliveries. Only 4% (1.4 million) of pregnancies occurred in settings with >10% prevalence of the sextuple haplotype associated with compromised SP effectiveness. Forty-two percent of all pregnancies occurred in settings where the quintuple dhfr/dhps haplotype had become established but where in vivo efficacy data suggest SP maintains the majority of its effectiveness in clearing infections. Not accounting for protection from the use of ITNs during pregnancy, expanding IPTp-SP to all women with ≥3 ANC visits in Africa could prevent an additional 215,000 (128,000-318,000 95% crI) LBW deliveries. In 26 countries with sufficient recent data to estimate ITN impact (population-based ITN usage data that can be stratified by gravidity), we estimate that, due primarily to low ITN use by primigravidae, only 16.5% of the potential LBW births prevented by scaling up IPTp-SP would in fact have already have been prevented through ITN use. Our analysis also highlights the difficulties associated with estimating the relationship between the effectiveness of interventions against parasitological endpoints such as placental infection at delivery and health outcomes including birthweight, which is also determined by a wide range of unrelated factors. We also did not capture other aspects of malaria burden such as clinical malaria, maternal and neonatal anaemia, and miscarriage, all of which increase the overall importance of effective preventative strategies but have their own relationship with transmission intensity, parity, and SP resistance. Despite recent declines in malaria transmission in Africa, the burden of MiP in the absence of adequate prevention remains substantial. Even accounting for SP resistance, extending IPTp-SP to all women attending ANC, as

  9. Framework for Evaluating the Health Impact of the Scale-Up of Malaria Control Interventions on All-Cause Child Mortality in Sub-Saharan Africa.

    Science.gov (United States)

    Yé, Yazoume; Eisele, Thomas P; Eckert, Erin; Korenromp, Eline; Shah, Jui A; Hershey, Christine L; Ivanovich, Elizabeth; Newby, Holly; Carvajal-Velez, Liliana; Lynch, Michael; Komatsu, Ryuichi; Cibulskis, Richard E; Moore, Zhuzhi; Bhattarai, Achuyt

    2017-09-01

    Concerted efforts from national and international partners have scaled up malaria control interventions, including insecticide-treated nets, indoor residual spraying, diagnostics, prompt and effective treatment of malaria cases, and intermittent preventive treatment during pregnancy in sub-Saharan Africa (SSA). This scale-up warrants an assessment of its health impact to guide future efforts and investments; however, measuring malaria-specific mortality and the overall impact of malaria control interventions remains challenging. In 2007, Roll Back Malaria's Monitoring and Evaluation Reference Group proposed a theoretical framework for evaluating the impact of full-coverage malaria control interventions on morbidity and mortality in high-burden SSA countries. Recently, several evaluations have contributed new ideas and lessons to strengthen this plausibility design. This paper harnesses that new evaluation experience to expand the framework, with additional features, such as stratification, to examine subgroups most likely to experience improvement if control programs are working; the use of a national platform framework; and analysis of complete birth histories from national household surveys. The refined framework has shown that, despite persisting data challenges, combining multiple sources of data, considering potential contributions from both fundamental and proximate contextual factors, and conducting subnational analyses allows identification of the plausible contributions of malaria control interventions on malaria morbidity and mortality.

  10. Adult anopheline ecology and malaria transmission in irrigated areas of South Punjab, Pakistan

    DEFF Research Database (Denmark)

    Herrel, N; Amerasinghe, F P; Ensink, J

    2004-01-01

    Surface irrigation in the Punjab province of Pakistan has been carried out on a large scale since the development of the Indus Basin Irrigation System in the late 19th century. The objective of our study was to understand how the population dynamics of adult anopheline mosquitoes (Diptera....... Anopheles stephensi, An. culicifacies and An. subpictus populations peaked in August, September and October, respectively. High temperatures and low rainfall negatively affected seasonal abundance in our area. There were interesting differences in anopheline fauna between villages, with An. culicifacies...

  11. Risk factors for malaria and adverse birth outcomes in a prospective cohort of pregnant women resident in a high malaria transmission area of Papua New Guinea.

    Science.gov (United States)

    Stanisic, Danielle I; Moore, Kerryn A; Baiwog, Francesca; Ura, Alice; Clapham, Caroline; King, Christopher L; Siba, Peter M; Beeson, James G; Mueller, Ivo; Fowkes, Freya J; Rogerson, Stephen J

    2015-05-01

    Low birth weight (LBW), anaemia and malaria are common in Papua New Guinean women. To identify risk factors for LBW, anaemia and preterm delivery (PTD), pregnant women recruited into a cohort study in Madang, Papua New Guinea, were followed to delivery. Of 470 women enrolled, delivery data were available for 328 (69.7%). By microscopy, 34.4% (113/328) of women had malaria parasitaemia at enrolment and 12.5% (41/328) at delivery; at each time point, PCR detected sub-microscopic parasitaemia in substantially more. Most infections were with Plasmodium falciparum; the remainder being predominantly P. vivax. Anaemia and smoking were associated with lower birth weight, and LBW (16.7%; 51/305) and PTD (21.8%; 63/290) were common. Histopathologically diagnosed chronic placental malaria was associated with LBW (adjusted odds ratio [aOR] 3.3; p=0.048) and PTD (aOR 4.2; p=0.01). Lack of maternal education predisposed to PTD. Sub-microscopic parasitaemia at delivery appeared to increase the risk of LBW. Of the genetic polymorphisms, Southeast Asian ovalocytosis, α(+)-thalassaemia and complement receptor 1 (CR1) deficiency, a CR1 heterozygous genotype was associated with decreased risk of anaemia and substantial but non-significant effects were noted in other comparisons. In coastal Papua New Guinea, malaria and anaemia are important causes of adverse pregnancy outcomes. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. History of malaria research and its contribution to the malaria control success in Suriname: a review.

    Science.gov (United States)

    Breeveld, Florence J V; Vreden, Stephen G S; Grobusch, Martin P

    2012-03-29

    Suriname has cleared malaria from its capital city and coastal areas mainly through the successful use of chloroquine and DDT (dichloro-diphenyl-trichloroethane) during the Global Malaria Eradication programme that started in 1955. Nonetheless, malaria transmission rates remained high in the interior of the country for a long time. An impressive decline in malaria cases was achieved in the past few years, from 14,403 registered cases in 2003 to 1,371 in 2009. The introduction of artemisinin-based combination therapy (ACT) in 2004 has further fuelled the decrease in the number of infections with Plasmodium falciparum. The only population group still heavily burdened with malaria is gold mining industry workers. Interestingly, an important part of malaria cases diagnosed and treated in Suriname originate from border regions. Therefore, practical initiatives of combined efforts between neighbouring countries must be scaled up in order to effectively attack these specific areas. Furthermore, it is of vital importance to keep investing into the malaria control programme and public awareness campaigns. Especially the correct use of ACT must be promoted in order to prevent the emergence of resistance. However, effective preventive measures and adequate therapeutic options are on their own not enough to control, let alone eliminate malaria. Changing personal and social behaviour of people is particularly difficult, but crucial in making the current success sustainable. With this in mind, research on successfully implemented interventions, focusing on behavioural modifications and methods of measuring their effectiveness, must be expanded.

  13. THE IMPACT OF DDT SPRAYING AND MALARIA TREATMENT ON THE MALARIA TRANSMISSION IN A HYPO-ENDEMIC AREA OF SOUTH KALIMANTAN

    Directory of Open Access Journals (Sweden)

    S. Gandahusada

    2012-09-01

    Full Text Available Dari tahun 1979 sampai dengan 1981 dilaksanakan penelitian epidemiologi malaria disuatu daerah hypo-endemis di Kalimantan Selatan. Sebagian dari penelitian yang dilaporkan di sini, menilai hasil pe­nyemprotan rumah dengan DDT yang dilaksanakan secara rutin oleh Dinas Kesehatan Propinsi serta menilai intervensi yang diadakan atas dasar epidemiologi setempat. Daerah transmigrasi Batutungku di­semprot  secara rutin dan hasilnya dibandingkan dengan Panyipatan, suatu desa yang tidak disemprot. Hasil surveillance menunjukkan bahwa incidence rate tiap tahun selama tiga tahun penelitian di kedua daerah turunnya sama : di Batutungku dari 10,20/00 menjadi 8,70/00 pada tahun 1980 dan 5,30/00 pada tahun 1981, dan di Panyipatan dari 16,60/00 menjadi 14,60/00 pada tahun 1980 dan 7,70/00 pada tahun 1981. Fluktuasi kepadatan An. nigerrimus dan An. peditaeniatus, dua species anopheles yang paling banyak tertangkap di daerah penelitian, juga tidak menunjukkan adanya perbedaan di kedua dae­rah. Dengan incidence rate dan data entomologis ini, dibuktikan bahwa penyemprotan rumah-rumah di Batutungku tidak efektif. Bahwa di kedua daerah incidence rate tiap tahun menurun, disebabkan oleh ''radical treatment' yang dimulai di kedua daerah sejak Oktober 1979. ''Mass treatment "di dua R W di Batutungku di mana incidence malaria per bulan lebih tinggi daripada lain-lain R W, dapat menekan malaria transmisi.

  14. Experimental, therapeutic and natural transmission of Plasmodium vivax tertian malaria: scientific and anecdotal data on the history of Dutch malaria studies.

    Science.gov (United States)

    Verhave, Jan Peter

    2013-01-18

    When Plasmodium vivax tertian malaria was prevalent in The Netherlands, the use of therapeutic malaria for the treatment of neurosyphilis patients presented an opportunity for biological studies of the parasite's behaviour, in healthy volunteers. One unexplained phenomenon was the long latency between natural exposure to a single infected mosquito and the appearance of clinical signs (average 8 months). Dutch studies with volunteers and syphilis patients, suggested that hundreds of sporozoites transmitted by several mosquito bites were enough to provoke an early attack, known from tropical vivax-malaria. Sporozoites appeared to be programmed either to delay their pre-erythrocytic development or to proceed to an early attack within three weeks. The number of infectious bites also determined the relapse rate and the number of relapses after a primary attack. Analyses of primary cases and relapses from the previous year were used to predict the incidence for the next year. These historic findings fit well with recent studies on genotyping of blood stages during primary attacks and relapses. External factors (i.e. the milieu inside the human host) may trigger hypnozoites to reactivate, but predetermined periods of latency should also be considered.

  15. Experimental, therapeutic and natural transmission of Plasmodium vivax tertian malaria: scientific and anecdotal data on the history of Dutch malaria studies

    Directory of Open Access Journals (Sweden)

    Verhave Jan Peter

    2013-01-01

    Full Text Available Abstract When Plasmodium vivax tertian malaria was prevalent in The Netherlands, the use of therapeutic malaria for the treatment of neurosyphilis patients presented an opportunity for biological studies of the parasite’s behaviour, in healthy volunteers. One unexplained phenomenon was the long latency between natural exposure to a single infected mosquito and the appearance of clinical signs (average 8 months. Dutch studies with volunteers and syphilis patients, suggested that hundreds of sporozoites transmitted by several mosquito bites were enough to provoke an early attack, known from tropical vivax-malaria. Sporozoites appeared to be programmed either to delay their pre-erythrocytic development or to proceed to an early attack within three weeks. The number of infectious bites also determined the relapse rate and the number of relapses after a primary attack. Analyses of primary cases and relapses from the previous year were used to predict the incidence for the next year. These historic findings fit well with recent studies on genotyping of blood stages during primary attacks and relapses. External factors (i.e. the milieu inside the human host may trigger hypnozoites to reactivate, but predetermined periods of latency should also be considered.

  16. Comparison of effectiveness of two different artemisinin-based combination therapies in an area with high seasonal transmission of malaria in Burkina Faso

    Science.gov (United States)

    Sondo, Paul; Derra, Karim; Nakanabo, Seydou Diallo; Tarnagda, Zekiba; Kazienga, Adama; Valea, Innocent; Sorgho, Herman; Ouédraogo, Jean-Bosco; Guiguemdé, Tinga Robert; Tinto, Halidou

    In Sahelian countries such as Burkina Faso, malaria transmission is seasonal with a high incidence of transmission during the rainy season. This study aimed to compare the effectiveness of the two recommended treatments (Artemether-Lumefantrine and Artesunate-Amodiaquine) for uncomplicated malaria in Burkina Faso regarding this seasonal variation of malaria transmission. This is part of a randomized open label trial comparing the effectiveness and safety of Artemether-Lumefantrine versus Artesunate-Amodiaquine according to routine practice in Nanoro. Patients with uncomplicated falciparum malaria were recruited all year round and followed-up for 28 days. To distinguish recrudescences from new infections, dried blood spots from day 0 and day of recurrent parasitaemia were used for nested-PCR genotyping of the polymorphic loci of the merozoite surface proteins 1 and 2. Seasonal influence was investigated by assessing the treatment outcomes according to the recruitment period of the patients. Two main groups (dry season versus rainy season) were defined following the seasonal characteristics of the study area. In Artemether-Lumefantrine group, the uncorrected cure rate was 76.5% in dry season versus 37.9% in rainy season. In Artesunate-Amodiaquine group, this was 93.3% and 57.1% during dry and rainy seasons, respectively. After PCR adjustment, the cure rate decreased from 85.9% in dry season to 75.0% in rainy season in Artemether-Lumefantrine group. InA rtesunate-Amodiaquine group, it was 93.3% in dry season and 80.7% during the rainy season. During the rainy season around 50% of patients had a new malaria episode by Day 28. The cure rate of both Artemether-Lumefantrine and Artesunate-Amodiaquine treatments was higher in dry season compared to rainy season due to high incidence of reinfections during the rainy season. For this reason, in addition to the curative effect, the post-treatment prophylactic effect should be taken into account in the choice of antimalarial

  17. Line Capacity Expansion and Transmission Switching in Power Systems With Large-Scale Wind Power

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Bronmo, Geir; Philpott, Andy B.

    2013-01-01

    In 2020 electricity production from wind power should constitute nearly 50% of electricity demand in Denmark. In this paper we look at optimal expansion of the transmission network in order to integrate 50% wind power in the system, while minimizing total fixed investment cost and expected cost...... of power generation. We allow for active switching of transmission elements to reduce congestion effects caused by Kirchhoff's voltage law. Results show that actively switching transmission lines may yield a better utilization of transmission networks with large-scale wind power and increase wind power...... penetration. Furthermore, it is shown that transmission switching is likely to affect the optimal line capacity expansion plan....

  18. Combined DNA extraction and antibody elution from filter papers for the assessment of malaria transmission intensity in epidemiological studies

    National Research Council Canada - National Science Library

    Baidjoe, Amrish; Stone, Will; Ploemen, Ivo; Shagari, Shehu; Grignard, Lynn; Osoti, Victor; Makori, Euniah; Stevenson, Jennifer; Kariuki, Simon; Sutherland, Colin; Sauerwein, Robert; Cox, Jonathan; Drakeley, Chris; Bousema, Teun

    2013-01-01

    .... Filter paper blood spots are commonly used a source of both DNA and antibodies. To enhance the operational practicability of malaria surveys, a method is presented for combined DNA extraction and antibody elution...

  19. [Association between malaria and anemia in an urban area with Plasmodium transmission: Mâncio Lima, Acre State, Brazil].

    Science.gov (United States)

    Arruda, Eder Ferreira de; Araujo, Felipe Monteiro de; Guimarães, Maria Gabriela da Silva; Nogueira, Rudi; Ramalho, Alanderson Alves; Silva-Nunes, Monica da

    2016-09-19

    The aim of this study was to analyze the prevalence of malaria-attributable anemia in the urban population of Mâncio Lima, Acre State, Brazil. This was a non-concurrent cohort study of 1,167 persons followed for the three months prior to the interview using data from the SIVEP-Malaria database. Anemia frequency and prevalence rates were calculated in patients with and without a recent history of malaria, according to target variables. 50.2% of the individuals were males, and 67.96% were 15 years or older. Overall anemia prevalence was 7.1%, higher in the 6 months to 5 years age bracket. Some 8.3% of men with a recent history of malaria presented anemia. Overall, prevalence of malaria-attributable anemia was negligible, except in men (2.4%) and the Cobal neighborhood (51.4%). The results showed that anemia prevalence was low and that malaria's contribution to anemia only existed in men and in specific geographic areas.

  20. Costs and cost-effectiveness of a large-scale mass testing and treatment intervention for malaria in Southern Province, Zambia.

    Science.gov (United States)

    Silumbe, Kafula; Yukich, Joshua O; Hamainza, Busiku; Bennett, Adam; Earle, Duncan; Kamuliwo, Mulakwa; Steketee, Richard W; Eisele, Thomas P; Miller, John M

    2015-05-20

    A cluster, randomized, control trial of three dry-season rounds of a mass testing and treatment intervention (MTAT) using rapid diagnostic tests (RDTs) and artemether-lumefantrine (AL) was conducted in four districts in Southern Province, Zambia. Data were collected on the costs and logistics of the intervention and paired with effectiveness estimated from a community randomized control trial for the purpose of conducting a provider perspective cost-effectiveness analysis of MTAT vs no MTAT (Standard of Care). Dry-season MTAT in this setting did not reduce malaria transmission sufficiently to permit transition to a case-investigation strategy to then pursue malaria elimination, however, the intervention did substantially reduce malaria illness and was a highly cost-effective intervention for malaria burden reduction in this moderate transmission area. The cost per RDT administered was estimated to be USD4.39 (range: USD1.62-13.96) while the cost per AL treatment administered was estimated to be USD34.74 (range: USD3.87-3,835). The net cost per disability adjusted life year averted (incremental cost-effectiveness ratio) was estimated to be USD804. The intervention appears to be highly cost-effective relative to World Health Organization thresholds for malaria burden reduction in Zambia as compared to no MTAT. However, it was estimated that population-wide mass drug administration is likely to be more cost-effective for burden reduction and for transmission reduction compared to MTAT.

  1. Prospects, achievements, challenges and opportunities for scaling-up malaria chemoprevention in pregnancy in Tanzania

    DEFF Research Database (Denmark)

    Mubyazi, Godfrey M.; Bygbjerg, Ib Christian; Magnussen, Pascal

    2008-01-01

    To describe the prospects, achievements, challenges and opportunities for implementing intermittent preventive treatment for malaria in pregnancy (IPTp) in Tanzania in light of national antenatal care (ANC) guidelines and ability of service providers to comply with them.......To describe the prospects, achievements, challenges and opportunities for implementing intermittent preventive treatment for malaria in pregnancy (IPTp) in Tanzania in light of national antenatal care (ANC) guidelines and ability of service providers to comply with them....

  2. "The Impact of Malaria Eradication on Fertility"

    OpenAIRE

    Adrienne M. Lucas

    2011-01-01

    The malaria eradication campaign that started in Sri Lanka in the late 1940s virtually eliminated malaria transmission on the island. I use the pre-eradication differences in malaria endemicity within Sri Lanka to identify the effect of malaria eradication on fertility and child survival. Malaria eradication increased the number of live births through increasing age specific fertility and causing an earlier first birth. The effect of malaria on the transition time to higher order births is in...

  3. Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector, Anopheles arabiensis in rural south-eastern Tanzania

    Science.gov (United States)

    Matowo, Nancy S.; Munhenga, Givemore; Tanner, Marcel; Coetzee, Maureen; Feringa, Wim F.; Ngowo, Halfan S.; Koekemoer, Lizette L.; Okumu, Fredros O.

    2017-01-01

    Background: Programmatic monitoring of insecticide resistance in disease vectors is mostly done on a large scale, often focusing on differences between districts, regions or countries. However, local heterogeneities in residual malaria transmission imply the need for finer-scale data. This study reports small-scale variations of insecticide susceptibility in Anopheles arabiensis between three neighbouring villages across two seasons in Tanzania, where insecticidal bed nets are extensively used, but malaria transmission persists. Methods: WHO insecticide susceptibility assays were conducted on female and male An. arabiensis from three proximal villages, Minepa, Lupiro, and Mavimba, during dry (June-December 2015) and wet (January-May 2016) seasons. Adults emerging from wild-collected larvae were exposed to 0.05% lambda-cyhalothrin, 0.05% deltamethrin, 0.75% permethrin, 4% DDT, 4% dieldrin, 0.1% bendiocarb, 0.1% propoxur, 0.25% pirimiphos-methyl and 5% malathion. A hydrolysis probe assay was used to screen for L1014F ( kdr-w) and L1014S ( kdr-e) mutations in specimens resistant to DDT or pyrethroids. Synergist assays using piperonly butoxide (PBO) and triphenol phosphate (TPP) were done to assess pyrethroid and bendiocarb resistance phenotypes. Results: There were clear seasonal and spatial fluctuations in phenotypic resistance status in An. arabiensis to pyrethroids, DDT and bendiocarb. Pre-exposure to PBO and TPP, resulted in lower knockdown rates and higher mortalities against pyrethroids and bendiocarb, compared to tests without the synergists. Neither L1014F nor L1014S mutations were detected. Conclusions: This study confirmed the presence of pyrethroid resistance in An. arabiensis and showed small-scale differences in resistance levels between the villages, and between seasons. Substantial, though incomplete, reversal of pyrethroid and bendiocarb resistance following pre-exposure to PBO and TPP, and absence of kdr alleles suggest involvement of P450

  4. Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector, Anopheles arabiensis in rural south-eastern Tanzania [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Nancy S. Matowo

    2017-10-01

    Full Text Available Background: Programmatic monitoring of insecticide resistance in disease vectors is mostly done on a large scale, often focusing on differences between districts, regions or countries. However, local heterogeneities in residual malaria transmission imply the need for finer-scale data. This study reports small-scale variations of insecticide susceptibility in Anopheles arabiensis between three neighbouring villages across two seasons in Tanzania, where insecticidal bed nets are extensively used, but malaria transmission persists. Methods: WHO insecticide susceptibility assays were conducted on female and male An. arabiensis from three proximal villages, Minepa, Lupiro, and Mavimba, during dry (June-December 2015 and wet (January-May 2016 seasons. Adults emerging from wild-collected larvae were exposed to 0.05% lambda-cyhalothrin, 0.05% deltamethrin, 0.75% permethrin, 4% DDT, 4% dieldrin, 0.1% bendiocarb, 0.1% propoxur, 0.25% pirimiphos-methyl and 5% malathion. A hydrolysis probe assay was used to screen for L1014F (kdr-w and L1014S (kdr-e mutations in specimens resistant to DDT or pyrethroids. Synergist assays using piperonly butoxide (PBO and triphenol phosphate (TPP were done to assess pyrethroid and bendiocarb resistance phenotypes. Results: There were clear seasonal and spatial fluctuations in phenotypic resistance status in An. arabiensis to pyrethroids, DDT and bendiocarb. Pre-exposure to PBO and TPP, resulted in lower knockdown rates and higher mortalities against pyrethroids and bendiocarb, compared to tests without the synergists. Neither L1014F nor L1014S mutations were detected. Conclusions: This study confirmed the presence of pyrethroid resistance in An. arabiensis and showed small-scale differences in resistance levels between the villages, and between seasons. Substantial, though incomplete, reversal of pyrethroid and bendiocarb resistance following pre-exposure to PBO and TPP, and absence of kdr alleles suggest involvement of P450

  5. Clinical Variation of Plasmodium falciparum eba-175, ama-1, and msp-3 Genotypes in Young Children Living in a Seasonally High Malaria Transmission Setting in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Issiaka Soulama

    2015-01-01

    Full Text Available The association between P. falciparum eba-175, ama-1, and msp-3 polymorphism in the pathogenicity of malaria disease was investigated. We therefore compared the prevalence of different alleles between symptomatic and asymptomatic malarial children under five years of age living in Burkina Faso. Blood filter papers were collected during the 2008 malaria transmission season from 228 symptomatic and 199 asymptomatic children under five years of age. All patients were living in the rural area of Saponé at about 50 km from Ouagadougou, the capital city of Burkina Faso. P. falciparum parasite DNA was extracted using QIAGEN kits and the alleles diversity was assessed by a nested PCR. PCR products were then digested by restriction enzymes based on already described polymorphic regions of the eba-175, ama-1, and msp-3 genes. The individual alleles eba-175_FCR3 and msp-3_K1 frequencies were statistically higher (p0.05. The comparative analysis of P. falciparum genotypes indicated that the polymorphism in eba-175 and msp-3 genotypes varied between asymptomatic and symptomatic clinical groups and may contribute to the pathogenesis of malaria.

  6. Malaria: Epidemiology and Diagnostic

    Directory of Open Access Journals (Sweden)

    Lukman Hakim

    2011-12-01

    Full Text Available Malaria is an infectious disease caused by Plasmodium spp, are naturally trans­mitted by the mosquito Anopheles spp. Malaria transmission occurs because of interaction between the agent, the definitive host and intermediate hosts (humans. Therefore, the trans­mission of malaria is injluenced by the presence and fluctuations in vector populations (i.e transmitting mosquito Anopheles spp.Malaria diagnosis consists of clinical diagnosis and diagnosis based on laboratory examina­tion. Clinical diagnosis or clinical malaria diagnosis was presumptive diagnosis of malaria based on clinical examination of patients with symptoms include fever (periodical, heat, level of consciousness, dizziness, etc. as well as specific local typical symptoms. Experiences of medical personnel who perform precise diagnosis will determine whether or not the diag­nosis, so that clinical diagnosis cannot be the main reference in the treatment of malaria be­cause of high error rates.

  7. Mapping Malaria Case Event and Factors of Vulnerability to Malaria ...

    African Journals Online (AJOL)

    The paper examines the spatial patterns of malaria case event, people's perception of transmission and prevention of malaria, and the factors of vulnerability to malaria in, Ile-Ife, ... Remote Sensing and Geographic Information System analytical operations employed with ArcGIS 9.2 include query, overlay among others.

  8. Anopheles darlingi bionomics and transmission of Plasmodium falciparum, Plasmodium vivax and Plasmodium malariae in Amerindian villages of the Upper-Maroni Amazonian forest, French Guiana

    Directory of Open Access Journals (Sweden)

    Romain Girod

    2008-11-01

    Full Text Available French Guiana is one of the areas in South America most affected by malaria and where the disease has become a serious public health problem. In spite of this situation, little recent entomological data are available from the main localities where the disease occurs, even though they are crucial for development of an effective vector control strategy. A longitudinal entomological survey was carried out from March 2000-February 2002 in three Amerindian villages, namely Twenké, Taluène and Cayodé, located in the Amazonian forest of the Upper-Maroni area, to assess anopheline mosquitoes and malaria transmission dynamics. Anopheles darlingi (Diptera: Culicidae was the most abundant mosquito species caught during the study. This efficient American malaria vector was active the entire year, but showed an evident peak of abundance during the main rainfall season, from April-June, with an average human biting rate of 255.5 bites per person per night. Parity rates were homogeneous all year, indicating no significant seasonal variability in female survival rates. Estimated vectorial capacity indices were higher during the rainy season, even though the risk of transmission was present throughout the year (VCI > 1. A total of 14 An. darlingi were found infected with Plasmodium falciparum, Plasmodium vivax or Plasmodium malariae. The annual circumsporozoite indices were 0.15, 0.14 and 0.05, and the entomological inoculation rates were 22.8, 27.4 and 14.4 infected bites per person per year in Twenké, Taluène and Cayodé, respectively. An. darlingiwas endo-exophagic and rather exophilic in these localities. The species was collected throughout the night but was more aggressive between 21:30-03:30 h and after 05:30 h. Parity rates were homogeneous during the entire night. Impregnated hammock and/or bed nets, coupled with the use of mosquito repellents, as well as the early treatment of malarial cases, appear to be the most suitable tools for fighting

  9. Scaling of Atrioventricular Transmission in Mammalian Species: An Evolutionary Riddle!

    NARCIS (Netherlands)

    Meijler, F.L.; Strackee, J.; Stokhof, A.A.; Wassenaar, C.

    "Scaling deals with the structural and functional consequences of changes in size or scale among otherwise similar organisms." It plays a key role in all studies on comparative mammalian physiology and morphology. Heart weight is proportionally related to body weight and can be described by a

  10. A qualitative study on caretakers' perceived need of bed-nets after reduced malaria transmission in Zanzibar, Tanzania

    Directory of Open Access Journals (Sweden)

    Beer Netta

    2012-08-01

    Full Text Available Abstract Background The elimination of malaria in Zanzibar is highly dependent on sustained effective coverage of bed-nets to avoid malaria resurgence. The Health Belief Model (HBM framework was used to explore the perceptions of malaria and bed-net use after a noticeable reduction in malaria incidence. Methods Nineteen in-depth interviews were conducted with female and male caretakers of children under five in North A district, Zanzibar. Deductive content analysis was used to identify meaning units that were condensed, coded and assigned to pre-determined elements of the HBM. Results Awareness of malaria among caretakers was high but the illness was now seen as easily curable and uncommon. In addition to the perceived advantage of providing protection against malaria, bed-nets were also thought to be useful for avoiding mosquito nuisance, especially during the rainy season when the malaria and mosquito burden is high. The discomfort of sleeping under a net during the hot season was the main barrier that interrupted consistent bed-net usage. The main cue to using a bed-net was high mosquito density, and children were prioritized when it came to bed-net usage. Caretakers had high perceived self-efficacy and did not find it difficult to use bed-nets. Indoor Residual Spraying (IRS, which was recognized as an additional means of mosquito prevention, was not identified as an alternative for bed-nets. A barrier to net ownership was the increasingly high cost of bed-nets. Conclusions Despite the reduction in malaria incidence and the resulting low malaria risk perceptions among caretakers, the benefit of bed-nets as the most proficient protection against mosquito bites upholds their use. This, in combination with the perceived high self-efficacy of caretakers, supports bed-net usage, while seasonality interrupts consistent use. High effective coverage of bed-nets could be further improved by reinforcing the benefits of bed-nets, addressing the seasonal

  11. Significance of circumsporozoite-specific antibody in the natural transmission of Plasmodium falciparum, Plasmodium vivax, and Plasmodium malariae in an aboriginal (Orang Asli) population of central peninsula Malaysia.

    Science.gov (United States)

    Gordon, D M; Davis, D R; Lee, M; Lambros, C; Harrison, B A; Samuel, R; Campbell, G H; Jegathesan, M; Selvarajan, K; Lewis, G E

    1991-07-01

    Two hundred and seventy-five Orang Asli volunteers living in nine villages in the Pos Legap Valley of Perak State, peninsular Malaysia, participated in a prospective study designed to characterize the epidemiological, parasitological, and entomological characteristics of Plasmodium falciparum, P. vivax, and P. malariae malaria transmission. Prevalence rates for the three plasmodial species at initiation of the study ranged from 56% in the 0-4-year-old age group to 0% in individuals over the age of 40. Entomological surveys were conducted, enabling us to determine mosquito salivary gland-positive rates and entomological inoculation rates of 1.2 infectious mosquito bites per person per month for P. falciparum, 2.4 for P. vivax, and 0.3 for P. malariae. Cumulative incidence rates over the 16 weeks of the study, following radical cure of all volunteers, were 22.5% for P. falciparum, 12.7% for P. vivax, and 1.5% for P. malariae. The median baseline antibody titer against the immunodominant repetitive B cell epitope of P. falciparum or P. vivax circumsporozoite protein was significantly higher for volunteers who did not become parasitemic. Volunteers were selected for further study if they had evidence of being challenged with P. falciparum sporozoites during the study, based on a two-fold or greater increase in antibody titer against the immunodominant repetitive B cell epitope of the circumsporozoite protein. Resistance to infection was seen in six of 10 individuals who had high (greater than 25 OD units) baseline ELISA titers, compared with only three of 24 individuals who had low baseline ELISA titers (chi 2 P less than 0.02). A similar analysis for P. vivax did not show a significant correlation.

  12. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence

    Science.gov (United States)

    Tucker Lima, Joanna M.; Vittor, Amy; Rifai, Sami

    2017-01-01

    Considerable interest in the relationship between biodiversity and disease has recently captured the attention of the research community, with important public policy implications. In particular, malaria in the Amazon region is often cited as an example of how forest conservation can improve public health outcomes. However, despite a growing body of literature and an increased understanding of the relationship between malaria and land use / land cover change (LULC) in Amazonia, contradictions have emerged. While some studies report that deforestation increases malaria risk, others claim the opposite. Assessing malaria risk requires examination of dynamic processes among three main components: (i) the environment (i.e. LULC and landscape transformations), (ii) vector biology (e.g. mosquito species distributions, vector activity and life cycle, plasmodium infection rates), and (iii) human populations (e.g. forest-related activity, host susceptibility, movement patterns). In this paper, we conduct a systematic literature review on malaria risk and deforestation in the Amazon focusing on these three components. We explore key features that are likely to generate these contrasting results using the reviewed articles and our own data from Brazil and Peru, and conclude with suggestions for productive avenues in future research. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. PMID:28438914

  13. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence.

    Science.gov (United States)

    Tucker Lima, Joanna M; Vittor, Amy; Rifai, Sami; Valle, Denis

    2017-06-05

    Considerable interest in the relationship between biodiversity and disease has recently captured the attention of the research community, with important public policy implications. In particular, malaria in the Amazon region is often cited as an example of how forest conservation can improve public health outcomes. However, despite a growing body of literature and an increased understanding of the relationship between malaria and land use / land cover change (LULC) in Amazonia, contradictions have emerged. While some studies report that deforestation increases malaria risk, others claim the opposite. Assessing malaria risk requires examination of dynamic processes among three main components: (i) the environment (i.e. LULC and landscape transformations), (ii) vector biology (e.g. mosquito species distributions, vector activity and life cycle, plasmodium infection rates), and (iii) human populations (e.g. forest-related activity, host susceptibility, movement patterns). In this paper, we conduct a systematic literature review on malaria risk and deforestation in the Amazon focusing on these three components. We explore key features that are likely to generate these contrasting results using the reviewed articles and our own data from Brazil and Peru, and conclude with suggestions for productive avenues in future research.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Authors.

  14. Fighting malaria without DDT

    International Development Research Centre (IDRC) Digital Library (Canada)

    Nancy Minogue

    The women are part of a successful Mexican initiative that is fighting malaria on many fronts. Through community involve- ment in control strategies, improved surveillance and treatment, and the use of new household spraying techniques, Mexico has dramatically reduced malaria transmission. In 2001 there were just 4,996 ...

  15. Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi.

    Science.gov (United States)

    Tan, Cheong H; Vythilingam, Indra; Matusop, Asmad; Chan, Seng T; Singh, Balbir

    2008-03-31

    A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit. Three different ecological sites in the forest, farm and longhouse in the Kapit district were selected for the study. Mosquitoes were collected by human landing collection at all sites and at the forest also by monkey-baited-traps situated on three different levels. All mosquitoes were identified and salivary glands and midguts of anopheline mosquitoes were dissected to determine the presence of malaria parasites. Over an 11-month period, a total of 2,504 Anopheles mosquitoes comprising 12 species were caught; 1,035 at the farm, 774 at the forest and 425 at the longhouse. Anopheles latens (62.3%) and Anopheles watsonii (30.6%) were the predominant species caught in the forested ecotypes, while in the farm Anopheles donaldi (49.9%) and An. latens (35.6%) predominated. In the long house, An. latens (29.6%) and An. donaldi (22.8%) were the major Anopheline species. However, An. latens was the only mosquito positive for sporozoites and it was found to be attracted to both human and monkey hosts. In monkey-baited net traps, it preferred to bite monkeys at the canopy level than at ground level. An. latens was found biting early as 18.00 hours. Anopheles latens is the main vector for P. knowlesi malaria parasites in the Kapit District of Sarawak, Malaysian Borneo. The study underscores the relationship between ecology, abundance and bionomics of anopheline fauna. The simio-anthropophagic and acrodendrophilic behaviour of An. latens makes it an efficient vector for the transmission of P. knowlesi parasites to both human and monkey hosts.

  16. Cost-sharing strategies combining targeted public subsidies with private-sector delivery achieve high bednet coverage and reduced malaria transmission in Kilombero Valley, southern Tanzania

    Directory of Open Access Journals (Sweden)

    Kasigudi N

    2007-10-01

    Full Text Available Abstract Background Cost-sharing schemes incorporating modest targeted subsidies have promoted insecticide-treated nets (ITNs for malaria prevention in the Kilombero Valley, southern Tanzania, since 1996. Here we evaluate resulting changes in bednet coverage and malaria transmission. Methods Bednets were sold through local agents at fixed prices representing a 34% subsidy relative to full delivery cost. A further targeted subsidy of 15% was provided to vulnerable groups through discount vouchers delivered through antenatal clinics and regular immunizations. Continuous entomological surveys (2,376 trap nights were conducted from October 2001 to September 2003 in 25 randomly-selected population clusters of a demographic surveillance system which monitored net coverage. Results Mean net usage of 75% (11,982/16,086 across all age groups was achieved but now-obsolete technologies available at the time resulted in low insecticide treatment rates. Malaria transmission remained intense but was substantially reduced: Compared with an exceptionally high historical mean EIR of 1481, even non-users of nets were protected (EIR [fold reduction] = 349 infectious bites per person per year [×4], while the average resident (244 [×6], users of typical nets (210 [×7] and users of insecticidal nets (105 [×14] enjoyed increasing benefits. Conclusion Despite low net treatment levels, community-level protection was equivalent to the personal protection of an ITN. Greater gains for net users and non-users are predicted if more expensive long-lasting ITN technologies can be similarly promoted with correspondingly augmented subsidies. Cost sharing strategies represent an important option for national programmes lacking adequate financing to fully subsidize comprehensive ITN coverage.

  17. Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts.

    Directory of Open Access Journals (Sweden)

    Thomas S Churcher

    2017-01-01

    Full Text Available Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP, and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials.

  18. A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice.

    Directory of Open Access Journals (Sweden)

    R Mark Jones

    Full Text Available Malaria transmission blocking vaccines (TBVs are considered an effective means to control and eventually eliminate malaria. The Pfs25 protein, expressed predominantly on the surface of the sexual and sporogonic stages of Plasmodium falciparum including gametes, zygotes and ookinetes, is one of the primary targets for TBV. It has been demonstrated that plants are an effective, highly scalable system for the production of recombinant proteins, including virus-like particles (VLPs. We engineered VLPs (Pfs25-CP VLP comprising Pfs25 fused to the Alfalfa mosaic virus coat protein (CP and produced these non-enveloped hybrid VLPs in Nicotiana benthamiana plants using a Tobacco mosaic virus-based 'launch' vector. Purified Pfs25-CP VLPs were highly consistent in size (19.3±2.4 nm in diameter with an estimated 20-30% incorporation of Pfs25 onto the VLP surface. Immunization of mice with one or two doses of Pfs25-CP VLPs plus Alhydrogel® induced serum antibodies with complete transmission blocking activity through the 6 month study period. These results support the evaluation of Pfs25-CP VLP as a potential TBV candidate and the feasibility of the 'launch' vector technology for the production of VLP-based recombinant vaccines against infectious diseases.

  19. Impact of malaria interventions on child mortality in endemic African settings: comparison and alignment between LiST and Spectrum-Malaria model

    Directory of Open Access Journals (Sweden)

    Eline Korenromp

    2017-11-01

    Full Text Available Abstract Background In malaria-endemic countries, malaria prevention and treatment are critical for child health. In the context of intervention scale-up and rapid changes in endemicity, projections of intervention impact and optimized program scale-up strategies need to take into account the consequent dynamics of transmission and immunity. Methods The new Spectrum-Malaria program planning tool was used to project health impacts of Insecticide-Treated mosquito Nets (ITNs and effective management of uncomplicated malaria cases (CMU, among other interventions, on malaria infection prevalence, case incidence and mortality in children 0–4 years, 5–14 years of age and adults. Spectrum-Malaria uses statistical models fitted to simulations of the dynamic effects of increasing intervention coverage on these burdens as a function of baseline malaria endemicity, seasonality in transmission and malaria intervention coverage levels (estimated for years 2000 to 2015 by the World Health Organization and Malaria Atlas Project. Spectrum-Malaria projections of proportional reductions in under-five malaria mortality were compared with those of the Lives Saved Tool (LiST for the Democratic Republic of the Congo and Zambia, for given (standardized scenarios of ITN and/or CMU scale-up over 2016–2030. Results Proportional mortality reductions over the first two years following scale-up of ITNs from near-zero baselines to moderately higher coverages align well between LiST and Spectrum-Malaria —as expected since both models were fitted to cluster-randomized ITN trials in moderate-to-high-endemic settings with 2-year durations. For further scale-up from moderately high ITN coverage to near-universal coverage (as currently relevant for strategic planning for many countries, Spectrum-Malaria predicts smaller additional ITN impacts than LiST, reflecting progressive saturation. For CMU, especially in the longer term (over 2022–2030 and for lower

  20. Time series analysis of trends in malaria cases and deaths at hospitals and the effect of antimalarial interventions, 2001-2011, Ethiopia.

    Directory of Open Access Journals (Sweden)

    Maru Aregawi

    Full Text Available The Government of Ethiopia and its partners have deployed artemisinin-based combination therapies (ACT since 2004 and long-lasting insecticidal nets (LLINs since 2005. Malaria interventions and trends in malaria cases and deaths were assessed at hospitals in malaria transmission areas during 2001-2011.Regional LLINs distribution records were used to estimate the proportion of the population-at-risk protected by LLINs. Hospital records were reviewed to estimate ACT availability. Time-series analysis was applied to data from 41 hospitals in malaria risk areas to assess trends of malaria cases and deaths during pre-intervention (2001-2005 and post-interventions (2006-2011 periods.The proportion of the population-at-risk potentially protected by LLINs increased to 51% in 2011. The proportion of facilities with ACTs in stock exceeded 87% during 2006-2011. Among all ages, confirmed malaria cases in 2011 declined by 66% (95% confidence interval [CI], 44-79% and SPR by 37% (CI, 20%-51% compared to the level predicted by pre-intervention trends. In children under 5 years of age, malaria admissions and deaths fell by 81% (CI, 47%-94% and 73% (CI, 48%-86% respectively. Optimal breakpoint of the trendlines occurred between January and June 2006, consistent with the timing of malaria interventions. Over the same period, non-malaria cases and deaths either increased or remained unchanged, the number of malaria diagnostic tests performed reflected the decline in malaria cases, and rainfall remained at levels supportive of malaria transmission.Malaria cases and deaths in Ethiopian hospitals decreased substantially during 2006-2011 in conjunction with scale-up of malaria interventions. The decrease could not be accounted for by changes in hospital visits, malaria diagnostic testing or rainfall. However, given the history of variable malaria transmission in Ethiopia, more data would be required to exclude the possibility that the decrease is due to other factors.

  1. Time Series Analysis of Trends in Malaria Cases and Deaths at Hospitals and the Effect of Antimalarial Interventions, 2001–2011, Ethiopia

    Science.gov (United States)

    Aregawi, Maru; Lynch, Michael; Bekele, Worku; Kebede, Henok; Jima, Daddi; Taffese, Hiwot Solomon; Yenehun, Meseret Aseffa; Lilay, Abraham; Williams, Ryan; Thomson, Madeleine; Nafo-Traore, Fatoumata; Admasu, Kesetebirhan; Gebreyesus, Tedros Adhanom; Coosemans, Marc

    2014-01-01

    Background The Government of Ethiopia and its partners have deployed artemisinin-based combination therapies (ACT) since 2004 and long-lasting insecticidal nets (LLINs) since 2005. Malaria interventions and trends in malaria cases and deaths were assessed at hospitals in malaria transmission areas during 2001–2011. Methods Regional LLINs distribution records were used to estimate the proportion of the population-at-risk protected by LLINs. Hospital records were reviewed to estimate ACT availability. Time-series analysis was applied to data from 41 hospitals in malaria risk areas to assess trends of malaria cases and deaths during pre-intervention (2001–2005) and post-interventions (2006–2011) periods. Findings The proportion of the population-at-risk potentially protected by LLINs increased to 51% in 2011. The proportion of facilities with ACTs in stock exceeded 87% during 2006–2011. Among all ages, confirmed malaria cases in 2011 declined by 66% (95% confidence interval [CI], 44–79%) and SPR by 37% (CI, 20%–51%) compared to the level predicted by pre-intervention trends. In children under 5 years of age, malaria admissions and deaths fell by 81% (CI, 47%–94%) and 73% (CI, 48%–86%) respectively. Optimal breakpoint of the trendlines occurred between January and June 2006, consistent with the timing of malaria interventions. Over the same period, non-malaria cases and deaths either increased or remained unchanged, the number of malaria diagnostic tests performed reflected the decline in malaria cases, and rainfall remained at levels supportive of malaria transmission. Conclusions Malaria cases and deaths in Ethiopian hospitals decreased substantially during 2006–2011 in conjunction with scale-up of malaria interventions. The decrease could not be accounted for by changes in hospital visits, malaria diagnostic testing or rainfall. However, given the history of variable malaria transmission in Ethiopia, more data would be required to exclude the

  2. Prevalence of Malaria Plasmodium in Abeokuta, Nigeria

    Directory of Open Access Journals (Sweden)

    Okonko, I. O.

    2009-01-01

    Full Text Available This study reports the prevalence of malaria caused by plasmodium between genders in Abeokuta, the capital city of Ogun State located in the forest zone of southwestern Nigeria between January 2002 and December 2004. Blood film examination for malaria parasites in 708 patients; 366 males and 342 females. Microscopic examination of thick films techniques was employed for this study. Of the 708 (100% patients examined, 577 (81.5% were Plasmodium-positive. A high malaria parasite prevalence rate of 81.5% was noted in this study. Female subjects were more infected (42.4% than males (41.9% however, there was no significant difference in the sex of the subjects studied (p=0.05. A high malaria parasite prevalence rate of 86.9% was noted in samples collected in year 2003 than in other years studied. There was significant difference in the years under study (p=0.05. This study shows that a good percentage of people were infested by malaria Plasmodium. This could be attributed to lack of adequate accommodation and poor sanitary conditions in the area under study. Although several efforts have been made to effectively control the high incidence of malaria in Nigeria, these have been largely unsuccessful due to a number of reasons such as irrigated urban agriculture which can be the malaria vector’s breeding ground in the city, stagnant gutters and swamps in our environment where mosquitoes breed in millions, and lack of political will and commitment of the government in its disease management program, low awareness of the magnitude of malaria problem, poor health practices by individuals and communities and resistance to drugs. Therefore, future interventions in Nigeria should be directed toward controlling malaria in the context of a moderate transmission setting; thus, large-scale distribution of insecticide-treated nets or widespread use of indoor residual spraying may be less cost-effective than enhanced surveillance with effective case management or

  3. Scaling of transmission capacities in coarse-grained renewable electricity networks

    Science.gov (United States)

    Schäfer, M.; Bugge Siggaard, S.; Zhu, Kun; Risager Poulsen, C.; Greiner, M.

    2017-08-01

    Network models of large-scale electricity systems feature only a limited spatial resolution, either due to lack of data or in order to reduce the complexity of the problem with respect to numerical calculations. In such cases, both the network topology, the load and the generation patterns below a given spatial scale are aggregated into representative nodes. This coarse-graining affects power flows and thus the resulting transmission needs of the system. We derive analytical scaling laws for measures of network transmission capacity and cost in coarse-grained renewable electricity networks. For the cost measure only a very weak scaling with the spatial resolution of the system is found. The analytical results are shown to describe the scaling of the transmission infrastructure measures for a simplified, but data-driven and spatially detailed model of the European electricity system with a high share of fluctuating renewable generation.

  4. Using Rainfall and Temperature Data in the Evaluation of National Malaria Control Programs in Africa.

    Science.gov (United States)

    Thomson, Madeleine C; Ukawuba, Israel; Hershey, Christine L; Bennett, Adam; Ceccato, Pietro; Lyon, Bradfield; Dinku, Tufa

    2017-09-01

    Since 2010, the Roll Back Malaria (RBM) Partnership, including National Malaria Control Programs, donor agencies (e.g., President's Malaria Initiative and Global Fund), and other stakeholders have been evaluating the impact of scaling up malaria control interventions on all-cause under-five mortality in several countries in sub-Saharan Africa. The evaluation framework assesses whether the deployed interventions have had an impact on malaria morbidity and mortality and requires consideration of potential nonintervention influencers of transmission, such as drought/floods or higher temperatures. Herein, we assess the likely effect of climate on the assessment of the impact malaria interventions in 10 priority countries/regions in eastern, western, and southern Africa for the President's Malaria Initiative. We used newly available quality controlled Enhanced National Climate Services rainfall and temperature products as well as global climate products to investigate likely impacts of climate on malaria evaluations and test the assumption that changing the baseline period can significantly impact on the influence of climate in the assessment of interventions. Based on current baseline periods used in national malaria impact assessments, we identify three countries/regions where current evaluations may overestimate the impact of interventions (Tanzania, Zanzibar, Uganda) and three countries where current malaria evaluations may underestimate the impact of interventions (Mali, Senegal and Ethiopia). In four countries (Rwanda, Malawi, Mozambique, and Angola) there was no strong difference in climate suitability for malaria in the pre- and post-intervention period. In part, this may be due to data quality and analysis issues.

  5. Imported malaria in Tunisia

    National Research Council Canada - National Science Library

    Bouratbine, A; Chahed, M K; Aoun, K; Krida, G; Ayari, S; Ben Ismail, R

    1998-01-01

    Thanks to the national programme of malaria eradication carried out between 1968 and 1972, there has been no active transmission of the parasitosis in Tunisia since the last indigenous case in 1979...

  6. Efficacies of DHA-PPQ and AS/SP in patients with uncomplicated Plasmodium falciparum malaria in an area of an unstable seasonal transmission in Sudan.

    Science.gov (United States)

    Mohamed, Abdelrahim O; Abdel Hamid, Muzamil M; Mohamed, Omer S; Elkando, Nuha S; Suliman, Abdelmaroof; Adam, Mariam A; Elnour, Fahad Awad Ali; Malik, Elfatih M

    2017-04-20

    Artemisinin-based combination therapy (ACT), together with other control measures, have reduced the burden of falciparum malaria in sub-Saharan countries, including Sudan. Sudan adopted ACT in 2004 with a remarkable reduction in mortality due to falciparum malaria. However, emergence of resistance to the first-line treatment artesunate and sulfadoxine/pyrimethamine (AS/SP) has created new challenges to the control of malaria in Sudan. A search for an alternative drug of choice for treating uncomplicated malaria has become inevitable. The objective of this study was to evaluate the therapeutic efficacies of dihydroartemisinin/piperaquine (DHA-PPQ) and AS/SP in an area of unstable transmission in Blue Nile State, Sudan in 2015-16. A total of 148 patients with uncomplicated malaria were recruited in the study from November 2015 to end of January 2016. Seventy-five patients received DHA-PPQ while 73 received AS/SP. Patients were monitored for clinical and parasitological outcomes following the standard WHO protocol for a period of 42 days for DHA-PPQ and 28 days for AS/SP; nested PCR (nPCR) was performed to confirm parasite re-appearance from day 7 onwards. Fifty-five patients completed the DHA-PPQ arm protocol with success cure rate of 98.2% (95% CI 90.3-100%) and one late clinical failure 1.8% (95% CI 0.0-9.7%). The AS/SP showed adequate clinical and parasitological response (ACPR) of 83.6% (95% CI 71.9-91.8%), early treatment failure was 1.6% (95% CI 0.0-8.8%) and late parasitological failure (LPF) was 14.8% (95% CI 7-26.2%). The respective PCR uncorrected LPF was 20%. DHA-PPQ is an efficacious ACT and candidate for replacement of first-line treatment in Sudan while AS/SP showed high treatment failure rate and must be replaced.

  7. Deployment and use of mobile phone technology for real-time reporting of fever cases and malaria treatment failure in areas of declining malaria transmission in Muheza district north-eastern Tanzania.

    Science.gov (United States)

    Francis, Filbert; Ishengoma, Deus S; Mmbando, Bruno P; Rutta, Acleus S M; Malecela, Mwelecele N; Mayala, Benjamin; Lemnge, Martha M; Michael, Edwin

    2017-08-01

    episodes and monitoring of treatment failure in remote areas. Further optimization and scaling-up will be required to utilize the tools for improved malaria case management and drug resistance surveillance.

  8. A study on the fortuitons advantage of gamma irradiation in the prophylaxis of transmissible malaria by flood transfusion; Estudo sobre a eventual utilidade de raios gama na profilaxia da malaria transmissivel por transfusao de sangue

    Energy Technology Data Exchange (ETDEWEB)

    Braz, Lucia Maria Almeida; Amato Neto, Vicente; Carignani, Fabio Luis; Fernandes, Andreia Otaviano di Pietro; Hamerschlak, Nelson; Zuanella, Laura Santoro; Silva, Maria de Fatima dos Santos; Okumura, Massayuki [Hospital das Clinicas, Sao Paulo, SP (Brazil). Lab. de Investigacao Medica-Parasitologica

    1998-12-01

    This study was carried out to evaluate the fortuitons advantages of using gamma irradiation on the prophylaxis of transmissible malaria by flood transfusion, with mice as the experimental model. In the first step, when the infected blood with Plasmodium berghei was submitted to 2,500 rad and 5,000 rad, with or without metronidazol, there was no success, because the animals presented parasitaemia and died after inoculation of irradiated blood. However there was partial success in the second step, when the infected blood received 10,000 and 15,000 rad, and was inoculated in mice, which showed infection and presented a survival rate of 20% and 40%, respectively, with later negativation of blood infected by P. berghei. (author)

  9. MIGRATION AND MALARIA IN EUROPE

    Directory of Open Access Journals (Sweden)

    Begoña Monge-Maillo

    2012-03-01

    Full Text Available The proportion of imported malaria cases due to immigrants in Europe has increased during the lasts decades, being the higher rates for those settled immigrants who travel to visit friends and relatives (VFRs at their country of origin. Cases are mainly due to P. falciparum and Sub-Saharan Africa is the most common origin. Clinically, malaria in immigrants is characterized by a mild clinical presentation with even asymptomatic o delayed malaria cases and low parasitemic level. These characteristics may be explained by a semi-immunity acquired after long periods of time exposed to stable transmission of malaria. Malaria cases among immigrants, even those asymptomatic patients with sub-microscopic parasitemia, could increase the risk of transmission and reintroduction of malaria in certain areas with the adequate vectors and climate conditions. Moreover imported malaria cases by immigrants can also play an important role in the non-vectorial transmission out of endemic area, by blood transfusions, organ transplantation or congenital or occupational exposures. Probably, out of endemic areas, screening of malaria among recent arrived immigrants coming from malaria endemic countries should be performed. These aim to reduce the risk of clinical malaria in the individual as well as to prevent autochthonous transmission of malaria in areas where it had been eradicated.

  10. Trends in malaria cases, hospital admissions and deaths following scale-up of anti-malarial interventions, 2000-2010, Rwanda.

    Science.gov (United States)

    Karema, Corine; Aregawi, Maru W; Rukundo, Alphonse; Kabayiza, Alain; Mulindahabi, Monique; Fall, Ibrahima S; Gausi, Khoti; Williams, Ryan O; Lynch, Michael; Cibulskis, Richard; Fidele, Ngabo; Nyemazi, Jean-Pierre; Ngamije, Daniel; Umulisa, Irenee; Newman, Robert; Binagwaho, Agnes

    2012-07-23

    unchanged. Rainfall and temperature remained favourable for malaria transmission. The annual all-cause mortality in children under-five in household surveys declined from 152 per 1,000 live births during 2001-2005, to 76 per 1,000 live births in 2006-2010 (55% decline). The five-year cumulative number of all-cause deaths in hospital declined 28% (8,051 to 5,801) during the same period. A greater than 50% decline in confirmed malaria cases, admissions and deaths at district hospitals in Rwanda since 2005 followed a marked increase in ITN coverage and use of ACT. The decline occurred among both children under-five and in those five years and above, while hospital utilization increased and suitable conditions for malaria transmission persisted. Declines in malaria indicators in children under 5 years were more striking than in the older age groups. The resurgence in cases associated with decreased ITN coverage in 2009 highlights the need for sustained high levels of anti-malarial interventions in Rwanda and other malaria endemic countries.

  11. Trends in malaria cases, hospital admissions and deaths following scale-up of anti-malarial interventions, 2000–2010, Rwanda

    Directory of Open Access Journals (Sweden)

    Karema Corine

    2012-07-01

    diseases in all age groups either increased or remained unchanged. Rainfall and temperature remained favourable for malaria transmission. The annual all-cause mortality in children under-five in household surveys declined from 152 per 1,000 live births during 2001–2005, to 76 per 1,000 live births in 2006–2010 (55% decline. The five-year cumulative number of all-cause deaths in hospital declined 28% (8,051 to 5,801 during the same period. Conclusions A greater than 50% decline in confirmed malaria cases, admissions and deaths at district hospitals in Rwanda since 2005 followed a marked increase in ITN coverage and use of ACT. The decline occurred among both children under-five and in those five years and above, while hospital utilization increased and suitable conditions for malaria transmission persisted. Declines in malaria indicators in children under 5 years were more striking than in the older age groups. The resurgence in cases associated with decreased ITN coverage in 2009 highlights the need for sustained high levels of anti-malarial interventions in Rwanda and other malaria endemic countries.

  12. Transmission blocking activity of a standardized neem (Azadirachta indica seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Esposito Fulvio

    2010-03-01

    Full Text Available Abstract Background The wide use of gametocytocidal artemisinin-based combination therapy (ACT lead to a reduction of Plasmodium falciparum transmission in several African endemic settings. An increased impact on malaria burden may be achieved through the development of improved transmission-blocking formulations, including molecules complementing the gametocytocidal effects of artemisinin derivatives and/or acting on Plasmodium stages developing in the vector. Azadirachtin, a limonoid (tetranortriterpenoid abundant in neem (Azadirachta indica, Meliaceae seeds, is a promising candidate, inhibiting Plasmodium exflagellation in vitro at low concentrations. This work aimed at assessing the transmission-blocking potential of NeemAzal®, an azadirachtin-enriched extract of neem seeds, using the rodent malaria in vivo model Plasmodium berghei/Anopheles stephensi. Methods Anopheles stephensi females were offered a blood-meal on P. berghei infected, gametocytaemic BALB/c mice, treated intraperitoneally with NeemAzal, one hour before feeding. The transmission-blocking activity of the product was evaluated by assessing oocyst prevalence, oocyst density and capacity to infect healthy mice. To characterize the anti-plasmodial effects of NeemAzal® on early midgut stages, i.e. zygotes and ookinetes, Giemsa-stained mosquito midgut smears were examined. Results NeemAzal® completely blocked P. berghei development in the vector, at an azadirachtin dose of 50 mg/kg mouse body weight. The totally 138 examined, treated mosquitoes (three experimental replications did not reveal any oocyst and none of the healthy mice exposed to their bites developed parasitaemia. The examination of midgut content smears revealed a reduced number of zygotes and post-zygotic forms and the absence of mature ookinetes in treated mosquitoes. Post-zygotic forms showed several morphological alterations, compatible with the hypothesis of an azadirachtin interference with the functionality

  13. Status of vaccine research and development of vaccines for malaria.

    Science.gov (United States)

    Birkett, Ashley J

    2016-06-03

    Despite recent progress in reducing deaths attributable to malaria, it continues to claim approximately 500,000 lives per year and is associated with approximately 200 million infections. New tools, including safe and effective vaccines, are needed to ensure that the gains of the last 15 years are leveraged toward achieving the ultimate goal of malaria parasite eradication. In 2015, the European Medicines Agency announced the adoption of a positive opinion for the malaria vaccine candidate most advanced in development, RTS,S/AS01, which provides modest protection against clinical malaria; in early 2016, WHO recommended large-scale pilot implementations of RTS,S in settings of moderate-to-high malaria transmission. In alignment with these advancements, the community goals and preferred product characteristics for next-generation vaccines have been updated to inform the development of vaccines that are highly efficacious in preventing clinical malaria, and those needed to accelerate parasite elimination. Next-generation vaccines, targeting all stages of the parasite lifecycle, are in early-stage development with the most advanced in Phase 2 trials. Importantly, progress is being made in the definition of feasible regulatory pathways to accelerate timelines, including for vaccines designed to interrupt transmission of parasites from humans to mosquitoes. The continued absence of financially lucrative, high-income markets to drive investment in malaria vaccine development points to continued heavy reliance on public and philanthropic funding. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  14. The bionomics of the malaria mosquito Anopheles gambiae sensu lato in Southeast Tanzania : adult size variation and its effect on female fecundity, survival and malaria transmission

    NARCIS (Netherlands)

    Lyimo, E.O.K.

    1993-01-01

    Size of adult mosquitoes is known to affect both population dynamics as well as disease transmission. Studies devoted to this topic have given different results for different species. For example in some mosquito species, large size was found to be associated with high fecundity and longer

  15. HIV AND MALARIA

    Directory of Open Access Journals (Sweden)

    Ririek Parwitasari

    2014-01-01

    Full Text Available IV/AIDS is a global problem involving industrialized and developing country including Indonesia. Malaria has killed millions ofhuman beings almost 3 million people each year, whereas since 1999, nearly 36 million people in the world infected with HIV and 3 million more have died (Kakilaya, 2006. HIV infection increases the risk and aggravate malaria. In Africa in the area of malaria transmission intensities high and low, HIVaggravate malaria and improve case fatality at any age (Eline 2006. HIVis an RNA viruses whose hallmark is the reverse transcriptation ofits genomic. Malaria is a protozoan disease transmitted by the bite ofinfected anopheles mosquito. Infection malaria can stimulate HIV replication and may cause faster progression ofHIV disease.

  16. A global model of malaria climate sensitivity: comparing malaria response to historic climate data based on simulation and officially reported malaria incidence.

    Science.gov (United States)

    Edlund, Stefan; Davis, Matthew; Douglas, Judith V; Kershenbaum, Arik; Waraporn, Narongrit; Lessler, Justin; Kaufman, James H

    2012-09-18

    The role of the Anopheles vector in malaria transmission and the effect of climate on Anopheles populations are well established. Models of the impact of climate change on the global malaria burden now have access to high-resolution climate data, but malaria surveillance data tends to be less precise, making model calibration problematic. Measurement of malaria response to fluctuations in climate variables offers a way to address these difficulties. Given the demonstrated sensitivity of malaria transmission to vector capacity, this work tests response functions to fluctuations in land surface temperature and precipitation. This study of regional sensitivity of malaria incidence to year-to-year climate variations used an extended Macdonald Ross compartmental disease model (to compute malaria incidence) built on top of a global Anopheles vector capacity model (based on 10 years of satellite climate data). The predicted incidence was compared with estimates from the World Health Organization and the Malaria Atlas. The models and denominator data used are freely available through the Eclipse Foundation's Spatiotemporal Epidemiological Modeller (STEM). Although the absolute scale factor relating reported malaria to absolute incidence is uncertain, there is a positive correlation between predicted and reported year-to-year variation in malaria burden with an averaged root mean square (RMS) error of 25% comparing normalized incidence across 86 countries. Based on this, the proposed measure of sensitivity of malaria to variations in climate variables indicates locations where malaria is most likely to increase or decrease in response to specific climate factors. Bootstrapping measures the increased uncertainty in predicting malaria sensitivity when reporting is restricted to national level and an annual basis. Results indicate a potential 20x improvement in accuracy if data were available at the level ISO 3166-2 national subdivisions and with monthly time sampling. The

  17. A global model of malaria climate sensitivity: comparing malaria response to historic climate data based on simulation and officially reported malaria incidence

    Directory of Open Access Journals (Sweden)

    Edlund Stefan

    2012-09-01

    Full Text Available Abstract Background The role of the Anopheles vector in malaria transmission and the effect of climate on Anopheles populations are well established. Models of the impact of climate change on the global malaria burden now have access to high-resolution climate data, but malaria surveillance data tends to be less precise, making model calibration problematic. Measurement of malaria response to fluctuations in climate variables offers a way to address these difficulties. Given the demonstrated sensitivity of malaria transmission to vector capacity, this work tests response functions to fluctuations in land surface temperature and precipitation. Methods This study of regional sensitivity of malaria incidence to year-to-year climate variations used an extended Macdonald Ross compartmental disease model (to compute malaria incidence built on top of a global Anopheles vector capacity model (based on 10 years of satellite climate data. The predicted incidence was compared with estimates from the World Health Organization and the Malaria Atlas. The models and denominator data used are freely available through the Eclipse Foundation’s Spatiotemporal Epidemiological Modeller (STEM. Results Although the absolute scale factor relating reported malaria to absolute incidence is uncertain, there is a positive correlation between predicted and reported year-to-year variation in malaria burden with an averaged root mean square (RMS error of 25% comparing normalized incidence across 86 countries. Based on this, the proposed measure of sensitivity of malaria to variations in climate variables indicates locations where malaria is most likely to increase or decrease in response to specific climate factors. Bootstrapping measures the increased uncertainty in predicting malaria sensitivity when reporting is restricted to national level and an annual basis. Results indicate a potential 20x improvement in accuracy if data were available at the level ISO 3166–2

  18. Impact of vegetable crop agriculture on anopheline agressivity and malaria transmission in urban and less urbanized settings of the South region of Cameroon.

    Science.gov (United States)

    Akono, Patrick Ntonga; Mbida, Jean Arthur Mbida; Tonga, Calvin; Belong, Philippe; Ngo Hondt, Odette Etoile; Magne, Gaëlle Tamdem; Peka, Marie Florence; Lehman, Leopold Gustave

    2015-05-28

    The use of inland valley swamps for vegetable crop agriculture contributes to food security in urban and less urbanized settings in Africa. The impact of this agriculture on aggressive mosquitoes' diversity and malaria transmission in central Africa is poorly documented. This study is aimed at assessing the impact of vegetable crop agriculture on these entomological parameters in urban and less urbanized settings of the forest area, south of Cameroon. The human bait technique was used for the capture of aggressive mosquitoes from January to December 2012. For three consecutive days each month, captures were performed on volunteers in hydro-agricultural and river bank sites of Akonolinga and Yaoundé. Physico-chemical characteristics of mosquito breeding sites were recorded. Molecular alongside morpho-taxonomic techniques were used for the identification of mosquito species; ELISA test was used to reveal Plasmodium falciparum infected mosquitoes through the detection of CSP. Mosquito diversity, aggressivity and malaria transmission in sites and settings were determined and compared. Biting rates were higher in hydro-agricultural sites of less urbanized and urban settings (31.8 b/p/n and 28.6 b/p/n respectively) than in river banks sites (6.83 b/p/n and 3.64 b/p/n respectively; p agricultural sites 2 species were captured in the urban setting versus 4 in the less urbanized setting, meanwhile in river bank sites, 3 species were captured in the urban setting versus 4 species in the less urbanized setting. An. nili s.s. was found in river banks only. An. hancocki was not found to insure Plasmodium falciparum Welch transmission. EIR in hydro-agricultural sites varied from 1.86 ib/p/n (urban area) to 2.13 ib/p/n (less urbanized area) with higher rates in April/May and August. Overall, EIR was higher in less urbanized areas (p agriculture (p = 0.2). These results highlight the need for specific preventive measures that take into account the ecological peculiarities

  19. Integrated vector management for malaria control

    Directory of Open Access Journals (Sweden)

    Impoinvil Daniel E

    2008-12-01

    Full Text Available Abstract Integrated vector management (IVM is defined as "a rational decision-making process for the optimal use of resources for vector control" and includes five key elements: 1 evidence-based decision-making, 2 integrated approaches 3, collaboration within the health sector and with other sectors, 4 advocacy, social mobilization, and legislation, and 5 capacity-building. In 2004, the WHO adopted IVM globally for the control of all vector-borne diseases. Important recent progress has been made in developing and promoting IVM for national malaria control programmes in Africa at a time when successful malaria control programmes are scaling-up with insecticide-treated nets (ITN and/or indoor residual spraying (IRS coverage. While interventions using only ITNs and/or IRS successfully reduce transmission intensity and the burden of malaria in many situations, it is not clear if these interventions alone will achieve those critical low levels that result in malaria elimination. Despite the successful employment of comprehensive integrated malaria control programmes, further strengthening of vector control components through IVM is relevant, especially during the "end-game" where control is successful and further efforts are required to go from low transmission situations to sustained local and country-wide malaria elimination. To meet this need and to ensure sustainability of control efforts, malaria control programmes should strengthen their capacity to use data for decision-making with respect to evaluation of current vector control programmes, employment of additional vector control tools in conjunction with ITN/IRS tactics, case-detection and treatment strategies, and determine how much and what types of vector control and interdisciplinary input are required to achieve malaria elimination. Similarly, on a global scale, there is a need for continued research to identify and evaluate new tools for vector control that can be integrated with

  20. Unstable vivax malaria in Korea

    Science.gov (United States)

    2000-01-01

    Korean vivax malaria had been prevalent for longtime throughout the country with low endemicity. As a result of the Korean war (1950-1953), malaria became epidemic. In 1959-1969 when the National Malaria Eradication Service (NMES) was implemented, malaria rates declined, with low endemicity in the south-west and south plain areas and high endemic foci in north Kyongsangbuk-do (province) and north and east Kyonggi-do. NMES activities greatly contributed in accelerating the control and later eradication of malaria. The Republic of Korea (South Korea) was designated malaria free in 1979. However, malaria re-emerged in 1993 and an outbreak occurred in north Kyonggi-do and north-west Kangwon-do (in and/or near the Demilitarized Zone, DMZ), bordering North Korea. It has been postulated that most of the malaria cases resulted from bites of sporozoite-infected females of An. sinensis dispersed from North Korea across the DMZ. Judging from epidemiological and socio-ecological factors, vivax malaria would not be possible to be endemic in South Korea. Historical data show that vivax malaria in Korea is a typical unstable malaria. Epidemics may occur when environmental, socio-economical, and/or political factors change in favor to malaria transmission, and when such factors change to normal conditions malaria rates become low and may disappear. Passive case detection is a most feasible and recommendable control measure against the unstable vivax malaria in Korea in cost-effect point of view. PMID:11002647

  1. Unstable vivax malaria in Korea.

    Science.gov (United States)

    Ree, H I

    2000-09-01

    Korean vivax malaria had been prevalent for longtime throughout the country with low endemicity. As a result of the Korean war (1950-1953), malaria became epidemic. In 1959-1969 when the National Malaria Eradication Service (NMES) was implemented, malaria rates declined, with low endemicity in the south-west and south plain areas and high endemic foci in north Kyongsangbuk-do (province) and north and east Kyonggi-do. NMES activities greatly contributed in accelerating the control and later eradication of malaria. The Republic of Korea (South Korea) was designated malaria free in 1979. However, malaria re-emerged in 1993 and an outbreak occurred in north Kyonggi-do and north-west Kangwon-do (in and/or near the Demilitarized Zone, DMZ), bordering North Korea. It has been postulated that most of the malaria cases resulted from bites of sporozoite-infected females of An. sinensis dispersed from North Korea across the DMZ. Judging from epidemiological and socio-ecological factors, vivax malaria would not be possible to be endemic in South Korea. Historical data show that vivax malaria in Korea is a typical unstable malaria. Epidemics may occur when environmental, socio-economical, and/or political factors change in favor to malaria transmission, and when such factors change to normal conditions malaria rates become low and may disappear. Passive case detection is a most feasible and recommendable control measure against the unstable vivax malaria in Korea in cost-effect point of view.

  2. Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in urban Dar es Salaam, Tanzania.

    Directory of Open Access Journals (Sweden)

    Yvonne Geissbühler

    Full Text Available Malaria control in Africa is most tractable in urban settlements yet most research has focused on rural settings. Elimination of malaria transmission from urban areas may require larval control strategies that complement adult mosquito control using insecticide-treated nets or houses, particularly where vectors feed outdoors.Microbial larvicide (Bacillus thuringiensis var. israelensis (Bti was applied weekly through programmatic, non-randomized community-based, but vertically managed, delivery systems in urban Dar es Salaam, Tanzania. Continuous, randomized cluster sampling of malaria infection prevalence and non-random programmatic surveillance of entomological inoculation rate (EIR respectively constituted the primary and secondary outcomes surveyed within a population of approximately 612,000 residents in 15 fully urban wards covering 55 km(2. Bti application for one year in 3 of those wards (17 km(2 with 128,000 residents reduced crude annual transmission estimates (Relative EIR [95% Confidence Interval] = 0.683 [0.491-0.952], P = 0.024 but program effectiveness peaked between July and September (Relative EIR [CI] = 0.354 [0.193 to 0.650], P = 0.001 when 45% (9/20 of directly observed transmission events occurred. Larviciding reduced malaria infection risk among children < or =5 years of age (OR [CI] = 0.284 [0.101 to 0.801], P = 0.017 and provided protection at least as good as personal use of an insecticide treated net (OR [CI] = 0.764 [0.614-0.951], P = 0.016.In this context, larviciding reduced malaria prevalence and complemented existing protection provided by insecticide-treated nets. Larviciding may represent a useful option for integrated vector management in Africa, particularly in its rapidly growing urban centres.

  3. Microbial Larvicide Application by a Large-Scale, Community-Based Program Reduces Malaria Infection Prevalence in Urban Dar Es Salaam, Tanzania

    Science.gov (United States)

    Geissbühler, Yvonne; Kannady, Khadija; Chaki, Prosper Pius; Emidi, Basiliana; Govella, Nicodem James; Mayagaya, Valeliana; Mtasiwa, Deo; Mshinda, Hassan; Lindsay, Steven William; Tanner, Marcel; Fillinger, Ulrike; de Castro, Marcia Caldas; Killeen, Gerry Francis

    2009-01-01

    Background Malaria control in Africa is most tractable in urban settlements yet most research has focused on rural settings. Elimination of malaria transmission from urban areas may require larval control strategies that complement adult mosquito control using insecticide-treated nets or houses, particularly where vectors feed outdoors. Methods and Findings Microbial larvicide (Bacillus thuringiensis var. israelensis (Bti)) was applied weekly through programmatic, non-randomized community-based, but vertically managed, delivery systems in urban Dar es Salaam, Tanzania. Continuous, randomized cluster sampling of malaria infection prevalence and non-random programmatic surveillance of entomological inoculation rate (EIR) respectively constituted the primary and secondary outcomes surveyed within a population of approximately 612,000 residents in 15 fully urban wards covering 55 km2. Bti application for one year in 3 of those wards (17 km2 with 128,000 residents) reduced crude annual transmission estimates (Relative EIR [95% Confidence Interval] = 0.683 [0.491–0.952], P = 0.024) but program effectiveness peaked between July and September (Relative EIR [CI] = 0.354 [0.193 to 0.650], P = 0.001) when 45% (9/20) of directly observed transmission events occurred. Larviciding reduced malaria infection risk among children ≤5 years of age (OR [CI] = 0.284 [0.101 to 0.801], P = 0.017) and provided protection at least as good as personal use of an insecticide treated net (OR [CI] = 0.764 [0.614–0.951], P = 0.016). Conclusions In this context, larviciding reduced malaria prevalence and complemented existing protection provided by insecticide-treated nets. Larviciding may represent a useful option for integrated vector management in Africa, particularly in its rapidly growing urban centres. PMID:19333402

  4. Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in urban Dar es Salaam, Tanzania.

    Science.gov (United States)

    Geissbühler, Yvonne; Kannady, Khadija; Chaki, Prosper Pius; Emidi, Basiliana; Govella, Nicodem James; Mayagaya, Valeliana; Kiama, Michael; Mtasiwa, Deo; Mshinda, Hassan; Lindsay, Steven William; Tanner, Marcel; Fillinger, Ulrike; de Castro, Marcia Caldas; Killeen, Gerry Francis

    2009-01-01

    Malaria control in Africa is most tractable in urban settlements yet most research has focused on rural settings. Elimination of malaria transmission from urban areas may require larval control strategies that complement adult mosquito control using insecticide-treated nets or houses, particularly where vectors feed outdoors. Microbial larvicide (Bacillus thuringiensis var. israelensis (Bti)) was applied weekly through programmatic, non-randomized community-based, but vertically managed, delivery systems in urban Dar es Salaam, Tanzania. Continuous, randomized cluster sampling of malaria infection prevalence and non-random programmatic surveillance of entomological inoculation rate (EIR) respectively constituted the primary and secondary outcomes surveyed within a population of approximately 612,000 residents in 15 fully urban wards covering 55 km(2). Bti application for one year in 3 of those wards (17 km(2) with 128,000 residents) reduced crude annual transmission estimates (Relative EIR [95% Confidence Interval] = 0.683 [0.491-0.952], P = 0.024) but program effectiveness peaked between July and September (Relative EIR [CI] = 0.354 [0.193 to 0.650], P = 0.001) when 45% (9/20) of directly observed transmission events occurred. Larviciding reduced malaria infection risk among children < or =5 years of age (OR [CI] = 0.284 [0.101 to 0.801], P = 0.017) and provided protection at least as good as personal use of an insecticide treated net (OR [CI] = 0.764 [0.614-0.951], P = 0.016). In this context, larviciding reduced malaria prevalence and complemented existing protection provided by insecticide-treated nets. Larviciding may represent a useful option for integrated vector management in Africa, particularly in its rapidly growing urban centres.

  5. Demonstration of terabit-scale data transmission in silicon vertical slot waveguides.

    Science.gov (United States)

    Gui, Chengcheng; Li, Chao; Yang, Qi; Wang, Jian

    2015-04-20

    We design and fabricate silicon vertical slot waveguides for terabit-scale data transmission. The designed silicon photonic device is composed of apodized grating couplers, strip waveguides, strip-to-slot/slot-to-strip mode converters, and slot waveguide. Tight light confinement in the nano-scale air slot region is achieved in the silicon vertical slot waveguide which features relatively lower nonlinearity compared to silicon strip waveguide. Using the fabricated silicon photonic devices, we first demonstrate ultra-wide bandwidth 1.8-Tbit/s data transmission through a 2-mm-long silicon vertical slot waveguide using 161 wavelength-division multiplexing (WDM) channels each carrying 11.2-Gbit/s orthogonal frequency-division multiplexing (OFDM) 16-ary quadrature amplitude modulation (16-QAM) signal. All 161 WDM channels achieve bit-error rate (BER) less than 1e-3 after on-chip data transmission. We further demonstrate terabit-scale data transmission through four silicon vertical slot waveguides with different lengths (1 mm, 2 mm, 3.1 mm, 12.2 mm). The optical signal-to-noise ratio (OSNR) penalties of data transmission through four silicon vertical slot waveguides are 1, 2, 3.2 and 4.5 dB at a BER of 1e-3, respectively. The obtained results indicate that the presented silicon vertical slot waveguide might be an alternative promising candidate facilitating chip-scale high-speed optical interconnections.

  6. Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi

    Directory of Open Access Journals (Sweden)

    Matusop Asmad

    2008-03-01

    Full Text Available Abstract Background A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit. Methods Three different ecological sites in the forest, farm and longhouse in the Kapit district were selected for the study. Mosquitoes were collected by human landing collection at all sites and at the forest also by monkey-baited-traps situated on three different levels. All mosquitoes were identified and salivary glands and midguts of anopheline mosquitoes were dissected to determine the presence of malaria parasites. Results and Discussions Over an 11-month period, a total of 2,504 Anopheles mosquitoes comprising 12 species were caught; 1,035 at the farm, 774 at the forest and 425 at the longhouse. Anopheles