WorldWideScience

Sample records for scale industrial production

  1. Process improvement of knives production in a small scale industry

    Ananto, Gamawan; Muktasim, Irfan

    2017-06-01

    Small scale industry that produces several kinds of knive should increase its capacity due to the demand from the market. Qualitatively, this case study consisted of formulating the problems, collecting and analyzing the necessary data, and determining the possible recommendations for the improvement. While the current capacity is only 9 (nine), it is expected that 20 units of knife will produced per month. The processes sequence are: profiling (a), truing (b), beveling (c), heat treatment (d), polishing (e), assembly (f), sharpening (g) and finishing (h). The first process (a) is held by out-house vendor company while other steps from (b) to (g) are executed by in-house vendor. However, there is a high dependency upon the high skilled operator who executes the in -house processes that are mostly held manually with several unbalance successive tasks, where the processing time of one or two tasks require longer duration than others since the operation is merely relied on the operator's skill. The idea is the improvement or change of the profiling and beveling process. Due to the poor surface quality and suboptimal hardness resulted from the laser cut machine for profiling, it is considered to subst itute this kind of process with wire cut that is capable to obtain good surface quality with certain range levels of roughness. Through simple cutting experiments on the samples, it is expected that the generated surface quality is adequate to omit the truing process (b). In addition, the cutting experiments on one, two, and four test samples resulted the shortest time that was obtained through four pieces in one cut. The technical parameters were set according to the recommendation of machine standard as referred to samples condition such as thickness and path length that affect ed the rate of wear. Meanwhile, in order to guarantee the uniformity of knife angles that are formed through beveling process (c), a grinding fixture was created. This kind of tool diminishes the

  2. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  3. Productive Efficiency of Small Scale Sawmilling Industries in Mufindi ...

    A structured questionnaire was used to collect data from 80 small-scale sawmills in Mufindi District. Data were analysed using descriptive as well as quantitative methods. Technical, scale and allocative efficiency score of sawmills were computed using data envelopment analysis programme developed by Coelli. Censored ...

  4. Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 202 Haihe Road, Nangang District, Harbin, Heilongjiang 150090 (China)

    2010-10-15

    The objective of conducting experiments in a laboratory is to gain data that helps in designing and operating large-scale biological processes. However, the scale-up and design of industrial-scale biohydrogen production reactors is still uncertain. In this paper, an established and proven Eulerian-Eulerian computational fluid dynamics (CFD) model was employed to perform hydrodynamics assessments of an industrial-scale continuous stirred-tank reactor (CSTR) for biohydrogen production. The merits of the laboratory-scale CSTR and industrial-scale CSTR were compared and analyzed on the basis of CFD simulation. The outcomes demonstrated that there are many parameters that need to be optimized in the industrial-scale reactor, such as the velocity field and stagnation zone. According to the results of hydrodynamics evaluation, the structure of industrial-scale CSTR was optimized and the results are positive in terms of advancing the industrialization of biohydrogen production. (author)

  5. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  6. Bioprocess development for kefiran production by Lactobacillus kefiranofaciens in semi industrial scale bioreactor

    Daniel Joe Dailin

    2016-07-01

    Full Text Available Lactobacillus kefiranofaciens is non-pathogenic gram positive bacteria isolated from kefir grains and able to produce extracellular exopolysaccharides named kefiran. This polysaccharide contains approximately equal amounts of glucose and galactose. Kefiran has wide applications in pharmaceutical industries. Therefore, an approach has been extensively studied to increase kefiran production for pharmaceutical application in industrial scale. The present work aims to maximize kefiran production through the optimization of medium composition and production in semi industrial scale bioreactor. The composition of the optimal medium for kefiran production contained sucrose, yeast extract and K2HPO4 at 20.0, 6.0, 0.25 g L−1, respectively. The optimized medium significantly increased both cell growth and kefiran production by about 170.56% and 58.02%, respectively, in comparison with the unoptimized medium. Furthermore, the kinetics of cell growth and kefiran production in batch culture of L. kefiranofaciens was investigated under un-controlled pH conditions in 16-L scale bioreactor. The maximal cell mass in bioreactor culture reached 2.76 g L−1 concomitant with kefiran production of 1.91 g L−1.

  7. Bioprocess development for kefiran production by Lactobacillus kefiranofaciens in semi industrial scale bioreactor.

    Dailin, Daniel Joe; Elsayed, Elsayed Ahmed; Othman, Nor Zalina; Malek, Roslinda; Phin, Hiew Siaw; Aziz, Ramlan; Wadaan, Mohamad; El Enshasy, Hesham Ali

    2016-07-01

    Lactobacillus kefiranofaciens is non-pathogenic gram positive bacteria isolated from kefir grains and able to produce extracellular exopolysaccharides named kefiran. This polysaccharide contains approximately equal amounts of glucose and galactose. Kefiran has wide applications in pharmaceutical industries. Therefore, an approach has been extensively studied to increase kefiran production for pharmaceutical application in industrial scale. The present work aims to maximize kefiran production through the optimization of medium composition and production in semi industrial scale bioreactor. The composition of the optimal medium for kefiran production contained sucrose, yeast extract and K2HPO4 at 20.0, 6.0, 0.25 g L(-1), respectively. The optimized medium significantly increased both cell growth and kefiran production by about 170.56% and 58.02%, respectively, in comparison with the unoptimized medium. Furthermore, the kinetics of cell growth and kefiran production in batch culture of L. kefiranofaciens was investigated under un-controlled pH conditions in 16-L scale bioreactor. The maximal cell mass in bioreactor culture reached 2.76 g L(-1) concomitant with kefiran production of 1.91 g L(-1).

  8. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620

  9. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    Yann Nicolas Barbot

    2015-09-01

    Full Text Available The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP and biomethane recovery of industrial Laminaria japonica waste (LJW in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC, as well as a co-digestion approach with maize silage (MS did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded.

  10. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale.

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-09-18

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH₄ recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH₄ and 38% CO₂ was recorded.

  11. Evaluation of process parameters in the industrial scale production of fish nuggets

    Adriane da Silva

    2011-06-01

    Full Text Available This work reports the use of experimental design for the assessment of the effects of process parameters on the production of fish nuggets in an industrial scale environment. The effect of independent factors on the physicochemical and microbiological parameters was investigated through a full 24 experimental design. The studied factors included the temperature of fish fillet and pulp in the mixer, the temperature of the added fat, the temperature of water and the ratio of protein extraction time to emulsion time. The physicochemical analyses showed that the higher temperature of the pulp and fillet of fish, the lower the protein in the final product. Microbiological analyses revealed that the counting of Staphylococcus coagulase positive, total and thermo-tolerant coliforms were in accordance with the current legislation.

  12. Parallelization of Droplet Microfluidic Systems for the Sustainable Production of Micro-Reactors at Industrial Scale

    Conchouso Gonzalez, David

    2017-04-01

    At the cutting edge of the chemical and biological research, innovation takes place in a field referred to as Lab on Chip (LoC), a multi-disciplinary area that combines biology, chemistry, electronics, microfabrication, and fluid mechanics. Within this field, droplets have been used as microreactors to produce advanced materials like quantum dots, micro and nanoparticles, active pharmaceutical ingredients, etc. The size of these microreactors offers distinct advantages, which were not possible using batch technologies. For example, they allow for lower reagent waste, minimal energy consumption, increased safety, as well as better process control of reaction conditions like temperature regulation, residence times, and response times among others. One of the biggest drawbacks associated with this technology is its limited production volume that prevents it from reaching industrial applications. The standard production rates for a single droplet microfluidic device is in the range of 1-10mLh-1, whereas industrial applications usually demand production rates several orders of magnitude higher. Although substantial work has been recently undertaken in the development scaled-out solutions, which run in parallel several droplet generators. Complex fluid mechanics and limitations on the manufacturing capacity have constrained these works to explore only in-plane parallelization. This thesis investigates a three-dimensional parallelization by proposing a microfluidic system that is comprised of a stack of droplet generation layers working on the liquid-liquid ow regime. Its realization implied a study of the characteristics of conventional droplet generators and the development of a fabrication process for 3D networks of microchannels. Finally, the combination of these studies resulted in a functional 3D parallelization system with the highest production rate (i.e. 1 Lh-1) at the time of its publication. Additionally, this architecture can reach industrially relevant

  13. Development of industrial-scale fission {sup 99}Mo production process using low enriched uranium target

    Lee, Seung Kon; Lee, Jun Sig [Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Beyer, Gerd J. [Grunicke Strasse 15, Leipzig (Germany)

    2016-06-15

    Molybdenum-99 ({sup 99}Mo) is the most important isotope because its daughter isotope, technetium-99m ({sup 99}mTc), has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of {sup 99}Mo, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of {sup 99}Mo technology developments. Most of the industrial-scale {sup 99}Mo processes have been based on the fission of {sup 235}U. Recently, important issues have been raised for the conversion of fission {sup 99}Mo targets from highly enriched uranium to low enriched uranium (LEU). The development of new LEU targets with higher density was requested to compensate for the loss of {sup 99}Mo yield, caused by a significant reduction of {sup 235}U enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission {sup 99}Mo production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the {sup 99}Mo production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

  14. Large-Scale Selection and Breeding To Generate Industrial Yeasts with Superior Aroma Production

    Steensels, Jan; Meersman, Esther; Snoek, Tim; Saels, Veerle

    2014-01-01

    The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use. PMID:25192996

  15. Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target

    Seung-Kon Lee

    2016-06-01

    Full Text Available Molybdenum-99 (99Mo is the most important isotope because its daughter isotope, technetium-99m (99mTc, has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of 99Mo, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of 99Mo technology developments. Most of the industrial-scale 99Mo processes have been based on the fission of 235U. Recently, important issues have been raised for the conversion of fission 99Mo targets from highly enriched uranium to low enriched uranium (LEU. The development of new LEU targets with higher density was requested to compensate for the loss of 99Mo yield, caused by a significant reduction of 235U enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission 99Mo production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the 99Mo production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

  16. Continuous production of fullerenes and other carbon nanomaterials on a semi-industrial scale using plasma technology

    Gruenberger, T.M.; Gonzalez-Aguilar, J.; Fulcheri, L.; Fabry, F.; Grivei, E.; Probst, N.; Flamant, G.; Charlier, J.-C.

    2002-01-01

    A new production method is presented allowing the production of bulk quantities of fullerenes and other carbon nanomaterials using a 3-phase thermal plasma (260 kW). The main characteristics of this method lie in the independent control of the carbon throughput by injection of a solid carbon feedstock, and the immediate extraction of the synthesised product from the reactor, allowing production on a continuous basis. The currently investigated plasma facility is of an intermediate scale between lab-size and an industrial pilot plant, ready for further up scaling to an industrial size. The influence of a large number of different carbon precursors, plasma gases and operating conditions on the fullerene yield has been studied. At this state, quantities of up to 1 kg of carbon can be processed per hour with further scope for increase, leading to production rates for this type of materials not achievable with any other technology at present

  17. Fermented Nut-Based Vegan Food: Characterization of a Home made Product and Scale-Up to an Industrial Pilot-Scale Production.

    Tabanelli, Giulia; Pasini, Federica; Riciputi, Ylenia; Vannini, Lucia; Gozzi, Giorgia; Balestra, Federica; Caboni, Maria Fiorenza; Gardini, Fausto; Montanari, Chiara

    2018-03-01

    Because of the impossibility to consume food of animal origin, vegan consumers are looking for substitutes that could enrich their diet. Among many substitutes, fermented nut products are made from different nut types and obtained after soaking, grinding, and fermentation. Although other fermented vegetable products have been deeply investigated, there are few data about the fermentative processes of nut-based products and the microbial consortia able to colonize these products are not yet studied. This study characterized a hand-made vegan product obtained from cashew nut. Lactic acid bacteria responsible for fermentation were identified, revealing a succession of hetero- and homo-fermentative species during process. Successively, some lactic acid bacteria isolates from the home-made vegan product were used for a pilot-scale fermentation. The products obtained were characterized and showed features similar to the home-made one, although the microbiological hazards have been prevented through proper and rapid acidification, enhancing their safety features. Spontaneous fermented products are valuable sources of microorganisms that can be used in many food processes as starter cultures. The lactic acid bacteria isolated in this research can be exploited by industries to develop new foods and therefore to enter new markets. The use of selected starter cultures guarantees good organoleptic characteristics and food safety (no growth of pathogens). © 2018 Institute of Food Technologists®.

  18. An Investigation of Damage Factors in Industrial Scale of Light-Weight Bricks Production

    Dwi Wulandari Kiki

    2017-01-01

    Full Text Available A damage case of light weight brick’s production approximately at 6-7% of total production was found daily in one industry in East Jawa, Indonesia. The physical damage of product always occured. This paper investigates some factors that affect the lost in laboratory analysis. The analysis includes the chemical analysis of raw materials, reactivity of pozzolanic materials, and observation of strength based upon the position of light-weight bricks during autoclaving process. In addition, fly ash is introduced as mineral additive as one of the alternatives to improve the product’s quality. It is also concluded that grinding the silica sands particles is the optimum way to improve the quality, but the adding class F of fly ash to five percent in mixture is the most effective solution. Furthermore, maintaining quality of raw materials, curing process, and maintaining the machine will either reduce the product damage that occurred during the fabrication process in industry.

  19. Industrial scale gene synthesis.

    Notka, Frank; Liss, Michael; Wagner, Ralf

    2011-01-01

    The most recent developments in the area of deep DNA sequencing and downstream quantitative and functional analysis are rapidly adding a new dimension to understanding biochemical pathways and metabolic interdependencies. These increasing insights pave the way to designing new strategies that address public needs, including environmental applications and therapeutic inventions, or novel cell factories for sustainable and reconcilable energy or chemicals sources. Adding yet another level is building upon nonnaturally occurring networks and pathways. Recent developments in synthetic biology have created economic and reliable options for designing and synthesizing genes, operons, and eventually complete genomes. Meanwhile, high-throughput design and synthesis of extremely comprehensive DNA sequences have evolved into an enabling technology already indispensable in various life science sectors today. Here, we describe the industrial perspective of modern gene synthesis and its relationship with synthetic biology. Gene synthesis contributed significantly to the emergence of synthetic biology by not only providing the genetic material in high quality and quantity but also enabling its assembly, according to engineering design principles, in a standardized format. Synthetic biology on the other hand, added the need for assembling complex circuits and large complexes, thus fostering the development of appropriate methods and expanding the scope of applications. Synthetic biology has also stimulated interdisciplinary collaboration as well as integration of the broader public by addressing socioeconomic, philosophical, ethical, political, and legal opportunities and concerns. The demand-driven technological achievements of gene synthesis and the implemented processes are exemplified by an industrial setting of large-scale gene synthesis, describing production from order to delivery. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Monitoring of metabolites and by-products in a down-scaled industrial lager beer fermentation

    Sjöström, Fredrik

    2013-01-01

    The sugar composition of the wort and how these sugars are utilised by the yeast affects the organoleptic properties of the beer. To monitor the saccharides in the wort before inoculation and during fermentation is important in modern brewing industry. Reducing the duration of the brewing process is valuable and can be achieved by reducing the fermentation time by an increase in temperature. However, this must be done without changing the quality and characteristics of the end product, anothe...

  1. Pilot-scale biopesticide production by Bacillus thuringiensis subsp. kurstaki using starch industry wastewater as raw material.

    Ndao, Adama; Sellamuthu, Balasubramanian; Gnepe, Jean R; Tyagi, Rajeshwar D; Valero, Jose R

    2017-09-02

    Pilot-scale Bacillus thuringiensis based biopesticide production (2000 L bioreactor) was conducted using starch industry wastewater (SIW) as a raw material using optimized operational parameters obtained in 15 L and 150 L fermenters. In pilot scale fermentation process the oxygen transfer rate is a major limiting factor for high product yield. Thus, the volumetric mass transfer coefficient (K L a) remains a tool to determine the oxygen transfer capacity [oxygen utilization rate (OUR) and oxygen transfer rate (OTR)] to obtain better bacterial growth rate and entomotoxicity in new bioreactor process optimization and scale-up. This study results demonstrated that the oxygen transfer rate in 2000 L bioreactor was better than 15 L and 150 L fermenters. The better oxygen transfer in 2000 L bioreactor augmented the bacterial growth [total cell (TC) and viable spore count (SC)] and delta-endotoxin yield. Prepared a stable biopesticide formulation for field use and its entomotoxicity was also evaluated. This study result corroborates the feasibility of industrial scale operation of biopesticide production using starch industry wastewater as raw material.

  2. Industrial scale production of stable isotopes employing the technique of plasma separation

    Stevenson, N.R.; Bigelow, T.S.; Tarallo, F.J.

    2003-01-01

    Calutrons, centrifuges, diffusion and distillation processes are some of the devices and techniques that have been employed to produce substantial quantities of enriched stable isotopes. Nevertheless, the availability of enriched isotopes in sufficient quantities for industrial applications remains very restricted. Industries such as those involved with medicine, semiconductors, nuclear fuel, propulsion, and national defense have identified the potential need for various enriched isotopes in large quantities. Economically producing most enriched (non-gaseous) isotopes in sufficient quantities has so far eluded commercial producers. The plasma separation process is a commercial technique now available for producing large quantities of a wide range of enriched isotopes. Until recently, this technique has mainly been explored with small-scale ('proof-of-principle') devices that have been built and operated at research institutes. The new Theragenics TM facility at Oak Ridge, TN houses the only existing commercial scale PSP system. This device, which successfully operated in the 1980's, has recently been re-commissioned and is planned to be used to produce a variety of isotopes. Progress and the capabilities of this device and it's potential for impacting the world's supply of stable isotopes in the future is summarized. This technique now holds promise of being able to open the door to allowing new and exciting applications of these isotopes in the future. (author)

  3. Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling.

    Liu, Gang; Zhang, Jian; Bao, Jie

    2016-01-01

    Cost reduction on cellulase enzyme usage has been the central effort in the commercialization of fuel ethanol production from lignocellulose biomass. Therefore, establishing an accurate evaluation method on cellulase enzyme cost is crucially important to support the health development of the future biorefinery industry. Currently, the cellulase cost evaluation methods were complicated and various controversial or even conflict results were presented. To give a reliable evaluation on this important topic, a rigorous analysis based on the Aspen Plus flowsheet simulation in the commercial scale ethanol plant was proposed in this study. The minimum ethanol selling price (MESP) was used as the indicator to show the impacts of varying enzyme supply modes, enzyme prices, process parameters, as well as enzyme loading on the enzyme cost. The results reveal that the enzyme cost drives the cellulosic ethanol price below the minimum profit point when the enzyme is purchased from the current industrial enzyme market. An innovative production of cellulase enzyme such as on-site enzyme production should be explored and tested in the industrial scale to yield an economically sound enzyme supply for the future cellulosic ethanol production.

  4. Industrial-scale spray layer-by-layer assembly for production of biomimetic photonic systems.

    Krogman, K C; Cohen, R E; Hammond, P T; Rubner, M F; Wang, B N

    2013-12-01

    Layer-by-layer assembly is a powerful and flexible thin film process that has successfully reproduced biomimetic photonic systems such as structural colour. While most of the seminal work has been carried out using slow and ultimately unscalable immersion assembly, recent developments using spray layer-by-layer assembly provide a platform for addressing challenges to scale-up and manufacturability. A series of manufacturing systems has been developed to increase production throughput by orders of magnitude, making commercialized structural colour possible. Inspired by biomimetic photonic structures we developed and demonstrated a heat management system that relies on constructive reflection of near infrared radiation to bring about dramatic reductions in heat content.

  5. Potential use of pyrite cinders as raw material in cement production: results of industrial scale trial operations.

    Alp, I; Deveci, H; Yazici, E Y; Türk, T; Süngün, Y H

    2009-07-15

    Pyrite cinders, which are the waste products of sulphuric acid manufacturing plants, contain hazardous heavy metals with potential environmental risks for disposal. In this study, the potential use of pyrite cinders (PyCs) as iron source in the production of Portland cement clinker was demonstrated at the industrial scale. The chemical and mineralogical analyses of the PyC sample used in this study have revealed that it is essentially a suitable raw material for use as iron source since it contains >87% Fe(2)O(3) mainly in the form of hematite (Fe(2)O(3)) and magnetite (Fe(3)O(4)). The samples of the clinkers produced from PyC in the industrial scale trial operation of 6 months were tested for the conformity of their chemical composition and the physico-mechanical performance of the resultant cement products. The data were compared with the clinker products of the iron ore, which is used as the raw material for the production Portland cement clinker in the plant. The chemical compositions of all the clinker products of PyC appeared to conform to those of the iron ore clinker, and hence, a Portland cement clinker. The mechanical performance of the mortars prepared from the PyC clinker was found to be consistent with those of the industrial cements e.g. CEM I type cements. It can be inferred from the leachability tests (TCLP and SPLP) that PyC could be a potential source of heavy metal pollution while the mortar samples obtained from the PyC clinkers present no environmental problems. These findings suggest that the waste pyrite cinders can be readily used as iron source for the production of Portland cement. The availability of PyC in large quantities at low cost provides further significant benefits for the management/environmental practices of these wastes and for the reduction of mining and processing costs of cement raw materials.

  6. Microbial dynamics during production of lesser mealworms (Alphitobius diaperinus) for human consumption at industrial scale.

    Wynants, E; Crauwels, S; Verreth, C; Gianotten, N; Lievens, B; Claes, J; Van Campenhout, L

    2018-04-01

    In this study, the microbial dynamics during an industrial production cyle of lesser mealworms (Alphitobius diaperinus), sold for human consumption, were characterised. The microbial numbers as well as the microbial diversity were generally higher for the substrate, existing of remaining feed, faeces and exuviae, than for the larvae. Most of the species-level operational taxonomic units, identified using Illumina MiSeq sequencing, that were present in the feed were also detected in the larvae and vice versa. However, bacterial diversity decreased in the larvae during rearing. These results suggested that the feed is an important determinant of the insect bacterial community, but that some bacterial species show a competitive advantage inside the insect gut and become dominant. A blanching treatment of the larvae after harvest reduced most microbial counts, but the number of aerobic endospores remained at 4.0 log cfu/g. Whereas food pathogens Salmonella spp., Listeria monocytogenes, Bacillus cereus or coagulase-positive staphylococci were not detected in our study, fungal isolates corresponding to the genera Aspergillus and Fusarium were recovered. Therefore, it cannot be excluded that mycotoxins were present. The results of this study contribute to a better understanding of the microbial dynamics and food safety aspects during the production of edible insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Experience with LHC Magnets from Prototyping to Large Scale Industrial Production and Integration

    Rossi, L

    2004-01-01

    The construction of the LHC superconducting magnets is approaching its half way to completion. At the end of 2003, main dipoles cold masses for more than one octant were delivered; meanwhile the winding for the second octant was almost completed. The other large magnets, like the main quadrupoles and the insertion quadrupoles, have entered into series production as well. Providing more than 20 km of superconducting magnets, with the quality required for an accelerator like LHC, is an unprecedented challenge in term of complexity that has required many steps from the construction of 1 meterlong magnets in the laboratory to today’s production of more than one 15 meter-long magnet per day in Industry. The work and its organization is made even more complex by the fact that CERN supplies most of the critical components and part of the main tooling to the magnet manufacturers, both for cost reduction and for quality issues. In this paper the critical aspects of the construction will be reviewed and the actual ...

  8. Scale-up and large-scale production of Tetraselmis sp. CTP4 (Chlorophyta) for CO2 mitigation: from an agar plate to 100-m3 industrial photobioreactors.

    Pereira, Hugo; Páramo, Jaime; Silva, Joana; Marques, Ana; Barros, Ana; Maurício, Dinis; Santos, Tamára; Schulze, Peter; Barros, Raúl; Gouveia, Luísa; Barreira, Luísa; Varela, João

    2018-03-23

    Industrial production of novel microalgal isolates is key to improving the current portfolio of available strains that are able to grow in large-scale production systems for different biotechnological applications, including carbon mitigation. In this context, Tetraselmis sp. CTP4 was successfully scaled up from an agar plate to 35- and 100-m 3 industrial scale tubular photobioreactors (PBR). Growth was performed semi-continuously for 60 days in the autumn-winter season (17 th October - 14 th December). Optimisation of tubular PBR operations showed that improved productivities were obtained at a culture velocity of 0.65-1.35 m s -1 and a pH set-point for CO 2 injection of 8.0. Highest volumetric (0.08 ± 0.01 g L -1 d -1 ) and areal (20.3 ± 3.2 g m -2 d -1 ) biomass productivities were attained in the 100-m 3 PBR compared to those of the 35-m 3 PBR (0.05 ± 0.02 g L -1 d -1 and 13.5 ± 4.3 g m -2 d -1 , respectively). Lipid contents were similar in both PBRs (9-10% of ash free dry weight). CO 2 sequestration was followed in the 100-m 3 PBR, revealing a mean CO 2 mitigation efficiency of 65% and a biomass to carbon ratio of 1.80. Tetraselmis sp. CTP4 is thus a robust candidate for industrial-scale production with promising biomass productivities and photosynthetic efficiencies up to 3.5% of total solar irradiance.

  9. Scale-up of industrial biodiesel production to 40 m3using a liquid lipase formulation

    Price, Jason; Nordblad, Mathias; Martel, Hannah H.

    2016-01-01

    In this work, we demonstrate the scale-up from an 80 L fed-batch scale to 40 m3 along with the design of a 4 m3continuous process for enzymatic biodiesel production catalysed by NS-40116 (a liquid formulation of a modified Thermomyces lanuginosus lipase). Based on the analysis of actual pilot plant...... the fed-batch and CSTR cases. Given similar operating conditions, the CSTR operation on average, has a reaction time which is 1.3 times greater than the fed-batch operation. We also showed how the process metrics can be used to quickly estimate the selling price of the enzyme. Assuming a biodiesel selling...... price of 0.6 USD/kg and a one-time use of the enzyme (0.1% (w/woil) enzyme dosage); the enzyme can then be sold for 30 USD/kg which ensures that that the enzyme cost is not more than 5% of the biodiesel revenue. This article is protected by copyright. All rights reserved...

  10. A modified indirect mathematical model for evaluation of ethanol production efficiency in industrial-scale continuous fermentation processes.

    Canseco Grellet, M A; Castagnaro, A; Dantur, K I; De Boeck, G; Ahmed, P M; Cárdenas, G J; Welin, B; Ruiz, R M

    2016-10-01

    To calculate fermentation efficiency in a continuous ethanol production process, we aimed to develop a robust mathematical method based on the analysis of metabolic by-product formation. This method is in contrast to the traditional way of calculating ethanol fermentation efficiency, where the ratio between the ethanol produced and the sugar consumed is expressed as a percentage of the theoretical conversion yield. Comparison between the two methods, at industrial scale and in sensitivity studies, showed that the indirect method was more robust and gave slightly higher fermentation efficiency values, although fermentation efficiency of the industrial process was found to be low (~75%). The traditional calculation method is simpler than the indirect method as it only requires a few chemical determinations in samples collected. However, a minor error in any measured parameter will have an important impact on the calculated efficiency. In contrast, the indirect method of calculation requires a greater number of determinations but is much more robust since an error in any parameter will only have a minor effect on the fermentation efficiency value. The application of the indirect calculation methodology in order to evaluate the real situation of the process and to reach an optimum fermentation yield for an industrial-scale ethanol production is recommended. Once a high fermentation yield has been reached the traditional method should be used to maintain the control of the process. Upon detection of lower yields in an optimized process the indirect method should be employed as it permits a more accurate diagnosis of causes of yield losses in order to correct the problem rapidly. The low fermentation efficiency obtained in this study shows an urgent need for industrial process optimization where the indirect calculation methodology will be an important tool to determine process losses. © 2016 The Society for Applied Microbiology.

  11. Conditions for industrial production

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Brauer, H.

    1996-01-01

    The possibility of an industrial aerogel glazing production is discussed with respect to sample size, sales volume and prices. Different ways of an industrial assembling line is outlined and the total costs of a 1 square meter aerogel glazing is calculated.......The possibility of an industrial aerogel glazing production is discussed with respect to sample size, sales volume and prices. Different ways of an industrial assembling line is outlined and the total costs of a 1 square meter aerogel glazing is calculated....

  12. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants.

    Maragkaki, A E; Fountoulakis, M; Gypakis, A; Kyriakou, A; Lasaridi, K; Manios, T

    2017-01-01

    Due to low degradability of dry solids, most of the digesters at wastewater treatment plants (WWTP) operate at low loading rates resulting in poor biogas yields. In this study, co-digestion of sewage sludge (SS) with olive mill wastewater (OMW), cheese whey (CW) and crude glycerol (CG) was studied in an attempt to improve biogas production of existing digesters at WWTPs. The effect of agro-industrial by-products in biogas production was investigated using a 220L pilot-scale (180L working volume) digester under mesophilic conditions (35°C) with a total feeding volume of 7.5L daily and a 24-day hydraulic retention time. The initial feed was sewage sludge and the bioreactor was operated using this feed for 40days. Each agro-industrial by-product was then added to the feed so that the reactor was fed continuously with 95% sewage sludge and 5% (v/v) of each examined agro-industrial by-product. The experiments showed that a 5% (v/v) addition of OMW, CG or CW to sewage sludge significantly increased biogas production by nearly 220%, 350% and 86% as values of 34.8±3.2L/d, 185.7±15.3L/d and 45.9±3.6L/d respectively, compared to that with sewage sludge alone (375ml daily, 5% v/v in the feed). The average removal of dissolved chemical oxygen demand (d-COD) ranged between 72 and 99% for organic loading rates between 0.9 and 1.5kgVSm -3 d -1 . Reduction in the volatile solids ranged between 25 and 40%. This work suggests that methane can be produced very efficiently by adding a small concentration (5%) of agro-industrial by-products and especially CG in the inlet of digesters treating sewage sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Scaling up for the industrial production of rifamycin B; optimization of the process conditions in bench-scale fermentor

    Hewaida F. El-Sedawy

    2013-06-01

    Full Text Available Optimization of fermentation process conditions using a gene amplified variant of Amycolatopsis mediterranei (NCH was carried out. The use of aeration level 1.5 vvm increased the yield by 16.6% (from 13.81 to 16.1 g/l upon controlling the temperature at 28 °C. Adjustment of the aeration level at 1.5 vvm for 3 days then controlling the dissolved oxygen (DO at 30% saturation further increased the yield to 17.8 g/l. The optimum pH was 6.5 for 3 days then 7 thereafter when a production yield of 16.1 g/l was recorded using an aeration rate of 1.5 vvm. Controlling the pH at constant value (6.5 or 7 all through the fermentation process decreased the yield by 5–21%. Controlling the temperature at 30 °C for 3 days then 28 °C thereafter slightly increased the yield by 5% upon using an aeration rate of 1 vvm while it decreased upon using an aeration rate of 1.5 vvm. Integration of the most optimum conditions increased the production yield by 22% from 13.81 to 17.8 g/l.

  14. Some Problems of Industrial Scale-Up.

    Jackson, A. T.

    1985-01-01

    Scientific ideas of the biological laboratory are turned into economic realities in industry only after several problems are solved. Economics of scale, agitation, heat transfer, sterilization of medium and air, product recovery, waste disposal, and future developments are discussed using aerobic respiration as the example in the scale-up…

  15. Functional Materials Produced On An Industrial Scale

    Barska Justyna

    2015-08-01

    Full Text Available The article presents a wide range of applications of functional materials and a scale of their current industrial production. These are the materials which have specific characteristics, thanks to which they became virtually indispensable in certain constructional solutions. Their basic characteristics, properties, methods of production and use as smart materials were described.

  16. Upscaling from benchtop processing to industrial scale production: More factors to be considered for pulsed electric field food processing

    Pulsed electric field (PEF) processing has been intensively studied with benchtop scale experiments. However, there is still limited information regarding critical factors to be considered for PEF efficacy in microbial reduction with PEF processing at a pilot or commercial scale production of juice....

  17. Inkjet printing as a roll-to-roll compatible technology for the production of large area electronic devices on a pre-industrial scale

    Teunissen, P.; Rubingh, E.; Lammeren, T. van; Abbel, R.J.; Groen, P.

    2014-01-01

    Inkjet printing is a promising approach towards the solution processing of electronic devices on an industrial scale. Of particular interest is the production of high-end applications such as large area OLEDs on flexible substrates. Roll-to-roll (R2R) processing technologies involving inkjet

  18. It was the demonstration of industrial steel production capacity ferritic-martensitic Spanish ASTURFER scale demand ITER

    Coto, R.; Serrano, M.; Moran, A.; Rodriguez, D.; Artimez, J. A.; Belzunce, J.; Sedano, L.

    2013-01-01

    Reduced Activation Ferritic-Martensitic (RAFM) structural steels are considered as candidate materials with notable possibilities to be incorporated to fusion reactor ITER, nowadays under construction, and future fusion reactor DEMO, involving a notable forecasting of supply materials, with a considerable limitation due to the few number of furnishes currently on the market. The manufacture at an industrial scale of the ASTURFER steel, developed at laboratory scale by ITMA Materials Technology and the Structural Materials Division of the Technology Division of CIEMAT would be a significant business opportunity for steelwork companies.

  19. Enhancement of struvite pellets crystallization in a full-scale plant using an industrial grade magnesium product.

    Crutchik, D; Morales, N; Vázquez-Padín, J R; Garrido, J M

    2017-02-01

    A full-scale struvite crystallization system was operated for the treatment of the centrate obtained from the sludge anaerobic digester in a municipal wastewater treatment plant. Additionally, the feasibility of an industrial grade Mg(OH) 2 as a cheap magnesium and alkali source was also investigated. The struvite crystallization plant was operated for two different periods: period I, in which an influent with low phosphate concentration (34.0 mg P·L -1 ) was fed to the crystallization plant; and period II, in which an influent with higher phosphate concentration (68.0 mg P·L -1 ) was used. A high efficiency of phosphorus recovery by struvite crystallization was obtained, even when the effluent treated had a high level of alkalinity. Phosphorus recovery percentage was around 77%, with a phosphate concentration in the effluent between 10.0 and 30.0 mg P·L -1 . The experiments gained struvite pellets of 0.5-5.0 mm size. Moreover, the consumption of Mg(OH) 2 was estimated at 1.5 mol Mg added·mol P recovered -1 . Thus, industrial grade Mg(OH) 2 can be an economical alternative as magnesium and alkali sources for struvite crystallization at industrial scale.

  20. A new highly productive Propionibacterium acidipropionici FL-48 strain with increased resistance to propionic acid and the scaling up of its production for industrial bioreactors

    M. A. Kartashov

    2016-09-01

    Full Text Available Propionic acid bacteria, including Propionibacterium acidipropionici, are widely used in the chemical industry to produce propionic acid and also for food and feed preservation. However, the efficiency of the industrial production of these bacteria is limited by their sensitivity to high concentrations of propionic acid excreted into the cultivation medium. Therefore, the development of new biotechnological processes and strains able to overcome this limitation and to improve the profitability of the microbiological production remains  a relevant problem. A new P. acidipropionici FL-48 strain characterized by an increased resistance to 10 g/L of propionic acid (the number of viable cells after 24-h cultivation reached 1.05 × 106 was developed by a two-step induced mutagenesis using UV and diethyl sulphate from the P. acidipropionici VKPM B-5723 strain. The mutant strain exceeded the parental strain in the biomass accumulation rate and the amount of produced propionic and acetic acids by 35%, 20%, and 16%, respectively. The stability of such important characteristics as the biomass accumulation rate and the viability on media containing heightened concentrations of propionic acid was confirmed by three sequential monoclonal subculturings on a medium supplemented with 10 g/L of propionic acid. The optimization of the cultivation technology made it possible to determine the optimum seed inoculum dose (10% of the fermentation medium volume and the best pH level for the active growth stage (6.1 ± 0.1. The scaling up of the fermentation to a 100-L bioreactor under observance of optimum cultivation conditions demonstrated a high biomass growth rate with a sufficient reproducability; after 20 h of fermentation, the number of viable cells in the culture broth exceeded 1 × 1010 CFU/mL. The new strain could be interesting as the component of silage and haylage biopreservatives and also could be used as an efficient producer of propionic acid.

  1. Recombinant organisms for production of industrial products

    Adrio, Jose-Luis; Demain, Arnold L

    2009-01-01

    A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding...

  2. Semi-industrial scale (30 m3) fed-batch fermentation for the production of D-lactate by Escherichia coli strain HBUT-D15.

    Fu, Xiangmin; Wang, Yongze; Wang, Jinhua; Garza, Erin; Manow, Ryan; Zhou, Shengde

    2017-02-01

    D(-)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale D-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L -1 of glucose, producing 184-191 g L -1 of D-lactic acid, with a volumetric productivity of 4.38 g L -1  h -1 , a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m 3 ) via fed-batch fermentation with up to 160 g L -1 of glucose, producing 146-150 g L -1 of D-lactic acid, with a volumetric productivity of 3.95-4.29 g L -1  h -1 , a yield of 91-94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale L(+)-lactic acid fermentation.

  3. Forest Products Industry Technology Roadmap

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  4. Strengthening industry-research linkage for small scale industrial ...

    Strengthening industry-research linkage for small scale industrial development in Ghana - the relevance of scientific and technological information. ... Journal of Applied Science and Technology. Journal Home · ABOUT · Advanced Search ...

  5. Sustainable Industrial Production

    Christensen, Irene

    2015-01-01

    The purpose of this case is to create awareness about a somewhat unfamiliar industry that accounts for over €3 billion in Scandinavia and £5,6 billion in the UK, the Metals recycling industry. The case features a Scandinavian Company and includes several perspectives from managerial disciplines...

  6. Sustainable Industrial Production

    Brattebö, Helge; Jørgensen, Michael Søgaard; Lorentzen, Børge

    The book discusses the concepts of waste minimization, cleaner technology and industrial ecology, including the experiences with employee participation in preventive environmental activities in companies.......The book discusses the concepts of waste minimization, cleaner technology and industrial ecology, including the experiences with employee participation in preventive environmental activities in companies....

  7. Oregon's forest products industry: 1994.

    Franklin R. Ward

    1997-01-01

    This report presents the findings of a survey of primary forest products industries in Oregon for 1994. The survey included the following sectors: lumber; veneer; pulp and board; shake and shingle; export; and post, pole, and piling. Tables, presented by sector and for the industry as a whole, include characteristics of the industry, nature and flow of logs consumed,...

  8. Transformer Industry Productivity Slows.

    Otto, Phyllis Flohr

    1981-01-01

    Annual productivity increases averaged 2.4 percent during 1963-79, slowing since 1972 to 1.5 percent; computer-assisted design and product standardization aided growth in output per employee-hour. (Author)

  9. Recombinant organisms for production of industrial products

    Adrio, Jose-Luis

    2010-01-01

    A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products. PMID:21326937

  10. Recombinant organisms for production of industrial products.

    Adrio, Jose-Luis; Demain, Arnold L

    2010-01-01

    A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products. © 2010 Landes Bioscience

  11. Assessment of consolidation of oxide dispersion strengthened ferritic steels by spark plasma sintering: from laboratory scale to industrial products

    Boulnat, X.; Fabregue, D.; Perez, M.; Urvoy, S.; Hamon, D.; Carlan, Y. de

    2014-01-01

    Oxide dispersion strengthened steels are new generation alloys that are usually processed by hot isostatic pressing (HIP). In this study, spark plasma sintering (SPS) was studied as an alternative consolidation technique. The influence of the processing parameters on the microstructure was quantified. The homogeneity of the SPSed materials was characterised by electron microprobe and microhardness. A combination of limited grain growth and minimised porosity can be achieved on semi-industrial compact. Excellent tensile properties were obtained compared to the literature. (authors)

  12. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification

    Kasteren, van J.M.N.; Nisworo, A.P.

    2007-01-01

    This paper describes the conceptual design of a production process in which waste cooking oil is converted via supercritical transesterification with methanol to methyl esters (biodiesel). Since waste cooking oil contains water and free fatty acids, supercritical transesterification offers great

  13. Study of technical, economic and environmental feasibility of industrial scale production of nanocellulose obtained from the agroindustrial wastes from pineapple peel (Ananas comosus)

    Camacho Elizondo, Melissa

    2013-01-01

    Technical, economic and environmental study is realized to determine the feasibility of the industrial production of nanocellulose, from agroindustrial wastes of pineapple (Ananas comosus) market oriented of plastic packaging. The market bibliographical studies (national and international) and real capacities of national institutions have determined the most adequate and competitive method for the production of nanocellulose. The conditions to produce nanocellulose are described from agroindustrial wastes of pineapple in an industrial scale, according with the predominant factors in the plastic market. The equilibrium point, cost and price of nanocellulose produced are analyzed for the national market of plastics. The producing unit implemented is evaluated within the general framework of national and international economy and market to contribute the conditions that may to affect the feasibility and profitability of the project. The technical study has demonstrated to count with the adequate technology for the project execution. The economic study of the project has indicated to be economically profitable, considering the results of the NPV ($ 110 031,73), IRR (46,42%) and MARR (19,19%). The SuperPro Designer program has been used as a tool to corroborate the results in the technical-economic study and these have shown that the project has been feasible [es

  14. The LHC Cryomagnet Supports in Glass-Fiber Reinforced Epoxy A Large Scale Industrial Production with High Reproducibility in Performance

    Poncet, A; Trigo, J; Parma, V

    2008-01-01

    The about 1700 LHC main ring super-conducting magnets are supported within their cryostats on 4700 low heat in leak column-type supports. The supports were designed to ensure a precise and stable positioning of the heavy dipole and quadrupole magnets while keeping thermal conduction heat loads within budget. A trade-off between mechanical and thermal properties, as well as cost considerations, led to the choice of glass fibre reinforced epoxy (GFRE). Resin Transfer Moulding (RTM), featuring a high level of automation and control, was the manufacturing process retained to ensure the reproducibility of the performance of the supports throughout the large production. The Spanish aerospace company EADS-CASA Espacio developed the specific RTM process, and produced the total quantity of supports between 2001 and 2004. This paper describes the development and the production of the supports, and presents the production experience and the achieved performance.

  15. THE LHC CRYOMAGNET SUPPORTS IN GLASS-FIBER REINFORCED EPOXY: A LARGE SCALE INDUSTRIAL PRODUCTION WITH HIGH REPRODUCIBILITY IN PERFORMANCE

    Poncet, A.; Struik, M.; Parma, V.; Trigo, J.

    2008-01-01

    The about 1700 LHC main ring super-conducting magnets are supported within their cryostats on 4700 low heat in leak column-type supports. The supports were designed to ensure a precise and stable positioning of the heavy dipole and quadrupole magnets while keeping thermal conduction heat loads within budget. A trade-off between mechanical and thermal properties, as well as cost considerations, led to the choice of glass fibre reinforced epoxy (GFRE). Resin Transfer Moulding (RTM), featuring a high level of automation and control, was the manufacturing process retained to ensure the reproducibility of the performance of the supports throughout the large production.The Spanish aerospace company EADS-CASA Espacio developed the specific RTM process, and produced the total quantity of supports between 2001 and 2004.This paper describes the development and the production of the supports, and presents the production experience and the achieved performance

  16. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.

    Tinwala, Farha; Mohanty, Pravakar; Parmar, Snehal; Patel, Anant; Pant, Kamal K

    2015-01-01

    Pyrolysis of woody biomass, agro-residues and seed was carried out at 500 ± 10 °C in a fixed bed pyrolyser. Bio-oil yield was found varying from 20.5% to 47.5%, whereas the biochar and pyrolysis gas ranged from 27.5% to 40% and 24.5% to 40.5%, respectively. Pyrolysis gas was measured for flame temperature along with CO, CO2, H2, CH4 and other gases composition. HHV of biochar (29.4 MJ/kg) and pyrolitic gas (8.6 MJ/kg) of woody biomass was higher analogous to sub-bituminous coal and steam gasification based producer gas respectively, whereas HHV of bio-oil obtained from seed (25.6 MJ/kg) was significantly more than husks, shells and straws. TGA-DTG studies showed the husks as potential source for the pyrolysis. Bio-oils as a major by-product of intermediate pyrolysis have several applications like substitute of furnace oil, extraction of fine chemicals, whereas biochar as a soil amendment for enhancing soil fertility and gases for thermal application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics.

    Kafle, Gopi Krishna; Kim, Sang Hun; Sung, Kyung Ill

    2013-01-01

    Fish waste (FW) obtained from a fish processor was ensiled for biogas production. The FW silages were prepared by mixing FW with bread waste (BW) and brewery grain waste (BGW), and the quality of the prepared silages were evaluated. The biogas potentials of BW, BGW, three different types of FW, and FW silages were measured. A first-order kinetic model and the modified Gompertz model were also used to predict methane yield. The biogas and methane yield for FW silages after 96 days was calculated to be 671-763 mL/g VS and 441-482 mL/g VS, respectively. There were smaller differences between measured and predicted methane yield for FW silages when using a modified Gompertz model (1.1-4.3%) than when using a first-order kinetic model (22.5-32.4%). The critical HRTs and technical digestion times (T(80-90)) for the FW silages were calculated to be 21.0-23.8 days and 40.5-52.8 days, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Product Differentiation and Industrial Structure.

    Shaked, Avner; Sutton, John

    1987-01-01

    Some recent literature on "vertical product differentiation" has d eveloped the idea that if the nature of technology and tastes in some industry take a certain form, then the industry must necessarily be "concentrated" and must remain so, no matter how large the economy becomes. The present paper develops this idea further and looks at so me of its implications. This approach offers a simple unified framewo rk within which to reexplore many issues that arise in considering th e relationship ...

  19. Genome-scale biological models for industrial microbial systems.

    Xu, Nan; Ye, Chao; Liu, Liming

    2018-04-01

    The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.

  20. Chemical products and industrial materials

    1995-12-01

    A compilation of all universities, industrial and governmental agencies in Quebec which are actively involved in research and development of chemical products and industrial materials derived from biomass products, was presented. Each entry presented in a standard format that included a description of the major research activities of the university or agency, the principal technologies used in the research, available research and analytical equipment, a description of the research personnel, names, and addresses of contact persons for the agency or university. Thirty entries were presented. These covered a wide diversity of activities including biotechnological research such as genetic manipulations, bioconversion, fermentation, enzymatic hydrolysis and physico-chemical applications such as bleaching, de-inking, purification and synthesis. tabs

  1. Determination of lead 210 in scales from industrial processes

    Faria, Lígia S.; Moreira, Rubens M.; Kastner, Geraldo F.; Barbosa, João B.S.

    2017-01-01

    Industrial processes such as oil and gas extraction and groundwater exploitation are examples of installations that can accumulate naturally occurring radioactive materials (NORM) during the extraction and production. Lead-210 deposits in the production can be formed by the same mechanisms that occur in the environment through the support of Radon-222, (where 210 Pb is produced at 222 Rn decay) or without support, as 210 Pb. The objective of this work is to evaluate the mineralogical characteristics and determine the activity of lead-210 in the scales using the X-Ray Diffraction and Gamma Spectrometry techniques. Were analyzed fifteen samples, four scales from oil industry, ten scales from groundwater conductors and one for groundwater supply pipe. The highest activity found in the oil scale and groundwater conductors scale was 0.30 ± 0.06 Bq g -1 and 3.80 ± 0.20 Bq g -1 , respectively. (author)

  2. Determination of lead 210 in scales from industrial processes

    Faria, Lígia S.; Moreira, Rubens M.; Kastner, Geraldo F.; Barbosa, João B.S., E-mail: ligsfaria@gmail.com, E-mail: rubens@cdtn.br, E-mail: gfk@cdtn.br, E-mail: jbsb@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Industrial processes such as oil and gas extraction and groundwater exploitation are examples of installations that can accumulate naturally occurring radioactive materials (NORM) during the extraction and production. Lead-210 deposits in the production can be formed by the same mechanisms that occur in the environment through the support of Radon-222, (where {sup 210}Pb is produced at {sup 222}Rn decay) or without support, as {sup 210}Pb. The objective of this work is to evaluate the mineralogical characteristics and determine the activity of lead-210 in the scales using the X-Ray Diffraction and Gamma Spectrometry techniques. Were analyzed fifteen samples, four scales from oil industry, ten scales from groundwater conductors and one for groundwater supply pipe. The highest activity found in the oil scale and groundwater conductors scale was 0.30 ± 0.06 Bq g{sup -1} and 3.80 ± 0.20 Bq g{sup -1}, respectively. (author)

  3. Propylene/Nitrogen Separation in a By-Stream of the Polypropylene Production: From Pilot Test and Model Validation to Industrial Scale Process Design and Optimization

    Guler Narin; Ana Ribeiro; Alexandre Ferreira; Young Hwang; U-Hwang Lee; José Loureiro; Jong-San Chang; Alírio Rodrigues

    2014-01-01

    Two industrial-scale pressure swing adsorption (PSA) processes were designed and optimized by simulations: recovery of only nitrogen and recovery of both nitrogen and propylene from a polypropylene manufacture purge gas stream. MIL-100(Fe) granulates were used as adsorbent. The mathematical model employed in the simulations was verified by a PSA experiment. The effect of several operating parameters on the performance of the proposed PSA processes was investigated. For the nitrogen recovery, ...

  4. Laboratory scale production of glucose syrup by the enzymatic ...

    Jen

    Laboratory scale production of glucose syrup by the enzymatic ... The industrial processing of starch to glucose, maltose and dextrin involves gelatinization, ... due to non-availability of appropriate technology and industry to harness these into.

  5. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products.

    Oliveira, Fernando M V; Pinheiro, Irapuan O; Souto-Maior, Ana M; Martin, Carlos; Gonçalves, Adilson R; Rocha, George J M

    2013-02-01

    Steam explosion at 180, 190 and 200°C for 15min was applied to sugarcane straw in an industrial sugar/ethanol reactor (2.5m(3)). The pretreated straw was delignificated by sodium hydroxide and hydrolyzed with cellulases, or submitted directly to enzymatic hydrolysis after the pretreatment. The pretreatments led to remarkable hemicellulose solubilization, with the maximum (92.7%) for pretreatment performed at 200°C. Alkaline treatment of the pretreated materials led to lignin solubilization of 86.7% at 180°C, and only to 81.3% in the material pretreated at 200°C. All pretreatment conditions led to high hydrolysis conversion of cellulose, with the maximum (80.0%) achieved at 200°C. Delignification increase the enzymatic conversion (from 58.8% in the cellulignin to 85.1% in the delignificated pulp) of the material pretreated at 180°C, but for the material pretreated at 190°C, the improvement was less remarkable, while for the pretreated at 200°C the hydrolysis conversion decreased after the alkaline treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Productivity improvement through industrial engineering in the semiconductor industry

    Meyersdorf, Doron

    1996-09-01

    Industrial Engineering is fairly new to the semiconductor industry, though the awareness to its importance has increased in recent years. The US semiconductor industry in particular has come to the realization that in order to remain competitive in the global market it must take the lead not only in product development but also in manufacturing. Industrial engineering techniques offer one ofthe most effective strategies for achieving manufacturing excellence. Industrial engineers play an important role in the success of the manufacturing facility. This paper defines the Industrial engineers role in the IC facility, set the visions of excellence in semiconductor manufacturing and highlights 10 roadblocks on the journey towards manufacturing excellence.

  7. It was the demonstration of industrial steel production capacity ferritic-martensitic Spanish ASTURFER scale demand ITER; Hacia la demostracion de capacidad de produccion industrial del acero ferritico-martensitico espanol ASTURFER a escala de demanda ITER

    Coto, R.; Serrano, M.; Moran, A.; Rodriguez, D.; Artimez, J. A.; Belzunce, J.; Sedano, L.

    2013-07-01

    Reduced Activation Ferritic-Martensitic (RAFM) structural steels are considered as candidate materials with notable possibilities to be incorporated to fusion reactor ITER, nowadays under construction, and future fusion reactor DEMO, involving a notable forecasting of supply materials, with a considerable limitation due to the few number of furnishes currently on the market. The manufacture at an industrial scale of the ASTURFER steel, developed at laboratory scale by ITMA Materials Technology and the Structural Materials Division of the Technology Division of CIEMAT would be a significant business opportunity for steelwork companies.

  8. Assessing the efficacy over time of the addition of industrial by-products to remediate contaminated soils at a pilot-plant scale.

    González-Núñez, Raquel; Rigol, Anna; Vidal, Miquel

    2017-04-01

    The effect of the addition of industrial by-products (gypsum and calcite) on the leaching of As and metals (Cu, Zn, Ni, Pb and Cd) in a soil contaminated by pyritic minerals was monitored over a period of 6 months at a two-pit pilot plant. The contaminated soil was placed in one pit (non-remediated soil), whereas a mixture of the contaminated soil (80% w/w) with gypsum (10% w/w) and calcite (10% w/w) was placed in the other pit (remediated soil). Soil samples and leachates of the two pits were collected at different times. Moreover, the leaching pattern of major and trace elements in the soil samples was assessed at laboratory level through the application of the pH stat leaching test. Addition of the by-products led to an increase in initial soil pH from around 2.0 to 7.5, and it also provoked that the concentration of trace elements in soil extracts obtained from the pH stat leaching test decreased to values lower than quantification limits of inductively coupled plasma optical emission spectrometry and lower than the hazardous waste threshold for soil management. The trace element concentration in the pilot-plant leachates decreased over time in the non-remediated soil, probably due to the formation of more insoluble secondary minerals containing sulphur, but especially decreased in pit of the remediated soil, in agreement with laboratory data. The pH in the remediated soil remained constant over the 6-month period, and the X-ray diffraction analyses confirmed that the phases did not vary over time, thus indicating the efficacy of the addition of the by-products. This finding suggests that soil remediation may be a feasible option for the re-use of non-hazardous industrial by-products.

  9. Related regulation of quality control of industrial products

    1983-04-01

    This book introduce related regulation of quality control of industrial products, which includes regulations of industrial products quality control, enforcement ordinance of industrial products quality control, enforcement regulation of quality control of industrial products, designated items with industrial production quality indication, industrial production quality test, and industrial production quality test organization and management tips of factory quality by grade.

  10. Determinants of Industrial Production in Turkey

    MUSTAFA OZTURK

    2017-12-01

    Full Text Available The necessity of emphasizing the importance of industrial production for the sustainable growth and development of Turkey has been a topic of discussion in political and academia circles. The growth in industrial production (output depends on the investment in manufacturing sectors and the demand for the products. Along with internal demand, Turkey tries to support its manufacturing base with export (incentives. Manufacturing items occupy the greatest share of products in export sales. The development of manufacturing capabilities of the country is clearly based on the demand from inside and out. The effect of Turkey’s export on its industrial production throughout 2000’s has been analyzed. For this purpose we developed a VAR model where industrial production index was the dependent variable and export, investment, and interest rate were independent variables. All independent variables were found to be significantly explaining industrial production.

  11. Perspectives for the industrial enzymatic production of glycosides.

    de Roode, B Mattheus; Franssen, Maurice C R; van der Padt, Albert; Boom, Remko M

    2003-01-01

    Glycosides are of commercial interest for industry in general and specifically for the pharmaceutical and food industry. Currently chemical preparation of glycosides will not meet EC food regulations, and therefore chemical preparation of glycosides is not applicable in the food industry. Thus, enzyme-catalyzed reactions are a good alternative. However, until now the low yields obtained by enzymatic methods prevent the production of glycosides on a commercial scale. Therefore, high yields should be established by a combination of optimum reaction conditions and continuous removal of the product. Unfortunately, a bioreactor for the commercial scale production of glycosides is not available. The aim of this article is to discuss the literature with respect to enzymatic production of glycosides and the design of an industrially viable bioreactor system.

  12. Biorefinery opportunities for the forest products industries

    Alan W. Rudie

    2013-01-01

    Wood residues offer biorefinery opportunities for new products in our industries including fuel and chemicals. But industry must have two capabilities to succeed with biorefineries. Most forest products companies already have the first capability: knowing where the resource is, how to get it, and how much it will cost. They will need to integrate the acquisition of...

  13. Addressing production stops in the food industry

    Hansen, Zaza Nadja Lee; Herbert, Luke Thomas; Jacobsen, Peter

    2014-01-01

    This paper investigates the challenges in the food industry which causes the production lines to stop, illustrated by a case study of an SME size company in the baked goods sector in Denmark. The paper proposes key elements this sector needs to be aware of to effectively address production stops......, and gives examples of the unique challenges faced by the SME food industry....

  14. Total Productivity Management in Small Industries

    FARAJPOUR-KHANAPOSHTANI, Ghassem; HAYATI, Seyyed Iman

    2015-01-01

    Abstract. The importance of small businesses and SME's has been well established in the literature of the world economy. Thus, both industrialized and developing countries, development, support of small businesses as part and parcel of their productivity strategies have. Small industries are a major driver of employment, economic growth and productivity. About 80% of all companies in the world are less than 10 cases of human resources, so 95% of industries in the UK, Spain and Finland and 94 ...

  15. Export of electric power through industrial products

    Azevedo, J.B.L. de; David, J.M.S.; Campos, J.M.; Perecmanis, J.; Carneiro, N.S.

    1990-01-01

    We forecast the electrical energy incorporated to the exports of products of the industrial sectors of steel, aluminium, ferro-alloys, chlorine and caustic soda, pulp and paper and petrochemistry, accordingly to scenarios for these sectors consistent with a macro economic reference scenario, for the period 1990/2000. We also compare the electrical energy exported through those industrial products with the forecasted industrial and total markets of electrical energy. (author)

  16. Explaining Spatial Convergence of China's Industrial Productivity

    Deng, Paul Duo; Jefferson, Gary H.

    2011-01-01

    This article investigates the conditions that may auger a reversal of China's increasingly unequal levels of regional industrial productivity during China's first two decades of economic reform. Using international and Chinese firm and industry data over the period 1995–2004, we estimate a produc...... movement towards reversing growth in spatial income inequality.......This article investigates the conditions that may auger a reversal of China's increasingly unequal levels of regional industrial productivity during China's first two decades of economic reform. Using international and Chinese firm and industry data over the period 1995–2004, we estimate...... a productivity growth–technology gap reaction function. We find that as China's coastal industry has closed the technology gap with the international frontier, labour productivity growth in the coastal region has begun to slow in relation to the interior. This may serve as an early indicator of China's initial...

  17. Characterization of L-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste.

    Vala, Anjana K; Sachaniya, Bhumi; Dudhagara, Dushyant; Panseriya, Haresh Z; Gosai, Haren; Rawal, Rakesh; Dave, Bharti P

    2018-03-01

    L-asparaginase (LA), an enzyme with anticancer activities, produced by marine-derived Aspergillus niger was subjected to purification and characterization. The purified enzyme was observed to have molecular weight ∼90KDa. The enzyme retained activity over a wide range of pH, i.e. pH 4-10. The enzyme was quite stable in temperature range 20-40°C. Tween 80 and Triton X-100 were observed to enhance LA activity while inhibition of LA activity was observed in presence of heavy metals. The values for K m was found to be 0.8141 mM and V max was 6.228μM/mg/min. The enzyme exhibited noteworthy antiproliferative activity against various cancer cell lines tested. Successful bench scale production (in 5L bioreacator) of LA using groundnut oil cake as low cost substrate has also been carried out. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Product Platform Development in Industrial Networks

    Karlsson, Christer; Skold, Martin

    2011-01-01

    The article examines the strategic issues involved in the deployment of product platform development in an industrial network. The move entails identifying the types and characteristics of generically different product platform strategies and clarifying strategic motives and differences. Number o...... of platforms and product brands serve as the key dimensions when distinguishing the different strategies. Each strategy has its own challenges and raises various issues to deal with.......The article examines the strategic issues involved in the deployment of product platform development in an industrial network. The move entails identifying the types and characteristics of generically different product platform strategies and clarifying strategic motives and differences. Number...

  19. Commercial Scale Production of Mushroom Liquid Seeds

    Rosnani Abdul Rashid; Hassan Hamdani Hassan Mutaat; Mohd Meswan Maskom; Khairuddin Abdul Rahim

    2015-01-01

    Mushroom liquid seed production technology was developed by Malaysian Nuclear Agency (Nuclear Malaysia) in the late 1990s. Initially, the liquid seeds were used mainly in the solid state fermentation process for converting oil palm empty fruit bunch fibres into ruminant feed. Considering widespread problems encountered by mushroom growers from use of solid seeds, especially in cases of contaminant agents infecting cultivated bags and inconsistencies in yield, we diverted our focus to utilising liquid seeds as alternative inocula for mushroom cultivation. These problems provide us opportunities to look into the issues and address the problems faced by mushroom growers. However, the technology of producing liquid seed at laboratory scale needs to be primed for commercial production. This paper discusses developmental aspects of mushroom liquid seed at commercial scale for the advancement of the country's mushroom industry. (author)

  20. Methodology for evaluation of industrial CHP production

    Pavlovic, Nenad V.; Studovic, Milovan

    2000-01-01

    At the end of the century industry switched from exclusive power consumer into power consumer-producer which is one of the players on the deregulated power market. Consequently, goals of industrial plant optimization have to be changed, making new challenges that industrial management has to be faced with. In the paper is reviewed own methodology for evaluation of industrial power production on deregulated power market. The methodology recognizes economic efficiency of industrial CHP facilities as a main criterion for evaluation. Energy and ecological efficiency are used as additional criteria, in which implicit could be found social goals. Also, methodology recognizes key and limit factors for CHP production in industry. It could be successful applied, by use of available commercial software for energy simulation in CHP plants and economic evaluation. (Authors)

  1. Industrial production of RHIC magnets

    Anerella, M.D.; Fisher, D.H.; Sheedy, E.; McGuire, T.

    1996-01-01

    RHIC 8 cm aperture dipole magnets and quadrupole cold masses are being built for Brookhaven National Laboratory (BNL) by Northrop Grumman Corporation at a production rate of one dipole magnet and two quadrupole cold masses per day. This work was preceded by a lengthy Technology Transfer effort which is described elsewhere. This paper describes the tooling which is being used for the construction effort, the production operations at each workstation, and also the use of trend plots of critical construction parameters as a tool for monitoring performance in production. A report on the improvements to production labor since the start of the programs is also provided. The magnet and cold mass designs, and magnetic test results are described in more detail in a separate paper

  2. Towards the industrial solar production of lime

    Meier, A.; Bonaldi, E. [QualiCal SA, Bergamo (Italy); Cella, G.M. [QualiCal SA, Bergamo (Italy); Lipinski, W.; Palumbo, R.; Steinfeld, A. [ETH Zuerich (Switzerland) and PSI; Wieckert, C.; Wuillemin, D.

    2002-03-01

    A new industrial concept that aims at the development of the chemical engineering technology for the solar production of lime is being examined. To establish the technical feasibility, a 10 kW solar reactor has been designed, constructed, and experimentally tested at a high-flux solar furnace. The quality of the produced solar lime meets industrial standards. (author)

  3. Personal Selling for the Forest Products Industry

    Smith, Robert L. (Robert Lee), 1955 August 21-; Hansen, Eric, 1968-; Olah, David F.

    2009-01-01

    The role of salespeople in today's forest products industry is evolving from order taking and price quoting to promoting mutually profitable value exchanges. This publication details the salesperson's responsibilities, describes successful sales strategies, and lists additional available resources.

  4. DeUterium industrial production - tome 8

    Chagas, T.P.

    1987-01-01

    Some selected bibliographical references about processes for deuterium industrial production are presented, as follow: isotope exchange H 2 S-H 2 O and NH 3 -H 2 , eletrolysis and distillation. (E.G.) [pt

  5. Industrial Products for Beam Instrumentation

    Schmickler, Hermann

    2001-01-01

    In various branches of high technology industry there has been considerable progress in the past years which could be used for beam instrumentation. The subject will be introduced by two short demonstrations: a demonstration of modern audio electronics with 24bit-96kHz ADC, digital signal electronics and application programs under windows on a PC, which allow to change the parameters of the signal treatment. Potential applications are data monitoring at constant sampling frequency, orbit feedbacks (including high power audio amplifiers), noise reduction on beam current transformers... digital treatment of video signals webcams, frame grabbers, CCD-data via USB, all one needs for image acquisitions, in particular interesting for profile measurements. These introductory demonstrations will not last longer than 30 minutes. The remaining time will be used to pass through the audience collecting information into a two dimensional table, which shall contain as row index the accelerator and as column index the t...

  6. Bioactive compounds in industrial red seaweed used in carrageenan production

    Naseri, Alireza; Holdt, Susan Løvstad; Jacobsen, Charlotte

    The main seaweed species used in industrial scale for carrageenan production are Kappaphycus alvarezii, Eucheuma denticulatum, Chondrus crispus, Gigartina sp. and also Furcellaria lumbricalis as a source of furcellaran (Danish Agar) is also classified together with carrageenan. The chemical...... compositions of these five industrial red seaweeds were evaluated. Protein, lipid and total phenolic content, total amino acid and composition, fatty acid profile, tocopherol content and pigment composition were analyzed. The results demonstrate that there is potential possibility to develop a method...

  7. Industrial production of products like petroleum

    Baurier, P J.H.

    1925-02-25

    This invention has as its object a process for separating tars, oils, or gases coming from the distillation of carbonaceous materials, such as lignities or shales, to separate all other substances of the same kind and to prepare products like petroleum. The process for present consideration consists essentially in achieving simultaneously hydrogenation of the material (treated for conversion to stable products) and desulfurization of the materials showing the following characteristics: The substances to be treated are fed in the gaseous state, as vapors or pulverized and made to react at a temperature of 300 to 450/sup 0/C in the presence of excess water vapor, on divided metals capable of decomposing the water with release of hydrogen, at a temperature below 450/sup 0/C.

  8. Chemistry in production of heavy water and industrial solvents

    Thomas, P.G.

    2015-01-01

    Industries are the temples of modern science built on the robust foundation of science and technology. The genesis of giant chemical industries is from small laboratories where the scientific thoughts are fused and transformed into innovative technologies Heavy water production is an energy intensive giant chemical industry where various hazardous and flammable chemicals are handled, extreme operating conditions are maintained and various complex chemical reactions are involved. Chemistry is the back bone to all chemical industrial activities and plays a lead role in heavy water production also. Heavy Water Board has now mastered the technology of design, construction, operation and maintenance of Heavy Water plants as well as fine tuning of the process make it more cost effective and environment friendly. Heavy Water Board has ventured into diversified activities intimately connected with our three stages of Nuclear Power Programme. Process development for the production of nuclear grade solvents for the front end and back end of our nuclear fuel cycle is one area where we have made significant contributions. Heavy Water Board has validated, modified and fine-tuned the synthesis routes for TBP, D2EHPA, TOPO, TAPO TIAP, DNPPA, D2EHPA-II, DHOA etc and these solvents were accepted by end users. Exclusive campaigns were carried out in laboratory scale, bench scale and pilot plant scale before scaling up to industrial scale. The process chemistry is understood very well and chemical parameters were monitored in every step of the synthesis. It is a continual improvement cycle where fine tuning is carried out for best quality and yield of product at lowest cost. In this presentation, an attempt is made to highlight the role of chemistry in the production of Heavy Water and industrial solvents

  9. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin.

    Rodríguez-Sáiz, Marta; de la Fuente, Juan Luis; Barredo, José Luis

    2010-10-01

    Astaxanthin is a red xanthophyll (oxygenated carotenoid) with large importance in the aquaculture, pharmaceutical, and food industries. The green alga Haematococcus pluvialis and the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous are currently known as the main microorganisms useful for astaxanthin production at the industrial scale. The improvement of astaxanthin titer by microbial fermentation is a requirement to be competitive with the synthetic manufacture by chemical procedures, which at present is the major source in the market. In this review, we show how the isolation of new strains of X. dendrorhous from the environment, the selection of mutants by the classical methods of random mutation and screening, and the rational metabolic engineering, have provided improved strains with higher astaxanthin productivity. To reduce production costs and enhance competitiveness from an industrial point of view, low-cost raw materials from industrial and agricultural origin have been adopted to get the maximal astaxanthin productivity. Finally, fermentation parameters have been studied in depth, both at flask and fermenter scales, to get maximal astaxanthin titers of 4.7 mg/g dry cell matter (420 mg/l) when X. dendrorhous was fermented under continuous white light. The industrial scale-up of this biotechnological process will provide a cost-effective method, alternative to synthetic astaxanthin, for the commercial exploitation of the expensive astaxanthin (about $2,500 per kilogram of pure astaxanthin).

  10. Eco-efficiency in industrial production

    von Raesfeld Meijer, Ariane M.; de Bakker, F.G.A.; Groen, Arend J.

    2001-01-01

    English AbstractThis report of the MATRIC project investigated 'Eco-efficiency in industrial production'. After a general introduction into the domain of eco-efficiency, the first part of this report further focusses on the organisation of Product-Oriented Environmental Management (POEM), which is

  11. Drivers for Cleaner Production in Malaysian Industry

    Wangel, Arne

    2003-01-01

    This working paper tries to piece together information on regulatory initiatives promoting cleaner production (CP) in Malaysian industry, as well as points of discussion on environmental performance in the sector. It draws upon initial data collection by the team of the research project ‘A Study...... on Promotion and Implementation of Cleaner Production Practices in Malaysian Industry - Development of a National Program and Action Plan for Promotion of Cleaner Production’, which is coordinated by Institute of Environmental and Resource Management, Universiti Teknologi Malaysia; the objective of this study...... is ‘to formulate, establish and develop a comprehensive "National Cleaner Production Promotion Program" for Malaysia’....

  12. Pulsed corona demonstrator for semi-industrial scale air purification

    Beckers, F.J.C.M.; Hoeben, W.F.L.M.; Huiskamp, T.; Pemen, A.J.M.; Heesch, van E.J.M.

    2013-01-01

    Although pulsed corona technology for air purification is widely investigated by the lab experiments, large-scale application has yet to be proven. Industrial systems require large flow handling and thus, high corona power. An autonomous semi-industrial scale pilot wire-cylinder type corona reactor

  13. Comparative analyses of industrial-scale human platelet lysate preparations.

    Pierce, Jan; Benedetti, Eric; Preslar, Amber; Jacobson, Pam; Jin, Ping; Stroncek, David F; Reems, Jo-Anna

    2017-12-01

    Efforts are underway to eliminate fetal bovine serum from mammalian cell cultures for clinical use. An emerging, viable replacement option for fetal bovine serum is human platelet lysate (PL) as either a plasma-based or serum-based product. Nine industrial-scale, serum-based PL manufacturing runs (i.e., lots) were performed, consisting of an average ± standard deviation volume of 24.6 ± 2.2 liters of pooled, platelet-rich plasma units that were obtained from apheresis donors. Manufactured lots were compared by evaluating various biochemical and functional test results. Comprehensive cytokine profiles of PL lots and product stability tests were performed. Global gene expression profiles of mesenchymal stromal cells (MSCs) cultured with plasma-based or serum-based PL were compared to MSCs cultured with fetal bovine serum. Electrolyte and protein levels were relatively consistent among all serum-based PL lots, with only slight variations in glucose and calcium levels. All nine lots were as good as or better than fetal bovine serum in expanding MSCs. Serum-based PL stored at -80°C remained stable over 2 years. Quantitative cytokine arrays showed similarities as well as dissimilarities in the proteins present in serum-based PL. Greater differences in MSC gene expression profiles were attributable to the starting cell source rather than with the use of either PL or fetal bovine serum as a culture supplement. Using a large-scale, standardized method, lot-to-lot variations were noted for industrial-scale preparations of serum-based PL products. However, all lots performed as well as or better than fetal bovine serum in supporting MSC growth. Together, these data indicate that off-the-shelf PL is a feasible substitute for fetal bovine serum in MSC cultures. © 2017 AABB.

  14. Industrial requirements for interactive product configurators

    Queva, Matthieu Stéphane Benoit; Probst, Christian W.; Vikkelsøe, Per

    2009-01-01

    The demand for highly customized products at low cost is driving the industry towards Mass Customization. Interactive product configurators play an essential role in this new trend, and must be able to support more and more complex features. The purpose of this paper is, firstly, to identify...... requirements for modern interactive configurators. Existing modeling and solving technologies for configuration are then reviewed and their limitations discussed. Finally, a proposition for a future product configuration system is described....

  15. GROWTH PERFORMANCE AND PRODUCTIVITY OF RUBBER & PLASTIC PRODUCTS INDUSTRY IN PUNJAB

    GULSHAN KUMAR

    2010-01-01

    Full Text Available Present study is an endeavour to investigate growth pattern and productivity trends in small scale rubber and plastic products industry of Punjab. The growth of industry has been gauged in terms of variables - number of units, fixed investment, employment and production. Yearly growth rates have been computed to catch year- to- year fluctuations in growth and compound annual growth rates (CAGRs have been worked out to ascertain the impact of the policies of liberalized regime on growth of this industry. Productivity trends have been sketched in terms of partial factor productivities of labour and capital. In order to understand the strengths and weaknesses of the industry, SWOT analysis has been conducted. The study revealed that the liberalisation has promoted the use of capital intensive and labour saving techniques of production leading to a dismal growth of employment and sluggish growth of number of units.

  16. Productivity benefits of industrial energy efficiency measures

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  17. Cost effective pilot scale production of biofertilizer using Rhizobium ...

    We standardized the protocol for pilot scale production of Rhizobium and Azotobacter biofertilizer technology using region specific and environmental stress compatible strains isolated from various agro climatic regions of Odisha, India. The cost benefit of biofertilizer production through a cottage industry is also presented.

  18. Solar heating of air used for the drying at medium and large scale, of forestry, fishery, agriculture, cattle and industrial products

    Gutierrez, F.

    1991-01-01

    The drying process and/or preservation of grains is improved through the previous heating of air. In many cases it is enough to raise the temperature only a few degrees (from 10 to 15 Centigrade), in order to increase their capacity to absorb dampness. This can be done using very simple solar captors. A massive use of solar energy in the drying process of products, by means of hot air, can only be done with very expensive equipment. For this reason, it is recommended the use of lower thermic heaters, which will have a lower cost too. (Author)

  19. Forest Products Industry of the Future

    Los Alamos Technical Associates, Inc

    2002-05-01

    Los Alamos Technical Associates, Inc (LATA) conducted an evaluation of the potential impact and value of a portion of the current portfolio of r&d projects supported by the Office of Industrial Technology and the Forest Products Industry of the Future. The mission of the evaluation was to (a) assess the potential impact of the projects to meet the critical goals of the industry as identified in the vision and roadmapping documents. (b) Evaluate the relationship between the current portfolio of projects and the Agenda 202 Implementation Plan. In addition, evaluate the relationship between the portfolio and the newly revised draft technology strategy being created by the industry. (c) Identify areas where current efforts are making significant progress towards meeting industry goals and identify areas where additional work my be required to meet these goals. (d) Make recommendations to the DOE and the Forest Products Industry on possible improvements in the portfolio and in the current methodology that DOE uses to assess potential impacts on its R&D activities.

  20. Product modelling in the seafood industry

    Jonsdottir, Stella; Vesterager, Johan

    1997-01-01

    driven and proactive to comply with the increasing competition, in such a way that the fish processor issues new products covering both the current and especially latent future consumer demands. This implies a need for new systematic approaches in the NPD as procedures and tools, which integrate...... based integration obtained by the CE approach and tools. It is described how the knowledge and information of a seafood product can be modelled by using object oriented techniques.......The paper addresses the aspects of Concurrent Engineering (CE) as a means to obtain integrated product development in the seafood industry. It is assumed that the future New Product Development (NPD) in seafood industry companies will shift from being retailer driven and reactive to be more company...

  1. New Product Introduction in the Pharmaceutical Industry

    Hansen, Klaus Reinholdt Nyhuus

    Due to the limited time of the monopoly provided by patent protection that is used for recouping the R&D investment, pharmaceutical companies focus on keeping time-to-market for new products as short as possible. This process is however getting more uncertain, as the outcome of clinical trials...... is unknown and negotiations with authorities have become harder, making market introduction more difficult. This dissertation treats the new product introduction process in the pharmaceutical industry from an operations perspective. The overarching aim of this dissertation is to improve the planning...... uncertainty and several important industry characteristics. The model is used to gain several insights on the use of risk packaging and on keeping time-to-market short. As capacity in secondary pharmaceutical production is critical for product availability, a capacity planning model for a new drug delivery...

  2. Optimization of large-scale industrial systems : an emerging method

    Hammache, A.; Aube, F.; Benali, M.; Cantave, R. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2006-07-01

    This paper reviewed optimization methods of large-scale industrial production systems and presented a novel systematic multi-objective and multi-scale optimization methodology. The methodology was based on a combined local optimality search with global optimality determination, and advanced system decomposition and constraint handling. The proposed method focused on the simultaneous optimization of the energy, economy and ecology aspects of industrial systems (E{sup 3}-ISO). The aim of the methodology was to provide guidelines for decision-making strategies. The approach was based on evolutionary algorithms (EA) with specifications including hybridization of global optimality determination with a local optimality search; a self-adaptive algorithm to account for the dynamic changes of operating parameters and design variables occurring during the optimization process; interactive optimization; advanced constraint handling and decomposition strategy; and object-oriented programming and parallelization techniques. Flowcharts of the working principles of the basic EA were presented. It was concluded that the EA uses a novel decomposition and constraint handling technique to enhance the Pareto solution search procedure for multi-objective problems. 6 refs., 9 figs.

  3. Opportunities for the forest products industries

    Alan W. Rudie

    2011-01-01

    The concept of sustainable harvests is not new to lumber and paper companies—they have been concerned about it and been practicing it for decades, long before it became the headline in a newspaper article. After decades of static products and markets, the industry is offered an opportunity to add products in a new business sector—fuels and chemicals. Although paper...

  4. GELCASTING: From laboratory development toward industrial production

    Omatete, O.O.; Janney, M.A.; Nunn, S.D.

    1995-07-01

    Gelcasting, a ceramic forming process, was developed to overcome some of the limitations of other complex-shape forming techniques such as injection molding and slip casting. In gelcasting, a concentrated slurry of ceramic powder in a solution of organic monomers is poured into a mold and then polymerized in-situ to form a green body in the shape of the mold cavity. Thus, it is a combination of polymer chemistry with slip processing and represents minimal departure from standard ceramic processing. The simplicity of the process has attracted industrial partners and by collaboration between them and the developers, the process is being advanced from the laboratory toward industrial production.

  5. management and growth paradox of rural small-scale industrial

    User

    Keywords: Rural Small-Scale Industries, firm growth, management, proprietors, workforce ... veloping countries as a solution to the problem of scarcity .... In the analysis logistic regression sta- ..... of imported raw materials such as high cost and.

  6. Geotourism products industry element: A community approach

    Basi Arjana, I. W.; Ernawati, N. M.; Astawa, I. K.

    2018-01-01

    The ability of a tourism area to provide products that could satisfy the needs and desires of tourists is the key to success in developing tourism. Geotourists are a niche market that has specific needs. This study aims to identify the needs of geotourists, which is undertaken by evaluating the perceptions of geotourists with respect to 6 elements which are the industrial aspects of community-based tourism products, using a qualitative approach. In-depth interview technique is used as data collection method. These products are as follows: there are five major categories of geotourism commercial elements, which include: travel services, accommodation, transportation, food and beverage, souvenir and packaging. The research results show that there are various products which are the output of the industry elements desired by tourists in Batur representing the needs of different market segments and accommodating the sustainability of nature. These needs are arised and inspired by local culture. The necessity to offer an assortment of products packages is indicated to provide plentiful options for tourists, to lengthen tourist’s stay, and also to introduce various product components available in Batur. The research output could be used and contribute in providing a reference in developing geotourism products.

  7. Gamma Ray Tomographic Scan Method for Large Scale Industrial Plants

    Moon, Jin Ho; Jung, Sung Hee; Kim, Jong Bum; Park, Jang Geun

    2011-01-01

    The gamma ray tomography systems have been used to investigate a chemical process for last decade. There have been many cases of gamma ray tomography for laboratory scale work but not many cases for industrial scale work. Non-tomographic equipment with gamma-ray sources is often used in process diagnosis. Gamma radiography, gamma column scanning and the radioisotope tracer technique are examples of gamma ray application in industries. In spite of many outdoor non-gamma ray tomographic equipment, the most of gamma ray tomographic systems still remained as indoor equipment. But, as the gamma tomography has developed, the demand on gamma tomography for real scale plants also increased. To develop the industrial scale system, we introduced the gamma-ray tomographic system with fixed detectors and rotating source. The general system configuration is similar to 4 th generation geometry. But the main effort has been made to actualize the instant installation of the system for real scale industrial plant. This work would be a first attempt to apply the 4th generation industrial gamma tomographic scanning by experimental method. The individual 0.5-inch NaI detector was used for gamma ray detection by configuring circular shape around industrial plant. This tomographic scan method can reduce mechanical complexity and require a much smaller space than a conventional CT. Those properties make it easy to get measurement data for a real scale plant

  8. Preparative electrophoresis of industrial fission product solutions

    Tret, Joel

    1971-07-01

    The aim of this work is to contribute to the development of the continuous electrophoresis technique while studying its application in the preparative electrophoresis of industrial fission product solutions. The apparatus described is original. It was built for the purposes of the investigation and proved very reliable in operation. The experimental conditions necessary to maintain and supervise the apparatus in a state of equilibrium are examined in detail; their stability is an important factor, indispensable to the correct performance of an experiment. By subjecting an industrial solution of fission products to preparative electrophoresis it is possible, according to the experimental conditions, to prepare carrier-free radioelements of radiochemical purity (from 5 to 7 radioelements): 137 Cs, 90 Sr, 141+144 Ce, 91 Y, 95 Nb, 95 Zr, 103+106 Ru. (author) [fr

  9. Promotion on the industrial products market

    Raluca-Dania TODOR

    2015-12-01

    Full Text Available The literature abounds with articles and books on marketing and especially promoting consumer products. As consumers for these goods we are exposed each day to promotional messages of major product brands in order to attract or retain us when we are already buyers. Fewer things have been written about how to do promotion of industrial goods, which are a special category of goods, but have a very high quota in trade of goods, both nationally and internationally. This article will analy

  10. Biological hydrogen production from industrial wastewaters

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  11. Analysis of Expectations of Forest Products Industry from Forest Industry Engineering Education

    GEDİK, Tarık; ÇİL, Muhammet; SEVİM KORKUT, Derya; CEMİL AKYÜZ, Kadri; KOŞAR, Gökşen; BEKAR, İlter

    2016-01-01

    Forest industry engineers, representing the qualified labor within the forest products industry, choose their field of study either deliberately or by chance. This study explores the main skill sets of forest industry engineers required by forest products industry. As representatives of forest industry owner of forest products companies were surveyed about their views on the qualifications a forest industry engineer must have.This study covered total 7111 companies registered to TOBB as a for...

  12. Production capability of the US uranium industry

    deVergie, P.C.; Anderson, J.R.; Miley, J.W.; Frederick, C.J.L.

    1980-01-01

    Demand for U 3 O 8 through the late 1990s could be met at the grades and costs represented by the $30 resources, although for the next 3 or 4 years, production will probably be from the lower cost portions of these resources if prices remain low. However, to meet currently projected uranium requirements beyond the year 2000, there will have to be a transition by the mid-1990s to higher cost and lower grade production in order to include supply from the additional increment of resources available between the $30 and $50 levels. Plans and financial commitments required to accomplish such a transition must be initiated y the mid-1980s, since lead times are increasing for exploration and for mill licensing and construction. Engineering planning and feasibility analyses would have to be carried out under a more advanced time frame than previously required. The importance of the potential resources can easily be seen. In meeting the high-case demand during the years 2005 through 2019 more than 50% of the production would be from resources assigned to the $50 probable potential resource category. By about the year 2006, there will have had to be considerable development of the possible, and perhaps, some of the speculative resources to assure continued production expansion; by 2020, more than 50% of the production would depend on the previous successes in finding and developing such resources. The continuation of the current trend in production curtailment and decreasing exploration will significantly lessen the domestic uranium industry's ability to respond quickly to the projected increases in uranium requirements. The industry's future will be unsettled until it preceives clear indications of demand and price incentives that will justify long-term capital investments

  13. Application of RCM to a medium scale industry

    Deshpande, V.S.; Modak, J.P.

    2002-01-01

    The factors which are assuming considerable importance in cost effective decision making of operation of any industrial enterprise are in the order of significance liability, safety and environmental conditions. Hence, preventive maintenance (PM) optimisation is providing wide opportunities and challenges to everyone involved in all aspects of operation of industrial enterprise. Reliability centred maintenance (RCM) methodology offers the best available strategy for PM optimisation. It incorporates a new understanding of the ways in which equipment fails. In this paper, the concept of RCM has been applied to steel melting shop of a medium scale steel industry. By systematically applying the RCM methodology, failures, failure causes and effects on the system are analysed. To preserve the system function, PM categories are suggested for various failure modes in the components such as (1) time directed (2) condition directed (3) failure finding (4) run to failure. Features of predictive maintenance of a medium scale steel industry are deduced through this paper in a rather generalised form

  14. Isotopes for the improvement of industrial products

    Schultze-Kraft, P.

    1978-01-01

    Full text: For many years the International Atomic Energy Agency has been giving technical assistance to developing countries on the application of radioisotopes in medicine, agriculture and hydrology. With increasing industrialization, these countries feel a growing need for the use of isotopic methods as a means of improving the control of production processes and the quality of industrial products. In response to the demand for training in this field, the IAEA recently held its first Regional Training Course in the Practical Use of Radioisotope Techniques in Industry for Process and Quality Control. The course was given from 27 March to 28 April 1978 at the Instituto Venezolano de Investigaciones Cientificas (IVIC) in Caracas, Venezuela, in co-operation with the Consejo Nacional para el Desarrollo de la Industria Nuclear (CONAN) and the Junta del Acuerdo de Cartagena. It was financed jointly by the IAEA and CONAN, and in addition received a special contribution by the Government of the Federal Republic of Germany. Participants were 18 engineers and physicists from Bolivia, Chile, Colombia, Ecuador, Peru and Venezuela, and the lecturers came from Denmark, Federal Republic of Germany, Poland and the host country. Course directors were Dr. J.J. Henriquez (IVIC) and Dr. L. Wiesner (IAEA expert). The idea of the course was to demonstrate that radioisotope techniques can considerably reduce production costs by optimizing industrial processes and making more efficient use of raw materials. It is estimated that the paper industry in the USA, for example, is saving about 100 million dollars per year through the application of radioisotopes. During the training course, the participants gained practical experience in applying isotopic techniques in several fields: in a paper mill at Moron they measured the weight per surface area, and in the cement factory of Ocumare del Tuy the residence time of clinker, at the new international airport of Maiquetia they determined the

  15. Industrial plants for production of highly enriched nitrogen-15

    Krell, E.; Jonas, C.

    1977-01-01

    A discussion is presented of the present stage of development of large-scale enrichment of 15 N. The most important processes utilized to separate nitrogen isotopes, namely chemical exchange in the NO/NO 2 /HNO 3 system and low-temperature distillation of NO at -151 0 C, are compared, especially with respect to their economics and use of energy. As examples, chemical exchange plants in the GDR are discussed, and the research activities necessary to optimize the process, especially to solve aerodynamic, hydrodynamic, interface and processing problems, are reviewed. Good results were obtained by the choice of an optimum location and the design of a plant for pre-enrichment to 10 at.% 15 N and an automatically operating two-section cascade for the high enrichment of 15 N to more than 99 at.%. The chemical industry has taken over operation of the plant with the consequence that the raw materials are all available without additional transport. All by-products (nitrous gases and sulphuric acid) are returned for use elsewhere within the industry. The technology of the plant has been chosen so that the quantity of highly enriched product can be varied within a wide range. The final product is used to synthesize more than 250 different 15 N-labelled compounds which are also produced on an industrial scale. (author)

  16. Future hydrogen markets for large-scale hydrogen production systems

    Forsberg, Charles W.

    2007-01-01

    The cost of delivered hydrogen includes production, storage, and distribution. For equal production costs, large users (>10 6 m 3 /day) will favor high-volume centralized hydrogen production technologies to avoid collection costs for hydrogen from widely distributed sources. Potential hydrogen markets were examined to identify and characterize those markets that will favor large-scale hydrogen production technologies. The two high-volume centralized hydrogen production technologies are nuclear energy and fossil energy with carbon dioxide sequestration. The potential markets for these technologies are: (1) production of liquid fuels (gasoline, diesel and jet) including liquid fuels with no net greenhouse gas emissions and (2) peak electricity production. The development of high-volume centralized hydrogen production technologies requires an understanding of the markets to (1) define hydrogen production requirements (purity, pressure, volumes, need for co-product oxygen, etc.); (2) define and develop technologies to use the hydrogen, and (3) create the industrial partnerships to commercialize such technologies. (author)

  17. Productive efficiency in the banking industry

    Martín Leandro Dutto Giolongo

    2016-07-01

    Full Text Available The goal of this paper is to estimate the productive efficiency of Argentine banks. For this purpose, panel data of the universe of banks under the supervision of the Central Bank of the Republic of Argentina (BCRA has been collected. In order to build the bank´s indicators, we used a database of 66 institutions, with annual information for the period 2009-2013. The sources of information were both the BCRA´s web site (www.bcra.gov.ar, and the Buenos Aires Stock Exchange´s web site (www.bolsar.com. It has been selected an efficiency indicator ranging between 0 and 1, meaning the lowest and highest level of efficiency, respectively. The concept of efficiency used here is a relative one, because it considers a Bank´s performance in relation to the behavior of the best players in the industry, being the latter the base of the industry benchmark or frontier. The results show that the mean efficiency of Argentine banks is 0,8277 in the specific period under consideration. The comparison with the results of other studies relating efficiency and competitive pressure, didn´t allow us to infer that the Argentine banking industry experienced in the period a high level of competition

  18. Factors Influencing Productivity Change in the Forest Products Industry,

    1985-04-01

    y Calificaciones. Una . Prueba De La Hipotesis de Hirschman Para La Industria 1 39 . * Lationoamericana. El Trimestre Economico XLVTI(3):613-650...Association federale des Syndicates de Producterus de Papiers, Cartons et Celluloses. 1958. Organization et Productivite dans les Industries du Papier, du...Carton et de la Cellulose. Summary in: - Productivity Measurement Review 13:41-46. Atkinson, R. C. 1980. Tax Incentives and Research. Science 208:449

  19. The impact of labour productivity on the Swedish construction industries

    Forsberg, Azam

    2007-01-01

    There have been debates concerning what can be done about the current low labour productivity in the Swedish construction industries. High production cost in the construction industries has been a burning issue for a long time. On the other hand, process industries and organisations have taken the advantage of labour productivity measurement to reduce their production cost and eliminate non value-added activities. The purpose of this paper is to examine, why and how the process industries and...

  20. Multi-scale modeling for sustainable chemical production.

    Zhuang, Kai; Bakshi, Bhavik R; Herrgård, Markus J

    2013-09-01

    With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes associated with the development and implementation of a sustainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process, chemical industry, economy, and ecosystem. In addition, we propose a multi-scale approach for integrating the existing models into a cohesive framework. The major benefit of this proposed framework is that the design and decision-making at each scale can be informed, guided, and constrained by simulations and predictions at every other scale. In addition, the development of this multi-scale framework would promote cohesive collaborations across multiple traditionally disconnected modeling disciplines to achieve sustainable chemical production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Michigan timber industry: An assessment of timber product output and use, 1990. Forest Service resource bulletin

    Hackett, R.L.; Pilon, J.

    1993-01-01

    The bulletin discusses recent Michigan forest industry trends and reports the results of a detailed study of forest industry, industrial roundwood production, and associated primary mill wood and bark residue in Michigan in 1990. Such detailed information is necessary for intelligent planning and decisionmaking in wood procurement, forest resource management, and forest industry development. Likewise, researchers need current forest industry and industrial roundwood information for planning projects. All board foot data in the report have been converted to International 1/4 inch scale by applying a multiplier of 1.08 to all saw-log volume reported in Scribner Decimal C scale by sawmills, a multiplier of 1.04 to all veneer log volume reported in Scribner Decimal C scale by veneer mills, a multiplier of 1.38 to all saw-log volume reported in Doyle scale by sawmills, and a multiplier of 1.14 to all veneer log volume reported in Doyle scale by veneer mills

  2. Montana's forest products industry and timber harvest, 2004

    Timothy P. Spoelma; Todd A. Morgan; Thale Dillon; Alfred L. Chase; Charles E. Keegan; Larry T. DeBlander

    2008-01-01

    This report traces the flow of Montana's 2004 timber harvest through the primary wood-using industries; provides a description of the structure, capacity, and condition of Montana's primary forest products industry; and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as changes in harvest, production...

  3. Industrial powder metallurgy processing for production of high field Nb3Sn

    Hecker, A.; Gregory, E.; Wong, J.; Thieme, C.L.H.; Foner, S.

    1988-01-01

    Technology transfer is discussed for fabricating Nb 3 Sn(Ti) via powder metallurgy methods from laboratory scale production at MIT to industrial production at Supercon Inc. Industrial production techniques such as hydrostatic extrusion and drawing have produced superconducting wires with promising critical current densities in preliminary field measurements. Initial steps toward process modification and optimization to improve the commercial feasibility of the powder metallurgy process are evaluated. These modifications are aimed at reducing production time and increasing process flexibility

  4. Production planning and scheduling in refinery industry

    Persson, Jan.

    1999-01-01

    In this thesis we consider production planning and scheduling in refinery industry, in particular we study the planning and scheduling at the Nynaes AB refinery and at the Scanraff AB refinery. The purpose is to contribute to the development and the use of optimization models to support efficient decision making. We identify various decision problems concerning the aggregated production planning, the shipment planning, the scheduling of operation modes, and the utilization of pipes and tanks; and we discuss the potential to successfully apply optimization models on these problems. We formulate a mixed integer linear programming model for the scheduling of operation modes at Nynaes. The model concerns decisions about which mode of operation to use at a particular point in time in order to minimize costs of changing modes and costs of keeping inventories, given demands for products. We derive several types of valid inequalities for this mathematical problem and show how these inequalities can improve the lower bound obtained from the linear programming relaxation of the problem. We also show how the valid inequalities can be used to improve the performance of a branch and bound solution approach. Further, a tabu search heuristic is developed for the scheduling problem. The solution methods are tested on data provided by the Nynaes refinery, and the performance of the methods are discussed. We present several extensions of the proposed model, and illustrate how the model can be used to support both operational and strategic decision making at the refinery. 66 refs, 6 figs, 32 tabs. Also published as: Dissertation from the International Graduate School of Management and Industrial Engineering, No 25, Licenciate Thesis

  5. Production planning and scheduling in refinery industry

    Persson, Jan

    1999-07-01

    In this thesis we consider production planning and scheduling in refinery industry, in particular we study the planning and scheduling at the Nynaes AB refinery and at the Scanraff AB refinery. The purpose is to contribute to the development and the use of optimization models to support efficient decision making. We identify various decision problems concerning the aggregated production planning, the shipment planning, the scheduling of operation modes, and the utilization of pipes and tanks; and we discuss the potential to successfully apply optimization models on these problems. We formulate a mixed integer linear programming model for the scheduling of operation modes at Nynaes. The model concerns decisions about which mode of operation to use at a particular point in time in order to minimize costs of changing modes and costs of keeping inventories, given demands for products. We derive several types of valid inequalities for this mathematical problem and show how these inequalities can improve the lower bound obtained from the linear programming relaxation of the problem. We also show how the valid inequalities can be used to improve the performance of a branch and bound solution approach. Further, a tabu search heuristic is developed for the scheduling problem. The solution methods are tested on data provided by the Nynaes refinery, and the performance of the methods are discussed. We present several extensions of the proposed model, and illustrate how the model can be used to support both operational and strategic decision making at the refinery. 66 refs, 6 figs, 32 tabs. Also published as: Dissertation from the International Graduate School of Management and Industrial Engineering, No 25, Licenciate Thesis.

  6. Production planning and scheduling in refinery industry

    Persson, Jan

    1999-06-01

    In this thesis we consider production planning and scheduling in refinery industry, in particular we study the planning and scheduling at the Nynaes AB refinery and at the Scanraff AB refinery. The purpose is to contribute to the development and the use of optimization models to support efficient decision making. We identify various decision problems concerning the aggregated production planning, the shipment planning, the scheduling of operation modes, and the utilization of pipes and tanks; and we discuss the potential to successfully apply optimization models on these problems. We formulate a mixed integer linear programming model for the scheduling of operation modes at Nynaes. The model concerns decisions about which mode of operation to use at a particular point in time in order to minimize costs of changing modes and costs of keeping inventories, given demands for products. We derive several types of valid inequalities for this mathematical problem and show how these inequalities can improve the lower bound obtained from the linear programming relaxation of the problem. We also show how the valid inequalities can be used to improve the performance of a branch and bound solution approach. Further, a tabu search heuristic is developed for the scheduling problem. The solution methods are tested on data provided by the Nynaes refinery, and the performance of the methods are discussed. We present several extensions of the proposed model, and illustrate how the model can be used to support both operational and strategic decision making at the refinery. 66 refs, 6 figs, 32 tabs. Also published as: Dissertation from the International Graduate School of Management and Industrial Engineering, No 25, Licenciate Thesis

  7. Economies of scale, technology, and intra-industry trade

    Inagawa Nobuo

    1989-01-01

    The purpose of this paper is to test empirically economies of scale, defined by technologyin Intra-Industry Trade(IIT). B.Balassa found first the existence of IIT. Grubeland Lloyd, Linder, Dreze, and others treated IIT as consisting of final goods.But P.Raymentfound that IIT consists mostly of intermediate goods and he tried to explain IIT byeconomies of scale and specialization. However, to test the relationship between economiesof scale and IIT, I will use I.Ozaki's definition on economies ...

  8. Chemical production from industrial by-product gases: Final report

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  9. Industrial scale-plant for HLW partitioning in Russia

    Dzekun, E.G.; Glagolenko, Y.V.; Drojko, E.G.; Kurochkin, A.I.

    1996-01-01

    Radiochemical plant of PA > at Ozersk, which was come on line in December 1948 originally for weapon plutonium production and reoriented on the reprocessing of spent fuel, till now keeps on storage HLW of the military program. Application of the vitrification method since 1986 has not essentially reduced HLW volumes. So, as of September 1, 1995 vitrification installations had been processed 9590 m 3 HLW and 235 MCi of radionuclides was included in glass. However only 1100 m 3 and 20.5 MCi is part of waste of the military program. The reason is the fact, that the technology and equipment of vitrification were developed for current waste of Purex-process, for which low contents of corrosion-dangerous impurity to materials of vitrification installation is characteristic of. With reference to HLW, which are growing at PA > in the course of weapon plutonium production, the program of Science-Research Works includes the following main directions of work. Development of technology and equipment of installations for immobilising HLW with high contents of impurity into a solid form at induction melter. Application of High-temperature Adsorption Method for sorption of radionuclides from HLW on silica gel. Application of Partitioning Method of radionuclides from HLW, based on extraction cesium and strontium into cobalt dicarbollyde or crown-ethers, but also on recovery of cesium radionuclides by sorption on inorganic sorbents. In this paper the results of work on creation of first industrial scale-plant for partitioning HLW by the extraction and sorption methods are reported

  10. Improving production control within the automotive industry

    Simon, R L

    1982-01-01

    The problems of controlling and minimising design and manufacturing information within the automotive industry are both costly and do not make maximum use of previous experience. With the advent of CAD/CAM, many new techniques have evolved for the speedy construction of design and manufacturing data bases. A means of binding together these data bases and controlling the design and process planning information is now presented in the form of Computervision's Migraphics and Miplan software. This gives a data retrieval capability from all area's of the production cycle including design and detail, numerical control and robotics, process planning, manufacture and procurement. Together with its numerous analytical capabilities this sorftware provides an excellent tool for the optimisation of manufacturing techniques, thus providing a complete CAD/CAM system from a single data base.

  11. Economies of scale and trends in the size of southern forest industries

    James E. Granskog

    1978-01-01

    In each of the major southern forest industries, the trend has been toward achieving economies of scale, that is, to build larger production units to reduce unit costs. Current minimum efficient plant size estimated by survivor analysis is 1,000 tons per day capacity for sulfate pulping, 100 million square feet (3/8- inch basis) annual capacity for softwood plywood,...

  12. Allergen sanitation in the food industry: a systematic industrial scale approach to reduce hazelnut cross-contamination of cookies.

    Röder, Martin; Baltruweit, Iris; Gruyters, Helwig; Ibach, Anja; Mücke, Ingo; Matissek, Reinhard; Vieths, Stefan; Holzhauser, Thomas

    2010-09-01

    Recently, we investigated the impact of shared equipment on cross-contamination of cookies at a pilot plant scale. Based on those findings, this study investigated the extent and subsequent sanitation of hazelnut cross-contamination (HNCC) of cookies at the industrial scale. Similarly, a product change from cookies with hazelnut ingredient to cookies without hazelnut was performed on standard equipment. HNCC in the hazelnut-free follow-up product was quantified by enzyme-linked immunosorbent assay for each production device and the applied cleaning procedure. All experiments were repeated in duplicate. The highest HNCC was found in concordance with previous studies after mere mechanical scraping: more than 1,000 mg of hazelnut protein per kg was quantified in the follow-up product after processing by a cookie machine. Additional cleaning with hot water decreased the HNCC irrespective of the processing device to levels at or below 1 mg of hazelnut protein per kg. Furthermore, raw materials for cookie production were monitored over a period of 24 months for unwanted preloads of hazelnut and peanut: hazelnut was quantified in 16% of the investigated raw materials as being between 0.26 and 90 mg/kg. Further critical control points at the industrial scale, where cross-contamination might occur, were identified but did not display noteworthy sources of cross-contamination. In conclusion, the quantitative monitoring of the cleaning efficiency at the industrial scale confirmed the procedure of manual scraping plus wet cleaning as a qualified sanitation procedure to effectively reduce the hazelnut protein cross-contamination down to a level at which severe hazelnut-related allergic reactions are unlikely to occur.

  13. Alaska's timber harvest and forest products industry, 2005

    Jeff M. Halbrook; Todd A. Morgan; Jason P. Brandt; Charles E. Keegan; Thale Dillon; Tara M. Barrett

    2009-01-01

    This report traces the flow of timber harvested in Alaska during calendar year 2005, describes the composition and operations of the state's primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as trends in timber harvest, production, and sales of primary wood products....

  14. Alaska’s timber harvest and forest products industry, 2011

    Erik C. Berg; Charles B. Gale; Todd A. Morgan; Allen M. Brackley; Charles E. Keegan; Susan J. Alexander; Glenn A. Christensen; Chelsea P. McIver; Micah G. Scudder

    2014-01-01

    This report traces the flow of timber harvested in Alaska during calendar year 2011, describes the composition and operations of the state’s primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as trends in timber harvest, production, export, sales of primary wood products,...

  15. MODERN TOOLS OF PRODUCT PROMOTION OF MILITARY-INDUSTRIAL COMPLEX

    Tuliakova, I. R.; Chesnokova, M.S.

    2014-01-01

    This article is devoted to the promotion of production of the military-industrial complex. In the new economy require specially coordinated effort to promote products, was no exception and the military-industrial complex. The article notes that the way can be used as tools of industrial marketing, marketing tools and experience.

  16. Idaho's forest products industry and timber harvest, 2011

    Eric A. Simmons; Steven W. Hayes; Todd A. Morgan; Charles E. Keegan; Chris Witt

    2014-01-01

    This report traces the flow of Idaho’s 2011 timber harvest through the primary industries; provides a description of the structure, capacity, and condition of Idaho’s industry; and quantifies volumes and uses of wood fiber. Historical wood products industry trends are discussed, as well as changes in harvest, production, employment, and sales.

  17. Industrial recovered-materials-utilization targets for the textile-mill-products industry

    None

    1979-01-01

    The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets include and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.

  18. [Guidelines to productivity bargaining in the health care industry].

    Fottler, M D; Maloney, W F

    1979-01-01

    A potential conflict exists between the recent growth of unionization in the health care industry and management efforts to increase productivity. One method of managing this conflict is to link employee rewards to employee productivity through productivity bargaining.

  19. Partnership with Industry: Film Production Technology.

    Rietveld, Richard; And Others

    The 1988 final report of a task force from the Florida Postsecondary Education Planning Commission stated that in order to ensure continued growth of the motion picture film industry in the state, the postsecondary community must provide a well-trained and competent work force adept in all aspects of the industry. The film industry is a growing…

  20. Brevion: the new small-scale industrial gamma irradiator

    McKinney, Dan; Perrins, Robert; Gibson, Wayne; Levesque, Daniel

    2002-01-01

    The economical processing of low-volume products has been a challenge to the gamma industry since inception, influencing customers to send their products to contractors or choose alternative technologies. With the introduction of the Brevion irradiator (patent pending), economical gamma processing of low annual volume product lines is now possible. This innovative design is specifically targeted at plants processing product volumes of up to 20,000 m 3 /yr. Brevion provides good cobalt efficiency and good dose uniformity, thus processing these volumes efficiently and economically. The Brevion facility has the distinct advantage of a low capital cost, compared to medium-sized automatic tote plants, while maintaining similar performance. Lead-time for the construction phase is also considerably shorter, resulting in significantly lower start-up costs. Companies with low-volume product lines can now achieve the control provided by in-house processing, and eliminate transportation time and costs associated with shipping products off-site

  1. Study of mortars with industrial residual plastic scales

    Magariños, O. E.; Alderete, C. E.; Arias, L. E.; Lucca, M. E.

    1998-01-01

    This work proposes the utilization of industrial residues of PET (Polyethylene Terephtalate) as a partial substitute of arids (sand) in mortar making for construction components. Therefore, the environmental impact of large volumes of plastic of urban residues could be decreased. When PET scales were added to mortars in partial replacement of sand, lower unitary weight, acceptable absorption and resistances according to international specifications were achieved. Mortars with 66% of sand...

  2. Barriers to innovation in small-scale industries: case study from the briquetting industry in India

    Clancy, Joy S.

    2001-01-01

    This paper focuses on the innovation process in small- and medium-scale industries in developing countries, raking the briquetting (densification of biomass) as a case study. The technical efficiency was found to vary significantly between firms, which can be attributed to the lack of technological

  3. A Preliminary Review on Economies of Scale (EOS Towards Industrialized Building System (IBS Manufacturer

    Tajul Ariffin Syazwana

    2017-01-01

    Full Text Available Industrialized Building System (IBS is a potential technology to improve productivity of construction industry. Controlled production and minimum generation of construction waste are some of the benefits that can be achieved by replacing conventional construction with IBS. In business, IBS is giving a huge opportunity for manufacturer and supplier to expand their business while contributing to construction development. However, bad strategies will put the company in high risk due to higher initial capital for machines and equipment. Therefore, strategic planning for company’s growth, profit maximization, and enhancement of productivity is undeniable to ensure the success of business in construction industry. This preliminary paper is exploring associated factors that affect Economy of Scale (EOS and their relationships in catalyzing the IBS manufacturer especially precast concrete as the scope of study to continue their business in the construction industry. Thus, a framework of EOS is proposed to assist IBS manufacturers to ensure their company’s growth and stability, competitiveness in term of monopoly or an oligopoly, increasing productivity, leading constant returns to scale, and finally increasing the firm’s efficiency. The refined EOS’s conceptual framework is an important turning point to support the development of decision making tools for IBS manufacturer towards their stability and survival in this highly competitive industry.

  4. Expanding Canadian natural gas production will strengthen growth of LP-gas industry

    Hawkins, D.J.

    1994-01-01

    In 1992, over 86% of Canadian propane and 70% of Canadian butane production originated in gas plants. Propane and butane production not recovered at gas plants is recovered in other processing facilities, primarily refineries and heavy oil upgraders. As a result, supplies of both products are largely tied to natural gas production, and the outlook for natural gas therefore provides the basis for any discussion on the outlook for gas processing and NGL industry infrastructure. The paper discusses gas processing, economies of scale, NGL supply, expected declines, industry structure and infrastructure, the two major centers of the Canadian NGL industry, new shippers, and required pipeline expansion

  5. Productivity and production efficiency among small scale irrigated ...

    The study examined productivity and production efficiency among small scale irrigated sugarcane farmers in Niger State, Nigeria using a stochastic translog frontier function. Data for the study were obtained using structured questionnaires administered to 100 randomly selected sugarcane farmers from Paiko and Gurara ...

  6. Multi-scale modeling for sustainable chemical production

    Zhuang, Kai; Bakshi, Bhavik R.; Herrgard, Markus

    2013-01-01

    associated with the development and implementation of a su stainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow......With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes...... models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process...

  7. An Explanatory Study of Lean Practices in Job Shop Production/ Special Job Production/ Discrete Production/ Batch Shop Production Industries

    Lavlesh Kumar Sharma; Ravindra Mohan Saxena

    2014-01-01

    In this paper, the study explores the benefits and advantages of Lean Practices or Lean Thinking in Job shop production/ Special job production/ Discrete production/ Batch shop production industries. The Lean Practices have been applied more compatible in Job shop production than in the continuous/ mass production because of several barriers and hurdles in the industrial context that influence the whole processes again and again, this happens due to the lack of knowledge about...

  8. JPRS Report, Soviet Union, EKO: Economics & Organization of Industrial Production

    1988-01-01

    Partial Contents: Public Opinion, Brigade Contract, Cost Accounting, Industrial Trade, Agricultural Machine, Paperwork, Story Writer, Management Style, Monograph, Deficit Economics, Production, Theory, Turnover...

  9. Bacterial community changes in an industrial algae production system.

    Fulbright, Scott P; Robbins-Pianka, Adam; Berg-Lyons, Donna; Knight, Rob; Reardon, Kenneth F; Chisholm, Stephen T

    2018-04-01

    While microalgae are a promising feedstock for production of fuels and other chemicals, a challenge for the algal bioproducts industry is obtaining consistent, robust algae growth. Algal cultures include complex bacterial communities and can be difficult to manage because specific bacteria can promote or reduce algae growth. To overcome bacterial contamination, algae growers may use closed photobioreactors designed to reduce the number of contaminant organisms. Even with closed systems, bacteria are known to enter and cohabitate, but little is known about these communities. Therefore, the richness, structure, and composition of bacterial communities were characterized in closed photobioreactor cultivations of Nannochloropsis salina in F/2 medium at different scales, across nine months spanning late summer-early spring, and during a sequence of serially inoculated cultivations. Using 16S rRNA sequence data from 275 samples, bacterial communities in small, medium, and large cultures were shown to be significantly different. Larger systems contained richer bacterial communities compared to smaller systems. Relationships between bacterial communities and algae growth were complex. On one hand, blooms of a specific bacterial type were observed in three abnormal, poorly performing replicate cultivations, while on the other, notable changes in the bacterial community structures were observed in a series of serial large-scale batch cultivations that had similar growth rates. Bacteria common to the majority of samples were identified, including a single OTU within the class Saprospirae that was found in all samples. This study contributes important information for crop protection in algae systems, and demonstrates the complex ecosystems that need to be understood for consistent, successful industrial algae cultivation. This is the first study to profile bacterial communities during the scale-up process of industrial algae systems.

  10. TECHNOLOGICAL DEVELOPMENT TO ELABORATE COMMON WHITE WINE IN MISIONES, WITH ECONOMIC EVALUATION AT INDUSTRIAL SCALE

    Miño Valdés, Juan Esteban

    2013-01-01

    Full Text Available The objective of this paper was to develop a sustainable technology on an industrial scale to produce common white wine with non viniferous grapes cultivated in Misiones. This technological project was initiated at a laboratory scale, continued in the pilot plant and industrial-scale project. It was considered as a productive unit to 12 rural families with 27 hectares of vines each. The 8 stages followed with inductive and deductive methodology were: The development of dry white wine at laboratory scale. The evaluation of process variables in the vivification. The mathematical modeling of the alcoholic fermentation in oenological conditions. The valuation of the aptitude of wines for human consumption. The establishment of a technological procedure for wine in the pilot plant. The evaluation of the pilot plant in technological procedure established. The calculation and selection of industrial equipment. The estimate of the costs and profitability of industrial technological process. It reached a technology for a production capacity of 5,834 L day-1, with dynamic economic indicators whose values were: net present value of 6,602,666 U$D, an internal rate of return of 60 % for a period of recovery of investment to net present value of 3 years.

  11. STAGE TECHNOLOGY FOR OBTAINIGN AN ECONOMIC WHITE WINE TO AN INDUSTRIAL SCALE

    Juan Esteban Miño Valdés

    2015-07-01

    Full Text Available The purpose of this work was to develop a sustainable technology to produce economical white wine, industrial scale, not viniferous grapes grown in Misiones. This technological project started at laboratory scale, it continued in a pilot plant and planned to an industrial scale. It was considered as productive unit 12 rural families with 27 hectares of vines each. The 8 stages followed with inductive and deductive methodology were: the development of dry white wine at laboratory scale, the evaluation of the variables of the process in the vilification, the Mathematical modeling of alcoholic fermentation in winemaking conditions, the assessment of the fitness of wines for human consumption, the establishment of a technological process for winemaking in a pilot plant, the evaluation in pilot plant of the technological process established, the calculation and selection of industrial equipment and finally, the costs estimation and profitability of the industrial technological process. A technology for a production capacity of 5,834 L day-1, with dynamic economic indicators was reached whose values were 6,602,666 net present value of U$D, an internal rate of return of 60 % for a period of payback a value net of three years to date.

  12. RPC Production at General Tecnica: a mass scale production

    Della Volpe, D.; Morganti, S.

    2006-01-01

    The construction of LHC has deeply changed the RPC production. The enormous amount of detector needed and the strong requirements on gas volume quality had a deep impact on the production chain and on the QC and QA at the production site. This basically has brought the RPC from an almost hand-crafted detector to a medium scale mass product. The most critical aspects of the production chain have been modified and/or improved introducing new and more rigorous QC and QA procedures to guarantee the detector quality and improve the management of storage and the procurement on materials. Here it will be presented the work carried on in the last four year at the production site to improve and check the quality and the results achieved. Something like 10000 RPC were produced between 2002 and 2005. Also a preliminary and rough analysis on the efficiencies of the various phases in the chain production based on ATLAS production will be presented

  13. PRODUCT PROMOTION STRATEGY IN SPORTS INDUSTRY

    Alla V. Nosova

    2015-01-01

    Full Text Available Sports industry is presented like the partof entertainment industry. The authorsemphasize the main income items ofSnowsports unions in Russia and abroad.This paper presents the analysis of development of commercial successful productby foreign federations. The article gives new ways of raising the attractiveness and profitability of the Russian sport.

  14. Application of Specific Features of Industrial Products when Forming and Developing Brands of Industrial Enterprises

    Yatsentiuk Stanislav V.

    2014-03-01

    Full Text Available The article analyses and structures approaches and principles of formulation of industrial products. It offers classification of goods and markets of industrial products by their characteristics and participants. It identifies main participants that make decisions at B2C and B2B markets and characterises their specific features and motivation when making decisions on purchase of products of industrial enterprises. It studies and analyses indicators of development of domestic markets of consumer goods and market of industrial products and dynamics of development of their relation in retrospective view.

  15. Prelude to rational scale-up of penicillin production: a scale-down study.

    Wang, Guan; Chu, Ju; Noorman, Henk; Xia, Jianye; Tang, Wenjun; Zhuang, Yingping; Zhang, Siliang

    2014-03-01

    Penicillin is one of the best known pharmaceuticals and is also an important member of the β-lactam antibiotics. Over the years, ambitious yields, titers, productivities, and low costs in the production of the β-lactam antibiotics have been stepwise realized through successive rounds of strain improvement and process optimization. Penicillium chrysogenum was proven to be an ideal cell factory for the production of penicillin, and successful approaches were exploited to elevate the production titer. However, the industrial production of penicillin faces the serious challenge that environmental gradients, which are caused by insufficient mixing and mass transfer limitations, exert a considerably negative impact on the ultimate productivity and yield. Scale-down studies regarding diverse environmental gradients have been carried out on bacteria, yeasts, and filamentous fungi as well as animal cells. In accordance, a variety of scale-down devices combined with fast sampling and quenching protocols have been established to acquire the true snapshots of the perturbed cellular conditions. The perturbed metabolome information stemming from scale-down studies contributed to the comprehension of the production process and the identification of improvement approaches. However, little is known about the influence of the flow field and the mechanisms of intracellular metabolism. Consequently, it is still rather difficult to realize a fully rational scale-up. In the future, developing a computer framework to simulate the flow field of the large-scale fermenters is highly recommended. Furthermore, a metabolically structured kinetic model directly related to the production of penicillin will be further coupled to the fluid flow dynamics. A mathematical model including the information from both computational fluid dynamics and chemical reaction dynamics will then be established for the prediction of detailed information over the entire period of the fermentation process and

  16. Industrial versus Laboratory Clinker Processing Using Grinding Aids (Scale Effect

    Joseph Jean Assaad

    2015-01-01

    Full Text Available The evaluation of grinding aid (GA effect on clinker processing in laboratory grinding mills is relatively simple. Yet, the results obtained cannot be directly transposed to industrial mills, given the fundamentally different operational modes and grinding parameters. This paper seeks to evaluate the scale effect by comparing the results obtained from a closed-circuit tube mill operating at 90 ton/hr to those determined using a 50-liter laboratory mill. Tests results have shown that the decrease in specific energy consumption (Ec due to glycol or amine-based GA can be evaluated under laboratory conditions. However, such tests underestimate the actual performance that could be achieved in real-scale mills; the Ec reduction due to GA is around twofold higher when grinding is performed in real-scale mill. Compared to industrial tests, the cement particle size distribution curves widened and shifted towards higher diameters when grinding was performed under laboratory conditions, particularly with GA additions. This led to remarkable changes in water demand, setting time, and 1- and 28-day compressive strengths.

  17. Development of a Computer Vision Technology for the Forest Products Manufacturing Industry

    D. Earl Kline; Richard Conners; Philip A. Araman

    1992-01-01

    The goal of this research is to create an automated processing/grading system for hardwood lumber that will be of use to the forest products industry. The objective of creating a full scale machine vision prototype for inspecting hardwood lumber will become a reality in calendar year 1992. Space for the full scale prototype has been created at the Brooks Forest...

  18. Project and Production Management in the Construction Industry

    Chien-Ho Ko

    2012-01-01

    In this issue, the Journal of Engineering, Project, and Production Management (EPPM-Journal) presents five original research papers related to project and production management in the construction industry from authors in Africa, Asia, and Europe.

  19. Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations

    de Jong, S.A.|info:eu-repo/dai/nl/41200836X; Hoefnagels, E.T.A.|info:eu-repo/dai/nl/313935998; Wetterlund, Elisabeth; Pettersson, Karin; Faaij, André; Junginger, H.M.|info:eu-repo/dai/nl/202130703

    2017-01-01

    This study uses a geographically-explicit cost optimization model to analyze the impact of and interrelation between four cost reduction strategies for biofuel production: economies of scale, intermodal transport, integration with existing industries, and distributed supply chain configurations

  20. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    Broderick, T. E.; Grondin, R.

    2003-01-01

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN

  1. Industry of petroleum and its by-products

    Haddad, Antoine

    1989-01-01

    A comprehensive study of petroleum industry and its by-products is presented. Petroleum, since its origin and all steps of its industry including its detection, production and transportation is described. A historical description of the production and formation of fuels under the ground strates through million of years, as well as its chemical composition are presented. A full description of refining petrol and all by-products derived is given. Pictures and tables enhance the explanation

  2. Product models for the Construction industry

    Sørensen, Lars Schiøtt

    1996-01-01

    Different types of product models for the building sector was elaborated and grouped. Some discussion on the different models was given. The "definition" of Product models was given.......Different types of product models for the building sector was elaborated and grouped. Some discussion on the different models was given. The "definition" of Product models was given....

  3. Reduction of uranium compounds to uranium dioxide in semi-industrial scale

    Fogaca Filho, N.; Freitas, C.T. de; Ambrozio Filho, F.

    1982-01-01

    Developments leading to nuclear grade UO 2 production output in the hundreds of kilograms per day level have been presented. Details of the batch type;, semi-continuous and continuous furnaces utilized have been indicated and their respective operational behaviour evaluated in the context of impuritity pick-up during processing. Also described are the quality control procedures that assured consistence in the high purity grade of UO 2 produced, satisfying internationally adopted criteria. The proposed objective of attaining semi-industrial scale production capability was reached, with procedures and equipment preponderantly developed in Brazil; which will permit the expansion of production in the near future. (Author) [pt

  4. Productivity Continued to Increase in Many Industries during 1984.

    Herman, Arthur S.

    1986-01-01

    Productivity, as measured by output per employee hour, grew in 1984 in about three quarters of the industries for which the Bureau of Labor Statistics regularly publishes data. (A table shows productivity trends in industries measured by the Bureau, including mining, transportation and utilities, and trade and services.) (CT)

  5. Benefits of nitrogen for food, fibre and industrial production

    Stoumann Jensen, L.; Schjoerring, J.K.; Hoek, K.W. van der; Damgaard Poulsen, H.; Zevenbergen, J.F.; Pallière, C.; Lammel, J.; Brentrup, F.; Jongbloed, A.W.; Willems, J.; Grinsven, H. van

    2011-01-01

    Nature of the issue • Reactive nitrogen (N r ) has well-documented positive eff ects in agricultural and industrial production systems, human nutrition and food security. Limited N r supply was a key constraint to European food and industrial production, which has been overcome by Nr from the

  6. The Four Corners timber harvest and forest products industry, 2012

    Colin B. Sorenson; Steven W. Hayes; Todd A. Morgan; Eric A. Simmons; Micah G. Scudder; Chelsea P. McIver; Mike T. Thompson

    2016-01-01

    This report traces the flow of timber harvested in the "Four Corners" States (Arizona, Colorado, New Mexico, and Utah) during calendar year 2012, describes the composition and operations of the region’s primary forest products industry, and quantifies volumes and uses of wood fiber. Recent changes in the wood products industry are discussed, as well as trends...

  7. The Four Corners timber harvest and forest products industry, 2007

    Steven W. Hayes; Todd A. Morgan; Erik C. Berg; Jean M. Daniels; Mike Thompson

    2012-01-01

    This report traces the flow of timber harvested in the "Four Corners" States (Arizona, Colorado, New Mexico, and Utah) during calendar year 2007, describes the composition and operations of the region's primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as...

  8. Intensity of rivalry in Czech furniture production industry

    Lucie Špačková; Pavel Žufan

    2012-01-01

    The paper focuses on furniture production industry in the Czech Republic and evaluates the influence of competition forces within this industry. These forces have a direct impact on success of competitive strategies of the firms. Furniture production industry is a typical branch occupied by numerous small and medium-sized firms. Small firms aim on satisfying domestic (or rather local) demand, medium-sized and big firms are much more aiming on exports. The methodical sources for evaluation of ...

  9. Performance prediction of industrial centrifuges using scale-down models.

    Boychyn, M; Yim, S S S; Bulmer, M; More, J; Bracewell, D G; Hoare, M

    2004-12-01

    Computational fluid dynamics was used to model the high flow forces found in the feed zone of a multichamber-bowl centrifuge and reproduce these in a small, high-speed rotating disc device. Linking the device to scale-down centrifugation, permitted good estimation of the performance of various continuous-flow centrifuges (disc stack, multichamber bowl, CARR Powerfuge) for shear-sensitive protein precipitates. Critically, the ultra scale-down centrifugation process proved to be a much more accurate predictor of production multichamber-bowl performance than was the pilot centrifuge.

  10. About the new industrial production management concept as the company strategy in the fourth industrial revolution

    Kovalchuk Julia

    2017-01-01

    Full Text Available The new industrial production management requires a review of the third industrial revolution results and accounting for mass adoption of information and communication technologies to create the organizational basis of the fourth industrial revolution. The future changes will affect all components of the organization and management components of industrial enterprises, forming the potential of new competitive advantages in a global economy. The research included the identification of key factors of formation, development and destruction (absorption related branches of knowledge the industrial production management as the theory and practical activities, given the critical approach to its nature and processes. Revealed common signs of the industrial production management need as a field of knowledge in the framework of previous and current industrial revolutions. It is shown that the industrial production management effectively solves the problem of subsistence economy, and substantiates that the modern digital economy also has the characteristics of subsistence economy. It is important the necessity of formulation of a new organizational thinking, the implementation of which is possible in the modern interpretation of the project office. The article represents the theoretical basis for developing practical recommendations for the formation of the new concept of industrial production management to take advantage of the impact of engineering component on the economic results and the creation of project offices for the development of traditional and created markets in the organization of a new production mode (based on the digital economy.

  11. Operational impact of product variety in the process industry

    Moseley, Alexandria Lee; Hvam, Lars; Herbert-Hansen, Zaza Nadja Lee

    2016-01-01

    The purpose of this research article is to examine the impact of product variety on production performance in the process industry. As the number of product variants sold by a process company typically impacts the run length, production data from a mineral wool insulation manufacturer is analyzed...

  12. Scale up of proteoliposome derived Cochleate production.

    Zayas, Caridad; Bracho, Gustavo; Lastre, Miriam; González, Domingo; Gil, Danay; Acevedo, Reinaldo; del Campo, Judith; Taboada, Carlos; Solís, Rosa L; Barberá, Ramón; Pérez, Oliver

    2006-04-12

    Cochleate are highly stable structures with promising immunological features. Cochleate structures are usually obtaining from commercial lipids. Proteoliposome derived Cochleate are derived from an outer membrane vesicles of Neisseria meningitidis B. Previously, we obtained Cochleates using dialysis procedures. In order to increase the production process, we used a crossflow system (CFS) that allows easy scale up to obtain large batches in an aseptic environment. The raw material and solutions used in the production process are already approved for human application. This work demonstrates that CFS is very efficient process to obtain Cochleate structures with a yield of more than 80% and the immunogenicity comparable to that obtained by dialysis membrane.

  13. Concepts for Large Scale Hydrogen Production

    Jakobsen, Daniel; Åtland, Vegar

    2016-01-01

    The objective of this thesis is to perform a techno-economic analysis of large-scale, carbon-lean hydrogen production in Norway, in order to evaluate various production methods and estimate a breakeven price level. Norway possesses vast energy resources and the export of oil and gas is vital to the country s economy. The results of this thesis indicate that hydrogen represents a viable, carbon-lean opportunity to utilize these resources, which can prove key in the future of Norwegian energy e...

  14. Industrial commodity statistics yearbook 2001. Production statistics (1992-2001)

    2003-01-01

    This is the thirty-fifth in a series of annual compilations of statistics on world industry designed to meet both the general demand for information of this kind and the special requirements of the United Nations and related international bodies. Beginning with the 1992 edition, the title of the publication was changed to industrial Commodity Statistics Yearbook as the result of a decision made by the United Nations Statistical Commission at its twenty-seventh session to discontinue, effective 1994, publication of the Industrial Statistics Yearbook, volume I, General Industrial Statistics by the Statistics Division of the United Nations. The United Nations Industrial Development Organization (UNIDO) has become responsible for the collection and dissemination of general industrial statistics while the Statistics Division of the United Nations continues to be responsible for industrial commodity production statistics. The previous title, Industrial Statistics Yearbook, volume II, Commodity Production Statistics, was introduced in the 1982 edition. The first seven editions in this series were published under the title The Growth of World industry and the next eight editions under the title Yearbook of Industrial Statistics. This edition of the Yearbook contains annual quantity data on production of industrial commodities by country, geographical region, economic grouping and for the world. A standard list of about 530 commodities (about 590 statistical series) has been adopted for the publication. The statistics refer to the ten-year period 1992-2001 for about 200 countries and areas

  15. Industrial commodity statistics yearbook 2002. Production statistics (1993-2002)

    2004-01-01

    This is the thirty-sixth in a series of annual compilations of statistics on world industry designed to meet both the general demand for information of this kind and the special requirements of the United Nations and related international bodies. Beginning with the 1992 edition, the title of the publication was changed to industrial Commodity Statistics Yearbook as the result of a decision made by the United Nations Statistical Commission at its twenty-seventh session to discontinue, effective 1994, publication of the Industrial Statistics Yearbook, volume I, General Industrial Statistics by the Statistics Division of the United Nations. The United Nations Industrial Development Organization (UNIDO) has become responsible for the collection and dissemination of general industrial statistics while the Statistics Division of the United Nations continues to be responsible for industrial commodity production statistics. The previous title, Industrial Statistics Yearbook, volume II, Commodity Production Statistics, was introduced in the 1982 edition. The first seven editions in this series were published under the title 'The Growth of World industry' and the next eight editions under the title 'Yearbook of Industrial Statistics'. This edition of the Yearbook contains annual quantity data on production of industrial commodities by country, geographical region, economic grouping and for the world. A standard list of about 530 commodities (about 590 statistical series) has been adopted for the publication. The statistics refer to the ten-year period 1993-2002 for about 200 countries and areas

  16. Industrial commodity statistics yearbook 2000. Production statistics (1991-2000)

    2002-01-01

    This is the thirty-third in a series of annual compilations of statistics on world industry designed to meet both the general demand for information of this kind and the special requirements of the United Nations and related international bodies. Beginning with the 1992 edition, the title of the publication was changed to industrial Commodity Statistics Yearbook as the result of a decision made by the United Nations Statistical Commission at its twenty-seventh session to discontinue, effective 1994, publication of the Industrial Statistics Yearbook, volume I, General Industrial Statistics by the Statistics Division of the United Nations. The United Nations Industrial Development Organization (UNIDO) has become responsible for the collection and dissemination of general industrial statistics while the Statistics Division of the United Nations continues to be responsible for industrial commodity production statistics. The previous title, Industrial Statistics Yearbook, volume II, Commodity Production Statistics, was introduced in the 1982 edition. The first seven editions in this series were published under the title The Growth of World industry and the next eight editions under the title Yearbook of Industrial Statistics. This edition of the Yearbook contains annual quantity data on production of industrial commodities by country, geographical region, economic grouping and for the world. A standard list of about 530 commodities (about 590 statistical series) has been adopted for the publication. Most of the statistics refer to the ten-year period 1991-2000 for about 200 countries and areas

  17. Unit Price Scaling Trends for Chemical Products

    Qi, Wei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathre, Roger [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, III, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    To facilitate early-stage life-cycle techno-economic modeling of emerging technologies, here we identify scaling relations between unit price and sales quantity for a variety of chemical products of three categories - metal salts, organic compounds, and solvents. We collect price quotations for lab-scale and bulk purchases of chemicals from both U.S. and Chinese suppliers. We apply a log-log linear regression model to estimate the price discount effect. Using the median discount factor of each category, one can infer bulk prices of products for which only lab-scale prices are available. We conduct out-of-sample tests showing that most of the price proxies deviate from their actual reference prices by a factor less than ten. We also apply the bootstrap method to determine if a sample median discount factor should be accepted for price approximation. We find that appropriate discount factors for metal salts and for solvents are both -0.56, while that for organic compounds is -0.67 and is less representative due to greater extent of product heterogeneity within this category.

  18. Industrial water demand management and cleaner production ...

    Processes and systems using water today are being subjected to increasingly stringent environmental regulations on effluents and there is growing demand for fresh water. In Morocco, consumption of water by industries is estimated in 1994 at 1 billion m3, the drinking water constitutes 4%. Water used in the food and drink ...

  19. Development of the production of special steels for nuclear industries

    Vieillard-Baron, B.

    1977-01-01

    The development of electro-nuclear industries has a powerful impact on the production of special steels, although the quantity of material applied to the non-conventional parts of nuclear power plants is quite small as compared to the total production requirements in this industrial field. Evolution bears on the product research, development and testing methods, on the technical and marketing services - in particular the establishment of quality control teams and assurance manuals - and the implementation of high performance production equipments. Manufacturing must however take place under normal work load and productivity conditions of production tools, and thus ensure a satisfactory profitability on investments entailed [fr

  20. Product Life Cycle of the Manufactured Home Industry

    Gavin Wherry

    2014-09-01

    Full Text Available Residential construction consumes an estimated 26 percent of the total U.S. wood harvest and thus plays an important role in the forest products value chain. While being a relatively small part of the U.S. residential construction market, the factory-built residential housing industry, originating from manufactured homes (e.g. mobile homes, is embracing emerging industry segments such as modular or panelized homes. Since indications exist that factory-built home production is slated to gain a more prominent role in the U.S. construction markets at the cost of traditional stick-built production, the factory-built home industry sub-segment is of considerable importance to the forest products industry. This research looks at manufactured home producers as a benchmark for analyzing the current economic state of the industry and discusses competitive strategies. The analysis concludes, through macroeconomic modeling, that manufactured homes are in the declining stage of their product life cycle due to changes to the U.S. residential construction sector and the factory-built home industry and by advancements of rival industry-segments. As market share continues to decline, firms operating in this industry-segment seek to either hedge their losses through product diversification strategies or remain focused on strategically repositioning the manufactured home segment.

  1. Industry potential of large scale uses for peaceful nuclear explosives

    Russell, P.L.

    1969-01-01

    The industrial potential for peaceful uses of nuclear explosions entering a critical stage of development. Should Project Gasbuggy, an experiment to determine to what extent an underground nuclear explosion can stimulate the production of natural gas from low-permeability formations, prove a technical or economic success, a great step forward will have been made. Should other experiments now being considered in natural gas, oil shale, copper, coal, water resources, underground storage, and others, also demonstrate technical or economic advantage, it is conceivable to expect peaceful nuclear explosion to grow from our current rate of one or two experimental shots per year to hundreds of production explosions per year. This growth rate could be severely restricted or reduced to zero if public safety and environmental control cannot be exercised. (author)

  2. Industry potential of large scale uses for peaceful nuclear explosives

    Russell, P L [Bureau of Mines, Denver, CO (United States)

    1969-07-01

    The industrial potential for peaceful uses of nuclear explosions entering a critical stage of development. Should Project Gasbuggy, an experiment to determine to what extent an underground nuclear explosion can stimulate the production of natural gas from low-permeability formations, prove a technical or economic success, a great step forward will have been made. Should other experiments now being considered in natural gas, oil shale, copper, coal, water resources, underground storage, and others, also demonstrate technical or economic advantage, it is conceivable to expect peaceful nuclear explosion to grow from our current rate of one or two experimental shots per year to hundreds of production explosions per year. This growth rate could be severely restricted or reduced to zero if public safety and environmental control cannot be exercised. (author)

  3. Cleaner production technology for the NDT industry

    Relunia, Estrella D.; Mateo, Alejandro J.

    2001-01-01

    This paper discusses te wastes generated from the conduct of nondestructive testing (NDT) techniques and operations like NDT film processing and the systems to reduce water pollution and the film system quality control. Discussions on clean technology production concepts and philosophy is also discussed. A case study on cleaner production technology where a process and equipment modifications and a product substitution were implemented is presented. The equipment modification and product substitution eliminated the use of 1,1,1-trichloroethane in its cleaning operation. (Author)

  4. Factor substitution, and economies of scale and utilisation in Kuwait's crude oil industry

    Al-Mutairi, Naief; Burney, Nadeem A.

    2002-01-01

    The cost structure of the crude oil industry in Kuwait has been examined, with specific focus on factor substitution, and economies of scale and utilisation. This has been done by estimating translog cost functions, both long-run and short-run, using time-series data covering the period from 1976 to 1996. The results indicate that the implied production structure is non-homothetic, and the pattern of scale effect is labour saving, but capital and material using. The evidence also supports the presence of an induced exogenous technical change, which is non-neutral (labour and capital using, and material saving). The elasticity of substitution between capital and labour is positive, implying that the two inputs are substitute. The results also indicate the existence of diseconomies of scale in the production of crude oil, but no economies or diseconomies of utilisation

  5. Process model economics of xanthan production from confectionery industry wastewaters.

    Bajić, Bojana Ž; Vučurović, Damjan G; Dodić, Siniša N; Grahovac, Jovana A; Dodić, Jelena M

    2017-12-01

    In this research a process and cost model for a xanthan production facility was developed using process simulation software (SuperPro Designer ® ). This work represents a novelty in the field for two reasons. One is that xanthan gum has been produced from several wastes but never from wastewaters from confectionery industries. The other more important is that the aforementioned software, which in intended exclusively for bioprocesses, is used for generating a base case, i.e. starting point for transferring the technology to industrial scales. Previously acquired experimental knowledge about using confectionery wastewaters from five different factories as substitutes for commercially used cultivation medium have been incorporated into the process model in order to obtain an economic viability of implementing such substrates. A lower initial sugar content in the medium based on wastewater (28.41 g/L) compared to the synthetic medium (30.00 g/L) gave a lower xanthan content at the end of cultivation (23.98 and 26.27 g/L, respectively). Although this resulted in somewhat poorer economic parameters, they were still in the range of being an investment of interest. Also the possibility of utilizing a cheap resource (waste) and reducing pollution that would result from its disposal has a positive effect on the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Traceability: a demand of agro industrial chain for special products

    José Verissimo Foggiatto Silveira

    2007-10-01

    Full Text Available The inclusion of agricultural products with different nutritional features has altered the relationship, the upstream and the downstream of enterprises that produce and commercialize them. Coordination in the Agro Industrial System is demanded, including traceability as a way to guarantee the conformity of products, attending external clients and agricultural industries that require quality certification. This quality tool enables the identification of some details in the productive chain, such as seeds, farming, harvesting, storage, transportation and industrialization of products. Thus, this essay describes the concept of traceability and provides information of special products from a cooperative from Paraná, which has controlled process in the productive chain, demanded by contractual partnerships done with enterprises that provide fertilizers and food processors. It was identified that this cooperative commercializes three products that need traceability: two special kinds of corn and the regular kind of soybean.

  7. Adopting small-scale production of electricity

    Tengvard, Maria; Palm, Jenny (Linkoeping Univ., Dept. of Technology and Social Change, Linkoeping (Sweden)). e-mail: maria.tengvard@liu.se

    2009-07-01

    In Sweden in 2008, a 'new' concept for small-scale electricity production attracted massive media attention. This was mainly due to the efforts of Swedish company Egen El, which is marketing small-scale photovoltaics (PVs) and wind turbines to households, both homeowners and tenants. Their main selling point is simplicity: their products are so easy to install that everyone can do it. Autumn 2008 also saw IKEA announce that within three years it would market solar panels. How, then, do households perceive these products? Why would households choose to buy them? How do households think about producing their own electricity? Analysis of material based on in-depth interviews with members of 20 households reveals that environmental concerns supply the main motive for adopting PVs or micro wind power generation. In some cases, the adopting households have an extensively ecological lifestyle and such adoption represents a way to take action in the energy area. For some, this investment is symbolic: a way of displaying environmental consciousness or setting an example to others. For still others, the adoption is a protest against 'the system' with its large dominant actors or is a way to become self-sufficient. These microgeneration installations are rejected mainly on economic grounds; other motives are respect for neighbours and difficulties finding a place to install a wind turbine.

  8. The Forest Products Industry in Nigeria

    First Lady

    1988, 1992, 1996 and 2010 respectively while particle board production has also been dwindling in .... manufactured and exported by a few large companies in Nigeria. Wooden .... and design procedures (Ogunwusi, 2011). Vol. 6 (4) Serial ...

  9. Improving productivity in the gas industry

    Robb, F F; Portsmouth, D J

    1982-05-01

    A study course designed to help BGC managers improve employee productivity reflected four main themes: evaluating quality and performance standards, examining new technologies, exploiting manpower resources, and improving usage of equipment and materials. Visiting speakers' contributions included 1) BGC's broad objectives and its methods of deploying financial resources effectively, 2) creativity as it relates to productivity and to the need for forecasts of risk and catastrophes, and 3) the paramount importance of management's commitment to formally stated objectives.

  10. Intermediate product selection and blending in the food processing industry

    Kilic, Onur A.; Akkerman, Renzo; van Donk, Dirk Pieter; Grunow, Martin

    2013-01-01

    This study addresses a capacitated intermediate product selection and blending problem typical for two-stage production systems in the food processing industry. The problem involves the selection of a set of intermediates and end-product recipes characterising how those selected intermediates are

  11. Intermediate product selection and blending in the food processing industry

    Kilic, Onur A.; Akkerman, Renzo; van Donk, Dirk Pieter

    2013-01-01

    This study addresses a capacitated intermediate product selection and blending problem typical for two-stage production systems in the food processing industry. The problem involves the selection of a set of intermediates and end-product recipes characterising how those selected intermediates...

  12. Industrial agglomeration and production costs in Norwegian salmon aquaculture

    Tveterås, Ragnar

    2002-01-01

    During the last decade, empirical evidence of regional agglomeration economies has emerged for some industries. This paper argues that externalities from agglomeration are not only present in some manufacturing and service sectors, but can also occur in primary industries, such as aquaculture. Econometric analyses in this literature have primarily estimated rather restrictive production function specifications on aggregated industry data. Here, cost functions are estimated o...

  13. Productive efficiency of tea industry: A stochastic frontier approach ...

    In an economy where recourses are scarce and opportunities for a new technology are lacking, studies will be able to show the possibility of raising productivity by improving the industry's efficiency. This study attempts to measure the status of technical efficiency of tea-producing industry for panel data in Bangladesh using ...

  14. Productivity in Information Service Industries: a Panel Analysis of Japanese Firms

    Futoshi Kurokawa; Kiyohiko G. Nishimura

    2006-01-01

    We examine factors determining productivity of information-technology service activities at firm level, using most comprehensive data of information service industries in Japan. We focus on the degree of modularisation and resulting outsourcing and economies/diseconomies of scale in software development, and changes. We find that outsourcing has persistent negative effects on total factor productivity, suggesting not only productivity-enhancing modularisation is not fully utilised but also pr...

  15. Developing engineering design core competences through analysis of industrial products

    Hansen, Claus Thorp; Lenau, Torben Anker

    2011-01-01

    Most product development work carried out in industrial practice is characterised by being incremental, i.e. the industrial company has had a product in production and on the market for some time, and now time has come to design a new and upgraded variant. This type of redesign project requires...... that the engineering designers have core design competences to carry through an analysis of the existing product encompassing both a user-oriented side and a technical side, as well as to synthesise solution proposals for the new and upgraded product. The authors of this paper see an educational challenge in staging...... a course module, in which students develop knowledge, understanding and skills, which will prepare them for being able to participate in and contribute to redesign projects in industrial practice. In the course module Product Analysis and Redesign that has run for 8 years we have developed and refined...

  16. Official Reports: Inventions, useful models, industrial samples, product certificates

    1994-01-01

    This serial collection presents brief information on patents, useful models, industrial samples, product certificates and trade marks registered in Uzbekistan. They comprise different branches of human activities including peaceful uses of atomic energy. (A.A.D.)

  17. Official Reports: Inventions, useful models, industrial samples, product certificates

    1996-01-01

    This serial collection presents brief information on patents, useful models, industrial samples, product certificates and trade marks registered in Uzbekistan. They comprise different branches of human activities including peaceful uses of atomic energy. (A.A.D.)

  18. Official Reports: Inventions, useful models, industrial samples, product certificates

    1995-01-01

    This serial collection presents brief information on patents, useful models, industrial samples, product certificates and trade marks registered in Uzbekistan. They comprise different branches of human activities including peaceful uses of atomic energy. (A.A.D.)

  19. Industrial use of agricultural products: European prospects

    Bocchini, A.

    1992-01-01

    This paper first discusses how the GATT internal trade agreement has affected Italian and European agricultural practices, especially in that which regards the production of soybean and other vegetable oils. It then assesses how current Italian agricultural policies impact on proposals now being designed to encourage the production of vegetable oils for use as ecological automotive fuel alternatives. The paper cites the need for a greater say by farming associations, and cooperation among fuel oil producers and government bodies in the drafting up of future policies

  20. Improvement of productivity in low volume production industry layout by using witness simulation software

    Jaffrey, V.; Mohamed, N. M. Z. N.; Rose, A. N. M.

    2017-10-01

    In almost all manufacturing industry, increased productivity and better efficiency of the production line are the most important goals. Most factories especially small scale factory has less awareness of manufacturing system optimization and lack of knowledge about it and uses the traditional way of management. Problems that are commonly identified in the factory are a high idle time of labour and also small production. This study is done in a Small and Medium Enterprises (SME) low volume production company. Data collection and problems affecting productivity and efficiency are identified. In this study, Witness simulation software is being used to simulate the layout and the output is focusing on the improvement of layout in terms of productivity and efficiency. In this study, the layout is rearranged by reducing the travel time from a workstation to another workstation. Then, the improved layout is modelled and the machine and labour statistic of both, original and improved layout is taken. Productivity and efficiency are calculated for both layout and then being compared.

  1. Nanotechnology applications in the forest products industry

    Robert J. Moon; Charles R. Frihart; Theodore Wegner

    2006-01-01

    Nanotechnology is the study and engineering of matter at the dimensions of 1 to 100 nanometers, where the physical, chemical, or biological properties are fundamentally different from those of the bulk material. By expanding our understanding and control of matter at such levels, new avenues in product development can be opened. Nanoscale-based science has...

  2. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Rahayu, Suparni Setyowati, E-mail: suparnirahayu@yahoo.co.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Mechanical Engineering, State Polytechnic of Semarang, Semarang Indonesia (Indonesia); Purwanto,, E-mail: p.purwanto@che.undip.ac.id; Budiyono, E-mail: budiyono@live.undip.ac.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang Indonesia (Indonesia)

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  3. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  4. 226Ra, 228Ra and 40K in scales formed in boilers of industrial installations

    Poggi, Claudia M. Braga; Farias, Emerson Emiliano G. de; Hazin, Clovis A.; Gazineu, Maria Helena P.; Universidade Catolica de Pernambuco

    2011-01-01

    Many industrial processes involve the production of steam in boilers, which is sent through pipes to machines and other equipment used in different sectors of the installations. The water commonly used in these processes is groundwater, which generally has high concentrations of calcium and magnesium salts, that can co-precipitate with naturally occurring radioactive elements such as 226 Ra and 228 Ra creating radioactive scales, which are deposited in pipes, thus decreasing the efficiency of steam production. In addition, 40 K that is present in all soils and rocks with a concentration of about 0.012% of natural potassium can also be concentrated in these scales. No data was found in literature relating to radionuclides present in the scales formed on boilers in general. In this context, the purpose of this work was to determine concentrations of 226 Ra, 228 Ra and 40 K, in scales generated inside boilers from different industries in the cities of Caruaru, Paulista and Goiana, Pernambuco. Determination of the radionuclides concentration was performed by gamma spectrometry with an HPGe detector, calculating their specific activities. Activity concentrations of 226 Ra were in the range of -1 and 228 Ra activity concentrations varied from 1 . Activity concentrations of 40 K were in the range of -1 . All these activity concentrations were lower than the limits established by the Brazilian Nuclear Energy Commission of for this type of matrix. (author)

  5. Industrial Upgrading in Global Production Networks: The Case of the Chinese Automotive Industry

    Yansheng LI; Xin Xin KONG; Miao ZHANG

    2015-01-01

    This article examines the development of China’s automotive industry. The evidence shows that integration in global production networks has stimulated upgrading of technological capabilities among automotive firms. However, the competitiveness and intra-industry analyses show mixed results. Although intraindustry trade in automotive products has improved since 2000, the trade competitiveness of completely built up vehicles has largely remained in low value added activities. Nevertheless, firm...

  6. Firm size and productivity. Evidence from the electricity distribution industry in Brazil

    Tovar, Beatriz; Javier Ramos-Real, Francisco; De Almeida, Edmar Fagundes

    2011-01-01

    In this paper we apply Stochastic Frontier Analysis through a distance function to investigate the impact of firm size on productivity development in electricity distribution. We use a sample of seventeen Brazilian firms from 1998 to 2005 and decompose productivity into technical efficiency, scale efficiency and technical change. Moreover, a further step is to decompose the technical change measurement into several components. The results indicate that firm size is important for industry's productivity, and therefore a key aspect to consider when making decisions that affect the market structure in the electricity distribution industry. (author)

  7. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. CONTRIBUTION TO THE IMPROVEMENT OF PRODUCTS QUALITY IN BAKING INDUSTRY

    Aleksandar Marić

    2009-09-01

    Full Text Available Food industry occupies special place in the processing industry, especially when we talk on the manufacturing of bakery products. Variable products quality on the market initiated the authors of this study to make an attempt, using comparative analysis of methods for quality control that are at most applied in bakery plants and other "convenient" methods to indicate the shortcomings and to argue convenience of using of methods that would improve testing of the quality. That approach could create a base for designing of model of quality improvement the baking industry.

  9. Fungal Morphology in Industrial Enzyme Production - Modelling and Monitoring

    Quintanilla, D.; Hagemann, T.; Hansen, K.

    2015-01-01

    Filamentous fungi are widely used in the biotechnology industry for the production of industrial enzymes. Thus, considerable work has been done with the purpose of characterizing these processes. The ultimate goal of these efforts is to be able to control and predict fermentation performance......, and on the way the data is interpreted-i.e. which models were applied. The main filamentous fungi used in industrial fermentation are introduced, ranging from Trichoderma reesei to Aspergillus species. Due to the fact that secondary metabolites, like antibiotics, are not to be considered bulk products, organisms...

  10. Implementation of NFC technology for industrial applications: case flexible production

    Sallinen, Mikko; Strömmer, Esko; Ylisaukko-oja, Arto

    2007-09-01

    Near Field communication (NFC) technology enables a flexible short range communication. It has large amount of envisaged applications in consumer, welfare and industrial sector. Compared with other short range communication technologies such as Bluetooth or Wibree it provides advantages that we will introduce in this paper. In this paper, we present an example of applying NFC technology to industrial application where simple tasks can be automatized and industrial assembly process can be improved radically by replacing manual paperwork and increasing trace of the products during the production.

  11. Microbial xylanases: engineering, production and industrial applications.

    Juturu, Veeresh; Wu, Jin Chuan

    2012-01-01

    and paper industries for a longer time but more and more attention has been paid to using them in producing sugars and other chemicals from lignocelluloses in recent years. Mining new genes from nature, rational engineering of known genes and directed evolution of these genes are required to get tailor-made xylanases for various industrial applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Productivity and Openness: Firm Level Evidence in Brazilian Manufacturing Industries

    Wenjun Liu; Shoji Nishijima

    2012-01-01

    This study investigates the productivity of Brazilian manufacturing industries, particularly addressing the influence of liberalization on productivity. We first calculate total factor productivity (TFP) by estimating the stochastic frontier production function and the inefficiency determination equation simultaneously. Then TFP growth rates are regressed on openness-related variables and other firm characteristics. The results show that firm openness to the world is a crucial determinant of ...

  13. Supply of the Industrial Products in Romania. A Territorial Approach

    Adriana Grigorescu

    2008-03-01

    Full Text Available The industrial products and services supply was analyzed in the present paper through the statistical indicators of the industrial production, applied for Romania (2005, both at macroeconomic and regional level (on development regions. The first part of the paper presents some of the methodological reglamentations used in determining the “industrial production” statistical indicator, according to the European Union statistical practices (Pack, 2000; *** ìMethodology of short-term business statisticsî, 2006; Peneder, 2001. In the second part of the paper, the authors analyze the main industrial policy previsions in Romania in order to accelerate the process of resource allocation among and within the various sectors, to improve the competitiveness, to attenuate the discrepancies between the economic development level of Romanian regions and to become part of a common European industrial policy. Regional analysis is a domain largely studied by Kangas, Leskinen, Kangas, 2007; Leskinen, Kangas, 2005; Rondinelli, 1996; Banai-Kashani, Reza, 1989.  

  14. Efficiency and Import Penetration on the Productivity of Textile Industry and Textile Products

    Catur Basuki Rakhmawan

    2012-12-01

    Full Text Available Although textile industry and textile products belong to the strategic sub-sector of manufacturing industry in Indonesia, they are facing problems on the availability of energy, old production machines, and the flooding of imported products into the domestic market. This study is aimed to analyze the efficiency and productivity as performance indicators and how the efficiency and import penetration affect the productivity of textile industry and textile products. The methods of data analysis used in this research are divided in two phases. The first phase, the non-metric approach of Data Envelopment Analysis (DEA is applied to measure the efficiency and productivity. Secondly, the fixed effect model of econometric regression approach is used to find out the effects of efficiency and import penetration on the productivity of textile industry and textile products. The result shows that the average level of efficiency of textile industry and textile products during the period of 2004 – 2008 is about 40 percent with a growth rate of average productivity increases 2.4 percent. Whereas, the econometric estimation results indicate that the increase of efficiency will positively and significantly affect the productivity of textile industry and textile products. On the other hand, the increase of import penetration will negatively affect the productivity of this industry.

  15. Efficiency and Import Penetrationon the Productivity of Textile Industry and Textile Products

    Catur Basuki Rakhmawan

    2012-12-01

    Full Text Available Although textile industry and textile products belong to the strategic sub-sector of manufacturing industry in Indonesia, they are facing problems on the availability of energy, old production machines, and the flooding of imported products into the domestic market. This study is aimed to analyze the efficiency and productivity as performance indicators and how the efficiency and import penetration affect the productivity of textile industry and textile products. The methods of data analysis used in this research are divided in two phases. The first phase, the non-metric approach of Data Envelopment Analysis (DEA is applied to measure the efficiency and productivity. Secondly, the fixed effect model of econometric regression approach is used to find out the effects of efficiency and import penetration on the productivity of textile industry and textile products. The result shows that the ave-rage level of efficiency of textile industry and textile products during the period of 2004 – 2008 is about 40 percent with a growth rate of average productivity increases 2.4 percent. Whereas, the econometric estimation results indicate that the increase of efficiency will positively and significantly affect the productivity of textile industry and textile products. On the other hand, the increase of import penetration will negatively affect the productivity of this industry.

  16. Disaggregate energy consumption and industrial production in South Africa

    Ziramba, Emmanuel [Department of Economics, University of South Africa, P.O Box 392, UNISA 0003 (South Africa)

    2009-06-15

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment. (author)

  17. Disaggregate energy consumption and industrial production in South Africa

    Ziramba, Emmanuel

    2009-01-01

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment.

  18. Industrial Hemp in North America: Production, Politics and Potential

    Jerome H. Cherney

    2016-11-01

    Full Text Available Most of the Western World banned the cultivation of Cannabis sativa in the early 20th century because biotypes high in ∆9-tetrahydrocannabinol (THC, the principal intoxicant cannabinoid are the source of marijuana. Nevertheless, since 1990, dozens of countries have authorized the licensed growth and processing of “industrial hemp” (cultivars with quite low levels of THC. Canada has concentrated on hemp oilseed production, and very recently, Europe changed its emphasis from fiber to oilseed. The USA, historically a major hemp producer, appears on the verge of reintroducing industrial hemp production. This presentation provides updates on various agricultural, scientific, social, and political considerations that impact the commercial hemp industry in the United States and Canada. The most promising scenario for the hemp industry in North America is a continuing focus on oilseed production, as well as cannabidiol (CBD, the principal non-intoxicant cannabinoid considered by many to have substantial medical potential, and currently in great demand as a pharmaceutical. Future success of the industrial hemp industry in North America is heavily dependent on the breeding of more productive oilseed cultivars, the continued development of consumer goods, reasonable but not overly restrictive regulations, and discouragement of overproduction associated with unrealistic enthusiasm. Changing attitudes have generated an unprecedented demand for the cannabis plant and its products, resulting in urgent needs for new legislative, regulatory, and business frameworks, as well as scientific, technological, and agricultural research.

  19. Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors

    Budzaki, S.; Miljic, G.; Sundaram, S.; Tisma, M.; Hessel, V.

    2017-01-01

    A cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors using refined sunflower oil is performed in this work. A few enzymatic micro-flow reactors have so far reached a performance close to gram-scale, which might be sufficient for the pharmaceutical industry. This

  20. Evaluation method of economic efficiency of industrial scale research based on an example of coking blend pre-drying technology

    Żarczyński Piotr

    2017-01-01

    Full Text Available The research on new and innovative solutions, technologies and products carried out on an industrial scale is the most reliable method of verifying the validity of their implementation. The results obtained in this research method give almost one hundred percent certainty although, at the same time, the research on an industrial scale requires the expenditure of the highest amount of money. Therefore, this method is not commonly applied in the industrial practices. In the case of the decision to implement new and innovative technologies, it is reasonable to carry out industrial research, both because of the cognitive values and its economic efficiency. Research on an industrial scale may prevent investment failure as well as lead to an improvement of technologies, which is the source of economic efficiency. In this paper, an evaluation model of economic efficiency of the industrial scale research has been presented. This model is based on the discount method and the decision tree model. A practical application of this proposed evaluation model has been presented based on an example of the coal charge pre-drying technology before coke making in a coke oven battery, which may be preceded by industrial scale research on a new type of coal charge dryer.

  1. Study of mortars with industrial residual plastic scales

    Magariños, O. E.

    1998-06-01

    Full Text Available This work proposes the utilization of industrial residues of PET (Polyethylene Terephtalate as a partial substitute of arids (sand in mortar making for construction components. Therefore, the environmental impact of large volumes of plastic of urban residues could be decreased. When PET scales were added to mortars in partial replacement of sand, lower unitary weight, acceptable absorption and resistances according to international specifications were achieved. Mortars with 66% of sand replacement by scales and without any additive, showed optimal characteristics to be used in concret block manufacturing.

    Este trabajo de investigación se desarrolla a partir de la hipótesis de utilizar los desechos post-industriales de PET (Tereftalato de Polietileno como sustituto de áridos (arena, ingrediente de morteros, en la fabricación de componentes constructivos. En dicho trabajo se estudian las propiedades físico-químicas de distintos morteros en los que se reemplazó el contenido de árido por escamas de plástico en distintas proporciones. Se compararon y evaluaron las propiedades físico-mecánicas de los morteros en estudio con los convencionales mediante ensayos de resistencia a la flexión, compresión, absorción, durabilidad y microfotografías por barrido electrónico. Estos estudios determinaron que el agregado de PET en morteros puede ser usado como un posible sustituto de áridos, ya que se obtuvieron morteros con 66% de reemplazo de arena por escamas que presentaron menor peso unitario, absorción aceptable y resistencias acordes a las exigidas por normas.

  2. Scaled multisensor inspection of extended surfaces for industrial quality control

    Kayser, Daniel; Bothe, Thorsten; Osten, Wolfgang

    2002-06-01

    Reliable real-time surface inspection of extended surfaces with high resolution is needed in several industrial applications. With respect to an efficient application to extended technical components such as aircraft or automotive parts, the inspection system has to perform a robust measurement with a ratio of less then 10-6 between depth resolution and lateral extension. This ratio is at least one order beyond the solutions that are offered by existing technologies. The concept of scaled topometry consists of arranging different optical measurement techniques with overlapping ranges of resolution systematically in order to receive characteristic surface information with the required accuracy. In such a surface inspection system, an active algorithm combines measurements on several scales of resolution and distinguishes between local fault indicating structures with different extensions and global geometric properties. The first part of this active algorithm finds indications of critical surface areas in the data of every measurement and separates them into different categories. The second part analyses the detected structures in the data with respect to their resolution and decides whether a further local measurement with a higher resolution has to be performed. The third part positions the sensors and starts the refined measurements. The fourth part finally integrates the measured local data set into the overall data mesh. We have constructed a laboratory setup capable of measuring surfaces with extensions up to 1500mm x 1000mm x 500mm (in x-, y- and z-direction respectively). Using this measurement system we will be able to separate the fault indicating structures on the surface from the global shape and to classify the detected structures according to their extensions and characteristic shapes simultaneously. The level of fault detection probability will be applicable by input parameter control.

  3. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recycling flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)

  4. Novel GIMS technique for deposition of colored Ti/TiO₂ coatings on industrial scale

    Zdunek Krzysztof

    2016-03-01

    Full Text Available The aim of the present paper has been to verify the effectiveness and usefulness of a novel deposition process named GIMS (Gas Injection Magnetron Sputtering used for the flrst time for deposition of Ti/TiO₂ coatings on large area glass Substrates covered in the condition of industrial scale production. The Ti/TiO₂ coatings were deposited in an industrial System utilizing a set of linear magnetrons with the length of 2400 mm each for covering the 2000 × 3000 mm glasses. Taking into account the speciflc course of the GIMS (multipoint gas injection along the magnetron length and the scale of the industrial facility, the optical coating uniformity was the most important goal to check. The experiments on Ti/TiO₂ coatings deposited by the use of GIMS were conducted on Substrates in the form of glass plates located at the key points along the magnetrons and intentionally non-heated during any stage of the process. Measurements of the coatings properties showed that the thickness and optical uniformity of the 150 nm thick coatings deposited by GIMS in the industrial facility (the thickness differences on the large plates with 2000 mm width did not exceed 20 nm is fully acceptable form the point of view of expected applications e.g. for architectural glazing.

  5. The development of an industrial-scale fed-batch fermentation simulation.

    Goldrick, Stephen; Ştefan, Andrei; Lovett, David; Montague, Gary; Lennox, Barry

    2015-01-10

    This paper describes a simulation of an industrial-scale fed-batch fermentation that can be used as a benchmark in process systems analysis and control studies. The simulation was developed using a mechanistic model and validated using historical data collected from an industrial-scale penicillin fermentation process. Each batch was carried out in a 100,000 L bioreactor that used an industrial strain of Penicillium chrysogenum. The manipulated variables recorded during each batch were used as inputs to the simulator and the predicted outputs were then compared with the on-line and off-line measurements recorded in the real process. The simulator adapted a previously published structured model to describe the penicillin fermentation and extended it to include the main environmental effects of dissolved oxygen, viscosity, temperature, pH and dissolved carbon dioxide. In addition the effects of nitrogen and phenylacetic acid concentrations on the biomass and penicillin production rates were also included. The simulated model predictions of all the on-line and off-line process measurements, including the off-gas analysis, were in good agreement with the batch records. The simulator and industrial process data are available to download at www.industrialpenicillinsimulation.com and can be used to evaluate, study and improve on the current control strategy implemented on this facility. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  6. Relationship between lighting and noise levels and productivity of the occupants in automotive assembly industry.

    Akbari, Jafar; Dehghan, Habibollah; Azmoon, Hiva; Forouharmajd, Farhad

    2013-01-01

    Work environment affects human productivity and his performance. The aims of this study were to investigate the effects of lighting and noise levels on human productivity in the automotive assembly industry. Subjects were 181 workers from different parts of an automobile assembly industry. Illuminance (Lx) at the height of 30 inches from the surface of work station and noise (dBA) were locally measured. Also human productivity by the Goldsmith and Hersey scale (1980) was measured. Data were analyzed by using SPSS v20 Pearson correlation coefficient. The results showed that the relationship between noise level and human productivity is negative and significant (P productivity (P > 0.05). Based on the results, in assembly tasks, noise has a negative impact on human productivity, and lighting does not affect this. So, in order to increase employee productivity, noise control and reduction to less than the standard values (less than 85 dB) is necessary.

  7. Spatial econometric analysis of China’s province-level industrial carbon productivity and its influencing factors

    Long, Ruyin; Shao, Tianxiang; Chen, Hong

    2016-01-01

    Highlights: • We evaluate the industrial carbon productivity of China’s provinces. • The regional disparity and clustering features exist simultaneously. • There is evident spatial dependence in regional industrial carbon productivity. • We employ spatial panel data models to examine the impact factors. • Spatial effects are found to be important in understanding industrial CO_2 emissions. - Abstract: This study measured the industrial carbon productivity of 30 provinces in China from 2005 to 2012 and examined the space–time characteristics and the main factors of China’s industrial carbon productivity using Moran’s I index and spatial panel data models. The empirical results indicate that there is significant positive spatial dependence and clustering characteristics in China’s province-level industrial carbon productivity. The spatial dependence may create biased estimated parameters in an ordinary least squares framework; according to the analysis of our spatial panel models, industrial energy efficiency, the opening degree, technological progress, and the industrial scale structure have significantly positive effects on industrial carbon productivity whereas per-capita GDP, the industrial energy consumption structure, and the industrial ownership structure exert a negative effect on industrial carbon productivity.

  8. Adoption of innovative production technologies in the road construction industry

    Habets, M.J.M.; van der Sijde, Peter; Voordijk, Johannes T.

    2007-01-01

    New procurement methods encourage the adoption of innovative production technologies. This triggers the need for entrepreneurship in the construction industry. The purpose of this study is to provide insights into the adoption processes of a particular set of new production technologies in the Dutch

  9. From a homemade to an industrial product : manufacturing Bulgarian yogurt

    Stoilova, E.R.

    2013-01-01

    Changes in yogurt production in the first half of the twentieth century were related to the transformation of dairy manufacturing through the incorporation of science and technology into the production process. The modernization of the dairy industry affected yogurt, which Bulgarians considered a

  10. A resource efficiency assessment of the industrial mushroom production chain

    Zisopoulos, Filippos K.; Becerra Ramírez, Henry A.; Goot, van der Atze Jan; Boom, Remko M.

    2016-01-01

    We compare the exergetic performance of a conventional industrial mushroom production chain with a mushroom production chain where part of the compost waste is recycled and reused as raw material. The critical exergy loss points (CEPs) identified are the cooking-out process of the spent mushroom

  11. California’s forest products industry and timber harvest, 2006

    Todd A. Morgan; Jason P. Brandt; Kathleen E. Songster; Charles E. Keegan; Glenn A. Christensen

    2012-01-01

    This report traces the flow of California’s 2006 timber harvest through the primary wood products industry (i.e., firms that process timber into manufactured products such as lumber, as well as facilities such as pulp mills and particleboard plants, which use the wood fiber or mill residue directly from timber processors) and provides a description of the structure,...

  12. The U.S. Chemical Industry, the Products It Makes

    Chemical and Engineering News, 1972

    1972-01-01

    This section of the annual report on the chemical industry presents data on these areas of chemical production: growth rates, man-made fibers; the 50 largest volume chemicals, major inorganics and organics, plastics, drugs, magnesium, and paint. Includes production figures for 1961, 1969, 1970, 1971 and percent change for 1970-71 and for 1961-71.…

  13. Competition and product quality in the supermarket industry.

    Matsa, David A

    2011-01-01

    This article analyzes the effect of competition on a supermarket firm's incentive to provide product quality. In the supermarket industry, product availability is an important measure of quality. Using U.S. Consumer Price Index microdata to track inventory shortfalls, I find that stores facing more intense competition have fewer shortfalls. Competition from Walmart—the most significant shock to industry market structure in half a century—decreased shortfalls among large chains by about a third. The risk that customers will switch stores appears to provide competitors with a strong incentive to invest in product quality.

  14. Biodiesel production from algae grown on food industry wastewater.

    Mureed, Khadija; Kanwal, Shamsa; Hussain, Azhar; Noureen, Shamaila; Hussain, Sabir; Ahmad, Shakeel; Ahmad, Maqshoof; Waqas, Rashid

    2018-04-10

    Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater. This study was conducted to optimize the growth of microalgal strains and to assess biodiesel production potential of algae using untreated food industry wastewater as a source of nutrients. The food industry wastewater was collected and analyzed for its physicochemical characteristics. Different dilutions (10, 20, 40, 80, and 100%) of this wastewater were made with distilled water, and growth of two microalgal strains (Cladophora sp. and Spyrogyra sp.) was recorded. Each type of wastewater was inoculated with microalgae, and biomass was harvested after 7 days. The growth of both strains was also evaluated at varying temperatures, pH and light periods to optimize the algal growth for enhanced biodiesel production. After optimization, biodiesel production by Spyrogyra sp. was recorded in real food industry wastewater. The algal biomass increased with increasing level of food industry wastewater and was at maximum with 100% wastewater. Moreover, statistically similar results were found with algal growth on 100% wastewater and also on Bristol's media. The Cladophora sp. produced higher biomass than Spyrogyra sp. while growing on food industry wastewater. The optimal growth of both microalgal strains was observed at temperature 30 °C, pH: 8, light 24 h. Cladophora sp. was further evaluated for biodiesel production while growing on 100% wastewater and found that this strain produced high level of oil and biodiesel. Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater.

  15. Product Innovation Development in the Companies of Creative Industries

    Rolandas Strazdas

    2011-10-01

    Full Text Available Many authors distinguish product innovation as a key factor for long-term competitiveness. Dominant narrow perception of a product is leading towards incorrect product development process and the consequent result is a bad product. Narrow perception of a product is one of the main paralysing factors affecting the creator in the process of product development, which leads towards a low level of product innovation. As a result, a company is losing its uniqueness, originality, and is not of  interest neither for consumers nor the product developers themselves. This article deals with the product perception problems in the companies of creative industries. The main limiting factors for the perception of a product are analysed in the article as well as possibilities to expand the perception of a product. Five main product development methods: conservative, delegative, holistic, limited open, fully open are described in the article. The choice of the product development methods is especially important for the creative industries companies whose product development process is very intensive. 

  16. 77 FR 9947 - Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry...

    2012-02-21

    ...] Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry, Manufacturing... ``Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry, Manufacturing... for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry, Manufacturing, and...

  17. Electricity consumption, industrial production, and entrepreneurship in Singapore

    Sun, Sizhong; Anwar, Sajid

    2015-01-01

    Within the context of a tri-variate vector autoregressive framework that includes entrepreneurship, this paper examines the link between electricity consumption and industrial production in Singapore's manufacturing sector. Unlike the existing studies, this paper focuses on one sector of the economy and utilises a unique monthly dataset. Empirical analysis based on Johansen's cointegration approach shows that the three variables are cointegrated – i.e., a stable long-run relationship exists among electricity consumption, output and entrepreneurship in Singapore's manufacturing sector. Empirical analysis based on data from January 1983 to February 2014 reveals that electricity consumption adjusts very slowly to shocks to industrial production and entrepreneurship. Furthermore, entrepreneurship Granger causes electricity consumption, which causes industrial production. As electricity consumption causes industrial output, the growth hypothesis concerning energy consumption and economic growth holds in Singapore's manufacturing sector and policies that restrict electricity production, without electricity imports, are likely to lead to a decline in the manufacturing output. - Highlights: • Using a unique monthly dataset, we focus on Singapore's manufacturing sector. • Electricity consumption, output and entrepreneurship are cointegrated. • Electricity consumption adjusts very slowly to shocks to the other variables. • Entrepreneurship causes electricity consumption which causes industrial production. • We find that growth hypothesis governs the electricity consumption and real output

  18. Applications of Mass Customization Production Mode in Chinese Steel Industry

    ZhouShichun; DingJianhua; ChenChao

    2005-01-01

    In this paper, the conflict between individual needs of market and the efficient mass production requirement of manufacture under the background of market globalization is discussed, a trend that the main production mode for domestic steel industry should be the mass customization is pointed out, and the problems to be solved for domestic enterprise are analyzed. Summarizing the practice of Baosteel Co. LTD on the new production mode, the achievements and experiences are presented.

  19. Innovation and productivity: empirical evidence for Brazilian industrial enterprises

    Luciana Carvalho

    Full Text Available Abstract The aim of this paper is to carry out an empirical investigation into the relationship between innovation and the productive performance of Brazilian businesses measured by Work Productivity and Total Factor Productivity. Data taken from the Research of Innovation and estimated cross section models and panel data was used. The results suggest that innovation produces an incipient impact on competition in the national industry, reflected in the small magnitude of coefficients associated with the diverse indicators of innovation.

  20. Product development in the European and overseas food industry

    Balogh, Sandor

    2007-01-01

    In the present study various product development trends in the food industry are reviewed with the main focus on convenience, organic and functional foods. Also highlighted are differences between the U.S. and Europe in terms of consumer habits and food supply trends. Through exploring the reasons behind differences in the extent of product innovation, the author illustrates the different role convenience products have in the US and European markets. Also revealed is the relationship linking ...

  1. Sustainable Product Strategy in Apparel Industry with Consumer Behavior Consideration

    Liu Yang; Shaozeng Dong

    2017-01-01

    The article attempts to analyze sustainable product strategy in apparel industry specifically addressing a firm that is considering launching a sustainable product partly made from recycled materials. There are two types of consumers under consideration, environmentally conscious and regular consumers, as they have different perceived values for the sustainable products. The article provides an analytical model aimed to identify conditions under which a firm could benefit from adopting sustai...

  2. Lean production and willingness to change: German industrial survey

    Roessler, Markus Philipp; Spiertz, Daniel; Metternich, Joachim

    2014-01-01

    The Massachusetts Institute of Technology led a global benchmark analysis within the automotive industry in the late 1980s. The results showed significant differences in the organization of production between Western and Japanese companies. For these differences one of the researchers involved, John Kraftcik, distinguished between “lean” and “buffered” production systems. In addition to the fact that Japanese car builders met higher quality standards, also productivity and flexibility were si...

  3. Fumonisin and Ochratoxin Production in Industrial Aspergillus niger Strains

    Frisvad, Jens Christian; Larsen, Thomas Ostenfeld; Thrane, Ulf

    2011-01-01

    as safe). However, A. niger has the potential to produce two groups of potentially carcinogenic mycotoxins: fumonisins and ochratoxins. In this study all available industrial and many non-industrial strains of A. niger (180 strains) as well as 228 strains from 17 related black Aspergillus species were...... examined for mycotoxin production. None of the related 17 species of black Aspergilli produced fumonisins. Fumonisins (B(2), B(4), and B(6)) were detected in 81% of A. niger, and ochratoxin A in 17%, while 10% of the strains produced both mycotoxins. Among the industrial strains the same ratios were 83......%, 33% and 26% respectively. Some of the most frequently used strains in industry NRRL 337, 3112 and 3122 produced both toxins and several strains used for citric acid production were among the best producers of fumonisins in pure agar culture. Most strains used for other biotechnological processes also...

  4. Analyzing the competences of production engineering graduates: an industry perspective

    Patrícia Fernanda dos Santos

    2017-11-01

    Full Text Available Abstract This paper aims at conducting an analysis the competences of production engineering graduates, building on an industry view. To this end, we conducted a survey addressing 103 medium and large companies within the Brazilian manufacturing industry. The results suggest that companies do recognize the importance of competences. Some gaps in the competences of graduates were also pointed out by respondents. This study suggests the need for the development of efforts for providing the production engineer with a better professional background. The links between university and industry are likely to contribute towards such direction, notably as a starting point for institutions and industries to foster their student’s competences, aiming their aptitude for an ever-competitive job market, which values the flexible, creative being, who is capable of creating innovative solutions.

  5. Implementation Of 5S Methodology In The Small Scale Industry A Case Study

    R. S. Agrahari

    2015-04-01

    Full Text Available Abstract 5S is a basic foundation of Lean Manufacturing systems. It is a tool for cleaning sorting organizing and providing the necessary groundwork for workpiece improvement. This paper dealt with the implementation of 5S methodology in the small scale industry. By following the 5S methodology it shows significant improvements to safety productivity efficiency and housekeeping. The improvements before and after 5S implementation is shown by pictures in the paper. It also intends to build a stronger work ethic within the management and workers who would be expected to continue the good practices.

  6. Energy and Production Planning for Process Industry Supply Chains

    Waldemarsson, Martin

    2012-01-01

    This thesis addresses industrial energy issues from a production economic perspective. During the past decade, the energy issue has become more important, partly due to rising energy prices in general, but also from a political pressure on environmental awareness concerning the problems with climate change. As a large user of energy the industry sector is most likely responsible for a lot of these problems. Things need to change and are most likely to do so considering current and assumed fut...

  7. Economical Recovery of By-products in the Mining Industry

    Berry, J.B.

    2001-12-05

    The U.S. Department of Energy (DOE) Office of Industrial Technologies, Mining Industry of the Future Program, works with the mining industry to further the industry's advances toward environmental and economic goals. Two of these goals are (1) responsible emission and by-product management and (2) low-cost and efficient production (DOE 1998). DOE formed an alliance with the National Mining Association (NMA) to strengthen the basis for research projects conducted to benefit the mining industry. NMA and industry representatives actively participate in this alliance by evaluating project proposals and by recommending research project selection to DOE. Similarly, the National Research Council (NRC) has recently and independently recommended research and technology development opportunities in the mining industry (NRC 2001). The Oak Ridge National Laboratory (ORNL) and Colorado School of Mines engineers conducted one such project for DOE regarding by -product recovery from mining process residue. The results of this project include this report on mining industry process residue and waste with opportunity for by-product recovery. The U.S. mineral processing industry produces over 30,000,000 metric tons per year of process residue and waste that may contain hazardous species as well as valuable by-products. This study evaluates the copper, lead, and zinc commodity sectors which generate between 23,300,000 and 24,000,000 metric tons per year. The distribution of residual elements in process residues and wastes varies over wide ranges* because of variations in the original ore content as it is extracted from the earth's crust. In the earth's crust, the elements of interest to mining fall into two general geochemical classifications, lithophiles and chalcophiles** (Cox 1997). Groups of elements are almost always present together in a given geochemical classification, but the relative amounts of each element are unique to a particular ore body. This paper

  8. Waterpipe industry products and marketing strategies: analysis of an industry trade exhibition.

    Jawad, Mohammed; Nakkash, Rima T; Hawkins, Ben; Akl, Elie A

    2015-12-01

    Understanding product development and marketing strategies of transnational tobacco companies (TTCs) has been of vital importance in developing an effective tobacco control policy. However, comparatively little is known of the waterpipe tobacco industry, which TTCs have recently entered. This study aimed to gain an understanding of waterpipe tobacco products and marketing strategies by visiting a waterpipe trade exhibition. In April 2014, the first author attended an international waterpipe trade exhibition, recording descriptions of products and collecting all available marketing items. We described the purpose and function of all products, and performed a thematic analysis of messages in marketing material. We classified waterpipe products into four categories and noted product variation within categories. Electronic waterpipe products (which mimic electronic cigarettes) rarely appeared on waterpipe tobacco marketing material, but were displayed just as widely. Claims of reduced harm, safety and quality were paramount on marketing materials, regardless of whether they were promoting consumption products (tobacco, tobacco substitutes), electronic waterpipes or accessories. Waterpipe products are diverse in nature and are marketed as healthy and safe products. Furthermore, the development of electronic waterpipe products appears to be closely connected with the electronic cigarette industry, rather than the waterpipe tobacco manufacturers. Tobacco control policy must evolve to take account of the vast and expanding array of waterpipe products, and potentially also charcoal products developed for waterpipe smokers. We recommend that tobacco substitutes be classified as tobacco products. Continued surveillance of the waterpipe industry is warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Intensity of rivalry in Czech furniture production industry

    Lucie Špačková

    2012-01-01

    Full Text Available The paper focuses on furniture production industry in the Czech Republic and evaluates the influence of competition forces within this industry. These forces have a direct impact on success of competitive strategies of the firms. Furniture production industry is a typical branch occupied by numerous small and medium-sized firms. Small firms aim on satisfying domestic (or rather local demand, medium-sized and big firms are much more aiming on exports. The methodical sources for evaluation of rivalry represent particular influences defined by Porter in his model of five competitive forces. Main influences identified by Porter, which are increasing the intensity of competition in the furniture production industry in the Czech Republic include low industry concentration, relatively low diversity of competitors, decline in sales, low (or none switching costs, and existing excessive capacity within the industry. Further development will be most significantly influenced by a growing concentration of the bigger Czech producers on domestic market and overall economic development.

  10. A new productivity index to measure economic sustainability of the mining industry

    Rodriguez, Xose A

    2010-01-01

    This document aims to introduce a total productivity index to measure the economic sustainability of the mining industry. This index will take into account any technical developments, means of use of productive factors (i.e. inefficiencies and scale effects) and the effects on the growth of the geological properties in the resources to be exploited (particularly the effects of resource reduction or reserves depletion). This new index will then be applied to the example of the Spanish mining industry, with some interesting findings regarding the configuration of sustainable mining policies.

  11. Fed-batch CHO cell culture for lab-scale antibody production

    Fan, Yuzhou; Ley, Daniel; Andersen, Mikael Rørdam

    2017-01-01

    Fed-batch culture is the most commonly used upstream process in industry today for recombinant monoclonal antibody production using Chinese hamster ovary cells. Developing and optimizing this process in the lab is crucial for establishing process knowledge, which enable rapid and predictable tech......-transfer to manufacturing scale. In this chapter, we will describe stepwise how to carry out fed-batch CHO cell culture for lab-scale antibody production....

  12. The structure of atomic power industry with allowance for energy production other than electricity

    Aleksandrov, A.P.; Legasov, V.A.; Sidorenko, V.A.; Ponomarev-Stepnoj, N.N.; Protsenko, A.N.; Grebennik, V.N.; Glushkov, E.S.

    1977-01-01

    The important tendency in the development of nuclear power is broadening the scope of its application for substitution of mineral fuel by the nuclear one not only at the electrical power production but in other energy consuming fields of industry. The development of large-scale nuclear power plants permits the provision of the significant part of energy supply of all kinds and save on oil and gas. Scales and rates of development of nuclear power are estimated for the model society on the basis of predicted need energy consumption per capita. The possible rates and scales of nuclear power development are determined at some alternative amounts of potential reserves of organic fuel (oil, gas) per capita and within the economically and ecologically reasonable scales of coal utilization. There has been given the analysis of possible scopes of application of nuclear power industry: for production of electricity, central heating, hydrogen generation, gasification of coals, metallurgy, chemistry by means of medium- and high-temperature reactors. The conceivable relation between electrical energy and heat production in energetics and the nuclear power industry and the dynamics of change in this relation is being forecasted. The promising development of high temperature helium reactors has been discussed. Considerations on possible effect of thorium cycle on the structure of nuclear power industry are outlined. The nuclear power industry is being developed mainly on the basis of nuclear power plants with thermal reactors and it should not be expected for the next decade that its structure is to change significantly. However, the development of only this type reactors will require, as early as the end of this century, the significant consumption of natural uranium and considerable increase in capacities of uranium output and uranium enrichment industry. Therefore, in the following stages of development of nuclear power industry it is necessary to introduce fast breeders

  13. The use of production management techniques in the construction of large scale physics detectors

    Bazan, A; Estrella, F; Kovács, Z; Le Flour, T; Le Goff, J M; Lieunard, S; McClatchey, R; Murray, S; Varga, L Z; Vialle, J P; Zsenei, M

    1999-01-01

    The construction process of detectors for the Large Hadron Collider (LHC) experiments is large scale, heavily constrained by resource availability and evolves with time. As a consequence, changes in detector component design need to be tracked and quickly reflected in the construction process. With similar problems in industry engineers employ so-called Product Data Management (PDM) systems to control access to documented versions of designs and managers employ so- called Workflow Management software (WfMS) to coordinate production work processes. However, PDM and WfMS software are not generally integrated in industry. The scale of LHC experiments, like CMS, demands that industrial production techniques be applied in detector construction. This paper outlines the major functions and applications of the CRISTAL system (Cooperating Repositories and an information System for Tracking Assembly Lifecycles) in use in CMS which successfully integrates PDM and WfMS techniques in managing large scale physics detector ...

  14. Assessment of good manufacturing practice for small scale food industry in Malang region, East Java, Indonesia

    Purwantiningrum, I.; Widyhastuty, W.; Christian, J.; Sari, N.

    2018-03-01

    Enhancing food safety in developing countries, such as Indonesia, poses more challenges, especially those of the small- and medium-scale. Various food safety systems are available and readily implemented in the food industry. However, to ensure the effectiveness of such systems, pre-requisite programs should be applied prior to the implementation of food safety system. One of the most acknowledged pre-requisite program is Good Manufacturing Practices (GMP). The aim of this study is to assess the GMP compliance of some small-scale food companies in East Java. Three types of traditional food product were selected, include tempe chips, palm sugar, and instant herbal drink. A survey involving three companies for each type of traditional food was conducted. Data was obtained through observation and assessment based on tabulated criteria in GMP criteria. In essential, the result revealed the compliment level of the food companies being surveyed. There was different level of compliment between each type of the food industry, where the palm sugar industry had the lowest level of compliment compared to the other two. This difference is due to the food safety awareness, social and cultural influences, and also knowledge on food safety and hygiene practice.

  15. Toyota production system - one example to shipbuilding industry

    Delmo Alves de Moura

    2017-09-01

    Full Text Available The shipbuilding system can use the techniques used in the Toyota Production System as an example for its production process. Production should be lean, minimize defects, stop production and reduce or eliminate inventories. Lean production is regarded by many as simply an enhancement of mass production methods, whereas agility implies breaking out of the mass production mould and producing much more highly customized products - where the customer wants them in any quantity. In a product line context, it amounts to striving for economies of scope, rather than economies of scale ideally serving ever smaller niche markets, even quantities of one, without the high cost traditionally associated with customization. A lean company may be thought of as a very productive and cost efficient producer of goods or services.

  16. Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor

    Maldonado, M.I.; Malato, S.; Perez-Estrada, L.A.; Gernjak, W.; Oller, I.; Domenech, Xavier; Peral, Jose

    2006-01-01

    Aqueous solutions of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and isoproturon), considered PS (priority substances) by the European Commission, and an intermediate product of the pharmaceutical industry (α-methylphenylglycine, MPG) chosen as a model industrial pollutant, have been degraded at pilot-plant scale using ozonation. This study is part of a large research project [CADOX Project, A Coupled Advanced Oxidation-Biological Process for Recycling of Industrial Wastewater Containing Persistent Organic Contaminants, Contract No.: EVK1-CT-2002-00122, European Commission, http://www.psa.es/webeng/projects/cadox/index.html[1

  17. Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor

    Maldonado, M.I. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Malato, S. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Perez-Estrada, L.A. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Gernjak, W. [PSA -Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Oller, I. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Domenech, Xavier [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Peral, Jose [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)]. E-mail: jose.peral@uab.es

    2006-11-16

    Aqueous solutions of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and isoproturon), considered PS (priority substances) by the European Commission, and an intermediate product of the pharmaceutical industry ({alpha}-methylphenylglycine, MPG) chosen as a model industrial pollutant, have been degraded at pilot-plant scale using ozonation. This study is part of a large research project [CADOX Project, A Coupled Advanced Oxidation-Biological Process for Recycling of Industrial Wastewater Containing Persistent Organic Contaminants, Contract No.: EVK1-CT-2002-00122, European Commission, http://www.psa.es/webeng/projects/cadox/index.html[1

  18. Process engineering challenges of uranium extraction from phosphoric acid on industrial scale

    Mouriya, Govind; Singh, Dhirendra; Nath, A.K.; Majumdar, D.

    2014-01-01

    Heavy Water Board (HWB) is a constituent unit of the Department of Atomic Energy. One of the diversified activities undertaken by HWB is pursuing exploitation of non-conventional resources for recovery of uranium from wet phosphoric acid being the most prominent one. Amongst the feasible processes for recovery of uranium from phosphoric acid is solvent extraction. Use of in-house solvent produced by HWB, is another key driver. To garner necessary information for developing the industrial scale facilities, the process has been studied in the laboratory scale, mini scale, bench scale at Heavy Water Plant, Talcher. The process was subsequently scaled up to an industrial prototype scale unit and was set up as a Technology Demonstration Plant coupled with a commercial phosphoric acid plant. The plant has successfully processed more than 2 lakh m 3 of wet phosphoric acid and all the parameters including the product, Yellow Cake have been qualified. No adverse effect has been observed in the fertilizer produced. The main characteristics of the process and subsequent process innovations are discussed in this paper. These innovations have been carried out to overcome hurdles faced during commissioning and subsequent operations of the Plant. The innovations include improved pretreatment of the wet phosphoric acid for feeding to the extraction cycle, improved control of the first cycle chemical environment, reducing the strength of the phosphoric acid used for stripping, reducing the number of equipment and machineries, alteration in solvent composition used in the first and second cycle in the solvent extraction units of the plant. (author)

  19. The development of small-scale mechanization means positioning algorithm using radio frequency identification technology in industrial plants

    Astafiev, A.; Orlov, A.; Privezencev, D.

    2018-01-01

    The article is devoted to the development of technology and software for the construction of positioning and control systems for small mechanization in industrial plants based on radio frequency identification methods, which will be the basis for creating highly efficient intelligent systems for controlling the product movement in industrial enterprises. The main standards that are applied in the field of product movement control automation and radio frequency identification are considered. The article reviews modern publications and automation systems for the control of product movement developed by domestic and foreign manufacturers. It describes the developed algorithm for positioning of small-scale mechanization means in an industrial enterprise. Experimental studies in laboratory and production conditions have been conducted and described in the article.

  20. Innovation in product and services in the shipping retrofit industry

    Hermann, Roberto Rivas; Köhler, Jonathan

    regulation could create innovation in green products and services in the maritime retrofitting industry?” Our case study focus on business models for the development, installation and operation of ballast water management systems in Denmark. We engaged the perspectives of ship-owners, equipment manufacturers....... Similarly, given the deindustrialisation dynamics to regions with lower manufacturing costs, it is argued that a combination of knowledge intensive and service-based economy will eventually fill the gap left by manufacturing industries. To create added value to their products, some leading firms...... are increasingly developing product-service systems. It is however, argued that product-service systems are not always sustainable, and thus little evidence connect them with green growth. To fill in this gap, we are carrying a case study guided by the following research question: “How the ballast water treatment...

  1. Industrial production and professional application of manufactured nanomaterials-enabled end products in Dutch industries: potential for exposure.

    Bekker, Cindy; Brouwer, Derk H; Tielemans, Erik; Pronk, Anjoeka

    2013-04-01

    In order to make full use of the opportunities while responsibly managing the risks of working with manufactured nanomaterials (MNM), we need to gain insight into the potential level of exposure to MNM in the industry. Therefore, the goal of this study was to obtain an overview of the potential MNM exposure scenarios within relevant industrial sectors, applied exposure controls, and number of workers potentially exposed to MNM in Dutch industrial sectors producing and applying MNM-enabled end products in the Netherlands. A survey was conducted in three phases: (i) identification of MNM-enabled end products; (ii) identification of relevant industrial sectors; and (iii) a tiered telephone survey to estimate actual use of the products among 40 sector organizations/knowledge centres (Tier 1), 350 randomly selected companies (Tier 2), and 110 actively searched companies (Tier 3). The most dominant industrial sectors producing or applying MNM-enabled end products (market penetration >5%) are shoe repair shops, automotive, construction, paint, metal, and textile cleaning industry. In the majority of the companies (76%), potential risks related to working with MNM are not a specific point of interest. The total number of workers potentially exposed to MNM during the production or application of MNM-enabled end products was estimated at approximately 3000 workers in the Netherlands. The results of this study will serve as a basis for in-depth exposure and health surveys that are currently planned in the Netherlands. In addition, the results can be used to identify the most relevant sectors for policy makers and future studies focussing on evaluating the risks of occupational exposure to MNM.

  2. A greenhouse type solar dryer for small-scale dried food industries: Development and dissemination

    Janjai, Serm [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2012-07-01

    In this study, a greenhouse type solar dryer for small-scale dried food industries was developed and disseminated. The dryer consists of a parabolic roof structure covered with polycarbonate sheets on a concrete floor. The system is 8.0m in width, 20.0m in length and 3.5m in height, with a loading capacity about 1,000kg of fruits or vegetables. To ensure continuous drying operation, a 100kW-LPG gas burner was incorporated to supply hot air to the dryer during cloudy or rainy days. Nine 15-W DC fans powered by three 50-W PV modules were used to ventilate the dryer. This dryer was installed for a small-scale food industry at Nakhon Pathom in Thailand to produce osmotically dehydrated tomato. To investigate its performance, the dryer was used to dry 3 batches of osmotically dehydrated tomato. Results obtained from these experiments showed that drying air temperatures in the dryer varied from 35 C to 65 C. In addition, the drying time for these products was 2-3 days shorter than that of the natural sun drying and good quality dried products were obtained. A system of differential equations describing heat and moisture transfers during drying of osmotically dehydrated tomato was also developed. The simulated results agreed well with the experimental data. For dissemination purpose, other two units of this type of dryer were constructed and tested at two locations in Thailand and satisfactory results were obtained.

  3. Production in Italian industry: Electric power demand indicators

    Ajello, V.

    1993-01-01

    The effects of the recession in Italy were first evidenced during the period spanning 1990-1992 with a sharp drop in the international competitiveness of Italian products. This phase was then followed by a significant drop in internal demand, the devaluation of the Italian Lira and subsequent market uncertainty. This paper presents graphs of national and regional electric power production and consumption figures which reflect the downturn in the viability of the Italian economy, especially in the industrial sector

  4. Innovations for production optimization in the petroleum industry: conference reports

    Anon.

    1997-01-01

    This Insight conference was held to review the methods by which the petroleum industry could optimize production. Presentations from nine guest speakers were included. The issues addressed included the use of computer software for integrated data systems such as SCADA and GIS, the use of remote sensing and real-time systems to monitor well production and reserves capability more effectively, and innovations to minimize finding and development costs and their effect on financial markets. figs

  5. Bulgarian electricity market and the large-scale industrial customers

    Popov, P.; Kanev, K.; Dyankov, M.; Minkov, N.

    2003-01-01

    The paper focuses on a brief overview of the Bulgarian Electricity Market Design and steps toward its development, as well as on preliminary analyses for market opening and influence of large industrial customers to system and market operation. (author)

  6. Product costing practices in the North American hardwood component industry

    Adrienn Andersch; Urs Buehlmann; Jan Wiedenbeck; Steve Lawser

    2011-01-01

    Companies, when bidding for jobs, need to be able to price products competitively while also assuring that the necessary profitability can be achieved. These goals, competitive pricing and profitability, cannot be reliably achieved unless industry participants possess a full understanding of their company's cost structure. Competitors blame companies without...

  7. Ethanol production in Brazil: a bridge between science and industry

    Mario Lucio Lopes

    Full Text Available ABSTRACT In the last 40 years, several scientific and technological advances in microbiology of the fermentation have greatly contributed to evolution of the ethanol industry in Brazil. These contributions have increased our view and comprehension about fermentations in the first and, more recently, second-generation ethanol. Nowadays, new technologies are available to produce ethanol from sugarcane, corn and other feedstocks, reducing the off-season period. Better control of fermentation conditions can reduce the stress conditions for yeast cells and contamination by bacteria and wild yeasts. There are great research opportunities in production processes of the first-generation ethanol regarding high-value added products, cost reduction and selection of new industrial yeast strains that are more robust and customized for each distillery. New technologies have also focused on the reduction of vinasse volumes by increasing the ethanol concentrations in wine during fermentation. Moreover, conversion of sugarcane biomass into fermentable sugars for second-generation ethanol production is a promising alternative to meet future demands of biofuel production in the country. However, building a bridge between science and industry requires investments in research, development and transfer of new technologies to the industry as well as specialized personnel to deal with new technological challenges.

  8. Measuring industry productivity and cross-country convergence

    Inklaar, Robert; Diewert, W. Erwin

    2016-01-01

    This paper introduces a new method for simultaneously comparing industry productivity across countries and over time. The new method is similar to the method for making multilateral comparisons of Caves, Christensen and Diewert (1982b) but their method can only compare gross outputs across

  9. Grid-based Simulation of Industrial Thin Film Production

    Krzhizhanovskaya, V.V.; Sloot, P.M.A.; Gorbachev, Y.E.

    2005-01-01

    In this article, the authors introduce a Grid-based virtual reactor, a High Level Architecture (HLA)-supported problem-solving environment that allows for detailed numerical study of industrial thin-film production in plasma-enhanced chemical vapor deposition (PECVD) reactors. They briefly describe

  10. Successful new product development in the food packaging industry ...

    International Journal of Engineering, Science and Technology ... In the context of the food industry, process and product innovations are usually the ... The analysis is proposed in the form of a case study-based research, which was carried out ...

  11. Cleaner production for solid waste management in leather industry ...

    Cleaner production for solid waste management in leather industry. ... From the processes, wastes are generated which include wastewater effluents, solid wastes, and hazardous wastes. In developing countries including Ethiopia, many ... The solid waste inventory of the factory has been carried out. The major problems ...

  12. The Experience on Geopolymer Technology in Semi-Industrial Production

    Boura, P.; Ertl, Z.; Hanzlíček, Tomáš; Perná, Ivana

    2012-01-01

    Roč. 2, č. 4 (2012), s. 300-305 ISSN 2161-6221 Institutional research plan: CEZ:AV0Z30460519 Keywords : geopolymer * semi-industrial * production Subject RIV: JI - Composite Materials http://davidpublishing.org/journals_show_abstract.html?5272-0

  13. Exergetic comparison of food waste valorization in industrial bread production

    Zisopoulos, F.K.; Moejes, S.N.; Rossier Miranda, F.J.; Goot, van der A.J.; Boom, R.M.

    2015-01-01

    This study compares the thermodynamic performance of three industrial bread production chains: one that generates food waste, one that avoids food waste generation, and one that reworks food waste to produce new bread. The chemical exergy flows were found to be much larger than the physical exergy

  14. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis.

    Kapelko, Magdalena; Oude Lansink, Alfons; Stefanou, Spiro E

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change.

  15. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis

    Kapelko, Magdalena; Lansink, Alfons Oude; Stefanou, Spiro E.

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change. PMID:26057878

  16. Improving the Management of Innovative Development of Industrial Production According to Industry Specifics

    Papizh Yuliia S.

    2018-03-01

    Full Text Available The problem of improvement of management efficiency of innovative development of industrial enterprises in modern economic conditions is indicated. The dynamics of innovative processes in Ukraine together with volumes of innovative activity of domestic enterprises are analyzed. The basic principles of formation and efficient functioning of the organizational-economic mechanism of innovative development of industrial production are substantiated. The branch specificity in management of innovative development of coal enterprises is identified. Directions of improvement of the organizational-economic mechanism of management of innovative development of enterprises of coal industry are defined. The basic principles of introduction of the mechanism for stimulation of innovative development of enterprises of coal industry are suggested.

  17. Description of the production process - industrial phase; Descricao do processo produtivo - fase industrial

    NONE

    2009-10-15

    This chapter presents the description of the present state-of-art, in this paper called first generation of the productive process of sugar-cane bio ethanol in Brazil, related to the industrial phase involving their improvements and also the aspects related to the second generation technologies, particularly the hydrolysis and gasification of the biomass technologies. The chapter also approaches the aspects referred to the use of sugar cane bagasse and the straw cape, and also the production of electric power surplus.

  18. The forest products industry at an energy/climate crossroads

    Brown, Marilyn A.; Baek, Youngsun

    2010-01-01

    Transformational energy and climate policies are being debated worldwide that could have significant impact upon the future of the forest products industry. Because woody biomass can produce alternative transportation fuels, low-carbon electricity, and numerous other 'green' products in addition to traditional paper and lumber commodities, the future use of forest resources is highly uncertain. Using the National Energy Modeling System (NEMS), this paper assesses the future of the forest products industry under three possible U.S. policy scenarios: (1) a national renewable electricity standard, (2) a national policy of carbon constraints, and (3) incentives for industrial energy efficiency. In addition, we discuss how these policy scenarios might interface with the recently strengthened U.S. renewable fuels standards. The principal focus is on how forest products including residues might be utilized under different policy scenarios, and what such market shifts might mean for electricity and biomass prices, as well as energy consumption and carbon emissions. The results underscore the value of incentivizing energy efficiency in a portfolio of energy and climate policies in order to moderate electricity and biomass price escalation while strengthening energy security and reducing CO 2 emissions. - Research highlights: →Transformational energy and climate policies such as a national renewable electricity standard, a national policy of carbon constraints, and incentives for industrial energy efficiency could have significant impact upon the future of the forest products industry. →Each policy scenario reduces CO 2 emissions over time, compared to the business-as-usual forecast, with the carbon constrained policy producing the largest decline. As a package, the three policies together could cut CO 2 emissions from the electricity sector by an estimated 41% by 2030. →This study underscores the value of incentivizing energy efficiency in a portfolio of energy and

  19. Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries

    Ferrasse, Stephane; Segal, V.M.; Alford, Frank; Kardokus, Janine; Strothers, Susan

    2008-01-01

    Two areas are critical to promote equal-channel angular extrusion beyond the stage of a laboratory curiosity: (i) tool/processing design and scale up; (ii) development of new submicrometer-grained products. Both goals are pursued at Honeywell. The first case is the successful commercialization of ECAE for the production of sputtering targets from single phase alloys in the electronic industry. Blank dimensions are significantly larger than those reported in the literature. Other described applications are targeted to the increase of tensile strength, high-cycle fatigue and toughness in medium-to-heavily alloyed Al materials used in aerospace. In these alloys, the optimal properties can be reached with better understanding of the interplay between plastic deformation and precipitation mechanisms

  20. Agrification: Agriculture for the industry and energy production

    Anon.

    1992-01-01

    The new aspect of agrification is the production of alternative products, which can replace fossil sources. This substitution is necessary in order to replace hazardous materials and to find a solution for the problem of depletion of conventional energy sources and basic materials. Attention is paid to some developments in Germany: agricultural products for the production of energy, and new industrial applications for vegetable filaments. With regard to energy production from agricultrual products one should distinguish between (a) solid energy sources (biomass), f.e. straw, fast-growing wood, elephant's grass, hay and rapeseed, and (b) fluid and gaseous energy sources, f.e. purified and partly refined rapeseed oil, rapeseed oil methyl-ester (RME), ethanol from sugar beet, methanol from straw and hydrogen from straw and/or elephant's grass. 4 figs., 7 refs

  1. New Product Development (NPD) Process - An Example of Industrial Sector

    Kazimierska, Marianna; Grębosz-Krawczyk, Magdalena

    2017-12-01

    This aim of this article is to present the process of new product introduction on example of industrial sector in context of new product development (NPD) concept. In the article, the concept of new product development is discussed and the different stages of the process of new electric motor development are analysed taking into account its objectives, implemented procedures, functions and responsibilities division. In the article, information from secondary sources and the results of empirical research - conducted in an international manufacturing company - are used. The research results show the significance of project leader and regular cooperation with final client in the NPD process.

  2. Design and industrial production of frequency standards in the USSR

    Demidov, Nikolai A.; Uljanov, Adolph A.

    1990-01-01

    Some aspects of research development and production of quantum frequency standards, carried out in QUARTZ Research and Production Association (RPA), Gorky, U.S.S.R., were investigated for the last 25 to 30 years. During this period a number of rubidium and hydrogen frequency standards, based on the active maser, were developed and put into production. The first industrial model of a passive hydrogen maser was designed in the last years. Besides frequency standards for a wide application range, RPA QUARTZ investigates metrological frequency standards--cesium standards with cavity length 1.9 m and hydrogen masers with a flexible storage bulb.

  3. Industrial waste treatment and application in rubber production

    Pugacheva, I. N.; Popova, L. V.; Repin, P. S.; Molokanova, L. V.

    2018-03-01

    The paper provides for the relevance of various industrial waste treatment and application, as well as their secondary commercialization. It considers treatment of secondary polymer materials turning to additives applied in rubber production, in particular, in production of conveyor and V-type belts used in mechanical engineering. It is found that oligomers obtained from petroleum by-products can be used as an impregnating compound for fiber materials. Such adhesive treatment prior to introduction of impregnating compounds into elastomeric materials improves adhesion and complements performance of obtained composites.

  4. Gamma radiodecontamination of natural products uses in Cuban pharmaceutical industry

    Rodriguez, M.; Lopez, M.; Guerra, M.; Lastra, H.; Prieto, E.; Padron, E.

    1997-01-01

    The aim of the present paper was to carry out the gamma radiodecontamination of industrial productions from there medicinal plant species (C. officinalis, P. incarta and M. recuttia) and two pharmaceuticals forms (S. platensis and bee pollen tabs) which presented high levels of microbiological count. Adequate irradiation doses calculated for each product were used in decontamination. The results obtained showed the effectiveness of the process in the elimination of microbial contamination from theses natural products. No changes in nutritional constituents or physico-chemical properties were observed

  5. New Product Development in Traditional Industries: Decision-Making Revised

    Jon Mikel Zabala-Iturriagagoitia

    2012-02-01

    Full Text Available This paper investigates whether decisions considered as common in new product development literature are also valid in a region characterized by traditional industries. The research is grounded on innovative companies in the Valencian Region (Spain. Using the statistical tool of factor analysis, we test if the groups of decisions identified by the literature can be confirmed in our empirical sample. Therewith, we aim to link the theoretical and empirical fields in the context of new product development and product innovation management.

  6. Towards eco-agro industrial clusters in aquatic production: the case of shrimp processing industry in Vietnam

    Pham Thi Ahn,; Tran Thi My Dieu,; Mol, A.P.J.; Kroeze, C.; Bush, S.R.

    2011-01-01

    The concept of industrial ecology has been applied in this research to study possibilities to develop an eco-industrial cluster model for fishery production industry in Vietnam. By learning from experiments of other developed countries, we apply the principles of Industrial Ecology and of Ecological

  7. Exergetic comparison of food waste valorization in industrial bread production

    Zisopoulos, Filippos K.; Moejes, Sanne N.; Rossier-Miranda, Francisco J.; Goot, Atze Jan van der; Boom, Remko M.

    2015-01-01

    This study compares the thermodynamic performance of three industrial bread production chains: one that generates food waste, one that avoids food waste generation, and one that reworks food waste to produce new bread. The chemical exergy flows were found to be much larger than the physical exergy consumed in all the industrial bread chains studied. The par-baked brown bun production chain had the best thermodynamic performance because of the highest rational exergetic efficiency (71.2%), the lowest specific exergy losses (5.4 MJ/kg brown bun), and the almost lowest cumulative exergy losses (4768 MJ/1000 kg of dough processed). However, recycling of bread waste is also exergetically efficient when the total fermented surplus is utilizable. Clearly, preventing material losses (i.e. utilizing raw materials maximally) improves the exergetic efficiency of industrial bread chains. In addition, most of the physical (non-material related) exergy losses occurred at the baking, cooling and freezing steps. Consequently, any additional improvement in industrial bread production should focus on the design of thermodynamically efficient baking and cooling processes, and on the use of technologies throughout the chain that consume the lowest possible physical exergy. - Highlights: • Preventing material losses is the best way to enhance the exergetic efficiency. • Most of the physical exergy losses occur at the baking, cooling and freezing steps. • Par-baking “saves” chemical exergy but consumes an equal amount of physical exergy

  8. Fumonisin and Ochratoxin Production in Industrial Aspergillus niger Strains

    Frisvad, Jens C.; Larsen, Thomas O.; Thrane, Ulf; Meijer, Martin; Varga, Janos; Samson, Robert A.; Nielsen, Kristian F.

    2011-01-01

    Aspergillus niger is perhaps the most important fungus used in biotechnology, and is also one of the most commonly encountered fungi contaminating foods and feedstuffs, and occurring in soil and indoor environments. Many of its industrial applications have been given GRAS status (generally regarded as safe). However, A. niger has the potential to produce two groups of potentially carcinogenic mycotoxins: fumonisins and ochratoxins. In this study all available industrial and many non-industrial strains of A. niger (180 strains) as well as 228 strains from 17 related black Aspergillus species were examined for mycotoxin production. None of the related 17 species of black Aspergilli produced fumonisins. Fumonisins (B2, B4, and B6) were detected in 81% of A. niger, and ochratoxin A in 17%, while 10% of the strains produced both mycotoxins. Among the industrial strains the same ratios were 83%, 33% and 26% respectively. Some of the most frequently used strains in industry NRRL 337, 3112 and 3122 produced both toxins and several strains used for citric acid production were among the best producers of fumonisins in pure agar culture. Most strains used for other biotechnological processes also produced fumonisins. Strains optimized through random mutagenesis usually maintained their mycotoxin production capability. Toxigenic strains were also able to produce the toxins on media suggested for citric acid production with most of the toxins found in the biomass, thereby questioning the use of the remaining biomass as animal feed. In conclusion it is recommended to use strains of A. niger with inactive or inactivated gene clusters for fumonisins and ochratoxins, or to choose isolates for biotechnological uses in related non-toxigenic species such as A. tubingensis, A. brasiliensis, A vadensis or A. acidus, which neither produce fumonisins nor ochratoxins. PMID:21853139

  9. GGDC Productivity Level Database : International Comparisons of Output, Inputs and Productivity at the Industry Level

    Inklaar, Robert; Timmer, Marcel P.

    2008-01-01

    In this paper we introduce the GGDC Productivity Level database. This database provides comparisons of output, inputs and productivity at a detailed industry level for a set of thirty OECD countries. It complements the EU KLEMS growth and productivity accounts by providing comparative levels and

  10. Integrated production planning and water management in the food industry: A cheese production case study

    Pulluru, Sai Jishna; Akkerman, Renzo; Hottenrott, Andreas

    2017-01-01

    Efficient water management is increasingly relevant in the food industry. Exploiting water reuse opportunities in planning production activities is a key part of this. We study integrated water management and production planning in cheese production. For this, we develop a water-integrated lot

  11. Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer.

    Küppers, Tobias; Steffen, Victoria; Hellmuth, Hendrik; O'Connell, Timothy; Bongaerts, Johannes; Maurer, Karl-Heinz; Wiechert, Wolfgang

    2014-03-24

    Since volatile and rising cost factors such as energy, raw materials and market competitiveness have a significant impact on the economic efficiency of biotechnological bulk productions, industrial processes need to be steadily improved and optimized. Thereby the current production hosts can undergo various limitations. To overcome those limitations and in addition increase the diversity of available production hosts for future applications, we suggest a Production Strain Blueprinting (PSB) strategy to develop new production systems in a reduced time lapse in contrast to a development from scratch.To demonstrate this approach, Bacillus pumilus has been developed as an alternative expression platform for the production of alkaline enzymes in reference to the established industrial production host Bacillus licheniformis. To develop the selected B. pumilus as an alternative production host the suggested PSB strategy was applied proceeding in the following steps (dedicated product titers are scaled to the protease titer of Henkel's industrial production strain B. licheniformis at lab scale): Introduction of a protease production plasmid, adaptation of a protease production process (44%), process optimization (92%) and expression optimization (114%). To further evaluate the production capability of the developed B. pumilus platform, the target protease was substituted by an α-amylase. The expression performance was tested under the previously optimized protease process conditions and under subsequently adapted process conditions resulting in a maximum product titer of 65% in reference to B. licheniformis protease titer. In this contribution the applied PSB strategy performed very well for the development of B. pumilus as an alternative production strain. Thereby the engineered B. pumilus expression platform even exceeded the protease titer of the industrial production host B. licheniformis by 14%. This result exhibits a remarkable potential of B. pumilus to be the

  12. The scale of biomass production in Japan

    Matsumura, Yukihiko [School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima-shi 739-8527 (Japan); Inoue, Takashi; Fukuda, Katsura [Global Warming Research Department, Mitsubishi Research Institute, Inc., 2-3-6 Ohtemachi, Chiyoda-ku, Tokyo 100-8141 (Japan); Komoto, Keiichi; Hada, Kenichiro [Renewable energy Team, Environment, Natural Resources and Energy Division, Mizuho Information and Research Institute, Inc., 2-3 Kanda-nishikicho, Chiyoda-ku, Tokyo 101-8443 (Japan); Hirata, Satoshi [Technical Institute, Kawasaki Heavy Industries, Ltd., 1-1 Kawasakicho, Akashi-shi, Hyogo 673-8666 (Japan); Minowa, Tomoaki [Biomass Recycle Research Laboratory, National Institute of Advanced and Industrial Science and Technology, 2-2-2 Hiro, Suehiro, Kure-shi, Hiroshima 737-0197 (Japan); Yamamoto, Hiromi [Socioeconomic Research Center, Central Research Institute of Electric Power Industry, 1-6-1 Ohtemachi, Chiyoda-ku, Tokyo 100-8126 (Japan)

    2005-11-01

    Policymakers working to introduce and promote the use of bioenergy in Japan require detailed information on the scales of the different types of biomass resources generated. In this research, the first of its type in Japan, the investigators reviewed various statistical resources to quantify the scale distribution of forest residues, waste wood from manufacturing, waste wood from construction, cattle manure, sewage sludge, night soil, household garbage, and waste food oil. As a result, the scale of biomass generation in Japan was found to be relatively small, on the average is no more than several tons in dry weight per day. (author)

  13. Scale of harvesting by non-industrial private forest landowners

    Melinda Vokoun; Gregory S. Amacher; David N. Wear

    2006-01-01

    We examine the intensity of harvesting decision by non-industrial landowners at the lowest price offer they deem acceptable, using a multiple bounded discrete choice stated preference approach that draws upon and connects two subfields of forestry, one identifying characteristics of landowners important to past harvesting or reforestation decisions, and another...

  14. Industrial-scale process control by means of electrostatics probes

    Špatenka, P.; Brunnhofer, Václav; Krumeich, J.; Blažek, J.; Šerý, M.; Endres, H. J.; Cook, R.

    2001-01-01

    Roč. 5, - (2001), s. 255-263 ISSN 1084-0184 R&D Projects: GA ČR GA202/00/1592; GA MŠk OC 527.60 Institutional research plan: CEZ:AV0Z5007907 Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  15. Low specific activity scale in the oil industry

    1991-01-01

    The NRPB present an illustrated fold-out leaflet in the At-a-glance series, for members of the oil industry, indicating the type of radioactivity to be met during off-shore drilling, possible hazards, doses, and precautions and procedures to be undertaken by workers. (author)

  16. Research on the industry environmental total factor productivity in Jiangsu Province based on the SBM-SML

    Lingfang, Sun; Han, Wang; Jian, Gong

    2017-03-01

    This paper uses the SBM-SML to measure the industry environmental total factor productivity in Jiangsu province of its 13 cities during 2005-2014 with SO2 emissions as the undesirable output, and discomposes the total factor productivity into the pure technical efficiency, the scale efficiency change, the pure technical change and the scale technical change. The research shows that the overall trend of the industry environmental total factor productivity is increasing in Jiangsu province during 2005-2014, the technical change is a main reason pushing up growth rates of economy, and the pure technical change is the intrinsic motivation of the technical change.Introduction.

  17. Industrial production of insulators using isostatic compaction method

    Drugoveiko, O.P.; Ermolaeva, L.V.; Koren' , M.G.; Kreimer, B.D.; Panichev, G.I.; Ponomarev, A.P.; Rutkovskii, V.N.

    1985-07-01

    The process of shaping ceramic products from powders using isostatic compaction method is finding increasing industrial application. The production of electrical-engineering porcelain using isostatic compaction method is, according to the authors, a promising direction since this method permits one to obtain large and complex shaped products having uniform density distribution. The authors introduce an automatic isostatic compaction line at the ''Proletarii'' Factory for the production of the IOS-110-20000UKhL, T1 type insulators having the described dimensions. According to the technological process developed at the ''Elektrokeramika'' Production Complex, insulators were manufactured on the isostatic compaction line from the G-33 mass. Presspowder having a moisture content of 0.3-0.6% and a particle size of 90-160 micrometers was obtained in a spray dryer using disk spraying. The authors studied saturability by moisture of the powder obtained.

  18. DETECTING VERTICAL INTRA-INDUSTRY TRADE IN CULTURAL PRODUCTS

    Affortunato Francesca

    2012-12-01

    Full Text Available The European integration process has always since markedly characterized by the increasing incidence of Intra-Industry Trade. This has been theoretically justified on the grounds of the new approaches emerging in international trade literature, based on imperfect competition and differentiated products. In recent years another distinctive economic feature of European Union is the importance gained by the so called “cultural and creative sectors”, which are often studied and monitored by reports for their great growth potential. We provide here a systematic decomposition of world trade in “cultural/creative goods” for the year 2009 (using harmonised bilateral flows for some 213 products defined as “cultural products” by UNESCO, 2009 into three trade types: inter-industry, intra-industry (IIT in horizontally versus vertically differentiated products. We show that the world trade in cultural goods is significantly characterised by two-way trade of vertically differentiated products. Moreover we specifically focus on the Italian peculiarities in the “cultural trade”: therefore we first work out which ones of the world countries are the “top exporters” of these categories of products and then we compute an indicator of the Italian goods’ quality relative to each of these competitors. Not surprisingly, we find that the most important bilateral IIT intensities in cultural products are observed in Europe. However the presence of developing countries is not unimportant. This can be explained partly to as a consequence of the increasing level of trade integration among some Asian countries and as a consequence of an increasing despecialization of firstly industrialized countries in the production and trading of these products. Finally, with reference to the relative quality of Italian cultural products compared with that of the other top-exporters in these sectors, we find that Italian

  19. Growth and Efficiency of Small Scale Industry and its Impact on Economic Development of Sindh

    Mumtaz Ali Junejo

    2008-09-01

    Full Text Available The purpose of this study is to analyze the growth, efficiency, causes of sickness of small scale industry, emergence of entrepreneur and competencies of entrepreneurs at Larkana estate area of Sindh Province. The study examines the educational background of the entrepreneurs of small scale industry who are the helm of affairs and its impact on the growth of sales of the every year. Strong evidence emerges that owners of small industrial units are family concern and having a low educational background, lack of managerial knowledge and conservation-oriented attitude results in under utilization of capacity and low growth of units established every year. This research paper provides a survey of the theoretical and empirical literature relating to promote the small scale industry in the Larkana region. This study indicates effective policy measures to promote the small scale industry particularly in Larkana region and generally in Pakistan.

  20. Green perspective in food industry production line design: A review

    Xian, C. Y.; Sin, T. C.; Liyana, M. R. N.; Awang, A.; Fathullah, M.

    2017-09-01

    The design of green manufacturing process in food industries is currently a hot research topic in the multidisciplinary area of applied chemistry, biology and technology. Several process such as freezing, cutting, drying, tempering, bleaching, sterilization, extraction and filtering have been applied efficiency in the food industry. Due to the rapid development of food and peripheral technology, the use of new physical processing or auxiliary processing methods can maintain food inherent nutrients, texture, color, and freshness and also reduce environmental pollution and energy consumption in food processing. Hence, this review paper will study and summarize the effects of green manufacturing process in food industries in term of waste reduction, materials and sustainability manufacturing. In any case, All the food processing equipment must comply with strict standards and regulation, this action will ensure the securing the food quality and safety of food products to consumers.

  1. Ergonomic evaluation of cheese production process in dairy industries

    Luciano Brito Rodrigues

    2008-07-01

    Full Text Available The present work consisted of an analysis of work conditions aspects in small dairy industries from southwest region of Bahia state. The study considered the analysis of environmental variables and the organization of the work in the production process of cheeses. The analysis was performed by means of observations in loco and measurement of the environmental variables related to noise, illumination and temperature. The main problems are related to posture and inadequate illumination. The parameters were evaluated according to the norms and legislation available in order to propose suggestions for the identified problems, objectifying the comfort and safety of workers and the consequent improvement of activities developed in these industries. Keywords: Ergonomics, Dairy industries, Environmental comfort.

  2. Integration of Mobile Manipulators in an Industrial Production

    Madsen, Ole; Bøgh, Simon; Schou, Casper

    2015-01-01

    Purpose – The purpose of this study has been to evaluate the technology of autonomous mobile manipulation in a real world industrial manufacturing environment. The objective has been to obtain experience in the integration with existing equipment and determine key challenges in maturing...... reports from such a real-world industrial experiment with two mobile manipulators. Design/methodology/approach – In the experiment, autonomous industrial mobile manipulators are integrated into the actual manufacturing environment of the pump manufacturer Grundfos. The two robots together solve the task...... of producing rotors; a task constituted by several sub-tasks ranging from logistics to complex assembly. With a total duration of 10 days, the experiment includes workspace adaptation, safety regulations, rapid robot instruction and running production. Findings – With a setup time of less than one day...

  3. Radiation applications in industry and medicine: DAE fostering availability, quality and safety of products and service

    Ramamoorthy, N.

    2016-01-01

    Nuclear and radiation applications play a significant role in aiding industrial process management, food security and safety, health care practices, manufacturing and value-addition to certain materials, treating pollutants/waste, etc. Most of these applications have contributed to improving the quality of life and industrial efficiency. India is among the large-scale producers cum users of radioisotope products and radiation technology applications over the past nearly five decades, thanks to the Department of Atomic Energy (DAE) and its various units pioneering the development and deployment of the above-mentioned applications in our country

  4. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods.

    Coton, Monika; Pawtowski, Audrey; Taminiau, Bernard; Burgaud, Gaëtan; Deniel, Franck; Coulloumme-Labarthe, Laurent; Fall, Abdoulaye; Daube, Georges; Coton, Emmanuel

    2017-05-01

    Kombucha, historically an Asian tea-based fermented drink, has recently become trendy in Western countries. Producers claim it bears health-enhancing properties that may come from the tea or metabolites produced by its microbiome. Despite its long history of production, microbial richness and dynamics have not been fully unraveled, especially at an industrial scale. Moreover, the impact of tea type (green or black) on microbial ecology was not studied. Here, we compared microbial communities from industrial-scale black and green tea fermentations, still traditionally carried out by a microbial biofilm, using culture-dependent and metabarcoding approaches. Dominant bacterial species belonged to Acetobacteraceae and to a lesser extent Lactobacteriaceae, while the main identified yeasts corresponded to Dekkera, Hanseniaspora and Zygosaccharomyces during all fermentations. Species richness decreased over the 8-day fermentation. Among acetic acid bacteria, Gluconacetobacter europaeus, Gluconobacter oxydans, G. saccharivorans and Acetobacter peroxydans emerged as dominant species. The main lactic acid bacteria, Oenococcus oeni, was strongly associated with green tea fermentations. Tea type did not influence yeast community, with Dekkera bruxellensis, D. anomala, Zygosaccharomyces bailii and Hanseniaspora valbyensis as most dominant. This study unraveled a distinctive core microbial community which is essential for fermentation control and could lead to Kombucha quality standardization. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. The Productivity Analysis of Chennai Automotive Industry Cluster

    Bhaskaran, E.

    2014-07-01

    Chennai, also called the Detroit of India, is India's second fastest growing auto market and exports auto components and vehicles to US, Germany, Japan and Brazil. For inclusive growth and sustainable development, 250 auto component industries in Ambattur, Thirumalisai and Thirumudivakkam Industrial Estates located in Chennai have adopted the Cluster Development Approach called Automotive Component Cluster. The objective is to study the Value Chain, Correlation and Data Envelopment Analysis by determining technical efficiency, peer weights, input and output slacks of 100 auto component industries in three estates. The methodology adopted is using Data Envelopment Analysis of Output Oriented Banker Charnes Cooper model by taking net worth, fixed assets, employment as inputs and gross output as outputs. The non-zero represents the weights for efficient clusters. The higher slack obtained reveals the excess net worth, fixed assets, employment and shortage in gross output. To conclude, the variables are highly correlated and the inefficient industries should increase their gross output or decrease the fixed assets or employment. Moreover for sustainable development, the cluster should strengthen infrastructure, technology, procurement, production and marketing interrelationships to decrease costs and to increase productivity and efficiency to compete in the indigenous and export market.

  6. Plans for industrial production of the SSC magnets

    Karpenko, V.N.; Rardin, D.C.

    1986-01-01

    The Universities Research Association through its Central Design Group is currently conducting research and development for the Department of Energy on a superconducting super collider (SSC). The proposed SSC is a device in which protons would be accelerated around a ring approximately 50 miles in circumference. The protons would be kept in their path by means of thousands of powerful superconducting magnets. Two such rings of magnets would be housed in a common underground tunnel, allowing groups of protons to be accelerated in opposite directions and collided, in order to study the fundamental nature of matter and energy. The magnet system is a major element of the SSC in terms of technical requirements, quantity of components and cost. In order to meet technical and production requirements imposed by this system early participation of industry is necessary. The program plans were developed with the objective to involve industry in the early stages of research and development of superconducting magnets, leading to cost effective processes of potential mass production of high quality accelerator magnets by industry. While a decision has not been made by the Department of Energy on whether or not to request construction of the SSC project, if such a request is made and the project is authorized and funded, it would lead to industrial manufacture of a large quantity of superconducting magnets

  7. PRODUCTION ELASTICITIES, RETURN TO SCALE AND ...

    thinkexploitsint'l

    estimates indicated that the farmers' production was in stage 1 (irrational stage) of the production ... security for a growing population is a central issue (Fu et al., 2011). ... to have attained optimal level which proper allocation of inputs can achieve. ... normally distributed with zero mean and constant variance N (0, Sv2).

  8. Laboratory scale studies on removal of chromium from industrial wastes.

    Baig, M A; Mir, Mohsin; Murtaza, Shazad; Bhatti, Zafar I

    2003-05-01

    Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in aqueous systems in both trivalent (Cr(3+)) and hexavalent (Cr(6+)) forms. The hexavalent form is carcinogenic and toxic to aquatic life, whereas Cr(3+) is however comparatively less toxic. This study was undertaken to investigate the total chromium removal from industrial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation. The study was conducted in four phases. In phase I, the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected. As a result, pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively. Phase II showed that lower dose of sodium meta bisulfate was sufficient to obtain 100% efficiency in reducing Cr(6+) to Cr(3+), and it was noted that reaction time had no significance in the whole process. A design curve for reduction process was established which can act as a tool for treatment of industrial effluents. Phase III studies indicated the best pH was 8.5 for precipitation of Cr(3+) to chromium hydroxide by using lime. An efficiency of 100% was achievable and a settling time of 30 minutes produced clear effluent. Finally in Phase IV actual waste samples from chrome tanning and electroplating industries, when precipitated at pH of 12 gave 100% efficiency at a settling time of 30 minutes and confined that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries.

  9. Product differentiation, competition and prices in the retail gasoline industry

    Manuszak, Mark David

    This thesis presents a series of studies of the retail gasoline industry using data from Hawaii. This first chapter examines a number of pricing patterns in the data and finds evidence that gasoline stations set prices which are consistent with a number of forms of price discrimination. The second chapter analyzes various patterns of cross-sectional, cross-market and intertemporal variation in the data to investigate their suitability for use in structural econometric estimation. The remainder of the dissertation consists of specification and estimation of a structural model of supply and demand for retail gasoline products sold at individual gasoline stations. This detailed micro-level analysis permits examination of a number of important issues in the industry, most notably the importance of spatial differentiation in the industry. The third chapter estimates the model and computes new equilibria under a number of asymmetric taxation regimes in order to examine the impact of such tax policies on producer and consumer welfare as well as tax revenue. The fourth chapter examines whether there is any evidence of tacitly collusive behavior in the Hawaiian retail gasoline industry and concludes that, in fact, conduct is fairly competitive in this industry and market.

  10. Risk Management for New Product Development Projects in Food Industry

    Porananond, D.

    2014-07-01

    Full Text Available Project risk management provides a guideline for decision making in new product development (NPD projects, reducing uncertainty and increasing success rate. However, the acceptance of formal risk management applications in industry, especially for NPD projects is still in question. A study of a food conglomerate in Thailand found that only 9% of NPD projects used a systematic approach for managing risk. 61% of the projects realised the importance of risk management, while the remaining 30% did not involve risk management at all. This study aims to develop a risk management model for NPD projects in the food industry. The first section of this paper reviews the literature on risk management theory, including international standards for risk and project management (ISO31000 and ISO21500, publications for the Project Management Body of Knowledge (PMBOK, by a professional organisation the Project Management Institute (PMI, and also academic research. 182 academic papers, published between January 2002 and August 2012 were selected. The second part interviews conducted with eight NPD experts from five of the major food manufacturers in Thailand to examine their risk management practices and problems. Conclusions are made on five topics : classification of research method, project type and industrial segment, distribution of articles by region, tools & techniques for risk management and risk factors in projects. Specific requirements of risk management for NPD projects in the food industry are identified. A risk management model and the concept of risk management applications for the food industry are proposed.

  11. BUSINESS CLIMATE INDICATOR AS A PREDICTOR OF CROATIAN INDUSTRIAL PRODUCTION

    Mirjana Čižmešija

    2010-12-01

    Full Text Available Business and Consumer Surveys (BCS are one of the most frequently used tools to assess economy’s cyclical behavior. Croatia has been conducting the surveys continually since 1995. Nevertheless, there is still a research niche in the Croatian BCS framework that has not been adequately represented. The Joint Harmonised EU Programme of Business and Consumer Surveys suggests Business Climate Indicator (BCI as a composite leading indicator of the economy as a whole. In accordance to the EU methodology, this paper examines managers’ qualitative assessments on five important variables related to their economic environment. Using factor analysis one factor was extracted from those five variables, representing the BCI. It’s predictive properties were analyzed with regards to Croatian industrial production using Granger causality test, impulse response and variance decomposition analysis. Results strongly confirm the precedence of BCI to the changes of Croatian industrial production, validating the importance of its introduction and utilization in Croatian economic cycles analysis.

  12. Industrialization and production of neutral beam ion sources for MFTF

    Lynch, W.S.

    1981-01-01

    The existing LLNL designs of the 20 and 80kV deuterium fueled Neutral Beam Ion Source Modules (NBSM) have been industrialized and are being produced successfully for the MFTF. Industrialization includes value engineering, production engineering, cost reduction, fixturing, facilitation and procurement of components. Production assembly, inspection and testing is being performed in a large electronics manufacturing plant. Decades of experience in high voltage, high vacuum power tubes is being applied to the procedures and processes. Independent quality and reliability assurance criteria are being utilized. Scheduling of the various engineering, procurement and manufacturing task is performed by the use of a Critical Path Method (CPM) computer code, Innovative, computerized grid alignment methods were also designed and installed specifically for this project. New jointing and cleaning techniques were devised for the NBSMs. Traceability and cost control are also utilized

  13. Supply chain management in industrial production. A retrospective view

    Stocchetti, Andrea; Scattola, Elena

    2011-01-01

    The article presents a retrospective review on key-issues about how the management discipline evolved up to the current view about supply-chain management (SCM) in industrial production. Specifically, the article resumes: a) the reasons that led to the transition from the traditional procurement policies to the SCM approach, b) the variables involved in the process of defining SCM relations and c) the key managerial principles underlying SCM policies and strategies. In the manufacturing in...

  14. Nanotechnology for the Forest Products Industry Vision and Technology Roadmap

    Atalla, Rajai [USDA Forest Service, Washington, DC (United States); Beecher, James [USDA Forest Service, Washington, DC (United States); Caron, Robert [Technical Association of the Pulp and Paper Industry, Peachtree Corners, GA (United States); Catchmark, Jeffrey [Pennsylvania State Univ., State College, PA (United States); Deng, Yulin [Georgia Inst. of Technology, Atlanta, GA (United States); Glasser, Wolfgang [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Gray, Derek [McGill Univ., Montreal, QC (Canada); Haigler, Candace [North Carolina State Univ., Raleigh, NC (United States); Jones, Philip [Imerys, Paris (France); Joyce, Margaret [Western Michigan Univ., Kalamazoo MI (United States); Kohlman, Jane [USDA Forest Service, Washington, DC (United States); Koukoulas, Alexander [Technical Association of the Pulp and Paper Industry, Peachtree Corners, GA (United States); Lancaster, Peter [Weyerhaeuser Company, Longview, WA (United States); Perine, Lori [American Forest and Paper Association, Washington, DC (United States); Rodriguez, Augusto [Georgia-Pacific Corporation, Atlanta, GA (United States); Ragauskas, Arthur [Georgia Inst. of Technology, Atlanta, GA (United States); Wegner, Theodore [USDA Forest Service, Washington, DC (United States); Zhu, Junyong [USDA Forest Service, Washington, DC (United States)

    2005-03-01

    A roadmap for Nanotechnology in the Forest Products Industries has been developed under the umbrella of the Agenda 2020 program overseen by the CTO committee. It is expected that the use of new analytical techniques and methodologies will allow us to understand the complex nature of wood based materials and allow the dramatically enhanced use of the major strategic asset the US has in renewable, recyclable resources based on its well managed Forests.

  15. Arsenic in industrial waste water from copper production technological process

    Biljana Jovanović; Milana Popović

    2013-01-01

    Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor...

  16. Robust control charts in industrial production of olive oil

    Grilo, Luís M.; Mateus, Dina M. R.; Alves, Ana C.; Grilo, Helena L.

    2014-10-01

    Acidity is one of the most important variables in the quality analysis and characterization of olive oil. During the industrial production we use individuals and moving range charts to monitor this variable, which is not always normal distributed. After a brief exploratory data analysis, where we use the bootstrap method, we construct control charts, before and after a Box-Cox transformation, and compare their robustness and performance.

  17. Potential reduced exposure products (PREPs) in industry trial testimony.

    Wayne, Geoffrey Ferris

    2006-12-01

    To identify patterns in trial testimony that may reflect on the intentions or expectations of tobacco manufacturers with regard to the introduction of potential reduced exposure products (PREPs). Research was conducted using the Deposition and Trial Testimony Archive (DATTA) collection of trial testimony and depositions housed online at Tobacco Documents Online (www.tobaccodocuments.org). Relevant testimony was identified through full-text searches of terms indicating PREPs or harm reduction strategies. The role and function of PREPs in testimony were classified according to common and contrasting themes. These were analysed in the context of broader trial arguments and against changes in time period and the market. Analysis of testimony suggests that the failure of PREPs in the market tempered initial industry enthusiasm and made protection of the conventional cigarette market its major priority. The "breakthrough" character of PREPs has been de-emphasised, with trial arguments instead positioning PREPs as simply another choice for consumers. This framework legitimises the sale of conventional brands, and shifts the responsibility for adoption of safer products from the manufacturer to the consumer. Likewise, testimony has abandoned earlier dramatic health claims made with regard to PREPs, which had undermined industry arguments regarding efforts to reduce harm in conventional products. More recent testimony advocates the broad acceptance of independent guidelines that would validate use of health claims and enable the industry to market PREPs to consumers. Trial testimony reflects the changing role and positioning of PREPs by the tobacco industry. The findings are of particular importance with regard to future evaluation and potential regulation of reduced harm products.

  18. Process Integration Analysis of an Industrial Hydrogen Production Process

    Stolten, Detlef; Grube, Thomas; Tock, Laurence; Maréchal, François; Metzger, Christian; Arpentinier, Philippe

    2010-01-01

    The energy efficiency of an industrial hydrogen production process using steam methane reforming (SMR) combined with the water gas shift reaction (WGS) is analyzed using process integration techniques based on heat cascade calculation and pinch analysis with the aim of identifying potential measures to enhance the process performance. The challenge is to satisfy the high temperature heat demand of the SMR reaction by minimizing the consumption of natural gas to feed the combustion and to expl...

  19. Addressing IT Productivity Paradox in Hotel Industry; Evidence from India

    İlkan, Mustafa; Olya, Hossein; Rezapouraghdam, Hamed

    2014-01-01

    This study attempts to explore the moderating role of Information Technology (IT) capability on the association between the investment on the information technology and the performance outcome of the hotels. An online survey has been utilized to identify the effect of three indicators of IT capability, according to the resource based theory, on the relationship between IT investment and performance in the hotel industry of India. Findings confirmed the phenomenon of “IT productivity paradox” ...

  20. Upgrading Wood-Based Industries: Harnessing the Social Network of Small-Scale Furniture Producers and Their Institutions

    Melati ,

    2011-05-01

    Full Text Available Furniture is a major export commodity in Indonesia with a total value of USD 1.96 million in 2007.  Jepara District is one of the key location for wood furniture production with 15,271 furniture related business units employing 176,469 workers.  However, inefficiencies and power imbalances throughout the furniture value chain have resulted in overharvesting and uneven distribution of gains among the industry’s actors.  In contrast to price-setting international furniture retailers, small-scale producers enjoy the least value from their products.  In order to increase added value and competitiveness, small-scale furniture producers have made efforts to upgrade by harnessing their social network and institutions.  This paper describes small-scale furniture producers’ efforts to upgrade by utilising their social network and institutions in Jepara.  Data was collected through in-depth interviews with members of the small-scale furniture producers’ association.  The research provides insight into the nature of social networks and information flow and develops future scenarios to upgrade.  The scenarios will not only benefit the furniture industry in Jepara, but may also be adopted for similar industries throughout Indonesia and the world, and potentially improve many people’s economies and livelihoods.Keywords: wood-based industry, furniture, small-scale, social network, institution

  1. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  2. Untargeted GC-MS Metabolomics Reveals Changes in the Metabolite Dynamics of Industrial Scale Batch Fermentations of Streptoccoccus thermophilus Broth

    Khakimov, Bekzod; Christiansen, Lene D.; Heins, Anna-Lena

    2017-01-01

    An industrial scale biomass production using batch or fed-batch fermentations usually optimized by selection of bacterial strains, tuning fermentation media, feeding strategy, and temperature. However, in-depth investigation of the biomass metabolome during the production may reveal new knowledge...... shows that in-depth metabolic analysis of fermentation broth provides a new tool for advanced optimization of high-volume-low-cost biomass production by lowering the cost, increase the yield, and augment the product quality....... for better optimization. In this study, for the first time, the authors investigated seven fermentation batches performed on five Streptoccoccus thermophilus strains during the biomass production at Chr. Hansen (Denmark) in a real life large scale fermentation process. The study is designed to investigate...

  3. Applied TRIZ in Improving Productivity in Textile Industry

    Ahmad Aminah

    2017-01-01

    Full Text Available TRIZ is a methodology and a collection of problem solving tools and strategies that has been used in many other fields. Therefore, this paper proposes TRIZ method for improving the productivity in a textile industry. It focuses at the packing department in a textile company situated in Malaysia. The process was monitored and the problem was observed. TRIZ method is applied in this problem using Functional Analysis and trimming method. A comparison between before and after implementation is done in order to evaluate the productivity effectiveness.

  4. Food Safety Practices in the Egg Products Industry.

    Viator, Catherine L; Cates, Sheryl C; Karns, Shawn A; Muth, Mary K; Noyes, Gary

    2016-07-01

    We conducted a national census survey of egg product plants (n = 57) to obtain information on the technological and food safety practices of the egg products industry and to assess changes in these practices from 2004 to 2014. The questionnaire asked about operational and sanitation practices, microbiological testing practices, food safety training for employees, other food safety issues, and plant characteristics. The findings suggest that improvements were made in the industry's use of food safety technologies and practices between 2004 and 2014. The percentage of plants using advanced pasteurization technology and an integrated, computerized processing system increased by almost 30 percentage points. Over 90% of plants voluntarily use a written hazard analysis and critical control point (HACCP) plan to address food safety for at least one production step. Further, 90% of plants have management employees who are trained in a written HACCP plan. Most plants (93%) conduct voluntary microbiological testing. The percentage of plants conducting this testing on egg products before pasteurization has increased by almost 30 percentage points since 2004. The survey findings identify strengths and weaknesses in egg product plants' food safety practices and can be used to guide regulatory policymaking and to conduct required regulatory impact analysis of potential regulations.

  5. Cleaner production at pharmaceutical industry: first steps assessment

    Edilaine Conceição Rezende

    2015-12-01

    Full Text Available The Cleaner Production (CP is an environmental management system effective to comply the environmental obligations and promote sustainable development of enterprises. In this study, the implementing possibilities of CP practices were evaluated to pharmaceutical industry, through prior identification procedures for Pharmaceutical Manufacturing Practices. The study was conducted in a scientific and health care institution, which produces pharmaceutical drugs and makes assistance for public health. The production process was evaluated and made a survey of the main points of waste and sewage generations in each stage, in order to diagnose the measures of CP established and propose new actions. Thus, by using this tool, it was possible to demonstrate the reduction of environmental impacts associated with pharmaceutical production. The Pharmaceutical Manufacturing Practices also contributed to the implementation of measures CP, preserving the final product quality, and generating environmental and economic benefits.

  6. The use of production management techniques in the construction of large scale physics detectors

    Bazan, A.; Chevenier, G.; Estrella, F.

    1999-01-01

    The construction process of detectors for the Large Hadron Collider (LHC) experiments is large scale, heavily constrained by resource availability and evolves with time. As a consequence, changes in detector component design need to be tracked and quickly reflected in the construction process. With similar problems in industry engineers employ so-called Product Data Management (PDM) systems to control access to documented versions of designs and managers employ so-called Product Data Management (PDM) systems to control access to documented versions of designs and managers employ so-called Workflow Management Software (WfMS) to coordinate production work processes. However, PDM and WfMS software are not generally integrated in industry. The scale of LHC experiments, like CMS, demands that industrial production techniques be applied in detector construction. This paper outlines the major functions and applications of the CRISTAL system (Cooperating Repositories and an Information System for Tracking Assembly Lifecycles) in use in CMS which successfully integrates PDM and WfMS techniques in managing large scale physics detector construction. This is the first time industrial production techniques have been deployed to this extent in detector construction

  7. Scaling behavior of jet production at CDF

    Behrends, S.

    1992-11-01

    Inclusive jet cross-sections have been measured in bar pp collisions at √s = 546 and 1800 GeV, using the CDF detector at the Fermilab Tevatron. The ratio of jet cross-sections is compared to predictions from simple scaling and 0(α s 3 ) QCD

  8. Scaling behavior of jet production at CDF

    Behrends, S. [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; The CDF Collaboration

    1992-11-01

    Inclusive jet cross-sections have been measured in {bar p}p collisions at {radical}s = 546 and 1800 GeV, using the CDF detector at the Fermilab Tevatron. The ratio of jet cross-sections is compared to predictions from simple scaling and 0({alpha}{sub s{sup 3}}) QCD.

  9. [Example of product development by industry and research solidarity].

    Seki, Masayoshi

    2014-01-01

    When the industrial firms develop the product, the research result from research institutions is used or to reflect the ideas from users on the developed product would be significant in order to improve the product. To state the software product which developed jointly as an example to describe the adopted development technique and its result, and to consider the modality of the industry solidarity seen from the company side and joint development. The software development methods have the merit and demerit and necessary to choose the optimal development technique by the system which develops. We have been jointly developed the dose distribution browsing software. As the software development method, we adopted the prototype model. In order to display the dose distribution information, it is necessary to load four objects which are CT-Image, Structure Set, RT-Plan, and RT-Dose, are displayed in a composite manner. The prototype model which is the development technique was adopted by this joint development was optimal especially to develop the dose distribution browsing software. In a prototype model, since the detail design was created based on the program source code after the program was finally completed, there was merit on the period shortening of document written and consist in design and implementation. This software eventually opened to the public as an open source. Based on this developed prototype software, the release version of the dose distribution browsing software was developed. Developing this type of novelty software, it normally takes two to three years, but since the joint development was adopted, it shortens the development period to one year. Shortening the development period was able to hold down to the minimum development cost for a company and thus, this will be reflected to the product price. The specialists make requests on the product from user's point of view are important, but increase in specialists as professionals for product

  10. Economic Analysis of Small Scale Fish Pond Production in Oguta ...

    What are the costs and returns of small-scale fishpond enterprises? What problems hinder the development of small-scale fishpond production? Data were collected with the aid of structured questionnaires and interviews. Descriptive statistics, gross margin and likert scale were employed in data analysis. Gross margin ...

  11. Impacts of Large Scale Wind Penetration on Energy Supply Industry

    John Kabouris

    2009-11-01

    Full Text Available Large penetration of Renewable Energy Sources (RES impacts Energy Supply Industry (ESI in many aspects leading to a fundamental change in electric power systems. It raises a number of technical challenges to the Transmission System Operators (TSOs, Distribution System Operators (DSOs and Wind Turbine Generators (WTG constructors. This paper aims to present in a thorough and coherent way the redrawn picture for Energy Systems under these conditions. Topics related to emergent technical challenges, technical solutions required and finally the impact on ESI due to large wind power penetration, are analyzed. Finally, general conclusions are extracted about the ESI current and future state and general directions are recommended.

  12. Lithium zirconate elements fabricated by industrial scale processes

    Roux, N.

    1991-01-01

    Lithium metazirconate Li 2 ZrO 3 is one of the leading tritium breeding ceramics contemplated in solid blanket concepts for fusion reactors. Among its merits are fair physical properties, satisfactory compatibility with structural materials and beryllium, satisfactory mechanical strength, excellent irradiation behaviour as shown by a comparative irradiation of ceramics in the EBR II reactor, and very good tritium release performance as evidenced in the MOZART and EXOTIC neutron irradiations. Pechiney and the CEA are jointly involved in developing industrial fabrication of Li 2 ZrO 3 elements to the microstructural and geometrical specifications required for their use in the solid blankets as conceived in the European Program

  13. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Björnsson, Lovisa

    2012-01-01

    Highlights: ► This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. ► Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. ► Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. ► Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. ► It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable

  14. Opportunities, perspectives and limits in lactic acid production from waste and industrial by-products

    Mladenović Dragana D.

    2016-01-01

    Full Text Available In line with the goals of sustainable development and environmental protection today great attention is directed towards new technologies for waste and industrial by-products utilization. Waste products represent potentially good raw material for production other valuable products, such as bioethanol, biogas, biodiesel, organic acids, enzymes, microbial biomass, etc. Since the first industrial production to the present, lactic acid has found wide application in food, cosmetic, pharmaceutical and chemical industries. In recent years, the demand for lactic acid has been increasing considerably owing to its potential use as a monomer for the production of poly-lactic acid (PLA polymers which are biodegradable and biocompatible with wide applications. Waste and industrial by-products such are whey, molasses, stillage, waste starch and lignocellulosic materials are a good source of fermentable sugars and many other substances of great importance for the growth of microorganisms, such as proteins, minerals and vitamins. Utilization of waste products for production of lactic acid could help to reduce the total cost of lactic acid production and except the economic viability of the process offers a solution of their disposal. Fermentation process depends on chemical and physical nature of feedstocks and the lactic acid producer. This review describes the characteristics, abilities and limits of microorganisms involved in lactic acid production, as well as the characteristics and types of waste products for lactic acid production. The fermentation methods that have been recently reported to improve lactic acid production are summarized and compared. In order to improve processes and productivity, fed-batch fermentation, fermentation with immobilized cell systems and mixed cultures and opportunities of open (non-sterilized fermentation have been investigated.

  15. Tobacco industry use of flavourings to promote smokeless tobacco products.

    Kostygina, Ganna; Ling, Pamela M

    2016-11-01

    While fruit, candy and alcohol characterising flavours are not allowed in cigarettes in the USA, other flavoured tobacco products such as smokeless tobacco (ST) continue to be sold. We investigated tobacco manufacturers' use of flavoured additives in ST products, the target audience(s) for flavoured products, and marketing strategies promoting products by emphasising their flavour. Qualitative analysis of internal tobacco industry documents triangulated with data from national newspaper articles, trade press and internet. Internally, flavoured products have been consistently associated with young and inexperienced tobacco users. Internal studies confirmed that candy-like sweeter milder flavours (eg, mint, fruit) could increase appeal to starters by evoking a perception of mildness, blinding the strong tobacco taste and unpleasant mouth feel; or by modifying nicotine delivery by affecting product pH. Similar to cigarettes, flavoured ST is likely to encourage novices to start using tobacco, and regulations limiting or eliminating flavours in cigarettes should be extended to include flavoured ST products. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Joint production and corporate pricing: An empirical analysis of joint products in the petroleum industry

    Karimnejad, H.

    1990-01-01

    This dissertation investigates the pricing mechanism of joint products in large multi-plant and multi-product corporations. The primary objective of this dissertation is to show the consistency of classical theories of production with corporate pricing of joint products. This dissertation has two major parts. Part One provides a theoretical framework for joint production and corporate pricing. In this part, joint production is defined and its historical treatment by classical and contemporary economists is analyzed. Part Two conducts an empirical analysis of joint products in the US petroleum industry. Methods of cost allocation are used in the pricing of each individual petroleum product. Three methods are employed to distribute joint production costs to individual petroleum products. These methods are, the sales value method, the barrel gravity method and the average unit cost method. The empirical findings of dissertation provide useful guidelines for pricing policies of large multi-product corporations

  17. Industrial scale garage-type dry fermentation of municipal solid waste to biogas.

    Qian, M Y; Li, R H; Li, J; Wedwitschka, H; Nelles, M; Stinner, W; Zhou, H J

    2016-10-01

    The objectives of this study was to through monitoring the 1st industrial scale garage-type dry fermentation (GTDF) MSW biogas plant in Bin County, Harbin City, Heilongjiang Province, China, to investigate its anaerobic digestion (AD) performance and the stability of process. After a monitoring period of 180days, the results showed that the volumetric biogas production of the digesters and percolate tank was 0.72 and 2.22m(3) (m(3)d)(-1), respectively, and the specific biogas yield of the feedstock was about 270m(3)CH4tVS(-1), which indicated that the GTDF is appropriate for the Chinese MSW. This paper also raised some problems aimed at improving the process stability and AD efficiency. Copyright © 2016. Published by Elsevier Ltd.

  18. Up-Scaling Production of Carboxymethyl Starch

    Mohd Hafiz Abdul Nasir; Zainon Othman; Kamaruddin Hashim; Siti Khadijah Abu Hadin; Nurul Nadia Shaaban

    2015-01-01

    Carboxymethyl starch (CMS) is a starch derivative formed by its reaction with sodium monochloroacetate which consist of OH-groups that are partially or completely replaced by ether substitution. Characteristic of CMSS defined by the degree of substitution (DS). DS is defined as the average number of substituents per anhydro glucose unit (AGU), the monomer unit of starch. The upgrading of CMSS production from 10L to 30L requires several experiments with different variable such as amount NaOH, amount of Sago Starch and reaction time. Each will give different DS. Quality control for the product cover moisture, viscosity and paste clarity. Therefore, SOP has been established to control the quality final product. (author)

  19. Calibration and qualification of equipment in the pharmaceutical industry: emphasis on radiopharmaceuticals production

    Melero, Laura T.U.H.; Silva, Katia S. da S.; Zanette, Camila; Araujo, Elaine B. de; Mengatti, Jair

    2011-01-01

    The calibration and qualification of equipment are listed items in RDC number 17 of 2010 which refers about the Good Manufacturing Practice (GMP) of medicaments and RDC number 63 of 2009 which refers about GMP of Radiopharmaceuticals. Both are essential requirements since they are involved in process control to attend the regulatory criteria and are a key part of the validation process. The aim of this work is presenting the importance of calibration and qualification, and the routine use of equipment and facilities in industrial scale production of radiopharmaceuticals in the IPEN/CNEN. The radiopharmacy of IPEN is a pharmaceutical industry that produces radiopharmaceuticals for diagnosis and therapy. It was the pioneer institute in production of radioisotopes and radiopharmaceuticals in Brazil. Currently, 38 products are distributed to the nuclear medicine centers, including primary radioisotopes, labeled molecules and lyophilized reagents for labeling with technetium-99m. To fulfill the GMP requirements for quality assurance of products, several factors must be considered including infrastructure, equipment and raw materials beyond, obviously, the whole production process should be controlled until the release of the final product. Therefore, the calibration and verification of equipment, instruments and other appliances used in the production and quality control should be performed. A program of calibration, qualification and requalification of equipment used in production and quality control of radiopharmaceuticals is necessary for the validation of production processes and analytical methods, and should be established for quality assurance of produced radiopharmaceuticals. (author)

  20. Calibration and qualification of equipment in the pharmaceutical industry: emphasis on radiopharmaceuticals production

    Melero, Laura T.U.H.; Silva, Katia S. da S.; Zanette, Camila; Araujo, Elaine B. de; Mengatti, Jair [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The calibration and qualification of equipment are listed items in RDC number 17 of 2010 which refers about the Good Manufacturing Practice (GMP) of medicaments and RDC number 63 of 2009 which refers about GMP of Radiopharmaceuticals. Both are essential requirements since they are involved in process control to attend the regulatory criteria and are a key part of the validation process. The aim of this work is presenting the importance of calibration and qualification, and the routine use of equipment and facilities in industrial scale production of radiopharmaceuticals in the IPEN/CNEN. The radiopharmacy of IPEN is a pharmaceutical industry that produces radiopharmaceuticals for diagnosis and therapy. It was the pioneer institute in production of radioisotopes and radiopharmaceuticals in Brazil. Currently, 38 products are distributed to the nuclear medicine centers, including primary radioisotopes, labeled molecules and lyophilized reagents for labeling with technetium-99m. To fulfill the GMP requirements for quality assurance of products, several factors must be considered including infrastructure, equipment and raw materials beyond, obviously, the whole production process should be controlled until the release of the final product. Therefore, the calibration and verification of equipment, instruments and other appliances used in the production and quality control should be performed. A program of calibration, qualification and requalification of equipment used in production and quality control of radiopharmaceuticals is necessary for the validation of production processes and analytical methods, and should be established for quality assurance of produced radiopharmaceuticals. (author)

  1. Off-Policy Reinforcement Learning: Optimal Operational Control for Two-Time-Scale Industrial Processes.

    Li, Jinna; Kiumarsi, Bahare; Chai, Tianyou; Lewis, Frank L; Fan, Jialu

    2017-12-01

    Industrial flow lines are composed of unit processes operating on a fast time scale and performance measurements known as operational indices measured at a slower time scale. This paper presents a model-free optimal solution to a class of two time-scale industrial processes using off-policy reinforcement learning (RL). First, the lower-layer unit process control loop with a fast sampling period and the upper-layer operational index dynamics at a slow time scale are modeled. Second, a general optimal operational control problem is formulated to optimally prescribe the set-points for the unit industrial process. Then, a zero-sum game off-policy RL algorithm is developed to find the optimal set-points by using data measured in real-time. Finally, a simulation experiment is employed for an industrial flotation process to show the effectiveness of the proposed method.

  2. International comparisons of productivity and its determinants in the natural gas industry

    Kim, Tai-Yoo; Lee, Jeong-Dong; Park, Yearn H.; Kim, Boyoung

    1999-01-01

    The objective of this paper was to evaluate the performance of the natural gas industry using an inter-country comparison of productivity level and its determinants. Three methodologies: multilateral Toernqvist productivity analysis; managerial index system analysis; and non-parametric efficiency analysis, are employed to make a methodological cross-checking and to perform diversified analysis. From the empirical results, we identified the level and growth rate of productivity of individual firms. The results also indicated that the Korean gas industry has shown a relatively low level of productivity. From the results of managerial performance index analysis, we found that during the recent years of regulatory changes, the final price of gas has decreased dramatically while the productivity growth has not been enough to offset the effect of decreased output price, which has resulted in decreased profit. We also examine the extent of the allocative, scale, and managerial efficiency as source components of the overall efficiency based on the performance of best-practiced. With the results of this study, an effective policy measure could be established to improve the productivity and the overall managerial performance in the natural gas industry

  3. Batch Test Screening of Industrial Product/Byproduct Filter Materials for Agricultural Drainage Water Treatment

    Barry J. Allred

    2017-10-01

    Full Text Available Filter treatment may be a viable means for removing the nitrate (NO3−, phosphate (PO43−, and pesticides discharged with agricultural drainage waters that cause adverse environmental impacts within the U.S. on local, regional, and national scales. Laboratory batch test screening for agricultural drainage water treatment potential was conducted on 58 industrial product/byproduct filter materials grouped into six categories: (1 high carbon content media; (2 high iron content media; (3 high aluminum content media; (4 surfactant modified clay/zeolite; (5 coal combustion residuals; and (6 spent foundry sands. Based on a percent contaminant removal criteria of 75% or greater, seven industrial products/byproducts were found to meet this standard for NO3− alone, 44 met this standard for PO43−, and 25 met this standard for the chlorinated triazine herbicide, atrazine. Using a 50% or greater contaminant removal criteria, five of the industrial product/byproduct filter materials exhibited potential for removing NO3−, PO43−, and atrazine together; eight showed capability for combined NO3− and PO43− removal; 21 showed capability for combined PO43− and atrazine removal; and nine showed capability for combined NO3− and atrazine removal. The results of this study delineated some potential industrial product/byproduct filter materials for drainage water treatment; however, a complete feasibility evaluation for drainage water treatment of any of these filter materials will require much more extensive testing.

  4. Bio production of Vanillin from Agro-Industrial Wastes

    Abd EI-Aziz, A.B.

    2011-01-01

    The present study describes an environmentally friendly vanillin production processes from agro industrial wastes. Ferulic 'acid is a well-known product of cereal. brans and sugarcane bagasse lignin degradation, ferulic acid and cellulose degradation sugars were used as feedstock for the vanillin bio production by Debaryomyces hansenii. The bioconversion of ferulic into vanillin by Debaryomyces hansenii was affected by the type and amount of ferulic acid. Addition of purified ferulic acid (2 g/l) and using of adapted yeast cells. increase the yield of vanillin and decrease the secondary products. Yeast extract (3 g/l) and glucose (20 g/l) proved to be the best component as co-substrates for bio production of vanillin. Variable aeration conditions were tested by simultaneously vanilIin the ratio of medium to vessel volume and the agitation speed. under excess aeration, oxidation of a, significant portion of vanillin to vanillic acid occur, thus reducing the vanillin yield. Increasing the inoculum size up to 1 g/I and using low doses of gamma irradiation (0.25 kGy) increase the vanillin production. Under optimum conditions vanillin production from ferulic acid by Debaryomyces attained very high level of 1531 mg/1 with a molar yield of 76.5%

  5. Optimal Product Variety, Scale Effects and Growth

    de Groot, H.L.F.; Nahuis, R.

    1997-01-01

    We analyze the social optimality of growth and product variety in a model of endogenous growth. The model contains two sectors, one assembly sector producing a homogenous consumption good, and one intermediate goods sector producing a differentiated input used in the assembly sector. Growth results

  6. ECONOMIES OF SCALE AND PRODUCTION EFFICIENCY IN ...

    Admin

    high rate of population growth of 2.83% (FOS, 1996). The apparent disparity between the rate of food production and demand for food in Nigeria has led to: (i) a food demand-supply gap thus leading to a widening gap between domestic food supply and the total food requirement; (ii) an increased food importation and (iii).

  7. Utilization of oleo-chemical industry by-products for biosurfactant production

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  8. Radioactive sealed sources production process for industrial radiography

    Santos, Paulo de S.; Ngunga, Daniel M.G.; Camara, Julio R.; Vasquez, Pablo A.S.

    2017-01-01

    providing products and services to the private and governmental Brazilian users of industrial radiography and nucleonic control systems. Radioactive sealed sources are commonly used in nondestructive tests as radiography to make inspections and verify the internal structure and integrity of materials and in nucleonic gauges to control level, density, viscosity, etc. in on-line industrial processes. One of the most important activities carried out by this laboratory is related to the inspection of source projectors devices used in industrial radiography and its constituent parts as well as remote handle control assembly drive cable and guide tube systems. The laboratory also provide for the users iridium-192, cobalt-60 and selenium-75 sealed sources and performs quality control tests replacing spent or contaminated radiative sources. All discard of radioactive source is treated as radioactive waste. Additionally, administrative and commercial processes and protocols for exportation and transport of radioactive material are developed by specialized departments. In this work are presented the mean processes and procedures used by the Sealed Source Production Laboratory such as the arrival of the radioactive material to the laboratory and the source projectors, mechanical inspections, source loading, source leaking tests, etc. (author)

  9. Radioactive sealed sources production process for industrial radiography

    Santos, Paulo de S.; Ngunga, Daniel M.G.; Camara, Julio R.; Vasquez, Pablo A.S., E-mail: psantos@ipen.br, E-mail: hobeddaniel@gmail.com, E-mail: jrcamara@ipen.br, E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    providing products and services to the private and governmental Brazilian users of industrial radiography and nucleonic control systems. Radioactive sealed sources are commonly used in nondestructive tests as radiography to make inspections and verify the internal structure and integrity of materials and in nucleonic gauges to control level, density, viscosity, etc. in on-line industrial processes. One of the most important activities carried out by this laboratory is related to the inspection of source projectors devices used in industrial radiography and its constituent parts as well as remote handle control assembly drive cable and guide tube systems. The laboratory also provide for the users iridium-192, cobalt-60 and selenium-75 sealed sources and performs quality control tests replacing spent or contaminated radiative sources. All discard of radioactive source is treated as radioactive waste. Additionally, administrative and commercial processes and protocols for exportation and transport of radioactive material are developed by specialized departments. In this work are presented the mean processes and procedures used by the Sealed Source Production Laboratory such as the arrival of the radioactive material to the laboratory and the source projectors, mechanical inspections, source loading, source leaking tests, etc. (author)

  10. Optimization of large scale food production using Lean Manufacturing principles

    Engelund, Eva Høy; Friis, Alan; Breum, Gitte

    2009-01-01

    This paper discusses how the production principles of Lean Manufacturing (Lean) can be applied in a large-scale meal production. Lean principles are briefly presented, followed by a field study of how a kitchen at a Danish hospital has implemented Lean in the daily production. In the kitchen...... not be negatively affected by the rationalisation of production procedures. The field study shows that Lean principles can be applied in meal production and can result in increased production efficiency and systematic improvement of product quality without negative effects on the working environment. The results...... show that Lean can be applied and used to manage the production of meals in the kitchen....

  11. Application of Multivariate Analysis Tools to Industrial Scale Fermentation Data

    Mears, Lisa; Nørregård, Rasmus; Stocks, Stuart M.

    . 2014). This may be the case for fed-batch fermentation processes, where mechanistic modelling is challenging due to non-linear dynamics, and non-steady state operation. There is also a lack of sensors for key parameters which are considered to define the quality of the batch, such as product...

  12. Microalgae bulk growth model with application to industrial scale systems

    Quinn, J.; Winter, de L.; Bradley, T.

    2011-01-01

    The scalability of microalgae growth systems is a primary research topic in anticipation of the commercialization of microalgae-based biofuels. To date, there is little published data on the productivity of microalgae in growth systems that are scalable to commercially viable footprints. To inform

  13. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    Marshall, Douglas W.

    2014-01-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic (TRISO) coatings on fuel kernels are influenced by the equipment scale and processing parameters. The standard deviations of some TRISO layer characteristics were diminished while others have become more significant in the larger processing equipment. The impact on statistical variability of the processes and the products, as equipment was scaled, are discussed. The prototypic production-scale processes produce test fuels meeting all fuel quality specifications. (author)

  14. Industrial Law and the Productive Capacity of Labour in Nigeria

    Matthew Enya Nwocha

    2017-06-01

    Full Text Available This Paper has discussed the various employment laws in the country and the inherent defects in them that have impacted negatively on staff productivity. The Paper came against the background of the low productive output of the Nigerian worker that has adversely affected the growth of the national economy and created room for fraud and corruption in the public service as well as the private sector. The Paper has found that aside of defective labour laws, the mentality of Nigerian courts to labour disputes, the negative attitude of Nigerian workers and poor work ethics, and the poor conditions of service in the labour sector all contribute to low output and productivity. Therefore, the Paper has suggested ways that these negative trends can be reversed among them, the amendment of the extant industrial laws and improvement of the working conditions of the Nigerian employee.

  15. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation

    Jansen, Mickel L. A.; Bracher, Jasmine M.; Papapetridis, Ioannis; Verhoeven, Maarten D.; de Bruijn, Hans; de Waal, Paul P.; van Maris, Antonius J. A.; Klaassen, Paul

    2017-01-01

    Abstract The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions. PMID:28899031

  16. Economic evaluation of the industrial solar production of lime

    Meier, Anton; Gremaud, Nicolas; Steinfeld, Aldo

    2005-01-01

    The use of concentrated solar energy in place of fossil fuels for driving the endothermic calcination reaction CaCO 3 → CaO + CO 2 at above 1300 K has the potential of reducing CO 2 emissions by 20% in a state-of-the-art lime plant and up to 40% in a conventional cement plant. An economic assessment for an industrial solar calcination plant with 25 MW th solar input indicates that the cost of solar produced lime ranges between 128 and 157 $/t, about twice the current selling price of conventional lime. The solar production of high purity lime for special sectors in the chemical and pharmaceutical industry might be competitive with conventional fossil fuel based calcination processes at current fuel prices

  17. Innovation in product and services in the shipping retrofit industry

    Hermann, Roberto Rivas; Köhler, Jonathan; Scheepens, Arno

    2015-01-01

    Eco-innovation research pays increasing attention to business models and their contribution to the diffusion of environmental technology into socio-technological systems. The extent to which a business model hampers or promotes certain types of eco-innovations remains an open question. In order...... to shed light on this issue, the authors develop a conceptual framework to show how a specific type of business model (Product-Service Systems) could be applied to the context of the maritime industry. With a focus on the Danish maritime industry, the case study addresses two questions: Which business...... models are being used to develop, install and service the ballast water treatment technology? And, How can these business models add value to the ballast water treatment systems in the market? The case shows that different business models are applied depending on whether the installation is on new...

  18. India's Fertilizer Industry: Productivity and Energy Efficiency

    Schumacher, K.; Sathaye, J.

    1999-07-01

    Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

  19. Development of Product Availability Monitoring System In Production Unit In Automotive Component Industry

    Hartono, Rachmad; Raharno, Sri; Yuwana Martawirya, Yatna; Arthaya, Bagus

    2018-03-01

    This paper described a methodology to monitor the availability of products in a production unit in the automotive component industry. Automotive components made are automotive components made through sheet metal working. Raw material coming into production unit in the form of pieces of plates that have a certain size. Raw materials that come stored in the warehouse. Data of raw each material in the warehouse are recorded and stored in a data base system. The material will then undergo several production processes in the production unit. When the material is taken from the warehouse, material data are also recorded and stored in a data base. The data recorded are the amount of material, material type, and date when the material is out of the warehouse. The material coming out of the warehouse is labeled with information related to the production processes that the material must pass. Material out of the warehouse is a product will be made. The products have been completed, are stored in the warehouse products. When the product is entered into the product warehouse, product data is also recorded by scanning the barcode contained on the label. By recording the condition of the product at each stage of production, we can know the availability of the product in a production unit in the form of a raw material, the product being processed and the finished product.

  20. Toyota production system beyond large-scale production

    Ohno, Taiichi

    1998-01-01

    In this classic text, Taiichi Ohno--inventor of the Toyota Production System and Lean manufacturing--shares the genius that sets him apart as one of the most disciplined and creative thinkers of our time. Combining his candid insights with a rigorous analysis of Toyota's attempts at Lean production, Ohno's book explains how Lean principles can improve any production endeavor. A historical and philosophical description of just-in-time and Lean manufacturing, this work is a must read for all students of human progress. On a more practical level, it continues to provide inspiration and instruction for those seeking to improve efficiency through the elimination of waste.

  1. Development of small-scale peat production; Pienturvetuotannon kehittaeminen

    Erkkilae, A.; Kallio, E. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The aim of the project is to develop production conditions, methods and technology of small-scale peat production to such a level that the productivity is improved and competitivity maintained. The aim in 1996 was to survey the present status of small-scale peat production, and research and development needs and to prepare a development plan for small-scale peat production for a continued project in 1997 and for the longer term. A questionnaire was sent to producers by mail, and its results were completed by phone interviews. Response was obtained from 164 producers, i.e. from about 75 - 85 % of small-scale peat producers. The quantity of energy peat produced by these amounted to 3.3 TWh and that of other peat to 265 000 m{sup 3}. The total production of energy peat (large- scale producers Vapo Oy and Turveruukki Oy included) amounted to 25.0 TWh in 1996 in Finland, of which 91 % (22.8 TWh) was milled peat and 9 % (2.2 TWh) of sod peat. The total production of peat other than energy peat amounted to 1.4 million m{sup 3}. The proportion of small-scale peat production was 13 % of energy peat, 11 % of milled peat and 38 % of sod peat. The proportion of small-scale producers was 18 % of other peat production. The results deviate clearly from those obtained in a study of small-scale production in the 1980s. The amount of small-scale production is clearly larger than generally assessed. Small-scale production focuses more on milled peat than on sod peat. The work will be continued in 1997. Based on development needs appeared in the questionnaire, the aim is to reduce environmental impacts and runoff effluents from small- scale production, to increase the efficiency of peat deliveries and to reduce peat production costs by improving the service value of machines by increasing co-operative use. (orig.)

  2. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.

    McGinn, Patrick J; Dickinson, Kathryn E; Bhatti, Shabana; Frigon, Jean-Claude; Guiot, Serge R; O'Leary, Stephen J B

    2011-09-01

    There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional 'first-generation' biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO(2) emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO(2) biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.

  3. NEW ECO-EFFICIENT PRODUCTS USED IN LEATHER INDUSTRY

    ROSU Dan

    2016-05-01

    Full Text Available In today's move to "sustainable production" the leather industry, as well as many other industries is recognized as a polluting one. Traditional chemical operations are polluting because of the levels of inorganic chemical waste. Process chemicals which are not consumed within the reactions necessary to convert collagen to leather are currently discharged to waste. These are usually applied during bulk production, such as inorganic agents from beam house and tanning processes, e.g. lime, sulphide, ammonium salts, sulphuric acid and sodium chloride, mineral tanning agents – mainly Cr(III and the less common Al(III, Zr(III, Ti(III, Fe(III salts -, whereas depending on the tanning process and the leather article produced organic chemical waste discharged comprises aldehydic and polyphenolic tanning products, bating enzymes, organic carboxylic acids and excess electrolyte stable synthetic fat liquors. It is rare for chemicals and water to be recovered for re-use from several of these process steps. Moreover, tanners worldwide are required to operate within strict legislative boundaries. Serious drawbacks continuously arise concerning the chrome–tanning process in leather industry and the environmental hazardous consequences of chromium containing effluents. In order to overcome this impediment, a great deal of research has been focused on developing chrome–free tanning methods in the past years, such as titanium tanning. In the present study, Ti–Al tanned bovine leather was characterized by means of SEM microscopy, EDAX elemental analysis, ATR–FTIR spectroscopy, thermogravimetry TGA, and differential scanning calorimetry DSC techniques.

  4. Returns to Scale in the Production of Hospital Services

    Berry, Ralph E.

    1967-01-01

    The primary purpose of this article is to investigate whether or not economies of scale exist in the production of hospital services. In previous studies the results have implied the existence of economies of scale, but the question has not been satisfactorily resolved. The factor most responsible for clouding the issue is the overwhelming prevalence of product differences in the outputs of hospitals. In this study a method which avoids the problem of product differentiation is developed. The analysis strongly supports the conclusion that hospital services are produced subject to economies of scale. PMID:6054380

  5. Arsenic in industrial waste water from copper production technological process

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  6. Removal of tetracyclines, sulfonamides, and quinolones by industrial-scale composting and anaerobic digestion processes.

    Liu, Hang; Pu, Chengjun; Yu, Xiaolu; Sun, Ying; Chen, Junhao

    2018-02-15

    This study evaluated and compared the removal of antibiotics by industrial-scale composting and anaerobic digestion at different seasons. Twenty compounds belonged to three classes of widely used veterinary antibiotics (i.e., tetracyclines, sulfonamides, and quinolones) were investigated. Results show that of the three groups of antibiotics, tetracyclines were dominant in swine feces and poorly removed by anaerobic digestion with significant accumulation in biosolids, particularly in winter. Compared to that in winter, a much more effective removal (> 97%) by anaerobic digestion was observed for sulfonamides in summer. By contrast, quinolones were the least abundant antibiotics in swine feces and exhibited a higher removal by anaerobic digestion in winter than in summer. The overall removal of antibiotics by aerobic composting could be more than 90% in either winter or summer. Nevertheless, compost products from livestock farms in Beijing contained much higher antibiotics than commercial organic fertilizers. Thus, industrial composting standards should be strictly applied to livestock farms to further remove antibiotics and produce high quality organic fertilizer.

  7. Laboratory-scale trials of electrolytic treatment on industrial wastewaters: microbiological aspects.

    Zanardini, E; Valle, A; Gigliotti, C; Papagno, G; Ranalli, G; Sorlini, C

    2002-09-01

    Animal, civil and industrial waste matter is a source of potential chemical, microbiological and air pollutants. In populated areas the presence of faecal bacteria and the production of malodorous compounds during waste storage and in the tanks of wastewater treatment plants, can cause concern. The general aim of the work was to study electrolytic waste treatment (recently applied on animal slurry) using low electric current across graphite and copper electrodes, determining its effect on the microflora of sludge, collected from the equalisation basin of an industrial aerobic wastewater treatment plant, and on odour emission abatement. Biochemical and enzymatic indicators like ATP content and a pool of 19 enzymatic activities were tested, comparing them with viable cell counts by traditional microbiological methods, to verify the validity of such indicators in monitoring the electrolytic treatment and to assess their correlation with odour reduction. The preliminary results of our laboratory-scale trials showed that in the presence of inert electrodes, such as graphite, metabolic activity is stimulated, whereas with copper electrodes the ATP content and some enzymatic activities are inhibited quite considerably after only four days, this being accompanied by a marked reduction in odour. Consideration was also given to the total copper released from the electrodes and its recovery using iron electrodes.

  8. Air pollution and economics: Alternate use of fuels in small scale industries

    Rao, B.P.S.; Pandit, V.I.

    1999-01-01

    In developing countries the problem of air pollution was recognized earlier, however, it has acquired a greater dimension due to the conventional use of low grade fuels like coal, baggase, rice husk, etc. having high sulphur and ash content. The industrial sources contribute about 30--40% of the total emissions. In India, the small scale industries (low investment group) contribute about 60--80% of the total industrial emissions. These industries are characterized with various environmental pollution problems due to cluster of small scale industries located in sensitive area; use of low grade fuel, primitive processing techniques without emission abatement facilities etc., thus leading to enormous pollution in an confined region. Acute need was felt to reduce the pollution problem associated with small scale industries by use of cleaner fuel so as to reduce the localized problem. The paper presents the emissions associated with use of coal/coke, natural gas, LPG, and propane along with the fuel cost for small scale industrial sector of Agra, Firozabad and Mathura region. The studies carried out would find applicability to meet the air pollution standards based on shift in fuel and associated cost

  9. Mononitride fuel and large scale nuclear power industry

    Orlov, V.V.; Sila-Novitsky, A.G.; Smirnov, V.S.

    1997-01-01

    Work to study nitride fuel, conducted in Russia a long time, has indicated interrelation between operational properties, including the data of gas fission release, the content of impurities and synthesis processes. Recommended method production fuel from initial metal, as more profitable that one from initial oxide, needs development of electro-chemical reprocessing with metal as end product and contributory to nonproliferation and cost efficient fuel cycle. Irradiation tests UN have shown no fission gaseous bubble within the lead sublayer. Taking as example the core design of BREST reactor of 300 MW(e) power there have been shown a possibility to put into reality a principle of nature safety in fast reactor by using inherent properties of U-Pu mononitride fuel (high density and thermal conductivity, low fission gas release and swelling) and lead coolant (low neutron absorption and moderation, high density and boiling temperature, chemical passive) as well as original technical solution on core major component (passive self-regulatory). (author). 19 refs, 8 figs, 1 tab

  10. Playing the Scales: Regional Transformations and the Differentiation of Rural Space in the Chilean Wine Industry

    Overton, John; Murray, Warwick E.

    2011-01-01

    Globalization and industrial restructuring transform rural places in complex and often contradictory ways. These involve both quantitative changes, increasing the size and scope of operation to achieve economies of scale, and qualitative shifts, sometimes leading to a shift up the quality/price scale, towards finer spatial resolution and…

  11. Sustainable Product Strategy in Apparel Industry with Consumer Behavior Consideration

    Liu Yang

    2017-05-01

    Full Text Available The article attempts to analyze sustainable product strategy in apparel industry specifically addressing a firm that is considering launching a sustainable product partly made from recycled materials. There are two types of consumers under consideration, environmentally conscious and regular consumers, as they have different perceived values for the sustainable products. The article provides an analytical model aimed to identify conditions under which a firm could benefit from adopting sustainable product strategy. The level of sustainability is determined by the trade-off between profitability and costs occurred and if more consumers value sustainable products, the firm will increase its sustainable level and get a higher profit. This is because of a combination effect of an increasing marginal profit and demand expansion. Moreover, the model has been further extended to address a situation where the firm could manage consumer segmentation. Depending on parameter settings, the firm may target different consumer segments and there is always a threshold of cost for managing consumer segments. When converting regular consumers to be environmentally conscious is not costly, the firm will convert all consumers to be environmentally conscious with great efforts; otherwise, the firm will convert part of consumers to be environmentally conscious.

  12. Industrial scale application of irradiation technologies in Turkey

    Siyakus, G.

    2001-01-01

    Sufficient and safer foods, better health care, cleaner environment and higher life standards are the shared objectives and desires of the humankind. The rapid increase in the world population necessitates the development and application of new technologies in order to meet these desires. The need for such technologies is more important for developing countries, when it is thought that the major share of the population increase is originating from that regions. Irradiation technology, as a rather new one, may have a considerable contribution in this respect, providing that proper application . Although, a wide range of application areas, changing from flue gas treatment to polymer production, exists in this respect, transferring or developing new technologies requires time, trained personnel and equipment

  13. Exploitation of Food Industry Waste for High-Value Products.

    Ravindran, Rajeev; Jaiswal, Amit K

    2016-01-01

    A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. From product to service orientation in the maritime equipment industry

    Matzen, Detlef; McAloone, Timothy Charles

    2008-01-01

    of their products in operation. In this paper we present a case study of a shipping equipment manufacturer that is currently shifting business focus from manufacturing towards services delivery. Using a modelling scheme to differentiate and categorise different development tasks within the frame of business......In the shipping industry, operational performance of ships and their equipment is crucial to business. Suppliers of machinery and equipment are aware of this situation and see business development potential in setting up service systems that are dedicated to ensuring the performance...... development towards service oriented business, the case delivers insights into the broader context and product related parameters influencing the options and requirements for service system development....

  15. Relationship between Lighting and Noise Levels and Productivity of the Occupants in Automotive Assembly Industry

    Jafar Akbari

    2013-01-01

    Full Text Available Work environment affects human productivity and his performance. The aims of this study were to investigate the effects of lighting and noise levels on human productivity in the automotive assembly industry. Method. Subjects were 181 workers from different parts of an automobile assembly industry. Illuminance (Lx at the height of 30 inches from the surface of work station and noise (dBA were locally measured. Also human productivity by the Goldsmith and Hersey scale (1980 was measured. Data were analyzed by using SPSS v20 Pearson correlation coefficient. Results. The results showed that the relationship between noise level and human productivity is negative and significant (, , but there was no significant relationship between lighting and human productivity (. Conclusion. Based on the results, in assembly tasks, noise has a negative impact on human productivity, and lighting does not affect this. So, in order to increase employee productivity, noise control and reduction to less than the standard values (less than 85 dB is necessary.

  16. Technology for Price Management in Industrial Differential Product Market

    E. V. Orlova

    2015-01-01

    Full Text Available The article studies price behavior of oligopolies in industrial market where price competition is replaced by non-price competition. There is a developed technology for pricing management of the products of industrial enterprises, which, unlike the existing ones, takes into account the dynamics of changes in consumer preferences and changes in the pricing policy of the enterprise competitor and is based on usage of system dynamics models to simulate the financial and economic performance of enterprises and the fuzzy model for situational analysis and decisionmaking on changes in prices for the products. A pricing simulation model is offered. It is based on system-dynamic modeling method, which takes into account the complex cause-to-effect concatenation of factors on price such as product quality, cost, price competition, price elasticity of economic demand, competitors’ quantity of output and estimates the impact of changing factors of internal and external enterprise environment on the effectiveness of its activities.The simulation model allows us to conduct diverse experiments and analyze the impact of management decisions on the efficiency of the enterprise. Based on the fuzzy approach a price decision-making model is developed. It operates not only precise (numeric values, but also qualitative assessments of variables and provides an adequate use of logical relationships and the laws of the mutual influence of market and production and economic factors. Qualitative dependences, which establish the influence of external and internal factors on the price change, are identified as a result of the study of economic laws and legal conformity that are in the context of rapid economic change and market turbulence may not be strictly formalized and take the form of linguistic statements, which express the conditional relationship between the qualitative assessments of initial factors and changes in the relative price.

  17. Labour Productivity Convergence in 52 Industries: A Panel Data Analysis of Some European Countries

    Tahir Mahmood

    2012-01-01

    Full Text Available Beta convergence and the speed of convergence of labour productivity for 52 industries are studied with a panel of data including 13 European countries. We use fixed effect approach to model the heterogeneity across countries. In primary sector and in service sector, the existence of -convergence is found for all industries. In manufacturing sector, convergence is found for all industries except for electronic and computing equipment industries. In general the speed of convergence estimates show slow adjustment. Speed is highest in the capital intensive industries. In primary production the convergence is slowest in agriculture and fastest in fishing industry. In manufacturing sector the convergence is slowest in food, drink and tobacco, and it is fastest in oil refining and nuclear fuel manufacturing industries. By augmenting the productivity models with labour utilization variable speeds up the convergence. Labour utilization is positively related to productivity growth in primary production industries, ICT producing manufacturing industries, and ICT producing services industries.

  18. Example of industrial valorisation of derivative products of Castor oil

    Borg Patrick

    2009-07-01

    Full Text Available Known since antiquity, Castor Oil has been first used in medicine. Now, even if it remains present in small quantities as an excipient in many pharmaceutical specialties, it finds a lot of applicationsin cosmetics, industrial applications and chemical industry. Castor Oil specificity comes from its high content of ricinoleic acid (up to 85% that combines a double bond and an hydroxyl function in the heart of a 18 carbons linear chain. This particular structure is the key of an unique chemistry developed by ARKEMA that gives by thermal cracking a wide range of compounds with either 7 or 11 carbon atoms. A whole range of innovative chemistries and end use products are generated from these base reaction products. They are used in every-day life, to improve our comfort and safety but also in very specific applications with very high technical requirements. Synthesized from undecylenic acid, 11-amino-undecanoic acid, 100% based on renewable resources, is the precursor to biobased polymers combining high performance and sustainability: Rilsan®, Rilsan Fine Powder®, Pebax Rnew®.

  19. Utilization of agro-based industrial by-products for biogas production in Vietnam

    Ngoc, U.N.; Schnitzer, H. [Graz Univ. of Technology, (Austria). Inst. for Resource Efficient and Sustainable Systems; Berghold, H. [Joanneum Research Inst. for Sustainable Techniques and Systems (Austria)

    2007-07-01

    Due to the rapid rates of urbanization occurring in many countries in the world, the importance of an efficient and effective solid waste management system and the utilization/reuse of waste are more critical than ever before, especially for agricultural residues and agro-based industrial by-products. Over the past decade, the amount of solid waste generated in Vietnam has been increasing steadily. Numbers are predicted to continue to increase as well. There is significant potential to use the large amount of wastes for biogas conversion processes and for further production of commercial energy. This paper presented starts with estimation and analysis of the amounts of organic waste, agricultural residues, and agro-based industrial by-products generated from food industrial processes using general data sources for Vietnam. A laboratory study examined the use of agro-based industrial by-products and agricultural residues from cassava, sweet potato, pineapple residues, organic wastes, manures as input materials for biogas production in the anaerobic process. This paper provided an overview of Vietnam as a country, as well as a general overview of the amount of organic waste generated in the country. It also discussed the fermentation tests that were conducted to find out the potential of biogas production from some residues. It was concluded that a significant portion of waste could be reused as an environmentally sound source of energy. The utilization of agricultural residues and industrial byproducts as input materials for biogas production will not only reduce the quantity of organic waste thrown into landfills, but also reduce the negative impact on the environment. 10 refs., 7 tabs., 7 figs.

  20. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-07-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  1. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Erminda Tsouko

    2015-07-01

    Full Text Available The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L and commercial sucrose (4.9 g/L were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  2. Sustainable production program in the Mexican mining industry: occupational risks

    Andrea Zavala Reyna

    2015-07-01

    Full Text Available Speaking of mining and sustainability sounds contradictory, as the environmental impact generated by resource extraction is well known. However, there are mining companies that are working to be safe and environmentally friendly. An example of this is presented in this study aimed at identifying occupational risks generated by the activities of a small-scale gold and silver mine located in northwestern Mexico. The methodology followed was a Sustainable Production Program (SPP based on a continuous cycle of five steps in which the tools of cleaner production and pollution prevention are adapted. As a result of this project, it was possible to implement SPP activities: training for workers, use of personal protective equipment and adequate handling of chemicals. As a conclusion, it was verified that SPP application helped this mining company move towards sustainable patterns of production.

  3. Alabama's forest products industry: performance and contribution to the State's economy, 1970 to 1980.

    Wilbur R. Maki; Con H Schallau; Bennett B. Foster; Clair H. Redmond

    1986-01-01

    Employment and earnings in Alabama's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. The forest products industry accounted for a larger share of the State's economic base. in 1980 than in 1970. Of the 13 Southern States, only 5 had more forest products industry employment than Alabama. Moreover, during...

  4. 77 FR 24722 - Draft Guidance for Industry: Safety of Nanomaterials in Cosmetic Products; Availability

    2012-04-25

    ...] Draft Guidance for Industry: Safety of Nanomaterials in Cosmetic Products; Availability AGENCY: Food and... safety assessment of nanomaterials in cosmetic products. This guidance is intended to assist industry in... Cosmetic Products.'' The draft guidance is intended to assist industry in identifying the potential safety...

  5. The dairy industry: a brief description of production practices, trends, and farm characteristics around the world.

    Douphrate, David I; Hagevoort, G Robert; Nonnenmann, Matthew W; Lunner Kolstrup, Christina; Reynolds, Stephen J; Jakob, Martina; Kinsel, Mark

    2013-01-01

    The global dairy industry is composed of a multitude of countries with unique production practices and consumer markets. The global average number of cows per farm is about 1-2 cows; however, as a farm business model transitions from sustenance to market production, the average herd size, and subsequent labor force increases. Dairy production is unique as an agricultural commodity because milk is produced daily, for 365 days per year. With the introduction of new technology such as the milking parlor, the global industry trend is one of increasing farm sizes. The farm sizes are the largest in the United States; however, the European Union produces the most milk compared with other global producers. Dairy production is essential for economic development and sustainable communities in rural areas. However, the required capital investment and availability of local markets and labor are continued challenges. Due to farm expansion, international producers are faced with new challenges related to assuring food safety and a safe working environment for their workforce. These challenges exist in addition to the cultural and language barriers related to an increasing dependence on immigrant labor in many regions of the world. Continued success of the global dairy industry is vital. Therefore, research should continue to address the identification of occupational risk factors associated with injuries and illnesses, as well as develop cost-effective interventions and practices that lead to the minimization or elimination of these injuries and illnesses on a global scale, among our valuable population of dairy producers and workers.

  6. Biodiesel production using oil from fish canning industry wastes

    Costa, J.F.; Almeida, M.F.; Alvim-Ferraz, M.C.M.; Dias, J.M.

    2013-01-01

    Highlights: • A process was established to produce biodiesel from fish canning industry wastes. • Biodiesel production was enabled by an acid esterification pre-treatment. • Optimization studies showed that the best catalyst concentration was 1 wt.% H 2 SO 4 . • There was no advantage when a two-step alkali transesterification was employed. • Waste oil from olive oil bagasse could be used to improve fuel quality. - Abstract: The present study evaluated biodiesel production using oil extracted from fish canning industry wastes, focusing on pre-treatment and reaction conditions. Experimental planning was conducted to evaluate the influence of acid catalyst concentration (1–3 wt.% H 2 SO 4 ) in the esterification pre-treatment and the amount of methanolic solution (60–90 vol.%) used at the beginning of the further two-step alkali transesterification reaction. The use of a raw-material mixture, including waste oil obtained from olive oil bagasse, was also studied. The results from experimental planning showed that catalyst concentration mostly influenced product yield and quality, the best conditions being 1 wt.% catalyst and 60 vol.% of methanolic solution, to obtain a product yield of 73.9 wt.% and a product purity of 75.5 wt.%. Results from a one-step reaction under the selected conditions showed no advantage of performing a two-step alkali process. Although under the best conditions several of the biodiesel quality parameters were in agreement with standard specifications, a great variation was found in the biodiesel acid value, and oxidation stability and methyl ester content did not comply with biodiesel quality standards. Aiming to improve fuel quality, a mixture containing 80% waste olive oil and 20% of waste fish oil was evaluated. Using such mixture, biodiesel purity increased around 15%, being close to the standard requirements (96.5 wt.%), and the oxidation stability was in agreement with the biodiesel quality standard values (⩾6 h), which

  7. Experimental evidence for convergent evolution of maternal care heuristics in industrialized and small-scale populations.

    Kushnick, Geoff; Hanowell, Ben; Kim, Jun-Hong; Langstieh, Banrida; Magnano, Vittorio; Oláh, Katalin

    2015-06-01

    Maternal care decision rules should evolve responsiveness to factors impinging on the fitness pay-offs of care. Because the caretaking environments common in industrialized and small-scale societies vary in predictable ways, we hypothesize that heuristics guiding maternal behaviour will also differ between these two types of populations. We used a factorial vignette experiment to elicit third-party judgements about likely caretaking decisions of a hypothetical mother and her child when various fitness-relevant factors (maternal age and access to resources, and offspring age, sex and quality) were varied systematically in seven populations-three industrialized and four small-scale. Despite considerable variation in responses, we found that three of five main effects, and the two severity effects, exhibited statistically significant industrialized/ small-scale population differences. All differences could be explained as adaptive solutions to industrialized versus small-scale caretaking environments. Further, we found gradients in the relationship between the population-specific estimates and national-level socio-economic indicators, further implicating important aspects of the variation in industrialized and small-scale caretaking environments in shaping heuristics. Although there is mounting evidence for a genetic component to human maternal behaviour, there is no current evidence for interpopulation variation in candidate genes. We nonetheless suggest that heuristics guiding maternal behaviour in diverse societies emerge via convergent evolution in response to similar selective pressures.

  8. Curbing variations in packaging process through Six Sigma way in a large-scale food-processing industry

    Desai, Darshak A.; Kotadiya, Parth; Makwana, Nikheel; Patel, Sonalinkumar

    2015-03-01

    Indian industries need overall operational excellence for sustainable profitability and growth in the present age of global competitiveness. Among different quality and productivity improvement techniques, Six Sigma has emerged as one of the most effective breakthrough improvement strategies. Though Indian industries are exploring this improvement methodology to their advantage and reaping the benefits, not much has been presented and published regarding experience of Six Sigma in the food-processing industries. This paper is an effort to exemplify the application of Six Sigma quality improvement drive to one of the large-scale food-processing sectors in India. The paper discusses the phase wiz implementation of define, measure, analyze, improve, and control (DMAIC) on one of the chronic problems, variations in the weight of milk powder pouch. The paper wraps up with the improvements achieved and projected bottom-line gain to the unit by application of Six Sigma methodology.

  9. Briquette fuel production from wastewater sludge of beer industry and biodiesel production wastes

    Nusong, P.; Puajindanetr, S.

    2018-04-01

    The production of industrial wastes is increasing each year. Current methods of waste disposal are severely impacting the environment. Utilization of industrial wastes as an alternative material for fuel is gaining interest due to its environmental friendliness. Thus, the objective of this research was to study the optimum condition for fuel briquettes produced from wastewater sludge of the beer industry and biodiesel production wastes. This research is divided into two parts. Part I will study the effects of carbonization of brewery wastewater sludge for high fixed carbon. Part II will study the ratio between brewery wastewater sludge and bleaching earth for its high heating value. The results show that the maximum fixed carbon of 10.01% by weight was obtained at a temperature of 350 °C for 30 minutes. The appropriate ratio of brewery wastewater sludge and bleaching earth by weight was 95:5. This condition provided the highest heating value of approximately 3548.10 kcal/kg.

  10. Workshop on Indian Chemical Industry: perspectives on safety, cleaner production and environment production

    Ham, J.M.

    1996-01-01

    A Workshop on "Indian Chemical Industry: Perspectives on Safety, Cleaner Production and Environmental Protection" was held on 3, 4 and 5 January 1996, in Bombay, India. The main objective of the workshop, which was organised jointly by the Government of India, UNIDO/UNDP and the Indian Chemical

  11. A test trial irradiation of natural rubber latex on large scale for the production of examination gloves in a production scale

    Devendra, R.; Kulatunge, S.; Chandralal, H.N.K.K.; Kalyani, N.M.V.; Seneviratne, J.; Wellage, S.

    1996-01-01

    Radiation Vulcanization of natural rubber latex has been developed extensively through various research and development programme. During these investigations many data was collected and from these data it was proved that radiation vulcanized natural rubber latex (RVNRL) can be used as a new material for industry (RVNRL symposium 1989; Makuuchi IAEA report). This material has been extensively tested in making of dipped goods and extruded products. However these investigations were confined only to laboratory experiments and these experiments mainly reflected material properties of RVNRL and only a little was observed about its behavior in actual production scale operation. The present exercise was carried out mainly to study the behavior of the material in production scale by irradiating latex on a large scale and producing gloves in a production scale plant. It was found that RVNRL can be used in conventional glove plants without making major alteration to the plant. Quality of the gloves that were produced using RVNRL is acceptable. It was also found that the small deviation of vulcanization dose will affect the crosslinking density of films. This will drastically reduce the tensile strength of the film. Crosslinking density or pre-vulcanized relax modulus (PRM) at 100% is a reliable property to control the pre vulcanization of latex by radiation

  12. Bio-succinic acid production: Escherichia coli strains design from genome-scale perspectives

    Bashir Sajo Mienda

    2017-10-01

    Full Text Available Escherichia coli (E. coli has been established to be a native producer of succinic acid (a platform chemical with different applications via mixed acid fermentation reactions. Genome-scale metabolic models (GEMs of E. coli have been published with capabilities of predicting strain design strategies for the production of bio-based succinic acid. Proof-of-principle strains are fundamentally constructed as a starting point for systems strategies for industrial strains development. Here, we review for the first time, the use of E. coli GEMs for construction of proof-of-principles strains for increasing succinic acid production. Specific case studies, where E. coli proof-of-principle strains were constructed for increasing bio-based succinic acid production from glucose and glycerol carbon sources have been highlighted. In addition, a propose systems strategies for industrial strain development that could be applicable for future microbial succinic acid production guided by GEMs have been presented.

  13. Development and validation of a new safety climate scale for petrochemical industries.

    Jafari, Mohammad Javad; Eskandari, Davood; Valipour, Firouz; Mehrabi, Yadollah; Charkhand, Hossein; Mirghotbi, Mostafa

    2017-01-01

    While a considerable body of research has studied safety climate and its role as a leading indicator of organizational safety, much of this work has been conducted with Western manufacturing samples. The current study puts emphasis on the cross-validation of a safety climate model in the non-Western industrial context of Iranian petrochemical industries. The current study was performed in one petrochemical company in Iran. The scale was developed through conducting a literature review followed by a qualitative study with expert participation. After performing a screening process, the initial number of items on the scale was reduced to 68. Ten dimensions (including management commitment, workers' empowerment, communication, blame culture, safety training, job satisfaction, interpersonal relationship, supervision, continuous improvement, and reward system) together with 37 items were extracted from the exploratory factor analysis (EFA) to measure safety climate. Acceptable ranges of internal consistency statistics for the sub-scales were observed. Confirmatory factor analysis (CFA) confirmed the construct validity of the developed safety climate scale for the petrochemical industry workers. The results of reliability showed that the Cronbach's alpha coefficient for the designed scale was 0.94. The ICC was obtained 0.92. This study created a valid and reliable scale for measuring safety climate in petrochemical industries.

  14. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

    2014-06-19

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

  15. Very-large-scale production of antibodies in plants: The biologization of manufacturing.

    Buyel, J F; Twyman, R M; Fischer, R

    2017-07-01

    Gene technology has facilitated the biologization of manufacturing, i.e. the use and production of complex biological molecules and systems at an industrial scale. Monoclonal antibodies (mAbs) are currently the major class of biopharmaceutical products, but they are typically used to treat specific diseases which individually have comparably low incidences. The therapeutic potential of mAbs could also be used for more prevalent diseases, but this would require a massive increase in production capacity that could not be met by traditional fermenter systems. Here we outline the potential of plants to be used for the very-large-scale (VLS) production of biopharmaceutical proteins such as mAbs. We discuss the potential market sizes and their corresponding production capacities. We then consider available process technologies and scale-down models and how these can be used to develop VLS processes. Finally, we discuss which adaptations will likely be required for VLS production, lessons learned from existing cell culture-based processes and the food industry, and practical requirements for the implementation of a VLS process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Influence of Intuition and Capability on Accelerated Product Development in Big-Medium Scaled Food Companies in Indonesia

    Pepey Riawati Kurnia

    2013-06-01

    Full Text Available To face the pressure of competition, more and more companies perform accelerated product development by shortening the product development time so that the product will arrive at the market at the shortest time. Food industry has also performed accelerated product development. Using evolution theory, contingency theory, market-based view, and resource-based view a research model has been built. Results of the research’s initial identification show that food industry in Indonesia is in growth level towards maturity level. Meanwhile, competition in the food industry is in moderate level towards hypercompetition level. Tactics of accelerated product development often carried out is by simplifying the product development steps to eliminating the product development steps. The innovation type used is incremental innovation since it is fast and easy. Results of the research give information that intuition and capabilities are the main motivating factors for big-medium scaled food companies in Indonesia to accelerate product development.

  17. Polyfire project- an example of an industrial research project promoting safe industrial production of fire-resistant nanocomposites

    Vaquero, C; Lopez de Ipina, J; Galarza, N [TECNALIA, Leonardo Da Vinci No 11, 01510 Minano (Alava) (Spain); Hargreaves, B; Weager, B [NetComposites Ltd, 4A Broom Business Park, Chesterfield S41 9QG (United Kingdom); Breen, C, E-mail: celinav@leia.es [Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom)

    2011-07-06

    New developments based on nanotechnology have to guarantee safe products and processes to be accepted by society. The Polyfire project will develop and scale-up techniques for processing halogen-free, fire-retardant nanocomposite materials and coatings based on unsaturated polyester resins and organoclays. The project includes a work package that will assess the Health and Environmental impacts derived from the manipulation of nanoparticles. This work package includes the following tasks: (1) Identification of Health and Environment Impacts derived from the processes, (2) Experimentation to study specific Nanoparticle Emissions, (3) Development of a Risk Management Methodology for the process, and (4) A Comparison of the Health and Environmental Impact of New and Existing Materials. To date, potential exposure scenarios to nanomaterials have been identified through the development of a Preliminary Hazard Analysis (PHA) of the new production processes. In the next step, these scenarios will be studied and simulated to evaluate potential emissions of nanomaterials. Polyfire is a collaborative European project, funded by the European Commission 7th Framework Programme (Grant Agreement No 229220). It features 11 partners from 5 countries (5 SMEs, 3 research institutes, 2 large companies, 1 association) and runs for three years (1st September 2009 - 31st August 2012). This project is an example of an industrial research development which aims to introduce to the market new products promoting the safe use of nanomaterials.

  18. Polyfire project- an example of an industrial research project promoting safe industrial production of fire-resistant nanocomposites

    Vaquero, C; Lopez de Ipina, J; Galarza, N; Hargreaves, B; Weager, B; Breen, C

    2011-01-01

    New developments based on nanotechnology have to guarantee safe products and processes to be accepted by society. The Polyfire project will develop and scale-up techniques for processing halogen-free, fire-retardant nanocomposite materials and coatings based on unsaturated polyester resins and organoclays. The project includes a work package that will assess the Health and Environmental impacts derived from the manipulation of nanoparticles. This work package includes the following tasks: (1) Identification of Health and Environment Impacts derived from the processes, (2) Experimentation to study specific Nanoparticle Emissions, (3) Development of a Risk Management Methodology for the process, and (4) A Comparison of the Health and Environmental Impact of New and Existing Materials. To date, potential exposure scenarios to nanomaterials have been identified through the development of a Preliminary Hazard Analysis (PHA) of the new production processes. In the next step, these scenarios will be studied and simulated to evaluate potential emissions of nanomaterials. Polyfire is a collaborative European project, funded by the European Commission 7th Framework Programme (Grant Agreement No 229220). It features 11 partners from 5 countries (5 SMEs, 3 research institutes, 2 large companies, 1 association) and runs for three years (1st September 2009 - 31st August 2012). This project is an example of an industrial research development which aims to introduce to the market new products promoting the safe use of nanomaterials.

  19. Micro-scaled products development via microforming deformation behaviours, processes, tooling and its realization

    Fu, Ming Wang

    2014-01-01

    ‘Micro-scaled Products Development via Microforming’ presents state-of-the-art research on microforming processes, and focuses on the development of micro-scaled metallic parts via microforming processes. Microforming refers to the fabrication of microparts via micro-scaled plastic deformation and  presents a promising micromanufacturing process. When compared to other  micromanufacturing processes, microforming offers advantages such as high productivity and good mechanical properties of the deformed microparts. This book provides extensive and informative illustrations, tables and photos in order to convey this information clearly and directly to readers. Although the knowledge of macroforming processes is abundant and widely used in industry, microparts cannot be developed by leveraging existing knowledge of macroforming because the size effect presents a barrier to this knowledge transfer. Therefore systematic knowledge of microforming needs to be developed. In tandem with product miniaturization, t...

  20. Manufacturing processes in the textile industry. Expert Systems for fabrics production

    Bullon, Juan; González Arrieta, Angélica; Hernández Encinas, Ascensión; Queiruga Dios, Araceli

    2017-01-01

    The textile industry is characterized by the economic activity whose objective is the production of fibres, yarns, fabrics, clothing and textile goods for home and decoration,as well as technical and industrial purposes. Within manufacturing, the Textile is one of the oldest and most complex sectors which includes a large number of sub-sectors covering the entire production cycle, from raw materials and intermediate products, to the production of final products. Textile industry activities pr...

  1. Factors driving and restraining adoption of Automation technologies in Swedish wood product industry.

    Mapulanga, Mwanza; Saladi, Praveen

    2016-01-01

    Swedish wood product industry contributes significantly to the economy of the country. This industry adds more value to the sawn timber produced in order to manufacture different wooden products. Companies in Swedish wood product industry are presently seen as underdeveloped in terms of investments and developments in automation technologies. Automation technologies are seen by companies as a solution for improving productivity, product quality, manufacturing cost reduction and ultimately imp...

  2. The oil and gas industry in Alberta: drilling and production

    Anon

    2001-11-01

    This document outlined the impacts of drilling and production on the forest structure and integrity. The cumulative impact of all 11,898 wells drilled in 2000 in Alberta, coupled with previously drilled wells that is of primary concern. It is estimated that an 886 square kilometres area of the boreal forest has been cleared as a result of well drilling, based on an assumption of 1 hectare cleared per well site. No regulations govern the reforestation of the areas once the activities have been terminated, and nothing to regulate the cumulative road densities or pipeline densities. A progressive loss and fragmentation of habitat, increased access, and damage to aquatic systems are all consequences of the drilling and production activities. These activities also lead to the contamination of soil and water. Reductions in air quality are associated with drilling and production activities, mainly through the release of various gases in the atmosphere, such as sulphur dioxide and nitrogen dioxide, both responsible for acid rain deposition. Explicit limits on cumulative densities of well sites, pipelines and access roads are part of best practices that can result in a minimization of the negative environmental impacts. Integrated planning with the forest industry, the development and implementation of new operating practices, and a reduction in the pace of development would also go a long way toward the reduction of the ecological footprint

  3. Ion beam system for implanting industrial products of various shapes

    Denholm, A.S.; Wittkower, A.

    1985-01-01

    Implantation of metals and ceramics with ions of nitrogen and other species has improved surface properties such as friction, wear and corrosion in numerous industrial applications. Zymet has built a production machine to take advantage of this process which can implant a 2 x 10 17 ions/cm 2 dose of nitrogen ions into a 20 cm x 20 cm area in about 30 min using a 100 keV beam. Treatment is accomplished by mounting the product on a cooled, tiltable, turntable which rotates continuously, or is indexed in 15 0 steps to expose different surfaces in fixed position. Product cooling is accomplished by using a chilled eutectic metal to mount and grip the variously shaped objects. A high voltage supply capable of 10 mA at 100 kV is used, and the equipment is microcomputer controlled via serial light links. All important machine parameters are presented in sequenced displays on a CRT. Uniformity of treatment and accumulated dose are monitored by a Faraday cup system which provides the microprocessor with data for display of time to completion on the process screen. For routine implants the operator requires only two buttons; one for chamber vacuum control, and the other for process start and stop. (orig.)

  4. Industry

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  5. Energy consumption restricted productivity re-estimates and industrial sustainability analysis in post-reform China

    Chen, Shiyi; Santos-Paulino, Amelia U.

    2013-01-01

    This paper investigates the impact of energy on China's industrial sustainability by using a novel approach to estimate real total factor productivity. The growth accounting indicates that the substantial industrial reforms in China have led to productivity growth. Energy and capital are also important factors driving China's industrial growth. Productivity growth in China's industry is mostly attributable to the high-tech light industrial sectors. - Highlights: ► Productivity has become the most important growth engine in majority of sectors. ► Energy and capital are also important factors promoting China's industrial growth. ► The productivity improvement is more attributable to high-tech light industry. ► The heavy industry performs worse than the light one in terms of productivity

  6. Validation of the Hospitality Culture Scale in the context of hotel industry

    Fernandes, A.; Alturas, B.; Laureano, R.

    2018-01-01

    This study aims to validate the final factors for the Organizational Culture of the Hospitality Culture Scale which consists of the following four dimensions: management principles, customer relationships, job variety, and job satisfaction in the context of hotel industry organizations both in Brazil and Portugal. To this end, a confirmatory factor analysis (CFA) was performed, where two hundred and fifty-nine hotel industry professionals were rated. The presented results support a structure ...

  7. Estimating Most Productive Scale Size in Data Envelopment Analysis with Integer Value Data

    Dwi Sari, Yunita; Angria S, Layla; Efendi, Syahril; Zarlis, Muhammad

    2018-01-01

    The most productive scale size (MPSS) is a measurement that states how resources should be organized and utilized to achieve optimal results. The most productive scale size (MPSS) can be used as a benchmark for the success of an industry or company in producing goods or services. To estimate the most productive scale size (MPSS), each decision making unit (DMU) should pay attention the level of input-output efficiency, by data envelopment analysis (DEA) method decision making unit (DMU) can identify units used as references that can help to find the cause and solution from inefficiencies can optimize productivity that main advantage in managerial applications. Therefore, data envelopment analysis (DEA) is chosen to estimating most productive scale size (MPSS) that will focus on the input of integer value data with the CCR model and the BCC model. The purpose of this research is to find the best solution for estimating most productive scale size (MPSS) with input of integer value data in data envelopment analysis (DEA) method.

  8. Bacterial laccase: recent update on production, properties and industrial applications.

    Chauhan, Prakram Singh; Goradia, Bindi; Saxena, Arunika

    2017-10-01

    Laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) are multi-copper enzymes which catalyze the oxidation of a wide range of phenolic and non-phenolic aromatic compounds in the presence or absence of a mediator. Till date, laccases have mostly been isolated from fungi and plants, whereas laccase from bacteria has not been well studied. Bacterial laccases have several unique properties that are not characteristics of fungal laccases such as stability at high temperature and high pH. Bacteria produce these enzymes either extracellularly or intracellularly and their activity is in a wide range of temperature and pH. It has application in pulp biobleaching, bioremediation, textile dye decolorization, pollutant degradation, biosensors, etc. Hence, comprehensive information including sources, production conditions, characterization, cloning and biotechnological applications is needed for the effective understanding and application of these enzymes at the industrial level. The present review provides exhaustive information of bacterial laccases reported till date.

  9. Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate.

    Palma, M B; Pinto, A L; Gombert, A K; Seitz, K H; Kivatinitz, S C; Castilho, L R; Freire, D M

    2000-01-01

    Lipase, protease, and amylase production by Penicillium restrictum in solid-state fermentation was investigated. The basal medium was an industrial waste of babassu oil (Orbignya oleifera) production. It was enriched with peptone, olive oil, and Tween-80. The supplementation positively influenced both enzyme production and fungal growth. Media enriched with Tween-80 provided the highest protease activity (8.6 U/g), whereas those enriched with peptone and olive oil led to the highest lipase (27.8 U/g) and amylase (31.8 U/g) activities, respectively.

  10. An analysis of the Spanish electrical utility industry. Economies of scale, technological progress and efficiency

    Arcos, Angel; De Toledo, Pablo Alvarez

    2009-01-01

    In this paper we propose a model to explain the behaviour of the Spanish electrical utility industry during the period 1987-1997, under the then existing regulatory system (Marco Legal Estable). The paper will study the presence of economies of scale, the effect of technological progress and the differences in the efficiency of the different companies within the market. The paper concludes that the Spanish electrical utility industry was not, in fact, characterized by economies of scale during this period, but witnessed a great improvement in efficiency within that period. All the critical market factors remind stable. (author)

  11. Oregon’s forest products industry and timber harvest, 2008: industry trends and impacts of the Great Recession through 2010

    Charles B. Gale; Charles E. Keegan; Erik C. Berg; Jean Daniels; Glenn A. Christensen; Colin B. Sorenson; Todd A. Morgan; Paul. Polzin

    2012-01-01

    This report traces the flow of Oregon’s 2008 timber harvest through the primary timber processing industry and provides a description of the structure, operation, and condition of Oregon’s forest products industry as a whole. It is the second in a series of reports that update the status of the industry every 5 years. Based on a census conducted in 2009 and 2010, we...

  12. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    2014-01-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  13. Plastic Technology (Production). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    Claus, Robert; And Others

    This course guide for a plastic technology course is one of four developed for the production area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--energy/power and graphic communications.) Part 1 provides such introductory information as a definition and…

  14. Economic scale of utilization of radiation (I): Industry. Comparison between Japan and the U.S.A

    Tagawa, Seiichi; Kashiwagi, Masayuki; Kamada, Toshimitsu; Sekiguchi, Masayuki; Hosobuchi, Kazunari; Tominaga, Hiroshi; Ooka, Norikazu; Makuuchi, Keizo

    2002-01-01

    Utilization of radiation in the industrial field has been enlarged due to the variety of technologies. In the present paper, the economic scale between the U.S.A. and Japan is compared with selected industrial parameters such as sterilization, semiconductors, radiographic testing (RT) and radial tire production because the very large industrial markets make a whole comparison difficult. The economic scale revealed was about 56b$ (1$=121 yen) for the U.S.A. and 39b$ for Japan. The former is large in magnitude by a factor of 1.4. With respect to the relative ratio versus the GDP, the former was 0.7% and 0.9% for the latter. This implied that utilization of radiation in industry is large in magnitude and is expected to be further developed. Regarding electron beam (EB) accelerators, for example, 648 units were installed in North America and 308 units for Japan during the past 29 years. The large number of the former is attributed to use in curing and heat shrinkable tubes (film). (author)

  15. Anaerobic Digestion and Biogas Potential: Simulation of Lab and Industrial-Scale Processes

    Ihsan Hamawand; Craig Baillie

    2015-01-01

    In this study, a simulation was carried out using BioWin 3.1 to test the capability of the software to predict the biogas potential for two different anaerobic systems. The two scenarios included: (1) a laboratory-scale batch reactor; and (2) an industrial-scale anaerobic continuous lagoon digester. The measured data related to the operating conditions, the reactor design parameters and the chemical properties of influent wastewater were entered into BioWin. A sensitivity analysis was carried...

  16. Occupational health issues in small-scale industries in Sri Lanka: An underreported burden.

    Suraweera, Inoka K; Wijesinghe, Supun D; Senanayake, Sameera J; Herath, Hema D B; Jayalal, T B Ananda

    2016-10-17

    Work-related diseases and occupational accidents affect a significant number of workers globally. The majority of these diseases and accidents are reported from developing countries; and a large percentage of the workforce in developing countries is estimated to be employed in small-scale industries. Sri Lanka is no exception. These workers are exposed to occupational hazards and are at a great risk of developing work- related diseases and injuries. To identify occupational health issues faced by small-scale industry workers in Sri Lanka. A cross sectional study was conducted among workers in four selected small-scale industry categories in two districts of Sri Lanka. A small-scale industry was defined as a work setting with less than 20 workers. Cluster sampling using probability proportionate to size of workers was used. Eighty clusters with a cluster size of eight from each district were selected. Data was collected using a pre-tested interviewer administered questionnaire. Our study surveyed 198 industries. Headache (2.2%, 95% CI 1.5-3.1) and eye problems (2.1%, 95% CI 1.4-2.9) were the commonest general health issues detected. Back pain (4.8%, 95% CI 3.8-6.1) was the most prevalent work-related musculoskeletal pain reported. Knee pain was the second highest (4.4%, 95% CI 3.4-5.6). Most of the work-related musculoskeletal pain was either of short duration or long lasting. Work-related musculoskeletal pain was much more common than the general health issues reported. Health promotional programs at workplaces focusing ergonomics will benefit the workers at small-scale industries inSri Lanka.

  17. Where Does Creativity Fit into a Productivist Industrial Model of Knowledge Production?

    Ghassib, Hisham B.

    2010-01-01

    The basic premise of this paper is the fact that science has become a major industry: the knowledge industry. The paper throws some light on the reasons for the transformation of science from a limited, constrained and marginal craft into a major industry. It, then, presents a productivist industrial model of knowledge production, which shows its…

  18. Trends in the US hardwood lumber distribution industry: changing products, customers, and services

    Urs Buehlmann; Omar Espinoza; Matthew Bumgardner; Bob. Smith

    2010-01-01

    Efficient and effective supply chains are the backbone of any industry, including the forest products industry. As the US secondary hardwood industry has undergone a profound transformation and large parts of the industry have moved offshore, the supply chain is adapting to these new realities. Remaining and new customers of US hardwood lumber distributors tend to be...

  19. Selling green power in California: Product, industry, and market trends

    Wiser, R.H.; Pickle, S.J.

    1998-05-01

    As one of the first US stages to open its doors to retail electric competition, California offers an important opportunity to assess the effectiveness of green power marketing as a mechanism for supporting renewable energy. This report is an interim assessment of key green power product, industry, and market trends in California. The report identifies and analyzes: the potential size of the green power market in California; the companies participating in the green power market; the green power products being offered and their prices; the impact of the green market on renewable generators and the environment; and the influence of several public policies and non-governmental programs on the market for green power. Data used in this paper have been collected, in large part, from surveys and interviews with green power marketers that took place between December 1997 and April 1998. There remain legitimate concerns over the viability of green power marketing to support significant quantities of renewable energy and provide large environmental gains, and it is far too early to assess the overall strength of customer demand for renewable energy. A critical finding of this report is that, because of the high cost of acquiring and servicing residential customers and the low utility default service price, green power marketing affords new energy service providers one of the only viable entrees to California`s residential marketplace.

  20. Fish burger enriched by olive oil industrial by-product.

    Cedola, Annamaria; Cardinali, Angela; Del Nobile, Matteo Alessandro; Conte, Amalia

    2017-07-01

    Oil industry produces large volume of waste, which represents a disposal and a potential environmental pollution problem. Nevertheless, they are also promising sources of compounds that can be recovered and used as valuable substances. The aim of this work is to exploit solid olive by-products, in particular dry olive paste flour (DOPF) coming from Coratina cultivar, to enrich fish burger and enhance the quality characteristics. In particular, the addition of olive by-products leads to an increase of the phenolic content and the antioxidant activity; however, it also provokes a deterioration of sensory quality. Therefore, to balance quality and sensory characteristics of fish burgers, three subsequent phases have been carried out: first, the quality of DOPF in terms of phenolic compounds content and antioxidant activity has been assessed; afterward, DOPF has been properly added to fish burgers and, finally, the formulation of the enriched fish burgers has been optimized in order to improve the sensory quality. Results suggested that the enriched burgers with 10% DOPF showed considerable amounts of polyphenols and antioxidant activity, even though they are not very acceptable from the sensory point of view. Pre-treating DOPF by hydration/extraction with milk, significantly improved the burger sensory quality by reducing the concentration of bitter components.

  1. Production of High Value Fluorine Gases for the Semiconductor Industry

    Bulko, J. B.

    2003-10-23

    The chemistry to manufacture high purity GeF{sub 4} and WF{sub 6} for use in the semiconductor industry using Starmet's new fluorine extraction technology has been developed. Production of GeF{sub 4} was established using a tube-style reactor system where conversion yields as high as 98.1% were attained for the reaction between and GeO{sub 2}. Collection of the fluoride gas improved to 97.7% when the reactor sweep gas contained a small fraction of dry air (10-12 vol%) along with helium. The lab-synthesized product was shown to contain the least amount of infrared active and elemental impurities when compared with a reference material certified at 99.99% purity. Analysis of the ''as-produced'' gas using ICP-MS showed that uranium could not be detected at a detection limit of 0.019ppm-wt. A process to make WF{sub 6} from WO{sub 2}, and UF{sub 4}, produced a WOF{sub 4} intermediate, which proved difficult to convert to tungsten hexafluoride using titanium fluoride as a fluorinating agent.

  2. Semi-industrial production of methane from textile wastewaters

    Opwis, Klaus; Mayer-Gall, Thomas; Gutmann, Jochen S. [Deutsches Textilforschungszentrum Nord-West e.V., Krefeld (DE)] (and others)

    2012-12-15

    The enzymatic desizing of starch-sized cotton fabrics leads to wastewaters with an extremely high chemical oxygen demand due to its high sugar content. Nowadays, these liquors are still disposed without use, resulting in a questionable ecological pollution and high emission charges for cotton finishing manufacturers. In this paper, an innovative technology for the production of energy from textile wastewaters from cotton desizing was developed. Such desizing liquors were fermented by methane-producing microbes to biogas. For this purpose, a semi-industrial plant with a total volume of more than 500 L was developed and employed over a period of several weeks. The robust and trouble-free system produces high amounts of biogas accompanied by a significant reduction of the COD of more than 85%. With regard to growing standards and costs for wastewater treatment and disposal, the new process can be an attractive alternative for textile finishing enterprises in wastewater management, combining economic and ecological benefits. Moreover, the production of biogas from textile wastewaters can help to overcome the global energy gap within the next decades, especially with respect to the huge dimension of cotton pretreatment and, therefore, huge desizing activities worldwide.

  3. Selling green power in California: Product, industry, and market trends

    Wiser, R.H.; Pickle, S.J.

    1998-05-01

    As one of the first US stages to open its doors to retail electric competition, California offers an important opportunity to assess the effectiveness of green power marketing as a mechanism for supporting renewable energy. This report is an interim assessment of key green power product, industry, and market trends in California. The report identifies and analyzes: the potential size of the green power market in California; the companies participating in the green power market; the green power products being offered and their prices; the impact of the green market on renewable generators and the environment; and the influence of several public policies and non-governmental programs on the market for green power. Data used in this paper have been collected, in large part, from surveys and interviews with green power marketers that took place between December 1997 and April 1998. There remain legitimate concerns over the viability of green power marketing to support significant quantities of renewable energy and provide large environmental gains, and it is far too early to assess the overall strength of customer demand for renewable energy. A critical finding of this report is that, because of the high cost of acquiring and servicing residential customers and the low utility default service price, green power marketing affords new energy service providers one of the only viable entrees to California's residential marketplace

  4. Traceability in the pharmaceutical industry: application to radiopharmaceutical production

    Zanette, Camila; Melero, Laura T.U.H.; Araujo, Elaine B. de; Mengatti, Jair; Silva, Katia S. de S.

    2011-01-01

    The development of tools to promote the traceability of the drugs in the pharmaceutical industry during all the production chain is a necessary requisite. The traceability system is applied to enable the identification of the origin, destination and exact location of the drug. Traceability optimizes the process chain, reduces errors, is a requirement for quality process, promotes safety for the user and assists in pharmacovigilance. The health regulatory agency in Brazil (ANVISA) will implement a tracking system for medicaments with RDC no. 59 of 2009, to control distribution since the producer until the patients in order to prevent the traffic and adulteration of drugs. Thus, this study discusses the importance and impact of the new traceability system proposed by ANVISA in the production and distribution of radiopharmaceuticals from the Nuclear and Energy Research Institute (IPEN-CNEN). The radiopharmaceuticals have a difference track when compared with another drug classes. In this context, this RDC would increase the price of the medicines by up to 10%, since it provides deployment of a single stamp supplied by the Mint. Considering that radiopharmaceuticals are not sold to the final consumer (patients), but only for accredited medical clinics and nuclear medicine physicians, and the transport of radiopharmaceuticals is performed by specialized companies licensed by CNEN (National Nuclear Energy Commission), the use of the stamp to ensure authenticity and prevent falsification should not be appropriated and represents and additional cost for the radiopharmaceuticals. (author)

  5. Production optimisation in the petrochemical industry by hierarchical multivariate modelling

    Andersson, Magnus; Furusjoe, Erik; Jansson, Aasa

    2004-06-01

    This project demonstrates the advantages of applying hierarchical multivariate modelling in the petrochemical industry in order to increase knowledge of the total process. The models indicate possible ways to optimise the process regarding the use of energy and raw material, which is directly linked to the environmental impact of the process. The refinery of Nynaes Refining AB (Goeteborg, Sweden) has acted as a demonstration site in this project. The models developed for the demonstration site resulted in: Detection of an unknown process disturbance and suggestions of possible causes; Indications on how to increase the yield in combination with energy savings; The possibility to predict product quality from on-line process measurements, making the results available at a higher frequency than customary laboratory analysis; Quantification of the gradually lowered efficiency of heat transfer in the furnace and increased fuel consumption as an effect of soot build-up on the furnace coils; Increased knowledge of the relation between production rate and the efficiency of the heat exchangers. This report is one of two reports from the project. It contains a technical discussion of the result with some degree of detail. A shorter and more easily accessible report is also available, see IVL report B1586-A.

  6. Cyclotron for industrial production of radioisotopes: relevants characteristics

    Lima, Wanderley de

    1997-01-01

    The industrial production of radioisotopes requests cyclotrons with easy maintenance services, high productivity and low operation costs. To obtain this performance the experts on the have achieved excellent results, taking advantage of modern resources in calculation and modeling. Only by the maximum exploitation of the azimutal variation of the magnetic field, a physical concept introduced in 1967 with the isocronous cyclotrons, it was possible to construct cyclotrons with only 30% of the electrical consumption required by the former cyclotrons. On the other hand, the acceleration of negative ions enable the 100% accelerated beam utilization, without internal energy dissipation, obtaining beam intensities up to 1mA in continuous running which represents an increased factor of 15. Other construction parameters were optimized aiming at reliability and reduction in the components activation. Concerning energy consumption and the beam intensity supplied, a present cyclotron with 30 MeV and 300μA of protons current is 15 times more efficient than its precedent. (author). 6 refs., 1 fig., 2 tabs

  7. Modeling industrial centrifugation of mammalian cell culture using a capillary based scale-down system.

    Westoby, Matthew; Rogers, Jameson K; Haverstock, Ryan; Romero, Jonathan; Pieracci, John

    2011-05-01

    Continuous-flow centrifugation is widely utilized as the primary clarification step in the recovery of biopharmaceuticals from cell culture. However, it is a challenging operation to develop and characterize due to the lack of easy to use, small-scale, systems that can be used to model industrial processes. As a result, pilot-scale continuous centrifugation is typically employed to model large-scale systems requiring a significant amount of resources. In an effort to reduce resource requirements and create a system which is easy to construct and utilize, a capillary shear device, capable of producing energy dissipation rates equivalent to those present in the feed zones of industrial disk stack centrifuges, was developed and evaluated. When coupled to a bench-top, batch centrifuge, the capillary device reduced centrate turbidity prediction error from 37% to 4% compared to using a bench-top centrifuge alone. Laboratory-scale parameters that are analogous to those routinely varied during industrial-scale continuous centrifugation were identified and evaluated for their utility in emulating disk stack centrifuge performance. The resulting relationships enable bench-scale process modeling of continuous disk stack centrifuges using an easily constructed, scalable, capillary shear device coupled to a typical bench-top centrifuge. Copyright © 2010 Wiley Periodicals, Inc.

  8. Innovation in the forest products industry: an analysis of companies in Alaska and Oregon.

    Abra Hovgaard; Eric Hansen; Joseph. Roos

    2005-01-01

    Because there is a lack of innovation research in the forest products industry and innovative activities in the industry are not well documented, this study attempted to fill that void. The objectives of this study were to understand the process and definition of innovation in the forest products industry, identify the constraints on innovative activities, identify...

  9. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    Hemrick, James Gordon [ORNL; Hu, Michael Z. [ORNL

    2010-06-01

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  10. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization

    Izmirlioglu, Gulten; Demirci, Ali

    2015-01-01

    Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium componen...

  11. Coping with Power Interruptions in Tanzania: An Industrial Perspective A Case Study of One Small Scale Animal Food Processing Industry in Moshi Municipality

    Kavishe, Theodora Ephrem

    2015-01-01

    This study was conducted in Moshi-Tanzania. The research topic is Coping with Power Interruptions in Tanzania.An Industrial Perspesctive:A Case Study of one Small Scale Animal Food Processing Industry in Moshi Municipality.The objectives are (1) to explore perceptions of staff in the industry and among TANESCO towards interruptions in power supply (2) to describe the coping strategies developed by the industry under study. The study was guided by Resource Dependence Theory (RDT) by Pfeffer an...

  12. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas.

    Mei, Yanyang; Liu, Rujie; Yang, Qing; Yang, Haiping; Shao, Jingai; Draper, Christopher; Zhang, Shihong; Chen, Hanping

    2015-02-01

    Torrefaction of cedarwood was performed in a pilot-scale rotary kiln at various temperatures (200, 230, 260 and 290°C). The torrefaction properties, the influence on the grindability and hydroscopicity of the torrefied biomass were investigated in detail as well as the combustion performance. It turned out that, compared with raw biomass, the grindability and the hydrophobicity of the torrefied biomass were significantly improved, and the increasing torrefaction temperature resulted in a decrease in grinding energy consumption and an increase in the proportion of smaller-sized particles. The use of industrial flue gas had a significant influence on the behavior of cedarwood during torrefaction and the properties of the resultant solid products. To optimize the energy density and energy yield, the temperature of torrefaction using flue gas should be controlled within 260°C. Additionally, the combustion of torrefied samples was mainly the combustion of chars, with similar combustion characteristics to lignite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Jin Wang

    2015-01-01

    Full Text Available Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF; average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  14. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  15. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  16. Charm production and mass scales in deep inelastic processes

    Close, F.E.; Scott, D.M.; Sivers, D.

    1976-07-01

    Because of their large mass, the production of charmed particles offers the possibility of new insight into fundamental dynamics. An approach to deep inelastic processes is discussed in which Generalized Vector Meson Dominance is used to extend parton model results away from the strict Bjorken scaling limit into regions where mass scales play an important role. The processes e + e - annihilation, photoproduction, deep inelastic leptoproduction, photon-photon scattering and the production of lepton pairs in hadronic collisions are discussed. The GCMD approach provides a reasonably unified framework and makes specific predictions concerning the way in which these reactions reflect an underlying flavour symmetry, broken by large mass differences. (author)

  17. Radial scaling in inclusive jet production at hadron colliders

    Taylor, Frank E.

    2018-03-01

    Inclusive jet production in p-p and p ¯ -p collisions shows many of the same kinematic systematics as observed in single-particle inclusive production at much lower energies. In an earlier study (1974) a phenomenology, called radial scaling, was developed for the single-particle inclusive cross sections that attempted to capture the essential underlying physics of pointlike parton scattering and the fragmentation of partons into hadrons suppressed by the kinematic boundary. The phenomenology was successful in emphasizing the underlying systematics of the inclusive particle productions. Here we demonstrate that inclusive jet production at the Large Hadron Collider (LHC) in high-energy p-p collisions and at the Tevatron in p ¯ -p inelastic scattering shows similar behavior. The ATLAS inclusive jet production plotted as a function of this scaling variable is studied for √s of 2.76, 7 and 13 TeV and is compared to p ¯ -p inclusive jet production at 1.96 TeV measured at the CDF and D0 at the Tevatron and p-Pb inclusive jet production at the LHC ATLAS at √sNN=5.02 TeV . Inclusive single-particle production at Fermi National Accelerator Laboratory fixed target and Intersecting Storage Rings energies are compared to inclusive J /ψ production at the LHC measured in ATLAS, CMS and LHCb. Striking common features of the data are discussed.

  18. Pilot-scale testing membrane bioreactor for wastewater reclamation in industrial laundry

    Andersen, Martin; Kristensen, Gert Holm; Brynjolf, M.

    2002-01-01

    A pilot-scale study of membrane bioreactor treatment for reclamation of wastewater from Berendsen Textile Service industrial laundry in Søborg, Denmark was carried out over a 4 month period. A satisfactory COD degradation was performed resulting in a low COD in the permeate (

  19. Development of Affordable, Low-Carbon Hydrogen Supplies at an Industrial Scale

    Roddy, Dermot J.

    2008-01-01

    An existing industrial hydrogen generation and distribution infrastructure is described, and a number of large-scale investment projects are outlined. All of these projects have the potential to generate significant volumes of low-cost, low-carbon hydrogen. The technologies concerned range from gasification of coal with carbon capture and storage…

  20. A central solar-industrial waste heat heating system with large scale borehole thermal storage

    Guo, F.; Yang, X.; Xu, L.; Torrens, I.; Hensen, J.L.M.

    2017-01-01

    In this paper, a new research of seasonal thermal storage is introduced. This study aims to maximize the utilization of renewable energy source and industrial waste heat (IWH) for urban district heating systems in both heating and non-heating seasons through the use of large-scale seasonal thermal

  1. Economies of scale and vertical integration in the investor-owed electric utility industry

    Thompson, H.G.; Islam, M.; Rose, K.

    1996-01-01

    This report analyzes the nature of costs in a vertically integrated electric utility. Findings provide new insights into the operations of the vertically integrated electric utility and supports earlier research on economics of scale and density; results also provide insights for policy makers dealing with electric industry restructuring issues such as competitive structure and mergers. Overall, results indicate that for most firms in the industry, average costs would not be reduced through expansion of generation, numbers of customers, or the delivery system. Evidently, the combination of benefits from large-scale technologies, managerial experience, coordination, or load diversity have been exhausted by the larger firms in the industry; however many firms would benefit from reducing their generation-to-sales ratio and by increasing sales to their existing customer base. Three cost models were used in the analysis

  2. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel.

    Brentner, Laura B; Eckelman, Matthew J; Zimmerman, Julie B

    2011-08-15

    The use of algae as a feedstock for biodiesel production is a rapidly growing industry, in the United States and globally. A life cycle assessment (LCA) is presented that compares various methods, either proposed or under development, for algal biodiesel to inform the most promising pathways for sustainable full-scale production. For this analysis, the system is divided into five distinct process steps: (1) microalgae cultivation, (2) harvesting and/or dewatering, (3) lipid extraction, (4) conversion (transesterification) into biodiesel, and (5) byproduct management. A number of technology options are considered for each process step and various technology combinations are assessed for their life cycle environmental impacts. The optimal option for each process step is selected yielding a best case scenario, comprised of a flat panel enclosed photobioreactor and direct transesterification of algal cells with supercritical methanol. For a functional unit of 10 GJ biodiesel, the best case production system yields a cumulative energy demand savings of more than 65 GJ, reduces water consumption by 585 m(3) and decreases greenhouse gas emissions by 86% compared to a base case scenario typical of early industrial practices, highlighting the importance of technological innovation in algae processing and providing guidance on promising production pathways.

  3. Perspectives for the Industrial Enzymatic Production of Glycosides

    Roode, de B.M.; Franssen, M.C.R.; Padt, van der A.; Boom, R.M.

    2003-01-01

    Glycosides are of commercial interest for industry in general and specifically for the pharmaceutical and food industry. Currently chemical preparation of glycosides will not meet EC food regulations, and therefore chemical preparation of glycosides is not applicable in the food industry. Thus,

  4. Noise and vibrations theory applied to industrial production systems

    Castelluccio, Gustavo

    2005-01-01

    This work discusses different techniques for the detection and control of incandescent slag slopping in B.O.F. converters (Basic Oxygen Furnace), using on line measures of vibrations and noise.The slag slopping usually occurs during the process which refines the steel and it goes against the production indexes.It was chosen for this work the technique which analyzes the sound coming from the converter.The method requires to measures the sound in gases at high temperatures.For fulfill this requirement it was designed a prototype that allows to take the sound signal from atmospheres at very high temperature (the order of 1000 0 C) and in corrosive conditions.There were carried out test in laboratory scale to validate the concepts proponed and the results were satisfactory.The equipment for measuring allowed recording the sound in gases at 850 ± 50 0 C in a trustable manner [es

  5. Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures.

    Appelhagen, Ingo; Wulff-Vester, Anders Keim; Wendell, Micael; Hvoslef-Eide, Anne-Kathrine; Russell, Julia; Oertel, Anne; Martens, Stefan; Mock, Hans-Peter; Martin, Cathie; Matros, Andrea

    2018-06-08

    Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the limited availability and diversity of anthocyanins commercially have initiated searches for alternative sources of these natural colourants. In plants, high-level production of secondary metabolites, such as anthocyanins, can be achieved by engineering of regulatory genes as well as genes encoding biosynthetic enzymes. We have used tobacco lines which constitutively produce high levels of cyanidin 3-O-rutinoside, delphinidin 3-O-rutinoside or a novel anthocyanin, acylated cyanidin 3-O-(coumaroyl) rutinoside to generate cell suspension cultures. The cell lines are stable in their production rates and superior to conventional plant cell cultures. Scale-up of anthocyanin production in small scale fermenters has been demonstrated. The cell cultures have also proven to be a suitable system for production of 13 C-labelled anthocyanins. Our method for anthocyanin production is transferable to other plant species, such as Arabidopsis thaliana, demonstrating the potential of this approach for making a wide range of highly-decorated anthocyanins. The tobacco cell cultures represent a customisable and sustainable alternative to conventional anthocyanin production platforms and have considerable potential for use in industrial and medical applications of anthocyanins. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Estimating and decomposing productivity growth of the electricity generation industry in Malaysia: A stochastic frontier analysis

    See, Kok Fong; Coelli, Tim

    2013-01-01

    This study examines the total factor productivity (TFP) growth of the Malaysian electricity generation industry over the 1998 to 2005 period. The stochastic frontier analysis (SFA) approach is used to measure TFP change and decompose TFP growth into efficiency change and technical progress. We find that it achieved average annual TFP growth of 2.34%, with technical change contributing the most to the TFP growth over the eight year period. We hence hypothesise that the new power plants with their newer capital-embodied technologies commencing during the sample period are likely to be the main reason for this strong technical change. In addition, it is also noted that this estimate for the Malaysian electricity generation industry is larger than the estimate obtained for the electricity sector as a whole, where we obtain 1.34% per year for a comparable period. -- Highlights: •This is the first empirical study that examines the TFP growth of the Malaysian electricity generation industry using the SFA method. •An average annual TFP change of the Malaysian electricity generation industry over eight years (1998-2005) has been achieved at 2.34% per year. •The technical progress contributing the most to the TFP growth and technical efficiency change and scale change making small contributions over the sample period

  7. Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry

    John R. Dorgan

    2005-07-31

    The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. Effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. The PI will be teaching one of the newly developed classes will next Fall (Fall 2006), after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revision. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PI’s group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the development of a better educated workforce and citizenry capable of providing technological innovation as a means of growing the economy and providing jobs. In particular, the

  8. Parameters examination of a biosurfactant production at laboratory scale

    Rosero, Neira Gladys; Pimienta, Astrid Lorely; Dugarte, Fanny; Carvajal, Fredy Gonzalo

    2003-01-01

    This work presents the results obtained from the laboratory-scale experimentation for the optimization of production of rhamnolipid type biosurfactant in a batch process, through the calculation and analysis of yield parameters. Different carbon/nitrogen ratios were studied, for which the production rates of rhamnolipid under nitrogen limitation was defined. Bacterial growth yield parameters Y X/N and Y X/C , were also calculated

  9. Experiences with the design and production of an industrial, flexible and demountable (IFD) building system

    Gassel, van F.J.M.; Stone, W.C.

    2002-01-01

    The Dutch government encourages innovative construction by subsidizing cohesive industrial, flexible and demountable building (lFD) pilot projects. Industrial building concerns the process-related aspects of production. robotization, mechanization, automation, prefabrication, communication, etc.

  10. Greek timber industries and wood product markets over the last century: development constraints and future directions

    Panagiotis P. Koulelis

    2011-01-01

    Full Text Available This paper examines the Greek forestry sector after 1930. According to the past literature, the sector was entirely degraded and reliable data are not available. The study analyses critical historical data about timber sector and timber companies; the main objective is the specification of the factors that kept the Greek forest sector underdevelopment. The factors and the development constraints, including the indigenous characteristics of the Greek forests, the inhibitory policy for timber production investments, especially in the state industries, lack of market research, unorthodox procedures for sale of the wood, bad quality and high cost of production and periods of general economic recession are analyzed farther. Conclusively, the need for producing official forest maps, forest data recording, rapid adaptation to EU specifications, investments, deep changes in to the managership of the state industries, permanent and specialized personnel and promotion of national programs for the development of the small-scale wood elaboration and wood selling industrial units are some of the solutions for the above problems that could be suggested.

  11. Greek timber industries and wood product markets over the last century: development constraints and future directions

    Panagiotis P. Koulelis

    2013-12-01

    Full Text Available This paper examines the Greek forestry sector after 1930. According to the past literature, the sector was entirely degraded and reliable data are not available. The study analyses critical historical data about timber sector and timber companies; the main objective is the specification of the factors that kept the Greek forest sector underdevelopment. The factors and the development constraints, including the indigenous characteristics of the Greek forests, the inhibitory policy for timber production investments, especially in the state industries, lack of market research, unorthodox procedures for sale of the wood, bad quality and high cost of production and periods of general economic recession are analyzed farther. Conclusively, the need for producing official forest maps, forest data recording, rapid adaptation to EU specifications, investments, deep changes in to the managership of the state industries, permanent and specialized personnel and promotion of national programs for the development of the small-scale wood elaboration and wood selling industrial units are some of the solutions for the above problems that could be suggested.

  12. Modeling of Thermochemical Behavior in an Industrial-Scale Rotary Hearth Furnace for Metallurgical Dust Recycling

    Wu, Yu-Liang; Jiang, Ze-Yi; Zhang, Xin-Xin; Xue, Qing-Guo; Yu, Ai-Bing; Shen, Yan-Song

    2017-10-01

    Metallurgical dusts can be recycled through direct reduction in rotary hearth furnaces (RHFs) via addition into carbon-based composite pellets. While iron in the dust is recycled, several heavy and alkali metal elements harmful for blast furnace operation, including Zn, Pb, K, and Na, can also be separated and then recycled. However, there is a lack of understanding on thermochemical behavior related to direct reduction in an industrial-scale RHF, especially removal behavior of Zn, Pb, K, and Na, leading to technical issues in industrial practice. In this work, an integrated model of the direct reduction process in an industrial-scale RHF is described. The integrated model includes three mathematical submodels and one physical model, specifically, a three-dimensional (3-D) CFD model of gas flow and heat transfer in an RHF chamber, a one-dimensional (1-D) CFD model of direct reduction inside a pellet, an energy/mass equilibrium model, and a reduction physical experiment using a Si-Mo furnace. The model is validated by comparing the simulation results with measurements in terms of furnace temperature, furnace pressure, and pellet indexes. The model is then used for describing in-furnace phenomena and pellet behavior in terms of heat transfer, direct reduction, and removal of a range of heavy and alkali metal elements under industrial-scale RHF conditions. The results show that the furnace temperature in the preheating section should be kept at a higher level in an industrial-scale RHF compared with that in a pilot-scale RHF. The removal rates of heavy and alkali metal elements inside the composite pellet are all faster than iron metallization, specifically in the order of Pb, Zn, K, and Na.

  13. Validation of a pre-existing safety climate scale for the Turkish furniture manufacturing industry.

    Akyuz, Kadri Cemil; Yildirim, Ibrahim; Gungor, Celal

    2018-03-22

    Understanding the safety climate level is essential to implement a proactive safety program. The objective of this study is to explore the possibility of having a safety climate scale for the Turkish furniture manufacturing industry since there has not been any scale available. The questionnaire recruited 783 subjects. Confirmatory factor analysis (CFA) tested a pre-existing safety scale's fit to the industry. The CFA indicated that the structures of the model present a non-satisfactory fit with the data (χ 2  = 2033.4, df = 314, p ≤ 0.001; root mean square error of approximation = 0.08, normed fit index = 0.65, Tucker-Lewis index = 0.65, comparative fit index = 0.69, parsimony goodness-of-fit index = 0.68). The results suggest that a new scale should be developed and validated to measure the safety climate level in the Turkish furniture manufacturing industry. Due to the hierarchical structure of organizations, future studies should consider a multilevel approach in their exploratory factor analyses while developing a new scale.

  14. Industrial scale straw-to-biomethane conversion. A new bioenergy and business opportunity. Final report

    Bonde, T.A. [BioFuel Technology ApS, Randers (Denmark); Sangaraju Raju, C.; Moeller, H.B. [Aarhus Univ., Forskningscenter Foulum, Tjele (Denmark); Slot Knudsen, M. [C.F. Nielsen A/S, Baelum (Denmark)

    2013-09-01

    The project resulted in the development, design, engineering, construction, and demonstration of a plant for industrial scale use of cereal straw for anaerobic digestion and production of biogas. The technology is based on the C. F. Nielsen A/S mechanical presses and adapted to the new purpose, to pre-treat and feed straw into a digester in one single step. A number of laboratory measurements as a function of variations of the pre-treatment showed, that under practical circumstances it is possible to achieve a biogas yield of 400 m{sup 3} per tons straw (corresponding to 300 m{sup 3} methane per tons volatile solids). The most significant effect was achieved by impregnating the straw with 1 % acetic acid before mechanical treatment. It was additionally shown that an extended incubation, after the mechanical treatment at 90 deg. C, resulted in a more pronounced effect than incubation at 140 deg. C. The maximum gas yield was 360 l methane per kg vs (volatile solids). This is equivalent to 290 l methane per kg straw (at 85 % dry matter, 95 % vs) or 450 l biogas per kg straw (at 65 % methane). A typical annual quantity of straw for anaerobic digestion would be 10.000 tons and more. A biogas plant digesting e.g. 100.000 tons liquid manure and 10.000 tons straw will produce a total of app. 6.5 mio. m{sup 3} biogas, of which 2.5 mio. m{sup 3} stems from the slurry and 4 mio. m{sup 3} from the straw. The result is a sustainable and robust biogas production and an equally sustainable economic performance of the biogas plant. (Author)

  15. Joint Industry-Funded R and D Projects in Exploration and Production

    Guerillot, D.; Eschard, R.; Malla, M.; Van Buchem, F.; Baghbani, D.; Granjeon, D.; Wolf, S.; Callot, J.P.; Jardin, A.; Kirkwood, D.; Rodriguez, S.; Abadi, A.; Roure, F.; Ghandriche, F.; Prinzhofer, A.; Moretti, I.; Le Melinaire, P.; Vizika, O.; Bekri, S.; Zinszner, B.; Lucet, N.; Rasologosaon, P.; Duquet, B.; Tonellot, T.; Nivlet, P.; Le Ravalec, M.; Bennis, C.; Barroux, C.; Hu, L.Y.; Doligez, B.; Vidal-Gilbert, S.; Zabalza-Mezghani, I.; Caillabet, Y.; Sarda, S.; Ricois, O.; Mouchel, R.; Behar, E.; Nabzar, L.; Zaitoun, A.; Audibert-Hayet, A.; Sauvant, V.; Chauchot, P.; Ropital, F.; Sinquin, A.; Decarre, S.; Larsen, R.; Biolley, F.; Brucy, F.; Charron, Y.; Averbuch, D.; Perrin, G.; Falcimaigne, J.; Roux, P.; Paen, D.; Broutin, P.; Renard, G.; Egermann, P.; Lombard, J.M.; Le Thiez, P.; Fries, G.

    2005-07-01

    IFP, the French Institute of Petroleum, spends more than 40% of its R and D budget on Exploration and Production. Part of this program is open to participation in the form of Joint Industry-Funded Projects (JIPs). This gives companies an opportunity to take part in the latest advances in research sponsoring the projects with others. They can steer their programs according to their needs and evaluate the practical contribution of these new technologies improving exploration and production. This document gathers the transparencies of the presentations given at the 2005 JIP seminar. Content: Opening Address; Session 1: Exploration and Petroleum System Evaluation: Berkine Gas with Sonatrach: an Evaluation of the Gas Potential of the Berkine Basin (Algeria), MEC with National Iran Oil Company: Middle East Cretaceous Sequence Stratigraphy Study, Dionisos: 3D Multi-lithological Stratigraphic Modeling for Basin and Reservoir, Scopes: Southern Cordillera Petroleum System Appraisal, Gaspe with Laval University (Quebec): Integrated Geophysical and Geological Study of the Gaspe Fold and Thrust Belt (Canada), Deep Sirt with the Petroleum Research Center (Libya): Deep Seismic Investigation in the Sirt Basin, Tell-offshore with Sonatrach: Petroleum Re-appraisal of North Algeria, Gong: Isotope Geochemistry of Natural Gases, Industrial JIP: Kine 3D Industrial with Earth Decision System: Putting Structural Geology Back into Structure Modeling; - Session 2: Petro-physics and Reservoir Characterization: PNM Car: Pore Scale Network Modeling for Carbonate Rocks, Pacs: Petro-acoustics of Carbonate Rocks for 4D Seismic Feasibility Studies, Safe: Seismic Analysis of Fracture Networks, Borneo 4D: 4D Time Lapse Seismic Modeling, Presti: Pre-stack Stratigraphic Inversion, Paris: Pseudo-Wells Applied to Reservoir Oriented Interpretation of Seismic Data, Muscat: Multi-scale Reservoir Description on Flexible Grids with Up-scaling and Down-scaling Techniques; - Session 3, Reservoir Engineering

  16. Measuring Corporate Social Responsibility in Gambling Industry: Multi-Items Stakeholder Based Scales

    Jian Ming Luo

    2017-11-01

    Full Text Available Macau gambling companies included Corporate Social Responsibility (CSR information in their annual reports and websites as a marketing tool. Responsible Gambling (RG had been a recurring issue in Macau’s chief executive report since 2007 and in many of the major gambling operators’ annual report. The purpose of this study was to develop a measurement scale on CSR activities in Macau. Items on the measurement scale were based on qualitative research with data collected from employees in Macau’s gambling industry and academic literature. First and Second Order confirmatory factor analysis (CFA were used to verify the reliability and validity of the measurement scale. The results of this study were satisfactory and were supported by empirical evidence. This study provided recommendations to gambling stakeholders, including practitioners, government officers, customers and shareholders, and implications to promote CSR practice in Macau gambling industry.

  17. Industrial scale salt-free reactive dyeing of cationized cotton fabric with different reactive dye chemistry.

    Nallathambi, Arivithamani; Venkateshwarapuram Rengaswami, Giri Dev

    2017-10-15

    Dyeing of knitted cotton goods in the industry has been mostly with reactive dyes. Handling of salt laden coloured effluent arising out of dyeing process is one of the prime concerns of the industry. Cationization of cotton is one of the effective alternative to overcome the above problem. But for cationization to be successful at industrial scale it has to be carried out by exhaust process and should be adoptable for the various dye chemistries currently practiced in the industry. Hence, in the present work, industrial level exhaust method of cationization process was carried out with concentration of 40g/L and 80g/L. The fabrics were dyed with dyes of three different dye chemistry and assessed for its dyeing performance without the addition of salt. Dye shades ranging from medium to extra dark shades were produced without the addition of salt. This study will provide industries the recipe that can be adopted for cationized cotton fabric for the widely used reactive dyes at industrial level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of enzymatic reactors for large-scale panose production.

    Fernandes, Fabiano A N; Rodrigues, Sueli

    2007-07-01

    Panose is a trisaccharide constituted by a maltose molecule bonded to a glucose molecule by an alpha-1,6-glycosidic bond. This trisaccharide has potential to be used in the food industry as a noncariogenic sweetener, as the oral flora does not ferment it. Panose can also be considered prebiotic for stimulating the growth of benefic microorganisms, such as lactobacillus and bifidobacteria, and for inhibiting the growth of undesired microorganisms such as E. coli and Salmonella. In this paper, the production of panose by enzymatic synthesis in a batch and a fed-batch reactor was optimized using a mathematical model developed to simulate the process. Results show that optimum production is obtained in a fed-batch process with an optimum production of 11.23 g/l h of panose, which is 51.5% higher than production with batch reactor.

  19. Characteristics of small-scale palm oil production enterprise in ...

    The study examined characteristics of small-scale palm oil production enterprise in Anambra State, Nigeria. All the palm oil producers in Anambra State formed the population of the study. Multi-stage sampling technique was used to select 120 respondents for the study. Data were collected from primary source through ...

  20. Economic Analysis of Small Scale Egg Production in Gombe Local ...

    This study was conducted to determine the economic profitability of small-scale egg production in Gombe L.G.A. Gombe State. Data were collected from 36 famers using simple random sampling technique. The data collected were analyzed using descriptive statistics, gross margin and farm financial ratio analysis. The study ...

  1. Resource-Use Efficiency in Rice Production Under Small Scale ...

    This was attested by the high ratios (greater than unity) of MVP/MFC of all the variables. For optimum resource allocation to fertilizer, labour and land about 85.7%, 83.3% and 69% increase in MVP is required respectively. The estimated elasticity of production summed up to 0.815 meaning decreasing return to scale.

  2. Industrial production of MgH2 and its application

    Uesugi, H.; Sugiyama, T.; Nii, H.; Ito, T.; Nakatsugawa, I.

    2011-01-01

    Research highlights: → Tablet and powder Mg were hydrogenated in a 50 kg batch furnace based on thermal equilibrium method. → Compression of Mg tablet improved the hydrogenation yield. → Hydrolysis of MgH 2 using citric acid generated hydrogen under 373 K. → A MgH 2 -hydrogen reactor utilizing hydraulic head pressure was developed. → - Abstract: A process for the industrial production of magnesium hydride (MgH 2 ) based on a thermal equilibrium method and its application to portable hydrogen sources is proposed. Mg powders and tablets compressed with mechanically ground Mg ribbons were successfully hydrogenated in a 50-kg-batch furnace. The resultant MgH 2 showed a hydrogen yield of around 96% with good reproducibility. The compression ratio of Mg tablets was found to be an important factor in the hydrogenation yield. A hydrolysis technique using citric acid as an additive was employed to generate hydrogen under 373 K. Increasing the concentration of citric acid and the temperature accelerated the hydrolysis reactivity. A hydrogen reactor utilizing hydraulic head pressure was developed. It generated hydrogen continuously for 1 h at a flow rate of 100 ml min -1 with hydrolysis of 5 g of tablet-form MgH 2 . The conversion yield was around 70%, regardless of the flow rate.

  3. Feed Additives Production Out of Dairy Industry Waste

    Ulrikh, EV

    2017-05-01

    Application of macro- and microelements in animal feed is the most effective in the case of their industrial brining in mixed feeds, feed mixes, and protein-vitamin supplements in the form of various complex salts. Application of the product contributes to the body’s needs of broiler chickens in vitamins and minerals, normalization of metabolism, and ensures a high rate of growth and development. The composition of the premix can be adjusted depending on the actual proportion of biologically active substances in the feed used by a consumer. It is possible to include in the premix other biologically active substances. Assessing the slaughter qualities of experimental pigs, it was found (Table. 2) that the pigs of group II has a tendency toward greater weight of hot carcass (4.5 kg), of slaughter yelts (by 3.83%) and toward a smaller thickness of fat over the spinous processes of the 6-7th thoracic vertebrae (1.67 mm). The performed investigations have established that there is no significant difference between groups I and II in the content of certain amino acids, however, group I shows poorer results in the content of valine, isoleucine, leucine and lysine by 0.16 g / 100 g of protein (P> 0.999) 0.2 (P> 0.90), 0.46 (P> 0.999) and 0.39 (P> 0.999) g / 100 g protein respectively.

  4. STANDARD CALCULATION PER PRODUCT IN THE CHEMICAL FERTILIZER INDUSTRY

    Ion Ionescu

    2016-12-01

    Full Text Available The main goal of the research is to present a way of organising the managerial accounting of totally and semi finished product obtained in chemical fertilizer industry entities. For this study, we analyzed the current principle of managerial accounting to an entity in the studied area, in order to emphasize the need of organizing and implementing a modern accounting management to control the cost and increase the performance of the entities in this area, starting from the premise that there are sufficient similarities between entities in the field. Research carried out has revealed that currently, the costing is organized in terms of using traditional methods and that it is necessary to organize and implement an accounting management based on the use of modern methods, namely the method of standard costs combined with the method of centres of costs. The major implications of the proposed system for the investigated field consist of determining a relevant cost-oriented management entity, highlighting the shortcomings of traditional methods of cost

  5. Proposed industrial recovered materials utilization targets for the metals and metal-products industry

    None

    1979-05-01

    The introductory chapter provides a discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. It discusses these industries in terms of resource characteristics, industry technology, pollution control requirements, market structure, the economics of recycling, and the issues involved in econometrically estimating scrap supply response behavior. It further presents the methodology established by DOE for the metals, textiles, rubber, and pulp and paper industries. The areas in which government policies might have a significant impact on the utilization of primary and secondary metals and on any recycling targets between now and 1987 are noted. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33. The profiles include such topics as industry structure, process technology, materials and recycling flow, and future trends. Chapter 4 specifically covers the evaluation of recycling targets for the ferrous, aluminum, copper, zinc, and lead industries. (MCW)

  6. Environmental degradation, global food production, and risk for large-scale migrations

    Doeoes, B.R.

    1994-01-01

    This paper attempts to estimate to what extent global food production is affected by the ongoing environmental degradation through processes, such as soil erosion, salinization, chemical contamination, ultraviolet radiation, and biotic stress. Estimates have also been made of available opportunities to improve food production efficiency by, e.g., increased use of fertilizers, irrigation, and biotechnology, as well as improved management. Expected losses and gains of agricultural land in competition with urbanization, industrial development, and forests have been taken into account. Although estimated gains in food production deliberately have been overestimated and losses underestimated, calculations indicate that during the next 30-35 years the annual net gain in food production will be significantly lower than the rate of world population growth. An attempt has also been made to identify possible scenarios for large-scale migrations, caused mainly by rapid population growth in combination with insufficient local food production and poverty. 18 refs, 7 figs, 6 tabs

  7. Toyota production system - one example to shipbuilding industry

    Delmo Alves de Moura; Rui Carlos Botter

    2017-01-01

    The shipbuilding system can use the techniques used in the Toyota Production System as an example for its production process. Production should be lean, minimize defects, stop production and reduce or eliminate inventories. Lean production is regarded by many as simply an enhancement of mass production methods, whereas agility implies breaking out of the mass production mould and producing much more highly customized products - where the customer wants them in any quantity. In a product line ...

  8. North Dakota timber industry: an assessment of timber product output and use, 2009

    David E. Haugen; Robert A. Harsel

    2013-01-01

    Presents recent North Dakota forest industry trends; production and receipts of industrial roundwood; and production of saw logs and other products in 2009. Logging residue generated from timber harvest operations is reported, as well as wood and bark residue generated at primary wood-using mills and disposition of mill residues.

  9. South Dakota timber industry: an assessment of timber product output and use, 2009

    Ronald J. Piva; Gregory J. Josten

    2013-01-01

    Presents recent South Dakota forest industry trends; production and receipts of industrial roundwood; and production of saw logs, veneer logs, pulpwood, and other products in 2009. Logging residue generated from timber harvest operations is reported, as well as wood and bark residue generated at primary wood-using mills and disposition of mill residues.

  10. 76 FR 9028 - Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability

    2011-02-16

    ...] Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability AGENCY: Food and... Therapy Products'' dated January 2011. The guidance document provides manufacturers of cellular and gene... for Industry: Potency Tests for Cellular and Gene Therapy Products'' dated January 2011. The guidance...

  11. Urban scaling and the production function for cities.

    Lobo, José; Bettencourt, Luís M A; Strumsky, Deborah; West, Geoffrey B

    2013-01-01

    The factors that account for the differences in the economic productivity of urban areas have remained difficult to measure and identify unambiguously. Here we show that a microscopic derivation of urban scaling relations for economic quantities vs. population, obtained from the consideration of social and infrastructural properties common to all cities, implies an effective model of economic output in the form of a Cobb-Douglas type production function. As a result we derive a new expression for the Total Factor Productivity (TFP) of urban areas, which is the standard measure of economic productivity per unit of aggregate production factors (labor and capital). Using these results we empirically demonstrate that there is a systematic dependence of urban productivity on city population size, resulting from the mismatch between the size dependence of wages and labor, so that in contemporary US cities productivity increases by about 11% with each doubling of their population. Moreover, deviations from the average scale dependence of economic output, capturing the effect of local factors, including history and other local contingencies, also manifest surprising regularities. Although, productivity is maximized by the combination of high wages and low labor input, high productivity cities show invariably high wages and high levels of employment relative to their size expectation. Conversely, low productivity cities show both low wages and employment. These results shed new light on the microscopic processes that underlie urban economic productivity, explain the emergence of effective aggregate urban economic output models in terms of labor and capital inputs and may inform the development of economic theory related to growth.

  12. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production.

    Tristezza, Mariana; Tufariello, Maria; Capozzi, Vittorio; Spano, Giuseppe; Mita, Giovanni; Grieco, Francesco

    2016-01-01

    In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation) and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of non-Saccharomyces in

  13. Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory

    Willmott, Jon R.; Lowe, David; Broughton, Mick; White, Ben S.; Machin, Graham

    2016-09-01

    A primary temperature scale requires realising a unit in terms of its definition. For high temperature radiation thermometry in terms of the International Temperature Scale of 1990 this means extrapolating from the signal measured at the freezing temperature of gold, silver or copper using Planck’s radiation law. The difficulty in doing this means that primary scales above 1000 °C require specialist equipment and careful characterisation in order to achieve the extrapolation with sufficient accuracy. As such, maintenance of the scale at high temperatures is usually only practicable for National Metrology Institutes, and calibration laboratories have to rely on a scale calibrated against transfer standards. At lower temperatures it is practicable for an industrial calibration laboratory to have its own primary temperature scale, which reduces the number of steps between the primary scale and end user. Proposed changes to the SI that will introduce internationally accepted high temperature reference standards might make it practicable to have a primary high temperature scale in a calibration laboratory. In this study such a scale was established by calibrating radiation thermometers directly to high temperature reference standards. The possible reduction in uncertainty to an end user as a result of the reduced calibration chain was evaluated.

  14. The Productivity and Technical Efficiency of Textile Industry Clusters in India

    Bhaskaran, E.

    2013-09-01

    The Indian textile industry is one the largest and oldest sectors in the country and among the most important in the economy in terms of output, investment and employment (E). The sector employs nearly 35 million people and after agriculture, is the second-highest employer in the country. Its importance is underlined by the fact that it accounts for around 4 % of Gross Domestic Product, 14 % of industrial production, 9 % of excise collections, 18 % of E in the industrial sector, and 16 % of the country's total exports (Ex) earnings. For inclusive growth and sustainable development most of the Textile Manufacturers has adopted the Cluster Development Approach. The objective is to study the physical and financial performance, correlation, regression and Data Envelopment Analysis by measuring technical efficiency (Ø), peer weights (λi), input slacks (S-), output slacks (S+) and return to scale of four textile clusters (TCs) namely IchalKaranji Textile Cluster, Maharashtra; Ludhiana Textile Cluster, Punjab; Tirupur Textile Cluster, Tamilnadu and Panipat Textile Cluster, Haryana in India. The methodology adopted is using Data Envelopment Analysis of Output Oriented Banker Charnes Cooper Model by taking number of units (U) and number of E as inputs and sales (S) and Ex in crores as an outputs. The non-zero λi's represents the weights for efficient clusters. The S > 0 obtained for one TC reveals the excess U (S-) and E (S-) and shortage in sales (S+) and Ex (S+). To conclude, for inclusive growth and sustainable development, the inefficient TC should increase their S/turnover and Ex, as decrease in number of enterprises and E is practically not possible. Moreover for sustainable development, the TC should strengthen infrastructure interrelationships, technology interrelationships, procurement interrelationships, production interrelationships and marketing interrelationships to decrease cost, increase productivity and efficiency to compete in the world market.

  15. Industrial Security – a Component of the Production Operational Management

    Ilie GHEORGHE; Roxana STEFANESCU

    2005-01-01

    The problem of the industrial objectives security imposes as a fundamental condition of economic efficiency. This is why is necessary the elaboration of a new concept regarding industrial security. This concept must integrate quality problems, with technological and ecological characteristics of the industrial objective with the security problems of the business environment and to protect physical and informational objective against fires or natural calamities. Another role of the new industr...

  16. Environmental justice implications of industrial hazardous waste generation in India: a national scale analysis

    Basu, Pratyusha; Chakraborty, Jayajit

    2016-12-01

    While rising air and water pollution have become issues of widespread public concern in India, the relationship between spatial distribution of environmental pollution and social disadvantage has received less attention. This lack of attention becomes particularly relevant in the context of industrial pollution, as India continues to pursue industrial development policies without sufficient regard to its adverse social impacts. This letter examines industrial pollution in India from an environmental justice (EJ) perspective by presenting a national scale study of social inequities in the distribution of industrial hazardous waste generation. Our analysis connects district-level data from the 2009 National Inventory of Hazardous Waste Generating Industries with variables representing urbanization, social disadvantage, and socioeconomic status from the 2011 Census of India. Our results indicate that more urbanized and densely populated districts with a higher proportion of socially and economically disadvantaged residents are significantly more likely to generate hazardous waste. The quantity of hazardous waste generated is significantly higher in more urbanized but sparsely populated districts with a higher proportion of economically disadvantaged households, after accounting for other relevant explanatory factors such as literacy and social disadvantage. These findings underscore the growing need to incorporate EJ considerations in future industrial development and waste management in India.

  17. Solar-assisted drying of timber at industrial scale: management paper

    While ambient air drying depends on the weather conditions, conventional hightemperature dryers cause high investments and energy costs. Up to now, solar dryers could not be established in industrial timber production, due to their insufficient drying capacity and the lack of an adequate control of the drying conditions.

  18. Implementation of Canflex bundle manufacture - from 'bench scale' to production

    Pant, A.

    1999-01-01

    Zircatec Precision Industries (ZPI) has been involved with the development of the 43 element Canflex bundle design since 1986. This development included several 'prototype' campaigns involving the manufacture of small quantities of test bundles using enriched fuel. Manufacturing and inspection methods for this fuel were developed at ZPI as the design progressed. The most recent campaign involved the production of 26 bundles of the final Canflex design for a demonstration irradiation in the Point Lepreau Generating Station. This presentation will explore issues pertaining to the introduction of a new product line from initial trial quantities to full production levels. The Canflex fuel experience and a brief review of development efforts will be used as an example. (author)

  19. Product waste in the automotive industry : Technology and environmental management

    Groenewegen, Peter; Hond, Frank Den

    1993-01-01

    In this article the changes in technology and industry structure forced by waste management in the automotive industry are explored. The analysis is based on (1) a characterisation of corporate response to environmental issues, and (2) the management of technology applied to the car manufacturing

  20. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  1. Preparing skilled labor in industry through production-based curriculum approach in vocational high school

    Yoto

    2017-09-01

    Vocational high school (Sekolah Menengah Kejuruan / SMK) aims to prepare mid-level skilled labors to work in the industry and are able to create self-employment opportunities. For those reasons, the curriculum in SMK should be based on meeting the needs of the industries and is able to prepare learners to master the competence in accordance with the skills program of their choice. Production based curriculum is the curriculum which the learning process is designed together with the production process or using production process as a learning medium. This approach with the primary intention to introduce students with the real working environment and not merely simulations. In the production-based curriculum implementation model, students are directly involved in the industry through the implementation of industrial working practices, do work on production units in school, and do practical work in school by doing the job as done in the industry by using industry standards machines.

  2. Wood product industry - present state and studies of the development alternatives; Puuteollisuuden nykytilan ja haasteiden arviointia

    Holmijoki, O.; Paajanen, T.; Kairi, M.

    2007-07-01

    In this research project the development of the wood products industry and its operating environment in Finland was studied using statistical data mainly from years 1995 - 2003. In this context, the wood products industry includes the sawmilling industry, the plywood and other wood panel industry, prefabricated wooden housing and the building joinery industry, wood packing manufacture and the manufacture of other wooden products. The development of the wood products industry and its operating environment has been estimated by combining statistical data about the business economy, production economy and the national economy from the Central Statistical Office of Finland together with data from the Finnish Forest Research Institute. Based on statistical data, the wood product markets, profitability and cost structure of branches, input market, use of labour force and investments have been studied. The economic importance of the wood products industry has been estimated at a national and a local level. Challenges facing wood products industry branches have been analysed using example calculations based on input-output theory. In the evaluation method, the business environment of the wood products industry branches and related branches, have been described with a use table at basic prices commonly using in the national economy. This method has enabled the direct and indirect effects of simultaneous quantity and price changes occurring in the wood product markets and markets related to the wood product industry, to be analysed. In the example calculations, variation of sawn timber production and log import, as well as the increments of sawn timber upgrading, wood product usage in building, wood panel production and purchase energy price, were reviewed

  3. Scale development of safety management system evaluation for the airline industry.

    Chen, Ching-Fu; Chen, Shu-Chuan

    2012-07-01

    The airline industry relies on the implementation of Safety Management System (SMS) to integrate safety policies and augment safety performance at both organizational and individual levels. Although there are various degrees of SMS implementation in practice, a comprehensive scale measuring the essential dimensions of SMS is still lacking. This paper thus aims to develop an SMS measurement scale from the perspective of aviation experts and airline managers to evaluate the performance of company's safety management system, by adopting Schwab's (1980) three-stage scale development procedure. The results reveal a five-factor structure consisting of 23 items. The five factors include documentation and commands, safety promotion and training, executive management commitment, emergency preparedness and response plan and safety management policy. The implications of this SMS evaluation scale for practitioners and future research are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Particle physics and polyedra proximity calculation for hazard simulations in large-scale industrial plants

    Plebe, Alice; Grasso, Giorgio

    2016-12-01

    This paper describes a system developed for the simulation of flames inside an open-source 3D computer graphic software, Blender, with the aim of analyzing in virtual reality scenarios of hazards in large-scale industrial plants. The advantages of Blender are of rendering at high resolution the very complex structure of large industrial plants, and of embedding a physical engine based on smoothed particle hydrodynamics. This particle system is used to evolve a simulated fire. The interaction of this fire with the components of the plant is computed using polyhedron separation distance, adopting a Voronoi-based strategy that optimizes the number of feature distance computations. Results on a real oil and gas refining industry are presented.

  5. Modelling an industrial anaerobic granular reactor using a multi-scale approach.

    Feldman, H; Flores-Alsina, X; Ramin, P; Kjellberg, K; Jeppsson, U; Batstone, D J; Gernaey, K V

    2017-12-01

    The objective of this paper is to show the results of an industrial project dealing with modelling of anaerobic digesters. A multi-scale mathematical approach is developed to describe reactor hydrodynamics, granule growth/distribution and microbial competition/inhibition for substrate/space within the biofilm. The main biochemical and physico-chemical processes in the model are based on the Anaerobic Digestion Model No 1 (ADM1) extended with the fate of phosphorus (P), sulfur (S) and ethanol (Et-OH). Wastewater dynamic conditions are reproduced and data frequency increased using the Benchmark Simulation Model No 2 (BSM2) influent generator. All models are tested using two plant data sets corresponding to different operational periods (#D1, #D2). Simulation results reveal that the proposed approach can satisfactorily describe the transformation of organics, nutrients and minerals, the production of methane, carbon dioxide and sulfide and the potential formation of precipitates within the bulk (average deviation between computer simulations and measurements for both #D1, #D2 is around 10%). Model predictions suggest a stratified structure within the granule which is the result of: 1) applied loading rates, 2) mass transfer limitations and 3) specific (bacterial) affinity for substrate. Hence, inerts (X I ) and methanogens (X ac ) are situated in the inner zone, and this fraction lowers as the radius increases favouring the presence of acidogens (X su ,X aa , X fa ) and acetogens (X c4 ,X pro ). Additional simulations show the effects on the overall process performance when operational (pH) and loading (S:COD) conditions are modified. Lastly, the effect of intra-granular precipitation on the overall organic/inorganic distribution is assessed at: 1) different times; and, 2) reactor heights. Finally, the possibilities and opportunities offered by the proposed approach for conducting engineering optimization projects are discussed. Copyright © 2017 Elsevier Ltd. All

  6. Economic feasibility of small scale button mushroom production in pakistan

    Tahir, A.; Hassan, S.

    2013-01-01

    Abstract:- Mushroom is widely cultivated as a proteineous vegetable in many countries of the world including Pakistan. Its cultivation requires less space, care, equipment and cost compared to many other crops and livestock. The present study was conducted in 2010 to estimate the profitability of small scale button mushroom production at National Agricultural Research Centre (NARC) Islamabad, Pakistan. The cost of production methodology was used for this study. The yield and gross return of mushroom was estimated at 155.6 kg ha and Rs.77,800 ha , respectively. The results indicated the fact that mushroom production is very much remunerative to its producers as it can give maximum net return by reducing their cost of production as its cultivation is dependent on the agricultural raw material which is cheaply available. (author)

  7. Denitrification of high strength nitrate waste from a nuclear industry using acclimatized biomass in a pilot scale reactor.

    Dhamole, Pradip B; Nair, Rashmi R; D'Souza, Stanislaus F; Pandit, Aniruddha B; Lele, S S

    2015-01-01

    This work investigates the performance of acclimatized biomass for denitrification of high strength nitrate waste (10,000 mg/L NO3) from a nuclear industry in a continuous laboratory scale (32 L) and pilot scale reactor (330 L) operated over a period of 4 and 5 months, respectively. Effect of substrate fluctuations (mainly C/NO3-N) on denitrification was studied in a laboratory scale reactor. Incomplete denitrification (95-96 %) was observed at low C/NO3-N (≤2), whereas at high C/NO3-N (≥2.25) led to ammonia formation. Ammonia production increased from 1 to 9 % with an increase in C/NO3-N from 2.25 to 6. Complete denitrification and no ammonia formation were observed at an optimum C/NO3-N of 2.0. Microbiological studies showed decrease in denitrifiers and increase in nitrite-oxidizing bacteria and ammonia-oxidizing bacteria at high C/NO3-N (≥2.25). Pilot scale studies were carried out with optimum C/NO3-N, and sustainability of the process was checked on the pilot scale for 5 months.

  8. Interannual Variation in Phytoplankton Primary Production at a Global Scale

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2013-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms contributed the most to the total phytoplankton production ((is)approximately 50%, the equivalent of 20 PgC·y1). Coccolithophores and chlorophytes each contributed approximately 20% ((is) approximately 7 PgC·y1) of the total primary production and cyanobacteria represented about 10% ((is) approximately 4 PgC·y1) of the total primary production. Primary production by diatoms was highest in the high latitudes ((is) greater than 40 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1-2 PgC·y1). We assessed the effects of climate variability on group-specific primary production using global (i.e., Multivariate El Niño Index, MEI) and "regional" climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p (is) less than 0.05) between the MEI and the group-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect

  9. Dissolution of Platinum in Hydrochloric Acid Under Industrial-Scale Alternating Current Polarization

    Myrzabekov, B. E.; Bayeshov, A. B.; Makhanbetov, A. B.; Mishra, B.; Baigenzhenov, O. S.

    2018-02-01

    The electrochemical behavior of platinum in a hydrochloric acid solution under polarization by an industrial-scale alternating current has been investigated. For the electrical dissolution of platinum, titanium is used as an auxiliary electrode, which increases the yield of platinum dissolution by 12.5 pct. The influence of the concentration of hydrochloric acid, the current densities of the platinum and titanium electrodes, and the temperature of the electrolyte on the efficiency of the process of dissolving platinum have all been studied.

  10. Automated Bug Assignment: Ensemble-based Machine Learning in Large Scale Industrial Contexts

    Jonsson, Leif; Borg, Markus; Broman, David; Sandahl, Kristian; Eldh, Sigrid; Runeson, Per

    2016-01-01

    Bug report assignment is an important part of software maintenance. In particular, incorrect assignments of bug reports to development teams can be very expensive in large software development projects. Several studies propose automating bug assignment techniques using machine learning in open source software contexts, but no study exists for large-scale proprietary projects in industry. The goal of this study is to evaluate automated bug assignment techniques that are based on machine learni...

  11. DEM GPU studies of industrial scale particle simulations for granular flow civil engineering applications

    Pizette, Patrick; Govender, Nicolin; Wilke, Daniel N.; Abriak, Nor-Edine

    2017-06-01

    The use of the Discrete Element Method (DEM) for industrial civil engineering industrial applications is currently limited due to the computational demands when large numbers of particles are considered. The graphics processing unit (GPU) with its highly parallelized hardware architecture shows potential to enable solution of civil engineering problems using discrete granular approaches. We demonstrate in this study the pratical utility of a validated GPU-enabled DEM modeling environment to simulate industrial scale granular problems. As illustration, the flow discharge of storage silos using 8 and 17 million particles is considered. DEM simulations have been performed to investigate the influence of particle size (equivalent size for the 20/40-mesh gravel) and induced shear stress for two hopper shapes. The preliminary results indicate that the shape of the hopper significantly influences the discharge rates for the same material. Specifically, this work shows that GPU-enabled DEM modeling environments can model industrial scale problems on a single portable computer within a day for 30 seconds of process time.

  12. Assessment of clean development mechanism potential of large-scale energy efficiency measures in heavy industries

    Hayashi, Daisuke; Krey, Matthias

    2007-01-01

    This paper assesses clean development mechanism (CDM) potential of large-scale energy efficiency measures in selected heavy industries (iron and steel, cement, aluminium, pulp and paper, and ammonia) taking India and Brazil as examples of CDM project host countries. We have chosen two criteria for identification of the CDM potential of each energy efficiency measure: (i) emission reductions volume (in CO 2 e) that can be expected from the measure and (ii) likelihood of the measure passing the additionality test of the CDM Executive Board (EB) when submitted as a proposed CDM project activity. The paper shows that the CDM potential of large-scale energy efficiency measures strongly depends on the project-specific and country-specific context. In particular, technologies for the iron and steel industry (coke dry quenching (CDQ), top pressure recovery turbine (TRT), and basic oxygen furnace (BOF) gas recovery), the aluminium industry (point feeder prebake (PFPB) smelter), and the pulp and paper industry (continuous digester technology) offer promising CDM potential

  13. EFFECTS OF OIL AND NATURAL GAS PRICES ON INDUSTRIAL PRODUCTION IN THE EUROZONE MEMBER COUNTRIES

    Yılmaz BAYAR

    2014-04-01

    Full Text Available Industrial production is one of the leading indicators of gross domestic product which reflects the overall economic performance of a country. In other words decreases or increases in industrial production point out a contracting or expanding economy. Therefore, changes in prices of oil and natural gas which are the crucial inputs to the industrial production are also important for the overall economy. This study examines the effects of changes in oil and natural gas prices on the industrial production in the 18 Eurozone member countries during the period January 2001-September 2013 by using panel regression. We found that oil prices and natural gas prices had negative effect on industrial production in the Eurozone member countries.

  14. Sustainable Industrial Product Systems. Integration of Life Cycle Assessment in Product development and Optimization of Product Systems

    Hanssen, Ole Joergen

    1997-12-31

    This thesis contributes to the development and testing of environmental life cycle assessment (LCA) in product development and management in industry. It is based on systems theory and systems engineering. It develops a method for sustainable product development that has been successfully tested in the Nordic project called NEP. The LCA method is also a basis for an optimization model, where life cycle economy and environmental impacts from product systems are optimized with a non-linear model. A more complete mathematical model for LCA, based on the functional requirements on a product system, is also developed. The statistical properties of emission factors are studied using a data set from the Swedish Kraft Mill industry. It is shown that emission factors may be assumed constants in the LCA model, but with rather large variations within a population of Kraft mills. It is shown that there are a few environmental impacts which are important for most types of products under Scandinavian conditions, especially global warming potential, acidification, human toxicity and fossil energy depletion. There are significant differences between the contribution to these impacts from different life cycle stages, where raw material processing and use of products are generally more important than the other stages. Test cases indicate that there are no large conflicts between improvements in environmental impacts and customer requirements. Environmental improvements seem to increase purchase cost of products in some cases, but the life cycle cost of the products seem in most cases to be reduced. It is concluded that there are opportunities for 30-50% improvements in product system, based on relatively simple modifications of the systems. 246 refs., 63 figs., 19 tabs.

  15. Small scale studies of production of fissium aerosols

    Lindqvist, O.; Rydberg, J.

    1983-02-01

    A small scale study concerning the production and analysis of fission product aerosols formed at various temperatures as a function of the chemical composition of the fissium/corium mixture at the source is presented. CsOH, CsJ and Te are the main aerosol components to be expected. The thermodynamic characterization of occuring Te-iodides and other phases is of great importance for reactor core meltdown chemistry and for the evaluation of the aerosol transport tests. Elemental iodine seems not to be released in significant amounts in reducing atmosphere. Analysis data concerning elements, phases, themral analysis and gases are presented. (G.B.)

  16. A production model and maintenance planning model for the process industry

    Ashayeri, J.; Teelen, A.; Selen, W.J.

    1995-01-01

    In this paper a model is developed to simultaneously plan preventive maintenance and production in a process industry environment, where maintenance planning is extremely important. The model schedules production jobs and preventive maintenance jobs, while minimizing costs associated with

  17. 75 FR 63188 - Draft Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry...

    2010-10-14

    ...] Draft Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry...: Chemistry, Manufacturing, and Control Information'' dated September 2010. The draft guidance provides... Products: Chemistry, Manufacturing, and Control Information'' dated September 2010. The draft guidance...

  18. Mathematical model for production of an industry focusing on worker status

    Visalakshi, V.; kiran kumari, Sheshma

    2018-04-01

    Productivity improvement is posing a great challenge for industry everyday because of the difficulties in keeping track and priorising the variables that have significant impact on the productivity. The variation in production depends on the linguistic variables such as worker commitment, worker motivation and worker skills. Since the variables are linguistic we try to propose a model which gives an appropriate production of an industry. Fuzzy models aids the relationship between the factors and status. The model will support the industry to focus on the mentality of worker to increase the production.

  19. Production of black holes in TeV-scale gravity

    Ringwald, A.

    2002-12-01

    Copious production of microscopic black holes is one of the least model-dependent predictions of TeV-scale gravity scenarios. We review the arguments behind this assertion and discuss opportunities to track the striking associated signatures in the near future. These include searches at neutrino telescopes, such as AMANDA and RICE, at cosmic ray air shower facilities, such as the Pierre Auger Observatory, and at colliders, such as the Large Hadron Collider. (orig.)

  20. Production of black holes in TeV-scale gravity

    Ringwald, A.

    2003-01-01

    Copious production of microscopic black holes is one of the least model-dependent predictions of TeV-scale gravity scenarios. We review the arguments behind this assertion and discuss opportunities to track the striking associated signatures in the near future. These include searches at neutrino telescopes, such as AMANDA and RICE, at cosmic ray air shower facilities, such as the Pierre Auger Observatory, and at colliders, such as the Large Hadron Collider. (Abstract Copyright [2003], Wiley Periodicals, Inc.)