WorldWideScience

Sample records for scale habitat influence

  1. River Discharge and Local Scale Habitat Influence LIFE Score Macroinvertebrate LIFE Scores

    DEFF Research Database (Denmark)

    Dunbar, Michael J.; Pedersen, Morten Lauge; Cadman, Dan

    2010-01-01

    Midlands of the U.K., we describe how local-scale habitat features (indexed through River Habitat Survey or Danish Habitat Quality Survey) and changing river flow (discharge) influence the response of a macroinvertebrate community index. The approach has broad applicability in developing regional flow......-ecological response models. 2. We analysed the data using multilevel linear regression, combining sample-level and site-level characteristics as predictors. We focused on the potential for common responses across sites; hence for each sample, the macroinvertebrate community was summarised into an index, Lotic...... Invertebrate index for Flow Evaluation (LIFE), an average of abundance-weighted flow groups which indicate the microhabitat preferences of each taxon for higher velocities and clean gravel/cobble substrata or slow/still velocities and finer substrata. 3. For the Danish fauna, the LIFE score responded to three...

  2. Habitat models to predict wetland bird occupancy influenced by scale, anthropogenic disturbance, and imperfect detection

    Science.gov (United States)

    Glisson, Wesley J.; Conway, Courtney J.; Nadeau, Christopher P.; Borgmann, Kathi L.

    2017-01-01

    Understanding species–habitat relationships for endangered species is critical for their conservation. However, many studies have limited value for conservation because they fail to account for habitat associations at multiple spatial scales, anthropogenic variables, and imperfect detection. We addressed these three limitations by developing models for an endangered wetland bird, Yuma Ridgway's rail (Rallus obsoletus yumanensis), that examined how the spatial scale of environmental variables, inclusion of anthropogenic disturbance variables, and accounting for imperfect detection in validation data influenced model performance. These models identified associations between environmental variables and occupancy. We used bird survey and spatial environmental data at 2473 locations throughout the species' U.S. range to create and validate occupancy models and produce predictive maps of occupancy. We compared habitat-based models at three spatial scales (100, 224, and 500 m radii buffers) with and without anthropogenic disturbance variables using validation data adjusted for imperfect detection and an unadjusted validation dataset that ignored imperfect detection. The inclusion of anthropogenic disturbance variables improved the performance of habitat models at all three spatial scales, and the 224-m-scale model performed best. All models exhibited greater predictive ability when imperfect detection was incorporated into validation data. Yuma Ridgway's rail occupancy was negatively associated with ephemeral and slow-moving riverine features and high-intensity anthropogenic development, and positively associated with emergent vegetation, agriculture, and low-intensity development. Our modeling approach accounts for common limitations in modeling species–habitat relationships and creating predictive maps of occupancy probability and, therefore, provides a useful framework for other species.

  3. Fine-Scale Habitat Heterogeneity Influences Occupancy in Terrestrial Mammals in a Temperate Region of Australia.

    Directory of Open Access Journals (Sweden)

    Ingrid Stirnemann

    Full Text Available Vegetation heterogeneity is an inherent feature of most ecosystems, characterises the structure of habitat, and is considered an important driver of species distribution patterns. However, quantifying fine-scale heterogeneity of vegetation cover can be time consuming, and therefore it is seldom measured. Here, we determine if heterogeneity is worthwhile measuring, in addition to the amount of cover, when examining species distribution patterns. Further, we investigated the effect of the surrounding landscape heterogeneity on species occupancy. We tested the effect of cover and heterogeneity of trees and shrubs, and the context of the surrounding landscape (number of habitats and distance to an ecotone on site occupancy of three mammal species (the black wallaby [Wallabia bicolor], the long-nosed bandicoot [Perameles nasuta], and the bush rat [Rattus fuscipes] within a naturally heterogeneous landscape in a temperate region of Australia. We found that fine-scale heterogeneity of vegetation attributes is an important driver of mammal occurrence of two of these species. Further, we found that, although all three species responded positively to vegetation heterogeneity, different mammals vary in their response to different types of vegetation heterogeneity measurement. For example, the black wallaby responded to the proximity of an ecotone, and the bush rat and the long-nosed bandicoot responded to fine-scale heterogeneity of small tree cover, whereas none of the mammals responded to broad scale heterogeneity (i.e., the number of habitat types. Our results highlight the influence of methodological decisions, such as how heterogeneity vegetation is measured, in quantifying species responses to habitat structures. The findings confirm the importance of choosing meaningful heterogeneity measures when modelling the factors influencing occupancy of the species of interest.

  4. Fine-Scale Habitat Heterogeneity Influences Occupancy in Terrestrial Mammals in a Temperate Region of Australia.

    Science.gov (United States)

    Stirnemann, Ingrid; Mortelliti, Alessio; Gibbons, Philip; Lindenmayer, David B

    2015-01-01

    Vegetation heterogeneity is an inherent feature of most ecosystems, characterises the structure of habitat, and is considered an important driver of species distribution patterns. However, quantifying fine-scale heterogeneity of vegetation cover can be time consuming, and therefore it is seldom measured. Here, we determine if heterogeneity is worthwhile measuring, in addition to the amount of cover, when examining species distribution patterns. Further, we investigated the effect of the surrounding landscape heterogeneity on species occupancy. We tested the effect of cover and heterogeneity of trees and shrubs, and the context of the surrounding landscape (number of habitats and distance to an ecotone) on site occupancy of three mammal species (the black wallaby [Wallabia bicolor], the long-nosed bandicoot [Perameles nasuta], and the bush rat [Rattus fuscipes]) within a naturally heterogeneous landscape in a temperate region of Australia. We found that fine-scale heterogeneity of vegetation attributes is an important driver of mammal occurrence of two of these species. Further, we found that, although all three species responded positively to vegetation heterogeneity, different mammals vary in their response to different types of vegetation heterogeneity measurement. For example, the black wallaby responded to the proximity of an ecotone, and the bush rat and the long-nosed bandicoot responded to fine-scale heterogeneity of small tree cover, whereas none of the mammals responded to broad scale heterogeneity (i.e., the number of habitat types). Our results highlight the influence of methodological decisions, such as how heterogeneity vegetation is measured, in quantifying species responses to habitat structures. The findings confirm the importance of choosing meaningful heterogeneity measures when modelling the factors influencing occupancy of the species of interest.

  5. Influences of scale on bat habitat relationships in a forested landscape in Nicaragua

    Science.gov (United States)

    Carol L. Chambers; Samuel A. Cushman; Arnulfo Medina-Fitoria; Jose Martinez-Fonseca; Marlon Chavez-Velasquez

    2016-01-01

    Scale dependence of bat habitat selection is poorly known with few studies evaluating relationships among landscape metrics such as class versus landscape, or metrics that measure composition or configuration. This knowledge can inform conservation approaches to mitigate habitat loss and fragmentation.

  6. Influence of habitat heterogeneity on the distribution of larval Pacific lamprey (Lampetra tridentata) at two spatial scales

    Science.gov (United States)

    Torgersen, Christian E.; Close, David A.

    2004-01-01

    1. Spatial patterns in channel morphology and substratum composition at small (1a??10 metres) and large scales (1a??10 kilometres) were analysed to determine the influence of habitat heterogeneity on the distribution and abundance of larval lamprey. 2. We used a nested sampling design and multiple logistic regression to evaluate spatial heterogeneity in the abundance of larval Pacific lamprey, Lampetra tridentata, and habitat in 30 sites (each composed of twelve 1-m2 quadrat samples) distributed throughout a 55-km section of the Middle Fork John Day River, OR, U.SA. Statistical models predicting the relative abundance of larvae both among sites (large scale) and among samples (small scale) were ranked using Akaike's Information Criterion (AIC) to identify the 'best approximating' models from a set of a priori candidate models determined from the literature on larval lamprey habitat associations. 3. Stream habitat variables predicted patterns in larval abundance but played different roles at different spatial scales. The abundance of larvae at large scales was positively associated with water depth and open riparian canopy, whereas patchiness in larval occurrence at small scales was associated with low water velocity, channel-unit morphology (pool habitats), and the availability of habitat suitable for burrowing. 4. Habitat variables explained variation in larval abundance at large and small scales, but locational factors, such as longitudinal position (river km) and sample location within the channel unit, explained additional variation in the logistic regression model. The results emphasise the need for spatially explicit analysis, both in examining fish habitat relationships and in developing conservation plans for declining fish populations.

  7. Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems.

    Science.gov (United States)

    Ossola, Alessandro; Hahs, Amy Kristin; Livesley, Stephen John

    2015-08-15

    Urban ecosystems have traditionally been considered to be pervious features of our cities. Their hydrological properties have largely been investigated at the landscape scale and in comparison with other urban land use types. However, hydrological properties can vary at smaller scales depending upon changes in soil, surface litter and vegetation components. Management practices can directly and indirectly affect each of these components and the overall habitat complexity, ultimately affecting hydrological processes. This study aims to investigate the influence that habitat components and habitat complexity have upon key hydrological processes and the implications for urban habitat management. Using a network of urban parks and remnant nature reserves in Melbourne, Australia, replicate plots representing three types of habitat complexity were established: low-complexity parks, high-complexity parks, and high-complexity remnants. Saturated soil hydraulic conductivity in low-complexity parks was an order of magnitude lower than that measured in the more complex habitat types, due to fewer soil macropores. Conversely, soil water holding capacity in low-complexity parks was significantly higher compared to the two more complex habitat types. Low-complexity parks would generate runoff during modest precipitation events, whereas high-complexity parks and remnants would be able to absorb the vast majority of rainfall events without generating runoff. Litter layers on the soil surface would absorb most of precipitation events in high-complexity parks and high-complexity remnants. To minimize the incidence of stormwater runoff from urban ecosystems, land managers could incrementally increase the complexity of habitat patches, by increasing canopy density and volume, preserving surface litter and maintaining soil macropore structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Scale-specific habitat relationships influence patch occupancy: defining neighborhoods to optimize the effectiveness of landscape-scale grassland bird conservation

    Science.gov (United States)

    Guttery, Michael; Ribic, Christine; Sample, David W.; Paulios, Andy; Trosen, Chris; Dadisman, John D.; Schneider, Daniel; Horton, Josephine

    2017-01-01

    ContextBeyond the recognized importance of protecting large areas of contiguous habitat, conservation efforts for many species are complicated by the fact that patch suitability may also be affected by characteristics of the landscape within which the patch is located. Currently, little is known about the spatial scales at which species respond to different aspects of the landscape surrounding an occupied patch.ObjectivesUsing grassland bird point count data, we describe an approach to evaluating scale-specific effects of landscape composition on patch occupancy.MethodsWe used data from 793 point count surveys conducted in idle and grazed grasslands across Wisconsin, USA from 2012 to 2014 to evaluate scale-dependencies in the response of grassland birds to landscape composition. Patch occupancy models were used to evaluate the relationship between occupancy and landscape composition at scales from 100 to 3000 m.ResultsBobolink (Dolichonyx oryzivorus) exhibited a pattern indicating selection for grassland habitats in the surrounding landscape at all spatial scales while selecting against other habitats. Eastern Meadowlark (Sturnella magna) displayed evidence of scale sensitivity for all habitat types. Grasshopper Sparrow (Ammodramus savannarum) showed a strong positive response to pasture and idle grass at all scales and negatively to cropland at large scales. Unlike other species, patch occupancy by Henslow’s Sparrow (A. henslowii) was primarily influenced by patch area.ConclusionsOur results suggest that both working grasslands (pasture) and idle conservation grasslands can play an important role in grassland bird conservation but also highlight the importance of considering species-specific patch and landscape characteristics for effective conservation.

  9. Spatial scale-dependent habitat heterogeneity influences submarine canyon macrofaunal abundance and diversity off the Main and Northwest Hawaiian Islands

    Science.gov (United States)

    De Leo, Fabio C.; Vetter, Eric W.; Smith, Craig R.; Rowden, Ashley A.; McGranaghan, Matthew

    2014-06-01

    The mapping of biodiversity on continental margins on landscape scales is highly relevant to marine spatial planning and conservation. Submarine canyons are widespread topographic features on continental and island margins that enhance benthic biomass across a range of oceanic provinces and productivity regimes. However, it remains unclear whether canyons enhance faunal biodiversity on landscape scales relevant to marine protected area (MPA) design. Furthermore, it is not known which physical attributes and heterogeneity metrics can provide good surrogates for large-scale mapping of canyon benthic biodiversity. To test mechanistic hypotheses evaluating the role of different canyon-landscape attributes in enhancing benthic biodiversity at different spatial scales we conducted 34 submersible dives in six submarine canyons and nearby slopes in the Hawaiian archipelago, sampling infaunal macrobenthos in a depth-stratified sampling design. We employed multivariate multiple regression models to evaluate sediment and topographic heterogeneity, canyon transverse profiles, and overall water mass variability as potential drivers of macrobenthic community structure and species richness. We find that variables related to habitat heterogeneity at medium (0.13 km2) and large (15-33 km2) spatial scales such as slope, backscatter reflectivity and canyon transverse profiles are often good predictors of macrobenthic biodiversity, explaining 16-30% of the variance. Particulate organic carbon (POC) flux and distance from shore are also important variables, implicating food supply as a major predictor of canyon biodiversity. Canyons off the high Main Hawaiian Islands (Oahu and Moloka'i) are significantly affected by organic enrichment, showing enhanced infaunal macrobenthos abundance, whereas this effect is imperceptible around the low Northwest Hawaiian Islands (Nihoa and Maro Reef). Variable canyon alpha-diversity and high rates of species turnover (beta-diversity), particularly for

  10. Species traits and catchment-scale habitat factors influence the occurrence of freshwater mussel populations and assemblages

    Science.gov (United States)

    Pandolfo, Tamara J.; Kwak, Thomas J.; Cope, W. Gregory; Heise, Ryan J.; Nichols, Robert B.; Pacifici, Krishna

    2016-01-01

    Conservation of freshwater unionid mussels presents unique challenges due to their distinctive life cycle, cryptic occurrence and imperilled status. Relevant ecological information is urgently needed to guide their management and conservation.We adopted a modelling approach, which is a novel application to freshwater mussels to enhance inference on rare species, by borrowing data among species in a hierarchical framework to conduct the most comprehensive occurrence analysis for freshwater mussels to date. We incorporated imperfect detection to more accurately examine effects of biotic and abiotic factors at multiple scales on the occurrence of 14 mussel species and the entire assemblage of the Tar River Basin of North Carolina, U.S.A.The single assemblage estimate of detection probability for all species was 0.42 (95% CI, 0.36–0.47) with no species- or site-specific detection effects identified. We empirically observed 15 mussel species in the basin but estimated total species richness at 21 (95% CI, 16–24) when accounting for imperfect detection.Mean occurrence probability among species ranged from 0.04 (95% CI, 0.01–0.16) for Alasmidonta undulata, an undescribed Lampsilis sp., and Strophitus undulatus to 0.67 (95% CI, 0.42–0.86) for Elliptio icterina. Median occurrence probability among sites was power, agricultural land use) and species traits (brood time, host specificity, tribe) influenced the occurrence of mussel assemblages more than reach- or microhabitat-scale features.Our findings reflect the complexity of mussel ecology and indicate that habitat restoration alone may not be adequate for mussel conservation. Catchment-scale management can benefit an entire assemblage, but species-specific strategies may be necessary for successful conservation. The hierarchical multispecies modelling approach revealed findings that could not be elucidated by other means, and the approach may be applied more broadly to other river basins and regions. Accurate

  11. Influence of habitat discontinuity, geographical distance, and oceanography on fine-scale population genetic structure of copper rockfish (Sebastes caurinus).

    Science.gov (United States)

    Johansson, M L; Banks, M A; Glunt, K D; Hassel-Finnegan, H M; Buonaccorsi, V P

    2008-07-01

    The copper rockfish is a benthic, nonmigratory, temperate rocky reef marine species with pelagic larvae and juveniles. A previous range-wide study of the population-genetic structure of copper rockfish revealed a pattern consistent with isolation-by-distance. This could arise from an intrinsically limited dispersal capability in the species or from regularly-spaced extrinsic barriers that restrict gene flow (offshore jets that advect larvae offshore and/or habitat patchiness). Tissue samples were collected along the West Coast of the contiguous USA between Neah Bay, WA and San Diego, CA, with dense sampling along Oregon. At the whole-coast scale (approximately 2200 km), significant population subdivision (F(ST) = 0.0042), and a significant correlation between genetic and geographical distance were observed based on 11 microsatellite DNA loci. Population divergence was also significant among Oregon collections (approximately 450 km, F(ST) = 0.001). Hierarchical amova identified a weak but significant 130-km habitat break as a possible barrier to gene flow within Oregon, across which we estimated that dispersal (N(e)m) is half that of the coast-wide average. However, individual-based Bayesian analyses failed to identify more than a single population along the Oregon coast. In addition, no correlation between pairwise population genetic and geographical distances was detected at this scale. The offshore jet at Cape Blanco was not a significant barrier to gene flow in this species. These findings are consistent with low larval dispersal distances calculated in previous studies on this species, support a mesoscale dispersal model, and highlight the importance of continuity of habitat and adult population size in maintaining gene flow.

  12. Accuracy of stream habitat interpolations across spatial scales

    Science.gov (United States)

    Sheehan, Kenneth R.; Welsh, Stuart A.

    2013-01-01

    Stream habitat data are often collected across spatial scales because relationships among habitat, species occurrence, and management plans are linked at multiple spatial scales. Unfortunately, scale is often a factor limiting insight gained from spatial analysis of stream habitat data. Considerable cost is often expended to collect data at several spatial scales to provide accurate evaluation of spatial relationships in streams. To address utility of single scale set of stream habitat data used at varying scales, we examined the influence that data scaling had on accuracy of natural neighbor predictions of depth, flow, and benthic substrate. To achieve this goal, we measured two streams at gridded resolution of 0.33 × 0.33 meter cell size over a combined area of 934 m2 to create a baseline for natural neighbor interpolated maps at 12 incremental scales ranging from a raster cell size of 0.11 m2 to 16 m2 . Analysis of predictive maps showed a logarithmic linear decay pattern in RMSE values in interpolation accuracy for variables as resolution of data used to interpolate study areas became coarser. Proportional accuracy of interpolated models (r2 ) decreased, but it was maintained up to 78% as interpolation scale moved from 0.11 m2 to 16 m2 . Results indicated that accuracy retention was suitable for assessment and management purposes at various scales different from the data collection scale. Our study is relevant to spatial modeling, fish habitat assessment, and stream habitat management because it highlights the potential of using a single dataset to fulfill analysis needs rather than investing considerable cost to develop several scaled datasets.

  13. Scale dependence in habitat selection: The case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain)

    Science.gov (United States)

    Maria C. Mateo Sanchez; Samuel A. Cushman; Santiago Saura

    2013-01-01

    Animals select habitat resources at multiple spatial scales. Thus, explicit attention to scale dependency in species-habitat relationships is critical to understand the habitat suitability patterns as perceived by organisms in complex landscapes. Identification of the scales at which particular environmental variables influence habitat selection may be as important as...

  14. Grizzly bear habitat selection is scale dependent.

    Science.gov (United States)

    Ciarniello, Lana M; Boyce, Mark S; Seip, Dale R; Heard, Douglas C

    2007-07-01

    The purpose of our study is to show how ecologists' interpretation of habitat selection by grizzly bears (Ursus arctos) is altered by the scale of observation and also how management questions would be best addressed using predetermined scales of analysis. Using resource selection functions (RSF) we examined how variation in the spatial extent of availability affected our interpretation of habitat selection by grizzly bears inhabiting mountain and plateau landscapes. We estimated separate models for females and males using three spatial extents: within the study area, within the home range, and within predetermined movement buffers. We employed two methods for evaluating the effects of scale on our RSF designs. First, we chose a priori six candidate models, estimated at each scale, and ranked them using Akaike Information Criteria. Using this method, results changed among scales for males but not for females. For female bears, models that included the full suite of covariates predicted habitat use best at each scale. For male bears that resided in the mountains, models based on forest successional stages ranked highest at the study-wide and home range extents, whereas models containing covariates based on terrain features ranked highest at the buffer extent. For male bears on the plateau, each scale estimated a different highest-ranked model. Second, we examined differences among model coefficients across the three scales for one candidate model. We found that both the magnitude and direction of coefficients were dependent upon the scale examined; results varied between landscapes, scales, and sexes. Greenness, reflecting lush green vegetation, was a strong predictor of the presence of female bears in both landscapes and males that resided in the mountains. Male bears on the plateau were the only animals to select areas that exposed them to a high risk of mortality by humans. Our results show that grizzly bear habitat selection is scale dependent. Further, the

  15. Does habitat complexity influence fish recruitment?

    Directory of Open Access Journals (Sweden)

    A. CHEMINÉE

    2015-01-01

    Full Text Available Human activities facilitate coastal habitat transformation and homogenization. The spread of marine invasive species is one example. This in turn may influence fish recruitment and the subsequent replenishment of adult assemblages. We tested habitat complexity effect on fish (Teleostei recruitment by experimentally manipulating meadows of the habitat-forming invasive macroalga Caulerpa taxifolia (Chlorophyta. Among the fourteen fish species recorded during the experiment, only two labrids (Coris julis and Symphodus ocellatus settled in abundance among these meadows. Patterns in the abundance of these juveniles suggested that reduced tri-dimensional meadow complexity may reduce habitat quality and result in altered habitat choices and / or differential mortality of juveniles, therefore reducing fish recruitment and likely the abundance of adults.

  16. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    Science.gov (United States)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  17. Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient.

    Science.gov (United States)

    Vanbergen, Adam J; Watt, Allan D; Mitchell, Ruth; Truscott, Anne-Marie; Palmer, Stephen C F; Ivits, Eva; Eggleton, Paul; Jones, T Hefin; Sousa, José Paulo

    2007-09-01

    Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates-species with small range sizes-is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km(2)) and local (up to 200 m(2)) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together

  18. Phytochemistry predicts habitat selection by an avian herbivore at multiple spatial scales.

    Science.gov (United States)

    Frye, Graham G; Connelly, John W; Musil, David D; Forbey, Jennifer S

    2013-02-01

    Animal habitat selection is a process that functions at multiple, hierarchically. structured spatial scales. Thus multi-scale analyses should be the basis for inferences about factors driving the habitat selection process. Vertebrate herbivores forage selectively on the basis of phytochemistry, but few studies have investigated the influence of selective foraging (i.e., fine-scale habitat selection) on habitat selection at larger scales. We tested the hypothesis that phytochemistry is integral to the habitat selection process for vertebrate herbivores. We predicted that habitats selected at three spatial scales would be characterized by higher nutrient concentrations and lower concentrations of plant secondary metabolites (PSMs) than unused habitats. We used the Greater Sage-Grouse (Centrocercus urophasianus), an avian herbivore with a seasonally specialized diet of sagebrush, to test our hypothesis. Sage-Grouse selected a habitat type (black sagebrush, Artemisia nova) with lower PSM concentrations than the alternative (Wyoming big sagebrush, A. tridentata wyomingensis). Within black sagebrush habitat, Sage-Grouse selected patches and individual plants within those patches that were higher in nutrient concentrations and lower in PSM concentrations than those not used. Our results provide the first evidence for multi-scale habitat selection by an avian herbivore on the basis of phytochemistry, and they suggest that phytochemistry may be a fundamental driver of habitat selection for vertebrate herbivores.

  19. Characterising physical habitat at the reach scale: River Tern, Shropshire

    OpenAIRE

    Harvey, Gemma

    2006-01-01

    Characterisation of the complex geomorphological and ecological structure of river channels into workable units of instream habitat is a key step in enabling the assessment of habitat for river management purposes. The research presented in this thesis uses a range of methodological approaches at a variety of spatial scales in order to improve the conceptual basis of habitat characterisation at the reach and sub-reach scale. An appraisal of published works is used in conjunction with an ext...

  20. Influence of fine-scale habitat structure on nest-site occupancy, laying date and clutch size in Blue Tits Cyanistes caeruleus

    NARCIS (Netherlands)

    Amininasab, Seyed Mehdi; Vedder, Oscar; Schut, Elske; de Jong, Berber; Magrath, Michael J. L.; Korsten, Peter; Komdeur, Jan

    Most birds have specific habitat requirements for breeding. The vegetation structure surrounding nest sites is an important component of habitat quality, and can have large effects on avian breeding performance. We studied 13 years of Blue Tit Cyanistes caeruleus population data to determine whether

  1. Landscape effects on mallard habitat selection at multiple spatial scales during the non-breeding period

    Science.gov (United States)

    Beatty, William S.; Webb, Elisabeth B.; Kesler, Dylan C.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.

    2014-01-01

    Previous studies that evaluated effects of landscape-scale habitat heterogeneity on migratory waterbird distributions were spatially limited and temporally restricted to one major life-history phase. However, effects of landscape-scale habitat heterogeneity on long-distance migratory waterbirds can be studied across the annual cycle using new technologies, including global positioning system satellite transmitters. We used Bayesian discrete choice models to examine the influence of local habitats and landscape composition on habitat selection by a generalist dabbling duck, the mallard (Anas platyrhynchos), in the midcontinent of North America during the non-breeding period. Using a previously published empirical movement metric, we separated the non-breeding period into three seasons, including autumn migration, winter, and spring migration. We defined spatial scales based on movement patterns such that movements >0.25 and 30.00 km were classified as relocation scale. Habitat selection at the local scale was generally influenced by local and landscape-level variables across all seasons. Variables in top models at the local scale included proximities to cropland, emergent wetland, open water, and woody wetland. Similarly, variables associated with area of cropland, emergent wetland, open water, and woody wetland were also included at the local scale. At the relocation scale, mallards selected resource units based on more generalized variables, including proximity to wetlands and total wetland area. Our results emphasize the role of landscape composition in waterbird habitat selection and provide further support for local wetland landscapes to be considered functional units of waterbird conservation and management.

  2. Influence of fine-scale habitat structure on nest-site occupancy, laying date and clutch size in Blue Tits Cyanistes caeruleus

    Science.gov (United States)

    Amininasab, Seyed Mehdi; Vedder, Oscar; Schut, Elske; de Jong, Berber; Magrath, Michael J. L.; Korsten, Peter; Komdeur, Jan

    2016-01-01

    Most birds have specific habitat requirements for breeding. The vegetation structure surrounding nest-sites is an important component of habitat quality, and can have large effects on avian breeding performance. We studied 13 years of Blue Tit Cyanistes caeruleus population data to determine whether characteristics of vegetation structure predict site occupancy, laying date and number of eggs laid. Measurements of vegetation structure included the density of English Oak Quercus robur, European Beech Fagus sylvatica, and other deciduous, coniferous and non-coniferous evergreen trees, within a 20-m radius of nest-boxes used for breeding. Trees were further sub-divided into specific classes of trunk circumferences to determine the densities for different maturity levels. Based on Principal Component Analysis (PCA), we reduced the total number of 17 measured vegetation variables to 7 main categories, which we used for further analyses. We found that the occupancy rate of sites and the number of eggs laid correlated positively with the proportion of deciduous trees and negatively with the density of coniferous trees. Laying of the first egg was advanced with a greater proportion of deciduous trees. Among deciduous trees, the English Oak appeared to be most important, as a higher density of more mature English Oak trees was associated with more frequent nest-box occupancy, a larger number of eggs laid, and an earlier laying start. Furthermore, laying started earlier and more eggs were laid in nest-boxes with higher occupancy rates. Together, these findings highlight the role of deciduous trees, particularly more mature English Oak, as important predictors of high-quality preferred habitat. These results aid in defining habitat quality and will facilitate future studies on the importance of environmental quality for breeding performance.

  3. Multi-scale habitat selection of the endangered Hawaiian Goose

    Science.gov (United States)

    Leopold, Christina R.; Hess, Steven C.

    2013-01-01

    After a severe population reduction during the mid-20th century, the endangered Hawaiian Goose (Branta sandvicensis), or Nēnē, has only recently re-established its seasonal movement patterns on Hawai‘i Island. Little is currently understood about its movements and habitat use during the nonbreeding season. The objectives of this research were to identify habitats preferred by two subpopulations of the Nēnē and how preferences shift seasonally at both meso-and fine scales. From 2009 to 2011, ten Nēnē ganders were outfitted with 40-to 45-g satellite transmitters with GPS capability. We used binary logistic regression to compare habitat use versus availability and an information-theoretic approach for model selection. Meso-scale habitat modeling revealed that Nēnē preferred exotic grass and human-modified landscapes during the breeding and molting seasons and native subalpine shrubland during the nonbreeding season. Fine-scale habitat modeling further indicated preference for exotic grass, bunch grass, and absence of trees. Proximity to water was important during molt, suggesting that the presence of water may provide escape from introduced mammalian predators while Nēnē are flightless. Finescale species-composition data added relatively little to understanding of Nēnē habitat preferences modeled at the meso scale, suggesting that the meso-scale is appropriate for management planning. Habitat selection during our study was consistent with historical records, although dissimilar from more recent studies of other subpopulations. Nēnē make pronounced seasonal movements between existing reserves and use distinct habitat types; understanding annual patterns has implications for the protection and restoration of important seasonal habitats.

  4. Describing Willow Flycatcher habitats: scale perspectives and gender differences

    Science.gov (United States)

    Sedgwick, James A.; Knopf, Fritz L.

    1992-01-01

    We compared habitat characteristics of nest sites (female-selected sites) and song perch sites (male-selected sites) with those of sites unused by Willow Flycatchers (Empidonax traillii) at three different scales of vegetation measurement: (1) microplot (central willow [Salix spp.] bush and four adjacent bushes); (2) mesoplot (0.07 ha); and, (3) macroplot (flycatcher territory size). Willow Flycatchers exhibited vegetation preferences at all three scales. Nest sites were distinguished by high willow density and low variability in willow patch size and bush height. Song perch sites were characterized by large central shrubs, low central shrub vigor, and high variability in shrub size. Unused sites were characterized by greater distances between willows and willow patches, less willow coverage, and a smaller riparian zone width than either nest or song perch sites. At all scales, nest sites were situated farther from unused sites in multivariate habitat space than were song perch sites, suggesting (1) a correspondence among scales in their ability to describe Willow Flycatcher habitat, and (2) females are more discriminating in habitat selection than males. Microhabitat differences between male-selected (song perch) and female-selected (nest) sites were evident at the two smaller scales; at the finest scale, the segregation in habitat space between male-selected and female-selected sites was greater than that between male-selected and unused sites. Differences between song perch and nest sites were not apparent at the scale of flycatcher territory size, possibly due to inclusion of (1) both nest and song perch sites, (2) defended, but unused habitat, and/or (3) habitat outside of the territory, in larger scale analyses. The differences between nest and song perch sites at the finer scales reflect their different functions (e.g., nest concealment and microclimatic requirements vs. advertising and territorial defense, respectively), and suggest that the exclusive use

  5. Scale-dependent habitat selection and size-based dominance in adult male American alligators

    Science.gov (United States)

    Strickland, Bradley A.; Vilella, Francisco; Belant, Jerrold L.

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance

  6. Scale-Dependent Habitat Selection and Size-Based Dominance in Adult Male American Alligators.

    Directory of Open Access Journals (Sweden)

    Bradley A Strickland

    Full Text Available Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17 on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their

  7. Implications of scale-independent habitat specialization on persistence of a rare small mammal

    Directory of Open Access Journals (Sweden)

    Robert Klinger

    2015-01-01

    Full Text Available We assessed the habitat use patterns of the Amargosa vole Microtus californicus scirpensis, an endangered rodent endemic to wetland vegetation along a 3.5 km stretch of the Amargosa River in the Mojave Desert, USA. Our goals were to: (1 quantify the vole’s abundance, occupancy rates and habitat selection patterns along gradients of vegetation cover and spatial scale; (2 identify the processes that likely had the greatest influence on its habitat selection patterns. We trapped voles monthly in six 1 ha grids from January to May 2012 and measured habitat structure at subgrid (225m2 and trap (1m2 scales in winter and spring seasons. Regardless of scale, analyses of density, occupancy and vegetation structure consistently indicated that voles occurred in patches of bulrush (Schoenoplectus americanus; Cyperaceae where cover >50%. The majority of evidence indicates the vole’s habitat selectivity is likely driven by bulrush providing protection from intense predation. However, a combination of selective habitat use and limited movement resulted in a high proportion of apparently suitable bulrush patches being unoccupied. This suggests the Amargosa vole’s habitat selection behavior confers individual benefits but may not allow the overall population to persist in a changing environment.

  8. Implications of scale-independent habitat specialization on persistence of a rare small mammal

    Science.gov (United States)

    Cleaver, Michael; Klinger, Robert C.; Anderson, Steven T.; Maier, Paul A.; Clark, Jonathan

    2015-01-01

    We assessed the habitat use patterns of the Amargosa vole Microtus californicus scirpensis , an endangered rodent endemic to wetland vegetation along a 3.5 km stretch of the Amargosa River in the Mojave Desert, USA. Our goals were to: (1) quantify the vole’s abundance, occupancy rates and habitat selection patterns along gradients of vegetation cover and spatial scale; (2) identify the processes that likely had the greatest influence on its habitat selection patterns. We trapped voles monthly in six 1 ha grids from January to May 2012 and measured habitat structure at subgrid (View the MathML source225m2) and trap (View the MathML source1m2) scales in winter and spring seasons. Regardless of scale, analyses of density, occupancy and vegetation structure consistently indicated that voles occurred in patches of bulrush (Schoenoplectus americanus ; Cyperaceae) where cover >50%. The majority of evidence indicates the vole's habitat selectivity is likely driven by bulrush providing protection from intense predation. However, a combination of selective habitat use and limited movement resulted in a high proportion of apparently suitable bulrush patches being unoccupied. This suggests the Amargosa vole's habitat selection behavior confers individual benefits but may not allow the overall population to persist in a changing environment.

  9. Do rabbits eat voles? Apparent competition, habitat heterogeneity and large-scale coexistence under mink predation.

    Science.gov (United States)

    Oliver, Matthew; Luque-Larena, Juan José; Lambin, Xavier

    2009-11-01

    Habitat heterogeneity is predicted to profoundly influence the dynamics of indirect interspecific interactions; however, despite potentially significant consequences for multi-species persistence, this remains almost completely unexplored in large-scale natural landscapes. Moreover, how spatial habitat heterogeneity affects the persistence of interacting invasive and native species is also poorly understood. Here we show how the persistence of a native prey (water vole, Arvicola terrestris) is determined by the spatial distribution of an invasive prey (European rabbit, Oryctolagus cuniculus) and directly infer how this is defined by the mobility of a shared invasive predator (American mink, Neovison vison). This study uniquely demonstrates that variation in habitat connectivity in large-scale natural landscapes creates spatial asynchrony, enabling coexistence between apparent competitive native and invasive species. These findings highlight that unexpected interactions may be involved in species declines, and also that in such cases habitat heterogeneity should be considered in wildlife management decisions.

  10. Spatial scale of local breeding habitat quality and adjustment of breeding decisions.

    Science.gov (United States)

    Doligez, Blandine; Berthouly, Anne; Doligez, Damien; Tanner, Marion; Saladin, Verena; Bonfils, Danielle; Richner, Heinz

    2008-05-01

    Experimental studies provide evidence that, in spatially and temporally heterogeneous environments, individuals track variation in breeding habitat quality to adjust breeding decisions to local conditions. However, most experiments consider environmental variation at one spatial scale only, while the ability to detect the influence of a factor depends on the scale of analysis. We show that different breeding decisions by adults are based on information about habitat quality at different spatial scales. We manipulated (increased or decreased) local breeding habitat quality through food availability and parasite prevalence at a small (territory) and a large (patch) scale simultaneously in a wild population of Great Tits (Parus major). Females laid earlier in high-quality large-scale patches, but laying date did not depend on small-scale territory quality. Conversely, offspring sex ratio was higher (i.e., biased toward males) in high-quality, small-scale territories but did not depend on large-scale patch quality. Clutch size and territory occupancy probability did not depend on our experimental manipulation of habitat quality, but territories located at the edge of patches were more likely to be occupied than central territories. These results suggest that integrating different decisions taken by breeders according to environmental variation at different spatial scales is required to understand patterns of breeding strategy adjustment.

  11. Habitat Scale Mapping of Fisheries Ecosystem Service Values in Estuaries

    Directory of Open Access Journals (Sweden)

    Timothy G. O'Higgins

    2010-12-01

    Full Text Available Little is known about the variability of ecosystem service values at spatial scales most relevant to local decision makers. Competing definitions of ecosystem services, the paucity of ecological and economic information, and the lack of standardization in methodology are major obstacles to applying the ecosystem-services approach at the estuary scale. We present a standardized method that combines habitat maps and habitat-faunal associations to estimate ecosystem service values for recreational and commercial fisheries in estuaries. Three case studies in estuaries on the U.S. west coast (Yaquina Bay, Oregon, east coast (Lagoon Pond, Massachusetts, and the Gulf of Mexico (Weeks Bay, Alabama are presented to illustrate our method's rigor and limitations using available data. The resulting spatially explicit maps of fisheries ecosystem service values show within and between estuary variations in the value of estuarine habitat types that can be used to make better informed resource-management decisions.

  12. Artificial light at night confounds broad-scale habitat use by migrating birds

    Science.gov (United States)

    McLaren, James D.; Buler, Jeffrey J.; Schreckengost, Tim; Smolinsky, Jaclyn A.; Boone, Matthew; van Loon, E. Emiel; Dawson, Deanna K.; Walters, Eric L.

    2018-01-01

    With many of the world's migratory bird populations in alarming decline, broad-scale assessments of responses to migratory hazards may prove crucial to successful conservation efforts. Most birds migrate at night through increasingly light-polluted skies. Bright light sources can attract airborne migrants and lead to collisions with structures, but might also influence selection of migratory stopover habitat and thereby acquisition of food resources. We demonstrate, using multi-year weather radar measurements of nocturnal migrants across the northeastern U.S., that autumnal migrant stopover density increased at regional scales with proximity to the brightest areas, but decreased within a few kilometers of brightly-lit sources. This finding implies broad-scale attraction to artificial light while airborne, impeding selection for extensive forest habitat. Given that high-quality stopover habitat is critical to successful migration, and hindrances during migration can decrease fitness, artificial lights present a potentially heightened conservation concern for migratory bird populations.

  13. Habitat selection by postbreeding female diving ducks: Influence of habitat attributes and conspecifics

    Science.gov (United States)

    Austin, Jane E.; O'Neil, Shawn T.; Warren, Jeffrey M.

    2017-01-01

    Habitat selection studies of postbreeding waterfowl have rarely focused on within-wetland attributes such as water depth, escape cover, and food availability. Flightless waterfowl must balance habitat selection between avoiding predation risks and feeding. Reproductively successful female ducks face the greatest challenges because they begin the definitive prebasic molt at or near the end of brood rearing, when their body condition is at a low point. We assessed the relative importance of habitat attributes and group effects in habitat selection by postbreeding female lesser scaup Aythya affinis on a 2332-ha montane wetland complex during the peak flightless period (August) over seven years. Hypothesis-based habitat attributes included percent open water, open water:emergent edge density, water depth, percent flooded bare substrate, fetch (distance wind can travel unobstructed), group size, and several interactions representing functional responses to interannual variation in water levels. Surveys of uniquely marked females were conducted within randomly ordered survey blocks. We fitted two-part generalized linear mixed-effects models to counts of marked females within survey blocks, which allowed us to relate habitat attributes to relative probability of occurrence and, given the presence of a marked female, abundance of marked individuals. Postbreeding female scaup selected areas with water depths > 40 cm, large open areas, and intermediate edge densities but showed no relation to flooded bare substrate, suggesting their habitat preferences were more influenced by avoiding predation risks and disturbances than in meeting foraging needs. Grouping behavior by postbreeding scaup suggests habitat selection is influenced in part by behavioral components and/or social information, conferring energetic and survival benefits (predation and disturbance risks) but potentially also contributing to competition for food resources. This study demonstrates the importance of

  14. Habitat selection by Forster's Terns (Sterna forsteri) at multiple spatial scales in an urbanized estuary: The importance of salt ponds

    Science.gov (United States)

    Bluso-Demers, Jill; Ackerman, Joshua T.; Takekawa, John Y.; Peterson, Sarah

    2016-01-01

    The highly urbanized San Francisco Bay Estuary, California, USA, is currently undergoing large-scale habitat restoration, and several thousand hectares of former salt evaporation ponds are being converted to tidal marsh. To identify potential effects of this habitat restoration on breeding waterbirds, habitat selection of radiotagged Forster's Terns (Sterna forsteri) was examined at multiple spatial scales during the pre-breeding and breeding seasons of 2005 and 2006. At each spatial scale, habitat selection ratios were calculated by season, year, and sex. Forster's Terns selected salt pond habitats at most spatial scales and demonstrated the importance of salt ponds for foraging and roosting. Salinity influenced the types of salt pond habitats that were selected. Specifically, Forster's Terns strongly selected lower salinity salt ponds (0.5–30 g/L) and generally avoided higher salinity salt ponds (≥31 g/L). Forster's Terns typically used tidal marsh and managed marsh habitats in proportion to their availability, avoided upland and tidal flat habitats, and strongly avoided open bay habitats. Salt ponds provide important habitat for breeding waterbirds, and restoration efforts to convert former salt ponds to tidal marsh may reduce the availability of preferred breeding and foraging areas.

  15. Modeling Habitat Associations for the Common Loon (Gavia immer at Multiple Scales in Northeastern North America

    Directory of Open Access Journals (Sweden)

    Anne Kuhn

    2011-06-01

    Full Text Available Common Loon (Gavia immer is considered an emblematic and ecologically important example of aquatic-dependent wildlife in North America. The northern breeding range of Common Loon has contracted over the last century as a result of habitat degradation from human disturbance and lakeshore development. We focused on the state of New Hampshire, USA, where a long-term monitoring program conducted by the Loon Preservation Committee has been collecting biological data on Common Loon since 1976. The Common Loon population in New Hampshire is distributed throughout the state across a wide range of lake-specific habitats, water quality conditions, and levels of human disturbance. We used a multiscale approach to evaluate the association of Common Loon and breeding habitat within three natural physiographic ecoregions of New Hampshire. These multiple scales reflect Common Loon-specific extents such as territories, home ranges, and lake-landscape influences. We developed ecoregional multiscale models and compared them to single-scale models to evaluate model performance in distinguishing Common Loon breeding habitat. Based on information-theoretic criteria, there is empirical support for both multiscale and single-scale models across all three ecoregions, warranting a model-averaging approach. Our results suggest that the Common Loon responds to both ecological and anthropogenic factors at multiple scales when selecting breeding sites. These multiscale models can be used to identify and prioritize the conservation of preferred nesting habitat for Common Loon populations.

  16. Modified habitats influence kelp epibiota via direct and indirect effects.

    Science.gov (United States)

    Marzinelli, Ezequiel M; Underwood, Antony J; Coleman, Ross A

    2011-01-01

    Addition of man-made structures alters abiotic and biotic characteristics of natural habitats, which can influence abundances of biota directly and/or indirectly, by altering the ecology of competitors or predators. Marine epibiota in modified habitats were used to test hypotheses to distinguish between direct and indirect processes. In Sydney Harbour, kelps on pier-pilings supported greater covers of bryozoans, particularly of the non-indigenous species Membranipora membranacea, than found on natural reefs. Pilings influenced these patterns and processes directly due to the provision of shade and indirectly by altering abundances of sea-urchins which, in turn, affected covers of bryozoans. Indirect effects were more important than direct effects. This indicates that artificial structures affect organisms living on secondary substrata in complex ways, altering the biodiversity and indirectly affecting abundances of epibiota. Understanding how these components of habitats affect ecological processes is necessary to allow sensible prediction of the effects of modifying habitats on the ecology of organisms.

  17. Floral resources and habitat affect the composition of hummingbirds at the local scale in tropical mountaintops

    Directory of Open Access Journals (Sweden)

    LC Rodrigues

    Full Text Available Hummingbird communities tend to respond to variation in resources, having a positive relationship between abundance and diversity of food resources and the abundance and/or diversity of hummingbirds. Here we examined the influence of floral resource availability, as well as seasonality and type of habitat on the composition of hummingbird species. The study was carried out in two habitats of eastern Brazilian mountaintops. A gradient representative of the structure of hummingbird community, based on species composition, was obtained by the ordination of samples using the method of non-metric multidimensional scaling. The composition of hummingbird species was influenced by the type of habitat and floral resource availability, but not by seasonality. Hummingbird communities differ between habitats mainly due to the relative abundance of hummingbird species. The variation in composition of hummingbird species with the variation in floral resource availability may be related to differences in feeding habits of hummingbirds. Hummingbird species with the longest bills visited higher proportions of ornithophilous species, while hummingbirds with shorter bills visited higher proportions of non-ornithophilous species. The results demonstrate that at local-scale the composition of hummingbird species is affected by the type of habitat and floral resources availability, but not by seasonality.

  18. Floral resources and habitat affect the composition of hummingbirds at the local scale in tropical mountaintops.

    Science.gov (United States)

    Rodrigues, L C; Rodrigues, M

    2015-01-01

    Hummingbird communities tend to respond to variation in resources, having a positive relationship between abundance and diversity of food resources and the abundance and/or diversity of hummingbirds. Here we examined the influence of floral resource availability, as well as seasonality and type of habitat on the composition of hummingbird species. The study was carried out in two habitats of eastern Brazilian mountaintops. A gradient representative of the structure of hummingbird community, based on species composition, was obtained by the ordination of samples using the method of non-metric multidimensional scaling. The composition of hummingbird species was influenced by the type of habitat and floral resource availability, but not by seasonality. Hummingbird communities differ between habitats mainly due to the relative abundance of hummingbird species. The variation in composition of hummingbird species with the variation in floral resource availability may be related to differences in feeding habits of hummingbirds. Hummingbird species with the longest bills visited higher proportions of ornithophilous species, while hummingbirds with shorter bills visited higher proportions of non-ornithophilous species. The results demonstrate that at local-scale the composition of hummingbird species is affected by the type of habitat and floral resources availability, but not by seasonality.

  19. Relationships between an invasive crab, habitat availability and intertidal community structure at biogeographic scales.

    Science.gov (United States)

    Gribben, Paul E; Simpson, Michael; Wright, Jeffrey T

    2015-09-01

    At local scales, habitat availability influences interactions between native and invasive species. Habitat availability may also predict patterns in native communities and invasive species at biogeographic scales when both native and invasive species have specific habitat requirements. The New Zealand porcelain crab, Petrolisthes elongatus, has invaded intertidal rocky shores around Tasmania, Australia, where it is found in high densities (>1800 m(2)) under rocks. A hierarchical sampling approach was used to investigate 1) the relationship between habitat availability (rock cover) and the biomass and abundance of P. elongatus, and 2) the relationship between P. elongatus biomass and native communities at local and regional scales. Invertebrate communities and habitat availability were sampled at multiple sites in the north and south regions of Tasmania. P. elongatus biomass and abundance were positively correlated with rock cover and patterns were consistent at the biogeographic scale (between regions). P. elongatus biomass was positively correlated with native species richness, biomass and abundance highlighting their co-dependence on rock cover. However, multivariate analyses indicated a different native community structure with increasing P. elongatus biomass. Flat, strongly adhering gastropods (chitons and limpets) were positively correlated with P. elongatus biomass, whereas mobile gastropods and crabs were negatively correlated with P. elongatus biomass. Despite local scale variation, there were clear consistent relationships between habitat-availability and the biomass of P. elongatus, and between native communities and the biomass of P. elongatus suggesting that the relationships between native and invasive species may be predictable at large spatial scales. Moreover, the strong relationships between P. elongatus biomass and changes in native community structure suggest a greater understanding of its impact is needed so that appropriate

  20. Improving wildlife habitat model performance: Sensitivity to the scale and detail of vegetation measurements

    Science.gov (United States)

    Roberts, Lance Jay, Jr.

    Monitoring the impacts of resource use and landscape change on wildlife habitat over large areas is a daunting assignment. Forest land managers could benefit from linking the frequent decisions of resource use (timber harvesting) with a system of wildlife habitat accounting, but to date these tools are not widely available. I examined aspects of wildlife habitat modeling that: (in Chapter 2) could potentially lead to the establishment of wildlife habitat accounting within a resource decision support tool, (in Chapter 3) improve our theoretical understanding and methods to interpret the accuracy of wildlife habitat models, (in Chapter 4) explore the effects of vegetation classification systems on wildlife habitat model results, and (in Chapter 5) show that forest structural estimates from satellite imagery can improve potential habitat distribution models (GAP) for forest bird species. The majority of the analyses in this dissertation were done using a forest resource inventory developed by the State of Michigan (IFMAP). Paired with field vegetation and bird samples from sites across the lower peninsula of Michigan, we compared the relative accuracy of wildlife habitat relationship models built with plot-scale vegetation samples and stand-scale forest inventory maps. Recursive partitioning trees were used to build wildlife habitat models for 30 bird species. The habitat distribution maps from the Michigan Gap Analysis (MIGAP) were used as a baseline for comparison of model accuracy results. Both the plot and stand-scale measurements achieved high accuracy and there were few large differences between plot and stand-scale models for any individual species. Where the plot and stand-scale models were different, they tended to be species associated with mixed habitats. This may be evidence that scale of vegetation measurement has a larger influence on species associated with edges and ecotones. Habitat models that were built solely with land cover data were less accurate

  1. Habitat isolation and size influence the structure of macroinvertebrate benthic assemblages

    Directory of Open Access Journals (Sweden)

    Isadora Moniz

    2014-05-01

    Full Text Available The structure of local communities is generally thought to be the result of local responses to environmental and biotic factors. Recent theoretical advances have, however, emphasized the role of dispersal in structuring communities. In this study we examined the effects of habitat isolation and habitat size in structuring macroinvertebrate benthic assemblages. We manipulated distance to a rocky reef (as a surrogate to isolation from a source of colonists and habitat size of experimental mimics of macroalgal turfs. Experimental habitats were deployed following a hierarchical structure in which experimental patches were grouped in small (3 patches and large (6 patches habitat groups (referred to as metacommunities. Our results show that isolation influenced the richness of sessile organisms, with greater numbers of species closer to the reef, regardless of the scale at which diversity was measured (i.e. metacommunity or patch scale. In contrast, motile richness did not respond to habitat isolation. Sessile richness was similar in small and large metacommunities, whereas motile richness was greater in large metacommunities, but only at the scale of the patch. Species composition in isolated habitats was similar (for sessile or a subset (for motile of that found closer to the reef suggesting that differences in richness were associated with the ability of species to disperse and not to different environmental conditions between isolated and non-isolated habitats. Despite spatial variability in assemblages, results were spatially consistent. Overall, our results indicate that species dispersal ability mediates the effects of isolation and habitat size and that results are scale-dependent.

  2. Multiscale hydrogeomorphic influences on bull trout (Salvelinus confluentus) spawning habitat

    Science.gov (United States)

    Bean, Jared R; Wilcox, Andrew C.; Woessner, William W.; Muhlfeld, Clint C.

    2015-01-01

    We investigated multiscale hydrogeomorphic influences on the distribution and abundance of bull trout (Salvelinus confluentus) spawning in snowmelt-dominated streams of the upper Flathead River basin, northwestern Montana. Within our study reaches, bull trout tended to spawn in the finest available gravel substrates. Analysis of the mobility of these substrates, based on one-dimensional hydraulic modeling and calculation of dimensionless shear stresses, indicated that bed materials in spawning reaches would be mobilized at moderate (i.e., 2-year recurrence interval) high-flow conditions, although the asynchronous timing of the fall–winter egg incubation period and typical late spring – early summer snowmelt high flows in our study area may limit susceptibility to redd scour under current hydrologic regimes. Redd occurrence also tended to be associated with concave-up bedforms (pool tailouts) with downwelling intragravel flows. Streambed temperatures tracked stream water diurnal temperature cycles to a depth of at least 25 cm, averaging 6.1–8.1 °C in different study reaches during the spawning period. Ground water provided thermal moderation of stream water for several high-density spawning reaches. Bull trout redds were more frequent in unconfined alluvial valley reaches (8.5 versus 5.0 redds·km−1 in confined valley reaches), which were strongly influenced by hyporheic and groundwater – stream water exchange. A considerable proportion of redds were patchily distributed in confined valley reaches, however, emphasizing the influence of local physical conditions in supporting bull trout spawning habitat. Moreover, narrowing or “bounding” of these alluvial valley segments did not appear to be important. Our results suggest that geomorphic, thermal, and hydrological factors influence bull trout spawning occurrence at multiple spatial scales.

  3. Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities

    Science.gov (United States)

    Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.

    2017-10-01

    Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of

  4. Multi scale habitat relationships of Martes americana in northern Idaho, U.S.A.

    Science.gov (United States)

    Tzeidle N. Wasserman; Samuel A. Cushman; David O. Wallin; Jim Hayden

    2012-01-01

    We used bivariate scaling and logistic regression to investigate multiple-scale habitat selection by American marten (Martes americana). Bivariate scaling reveals dramatic differences in the apparent nature and strength of relationships between marten occupancy and a number of habitat variables across a range of spatial scales. These differences include reversals in...

  5. Calcareous Bio-Concretions in the Northern Adriatic Sea: Habitat Types, Environmental Factors that Influence Habitat Distributions, and Predictive Modeling.

    Directory of Open Access Journals (Sweden)

    Annalisa Falace

    Full Text Available Habitat classifications provide guidelines for mapping and comparing marine resources across geographic regions. Calcareous bio-concretions and their associated biota have not been exhaustively categorized. Furthermore, for management and conservation purposes, species and habitat mapping is critical. Recently, several developments have occurred in the field of predictive habitat modeling, and multiple methods are available. In this study, we defined the habitats constituting northern Adriatic biogenic reefs and created a predictive habitat distribution model. We used an updated dataset of the epibenthic assemblages to define the habitats, which we verified using the fuzzy k-means (FKM clustering method. Redundancy analysis was employed to model the relationships between the environmental descriptors and the FKM membership grades. Predictive modelling was carried out to map habitats across the basin. Habitat A (opportunistic macroalgae, encrusting Porifera, bioeroders characterizes reefs closest to the coastline, which are affected by coastal currents and river inputs. Habitat B is distinguished by massive Porifera, erect Tunicata, and non-calcareous encrusting algae (Peyssonnelia spp.. Habitat C (non-articulated coralline, Polycitor adriaticus is predicted in deeper areas. The onshore-offshore gradient explains the variability of the assemblages because of the influence of coastal freshwater, which is the main driver of nutrient dynamics. This model supports the interpretation of Habitat A and C as the extremes of a gradient that characterizes the epibenthic assemblages, while Habitat B demonstrates intermediate characteristics. Areas of transition are a natural feature of the marine environment and may include a mixture of habitats and species. The habitats proposed are easy to identify in the field, are related to different environmental features, and may be suitable for application in studies focused on other geographic areas. The habitat

  6. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris) population in central India

    National Research Council Canada - National Science Library

    Sarkar, Mriganka Shekhar; Sen, Subharanjan; Saha, Goutam Kumar; Krishnamurthy, Ramesh; Johnson, Jeyaraj A

    2017-01-01

    Background Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value...

  7. Body mass explains characteristic scales of habitat selection in terrestrial mammals

    Science.gov (United States)

    Fisher, Jason T; Anholt, Brad; Volpe, John P

    2011-01-01

    Niche theory in its various forms is based on those environmental factors that permit species persistence, but less work has focused on defining the extent, or size, of a species’ environment: the area that explains a species’ presence at a point in space. We proposed that this habitat extent is identifiable from a characteristic scale of habitat selection, the spatial scale at which habitat best explains species’ occurrence. We hypothesized that this scale is predicted by body size. We tested this hypothesis on 12 sympatric terrestrial mammal species in the Canadian Rocky Mountains. For each species, habitat models varied across the 20 spatial scales tested. For six species, we found a characteristic scale; this scale was explained by species’ body mass in a quadratic relationship. Habitat measured at large scales best-predicted habitat selection in both large and small species, and small scales predict habitat extent in medium-sized species. The relationship between body size and habitat selection scale implies evolutionary adaptation to landscape heterogeneity as the driver of scale-dependent habitat selection. PMID:22393519

  8. Meta-replication reveals nonstationarity in multi-scale habitat selection of Mexican Spotted Owl

    Science.gov (United States)

    Ho Yi Wan; Kevin McGarigal; Joseph L. Ganey; Valentin Lauret; Brad C. Timm; Samuel A. Cushman

    2017-01-01

    Anthropogenic environmental changes are leading to habitat loss and degradation, driving many species to extinction. In this context, habitat models become increasingly important for effective species management and conservation. However, most habitat studies lack replicated study areas and do not properly address the role of nonstationarity and spatial scales in...

  9. Relevance of multiple spatial scales in habitat models: A case study with amphibians and grasshoppers

    Science.gov (United States)

    Altmoos, Michael; Henle, Klaus

    2010-11-01

    Habitat models for animal species are important tools in conservation planning. We assessed the need to consider several scales in a case study for three amphibian and two grasshopper species in the post-mining landscapes near Leipzig (Germany). The two species groups were selected because habitat analyses for grasshoppers are usually conducted on one scale only whereas amphibians are thought to depend on more than one spatial scale. First, we analysed how the preference to single habitat variables changed across nested scales. Most environmental variables were only significant for a habitat model on one or two scales, with the smallest scale being particularly important. On larger scales, other variables became significant, which cannot be recognized on lower scales. Similar preferences across scales occurred in only 13 out of 79 cases and in 3 out of 79 cases the preference and avoidance for the same variable were even reversed among scales. Second, we developed habitat models by using a logistic regression on every scale and for all combinations of scales and analysed how the quality of habitat models changed with the scales considered. To achieve a sufficient accuracy of the habitat models with a minimum number of variables, at least two scales were required for all species except for Bufo viridis, for which a single scale, the microscale, was sufficient. Only for the European tree frog ( Hyla arborea), at least three scales were required. The results indicate that the quality of habitat models increases with the number of surveyed variables and with the number of scales, but costs increase too. Searching for simplifications in multi-scaled habitat models, we suggest that 2 or 3 scales should be a suitable trade-off, when attempting to define a suitable microscale.

  10. Habitat and scale shape the demographic fate of the keystone sea urchin Paracentrotus lividus in Mediterranean macrophyte communities.

    Directory of Open Access Journals (Sweden)

    Patricia Prado

    Full Text Available Demographic processes exert different degrees of control as individuals grow, and in species that span several habitats and spatial scales, this can influence our ability to predict their population at a particular life-history stage given the previous life stage. In particular, when keystone species are involved, this relative coupling between demographic stages can have significant implications for the functioning of ecosystems. We examined benthic and pelagic abundances of the sea urchin Paracentrotus lividus in order to: 1 understand the main life-history bottlenecks by observing the degree of coupling between demographic stages; and 2 explore the processes driving these linkages. P. lividus is the dominant invertebrate herbivore in the Mediterranean Sea, and has been repeatedly observed to overgraze shallow beds of the seagrass Posidonia oceanica and rocky macroalgal communities. We used a hierarchical sampling design at different spatial scales (100 s, 10 s and <1 km and habitats (seagrass and rocky macroalgae to describe the spatial patterns in the abundance of different demographic stages (larvae, settlers, recruits and adults. Our results indicate that large-scale factors (potentially currents, nutrients, temperature, etc. determine larval availability and settlement in the pelagic stages of urchin life history. In rocky macroalgal habitats, benthic processes (like predation acting at large or medium scales drive adult abundances. In contrast, adult numbers in seagrass meadows are most likely influenced by factors like local migration (from adjoining rocky habitats functioning at much smaller scales. The complexity of spatial and habitat-dependent processes shaping urchin populations demands a multiplicity of approaches when addressing habitat conservation actions, yet such actions are currently mostly aimed at managing predation processes and fish numbers. We argue that a more holistic ecosystem management also needs to incorporate the

  11. Habitat and scale shape the demographic fate of the keystone sea urchin Paracentrotus lividus in Mediterranean macrophyte communities.

    Science.gov (United States)

    Prado, Patricia; Tomas, Fiona; Pinna, Stefania; Farina, Simone; Roca, Guillem; Ceccherelli, Giulia; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Demographic processes exert different degrees of control as individuals grow, and in species that span several habitats and spatial scales, this can influence our ability to predict their population at a particular life-history stage given the previous life stage. In particular, when keystone species are involved, this relative coupling between demographic stages can have significant implications for the functioning of ecosystems. We examined benthic and pelagic abundances of the sea urchin Paracentrotus lividus in order to: 1) understand the main life-history bottlenecks by observing the degree of coupling between demographic stages; and 2) explore the processes driving these linkages. P. lividus is the dominant invertebrate herbivore in the Mediterranean Sea, and has been repeatedly observed to overgraze shallow beds of the seagrass Posidonia oceanica and rocky macroalgal communities. We used a hierarchical sampling design at different spatial scales (100 s, 10 s and habitats (seagrass and rocky macroalgae) to describe the spatial patterns in the abundance of different demographic stages (larvae, settlers, recruits and adults). Our results indicate that large-scale factors (potentially currents, nutrients, temperature, etc.) determine larval availability and settlement in the pelagic stages of urchin life history. In rocky macroalgal habitats, benthic processes (like predation) acting at large or medium scales drive adult abundances. In contrast, adult numbers in seagrass meadows are most likely influenced by factors like local migration (from adjoining rocky habitats) functioning at much smaller scales. The complexity of spatial and habitat-dependent processes shaping urchin populations demands a multiplicity of approaches when addressing habitat conservation actions, yet such actions are currently mostly aimed at managing predation processes and fish numbers. We argue that a more holistic ecosystem management also needs to incorporate the landscape and habitat

  12. Scale-dependent habitat selection of nesting Great Egrets and Snowy Egrets

    Science.gov (United States)

    Stolen, Eric D.; Collazo, J.A.; Percival, H.F.

    2007-01-01

    Foraging habitat selection of nesting Great Egrets (Ardea alba) and Snowy Egrets (Egretta thula) was investigated within an estuary with extensive impounded salt marsh habitat. Using a geographic information system, available habitat was partitioned into concentric bands at five, ten, and 15 km radius from nesting colonies to assess the relative effects of habitat composition and distance on habitat selection. Snowy Egrets were more likely than Great Egrets to depart colonies and travel to foraging sites in groups, but both species usually arrived at sites that were occupied by other wading birds. Mean flight distances were 6.2 km (SE = 0.4, N = 28, range 1.8-10.7 km) for Great Egrets and 4.7 km (SE = 0.48, N = 31, range 0.7-12.5 km) for Snowy Egrets. At the broadest spatial scale both species used impounded (mostly salt marsh) and estuarine edge habitat more than expected based on availability while avoiding unimpounded (mostly fresh water wetland) habitat. At more local scales habitat use matched availability. Interpretation of habitat preference differed with the types of habitat that were included and the maximum distance that habitat was considered available. These results illustrate that caution is needed when interpreting the results of habitat preference studies when individuals are constrained in their choice of habitats, such as for central place foragers.

  13. Retention of habitat complexity minimizes disassembly of reef fish communities following disturbance: a large-scale natural experiment.

    Directory of Open Access Journals (Sweden)

    Michael J Emslie

    Full Text Available High biodiversity ecosystems are commonly associated with complex habitats. Coral reefs are highly diverse ecosystems, but are under increasing pressure from numerous stressors, many of which reduce live coral cover and habitat complexity with concomitant effects on other organisms such as reef fishes. While previous studies have highlighted the importance of habitat complexity in structuring reef fish communities, they employed gradient or meta-analyses which lacked a controlled experimental design over broad spatial scales to explicitly separate the influence of live coral cover from overall habitat complexity. Here a natural experiment using a long term (20 year, spatially extensive (∼ 115,000 kms(2 dataset from the Great Barrier Reef revealed the fundamental importance of overall habitat complexity for reef fishes. Reductions of both live coral cover and habitat complexity had substantial impacts on fish communities compared to relatively minor impacts after major reductions in coral cover but not habitat complexity. Where habitat complexity was substantially reduced, species abundances broadly declined and a far greater number of fish species were locally extirpated, including economically important fishes. This resulted in decreased species richness and a loss of diversity within functional groups. Our results suggest that the retention of habitat complexity following disturbances can ameliorate the impacts of coral declines on reef fishes, so preserving their capacity to perform important functional roles essential to reef resilience. These results add to a growing body of evidence about the importance of habitat complexity for reef fishes, and represent the first large-scale examination of this question on the Great Barrier Reef.

  14. On Spatial Resolution in Habitat Models: Can Small-scale Forest Structure Explain Capercaillie Numbers?

    Directory of Open Access Journals (Sweden)

    Ilse Storch

    2002-06-01

    Full Text Available This paper explores the effects of spatial resolution on the performance and applicability of habitat models in wildlife management and conservation. A Habitat Suitability Index (HSI model for the Capercaillie (Tetrao urogallus in the Bavarian Alps, Germany, is presented. The model was exclusively built on non-spatial, small-scale variables of forest structure and without any consideration of landscape patterns. The main goal was to assess whether a HSI model developed from small-scale habitat preferences can explain differences in population abundance at larger scales. To validate the model, habitat variables and indirect sign of Capercaillie use (such as feathers or feces were mapped in six study areas based on a total of 2901 20 m radius (for habitat variables and 5 m radius sample plots (for Capercaillie sign. First, the model's representation of Capercaillie habitat preferences was assessed. Habitat selection, as expressed by Ivlev's electivity index, was closely related to HSI scores, increased from poor to excellent habitat suitability, and was consistent across all study areas. Then, habitat use was related to HSI scores at different spatial scales. Capercaillie use was best predicted from HSI scores at the small scale. Lowering the spatial resolution of the model stepwise to 36-ha, 100-ha, 400-ha, and 2000-ha areas and relating Capercaillie use to aggregated HSI scores resulted in a deterioration of fit at larger scales. Most importantly, there were pronounced differences in Capercaillie abundance at the scale of study areas, which could not be explained by the HSI model. The results illustrate that even if a habitat model correctly reflects a species' smaller scale habitat preferences, its potential to predict population abundance at larger scales may remain limited.

  15. Spatial heterogeneity and scale-dependent habitat selection for two sympatric raptors in mixed-grass prairie.

    Science.gov (United States)

    Atuo, Fidelis Akunke; O'Connell, Timothy John

    2017-08-01

    Sympatric predators are predicted to partition resources, especially under conditions of food limitation. Spatial heterogeneity that influences prey availability might play an important role in the scales at which potential competitors select habitat. We assessed potential mechanisms for coexistence by examining the role of heterogeneity in resource partitioning between sympatric raptors overwintering in the southern Great Plains. We conducted surveys for wintering Red-tailed hawk (Buteo jamaicensis) and Northern Harrier (Circus cyanea) at two state wildlife management areas in Oklahoma, USA. We used information from repeated distance sampling to project use locations in a GIS. We applied resource selection functions to model habitat selection at three scales and analyzed for niche partitioning using the outlying mean index. Habitat selection of the two predators was mediated by spatial heterogeneity. The two predators demonstrated significant fine-scale discrimination in habitat selection in homogeneous landscapes, but were more sympatric in heterogeneous landscapes. Red-tailed hawk used a variety of cover types in heterogeneous landscapes but specialized on riparian forest in homogeneous landscapes. Northern Harrier specialized on upland grasslands in homogeneous landscapes but selected more cover types in heterogeneous landscapes. Our study supports the growing body of evidence that landscapes can affect animal behaviors. In the system we studied, larger patches of primary land cover types were associated with greater allopatry in habitat selection between two potentially competing predators. Heterogeneity within the scale of raptor home ranges was associated with greater sympatry in use and less specialization in land cover types selected.

  16. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem.

    Directory of Open Access Journals (Sweden)

    Victor K Muposhi

    Full Text Available An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats.

  17. Rainbow trout movement behavior and habitat occupancy are influenced by sex and Pacific salmon presence in an Alaska river system

    Science.gov (United States)

    Fraley, Kevin M.; Falke, Jeffrey A.; McPhee, Megan V.; Prakash, Anupma

    2017-01-01

    We used spatially continuous field-measured and remotely-sensed aquatic habitat characteristics paired with weekly ground-based telemetry tracking and snorkel surveys to describe movements and habitat occupancy of adult rainbow trout (N = 82) in a runoff-fed, salmon-influenced southcentral Alaska river system. We found that during the ice-free feeding season (June through September) rainbow trout occurrence was associated more with fine-scale (channel unit) characteristics relative to coarse-scale (stream reach) variables. The presence of Pacific salmon (which provide an important seasonal food subsidy), and habitat size were particularly useful predictors. Weekly movement distance differed between pre- and post- spawning salmon arrival, but did not vary by sex. Habitat quality, season, and the arrival of spawning salmon influenced the likelihood of rainbow trout movement, and fish moved farther to seek out higher quality habitats. Because rainbow trout respond to habitat factors at multiple scales and seek out salmon-derived subsidies, it will be important to take a multiscale approach in protecting trout and salmon populations and managing the associated fisheries.

  18. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    Science.gov (United States)

    Roffler, Gretchen H.; Schwartz, Michael K.; Pilgrim, Kristy L.; Talbot, Sandra; Sage, Kevin; Adams, Layne G.; Luikart, Gordon

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is important to consider explicit assumptions and spatial scales of measurement. We calculated pairwise genetic distance among 301 Dall's sheep (Ovis dalli dalli) in southcentral Alaska using an intensive noninvasive sampling effort and 15 microsatellite loci. We used multiple regression of distance matrices to assess the correlation of pairwise genetic distance and landscape resistance derived from an RSF, and combinations of landscape features hypothesized to influence dispersal. Dall's sheep gene flow was positively correlated with steep slopes, moderate peak normalized difference vegetation indices (NDVI), and open land cover. Whereas RSF covariates were significant in predicting genetic distance, the RSF model itself was not significantly correlated with Dall's sheep gene flow, suggesting that certain habitat features important during summer (rugged terrain, mid-range elevation) were not influential to effective dispersal. This work underscores that consideration of both habitat selection and landscape genetics models may be useful in developing management strategies to both meet the immediate survival of a species and allow for long-term genetic connectivity.

  19. Effects of currents and tides on fine-scale use of marine bird habitats in a Southeast Alaska hotspot

    Science.gov (United States)

    Drew, Gary S.; Piatt, John F.; Hill, David J.

    2013-01-01

    Areas with high species richness have become focal points in the establishment of marine protected areas, but an understanding of the factors that support this diversity is still incomplete. In coastal areas, tidal currents—modulated by bathymetry and manifested in variable speeds—are a dominant physical feature of the environment. However, difficulties resolving tidally affected currents and depths at fine spatial-temporal scales have limited our ability to understand their influence the distribution of marine birds. We used a hydrographic model of the water mass in Glacier Bay, Alaska to link depths and current velocities with the locations of 15 common marine bird species observed during fine-scale boat-based surveys of the bay conducted during June of four consecutive years (2000-2003). Marine birds that forage on the bottom tended to occupy shallow habitats with slow-moving currents; mid-water foragers used habitats with intermediate depths and current speeds; and surface-foraging species tended to use habitats with fast-moving, deep waters. Within foraging groups there was variability among species in their use of habitats. While species obligated to foraging near bottom were constrained to use similar types of habitat, species in the mid-water foraging group were associated with a wider range of marine habitat characteristics. Species also showed varying levels of site use depending on tide stage. The dramatic variability in bottom topography—especially the presence of numerous sills, islands, headlands and channels—and large tidal ranges in Glacier Bay create a wide range of current-affected fine-scale foraging habitats that may contribute to the high diversity of marine bird species found there.

  20. Predictive analysis of scale-dependent habitat association: Juvenile cod ( Gadus spp.) in eastern Newfoundland

    Science.gov (United States)

    Schneider, David C.; Norris, Michael J.; Gregory, Robert S.

    2008-08-01

    We used results of laboratory experiments to make predictions about a well-established phenomenon, scale-dependent association of organisms with habitat. Based on shelter seeking behaviour in laboratory experiments, we predicted that age 0 cod would be locally decoupled from vegetated habitat at spatial scales on the order of the limits of underwater visibility, becoming associated at larger scales. On transects at 10 sites in Newman Sound, Bonavista Bay, Newfoundland age 0 juvenile cod were usually found either in or adjacent to the band of tall eelgrass running parallel to the coast. At the scale of 5 m or less along transects perpendicular and parallel to the coast cod were decoupled from habitat, as expected. At the scale of 5-20 m cod were either decoupled or only weakly associated with habitat, contrary to expectation based on underwater visibility and shelter seeking behaviour in the lab. At the scale of 20-100 m along transects perpendicular to the coast cod were positively associated with tall eelgrass, while being negatively associated with short eelgrass. This reflects the negative association of tall with short eelgrass due to parallel band structure at this scale. At scales of 20-100 m along transects parallel to the coast cod were positively associated with short eelgrass. Decoupling of cod density from the amount of habitat at scales of 5-20 m was due to the formation of small shoals near the boundaries between tall and short eelgrasses. The observed change in association of numbers with habitat with change in scale, combined with the theoretical expectation that association with habitat decreases as the risk/reward ratio increases, allowed us to draw the conclusion that the ratio of risk to reward decreases as spatial scale increases from 10 to 100 m. The predictive approach we develop here can be extended to other scale-dependent phenomena, such as scale-dependent association of predator with prey.

  1. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River.

    Science.gov (United States)

    Radinger, Johannes; Wolter, Christian; Kail, Jochem

    2015-01-01

    Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream) to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve) significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables (e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables were similarly well suited to predict species' presence. Stream order variables and measured cross section features (e.g., width, depth, velocity) were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types) and assessed longitudinal channel features (e.g., naturalness of river planform) were also good predictors. These findings demonstrate (i) the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the

  2. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River.

    Directory of Open Access Journals (Sweden)

    Johannes Radinger

    Full Text Available Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049 and topological variables (e.g., stream order were included (AUC = +0.014. Both measured and assessed variables were similarly well suited to predict species' presence. Stream order variables and measured cross section features (e.g., width, depth, velocity were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types and assessed longitudinal channel features (e.g., naturalness of river planform were also good predictors. These findings demonstrate (i the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables to predict fish presence, (ii the

  3. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River

    Science.gov (United States)

    Radinger, Johannes; Wolter, Christian; Kail, Jochem

    2015-01-01

    Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream) to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve) significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables (e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables were similarly well suited to predict species’ presence. Stream order variables and measured cross section features (e.g., width, depth, velocity) were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types) and assessed longitudinal channel features (e.g., naturalness of river planform) were also good predictors. These findings demonstrate (i) the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the

  4. Fine-Scale Habitat Segregation between Two Ecologically Similar Top Predators.

    Directory of Open Access Journals (Sweden)

    Francisco Palomares

    Full Text Available Similar, coexisting species often segregate along the spatial ecological axis. Here, we examine if two top predators (jaguars and pumas present different fine-scale habitat use in areas of coexistence, and discuss if the observed pattern can be explained by the risk of interference competition between them. Interference competition theory predicts that pumas should avoid habitats or areas used by jaguars (the dominant species, and as a consequence should present more variability of niche parameters across study areas. We used non-invasive genetic sampling of faeces in 12 different areas and sensor satellite fine-scale habitat indices to answer these questions. Meta-analysis confirmed differences in fine-scale habitat use between jaguars and pumas. Furthermore, average marginality of the realized niches of pumas was more variable than those of jaguars, and tolerance (a measure of niche breadth was on average 2.2 times higher in pumas than in jaguars, as expected under the interference competition risk hypothesis. The use of sensor satellite fine-scale habitat indices allowed the detection of subtle differences in the environmental characteristics of the habitats used by these two similar top predators, which, as a rule, until now were recorded using the same general habitat types. The detection of fine spatial segregation between these two top predators was scale-dependent.

  5. Fine-Scale Habitat Segregation between Two Ecologically Similar Top Predators.

    Science.gov (United States)

    Palomares, Francisco; Fernández, Néstor; Roques, Severine; Chávez, Cuauhtemoc; Silveira, Leandro; Keller, Claudia; Adrados, Begoña

    2016-01-01

    Similar, coexisting species often segregate along the spatial ecological axis. Here, we examine if two top predators (jaguars and pumas) present different fine-scale habitat use in areas of coexistence, and discuss if the observed pattern can be explained by the risk of interference competition between them. Interference competition theory predicts that pumas should avoid habitats or areas used by jaguars (the dominant species), and as a consequence should present more variability of niche parameters across study areas. We used non-invasive genetic sampling of faeces in 12 different areas and sensor satellite fine-scale habitat indices to answer these questions. Meta-analysis confirmed differences in fine-scale habitat use between jaguars and pumas. Furthermore, average marginality of the realized niches of pumas was more variable than those of jaguars, and tolerance (a measure of niche breadth) was on average 2.2 times higher in pumas than in jaguars, as expected under the interference competition risk hypothesis. The use of sensor satellite fine-scale habitat indices allowed the detection of subtle differences in the environmental characteristics of the habitats used by these two similar top predators, which, as a rule, until now were recorded using the same general habitat types. The detection of fine spatial segregation between these two top predators was scale-dependent.

  6. Spatial heterogeneity and scale?dependent habitat selection for two sympatric raptors in mixed?grass prairie

    OpenAIRE

    Atuo, Fidelis Akunke; O'Connell, Timothy John

    2017-01-01

    Abstract Sympatric predators are predicted to partition resources, especially under conditions of food limitation. Spatial heterogeneity that influences prey availability might play an important role in the scales at which potential competitors select habitat. We assessed potential mechanisms for coexistence by examining the role of heterogeneity in resource partitioning between sympatric raptors overwintering in the southern Great Plains. We conducted surveys for wintering Red?tailed hawk (B...

  7. Habitat and scale shape the demographic fate of the keystone sea urchin paracentrotus lividus in mediterranean macrophyte communities

    OpenAIRE

    Patricia Prado; Fiona Tomas; Stefania Pinna; Simone Farina; Guillem Roca; Giulia Ceccherelli; Javier Romero; Teresa Alcoverro

    2012-01-01

    Demographic processes exert different degrees of control as individuals grow, and in species that span several habitats and spatial scales, this can influence our ability to predict their population at a particular life-history stage given the previous life stage. In particular, when keystone species are involved, this relative coupling between demographic stages can have significant implications for the functioning of ecosystems. We examined benthic and pelagic abundances of the sea urchin P...

  8. The role of physical habitat and sampling effort on estimates of benthic macroinvertebrate taxonomic richness at basin and site scales.

    Science.gov (United States)

    Silva, Déborah R O; Ligeiro, Raphael; Hughes, Robert M; Callisto, Marcos

    2016-06-01

    Taxonomic richness is one of the most important measures of biological diversity in ecological studies, including those with stream macroinvertebrates. However, it is impractical to measure the true richness of any site directly by sampling. Our objective was to evaluate the effect of sampling effort on estimates of macroinvertebrate family and Ephemeroptera, Plecoptera, and Trichoptera (EPT) genera richness at two scales: basin and stream site. In addition, we tried to determine which environmental factors at the site scale most influenced the amount of sampling effort needed. We sampled 39 sites in the Cerrado biome (neotropical savanna). In each site, we obtained 11 equidistant samples of the benthic assemblage and multiple physical habitat measurements. The observed basin-scale richness achieved a consistent estimation from Chao 1, Jack 1, and Jack 2 richness estimators. However, at the site scale, there was a constant increase in the observed number of taxa with increased number of samples. Models that best explained the slope of site-scale sampling curves (representing the necessity of greater sampling effort) included metrics that describe habitat heterogeneity, habitat structure, anthropogenic disturbance, and water quality, for both macroinvertebrate family and EPT genera richness. Our results demonstrate the importance of considering basin- and site-scale sampling effort in ecological surveys and that taxa accumulation curves and richness estimators are good tools for assessing sampling efficiency. The physical habitat explained a significant amount of the sampling effort needed. Therefore, future studies should explore the possible implications of physical habitat characteristics when developing sampling objectives, study designs, and calculating the needed sampling effort.

  9. Testing scale-dependent effects of seminatural habitats on farmland biodiversity.

    Science.gov (United States)

    Dainese, Matteo; Luna, Diego Inclán; Sitzia, Tommaso; Marini, Lorenzo

    2015-09-01

    The effectiveness of conservation interventions for maximizing biodiversity benefits from agri-environment schemes (AESs) is expected to depend on the quantity of seminatural habitats in the surrounding landscape. To verify this hypothesis, we developed a hierarchical sampling design to assess the effects of field boundary type and cover of seminatural habitats in the landscape at two nested spatial scales. We sampled three types of field boundaries with increasing structural complexity (grass margin, simple hedgerow, complex hedgerow) in paired landscapes with the presence or absence of seminatural habitats (radius 0.5 km), that in turn, were nested within 15 areas with different proportions of seminatural habitats at a larger spatial scale (10 X 10 km). Overall, 90 field boundaries were sampled across a Mediterranean'region (northeastern Italy). We considered species richness response across three different taxonomic groups: vascular plants, butterflies, and tachinid flies. No interactions between type of field boundary and surrounding landscape were found at either 0.5 and 10 km, indicating that the quality of field boundary had the same effect irrespective of the cover of seminatural habitats. At the local scale, extended-width grass margins yielded higher plant species richness, while hedgerows yielded higher species richness of butterflies and tachinids. At the 0.5-km landscape scale, the effect of the proportion of seminatural habitats was neutral for plants and tachinids, while butterflies were positively related to the proportion of forest. At the 10-km landscape scale, only butterflies responded positively to the proportion of seminatural habitats. Our study confirmed the importance of testing multiple scales when considering species from different taxa and with different mobility. We showed that the quality of field boundaries at the local scale was an important factor in enhancing farmland biodiversity. For butterflies, AESs should focus particular

  10. Bird-community responses to habitat creation in a long-term, large-scale natural experiment.

    Science.gov (United States)

    Whytock, Robin C; Fuentes-Montemayor, Elisa; Watts, Kevin; Barbosa De Andrade, Patanjaly; Whytock, Rory T; French, Paul; Macgregor, Nicholas A; Park, Kirsty J

    2017-07-07

    Ecosystem function and resilience are compromised when habitats become fragmented due to land-use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape-scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post-agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10-160 years with ≥80% canopy cover and in landscapes with 0-17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local- and landscape-scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape

  11. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear.

    Science.gov (United States)

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B; Janz, David M

    2014-01-01

    Metrics used to quantify the condition or physiological states of individuals provide proactive mechanisms for understanding population dynamics in the context of environmental factors. Our study examined how anthropogenic disturbance, habitat characteristics and hair cortisol concentrations interpreted as a sex-specific indicator of potential habitat net-energy demand affect the body condition of grizzly bears (n = 163) in a threatened population in Alberta, Canada. We quantified environmental variables by modelling spatial patterns of individual habitat use based on global positioning system telemetry data. After controlling for gender, age and capture effects, we assessed the influence of biological and environmental variables on body condition using linear mixed-effects models in an information theoretical approach. Our strongest model suggested that body condition was improved when patterns of habitat use included greater vegetation productivity, increased influence of forest harvest blocks and oil and gas well sites, and a higher percentage of regenerating and coniferous forest. However, body condition was negatively affected by habitat use in close proximity to roads and in areas where potential energetic demands were high. Poor body condition was also associated with increased selection of parks and protected areas and greater seasonal vegetation productivity. Adult females, females with cubs-of-year, juvenile females and juvenile males were in poorer body condition compared with adult males, suggesting that intra-specific competition and differences in habitat use based on gender and age may influence body condition dynamics. Habitat net-energy demand also tended to be higher in areas used by females which, combined with observed trends in body condition, could affect reproductive success in this threatened population. Our results highlight the importance of considering spatiotemporal variability in environmental factors and habitat use when assessing

  12. Stream habitat structure influences macroinvertebrate response to pesticides

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette

    2012-01-01

    Agricultural pesticide contamination in surface waters is increasingly threatening to impair the surface water ecosystems. Agricultural streams are furthermore often heavily maintained to optimise the transport of water away from fields. The physical habitat degradation that result from heavy...... of species with specific preferences for habitats with hard substrate. Our findings highlight the importance of considering physical habitat degradation in the assessment and mitigation of risk in agricultural streams....

  13. Influence of static habitat attributes on local and regional Rocky intertidal community structure

    Science.gov (United States)

    Konar, B.; Iken, K.; Coletti, H.; Monson, Daniel H.; Weitzman, Ben P.

    2016-01-01

    Rocky intertidal communities are structured by local environmental drivers, which can be dynamic, fluctuating on various temporal scales, or static and not greatly varying across years. We examined the role of six static drivers (distance to freshwater, tidewater glacial presence, wave exposure, fetch, beach slope, and substrate composition) on intertidal community structure across the northern Gulf of Alaska. We hypothesized that community structure is less similar at the local scale compared with the regional scale, coinciding with static drivers being less similar on smaller than larger scales. We also hypothesized that static attributes mainly drive local biological community structure. For this, we surveyed five to six sites in each of the six regions in the mid and low intertidal strata. Across regions, static attributes were not consistently different and only small clusters of sites had similar attributes. Additionally, intertidal communities were less similar on the site compared with the region level. These results suggest that these biological communities are not strongly influenced by the local static attributes measured in this study. An alternative explanation is that static attributes among our regions are not different enough to influence the biological communities. This lack of evidence for a strong static driver may be a result of our site selection, which targeted rocky sheltered communities. This suggests that this habitat may be ideal to examine the influence of dynamic drivers. We recommend that future analyses of dynamic attributes may best be performed after analyses have demonstrated that sites do not differ in static attributes.

  14. Elk migration patterns and human activity influence wolf habitat use in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Nelson, Abigail A; Kauffman, Matthew J; Middleton, Arthur D; Jimenez, Michael D; McWhirter, Douglas E; Barber, Jarrett; Gerow, Kenneth

    2012-12-01

    Identifying the ecological dynamics underlying human-wildlife conflicts is important for the management and conservation of wildlife populations. In landscapes still occupied by large carnivores, many ungulate prey species migrate seasonally, yet little empirical research has explored the relationship between carnivore distribution and ungulate migration strategy. In this study, we evaluate the influence of elk (Cervus elaphus) distribution and other landscape features on wolf (Canis lupus) habitat use in an area of chronic wolf-livestock conflict in the Greater Yellowstone Ecosystem, USA. Using three years of fine-scale wolf (n = 14) and elk (n = 81) movement data, we compared the seasonal habitat use of wolves in an area dominated by migratory elk with that of wolves in an adjacent area dominated by resident elk. Most migratory elk vacate the associated winter wolf territories each summer via a 40-60 km migration, whereas resident elk remain accessible to wolves year-round. We used a generalized linear model to compare the relative probability of wolf use as a function of GIS-based habitat covariates in the migratory and resident elk areas. Although wolves in both areas used elk-rich habitat all year, elk density in summer had a weaker influence on the habitat use of wolves in the migratory elk area than the resident elk area. Wolves employed a number of alternative strategies to cope with the departure of migratory elk. Wolves in the two areas also differed in their disposition toward roads. In winter, wolves in the migratory elk area used habitat close to roads, while wolves in the resident elk area avoided roads. In summer, wolves in the migratory elk area were indifferent to roads, while wolves in resident elk areas strongly avoided roads, presumably due to the location of dens and summering elk combined with different traffic levels. Study results can help wildlife managers to anticipate the movements and establishment of wolf packs as they expand into areas

  15. Elk migration patterns and human activity influence wolf habitat use in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Nelson, Abigail; Kauffman, Matthew J.; Middleton, Arthur D.; Jimenez, Mike; McWhirter, Douglas; Barber, Jarrett; Gerow, Ken

    2012-01-01

    Identifying the ecological dynamics underlying human–wildlife conflicts is important for the management and conservation of wildlife populations. In landscapes still occupied by large carnivores, many ungulate prey species migrate seasonally, yet little empirical research has explored the relationship between carnivore distribution and ungulate migration strategy. In this study, we evaluate the influence of elk (Cervus elaphus) distribution and other landscape features on wolf (Canis lupus) habitat use in an area of chronic wolf–livestock conflict in the Greater Yellowstone Ecosystem, USA. Using three years of fine-scale wolf (n = 14) and elk (n = 81) movement data, we compared the seasonal habitat use of wolves in an area dominated by migratory elk with that of wolves in an adjacent area dominated by resident elk. Most migratory elk vacate the associated winter wolf territories each summer via a 40–60 km migration, whereas resident elk remain accessible to wolves year-round. We used a generalized linear model to compare the relative probability of wolf use as a function of GIS-based habitat covariates in the migratory and resident elk areas. Although wolves in both areas used elk-rich habitat all year, elk density in summer had a weaker influence on the habitat use of wolves in the migratory elk area than the resident elk area. Wolves employed a number of alternative strategies to cope with the departure of migratory elk. Wolves in the two areas also differed in their disposition toward roads. In winter, wolves in the migratory elk area used habitat close to roads, while wolves in the resident elk area avoided roads. In summer, wolves in the migratory elk area were indifferent to roads, while wolves in resident elk areas strongly avoided roads, presumably due to the location of dens and summering elk combined with different traffic levels. Study results can help wildlife managers to anticipate the movements and establishment of wolf packs as they expand into

  16. Predicting habitat suitability for wildlife in southeastern Arizona using Geographic Information Systems: scaled quail, a case study

    Science.gov (United States)

    Kirby D. Bristow; Susan R. Boe; Richard A. Ockenfels

    2005-01-01

    Studies have used Geographic Information Systems (GIS) to evaluate habitat suitability for wildlife on a landscape scale, yet few have established the accuracy of these models. Based on documented habitat selection patterns of scaled quail (Callipepla squamata pallida), we produced GIS covers for several habitat parameters to create a map of...

  17. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris) population in central India.

    Science.gov (United States)

    Sarkar, Mriganka Shekhar; Krishnamurthy, Ramesh; Johnson, Jeyaraj A; Sen, Subharanjan; Saha, Goutam Kumar

    2017-01-01

    Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals' ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger ( Panthera tigris ), which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly's selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D 2 method and the Boyce index. There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory and settled periods. Based on threshold limits

  18. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris population in central India

    Directory of Open Access Journals (Sweden)

    Mriganka Shekhar Sarkar

    2017-11-01

    Full Text Available Background Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals’ ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger (Panthera tigris, which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. Methods We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly’s selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D2 method and the Boyce index. Results There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory

  19. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris) population in central India

    Science.gov (United States)

    Sarkar, Mriganka Shekhar; Johnson, Jeyaraj A.; Sen, Subharanjan

    2017-01-01

    Background Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals’ ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger (Panthera tigris), which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. Methods We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly’s selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D2 method and the Boyce index. Results There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory and settled periods

  20. The influence of habitat on the evolution of plants: a case study across Saxifragales.

    Science.gov (United States)

    de Casas, Rafael Rubio; Mort, Mark E; Soltis, Douglas E

    2016-12-01

    Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  1. Scale-dependence in polychlorinated biphenyl (PCB) exposure effects on waterbird habitat occupancy.

    Science.gov (United States)

    Gibbs, James P; Rouhani, Shahrokh; Shams, Leyla

    2017-08-01

    Spatial scale is rarely considered in population-level assessments of contaminant impacts on wild animals; as a result misinterpretation of the relationship between contaminant exposure and population status may occur. We assessed the strength of expression of polychlorinated biphenyl (PCB) exposure effects at local vs. regional spatial scales on population status in five species of waterbirds, "bioaccumulators" often promoted as indicators of contaminant effects in aquatic ecosystems. Our focus was the upper Hudson River where PCBs occur at levels reported to have adverse impacts on wild birds. At the local scale, waterbird habitat occupancy was estimated from 220 repeat surveys made between 2001 and 2010 along the same survey route divided into 25 contiguous river segments with markedly different PCB concentrations. At the regional scale, waterbird habitat occupancy in relation to proximity to the upper Hudson River was estimated across 1248 Breeding Bird Atlas survey blocks while controlling for region-wide variation in habitat availability. At the local scale, many associations of habitat and sampling covariates with species detection probabilities were evident but none, including PCB concentration, with habitat occupancy, extinction or colonization of a given river segment. At the regional scale, survey effort and habitat factors not related to PCB exposure were the most important drivers of waterbird occurrence although two species were more likely to occur farther from the contaminated river segment. Spatial scale clearly mediates expression of contaminant impacts on wild bird populations; large-scale, expert-generated databases provide an underused opportunity for better delineating the spatial scales at which population impacts occur and risk assessments should be performed.

  2. Threshold effects of habitat fragmentation on fish diversity at landscapes scales.

    Science.gov (United States)

    Yeager, Lauren A; Keller, Danielle A; Burns, Taylor R; Pool, Alexia S; Fodrie, F Joel

    2016-08-01

    Habitat fragmentation involves habitat loss concomitant with changes in spatial configuration, confounding mechanistic drivers of biodiversity change associated with habitat disturbance. Studies attempting to isolate the effects of altered habitat configuration on associated communities have reported variable results. This variability may be explained in part by the fragmentation threshold hypothesis, which predicts that the effects of habitat configuration may only manifest at low levels of remnant habitat area. To separate the effects of habitat area and configuration on biodiversity, we surveyed fish communities in seagrass landscapes spanning a range of total seagrass area (2-74% cover within 16 000-m 2 landscapes) and spatial configurations (1-75 discrete patches). We also measured variation in fine-scale seagrass variables, which are known to affect faunal community composition and may covary with landscape-scale features. We found that species richness decreased and the community structure shifted with increasing patch number within the landscape, but only when seagrass area was low (fragmentation threshold hypothesis and we suggest that poor matrix quality and low dispersal ability for sensitive taxa in our system may explain why our results support the hypothesis, while previous empirical work has largely failed to match predictions. © 2016 by the Ecological Society of America.

  3. Identifying Kittlitz's Murrelet nesting habitat in North America at the landscape scale

    Science.gov (United States)

    Felis, Jonathan J.; Kissling, Michelle L.; Kaler, Robb S.A.; Kenney, Leah A.; Lawonn, Matthew J.

    2016-01-01

    The Kittlitz's Murrelet (Brachyramphus brevirostris) is a small, non-colonial seabird endemic to marine waters of Alaska and eastern Russia that may have experienced significant population decline in recent decades, in part because of low reproductive success and terrestrial threats. Although recent studies have shed new light on Kittlitz's Murrelet nesting habitat in a few discrete areas, the location and extent of suitable nesting habitat throughout most of its range remains unclear. Here, we have compiled all existing nest records and locations to identify landscape-scale parameters (distance to coast, elevation, slope, and land cover) that provide potential nesting habitat in four regions: northern Alaska, Aleutian Islands, Alaska Peninsula Mountains and Kodiak Island, and Pacific Coastal Mountains (including nearshore interior Canada). We produced a final map classifying 12% (70,411 km2) of the lands assessed as potential Kittlitz's Murrelet nesting habitat, with dense but distinct patches in northern Alaska and a more uninterrupted, narrow band extending across the Pacific Coastal Mountains, Alaska Peninsula Mountains, and Aleutian Islands. The extent of habitat-capable parameter values varied regionally, indicating that the Kittlitz's Murrelet may be able to use a variety of habitats for nesting, depending on availability. Future nesting habitat studies could employ spatially random sampling designs to allow for quantitatively robust modeling of nesting habitat and predictive extrapolation to areas where nests have not been located but likely exist.

  4. Fine-scale habitat characteristics related to occupancy of the Yosemite Toad, Anaxyrus canorus

    Science.gov (United States)

    Christina T. Liang; Robert L. Grasso; Julie J. Nelson-Paul; Kim E. Vincent; Amy J. Lind

    2017-01-01

    Fine-scale habitat information can provide insight into species occupancy and persistence that is not apparent at the landscape-scale. Such information is particularly important for rare species that are experiencing population declines, such as the threatened Yosemite Toad (Anaxyrus canorus). Our study examined differences in physical...

  5. Climate, habitat, and species interactions at different scales determine the structure of a Neotropical bat community.

    Science.gov (United States)

    Estrada-Villegas, Sergio; McGill, Brian J; Kalko, Elisabeth K V

    2012-05-01

    Climate, habitat, and species interactions are factors that control community properties (e.g., species richness, abundance) across various spatial scales. Usually, researchers study how a few properties are affected by one factor in isolation and at one scale. Hence, there are few multi-scale studies testing how multiple controlling factors simultaneously affect community properties at different scales. We ask whether climate, habitat structure, or insect resources at each of three spatial scales explains most of the variation in six community properties and which theory best explains the distribution of selected community properties across a rainfall gradient. We studied a Neotropical insectivorous bat ensemble in the Isthmus of Panama with acoustic monitoring techniques. Using climatological data, habitat surveys, and insect captures in a hierarchical sampling design we determined how much variation of the community properties was explained by the three factors employing two approaches for variance partitioning. Our results revealed that most of the variation in species richness, total abundance, and feeding activity occurred at the smallest spatial scale and was explained by habitat structure. In contrast, climate at large scales explained most of the variation in individual species' abundances. Although each species had an idiosyncratic response to the gradient, species richness peaked at intermediate levels of precipitation, whereas total abundance was very similar across sites, suggesting density compensation. All community properties responded in a different manner to the factor and scale under consideration.

  6. Floral resources and habitat affect the composition of hummingbirds at the local scale in tropical mountaintops

    OpenAIRE

    Rodrigues, LC; M. Rodrigues

    2015-01-01

    Hummingbird communities tend to respond to variation in resources, having a positive relationship between abundance and diversity of food resources and the abundance and/or diversity of hummingbirds. Here we examined the influence of floral resource availability, as well as seasonality and type of habitat on the composition of hummingbird species. The study was carried out in two habitats of eastern Brazilian mountaintops. A gradient representative of the structure of hummingbird community, b...

  7. Patterns of variation in the influence of natal experience on habitat choice.

    Science.gov (United States)

    Davis, Jeremy M

    2008-12-01

    The experience of animals in their natal or larval habitats has long been considered a potential source of variation in the habitat choices made later during dispersal. This idea has been of particular interest to evolutionary biologists because of the role such variation plays in the formation of host races and species. However, experiments that have tested for the effect of natal experience on habitat choice have produced widely variable results, leading to disagreement about the ecological importance of these effects. Here, I review the results of experiments within a broad range of animal taxa to assess the potential sources of variation in observed effects of natal experience on habitat choice. I provide a comprehensive summary of previous studies and demonstrate that when natal experience influences habitat choice, it nearly always increases the acceptance of the natal habitat type. Furthermore, I discuss mechanisms that allow natal experience to affect later habitat choice and describe how these mechanisms are influenced by various experimental design elements, such as the life stage at which early experience is provided to subjects. I conclude by reviewing the adaptive hypotheses for why animals might or might not respond to natal experience, and also how these hypotheses might explain interspecific differences in the importance of natal experience during habitat selection decisions. By understanding in what species, and in which contexts, experience influences habitat selection, we will be able to predict the ecological and evolutionary consequences of these effects more accurately.

  8. The adaptive value of habitat preferences from a multi-scale spatial perspective: insights from marsh-nesting avian species.

    Science.gov (United States)

    Jedlikowski, Jan; Brambilla, Mattia

    2017-01-01

    Habitat selection and its adaptive outcomes are crucial features for animal life-history strategies. Nevertheless, congruence between habitat preferences and breeding success has been rarely demonstrated, which may result from the single-scale evaluation of animal choices. As habitat selection is a complex multi-scale process in many groups of animal species, investigating adaptiveness of habitat selection in a multi-scale framework is crucial. In this study, we explore whether habitat preferences acting at different spatial scales enhance the fitness of bird species, and check the appropriateness of single vs. multi-scale models. We expected that variables found to be more important for habitat selection at individual scale(s), would coherently play a major role in affecting nest survival at the same scale(s). We considered habitat preferences of two Rallidae species, little crake (Zapornia parva) and water rail (Rallus aquaticus), at three spatial scales (landscape, territory, and nest-site) and related them to nest survival. Single-scale versus multi-scale models (GLS and glmmPQL) were compared to check which model better described adaptiveness of habitat preferences. Consistency between the effect of variables on habitat selection and on nest survival was checked to investigate their adaptive value. In both species, multi-scale models for nest survival were more supported than single-scale ones. In little crake, the multi-scale model indicated vegetation density and water depth at the territory scale, as well as vegetation height at nest-site scale, as the most important variables. The first two variables were among the most important for nest survival and habitat selection, and the coherent effects suggested the adaptive value of habitat preferences. In water rail, the multi-scale model of nest survival showed vegetation density at territory scale and extent of emergent vegetation within landscape scale as the most important ones, although we found a

  9. Explaining spatial variability in stream habitats using both natural and management-influenced landscape predictors

    Science.gov (United States)

    K.J. Anlauf; D.W. Jensen; K.M. Burnett; E.A. Steel; K. Christiansen; J.C. Firman; B.E. Feist; D.P. Larsen

    2011-01-01

    1. The distribution and composition of in-stream habitats are reflections of landscape scale geomorphic and climatic controls. Correspondingly, Pacific salmon (Oncorhynchus spp.) are largely adapted to and constrained by the quality and complexity of those in-stream habitat conditions. The degree to which lands have been fragmented and managed can...

  10. The relative influence of habitat loss and fragmentation: do tropical mammals meet the temperate paradigm?

    Science.gov (United States)

    Thornton, Daniel H; Branch, Lyn C; Sunquist, Melvin E

    2011-09-01

    The relative influence of habitat loss vs. habitat fragmentation per se (the breaking apart of habitat) on species distribution and abundance is a topic of debate. Although some theoretical studies predict a strong negative effect of fragmentation, consensus from empirical studies is that habitat fragmentation has weak effects compared with habitat loss and that these effects are as likely to be positive as negative. However, few empirical investigations of this issue have been conducted on tropical or wide-ranging species that may be strongly influenced by changes in patch size and edge that occur with increasing fragmentation. We tested the relative influence of habitat loss and fragmentation by examining occupancy of forest patches by 20 mid- and large-sized Neotropical mammal species in a fragmented landscape of northern Guatemala. We related patch occupancy of mammals to measures of habitat loss and fragmentation and compared the influence of these two factors while controlling for patch-level variables. Species responded strongly to both fragmentation and loss, and response to fragmentation generally was negative. Our findings support previous assumptions that conservation of large mammals in the tropics will require conservation strategies that go beyond prevention of habitat loss to also consider forest cohesion or other aspects of landscape configuration.

  11. Habitat selection of two gobies (Microgobius gulosus, Gobiosoma robustum): influence of structural complexity, competitive interactions and presence of a predator

    Science.gov (United States)

    Schofield, P.J.

    2003-01-01

    Herein I compare the relative importance of preference for structurally complex habitat against avoidance of competitors and predators in two benthic fishes common in the Gulf of Mexico. The code goby Gobiosoma robustum Ginsburg and clown goby Microgobius gulosus (Girard) are common, ecologically similar fishes found throughout the Gulf of Mexico and in the southeastern Atlantic Ocean. In Florida Bay, these fishes exhibit habitat partitioning: G. robustum is most abundant in seagrass-dominated areas while M. gulosus is most abundant in sparsely vegetated habitats. In a small-scale field survey, I documented the microhabitat use of these species where their distributions overlap. In a series of laboratory experiments, I presented each species with structured (artificial seagrass) versus nonstructured (bare sand) habitats and measured their frequency of choosing either habitat type. I then examined the use of structured versus nonstructured habitats when the two species were placed together in a mixed group. Finally, I placed a predator (Opsanus beta) in the experimental aquaria to determine how its presence influenced habitat selection. In the field, G. robustum was more abundant in seagrass and M. gulosus was more abundant in bare mud. In the laboratory, both species selected grass over sand in allopatry. However, in sympatry, M. gulosus occupied sand more often when paired with G. robustum than when alone. G. robustum appears to directly influence the habitat choice of M. gulosus: It seems that M. gulosus is pushed out of the structured habitat that is the preferred habitat of G. robustum. Thus, competition appears to modify the habitat selection of these species when they occur in sympatry. Additionally, the presence of the toadfish was a sufficient stimulus to provoke both M. gulosus and G. robustum to increase their selection for sand (compared to single-species treatments). Distribution patterns of M. gulosus and G. robustum

  12. Strong Predictability Of Spatially Distributed Physical Habitat Preferences For O. Mykiss Spawning Across Three Spatial Scales

    Science.gov (United States)

    Kammel, L.; Pasternack, G. B.; Wyrick, J. R.; Massa, D.; Bratovich, P.; Johnson, T.

    2012-12-01

    Currently accepted perception assumes Oncorhynchus mykiss prefer different ranges of similar physical habitat elements for spawning than Chinook salmon (Oncorhynchus tshawytscha), taking into account their difference in size. While there is increasing research interest regarding O. mykiss habitat use and migratory behavior, research conducted to date distinguishing the physical habitat conditions utilized for O. mykiss spawning has not provided quantified understanding of their spawning habitat preferences. The purpose of this study was to use electivity indices and other measures to assess the physical habitat characteristics preferred for O. mykiss spawning in terms of both 1-m scale microhabitat attributes, and landforms at different spatial scales from 0.1-100 times channel width. The testbed for this study was the 37.5-km regulated gravel-cobble Lower Yuba River (LYR). Using spatially distributed 2D hydrodynamic model results, substrate mapping, and a census of O. mykiss redds from two years of observation, micro- and meso-scale representations of physical habitat were tested for their ability to predict spawning habitat preference and avoidance. Overall there was strong stratification of O. mykiss redd occurrence for all representation types of physical habitat. A strong preference of hydraulic conditions was shown for mean water column velocities of 1.18-2.25 ft/s, and water depths of 1.25-2.76 ft. There was a marked preference for the two most upstream alluvial reaches of the LYR (out of 8 total reaches), accounting for 92% of all redds observed. The preferred morphological units (MUs) for O. mykiss spawning were more variable than for Chinook salmon and changed with increasing discharge, demonstrating that O. mykiss shift spawning to different MUs in order to utilize their preferred hydraulic conditions. The substrate range preferred for O. mykiss spawning was within 32-90 mm. Overall, O. mykiss spawning behavior was highly predictable and required a

  13. Does ecological specialization transcend scale? Habitat partitioning among individuals and species of Anolis lizards.

    Science.gov (United States)

    Kamath, Ambika; Losos, Jonathan B

    2017-03-01

    Ecological specialization is common across all levels of biological organization, raising the question of whether the evolution of specialization at one scale in a taxon is linked to specialization at other scales. Anolis lizards have diversified repeatedly along axes of habitat use, but it remains unknown if this diversification into habitat use specialists is underlain by individual specialization. From repeated observations of individuals in a population of Anolis sagrei in Florida, we show that the extent of habitat use specialization among individuals is comparable to the extent of specialization in the same traits among ten sympatric Anolis habitat specialist species in Cuba. However, the adaptive correlations between habitat use and morphology commonly seen across species of Anolis were not observed across individuals in the sampled population. Our results therefore suggest that while patterns of ecological specialization can transcend scale, these parallels are the consequence of distinct ecological processes acting at microevolutionary and macroevolutionary scales. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  14. Data-driven discovery of the spatial scales of habitat choice by elephants

    Directory of Open Access Journals (Sweden)

    Andrew F. Mashintonio

    2014-08-01

    Full Text Available Setting conservation goals and management objectives relies on understanding animal habitat preferences. Models that predict preferences combine location data from tracked animals with environmental information, usually at a spatial resolution determined by the available data. This resolution may be biologically irrelevant for the species in question. Individuals likely integrate environmental characteristics over varying distances when evaluating their surroundings; we call this the scale of selection. Even a single characteristic might be viewed differently at different scales; for example, a preference for sheltering under trees does not necessarily imply a fondness for continuous forest. Multi-scale preference is likely to be particularly evident for animals that occupy coarsely heterogeneous landscapes like savannahs. We designed a method to identify scales at which species respond to resources and used these scales to build preference models. We represented different scales of selection by locally averaging, or smoothing, the environmental data using kernels of increasing radii. First, we examined each environmental variable separately across a spectrum of selection scales and found peaks of fit. These ‘candidate’ scales then determined the environmental data layers entering a multivariable conditional logistic model. We used model selection via AIC to determine the important predictors out of this set. We demonstrate this method using savannah elephants (Loxodonta africana inhabiting two parks in southern Africa. The multi-scale models were more parsimonious than models using environmental data at only the source resolution. Maps describing habitat preferences also improved when multiple scales were included, as elephants were more often in places predicted to have high neighborhood quality. We conclude that elephants select habitat based on environmental qualities at multiple scales. For them, and likely many other species

  15. Habitat heterogeneity influences restoration efficacy: Implications of a habitat-specific management regime for an invaded marsh

    Science.gov (United States)

    Tang, Long; Gao, Yang; Wang, Cheng-Huan; Li, Bo; Chen, Jia-Kuan; Zhao, Bin

    2013-07-01

    Invasive species have to be managed to prevent adverse consequences. Spartina alterniflora has invaded many marshes where salinity and inundation are often key factors affecting vegetation. The former was surface clipped twice and native Phragmites australis was planted in invaded zones to examine the effects of habitat properties on the efficacy of invader control and native restoration. The results showed that two clipping treatments almost eliminated S. alterniflora in the zones with long inundation periods of 80 h/15 d but stimulated compensatory growth of S. alterniflora in the zones with short inundation periods. Transplanted P. australis performed better over time in zones with low salinity (salinity zones, indicating that the efficacy of invader management and native restoration activities changes significantly along habitat gradients. With a progression from the dyke to the seaward side of the studied marsh, there was a long then short then long inundation period whereas salinity increased consistently. The study indicates that the high-frequency removal of the above-ground parts of S. alterniflora should be used only in the middle tidal zones and that native vegetation should be planted in zones above the mean high water level while the others zones in the saltmarsh should be restored to mud flats. Usually, invasive plants can flourish in highly heterogeneous habitats, which can influence management efficacy by influencing the re-growth of treated invaders and the performance of restored native species. Therefore, habitat-specific management regimes for invasive species can be expected to be more efficient because of their dependence on specific habitats.

  16. Life history strategy influences parasite responses to habitat fragmentation.

    Science.gov (United States)

    Froeschke, Götz; van der Mescht, Luther; McGeoch, Melodie; Matthee, Sonja

    2013-12-01

    Anthropogenic habitat use is a major threat to biodiversity and is known to increase the abundance of generalist host species such as rodents, which are regarded as potential disease carriers. Parasites have an intimate relationship with their host and the surrounding environment and it is expected that habitat fragmentation will affect parasite infestation levels. We investigated the effect of habitat fragmentation on the ecto- and endoparasitic burdens of a broad niche small mammal, Rhabdomys pumilio, in the Western Cape Province, South Africa. Our aim was to look at the effects of fragmentation on different parasite species with diverse life history characteristics and to determine whether general patterns can be found. Sampling took place within pristine lowland (Fynbos/Renosterveld) areas and at fragmented sites surrounded and isolated by agricultural activities. All arthropod ectoparasites and available gastrointestinal endoparasites were identified. We used conditional autoregressive models to investigate the effects of habitat fragmentation on parasite species richness and abundance of all recovered parasites. Host density and body size were larger in the fragments. Combined ecto- as well as combined endoparasite taxa showed higher parasite species richness in fragmented sites. Parasite abundance was generally higher in the case of R. pumilio individuals in fragmented habitats but it appears that parasites that are more permanently associated with the host's body and those that are host-specific show the opposite trend. Parasite life history is an important factor that needs to be considered when predicting the effects of habitat fragmentation on parasite and pathogen transmission. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  17. Quantifying restoration effectiveness using multi-scale habitat models: implications for sage-grouse in the Great Basin

    Science.gov (United States)

    Arkle, Robert S.; Pilliod, David S.; Hanser, Steven E.; Brooks, Matthew L.; Chambers, Jeanne C.; Grace, James B.; Knutson, Kevin C.; Pyke, David A.; Welty, Justin L.

    2014-01-01

    A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of occupancy in 211 randomly located plots within a 40 million ha portion of the species' range. We then used these models to predict sage-grouse habitat quality at 826 plots associated with 101 post-wildfire seeding projects implemented from 1990 to 2003. We also compared conditions at restoration sites to published habitat guidelines. Sage-grouse occupancy was positively related to plot- and landscape-level dwarf sagebrush (Artemisia arbuscula, A. nova, A. tripartita) and big sagebrush steppe prevalence, and negatively associated with non-native plants and human development. The predicted probability of sage-grouse occupancy at treated plots was low on average (0.09) and not substantially different from burned areas that had not been treated. Restoration sites with quality habitat tended to occur at higher elevation locations with low annual temperatures, high spring precipitation, and high plant diversity. Of 313 plots seeded after fire, none met all sagebrush guidelines for breeding habitats, but approximately 50% met understory guidelines, particularly for perennial grasses. This pattern was similar for summer habitat. Less than 2% of treated plots met winter habitat guidelines. Restoration actions did not increase the probability of burned areas meeting most guideline criteria. The probability of meeting guidelines was influenced by a latitudinal gradient, climate, and topography. Our results suggest that sage-grouse are relatively unlikely to use many burned areas within 20 years of fire, regardless of treatment. Understory habitat conditions are more likely to be adequate than overstory

  18. The influence of food abundance, food dispersion and habitat ...

    African Journals Online (AJOL)

    Most tropical insectivorous birds, unlike their temperate counterparts, hold and defend a feeding and breeding territory year-around. However, our understanding of ... We believe the most likely explanation for the Usambara Thrush's preference for open understorey and closed overstorey habitat relates to foraging behavior.

  19. Habitat manipulation influences northern bobwhite resource selection on a reclaimed surface mine

    Science.gov (United States)

    Brooke, Jarred M.; Peters, David C.; Unger, Ashley M.; Tanner, Evan P.; Harper, Craig A.; Keyser, Patrick D.; Clark, Joseph D.; Morgan, John J.

    2015-01-01

    More than 600,000 ha of mine land have been reclaimed in the eastern United States, providing large contiguous tracts of early successional vegetation that can be managed for northern bobwhite (Colinus virginianus). However, habitat quality on reclaimed mine land can be limited by extensive coverage of non-native invasive species, which are commonly planted during reclamation. We used discrete-choice analysis to investigate bobwhite resource selection throughout the year on Peabody Wildlife Management Area, a 3,330-ha reclaimed surface mine in western Kentucky. We used a treatment-control design to study resource selection at 2 spatial scales to identify important aspects of mine land vegetation and whether resource selection differed between areas with habitat management (i.e., burning, disking, herbicide; treatment) and unmanaged units (control). Our objectives were to estimate bobwhite resource selection on reclaimed mine land and to estimate the influence of habitat management practices on resource selection. We used locations from 283 individuals during the breeding season (1 Apr–30 Sep) and 136 coveys during the non-breeding season (1 Oct–Mar 31) from August 2009 to March 2014. Individuals were located closer to shrub cover than would be expected at random throughout the year. During the breeding season, individuals on treatment units used areas with smaller contagion index values (i.e., greater interspersion) compared with individuals on control units. During the non-breeding season, birds selected areas with greater shrub-open edge density compared with random. At the microhabitat scale, individuals selected areas with increased visual obstruction >1 m aboveground. During the breeding season, birds were closer to disked areas (linear and non-linear) than would be expected at random. Individuals selected non-linear disked areas during winter but did not select linear disked areas (firebreaks) because they were planted to winter wheat each fall and

  20. Influence of habitat on behavior of Towndsend's ground squirrels (Spermophilus townsendii)

    Science.gov (United States)

    Sharpe, Peter B.; Van Horne, Beatrice

    1998-01-01

    Trade-offs between foraging and predator avoidance may affect an animal's survival and reproduction. These trade-offs may be influenced by differences in vegetative cover, especially if foraging profitability and predation risk differ among habitats. We examined above-ground activity of Townsend's ground squirrels (Spermophilus townsendii) in four habitats in the Snake River Birds of Prey National Conservation Area in southwestern Idaho to determine if behavior of ground squirrels varied among habitats, and we assessed factors that might affect perceived predation risk (i. e. predator detectability, predation pressure, population density). The proportion of time spent in vigilance by ground squirrels in winterfat (Krascheninnikovia lanata) and mosaic habitats of winterfat-sagebrush (Artemisia tridentata) was more than twice that of ground squirrels in burned and unburned sagebrush habitats. We found no evidence for the 'many-eyes' hypothesis as an explanation for differences in vigilance among habitats. Instead, environmental heterogeneity, especially vegetation structure, likely influenced activity budgets of ground squirrels. Differences in vigilance may have been caused by differences in predator detectability and refuge availability, because ground squirrels in the winterfat and mosaic habitats also spent more time in upright vigilant postures than ground squirrels in burned-sagebrush or sagebrush habitats. Such postures may enhance predator detection in low-growing winterfat.

  1. Removal of small dams and its influence on physical habitat for salmonids in a Norwegian river

    Science.gov (United States)

    Fjeldstad, Hans-Petter; Barlaup, Bjørn; Stickler, Morten; Alfredsen, Knut; Gabrielsen, Sven-Erik

    2010-05-01

    While research and implementation of upstream migration solutions is extensive, and indeed often successful, full scale restoration projects and investigations of their influence on fish biology are rare in Norway. Acid deposition in Norwegian catchments peaked in the 1980's and resulted in both chronically and episodically acidified rivers and Salmonids in River Nidelva, one of the largest cathments in southern Norway, where extinct for decades. During this period hydropower development in the river paid limited attention to aquatic ecology. Weirs were constructed for esthetic purposes in the late 1970's and turned a 3 km stretch into a lake habitat, well suited for lake dwelling fish species, but unsuited for migration, spawning and juvenile habitat for salmonids. Since 2005, continuous liming to mitigate acidification has improved the water quality and a program for reintroduction of Atlantic salmon has been implemented. We used hydraulic modeling to plan the removal of two weirs on a bypass reach of the river. The 50 meters wide concrete weirs were blasted and removed in 2007, and ecological monitoring has been carried out in the river to assess the effect of weir removal. Topographic mapping, hydraulic measurements and modeling, in combination with biological surveys before and after the removal of the weirs, has proved to represent a powerful method for design of physical habitat adjustments and assessing their influence on fish biology. The model results also supported a rapid progress of planning and executing of the works. While telemetry studies before weir removal suggested that adult migration past the weirs was delayed with several weeks the fish can now pass the reach with minor obstacles. Spawning sites were discovered in the old bed substrate and were occupied already the first season after water velocities increased to suitable levels for spawning. Accordingly, the densities of Atlantic salmon juveniles have shown a marked increased after the

  2. Increasing habitat complexity on seawalls: Investigating large- and small-scale effects on fish assemblages.

    Science.gov (United States)

    Morris, Rebecca L; Chapman, M Gee; Firth, Louise B; Coleman, Ross A

    2017-11-01

    The construction of artificial structures in the marine environment is increasing globally. Eco-engineering aims to mitigate the negative ecological impacts of built infrastructure through designing structures to be multifunctional, benefiting both humans and nature. To date, the focus of eco-engineering has largely been on benefits for benthic invertebrates and algae. Here, the potential effect of eco-engineered habitats designed for benthic species on fish was investigated. Eco-engineered habitats ("flowerpots") were added to an intertidal seawall in Sydney Harbour, Australia. Responses of fish assemblages to the added habitats were quantified at two spatial scales; large (among seawalls) and small (within a seawall). Data were collected during high tide using cameras attached to the seawall to observe pelagic and benthic fish. At the larger spatial scale, herbivores, planktivores, and invertebrate predators were generally more abundant at the seawall with the added flowerpots, although results were temporally variable. At the smaller spatial scale, certain benthic species were more abundant around flowerpots than at the adjacent control areas of seawall, although there was no general pattern of differences in species density and trophic group abundance of pelagic fish between areas of the seawall with or without added habitats. Although we did not find consistent, statistically significant findings throughout our study, the field of research to improve fish habitat within human-use constraints is promising and important, although it is in its early stages (it is experimental and requires a lot of trial and error). To advance this field, it is important to document when effects were detected, and when they were not, so that others can refine the designs or scale of habitat enhancements or their study approaches (e.g., sampling protocols).

  3. Bird Habitat Conservation at Various Scales in the Atlantic Coast Joint Venture

    Science.gov (United States)

    Andrew Milliken; Craig Watson; Chuck Hayes

    2005-01-01

    The Atlantic Coast Joint Venture is a partnership focused on the conservation of habitats for migratory birds within the Atlantic Flyway/Atlantic Coast Region from Maine south to Puerto Rico. In order to be effective in planning and implementing conservation in this large and diverse area, the joint venture must work at multiple spatial scales, from the largest ?...

  4. Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation

    NARCIS (Netherlands)

    Opdam, P.F.M.; Wascher, D.M.

    2004-01-01

    Climate change and habitat fragmentation are considered key pressures on biodiversity. In this paper we explore the potential synergetic effects between these factors. We argue that processes at two levels of spatial scale interact: the metapopulation level and the species range level. Current

  5. Cumulative Effects of Coastal Habitat Alterations on Fishery Resources: toward Prediction at Regional Scales

    Directory of Open Access Journals (Sweden)

    Stephen J. Jordan

    2009-06-01

    Full Text Available Coastal habitat alterations such as the loss of submersed aquatic vegetation (SAV and hardening of shorelines could have cumulative effects on valuable fishery resources. To investigate this effect, we developed a multiscale modeling framework for blue crab (Callinectes sapidus in the northern Gulf of Mexico. Areal coverage of shoreline land cover and SAV for Mobile Bay, Alabama, were combined with information from small-scale biological studies and long-term, large-scale commercial fishery data to model the potential effects of marginal habitat losses on the blue crab fishery. We applied stochastic variation in annual recruitment to the fishery to estimate probabilities for sustainable harvests under scenarios of habitat loss. The simulations suggested that, accumulated over large areas, relatively small local losses of estuarine marsh edge and SAV habitats could have long-term negative effects on the sustainability of the fishery. Spatially extensive models are required to investigate the cumulative ecological effects of many local environmental changes. The requisite scaling adds uncertainty and reduces precision, but if model parameters are accurate at each scale, accurate predictions of long-term outcomes and probabilities are possible.

  6. Extensions of Island Biogeography Theory predict the scaling of functional trait composition with habitat area and isolation.

    Science.gov (United States)

    Jacquet, Claire; Mouillot, David; Kulbicki, Michel; Gravel, Dominique

    2017-02-01

    The Theory of Island Biogeography (TIB) predicts how area and isolation influence species richness equilibrium on insular habitats. However, the TIB remains silent about functional trait composition and provides no information on the scaling of functional diversity with area, an observation that is now documented in many systems. To fill this gap, we develop a probabilistic approach to predict the distribution of a trait as a function of habitat area and isolation, extending the TIB beyond the traditional species-area relationship. We compare model predictions to the body-size distribution of piscivorous and herbivorous fishes found on tropical reefs worldwide. We find that small and isolated reefs have a higher proportion of large-sized species than large and connected reefs. We also find that knowledge of species body-size and trophic position improves the predictions of fish occupancy on tropical reefs, supporting both the allometric and trophic theory of island biogeography. The integration of functional ecology to island biogeography is broadly applicable to any functional traits and provides a general probabilistic approach to study the scaling of trait distribution with habitat area and isolation. © 2016 John Wiley & Sons Ltd/CNRS.

  7. Spatial scale and movement behaviour traits control the impacts of habitat fragmentation on individual fitness.

    Science.gov (United States)

    Cattarino, Lorenzo; McAlpine, Clive A; Rhodes, Jonathan R

    2016-01-01

    Habitat fragmentation, that is the breaking apart of habitat, can occur at multiple spatial scales at the same time, as a result of different land uses. Individuals of most species spend different amounts of times moving in different modes, during which they cover different distances and experience different fitness impacts. The scale at which fragmentation occurs interacts with the distance that individuals move in a particular mode to affect an individual's ability to find habitat. However, there is little knowledge of the fitness consequences of different scales of fragmentation for individuals with different traits of movement behaviour. This is critical to understand the mechanisms of persistence of different species in fragmented landscapes. The aim of this study was to quantify the impacts of habitat fragmentation at different scales on the fitness components (reproduction and survival) of individuals with different traits of movement behaviour. We developed a demographic model of individuals that adopt short and tortuous movements within foraging areas (foraging mode) and long and straight movements between foraging areas (searching mode). We considered individuals that adopt different movement modes with varying frequencies, inherently move different searching distances and experience different risks of mortality during searching. We then applied the model within a spatially explicit simulation framework where we varied simultaneously the degree of fragmentation within (fine scale) and between foraging areas (coarse scale). Fine-scale fragmentation had a greater impact on reproduction and survival than coarse-scale fragmentation, for those individuals with a low searching propensity. The impact of fine-scale fragmentation on reproduction and survival interacted with the impact of coarse-scale fragmentation on reproduction and survival, to affect the fitness of individuals with a high searching propensity, large inherent searching distances and high

  8. beta-diversity and species accumulation in antarctic coastal benthos: influence of habitat, distance and productivity on ecological connectivity.

    Directory of Open Access Journals (Sweden)

    Simon F Thrush

    Full Text Available High Antarctic coastal marine environments are comparatively pristine with strong environmental gradients, which make them important places to investigate biodiversity relationships. Defining how different environmental features contribute to shifts in beta-diversity is especially important as these shifts reflect both spatio-temporal variations in species richness and the degree of ecological separation between local and regional species pools. We used complementary techniques (species accumulation models, multivariate variance partitioning and generalized linear models to assess how the roles of productivity, bio-physical habitat heterogeneity and connectivity change with spatial scales from metres to 100's of km. Our results demonstrated that the relative importance of specific processes influencing species accumulation and beta-diversity changed with increasing spatial scale, and that patterns were never driven by only one factor. Bio-physical habitat heterogeneity had a strong influence on beta-diversity at scales 40 km. Our analysis supports the emphasis on the analysis of diversity relationships across multiple spatial scales and highlights the unequal connectivity of individual sites to the regional species pool. This has important implications for resilience to habitat loss and community homogenisation, especially for Antarctic benthic communities where rates of recovery from disturbance are slow, there is a high ratio of poor-dispersing and brooding species, and high biogenic habitat heterogeneity and spatio-temporal variability in primary production make the system vulnerable to disturbance. Consequently, large areas need to be included within marine protected areas for effective management and conservation of these special ecosystems in the face of increasing anthropogenic disturbance.

  9. Does the scale of our observational window affect our conclusions about correlations between endangered salmon populations and their habitat?

    Science.gov (United States)

    Blake E. Feist; E. Ashley Steel; David W. Jensen; Damon N.D. Sather

    2010-01-01

    Differences in the strength of species-habitat relationships across scales provide insights into the mechanisms that drive these relationships and guidance for designing in situ monitoring programs, conservation efforts and mechanistic studies. The scale of our observation can also impact the strength of perceived relationships between animals and habitat conditions....

  10. Influence of organic matter on collembolan communities in reedbed habitats

    Science.gov (United States)

    Uteseny, K.; Drapela, T.; Frouz, J.

    2009-04-01

    The combination of the organic matter, micro-climatic environments and plant cover belongs to important factors for the distribution of soil meso-fauna, especially Collembola. There are no studies attending to these factors on collembolan communities in reedbed vegetation. The main goals of our investigation were therefore to compare diversity of Collembola in redbed habitats of Lake Neudsiedl, eastern Austria, and to assess particularly the role of organic matter with regard to the collembolan community structure. Soil samples were taken from April 1997 to October 1997 at fifteen study sites covered with Phragmatis australis of different age. Changes in the structure and composition of the assemblages of Collembola were examined.

  11. Multi-scale analysis to uncover habitat use of red-crowned cranes: Implications for conservation

    Directory of Open Access Journals (Sweden)

    Chunyue LIU, Hongxing JIANG, Shuqing ZHANG, Chunrong LI,Yunqiu HOU, Fawen QIAN

    2013-10-01

    Full Text Available A multi-scale approach is essential to assess the factors that limit avian habitat use. Numerous studies have examined habitat use by the red-crowned crane, but integrated multi-scale habitat use information is lacking. We evaluated the effects of several habitat variables quantified across many spatial scales on crane use and abundance in two periods (2000 and 2009 at Yancheng National Nature Reserve, China. The natural wetlands decreased in area by 30,601 ha (-6.9% from 2000 to 2009, predominantly as a result of conversion to aquaculture ponds and farmland, and the remaining was under degradation due to expansion of the exotic smooth cordgrass. The cranes are focusing in on either larger patches or those that are in close proximity to each other in both years, but occupied patches had smaller size, less proximity and more regular boundaries in 2009. At landscape scales, the area percentage of common seepweed, reed ponds and paddy fields had a greater positive impact on crane presence than the area percentage of aquaculture ponds. The cranes were more abundant in patches that had a greater percent area of common seepweed and reed ponds, while the percent area of paddy fields was inversely related to crane abundance in 2009 due to changing agricultural practices. In 2009, cranes tended to use less fragmented plots in natural wetlands and more fragmented plots in anthropogenic paddy fields, which were largely associated with the huge loss and degradation of natural habitats between the two years. Management should focus on restoration of large patches of natural wetlands, and formation of a relatively stable area of large paddy field and reed pond to mitigate the loss of natural wetlands [Current Zoology 59 (5: 604–617, 2013].

  12. Toward an identification of resources influencing habitat use in a multi-specific context.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Richard

    Full Text Available Interactions between animal behaviour and the environment are both shaping observed habitat use. Despite the importance of inter-specific interactions on the habitat use performed by individuals, most previous analyses have focused on case studies of single species. By focusing on two sympatric populations of large herbivores with contrasting body size, we went one step beyond by studying variation in home range size and identifying the factors involved in such variation, to define how habitat features such as resource heterogeneity, resource quality, and openness created by hurricane or forest managers, and constraints may influence habitat use at the individual level. We found a large variability among individual's home range size in both species, particularly in summer. Season appeared as the most important factor accounting for observed variation in home range size. Regarding habitat features, we found that (i the proportion of area damaged by the hurricane was the only habitat component that inversely influenced roe deer home range size, (ii this habitat type also influenced both diurnal and nocturnal red deer home range sizes, (iii home range size of red deer during the day was inversely influenced by the biomass of their preferred plants, as were both diurnal and nocturnal core areas of the red deer home range, and (iv we do not find any effect of resource heterogeneity on home range size in any case. Our results suggest that a particular habitat type (i.e. areas damaged by hurricane can be used by individuals of sympatric species because it brings both protected and dietary resources. Thus, it is necessary to maintain the openness of these areas and to keep animal density quite low as observed in these hunted populations to limit competition between these sympatric populations of herbivores.

  13. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    Science.gov (United States)

    Gretchen H. Roffler; Michael K. Schwartz; Kristine Pilgrim; Sandra L. Talbot; George K. Sage; Layne G. Adams; Gordon Luikart

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is...

  14. Pervasive Local-Scale Tree-Soil Habitat Association in a Tropical Forest Community.

    Directory of Open Access Journals (Sweden)

    Elodie Allié

    Full Text Available We examined tree-soil habitat associations in lowland forest communities at Paracou, French Guiana. We analyzed a large dataset assembling six permanent plots totaling 37.5 ha, in which extensive LIDAR-derived topographical data and soil chemical and physical data have been integrated with precise botanical determinations. Map of relative elevation from the nearest stream summarized both soil fertility and hydromorphic characteristics, with seasonally inundated bottomlands having higher soil phosphate content and base saturation, and plateaus having higher soil carbon, nitrogen and aluminum contents. We employed a statistical test of correlations between tree species density and environmental maps, by generating Monte Carlo simulations of random raster images that preserve autocorrelation of the original maps. Nearly three fourths of the 94 taxa with at least one stem per ha showed a significant correlation between tree density and relative elevation, revealing contrasted species-habitat associations in term of abundance, with seasonally inundated bottomlands (24.5% of species and well-drained plateaus (48.9% of species. We also observed species preferences for environments with or without steep slopes (13.8% and 10.6%, respectively. We observed that closely-related species were frequently associated with different soil habitats in this region (70% of the 14 genera with congeneric species that have a significant association test suggesting species-habitat associations have arisen multiple times in this tree community. We also tested if species with similar habitat preferences shared functional strategies. We found that seasonally inundated forest specialists tended to have smaller stature (maximum diameter than species found on plateaus. Our results underline the importance of tree-soil habitat associations in structuring diverse communities at fine spatial scales and suggest that additional studies are needed to disentangle community assembly

  15. Presence and absence of bats across habitat scales in the Upper Coastal Plain of South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Ford, W.Mark; Menzel, Jennifer M.; Menzel, Michael A.: Edwards, John W.; Kilgo, John C.

    2006-10-01

    Abstract During 2001, we used active acoustical sampling (Anabat II) to survey foraging habitat relationships of bats on the Savannah River Site (SRS) in the upper Coastal Plain of South Carolina. Using an a priori information-theoretic approach, we conducted logistic regression analysis to examine presence of individual bat species relative to a suite of microhabitat, stand, and landscape-level features such as forest structural metrics, forest type, proximity to riparian zones and Carolina bay wetlands, insect abundance, and weather. There was considerable empirical support to suggest that the majority of the activity of bats across most of the 6 species occurred at smaller, stand-level habitat scales that combine measures of habitat clutter (e.g., declining forest canopy cover and basal area), proximity to riparian zones, and insect abundance. Accordingly, we hypothesized that most foraging habitat relationships were more local than landscape across this relatively large area for generalist species of bats. The southeastern myotis (Myotis austroriparius) was the partial exception, as its presence was linked to proximity of Carolina bays (best approximating model) and bottomland hardwood communities (other models with empirical support). Efforts at SRS to promote open longleaf pine (Pinus palustris) and loblolly pine (P. taeda) savanna conditions and to actively restore degraded Carolina bay wetlands will be beneficial to bats. Accordingly, our results should provide managers better insight for crafting guidelines for bat habitat conservation that could be linked to widely accepted land management and environmental restoration practices for the region.

  16. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success.

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, James E. [North Carolina State University

    2014-04-01

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides borealis (RCW) in the USA as immediate nesting constraints are mitigated. Several researchers have characterized resource selection by foraging RCWs, but emerging research linking reproductive success (e.g. clutch size, nestling and fledgling production, and group size) and foraging habitat features has yet to be synthesized. Therefore, we reviewed peer-refereed scientific literature and technical resources (e.g. books, symposia proceedings, and technical reports) that examined RCW foraging ecology, foraging habitat, or demography to evaluate evidence for effects of the key foraging habitat features described in the species’ recovery plan on group reproductive success. Fitness-based habitat models suggest foraging habitat with low to intermediate pine Pinus spp. densities, presence of large and old pines, minimal midstory development, and herbaceous groundcover support more productive RCW groups. However, the relationships between some foraging habitat features and RCW reproductive success are not well supported by empirical data. In addition, few regression models account for > 30% of variation in reproductive success, and unstandardized multiple and simple linear regression coefficient estimates typically range from -0.100 to 0.100, suggesting ancillary variables and perhaps indirect mechanisms influence reproductive success. These findings suggest additional research is needed to address uncertainty in relationships between foraging habitat features and RCW reproductive success and in the mechanisms underlying those relationships.

  17. Improving extinction projections across scales and habitats using the countryside species-area relationship.

    Science.gov (United States)

    Martins, Inês Santos; Pereira, Henrique Miguel

    2017-10-10

    The species-area relationship (SAR) has been often used to project species extinctions as a consequence of habitat loss. However, recent studies have suggested that the SAR may overestimate species extinctions, at least in the short-term. We argue that the main reason for this overestimation is that the classic SAR ignores the persistence of species in human-modified habitats. We use data collected worldwide to analyse what is the fraction of bird and plant species that remain in different human-modified habitats at the local scale after full habitat conversion. We observe that both taxa have consistent responses to the different land-use types, with strongest reductions in species richness in cropland across the globe, and in pasture in the tropics. We show that the results from these studies cannot be linearly scaled from plots to large regions, as this again overestimates the impacts of land-use change on biodiversity. The countryside SAR provides a unifying framework to incorporate both the effect of species persistence in the landscape matrix and the non-linear response of the proportion of species extinctions to sampling area, generating more realistic projections of biodiversity loss.

  18. Mapping cold-water coral habitats at different scales within the Northern Ionian Sea (Central Mediterranean: an assessment of coral coverage and associated vulnerability.

    Directory of Open Access Journals (Sweden)

    Alessandra Savini

    Full Text Available In this study, we mapped the distribution of Cold-Water Coral (CWC habitats on the northern Ionian Margin (Mediterranean Sea, with an emphasis on assessing coral coverage at various spatial scales over an area of 2,000 km(2 between 120 and 1,400 m of water depth. Our work made use of a set of data obtained from ship-based research surveys. Multi-scale seafloor mapping data, video inspections, and previous results from sediment samples were integrated and analyzed using Geographic Information System (GIS-based tools. Results obtained from the application of spatial and textural analytical techniques to acoustic meso-scale maps (i.e. a Digital Terrain Model (DTM of the seafloor at a 40 m grid cell size and associated terrain parameters and large-scale maps (i.e. Side-Scan Sonar (SSS mosaics of 1 m in resolution ground-truthed using underwater video observations were integrated and revealed that, at the meso-scale level, the main morphological pattern (i.e. the aggregation of mound-like features associated with CWC habitat occurrences was widespread over a total area of 600 km(2. Single coral mounds were isolated from the DTM and represented the geomorphic proxies used to model coral distributions within the investigated area. Coral mounds spanned a total area of 68 km(2 where different coral facies (characterized using video analyses and mapped on SSS mosaics represent the dominant macro-habitat. We also mapped and classified anthropogenic threats that were identifiable within the examined videos, and, here, discuss their relationship to the mapped distribution of coral habitats and mounds. The combined results (from multi-scale habitat mapping and observations of the distribution of anthropogenic threats provide the first quantitative assessment of CWC coverage for a Mediterranean province and document the relevant role of seafloor geomorphology in influencing habitat vulnerability to different types of human pressures.

  19. Relative importance of habitat and landscape scales on butterfly communities of urbanizing areas.

    Science.gov (United States)

    Lizée, Marie-Hélène; Bonardo, Rémi; Mauffrey, Jean-François; Bertaudière-Montes, Valérie; Tatoni, Thierry; Deschamps-Cottin, Magali

    2011-01-01

    Agricultural decline and urbanization entail rapid alterations of the patterns of organization of rural landscapes in Europe. The spread of the urban footprint to the adjacent countryside contributes to the development of new anthropogenic ecosystems in formerly rural hinterlands. In this study, butterflies are considered as biological indicators of these rapid environmental changes. Our purpose is to better understand changes in biodiversity related to the evolution of available habitats in a mutating landscape. In this study, we investigate butterfly communities of four land-use types (fallow lands, gardens, vineyards, woodlands) within different landscape contexts. Our results reveal that variations in structure and functional composition of these communities are related to different levels of human disturbance at both landscape scale and habitat scale. Copyright © 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. Scale-dependent effects of habitat area on species interaction networks: invasive species alter relationships

    Directory of Open Access Journals (Sweden)

    Sugiura Shinji

    2012-07-01

    Full Text Available Abstract Background The positive relationship between habitat area and species number is considered a fundamental rule in ecology. This relationship predicts that the link number of species interactions increases with habitat area, and structure is related to habitat area. Biological invasions can affect species interactions and area relationships. However, how these relationships change at different spatial scales has remained unexplored. We analysed understory plant–pollinator networks in seven temperate forest sites at 20 spatial scales (radius 120–2020 m to clarify scale-associated relationships between forest area and plant–pollinator networks. Results The pooled data described interactions between 18 plant (including an exotic and 89 pollinator (including an exotic species. The total number of species and the number of interaction links between plant and pollinator species were negatively correlated with forest area, with the highest correlation coefficient at radii of 1520 and 1620 m, respectively. These results are not concordant with the pattern predicted by species–area relationships. However, when associations with exotic species were excluded, the total number of species and the number of interaction links were positively correlated with forest area (the highest correlation coefficient at a radius of 820 m. The network structure, i.e., connectance and nestedness, was also related to forest area (the highest correlation coefficients at radii of 720–820 m, when associations with exotics were excluded. In the study area, the exotic plant species Alliaria petiolata, which has invaded relatively small forest patches surrounded by agricultural fields, may have supported more native pollinator species than initially expected. Therefore, this invasive plant may have altered the original relationships between forest area and plant–pollinator networks. Conclusions Our results demonstrate scale-dependent effects of forest

  1. Scale-dependent effects of habitat area on species interaction networks: invasive species alter relationships.

    Science.gov (United States)

    Sugiura, Shinji; Taki, Hisatomo

    2012-07-20

    The positive relationship between habitat area and species number is considered a fundamental rule in ecology. This relationship predicts that the link number of species interactions increases with habitat area, and structure is related to habitat area. Biological invasions can affect species interactions and area relationships. However, how these relationships change at different spatial scales has remained unexplored. We analysed understory plant-pollinator networks in seven temperate forest sites at 20 spatial scales (radius 120-2020 m) to clarify scale-associated relationships between forest area and plant-pollinator networks. The pooled data described interactions between 18 plant (including an exotic) and 89 pollinator (including an exotic) species. The total number of species and the number of interaction links between plant and pollinator species were negatively correlated with forest area, with the highest correlation coefficient at radii of 1520 and 1620 m, respectively. These results are not concordant with the pattern predicted by species-area relationships. However, when associations with exotic species were excluded, the total number of species and the number of interaction links were positively correlated with forest area (the highest correlation coefficient at a radius of 820 m). The network structure, i.e., connectance and nestedness, was also related to forest area (the highest correlation coefficients at radii of 720-820 m), when associations with exotics were excluded. In the study area, the exotic plant species Alliaria petiolata, which has invaded relatively small forest patches surrounded by agricultural fields, may have supported more native pollinator species than initially expected. Therefore, this invasive plant may have altered the original relationships between forest area and plant-pollinator networks. Our results demonstrate scale-dependent effects of forest area on the size and structure of plant-pollinator networks. We also suggest

  2. Spawning distribution of sockeye salmon in a glacially influenced watershed: The importance of glacial habitats

    Science.gov (United States)

    Young, Daniel B.; Woody, C.A.

    2007-01-01

    The spawning distribution of sockeye salmon Oncorhynchus nerka was compared between clear and glacially turbid habitats in Lake Clark, Alaska, with the use of radiotelemetry. Tracking of 241 adult sockeye salmon to 27 spawning locations revealed both essential habitats and the relationship between spawn timing and seasonal turbidity cycles. Sixty-six percent of radio-tagged sockeye salmon spawned in turbid waters (???5 nephelometric turbidity units) where visual observation was difficult. Spawning in turbid habitats coincided with seasonal temperature declines and associated declines in turbidity and suspended sediment concentration. Because spawn timing is heritable and influenced by temperature, the observed behavior suggests an adaptive response to glacier-fed habitats, as it would reduce embryonic exposure to the adverse effects of fine sediments. ?? Copyright by the American Fisheries Society 2007.

  3. Large-scale restoration of salmon spawning habitat in a regulated, gravel-bedded river

    Science.gov (United States)

    Harrison, L.; Bray, E. N.; Overstreet, B. T.; Legleiter, C. J.; Dunne, T.

    2016-12-01

    Large-scale river restoration programs have recently emerged as a tool for improving salmon habitat in highly altered river ecosystems. Few studies have quantified the extent to which the restored habitat is utilized by salmonids, which physical processes contribute to improved biological functionality, or how the restored habitat changes over time. We investigated Pacific salmon spawning site utilization in two restored reaches of a gravel-bedded river: a site of gravel augmentation and habitat enhancement completed three years ago and a re-engineered, meandering channel and floodplain reach constructed over a decade ago. Spawning was observed at both sites in areas predicted to have high quality habitat, based on channel morphology and hydraulics. At the more recently restored gravel augmentation site, peak redd densities occurred in areas of high sediment mobility as determined by measurements of gravel pivot angles and a grain entrainment model. Redds were built in areas with high values of hydraulic conductivity and streambed hyporheic fluxes, which were located near the transition between pool-riffle bedforms in the re-engineered reach but spanned the entire length of the gravel-augmented reach. In situ measurements of streambed hydraulic conductivity indicated lower hyporheic fluxes at the re-engineered, meandering site due to the infiltration of fine sediment into the subsurface. Highly mobile and permeable gravels were heavily utilized for spawning in restored reaches amid an otherwise predominantly armored bed. However the potential long-term, ecological benefits provided by large-scale restoration projects will vary depending on the patterns of post-restoration flow, sediment supply and channel evolution.

  4. Variation in habitat soundscape characteristics influences settlement of a reef-building coral

    Directory of Open Access Journals (Sweden)

    Ashlee Lillis

    2016-10-01

    Full Text Available Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata, was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase. These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  5. Variation in habitat soundscape characteristics influences settlement of a reef-building coral.

    Science.gov (United States)

    Lillis, Ashlee; Bohnenstiehl, DelWayne; Peters, Jason W; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata , was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  6. Habitat factors influencing the distribution of Cymbopogon validus in ...

    African Journals Online (AJOL)

    The factors influencing the distribution of Cymbopogon validus in Mkambati Game Reserve were investigated using multivariate techniques. C. validus was found to be present on nutrient-rich, clay soils and absent from dystrophic, sandy soils. This could account for the patchy distribution of C. validus in the reserve and may ...

  7. Derivation of a GIS-based watershed-scale conceptual model for the St. Jones River Delaware from habitat-scale conceptual models.

    Science.gov (United States)

    Reiter, Michael A; Saintil, Max; Yang, Ziming; Pokrajac, Dragoljub

    2009-08-01

    Conceptual modeling is a useful tool for identifying pathways between drivers, stressors, Valued Ecosystem Components (VECs), and services that are central to understanding how an ecosystem operates. The St. Jones River watershed, DE is a complex ecosystem, and because management decisions must include ecological, social, political, and economic considerations, a conceptual model is a good tool for accommodating the full range of inputs. In 2002, a Four-Component, Level 1 conceptual model was formed for the key habitats of the St. Jones River watershed, but since the habitat level of resolution is too fine for some important watershed-scale issues we developed a functional watershed-scale model using the existing narrowed habitat-scale models. The narrowed habitat-scale conceptual models and associated matrices developed by Reiter et al. (2006) were combined with data from the 2002 land use/land cover (LULC) GIS-based maps of Kent County in Delaware to assemble a diagrammatic and numerical watershed-scale conceptual model incorporating the calculated weight of each habitat within the watershed. The numerical component of the assembled watershed model was subsequently subjected to the same Monte Carlo narrowing methodology used for the habitat versions to refine the diagrammatic component of the watershed-scale model. The narrowed numerical representation of the model was used to generate forecasts for changes in the parameters "Agriculture" and "Forest", showing that land use changes in these habitats propagated through the results of the model by the weighting factor. Also, the narrowed watershed-scale conceptual model identified some key parameters upon which to focus research attention and management decisions at the watershed scale. The forecast and simulation results seemed to indicate that the watershed-scale conceptual model does lead to different conclusions than the habitat-scale conceptual models for some issues at the larger watershed scale.

  8. The relative influence of road characteristics and habitat on adjacent lizard populations in arid shrublands

    Science.gov (United States)

    Hubbard, Kaylan A.; Chalfoun, Anna D.; Gerow, Kenneth G.

    2016-01-01

    As road networks continue to expand globally, indirect impacts to adjacent wildlife populations remain largely unknown. Simultaneously, reptile populations are declining worldwide and anthropogenic habitat loss and fragmentation are frequently cited causes. We evaluated the relative influence of three different road characteristics (surface treatment, width, and traffic volume) and habitat features on adjacent populations of Northern Sagebrush Lizards (Sceloporus graciosus graciosus), Plateau Fence Lizards (S. tristichus), and Greater Short-Horned Lizards (Phrynosoma hernandesi) in mixed arid shrubland habitats in southwest Wyoming. Neither odds of lizard presence nor relative abundance was significantly related to any of the assessed road characteristics, although there was a trend for higher Sceloporus spp. abundance adjacent to paved roads. Sceloporus spp. relative abundance did not vary systematically with distance to the nearest road. Rather, both Sceloporus spp. and Greater Short-Horned Lizards were associated strongly with particular habitat characteristics adjacent to roads. Sceloporus spp. presence and relative abundance increased with rock cover, relative abundance was associated positively with shrub cover, and presence was associated negatively with grass cover. Greater Short-Horned Lizard presence increased with bare ground and decreased marginally with shrub cover. Our results suggest that habitat attributes are stronger correlates of lizard presence and relative abundance than individual characteristics of adjacent roads, at least in our system. Therefore, an effective conservation approach for these species may be to consider the landscape through which new roads and their associated development would occur, and the impact that placement could have on fragment size and key habitat elements.

  9. Raccoon spatial requirements and multi-scale habitat selection within an intensively managed central Appalachian forest

    Science.gov (United States)

    Owen, Sheldon F.; Berl, Jacob L.; Edwards, John W.; Ford, W. Mark; Wood, Petra Bohall

    2015-01-01

    We studied a raccoon (Procyon lotor) population within a managed central Appalachian hardwood forest in West Virginia to investigate the effects of intensive forest management on raccoon spatial requirements and habitat selection. Raccoon home-range (95% utilization distribution) and core-area (50% utilization distribution) size differed between sexes with males maintaining larger (2×) home ranges and core areas than females. Home-range and core-area size did not differ between seasons for either sex. We used compositional analysis to quantify raccoon selection of six different habitat types at multiple spatial scales. Raccoons selected riparian corridors (riparian management zones [RMZ]) and intact forests (> 70 y old) at the core-area spatial scale. RMZs likely were used by raccoons because they provided abundant denning resources (i.e., large-diameter trees) as well as access to water. Habitat composition associated with raccoon foraging locations indicated selection for intact forests, riparian areas, and regenerating harvest (stands managed forests in the central Appalachians.

  10. Habitat surrounding patch reefs influences the diet and nutrition of the western rock lobster

    Science.gov (United States)

    In this study the influence of habitat on the diet and nutrition of a common reef-associated generalist consumer, the western rock lobster Panulirus cygnus, was tested. Stable isotopes (13C/12C and 15N/14N) and gut contents were used to assess the diet of lobsters collected from ...

  11. Low habitat overlap at landscape scale between wild camelids and feral donkeys in the Chilean desert

    Science.gov (United States)

    Malo, Juan E.; González, Benito A.; Mata, Cristina; Vielma, André; Donoso, Denise S.; Fuentes, Nicolás; Estades, Cristián F.

    2016-01-01

    Feral domestic ungulates may compete with the populations of wild herbivores with which they coexist, particularly so in arid regions. The potential competition between wild camelids and feral donkeys at the eastern sector of the Atacama Desert is evaluated in terms of their coincidence or segregation in habitat use and complemented with a comparison of reproductive output (yearling/adult ratio) of vicuña family groups in the proximity vs. distant from donkey observations. Habitat use of wild camelids and donkeys was sampled driving some 1250 km of roads and tracks at the dry and wet seasons. There were 221 vicuñas (Vicugna vicugna) sightings, 77 for donkeys (Equus asinus), 25 for guanacos (Lama guanicoe) and 8 for hybrids between guanacos and domestic llamas (Lama glama), as well as 174 randomly selected control locations. By means of Generalised Discriminant Analysis and Analysis of Variance we show that all ungulates actively select their habitat, with significant differences between use and availability in the area. Donkeys are relatively abundant in comparison with camelids and coincide broadly with both of them across the altitudinal gradient, but they fall between them in local scale habitat selection and do not seem to force their displacement from their preferred habitats. Thus donkeys occur preferentially on slopes with a high cover of tall shrubs, whereas vicuñas use valley bottoms with grass and guanacos the upper slope zones with grass. The potential for competition between donkeys and wild camelids is thus limited and it does not affect the reproductive output of vicuña in this region. Therefore, with the present knowledge we suggest that population control is not currently merited for feral donkeys.

  12. Ensemble modeling to predict habitat suitability for a large-scale disturbance specialist

    Science.gov (United States)

    Latif, Quresh S; Saab, Victoria A; Dudley, Jonathan G; Hollenbeck, Jeff P

    2013-01-01

    help guide managers attempting to balance salvage logging with habitat conservation in burned-forest landscapes where black-backed woodpecker nest location data are not immediately available. Ensemble modeling represents a promising tool for guiding conservation of large-scale disturbance specialists. PMID:24340177

  13. Ultra-Fine Scale Spatially-Integrated Mapping of Habitat and Occupancy Using Structure-From-Motion.

    Directory of Open Access Journals (Sweden)

    Philip McDowall

    Full Text Available Organisms respond to and often simultaneously modify their environment. While these interactions are apparent at the landscape extent, the driving mechanisms often occur at very fine spatial scales. Structure-from-Motion (SfM, a computer vision technique, allows the simultaneous mapping of organisms and fine scale habitat, and will greatly improve our understanding of habitat suitability, ecophysiology, and the bi-directional relationship between geomorphology and habitat use. SfM can be used to create high-resolution (centimeter-scale three-dimensional (3D habitat models at low cost. These models can capture the abiotic conditions formed by terrain and simultaneously record the position of individual organisms within that terrain. While coloniality is common in seabird species, we have a poor understanding of the extent to which dense breeding aggregations are driven by fine-scale active aggregation or limited suitable habitat. We demonstrate the use of SfM for fine-scale habitat suitability by reconstructing the locations of nests in a gentoo penguin colony and fitting models that explicitly account for conspecific attraction. The resulting digital elevation models (DEMs are used as covariates in an inhomogeneous hybrid point process model. We find that gentoo penguin nest site selection is a function of the topography of the landscape, but that nests are far more aggregated than would be expected based on terrain alone, suggesting a strong role of behavioral aggregation in driving coloniality in this species. This integrated mapping of organisms and fine scale habitat will greatly improve our understanding of fine-scale habitat suitability, ecophysiology, and the complex bi-directional relationship between geomorphology and habitat use.

  14. Population genetics at three spatial scales of a rare sponge living in fragmented habitats

    Directory of Open Access Journals (Sweden)

    Uriz Maria J

    2010-01-01

    Full Text Available Abstract Background Rare species have seldom been studied in marine habitats, mainly because it is difficult to formally assess the status of rare species, especially in patchy benthic organisms, for which samplings are often assumed to be incomplete and, thus, inappropriate for establishing the real abundance of the species. However, many marine benthic invertebrates can be considered rare, due to the fragmentation and rarity of suitable habitats. Consequently, studies on the genetic connectivity of rare species in fragmented habitats are basic for assessing their risk of extinction, especially in the context of increased habitat fragmentation by human activities. Sponges are suitable models for studying the intra- and inter-population genetic variation of rare invertebrates, as they produce lecitotrophic larvae and are often found in fragmented habitats. Results We investigated the genetic structure of a Mediterranean sponge, Scopalina lophyropoda (Schmidt, using the allelic size variation of seven specific microsatellite loci. The species can be classified as "rare" because of its strict habitat requirements, the low number of individuals per population, and the relatively small size of its distribution range. It also presents a strong patchy distribution, philopatric larval dispersal, and both sexual and asexual reproduction. Classical genetic-variance-based methods (AMOVA and differentiation statistics revealed that the genetic diversity of S. lophyropoda was structured at the three spatial scales studied: within populations, between populations of a geographic region, and between isolated geographic regions, although some stochastic gene flow might occur among populations within a region. The genetic structure followed an isolation-by-distance pattern according to the Mantel test. However, despite philopatric larval dispersal and fission events in the species, no single population showed inbreeding, and the contribution of clonality to the

  15. Habitat and scale shape the demographic fate of the keystone sea urchin Paracentrotus lividus in Mediterranean macrophyte communities

    OpenAIRE

    Prado, Patricia; Tomas, Fiona; Pinna, Stefania; Farina, Simone; Roca, Guillem; Ceccherelli, Giulia; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Demographic processes exert different degrees of control as individuals grow, and in species that span several habitats and spatial scales, this can influence our ability to predict their population at a particular life-history stage given the previous life stage. In particular, when keystone species are involved, this relative coupling between demographic stages can have significant implications for the functioning of ecosystems. We examined benthic and pelagic abundances of the sea urchin P...

  16. Landscape composition influences abundance patterns and habitat use of three ungulate species in fragmented secondary deciduous tropical forests, Mexico

    Directory of Open Access Journals (Sweden)

    G. García-Marmolejo

    2015-01-01

    Full Text Available Secondary forests are extensive in the tropics. Currently, these plant communities are the available habitats for wildlife and in the future they will possibly be some of the most wide-spread ecosystems world-wide. To understand the potential role of secondary forests for wildlife conservation, three ungulate species were studied: Mazama temama, Odocoileus virginianus and Pecari tajacu. We analyzed their relative abundance and habitat use at two spatial scales: (1 Local, where three different successional stages of tropical deciduous forest were compared, and (2 Landscape, where available habitats were compared in terms of landscape composition (proportion of forests, pastures and croplands within 113 ha. To determine the most important habitat-related environmental factors influencing the Sign Encounter Rate (SER of the three ungulate species, 11 physical, anthropogenic and vegetation variables were simultaneously analyzed through model selection using Akaike’s Information Criterion. We found, that P. tajacu and O. virginianus mainly used early successional stages, while M. temama used all successional stages in similar proportions. The latter species, however, used early vegetation stages only when they were located in landscapes mainly covered by forest (97%. P. tajacu and O. virginianus also selected landscapes covered essentially by forests, although they required smaller percentages of forest (86%. All ungulate species avoided landscape fragments covered by pastures. For all three species, landscape composition and human activities were the variables that best explained SER. We concluded that landscape is the fundamental scale for ungulate management, and that secondary forests are potentially important landscape elements for ungulate conservation.

  17. Influence of learning on range expansion and adaptation to novel habitats.

    Science.gov (United States)

    Sutter, M; Kawecki, T J

    2009-11-01

    Learning has been postulated to 'drive' evolution, but its influence on adaptive evolution in heterogeneous environments has not been formally examined. We used a spatially explicit individual-based model to study the effect of learning on the expansion and adaptation of a species to a novel habitat. Fitness was mediated by a behavioural trait (resource preference), which in turn was determined by both the genotype and learning. Our findings indicate that learning substantially increases the range of parameters under which the species expands and adapts to the novel habitat, particularly if the two habitats are separated by a sharp ecotone (rather than a gradient). However, for a broad range of parameters, learning reduces the degree of genetically-based local adaptation following the expansion and facilitates maintenance of genetic variation within local populations. Thus, in heterogeneous environments learning may facilitate evolutionary range expansions and maintenance of the potential of local populations to respond to subsequent environmental changes.

  18. Habitat change influences mate search behaviour in three-spined sticklebacks

    DEFF Research Database (Denmark)

    Heuschele, Jan; Salminen, Tiina; Candolin, Ulrika

    2012-01-01

    Mate choice is one of the main mechanisms of sexual selection, with profound implications for individual fitness. Changes in environmental conditions can cause individuals to alter their mate search behaviour, with consequences for mate choice. Human-induced eutrophication of water bodies...... is a global problem that alters habitat structure and visibility in aquatic ecosystems. We investigated whether changes in habitat complexity and male cue modality, visual or olfactory, influence mate search behaviour of female three-spined sticklebacks, Gasterosteus aculeatus. We allowed gravid females...... evaluation in the absence of visual stimulation. This reduced the rate of mate encounters and probably also the opportunity for choice. Our results show that changes in habitat structure and visibility can alter female mate searching, with potential consequences for the opportunity for sexual selection....

  19. Multi-scale marine biodiversity patterns inferred efficiently from habitat image processing.

    Science.gov (United States)

    Mellin, Camille; Parrott, Lael; Andréfouët, Serge; Bradshaw, Corey J A; MacNeil, M Aaron; Caley, M Julian

    2012-04-01

    Cost-effective proxies of biodiversity and species abundance, applicable across a range of spatial scales, are needed for setting conservation priorities and planning action. We outline a rapid, efficient, and low-cost measure of spectral signal from digital habitat images that, being an effective proxy for habitat complexity, correlates with species diversity and requires little image processing or interpretation. We validated this method for coral reefs of the Great Barrier Reef (GBR), Australia, across a range of spatial scales (1 m to 10 km), using digital photographs of benthic communities at the transect scale and high-resolution Landsat satellite images at the reef scale. We calculated an index of image-derived spatial heterogeneity, the mean information gain (MIG), for each scale and related it to univariate (species richness and total abundance summed across species) and multivariate (species abundance matrix) measures of fish community structure, using two techniques that account for the hierarchical structure of the data: hierarchical (mixed-effect) linear models and distance-based partial redundancy analysis. Over the length and breadth of the GBR, MIG alone explained up to 29% of deviance in fish species richness, 33% in total fish abundance, and 25% in fish community structure at multiple scales, thus demonstrating the possibility of easily and rapidly exploiting spatial information contained in digital images to complement existing methods for inferring diversity and abundance patterns among fish communities. Thus, the spectral signal of unprocessed remotely sensed images provides an efficient and low-cost way to optimize the design of surveys used in conservation planning. In data-sparse situations, this simple approach also offers a viable method for rapid assessment of potential local biodiversity, particularly where there is little local capacity in terms of skills or resources for mounting in-depth biodiversity surveys.

  20. Influence of food availability on the spatial distribution of juvenile fish within soft sediment nursery habitats

    Science.gov (United States)

    Tableau, A.; Brind'Amour, A.; Woillez, M.; Le Bris, H.

    2016-05-01

    Soft sediments in coastal shallow waters constitute nursery habitats for juveniles of several flatfishes. The quality of a nursery is defined by its capacity to optimize the growth and the survival of juvenile fish. The influence of biotic factors, such as food availability, is poorly studied at the scale of a nursery ground. Whether food availability limits juvenile survival is still uncertain. A spatial approach is used to understand the influence of food availability on the distribution of juvenile fish of various benthic and demersal species in the Bay of Vilaine (France), a productive nursery ground. We quantified the spatial overlap between benthic macro-invertebrates and their predators (juvenile fish) to assess if the latter were spatially covering the most productive areas of the Bay. Three scenarios describing the shapes of the predator-prey spatial relationship were tested to quantify the strength of the relationship and consequently the importance of food availability in determining fish distribution. Our results underline that both food availability and fish densities vary greatly over the nursery ground. When considering small organisational levels (e.g., a single fish species), the predator-prey spatial relationship was not clear, likely because of additional environmental effects not identified here; but at larger organisational level (the whole juvenile fish community), a strong overlap between the fish predators and their prey was identified. The evidence that fish concentrate in sectors with high food availability suggests that either food is the limiting factor in that nursery or/and fish display behavioural responses by optimising their energetic expenditures associated with foraging. Further investigations are needed to test the two hypotheses and to assess the impact of benthic and demersal juvenile fish in the food web of coastal nurseries.

  1. Scale-dependent habitat use by a large free-ranging predator, the Mediterranean fin whale

    Science.gov (United States)

    Cotté, Cédric; Guinet, Christophe; Taupier-Letage, Isabelle; Mate, Bruce; Petiau, Estelle

    2009-05-01

    Since the heterogeneity of oceanographic conditions drives abundance, distribution, and availability of prey, it is essential to understand how foraging predators interact with their dynamic environment at various spatial and temporal scales. We examined the spatio-temporal relationships between oceanographic features and abundance of fin whales ( Balaenoptera physalus), the largest free-ranging predator in the Western Mediterranean Sea (WM), through two independent approaches. First, spatial modeling was used to estimate whale density, using waiting distance (the distance between detections) for fin whales along ferry routes across the WM, in relation to remotely sensed oceanographic parameters. At a large scale (basin and year), fin whales exhibited fidelity to the northern WM with a summer-aggregated and winter-dispersed pattern. At mesoscale (20-100 km), whales were found in colder, saltier (from an on-board system) and dynamic areas defined by steep altimetric and temperature gradients. Second, using an independent fin whale satellite tracking dataset, we showed that tracked whales were effectively preferentially located in favorable habitats, i.e. in areas of high predicted densities as identified by our previous model using oceanographic data contemporaneous to the tracking period. We suggest that the large-scale fidelity corresponds to temporally and spatially predictable habitat of whale favorite prey, the northern krill ( Meganyctiphanes norvegica), while mesoscale relationships are likely to identify areas of high prey concentration and availability.

  2. Scale-dependent mechanisms of habitat selection for a migratory passerine: an experimental approach

    Science.gov (United States)

    Donovan, Therese M.; Cornell, Kerri L.

    2010-01-01

    Habitat selection theory predicts that individuals choose breeding habitats that maximize fitness returns on the basis of indirect environmental cues at multiple spatial scales. We performed a 3-year field experiment to evaluate five alternative hypotheses regarding whether individuals choose breeding territories in heterogeneous landscapes on the basis of (1) shrub cover within a site, (2) forest land-cover pattern surrounding a site, (3) conspecific song cues during prebreeding settlement periods, (4) a combination of these factors, and (5) interactions among these factors. We tested hypotheses with playbacks of conspecific song across a gradient of landscape pattern and shrub density and evaluated changes in territory occupancy patterns in a forest-nesting passerine, the Black-throated Blue Warbler (Dendroica caerulescens). Our results support the hypothesis that vegetation structure plays a primary role during presettlement periods in determining occupancy patterns in this species. Further, both occupancy rates and territory turnover were affected by an interaction between local shrub density and amount of forest in the surrounding landscape, but not by interactions between habitat cues and social cues. Although previous studies of this species in unfragmented landscapes found that social postbreeding song cues played a key role in determining territory settlement, our prebreeding playbacks were not associated with territory occupancy or turnover. Our results suggest that in heterogeneous landscapes during spring settlement, vegetation structure may be a more reliable signal of reproductive performance than the physical location of other individuals.

  3. Influence of habitat and intrinsic characteristics on survival of neonatal pronghorn

    Science.gov (United States)

    Jacques, Christopher N.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.

    2015-01-01

    Increased understanding of the influence of habitat (e.g., composition, patch size) and intrinsic (e.g., age, birth mass) factors on survival of neonatal pronghorn (Antilocapra americana) is a prerequisite to successful management programs, particularly as they relate to population dynamics and the role of population models in adaptive species management. Nevertheless, few studies have presented empirical data quantifying the influence of habitat variables on survival of neonatal pronghorn. During 2002–2005, we captured and radiocollared 116 neonates across two sites in western South Dakota. We documented 31 deaths during our study, of which coyote (Canis latrans) predation (n = 15) was the leading cause of mortality. We used known fate analysis in Program MARK to investigate the influence of intrinsic and habitat variables on neonatal survival. We generated a priori models that we grouped into habitat and intrinsic effects. The highest-ranking model indicated that neonate mortality was best explained by site, percent grassland, and open water habitat; 90-day survival (0.80; 90% CI = 0.71–0.88) declined 23% when grassland and water increased from 80.1 to 92.3% and 0.36 to 0.40%, respectively, across 50% natal home ranges. Further, our results indicated that grassland patch size and shrub density were important predictors of neonate survival; neonate survival declined 17% when shrub density declined from 5.0 to 2.5 patches per 100 ha. Excluding the site covariates, intrinsic factors (i.e., sex, age, birth mass, year, parturition date) were not important predictors of survival of neonatal pronghorns. Further, neonatal survival may depend on available land cover and interspersion of habitats. We have demonstrated that maintaining minimum and maximum thresholds for habitat factors (e.g., percentages of grassland and open water patches, density of shrub patches) throughout natal home ranges will in turn, ensure relatively high (>0.50) neonatal survival rates

  4. Influence of Habitat and Intrinsic Characteristics on Survival of Neonatal Pronghorn.

    Directory of Open Access Journals (Sweden)

    Christopher N Jacques

    Full Text Available Increased understanding of the influence of habitat (e.g., composition, patch size and intrinsic (e.g., age, birth mass factors on survival of neonatal pronghorn (Antilocapra americana is a prerequisite to successful management programs, particularly as they relate to population dynamics and the role of population models in adaptive species management. Nevertheless, few studies have presented empirical data quantifying the influence of habitat variables on survival of neonatal pronghorn. During 2002-2005, we captured and radiocollared 116 neonates across two sites in western South Dakota. We documented 31 deaths during our study, of which coyote (Canis latrans predation (n = 15 was the leading cause of mortality. We used known fate analysis in Program MARK to investigate the influence of intrinsic and habitat variables on neonatal survival. We generated a priori models that we grouped into habitat and intrinsic effects. The highest-ranking model indicated that neonate mortality was best explained by site, percent grassland, and open water habitat; 90-day survival (0.80; 90% CI = 0.71-0.88 declined 23% when grassland and water increased from 80.1 to 92.3% and 0.36 to 0.40%, respectively, across 50% natal home ranges. Further, our results indicated that grassland patch size and shrub density were important predictors of neonate survival; neonate survival declined 17% when shrub density declined from 5.0 to 2.5 patches per 100 ha. Excluding the site covariates, intrinsic factors (i.e., sex, age, birth mass, year, parturition date were not important predictors of survival of neonatal pronghorns. Further, neonatal survival may depend on available land cover and interspersion of habitats. We have demonstrated that maintaining minimum and maximum thresholds for habitat factors (e.g., percentages of grassland and open water patches, density of shrub patches throughout natal home ranges will in turn, ensure relatively high (>0.50 neonatal survival rates

  5. Habitat architecture influencing microcrustaceans composition: a case study on freshwater Cladocera (Crustacea Branchiopoda

    Directory of Open Access Journals (Sweden)

    J. R. Debastiani-Júnior

    Full Text Available Abstract Environmental complexity is considered a key factor for diversity enhancement in aquatic ecosystems. Macrophyte stands are a major contributor for this complexity due to their differential architectures. Nevertheless, the influence of distinct aquatic habitat architectures (with different types of macrophytes or without them on microcrustaceans’ taxa composition, usually found in macrophyte colonized water bodies, is underexplored in limnological studies. The main objective of this study was to analyze this influence by comparing the Cladocera composition among four habitat architectures: (1 fluctuant macrophytes, (2 rooted emergent macrophytes, (3 submerged macrophytes and (4 the limnetic zone of oxbow lakes associated to a large subtropical reservoir. Wide compositional variation was observed. Fluctuant macrophytes exhibited the richest Cladocera assemblage, dominated by Chydoridae. Submerged and rooted emergent macrophytes had the most similar assemblages between them. The most distinctive fauna was found in the limnetic zone, dominated by Bosminidae. Probable differences in resource availability in each sampled habitat architecture are considered as the driving factor for the Cladocera composition variation. We concluded that for a complete inventory of a given local fauna, it is imperative to take into account the aquatic habitat architecture, including macrophyte stands, in the data sampling design.

  6. Habitat architecture influencing microcrustaceans composition: a case study on freshwater Cladocera (Crustacea Branchiopoda).

    Science.gov (United States)

    Debastiani-Júnior, J R; Elmoor-Loureiro, L M A; Nogueira, M G

    2016-02-01

    Environmental complexity is considered a key factor for diversity enhancement in aquatic ecosystems. Macrophyte stands are a major contributor for this complexity due to their differential architectures. Nevertheless, the influence of distinct aquatic habitat architectures (with different types of macrophytes or without them) on microcrustaceans' taxa composition, usually found in macrophyte colonized water bodies, is underexplored in limnological studies. The main objective of this study was to analyze this influence by comparing the Cladocera composition among four habitat architectures: (1) fluctuant macrophytes, (2) rooted emergent macrophytes, (3) submerged macrophytes and (4) the limnetic zone of oxbow lakes associated to a large subtropical reservoir. Wide compositional variation was observed. Fluctuant macrophytes exhibited the richest Cladocera assemblage, dominated by Chydoridae. Submerged and rooted emergent macrophytes had the most similar assemblages between them. The most distinctive fauna was found in the limnetic zone, dominated by Bosminidae. Probable differences in resource availability in each sampled habitat architecture are considered as the driving factor for the Cladocera composition variation. We concluded that for a complete inventory of a given local fauna, it is imperative to take into account the aquatic habitat architecture, including macrophyte stands, in the data sampling design.

  7. Fatty acid composition at the base of aquatic food webs is influenced by habitat type and watershed land use.

    Science.gov (United States)

    Larson, James H; Richardson, William B; Knights, Brent C; Bartsch, Lynn A; Bartsch, Michelle R; Nelson, John C; Veldboom, Jason A; Vallazza, Jon M

    2013-01-01

    Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.

  8. Physical habitat quality and interspecific competition interact to influence territory settlement and reproductive success in a cavity nesting bird

    Directory of Open Access Journals (Sweden)

    John Anthony Jones

    2014-10-01

    Full Text Available Determining how to best measure habitat quality is essential for many conservation plans and basic ecological questions. Territory quality is thought to be a product of physical habitat characteristics (i.e. habitat quality and the density of competitors yet these relationships are rarely demonstrated. Occupancy rates, or how often a territory has been used since its establishment, are often used as a proxy for habitat quality. We tested the utility of occupancy rates as a proxy of habitat quality by comparing it with reproductive output in eastern bluebirds (Sialia sialis. We then tested the extent to which occupancy rates are influenced by physical habitat quality (land cover via remote sensing, aggressive interspecific competition with tree swallows (Tachycineta bicolor, and the individual quality of the breeding birds. We found that occupancy was the best predictor of reproductive output although female age and habitat openness also contributed to reproductive success. Habitat openness and competition with tree swallows best predicted site occupancy. Bluebirds appeared to avoid settling in areas of higher interspecific competition with tree swallows, but when bluebirds settled in areas of higher interspecific competition, physical (spatial habitat quality was a good predictor of settlement location. Thus, our results suggest that although historical occupancy of territories is an accurate and easy-to-measure proxy of reproductive output, the realized habitat quality is a product of the tradeoffs between spatial habitat quality and interspecific competition. Here, we show that aggressive interspecific competition interacts with spatial habitat to influence settlement. A better understanding of how these variables influence settlement and productivity may better enable the management of source, rather than sink, habitats.

  9. Beta-diversity of ectoparasites at two spatial scales: nested hierarchy, geography and habitat type.

    Science.gov (United States)

    Warburton, Elizabeth M; van der Mescht, Luther; Stanko, Michal; Vinarski, Maxim V; Korallo-Vinarskaya, Natalia P; Khokhlova, Irina S; Krasnov, Boris R

    2017-06-01

    Beta-diversity of biological communities can be decomposed into (a) dissimilarity of communities among units of finer scale within units of broader scale and (b) dissimilarity of communities among units of broader scale. We investigated compositional, phylogenetic/taxonomic and functional beta-diversity of compound communities of fleas and gamasid mites parasitic on small Palearctic mammals in a nested hierarchy at two spatial scales: (a) continental scale (across the Palearctic) and (b) regional scale (across sites within Slovakia). At each scale, we analyzed beta-diversity among smaller units within larger units and among larger units with partitioning based on either geography or ecology. We asked (a) whether compositional, phylogenetic/taxonomic and functional dissimilarities of flea and mite assemblages are scale dependent; (b) how geographical (partitioning of sites according to geographic position) or ecological (partitioning of sites according to habitat type) characteristics affect phylogenetic/taxonomic and functional components of dissimilarity of ectoparasite assemblages and (c) whether assemblages of fleas and gamasid mites differ in their degree of dissimilarity, all else being equal. We found that compositional, phylogenetic/taxonomic, or functional beta-diversity was greater on a continental rather than a regional scale. Compositional and phylogenetic/taxonomic components of beta-diversity were greater among larger units than among smaller units within larger units, whereas functional beta-diversity did not exhibit any consistent trend regarding site partitioning. Geographic partitioning resulted in higher values of beta-diversity of ectoparasites than ecological partitioning. Compositional and phylogenetic components of beta-diversity were higher in fleas than mites but the opposite was true for functional beta-diversity in some, but not all, traits.

  10. Host Life History Strategy, Species Diversity, and Habitat Influence Trypanosoma cruzi Vector Infection in Changing Landscapes

    Science.gov (United States)

    Gottdenker, Nicole L.; Chaves, Luis Fernando; Calzada, José E.; Saldaña, Azael; Carroll, C. Ronald

    2012-01-01

    Background Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama. Methodology/Principal Findings R. pallescens vectors (N = 643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as rmax, the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of rmax were positively associated with higher vector infection rate at a site. Conclusions/Significance In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially

  11. Host life history strategy, species diversity, and habitat influence Trypanosoma cruzi vector infection in Changing landscapes.

    Directory of Open Access Journals (Sweden)

    Nicole L Gottdenker

    Full Text Available Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama.R. pallescens vectors (N = 643 were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3% vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3% dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as r(max, the maximum intrinsic rate of population increase, and habitat type (forest fragments and peridomiciliary sites were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of r(max were positively associated with higher vector infection rate at a site.In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially by changing host community structure to favor hosts

  12. Coexistence of sympatric carnivores in relatively homogeneous Mediterranean landscapes: functional importance of habitat segregation at the fine-scale level.

    Science.gov (United States)

    Soto, Carolina; Palomares, Francisco

    2015-09-01

    One of the main objectives of community ecology is to understand the conditions allowing species to coexist. However, few studies have investigated the role of fine-scale habitat use segregation in the functioning of guild communities in relatively homogeneous landscapes where opportunities for coexistence are likely to be the most restrictive. We investigate how the process of habitat use differentiation at the home range level according to the degree of specialism/generalism of species can lead to coexistence between guild species. We examine differences in fine-scale habitat use and niche separation as potential mechanisms explaining the coexistence of five sympatric carnivore species that differ in life history traits (Iberian lynx, Eurasian badger, Egyptian mongoose, common genet and red fox) by collecting data from systematic track censuses in a relatively homogeneous Mediterranean landscape. We found that a higher degree of specialism determines the segregation of species among the fine-scale ecological niche dimensions defined using quantitative elements associated with vegetation, landscape, prey availability and human disturbance. The species with the lowest total performance over the set of variables did not exhibit segregation in the use of habitat at this level. Our study indicates that in relatively homogeneous landscapes, there exist subtle patterns of habitat partitioning over small-scale gradients of habitat determinants as a function of the degree of specialism of carnivore species within a guild. Our results also suggest that coexistence between generalist species may be permitted by fine-scale spatial-temporal segregation of activity patterns or trophic resource consumption, but not fine-scale habitat use differentiation.

  13. Habitat-dependent changes in vigilance behaviour of Red-crowned Crane influenced by wildlife tourism.

    Science.gov (United States)

    Li, Donglai; Liu, Yu; Sun, Xinghai; Lloyd, Huw; Zhu, Shuyu; Zhang, Shuyan; Wan, Dongmei; Zhang, Zhengwang

    2017-11-30

    The Endangered Red-crowned Crane (Grus japonensis) is one of the most culturally iconic and sought-after species by wildlife tourists. Here we investigate how the presence of tourists influence the vigilance behaviour of cranes foraging in Suaeda salsa salt marshes and S. salsa/Phragmites australis mosaic habitat in the Yellow River Delta, China. We found that both the frequency and duration of crane vigilance significantly increased in the presence of wildlife tourists. Increased frequency in crane vigilance only occurred in the much taller S. salsa/P. australis mosaic vegetation whereas the duration of vigilance showed no significant difference between the two habitats. Crane vigilance declined with increasing distance from wildlife tourists in the two habitats, with a minimum distance of disturbance triggering a high degree of vigilance by cranes identified at 300 m. The presence of wildlife tourists may represent a form of disturbance to foraging cranes but is habitat dependent. Taller P. australis vegetation serves primarily as a visual obstruction for cranes, causing them to increase the frequency of vigilance behaviour. Our findings have important implications for the conservation of the migratory red-crowned crane population that winters in the Yellow River Delta and can help inform visitor management.

  14. Influences of recreation influence of forest and rangeland management on anadromous fish habitat in Western North America: influences of recreation.

    Science.gov (United States)

    Roger N. Clark; Dave R. Gibbons; Gilbert B. Pauley

    1985-01-01

    Public and private lands in the United States are used by millions of people for recreational activities. Many of these activities occur in or near streams and coastal areas that produce various species of anadromous fish. A major concern of fishery managers is the possible adverse effect of recreational uses on fish habitat. Conversely, the management of fish habitats...

  15. Remote sensing and fish-habitat relationships in coral reef ecosystems: review and pathways for multi-scale hierarchical research.

    Science.gov (United States)

    Mellin, Camille; Andréfouët, Serge; Kulbicki, Michel; Dalleau, Mayeul; Vigliola, Laurent

    2009-01-01

    Understanding spatial variations in alpha, beta, and gamma coral reef fish diversity, as well as both local community and regional metacommunity structures, is critical for science and conservation of coral reef ecosystems. This quest implies that fish-habitat relationships are characterized across different spatial scales. Remote sensing allows now for a routine description of habitats from global-regional to detailed reef scales, thus theoretically offering access to hierarchical spatial analysis at multiple scales. To judge the progress in using remotely sensed habitat variables for reef fish study, existing peer-reviewed papers on the subject are reviewed. We tabulated the significant fish-habitat relationships given the different study sites, fish and habitat variables, statistical analysis, sampling efforts and scales. Studies generally do not corroborate each other. Instead, the exercise provides a diversity of thematic results from which lessons remain equivocal. It is thus justified to recommend more systematic and hierarchical remote-sensing based research in the future. We advocate the use of remote-sensing early in the design of the fish study, as part of a coherent conceptual scheme spanning all spatial scales.

  16. Influence of Green Tides in Coastal Nursery Grounds on the Habitat Selection and Individual Performance of Juvenile Fish.

    Science.gov (United States)

    Le Luherne, Emilie; Le Pape, Olivier; Murillo, Laurence; Randon, Marine; Lebot, Clément; Réveillac, Elodie

    2017-01-01

    Coastal ecosystems, which provide numerous essential ecological functions for fish, are threatened by the proliferation of green macroalgae that significantly modify habitat conditions in intertidal areas. Understanding the influence of green tides on the nursery function of these ecosystems is essential to determine their potential effects on fish recruitment success. In this study, the influence of green tides on juvenile fish was examined in an intertidal sandy beach area, the Bay of Saint-Brieuc (Northwestern France), during two annual cycles of green tides with varying levels of intensity. The responses of three nursery-dependent fish species, the pelagic Sprattus sprattus (L.), the demersal Dicentrarchus labrax (L.) and the benthic Pleuronectes platessa L., were analysed to determine the effects of green tides according to species-specific habitat niche and behaviour. The responses to this perturbation were investigated based on habitat selection and a comparison of individual performance between a control and an impacted site. Several indices on different integrative scales were examined to evaluate these responses (antioxidant defence capacity, muscle total lipid, morphometric condition and growth). Based on these analyses, green tides affect juvenile fish differently according to macroalgal density and species-specific tolerance, which is linked to their capacity to move and to their distribution in the water column. A decreasing gradient of sensitivity was observed from benthic to demersal and pelagic fish species. At low densities of green macroalgae, the three species stayed at the impacted site and the growth of plaice was reduced. At medium macroalgal densities, plaice disappeared from the impacted site and the growth of sea bass and the muscle total lipid content of sprat were reduced. Finally, when high macroalgal densities were reached, none of the studied species were captured at the impacted site. Hence, sites affected by green tides are less

  17. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management

    Science.gov (United States)

    Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.

    2016-01-01

    We illustrate an approach to quantify patterns in hydraulic habitat composition and local heterogeneity applicable at low cost over very large river extents, with selectable reach window scales. Ongoing developments in remote sensing and geographical information science massively improve efficiencies in analyzing earth surface features. With the development of new satellite sensors and drone platforms and with the lowered cost of high resolution multispectral imagery, fluvial geomorphology is experiencing a revolution in mapping streams at high resolution. Exploiting the power of aerial or satellite imagery is particularly useful in a riverscape research framework (Fausch et al., 2002), where high resolution sampling of fluvial features and very large coverage extents are needed. This study presents a satellite remote sensing method that requires very limited field calibration data to estimate over various scales ranging from 1 m to many tens or river kilometers (i) spatial composition metrics for key hydraulic mesohabitat types and (ii) reach-scale wetted habitat heterogeneity indices such as the hydromorphological index of diversity (HMID). When the purpose is hydraulic habitat characterization applied over long river networks, the proposed method (although less accurate) is much less computationally expensive and less data demanding than two dimensional computational fluid dynamics (CFD). Here, we illustrate the tools based on a Worldview 2 satellite image of the Kiamika River, near Mont Laurier, Quebec, Canada, specifically over a 17-km river reach below the Kiamika dam. In the first step, a high resolution water depth (D) map is produced from a spectral band ratio (calculated from the multispectral image), calibrated with limited field measurements. Next, based only on known river discharge and estimated cross section depths at time of image capture, empirical-based pseudo-2D hydraulic rules are used to rapidly generate a two-dimensional map of flow velocity

  18. Design and testing of a mesocosm-scale habitat for culturing the endangered Devils Hole Pupfish

    Science.gov (United States)

    Feuerbacher, Olin; Bonar, Scott A.; Barrett, Paul J.

    2016-01-01

    aptive propagation of desert spring fishes, whether for conservation or research, is often difficult, given the unique and often challenging environments these fish utilize in nature. High temperatures, low dissolved oxygen, minimal water flow, and highly variable lighting are some conditions a researcher might need to recreate to simulate their natural environments. Here we describe a mesocosm-scale habitat created to maintain hybrid Devils Hole × Ash Meadows Amargosa Pupfish (Cyprinodon diabolis × C. nevadensis mionectes) under conditions similar to those found in Devils Hole, Nevada. This 13,000-L system utilized flow control and natural processes to maintain these conditions rather than utilizing complex and expensive automation. We designed a rotating solar collector to control natural sunlight, a biological reactor to consume oxygen while buffering water quality, and a reverse-daylight photosynthesis sump system to stabilize nighttime pH and swings in dissolved oxygen levels. This system successfully controlled many desired parameters and helped inform development of a larger, more permanent desert fish conservation facility at the U.S. Fish and Wildlife Service’s Ash Meadows National Wildlife Refuge, Nevada. For others who need to raise fish from unique habitats, many components of the scalable and modular design of this system can be adapted at reasonable cost.

  19. Relative influence of habitat fragmentation and inundation on brown shrimpFarfantepenaeus aztecusproduction in northern Gulf of Mexico salt marshes

    National Research Council Canada - National Science Library

    B. M. Roth; K. A. Rose; L. P. Rozas; T. J. Minello

    2008-01-01

    We used a spatially explicit individual-based model to investigate the relative influences of inundation and habitat fragmentation on brown shrimp production in northern Gulf of Mexico (NGOM) salt marshes...

  20. Broad-scale lake expansion and flooding inundates essential wood bison habitat

    Science.gov (United States)

    Korosi, Jennifer B.; Thienpont, Joshua R.; Pisaric, Michael F. J.; Demontigny, Peter; Perreault, Joelle T.; McDonald, Jamylynn; Simpson, Myrna J.; Armstrong, Terry; Kokelj, Steven V.; Smol, John P.; Blais, Jules M.

    2017-02-01

    Understanding the interaction between the response of a complex ecosystem to climate change and the protection of vulnerable wildlife species is essential for conservation efforts. In the Northwest Territories (Canada), the recent movement of the Mackenzie wood bison herd (Bison bison athabascae) out of their designated territory has been postulated as a response to the loss of essential habitat following regional lake expansion. We show that the proportion of this landscape occupied by water doubled since 1986 and the timing of lake expansion corresponds to bison movements out of the Mackenzie Bison Sanctuary. Historical reconstructions using proxy data in dated sediment cores show that the scale of recent lake expansion is unmatched over at least the last several hundred years. We conclude that recent lake expansion represents a fundamental alteration of the structure and function of this ecosystem and its use by Mackenzie wood bison, in response to climate change.

  1. Harbour porpoise distribution can vary at small spatiotemporal scales in energetic habitats

    Science.gov (United States)

    Benjamins, Steven; van Geel, Nienke; Hastie, Gordon; Elliott, Jim; Wilson, Ben

    2017-07-01

    Marine habitat heterogeneity underpins species distribution and can be generated through interactions between physical and biological drivers at multiple spatiotemporal scales. Passive acoustic monitoring (PAM) is used worldwide to study potential impacts of marine industrial activities on cetaceans, but understanding of animals' site use at small spatiotemporal scales (marine renewable energy development (MRED) sites was investigated by deploying dense arrays of C-POD passive acoustic detectors at a wave energy test site (the European Marine Energy Centre [Billia Croo, Orkney]) and by a minor tidal-stream site (Scarba [Inner Hebrides]). Respective arrays consisted of 7 and 11 moorings containing two C-PODs each and were deployed for up to 55 days. Minimum inter-mooring distances varied between 300-600 m. All C-POD data were analysed at a temporal resolution of whole minutes, with each minute classified as 1 or 0 on the basis of presence/absence of porpoise click trains (Porpoise-Positive Minutes/PPMs). Porpoise detection rates were analysed using Generalised Additive Models (GAMs) with Generalised Estimation Equations (GEEs). Although there were many porpoise detections (wave test site: N=3,432; tidal-stream site: N=17,366), daily detection rates varied significantly within both arrays. Within the wave site array (<1 km diameter), average daily detection rates varied from 4.3 to 14.8 PPMs/day. Within the tidal-stream array (<2 km diameter), average daily detection rates varied from 10.3 to 49.7 PPMs/day. GAM-GEE model results for individual moorings within both arrays indicated linkages between porpoise presence and small-scale heterogeneity among different environmental covariates (e.g., tidal phase, time of day). Porpoise detection rates varied considerably but with coherent patterns between moorings only several hundred metres apart and within hours. These patterns presumably have ecological relevance. These results indicate that, in energetically active and

  2. The influence of nutrients and physical habitat in regulating algal biomass in agricultural streams

    Science.gov (United States)

    Munn, Mark D.; Frey, Jeffrey W.; Tesoriero, Anthony J.

    2010-01-01

    This study examined the relative influence of nutrients (nitrogen and phosphorus) and habitat on algal biomass in five agricultural regions of the United States. Sites were selected to capture a range of nutrient conditions, with 136 sites distributed over five study areas. Samples were collected in either 2003 or 2004, and analyzed for nutrients (nitrogen and phosphorous) and algal biomass (chlorophyll a). Chlorophyll a was measured in three types of samples, fine-grained benthic material (CHLFG), coarse-grained stable substrate as in rock or wood (CHLCG), and water column (CHLS). Stream and riparian habitat were characterized at each site. TP ranged from 0.004–2.69 mg/l and TN from 0.15–21.5 mg/l, with TN concentrations highest in Nebraska and Indiana streams and TP highest in Nebraska. Benthic algal biomass ranged from 0.47–615 mg/m2, with higher values generally associated with coarse-grained substrate. Seston chlorophyll ranged from 0.2–73.1 μg/l, with highest concentrations in Nebraska. Regression models were developed to predict algal biomass as a function of TP and/or TN. Seven models were statistically significant, six for TP and one for TN; r2 values ranged from 0.03 to 0.44. No significant regression models could be developed for the two study areas in the Midwest. Model performance increased when stream habitat variables were incorporated, with 12 significant models and an increase in the r2 values (0.16–0.54). Water temperature and percent riparian canopy cover were the most important physical variables in the models. While models that predict algal chlorophyll a as a function of nutrients can be useful, model strength is commonly low due to the overriding influence of stream habitat. Results from our study are presented in context of a nutrient-algal biomass conceptual model.

  3. Scale-Dependent Seasonal Pool Habitat Use by Sympatric Wild Brook Trout and Brown Trout Populations

    National Research Council Canada - National Science Library

    Davis, Lori A; Wagner, Tyler

    2016-01-01

    .... Discrete-choice models were used to (1) evaluate fall and early winter daytime habitat use by sympatric Brook Trout and Brown Trout populations based on available residual pool habitat within a stream network and (2...

  4. Patchiness of macrobenthic invertebrates in homogenized intertidal habitats : hidden spatial structure at a landscape scale

    NARCIS (Netherlands)

    Kraan, Casper; van der Meer, Jaap; Dekinga, Anne; Piersma, Theunis; Lipcius, Romuald

    2009-01-01

    Many terrestrial habitats, and certainly man-made systems such as woodland and agricultural habitats, are characterised by a mosaic of different habitat types. In contrast, most seafloors have a rather uniform visual appearance which is enhanced by the cryptic nature of many of their inhabitants.

  5. Development and Validation of the Family Influence Scale

    Science.gov (United States)

    Fouad, Nadya A.; Cotter, Elizabeth W.; Fitzpatrick, Mary E.; Kantamneni, Neeta; Carter, Laura; Bernfeld, Steve

    2010-01-01

    This article describes the development and validation of the Family Influence Scale (FIS). The FIS is designed to assess perceptions of how one's family of origin influences career and work choices. The purpose of Study 1 was to identify the domains of family influence. A 57-item scale was completed by a sample of 205 college students. Results…

  6. Regional-scale migrations and habitat use of juvenile lemon sharks (Negaprion brevirostris) in the US South Atlantic.

    Science.gov (United States)

    Reyier, Eric A; Franks, Bryan R; Chapman, Demian D; Scheidt, Douglas M; Stolen, Eric D; Gruber, Samuel H

    2014-01-01

    Resolving the geographic extent and timing of coastal shark migrations, as well as their environmental cues, is essential for refining shark management strategies in anticipation of increasing anthropogenic stressors to coastal ecosystems. We employed a regional-scale passive acoustic telemetry array encompassing 300 km of the east Florida coast to assess what factors influence site fidelity of juvenile lemon sharks (Negaprion brevirostris) to an exposed coastal nursery at Cape Canaveral, and to document the timing and rate of their seasonal migrations. Movements of 54 juvenile lemon sharks were monitored for three years with individuals tracked for up to 751 days. While most sharks demonstrated site fidelity to the Cape Canaveral region December through February under typical winter water temperatures, historically extreme declines in ocean temperature were accompanied by rapid and often temporary, southward displacements of up to 190 km along the Florida east coast. From late February through April each year, most sharks initiated a northward migration at speeds of up to 64 km day(-1) with several individuals then detected in compatible estuarine telemetry arrays in Georgia and South Carolina up to 472 km from release locations. Nineteen sharks returned for a second or even third consecutive winter, thus demonstrating strong seasonal philopatry to the Cape Canaveral region. The long distance movements and habitat associations of immature lemon sharks along the US southeast coast contrast sharply with the natal site fidelity observed in this species at other sites in the western Atlantic Ocean. These findings validate the existing multi-state management strategies now in place. Results also affirm the value of collaborative passive arrays for resolving seasonal movements and habitat preferences of migratory coastal shark species not easily studied with other tagging techniques.

  7. Regional-scale migrations and habitat use of juvenile lemon sharks (Negaprion brevirostris in the US South Atlantic.

    Directory of Open Access Journals (Sweden)

    Eric A Reyier

    Full Text Available Resolving the geographic extent and timing of coastal shark migrations, as well as their environmental cues, is essential for refining shark management strategies in anticipation of increasing anthropogenic stressors to coastal ecosystems. We employed a regional-scale passive acoustic telemetry array encompassing 300 km of the east Florida coast to assess what factors influence site fidelity of juvenile lemon sharks (Negaprion brevirostris to an exposed coastal nursery at Cape Canaveral, and to document the timing and rate of their seasonal migrations. Movements of 54 juvenile lemon sharks were monitored for three years with individuals tracked for up to 751 days. While most sharks demonstrated site fidelity to the Cape Canaveral region December through February under typical winter water temperatures, historically extreme declines in ocean temperature were accompanied by rapid and often temporary, southward displacements of up to 190 km along the Florida east coast. From late February through April each year, most sharks initiated a northward migration at speeds of up to 64 km day(-1 with several individuals then detected in compatible estuarine telemetry arrays in Georgia and South Carolina up to 472 km from release locations. Nineteen sharks returned for a second or even third consecutive winter, thus demonstrating strong seasonal philopatry to the Cape Canaveral region. The long distance movements and habitat associations of immature lemon sharks along the US southeast coast contrast sharply with the natal site fidelity observed in this species at other sites in the western Atlantic Ocean. These findings validate the existing multi-state management strategies now in place. Results also affirm the value of collaborative passive arrays for resolving seasonal movements and habitat preferences of migratory coastal shark species not easily studied with other tagging techniques.

  8. The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland.

    Science.gov (United States)

    Mullins, Jacinta; McDevitt, Allan D; Kowalczyk, Rafał; Ruczyńska, Iwona; Górny, Marcin; Wójcik, Jan M

    2014-01-01

    The red fox ( Vulpes vulpes ) has the widest global distribution among terrestrial carnivore species, occupying most of the Northern Hemisphere in its native range. Because it carries diseases that can be transmitted to humans and domestic animals, it is important to gather information about their movements and dispersal in their natural habitat but it is difficult to do so at a broad scale with trapping and telemetry. In this study, we have described the genetic diversity and structure of red fox populations in six areas of north-eastern Poland, based on samples collected from 2002-2003. We tested 22 microsatellite loci isolated from the dog and the red fox genome to select a panel of nine polymorphic loci suitable for this study. Genetic differentiation between the six studied populations was low to moderate and analysis in Structure revealed a panmictic population in the region. Spatial autocorrelation among all individuals showed a pattern of decreasing relatedness with increasing distance and this was not significantly negative until 93 km, indicating a pattern of isolation-by-distance over a large area. However, there was no correlation between genetic distance and either Euclidean distance or least-cost path distance at the population level. There was a significant relationship between genetic distance and the proportion of large forests and water along the Euclidean distances. These types of habitats may influence dispersal paths taken by red foxes, which is useful information in terms of wildlife disease management.

  9. Tidal and seasonal influences in dolphin habitat use in a southern Brazilian estuary

    Directory of Open Access Journals (Sweden)

    Renan Lopes Paitach

    2017-03-01

    Full Text Available In this study we describe how franciscana and Guiana dolphin habitat use is influenced by tidal cycles and seasonality in Babitonga Bay. The franciscanas use a greater area in winter and a smaller area in summer, but the extent of the area used did not vary with the tide. Guiana dolphins did not change the extent of the area used within seasons or tides. Franciscanas remained closer to the mouth of the bay and the islands during ebb tide, moving to the inner bay areas and closer to the mainland coast during flood tide. Guiana dolphin used areas closer to the mainland coast during the flood tide. Guiana dolphin patterns of movement do not seem to be related to the tidal current. Franciscanas used sandier areas while Guiana dolphins preferred muddy areas, with some seasonal variation. We suggest that these dolphins modify their distributions based on habitat accessibility and prey availability. This study enhances our knowledge of critical habitat characteristics for franciscana and Guiana dolphins, and these factors should be considered when planning local human activities targeting species conservation.

  10. Reproductive constraints influence habitat accessibility, segregation, and preference of sympatric albatross species.

    Science.gov (United States)

    Kappes, Michelle A; Shaffer, Scott A; Tremblay, Yann; Foley, David G; Palacios, Daniel M; Bograd, Steven J; Costa, Daniel P

    2015-01-01

    The spatiotemporal distribution of animals is dependent on a suite of factors, including the distribution of resources, interactions within and between species, physiological limitations, and requirements for reproduction, dispersal, or migration. During breeding, reproductive constraints play a major role in the distribution and behavior of central place foragers, such as pelagic seabirds. We examined the foraging behavior and marine habitat selection of Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses throughout their eight month breeding cycle at Tern Island, Northwest Hawaiian Islands to evaluate how variable constraints of breeding influenced habitat availability and foraging decisions. We used satellite tracking and light-based geolocation to determine foraging locations of individuals, and applied a biologically realistic null usage model to generate control locations and model habitat preference under a case-control design. Remotely sensed oceanographic data were used to characterize albatross habitats in the North Pacific. Individuals of both species ranged significantly farther and for longer durations during incubation and chick-rearing compared to the brooding period. Interspecific segregation of core foraging areas was observed during incubation and chick-rearing, but not during brooding. At-sea activity patterns were most similar between species during brooding; neither species altered foraging effort to compensate for presumed low prey availability and high energy demands during this stage. Habitat selection during long-ranging movements was most strongly associated with sea surface temperature for both species, with a preference for cooler ocean temperatures compared to overall availability. During brooding, lower explanatory power of habitat models was likely related to the narrow range of ocean temperatures available for selection. Laysan and black-footed albatrosses differ from other albatross species in that they breed

  11. Evaluating habitat associations of a fish assemblage at multiple spatial scales in a minimally disturbed stream using low-cost remote sensing

    Science.gov (United States)

    Cheek, Brandon D.; Grabowski, Timothy B.; Bean, Preston T.; Groeschel, Jillian R.; Magnelia, Stephan J.

    2016-01-01

    Habitat heterogeneity at multiple scales is a major factor affecting fish assemblage structure. However, assessments that examine these relationships at multiple scales concurrently are lacking. The lack of assessments at these scales is a critical gap in understanding as conservation and restoration efforts typically work at these levels.A combination of low-cost side-scan sonar surveys, aerial imagery using an unmanned aerial vehicle, and fish collections were used to evaluate the relationship between physicochemical and landscape variables at various spatial scales (e.g. micro-mesohabitat, mesohabitat, channel unit, stream reach) and stream–fish assemblage structure and habitat associations in the South Llano River, a spring-fed second-order stream on the Edwards Plateau in central Texas during 2012–2013.Low-cost side-scan sonar surveys have not typically been used to generate data for riverscape assessments of assemblage structure, thus the secondary objective was to assess the efficacy of this approach.The finest spatial scale (micro-mesohabitat) and the intermediate scale (channel unit) had the greatest explanatory power for variation in fish assemblage structure.Many of the fish endemic to the Edwards Plateau showed similar associations with physicochemical and landscape variables suggesting that conservation and restoration actions targeting a single endemic species may provide benefits to a large proportion of the endemic species in this system.Low-cost side-scan sonar proved to be a cost-effective means of acquiring information on the habitat availability of the entire river length and allowed the assessment of how a full suite of riverscape-level variables influenced local fish assemblage structure.

  12. Synthesizing mechanisms of density dependence in reef fishes: behavior, habitat configuration, and observational scale.

    Science.gov (United States)

    White, J Wilson; Samhouri, Jameal F; Stier, Adrian C; Wormald, Clare L; Hamilton, Scott L; Sandin, Stuart A

    2010-07-01

    Coral and rocky reef fish populations are widely used as model systems for the experimental exploration of density-dependent vital rates, but patterns of density-dependent mortality in these systems are not yet fully understood. In particular, the paradigm for strong, directly density-dependent (DDD) postsettlement mortality stands in contrast to recent evidence for inversely density-dependent (IDD) mortality. We review the processes responsible for DDD and IDD per capita mortality in reef fishes, noting that the pattern observed depends on predator and prey behavior, the spatial configuration of the reef habitat, and the spatial and temporal scales of observation. Specifically, predators tend to produce DDD prey mortality at their characteristic spatial scale of foraging, but prey mortality is IDD at smaller spatial scales due to attack-abatement effects (e.g., risk dilution). As a result, DDD mortality may be more common than IDD mortality on patch reefs, which tend to constrain predator foraging to the same scale as prey aggregation, eliminating attack-abatement effects. Additionally, adjacent groups of prey on continuous reefs may share a subset of refuges, increasing per capita refuge availability and relaxing DDD mortality relative to prey on patch reefs, where the patch edge could prevent such refuge sharing. These hypotheses lead to a synthetic framework to predict expected mortality patterns for a variety of scenarios. For nonsocial, nonaggregating species and species that aggregate in order to take advantage of spatially clumped refuges, IDD mortality is possible but likely superseded by DDD refuge competition, especially on patch reefs. By contrast, for species that aggregate socially, mortality should be IDD at the scale of individual aggregations but DDD at larger scales. The results of nearly all prior reef fish studies fit within this framework, although additional work is needed to test many of the predicted outcomes. This synthesis reconciles some

  13. The role of environmental variables in structuring landscape-scale species distributions in seafloor habitats.

    Science.gov (United States)

    Kraan, Casper; Aarts, Geert; Van der Meer, Jaap; Piersma, Theunis

    2010-06-01

    Ongoing statistical sophistication allows a shift from describing species' spatial distributions toward statistically disentangling the possible roles of environmental variables in shaping species distributions. Based on a landscape-scale benthic survey in the Dutch Wadden Sea, we show the merits of spatially explicit generalized estimating equations (GEE). The intertidal macrozoobenthic species, Macoma balthica, Cerastoderma edule, Marenzelleria viridis, Scoloplos armiger, Corophium volutator, and Urothoe poseidonis served as test cases, with median grain-size and inundation time as typical environmental explanatory variables. GEEs outperformed spatially naive generalized linear models (GLMs), and removed much residual spatial structure, indicating the importance of median grain-size and inundation time in shaping landscape-scale species distributions in the intertidal. GEE regression coefficients were smaller than those attained with GLM, and GEE standard errors were larger. The best fitting GEE for each species was used to predict species' density in relation to median grain-size and inundation time. Although no drastic changes were noted compared to previous work that described habitat suitability for benthic fauna in the Wadden Sea, our predictions provided more detailed and unbiased estimates of the determinants of species-environment relationships. We conclude that spatial GEEs offer the necessary methodological advances to further steps toward linking pattern to process.

  14. Large-scale spatial distribution patterns of echinoderms in nearshore rocky habitats.

    Directory of Open Access Journals (Sweden)

    Katrin Iken

    Full Text Available This study examined echinoderm assemblages from nearshore rocky habitats for large-scale distribution patterns with specific emphasis on identifying latitudinal trends and large regional hotspots. Echinoderms were sampled from 76 globally-distributed sites within 12 ecoregions, following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org. Sample-based species richness was overall low (2 cm in 1 m(2 quadrats was highest in the Caribbean ecoregions and echinoids dominated these assemblages with an average of 5 ind m(-2. In contrast, intertidal echinoderm assemblages collected from clearings of 0.0625 m(2 quadrats had the highest abundance and richness in the Northeast Pacific ecoregions where asteroids and holothurians dominated with an average of 14 ind 0.0625 m(-2. Distinct latitudinal trends existed for abundance and richness in intertidal assemblages with declines from peaks at high northern latitudes. No latitudinal trends were found for subtidal echinoderm assemblages with either sampling technique. Latitudinal gradients appear to be superseded by regional diversity hotspots. In these hotspots echinoderm assemblages may be driven by local and regional processes, such as overall productivity and evolutionary history. We also tested a set of 14 environmental variables (six natural and eight anthropogenic as potential drivers of echinoderm assemblages by ecoregions. The natural variables of salinity, sea-surface temperature, chlorophyll a, and primary productivity were strongly correlated with echinoderm assemblages; the anthropogenic variables of inorganic pollution and nutrient contamination also contributed to correlations. Our results indicate that nearshore echinoderm assemblages appear to be shaped by a network of environmental and ecological processes, and by the differing responses of various echinoderm taxa, making generalizations about the patterns of nearshore rocky habitat echinoderm

  15. Large-scale spatial distribution patterns of echinoderms in nearshore rocky habitats.

    Science.gov (United States)

    Iken, Katrin; Konar, Brenda; Benedetti-Cecchi, Lisandro; Cruz-Motta, Juan José; Knowlton, Ann; Pohle, Gerhard; Mead, Angela; Miloslavich, Patricia; Wong, Melisa; Trott, Thomas; Mieszkowska, Nova; Riosmena-Rodriguez, Rafael; Airoldi, Laura; Kimani, Edward; Shirayama, Yoshihisa; Fraschetti, Simonetta; Ortiz-Touzet, Manuel; Silva, Angelica

    2010-11-05

    This study examined echinoderm assemblages from nearshore rocky habitats for large-scale distribution patterns with specific emphasis on identifying latitudinal trends and large regional hotspots. Echinoderms were sampled from 76 globally-distributed sites within 12 ecoregions, following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). Sample-based species richness was overall low (species per site), with a total of 32 asteroid, 18 echinoid, 21 ophiuroid, and 15 holothuroid species. Abundance and species richness in intertidal assemblages sampled with visual methods (organisms >2 cm in 1 m(2) quadrats) was highest in the Caribbean ecoregions and echinoids dominated these assemblages with an average of 5 ind m(-2). In contrast, intertidal echinoderm assemblages collected from clearings of 0.0625 m(2) quadrats had the highest abundance and richness in the Northeast Pacific ecoregions where asteroids and holothurians dominated with an average of 14 ind 0.0625 m(-2). Distinct latitudinal trends existed for abundance and richness in intertidal assemblages with declines from peaks at high northern latitudes. No latitudinal trends were found for subtidal echinoderm assemblages with either sampling technique. Latitudinal gradients appear to be superseded by regional diversity hotspots. In these hotspots echinoderm assemblages may be driven by local and regional processes, such as overall productivity and evolutionary history. We also tested a set of 14 environmental variables (six natural and eight anthropogenic) as potential drivers of echinoderm assemblages by ecoregions. The natural variables of salinity, sea-surface temperature, chlorophyll a, and primary productivity were strongly correlated with echinoderm assemblages; the anthropogenic variables of inorganic pollution and nutrient contamination also contributed to correlations. Our results indicate that nearshore echinoderm assemblages appear to be shaped by a

  16. Small-scale habitat structure modulates the effects of no-take marine reserves for coral reef macroinvertebrates.

    Directory of Open Access Journals (Sweden)

    Pascal Dumas

    Full Text Available No-take marine reserves are one of the oldest and most versatile tools used across the Pacific for the conservation of reef resources, in particular for invertebrates traditionally targeted by local fishers. Assessing their actual efficiency is still a challenge in complex ecosystems such as coral reefs, where reserve effects are likely to be obscured by high levels of environmental variability. The goal of this study was to investigate the potential interference of small-scale habitat structure on the efficiency of reserves. The spatial distribution of widely harvested macroinvertebrates was surveyed in a large set of protected vs. unprotected stations from eleven reefs located in New Caledonia. Abundance, density and individual size data were collected along random, small-scale (20×1 m transects. Fine habitat typology was derived with a quantitative photographic method using 17 local habitat variables. Marine reserves substantially augmented the local density, size structure and biomass of the target species. Density of Trochus niloticus and Tridacna maxima doubled globally inside the reserve network; average size was greater by 10 to 20% for T. niloticus. We demonstrated that the apparent success of protection could be obscured by marked variations in population structure occurring over short distances, resulting from small-scale heterogeneity in the reef habitat. The efficiency of reserves appeared to be modulated by the availability of suitable habitats at the decimetric scale ("microhabitats" for the considered sessile/low-mobile macroinvertebrate species. Incorporating microhabitat distribution could significantly enhance the efficiency of habitat surrogacy, a valuable approach in the case of conservation targets focusing on endangered or emblematic macroinvertebrate or relatively sedentary fish species.

  17. Influence of Fire Mosaics, Habitat Characteristics and Cattle Disturbance on Mammals in Fire-Prone Savanna Landscapes of the Northern Kimberley.

    Science.gov (United States)

    Radford, Ian J; Gibson, Lesley A; Corey, Ben; Carnes, Karin; Fairman, Richard

    2015-01-01

    Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories ('pyrodiversity'), has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg) in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat) and structural habitat attributes (including an index of cattle disturbance) to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to mammals in the north Kimberley. A managed fire mosaic that reduces large scale and intense fires, including the retention of ≥4 years unburnt patches, will clearly benefit savanna mammals. We also highlighted the importance of fire mosaics that retain sufficient shelter for mammals. Along with fire, it is clear that grazing by introduced herbivores also needs to be reduced so that habitat quality is

  18. Fine-scale habitat preference of green sturgeon (Acipenser medirostris) within three spawning locations in the Sacramento River, California

    Science.gov (United States)

    Wyman, Megan T.; Thomas, Michael J.; McDonald, Richard R.; Hearn, Alexander R.; Battleson, Ryan D.; Chapman, Eric D.; Kinzel, Paul J.; Minear, J. Tobey; Mora, Ethan A.; Nelson, Jonathan M.; Pagel, Matthew D.; Klimley, A. Peter

    2017-01-01

    Vast sections of the Sacramento River have been listed as critical habitat by the National Marine Fisheries Service for green sturgeon spawning (Acipenser medirostris), yet spawning is known to occur at only a few specific locations. This study reveals the range of physical habitat variables selected by adult green sturgeon during their spawning period. We integrated fine-scale fish positions, physical habitat characteristics, discharge, bathymetry, and simulated velocity and depth using a 2-dimensional hydraulic model (FaSTMECH). The objective was to create habitat suitability curves for depth, velocity, and substrate type within three known spawning locations over two years. An overall cumulative habitat suitability score was calculated that averaged the depth, velocity, and substrate scores over all fish, sites, and years. A weighted usable area (WUA) index was calculated throughout the sampling periods for each of the three sites. Cumulative results indicate that the microhabitat characteristics most preferred by green sturgeon in these three spawning locations were velocities between 1.0-1.1 m/s, depths of 8-9 m, and gravel and sand substrate. This study provides guidance for those who may in the future want to increase spawning habitat for green sturgeon within the Sacramento River.

  19. Quantifying restoration effectiveness using multi-scale habitat models: Implications for sage-grouse in the Great Basin

    Science.gov (United States)

    Robert S. Arkle; David S. Pilliod; Steven E. Hanser; Matthew L. Brooks; Jeanne C. Chambers; James B. Grace; Kevin C. Knutson; David A. Pyke; Justin L. Welty; Troy A. Wirth

    2014-01-01

    A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of...

  20. Landscape composition influences abundance patterns and habitat use of three ungulate species in fragmented secondary deciduous tropical forests, Mexico

    OpenAIRE

    G. García-Marmolejo; L. Chapa-Vargas; M. Weber; E. Huber-Sannwald

    2015-01-01

    Secondary forests are extensive in the tropics. Currently, these plant communities are the available habitats for wildlife and in the future they will possibly be some of the most wide-spread ecosystems world-wide. To understand the potential role of secondary forests for wildlife conservation, three ungulate species were studied: Mazama temama, Odocoileus virginianus and Pecari tajacu. We analyzed their relative abundance and habitat use at two spatial scales: (1) Local, where three differen...

  1. Influence of forest and rangeland management on anadromous fish habitat in Western North America: impacts of natural events.

    Science.gov (United States)

    Douglas N. Swanston

    1980-01-01

    Natural events affecting vegetative cover and the hydrology and stability of a stream and its parent watershed are key factors influencing the quality of anadromous fish habitat. High intensity storms, drought, soil mass movement, and fire have the greatest impacts. Wind, stream icing, and the influence of insects and disease are important locally...

  2. No Habitat Selection during Spring Migration at a Meso-Scale Range across Mosaic Landscapes: A Case Study with the Woodcock (Scolopax rusticola).

    Science.gov (United States)

    Crespo, Ariñe; Rodrigues, Marcos; Telletxea, Ibon; Ibáñez, Rubén; Díez, Felipe; Tobar, Joseba F; Arizaga, Juan

    2016-01-01

    Success of migration in birds in part depends on habitat selection. Overall, it is still poorly known whether there is habitat selection amongst landbird migrants moving across landscapes. Europe is chiefly covered by agro-forestry mosaic landscapes, so migratory species associated to either agricultural landscapes or woodland habitats should theoretically find suitable stopover sites along migration. During migration from wintering to breeding quarters, woodcocks (Scolopax rusticola) tagged with PTT satellite-tracking transmitters were used to test for the hypothesis that migrants associated to agro-forest habitats have no habitat selection during migration, at a meso-scale level. Using a GIS platform we extracted at a meso-scale range habitat cover at stopover localities. Results obtained from comparisons of soil covers between points randomly selected and true stopover localities sites revealed, as expected, the species may not select for particular habitats at a meso-scale range, because the habitat (or habitats) required by the species can be found virtually everywhere on their migration route. However, those birds stopping over in places richer in cropland or mosaic habitats including both cropland and forest and with proportionally less closed forest stayed for longer than in areas with lower surfaces of cropland and mosaic and more closed forest. This suggests that areas rich in cropland or mosaic habitat were optimal.

  3. Exploring multi-scale relationships between geology and ecology in Northern and Central California's intertidal habitats

    Science.gov (United States)

    Aiello, I. W.; Wheeler, A.; Raimondi, P.

    2016-02-01

    We present a multidisciplinary, geological and ecological study that tests whether rock's geologic characteristics and their spatial variations in the intertidal habitat is a significant determinant of the types and abundance of organisms that can settle, grow, and survive in a given intertidal location. To investigate these relationships we (1) produced high-resolution ( 2cm to 5cm) digital elevation models (DEMs) of rock surfaces exposed in the intertidal zone using state-of-the-art terrestrial laser scanning (TLS). The geological surveys were conducted on outcrops representative of the most common rock types (igneous, sedimentary and metamorphic/mélange units) along the Central and Northern California and at the same locations as the long-running biodiversity program PISCO and the newly established Northern California marine protected areas (MPAs). (2) Conducted biodiversity surveys at the same sites using methods developed in the pacificrockyinterdal.org program. (3) Linked the geomorphological and community composition attributes for each site to determine the characteristic spatial coupling signature. To parameterize the geomorphology of the rock surface we analyzed the DEMs with a Matlab code that produces a triangular irregular network (TIN) model of the surface and calculates the ratio between the area of the Delaunay triangles and their interpolated surface within a moving window of variable size (ranging from cm to tens of meters). The value of the ratio expresses the rugosity of the rock surface at any given scale. Bivariate plots of rugosity vs. window size offer, for the first time, the opportunity to quantitatively determine the spectral distribution of rock surface complexity over multiple scales, correlate rugosity with specific geologic features (e.g. fracture spacing, bedding) and allow statistical testing of the spatial relationships between community composition and geology (e.g. spectral coherence tests).

  4. Early experience influences both habitat choice and locomotor performance in tiger snakes.

    Science.gov (United States)

    Aubret, Fabien; Shine, Richard

    2008-04-01

    Through adaptive developmental plasticity, individuals may function most effectively in the type of environment in which they have spent most of their time. Such habitat-specific modifications may favor active selection of that habitat type later in life, further reinforcing developmentally plastic phenotypic modifications. The interaction between these processes may have profound evolutionary implications. In nature, Australian tiger snakes (Notechis scutatus) use a complex mosaic of terrestrial, arboreal, and aquatic habitats. We raised juvenile tiger snakes for the first 11 months of life in enclosures mimicking one of these habitats and then tested their habitat selection when offered a choice of habitat types. Snakes consistently selected the habitat types in which they had been reared, and they were more effective at locomotion in those habitats than in the others. This attachment to a familiar habitat and phenotypically flexible adjustments in order to function effectively in that habitat constitute a positive feedback loop. That is, animals benefit by choosing a familiar habitat because they can fine-tune behaviors in ways that enable them to function better in that habitat, and, by consistently selecting that kind of habitat, they not only reinforce those phenotypically plastic adjustments but also are placed under continuing selection to cope with the challenges (of foraging, predator evasion, etc.) imposed by that habitat type. The end result may be to create ecomorphs, whereby different individuals within a population become specialized for different types of habitats even in the absence of genetic differentiation.

  5. Models for mapping potential habitat at landscape scales: an example using northern spotted owls.

    Science.gov (United States)

    William C. McComb; Michael T. McGrath; Thomas A. Spies; David. Vesely

    2002-01-01

    We are assessing the potential for current and alternative policies in the Oregon Coast Range to affect habitat capability for a suite of forest resources. We provide an example of a spatially explicit habitat capability model for northern spotted owls (Strix occidentalis caurina)to illustrate the approach we are taking to assess potential changes...

  6. Influence of scale on graywater reuse systems,

    OpenAIRE

    Dixon, Andrew M.; Butler, D.; Fewkes, Alan

    2000-01-01

    Greywater re-use has much potential as a water conservation measure although its uptake has been tempered somewhat by concerns over the potential risk to health, financial viability and the absence of formal legislation. The focus of these concerns varies according to the planned scale of re-use. At the domestic scale, research has shown that although greywater re-use is technically feasible and conceptually attractive to a proportion of homeowners, presently, the financial returns from water...

  7. The influence of habitat fragmentation on multiple plant-animal interactions and plant reproduction.

    Science.gov (United States)

    Brudvig, Lars A; Damschen, Ellen I; Haddad, Nick M; Levey, Douglas J; Tewksbury, Joshua J

    2015-10-01

    insight into landscape-scale variation in plant reproductive success, the relative importance of plant-animal interactions for structuring these dynamics, and the nuanced nature of how habitat fragmentation can affect populations and communities of interacting species.

  8. Habitat features influencing jaguar Panthera onca (Carnivora: Felidae occupancy in Tortuguero National Park, Costa Rica

    Directory of Open Access Journals (Sweden)

    Stephanny Arroyo-Arce

    2014-12-01

    Full Text Available Habitat characteristics and human activities are known to play a major role in the occupancy of jaguars Panthera onca across their range, however the key variables influencing jaguar distribution in Tortuguero National Park, Costa Rica, have yet to be identified. This study evaluated jaguar occupancy in Tortuguero National Park and the surrounding area. Jaguar detection/non-detection data was collected using digital camera traps distributed within the boundaries of the protected area. Local community members were also interviewed to determine jaguar occurrence in the Park’s buffer zone. Occupancy models were then applied to identify the habitat characteristics that may better explain jaguar distribution across the study area. From June 2012 to June 2013, a total of 4 339 camera trap days were used to identify 18 individual jaguars inside the protected area; 17 of these jaguars were exclusively detected within the coastal habitat, whilst the remaining individual was detected solely within the interior of the Park. Interviewees reported 61 occasions of jaguar presence inside the buffer zone, between 1995 and 2013, with 80% of these described by the communities of Lomas de Sierpe, Barra de Parismina and La Aurora. These communities also reported the highest levels of livestock predation by jaguars (85% of attacks. In the study area, jaguar occurrence was positively correlated with the seasonal presence of nesting green turtles Chelonia mydas, and negatively correlated with distance to the Park boundary. Our findings suggested that the current occupancy of the jaguar in the study area may be a response to: 1 the vast availability of prey (marine turtles on Tortuguero beach, 2 the decline of its primary prey species as a result of illegal hunting inside the Park, and 3 the increase in anthropogenic pressures in the Park boundaries. Rev. Biol. Trop. 62 (4: 1449-1458. Epub 2014 December 01.

  9. Habitat features influencing jaguar Panthera onca (Carnivora: Felidae) occupancy in Tortuguero National Park, Costa Rica.

    Science.gov (United States)

    Arroyo-Arce, Stephanny; Guilder, James; Salom-Pérez, Roberto

    2014-12-01

    Habitat characteristics and human activities are known to play a major role in the occupancy of jaguars Panthera onca across their range, however the key variables influencing jaguar distribution in Tortuguero National Park, Costa Rica, have yet to be identified. This study evaluated jaguar occupancy in Tortuguero National Park and the surrounding area. Jaguar detection/non-detection data was collected using digital camera traps distributed within the boundaries of the protected area. Local community members were also interviewed to determine jaguar occurrence in the Park's buffer zone. Occupancy models were then applied to identify the habitat characteristics that may better explain jaguar distribution across the study area. From June 2012 to June 2013, a total of 4,339 camera trap days were used to identify 18 individual jaguars inside the protected area; 17 of these jaguars were exclusively detected within the coastal habitat, whilst the remaining individual was detected solely within the interior of the Park. Interviewees reported 61 occasions of jaguar presence inside the buffer zone, between 1995 and 2013, with 80% of these described by the communities of Lomas de Sierpe, Barra de Parismina and La Aurora. These communities also reported the highest levels of livestock predation by jaguars (85% of attacks). In the study area, jaguar occurrence was positively correlated with the seasonal presence of nesting green turtles Chelonia mydas, and negatively correlated with distance to the Park boundary. Our findings suggested that the current occupancy of the jaguar in the study area may be a response to: 1) the vast availability of prey (marine turtles) on Tortuguero beach, 2) the decline of its primary prey species as a result of illegal hunting inside the Park, and 3) the increase in anthropogenic pressures in the Park boundaries.

  10. Fine-scale acoustic telemetry reveals unexpected lake trout, Salvelinus namaycush, spawning habitats in northern Lake Huron, North America

    Science.gov (United States)

    Binder, Thomas; Farha, Steve A.; Thompson, Henry T.; Holbrook, Christopher; Bergstedt, Roger A.; Riley, Stephen; Bronte, Charles R.; He, Ji; Krueger, Charles C.

    2017-01-01

    Previous studies of lake trout, Salvelinus namaycush, spawning habitat in the Laurentian Great Lakes have used time- and labour-intensive survey methods and have focused on areas with historic observations of spawning aggregations and on habitats prejudged by researchers to be suitable for spawning. As an alternative, we used fine-scale acoustic telemetry to locate, describe and compare lake trout spawning habitats. Adult lake trout were implanted with acoustic transmitters and tracked during five consecutive spawning seasons in a 19–27 km2 region of the Drummond Island Refuge, Lake Huron, using the VEMCO Positioning System. Acoustic telemetry revealed discrete areas of aggregation on at least five reefs in the study area, subsequently confirmed by divers to contain deposited eggs. Notably, several identified spawning sites would likely not have been discovered using traditional methods because either they were too small and obscure to stand out on a bathymetric map or because they did not conform to the conceptual model of spawning habitat held by many biologists. Our most unique observation was egg deposition in gravel and rubble substrates located at the base of and beneath overhanging edges of large boulders. Spawning sites typically comprised acoustic transmitters offers potential to expand current conceptual models of critical spawning habitat.

  11. Cultural transmission of tool use combined with habitat specializations leads to fine-scale genetic structure in bottlenose dolphins.

    Science.gov (United States)

    Kopps, Anna M; Ackermann, Corinne Y; Sherwin, William B; Allen, Simon J; Bejder, Lars; Krützen, Michael

    2014-05-07

    Socially learned behaviours leading to genetic population structure have rarely been described outside humans. Here, we provide evidence of fine-scale genetic structure that has probably arisen based on socially transmitted behaviours in bottlenose dolphins (Tursiops sp.) in western Shark Bay, Western Australia. We argue that vertical social transmission in different habitats has led to significant geographical genetic structure of mitochondrial DNA (mtDNA) haplotypes. Dolphins with mtDNA haplotypes E or F are found predominantly in deep (more than 10 m) channel habitat, while dolphins with a third haplotype (H) are found predominantly in shallow habitat (less than 10 m), indicating a strong haplotype-habitat correlation. Some dolphins in the deep habitat engage in a foraging strategy using tools. These 'sponging' dolphins are members of one matriline, carrying haplotype E. This pattern is consistent with what had been demonstrated previously at another research site in Shark Bay, where vertical social transmission of sponging had been shown using multiple lines of evidence. Using an individual-based model, we found support that in western Shark Bay, socially transmitted specializations may have led to the observed genetic structure. The reported genetic structure appears to present an example of cultural hitchhiking of mtDNA haplotypes on socially transmitted foraging strategies, suggesting that, as in humans, genetic structure can be shaped through cultural transmission.

  12. Spatial structure and nest demography reveal the influence of competition, parasitism and habitat quality on slavemaking ants and their hosts

    Directory of Open Access Journals (Sweden)

    Fischer-Blass Birgit

    2011-03-01

    Full Text Available Abstract Background Natural communities are structured by intra-guild competition, predation or parasitism and the abiotic environment. We studied the relative importance of these factors in two host-social parasite ecosystems in three ant communities in Europe (Bavaria and North America (New York, West Virginia. We tested how these factors affect colony demography, life-history and the spatial pattern of colonies, using a large sample size of more than 1000 colonies. The strength of competition was measured by the distance to the nearest competitor. Distance to the closest social parasite colony was used as a measure of parasitism risk. Nest sites (i.e., sticks or acorns are limited in these forest ecosystems and we therefore included nest site quality as an abiotic factor in the analysis. In contrast to previous studies based on local densities, we focus here on the positioning and spatial patterns and we use models to compare our predictions to random expectations. Results Colony demography was universally affected by the size of the nest site with larger and more productive colonies residing in larger nest sites of higher quality. Distance to the nearest competitor negatively influenced host demography and brood production in the Bavarian community, pointing to an important role of competition, while social parasitism was less influential in this community. The New York community was characterized by the highest habitat variability, and productive colonies were clustered in sites of higher quality. Colonies were clumped on finer spatial scales, when we considered only the nearest neighbors, but more regularly distributed on coarser scales. The analysis of spatial positioning within plots often produced different results compared to those based on colony densities. For example, while host and slavemaker densities are often positively correlated, slavemakers do not nest closer to potential host colonies than expected by random. Conclusions The

  13. Local-scale habitat associations of grassland birds in southwestern Minnesota

    Science.gov (United States)

    Elliott, Lisa H.; Johnson, Douglas H.

    2017-01-01

    Conservation of obligate grassland species requires not only the protection of a sufficiently large area of habitat but also the availability of necessary vegetation characteristics for particular species. As a result land managers must understand which habitat characteristics are important for their target species. To identify the habitat associations of eight species of grassland birds, we conducted bird and vegetation surveys on 66 grassland habitat patches in southwestern Minnesota in 2013 and 2014. Species of interest included sedge wren (Cistothorus platensis), Savannah sparrow (Passerculus sandwichensis), grasshopper sparrow (Ammodramus savannarum), Henslow's sparrow (Ammodramus henslowii), dickcissel (Spiza americana), bobolink (Dolichonyx oryzivorus), and western meadowlark (Sturnella neglecta). We calculated correlation coefficients between vegetation variables and species density as measures of linear association. We assessed curvilinear relationships with loess plots. We found grassland birds on 95.5% of surveyed sites, indicating remnant prairie in southwestern Minnesota is used by grassland birds. In general individual species showed different patterns of association and most species were tolerant of a wide variety of habitat conditions. The most consistent pattern was a negative association with both the quantity and proximity of trees. Our findings that individual species have different habitat preferences suggest that prairie resource managers may need to coordinate management efforts in order to create a mosaic of habitat types to support multiple species, though tree control will be an important and ongoing management activity at the individual site level.

  14. Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats.

    Science.gov (United States)

    McGregor, Hugh W; Legge, Sarah; Jones, Menna E; Johnson, Christopher N

    2014-01-01

    Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores.

  15. Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats.

    Directory of Open Access Journals (Sweden)

    Hugh W McGregor

    Full Text Available Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores.

  16. Potential habitat of Javan Hawk-Eagle based on multi-scale approach and its implication for conservation

    Science.gov (United States)

    Nurfatimah, C.; Syartinilia; Mulyani, Y. A.

    2017-01-01

    In Indonesia the Javan Hawk-Eagle has been designated as one of the 25 top priority protected species to be increased by 10% of current population number. Lack of suitable habitat is most likely the reason for the decline of the species in landscapes subject to major human modification. Central part of Java Island has suffered the most severe forest damage and fragmentation compared to the western part and eastern part of the island. This study presents the number of predicted suitable habitats for Javan Hawk-Eagle in the central part of Java Island based on habitat probability model. Multi-scale approach was being used to determine the accuracy level of patches reading between different image resolutions. 38 patches were detected at 30 m2, 28 patches at 90 m2, and 19 patches were detected at 250 m2 images resolutions. Higher reading implied more landscape structures within different regions should be considered during management of habitat conservation. Therefore, larger scale of conservation management application should be conducted as well.

  17. Frugivory on Persea lingue in temperate Chilean forests: interactions between fruit availability and habitat fragmentation across multiple spatial scales.

    Science.gov (United States)

    Vergara, Pablo M; Smith, Cecilia; Delpiano, Cristian A; Orellana, Ignacio; Gho, Dafne; Vazquez, Inao

    2010-12-01

    Habitat degradation and fragmentation are expected to reduce seed dispersal rates by reducing fruit availability as well as the movement and abundance of frugivores. These deleterious impacts may also interact with each other at different spatial scales, leading to nonlinear effects of fruit abundance on seed dispersal. In this study we assessed whether the degradation and fragmentation of southern Chilean forests had the potential to restrict seed dispersal the lingue (Persea lingue) tree, a fleshy-fruited tree species. Of five frugivore bird species, the austral thrush (Turdus falcklandii) and the fire-eyed diucon (Xolmis pyrope) were the only legitimate seed dispersers as well as being the most abundant species visiting lingue trees. The results showed little or no direct effect of habitat fragmentation on seed dispersal estimates, possibly because the assemblage of frugivore birds was comprised habitat-generalist species. Instead, the number of fruits removed per focal tree exhibited an enhanced response to crop size, but only in the more connected fragments. In the fruit-richer fragment networks, there was an increased fragment-size effect on the proportion of fruits removed in comparison to fruit-poor networks in which the fragment size effect was spurious. We suggest that such nonlinear effects are widespread in fragmented forest regions, resulting from the link between the spatial scales over which frugivores sample resources and the spatial heterogeneity in fruiting resources caused by habitat fragmentation and degradation.

  18. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale

    Science.gov (United States)

    Li, Guoqing; Du, Sheng; Wen, Zhongming

    2016-07-01

    Oriental arborvitae (Platycladus orientalis) is an important afforestation and ornamental tree species, which is native in eastern Asian. Therefore, a global suitable habitat map for oriental arborvitae is urgently needed for global promotion and cultivation. Here, the potential habitat and climatic requirements of oriental arborvitae at global scale were simulated using herbariums data and 13 thermal-moisture variables as input data for maximum entropy model (MaxEnt). The simulation performance of MaxEnt is evaluated by ten-fold cross-validation and a jackknife procedure. Results show that the potential habitat and climate envelop of oriental arborvitae can be successfully simulated by MaxEnt at global scale, with a mean test AUC value of 0.93 and mean training AUC value of 0.95. Thermal factors play more important roles than moisture factors in controlling the distribution boundary of oriental arborvitae’s potential ranges. There are about 50 countries suitable for introduction and cultivation of oriental arborvitae with an area of 2.0 × 107 km2, which occupied 13.8% of land area on the earth. This unique study will provide valuable information and insights needed to identify new regions with climatically suitable habitats for cultivation and introduction of oriental arborvitae around the world.

  19. Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin.

    Science.gov (United States)

    Meyer, Stefanie; Wegener, Gunter; Lloyd, Karen G; Teske, Andreas; Boetius, Antje; Ramette, Alban

    2013-01-01

    The Guaymas Basin (Gulf of California) hydrothermal vent area is known as a dynamic and hydrothermally vented sedimentary system, where the advection and production of a variety of different metabolic substrates support a high microbial diversity and activity in the seafloor. The main objective of our study was to explore the role of temperature and other environmental factors on community diversity, such as the presence of microbial mats and seafloor bathymetry within one hydrothermally vented field of 200 × 250 m dimension. In this field, temperature increased strongly with sediment depth reaching the known limit of life within a few decimeters. Potential sulfate reduction rate as a key community activity parameter was strongly affected by in situ temperature and sediment depth, declining from high rates of 1-5 μmol ml(-1) d(-1) at the surface to the detection limit below 5 cm sediment depth, despite the presence of sulfate and hydrocarbons. Automated Ribosomal Intergenic Spacer Analysis yielded a high-resolution fingerprint of the dominant members of the bacterial community. Our analyses showed strong temperature and sediment depth effects on bacterial cell abundance and Operational Taxonomic Units (OTUs) number, both declining by more than one order of magnitude below the top 5 cm of the sediment surface. Another fraction of the variation in diversity and community structure was explained by differences in the local bathymetry and spatial position within the vent field. Nevertheless, more than 80% of all detected OTUs were shared among the different temperature realms and sediment depths, after being classified as cold (T bacterial habitats in this dynamic and heterogeneous marine ecosystem influenced by strong hydrothermalism.

  20. Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Stefanie eMeyer

    2013-07-01

    Full Text Available The Guaymas Basin (Gulf of California hydrothermal vent area is known as a dynamic and hydrothermally vented sedimentary system, where the advection and production of a variety of different metabolic substrates support a high microbial diversity and activity in the seafloor. The main objective of our study was to explore the role of temperature and other environmental factors on community diversity, such as the presence of microbial mats and seafloor bathymetry within one hydrothermally vented field of 200 × 250 m dimension. In this field, temperature increased strongly with sediment depth reaching the known limit to life within a few decimeters. Potential sulfate reduction rate as a key community activity parameter was strongly affected by in situ temperature and sediment depth, declining from high rates of 1-5 μmol ml-1 d-1 at the surface to the detection limit below 5 cm sediment depth, despite the presence of sulfate and hydrocarbons. Automated Ribosomal Intergenic Spacer Analysis yielded a high-resolution fingerprint of the dominant members of the bacterial community. Our analyses showed strong temperature and sediment depth effects on bacterial cell abundance and Operational Taxonomic Units (OTUs number, both declining by more than one order of magnitude below the top 5 cm of the sediment surface. Another fraction of the variation in diversity and community structure was explained by differences in the local bathymetry and spatial position within the vent field. Nevertheless, more than 80% of all detected OTUs were shared among the different temperature realms and sediment depths, after being classified as cold (T<10°C, medium (10°C≤T<40°C or hot (T≥40°C temperature conditions, with significant OTU overlap with the richer surface communities. Overall, this indicates a high connectivity of benthic bacterial habitats in this dynamic and heterogeneous marine ecosystem influenced by strong hydrothermalism.

  1. Desiccation of rock pool habitats and its influence on population persistence in a Daphnia metacommunity.

    Directory of Open Access Journals (Sweden)

    Florian Altermatt

    Full Text Available Habitat instability has an important influence on species' occurrence and community composition. For freshwater arthropods that occur in ephemeral rock pools, the most drastic habitat instabilities are droughts and the intermittent availability of water. However, although the desiccation of a rock pool is detrimental for planktonic populations, it may also bring certain benefits: the exclusion of predators or parasites, for example, or the coexistence of otherwise competitively exclusive species. The commonness of drought resistant resting stages in many aquatic organisms shows the ecological significance of droughts. We measured daily evaporation in 50 rock pools inhabited by three Daphnia species D. magna, D. longispina and D. pulex over one summer. Daily evaporation and ultimately desiccation showed significantly seasonally influenced correlation with pool surface area, presence of vegetation, ambient temperature, wind and standardized evaporation measures. We used the estimates from this analysis to develop a simulation model to predict changes in the water level in 530 individual pools on a daily basis over a 25-year period. Eventually, hydroperiod lengths and desiccation events could be predicted for all of these rock pools. We independently confirmed the validity of this simulation by surveying desiccation events in the 530 rock pools over a whole season in 2006. In the same 530 rock pools, Daphnia communities had been recorded over the 25 years the simulation model considered. We correlated pool-specific occupation lengths of the three species with pool-specific measures of desiccation risk. Occupation lengths of all three Daphnia species were positively correlated with maximum hydroperiod length and negatively correlated with the number of desiccation events. Surprisingly, these effects were not species-specific.

  2. Can animal habitat use patterns influence their vulnerability to extreme climate events? An estuarine sportfish case study.

    Science.gov (United States)

    Boucek, Ross E; Heithaus, Michael R; Santos, Rolando; Stevens, Philip; Rehage, Jennifer S

    2017-10-01

    Global climate forecasts predict changes in the frequency and intensity of extreme climate events (ECEs). The capacity for specific habitat patches within a landscape to modulate stressors from extreme climate events, and animal distribution throughout habitat matrices during events, could influence the degree of population level effects following the passage of ECEs. Here, we ask (i) does the intensity of stressors of an ECE vary across a landscape? And (ii) Do habitat use patterns of a mobile species influence their vulnerability to ECEs? Specifically, we measured how extreme cold spells might interact with temporal variability in habitat use to affect populations of a tropical, estuarine-dependent large-bodied fish Common Snook, within Everglades National Park estuaries (FL US). We examined temperature variation across the estuary during cold disturbances with different degrees of severity, including an extreme cold spell. Second, we quantified Snook distribution patterns when the passage of ECEs is most likely to occur from 2012 to 2016 using passive acoustic tracking. Our results revealed spatial heterogeneity in the intensity of temperature declines during cold disturbances, with some habitats being consistently 3-5°C colder than others. Surprisingly, Snook distributions during periods of greatest risk to experience an extreme cold event varied among years. During the winters of 2013-2014 and 2014-2015 a greater proportion of Snook occurred in the colder habitats, while the winters of 2012-2013 and 2015-2016 featured more Snook observed in the warmest habitats. This study shows that Snook habitat use patterns could influence vulnerability to extreme cold events, however, whether Snook habitat use increases or decreases their vulnerability to disturbance depends on the year, creating temporally dynamic vulnerability. Faunal global change research should address the spatially explicit nature of extreme climate events and animal habitat use patterns to identify

  3. The influence of habitat, season and tidal regime in the activity of the intertidal crab Neohelice (= Chasmagnathus) granulata

    Science.gov (United States)

    Luppi, Tomás; Bas, Claudia; Méndez Casariego, Agustina; Albano, Mariano; Lancia, Juan; Kittlein, Marcelo; Rosenthal, Alan; Farías, Nahuel; Spivak, Eduardo; Iribarne, Oscar

    2013-03-01

    The activity pattern of intertidal crabs is influenced by factors that usually change rhythmically following tidal and/or diel cycles, and is often associated with the use of refuges. The movement activity of the burrowing crab Neohelice granulata was compared among three populations from SW Atlantic coastal areas where they face different tidal regimes, water salinities, substrata and biological factors. At each site, we examined the seasonal activity of the crabs (individuals collected in pitfall traps) in two types of habitat: mudflat and salt marsh. The working hypothesis is that the activity would vary according to the diverse environmental conditions encountered at geographical and local scales. Crab activity varied between sites and seasons showing to be more intense when habitats were covered by water. The most active groups were large males, followed by large non-ovigerous females. Ovigerous females were almost inactive. Most crabs were near or inside burrows at low tides in Mar Chiquita and Bahía Blanca, but they were active at both low and high tides in San Antonio during spring and summer. N. granulata were active in a wide range of temperatures: from 10 to 37 °C at low tides and at temperatures as low as 2 °C when covered by water. Differences of activity between mudflat and salt marsh varied among sites depending on flooding frequencies. Movement activity of N. granulata varied both in space and in time; crabs move under very different abiotic conditions (e.g., low or high tide, daylight or night, low and high temperature) and their movement may also be prevented or elicited by biotic conditions like burrow complexity, food quality and predation pressure. The wide set of conditions under which N. granulata can be active may explain why this is the only semiterrestrial crab inhabiting latitudes higher than 40°S in South America.

  4. Competition and habitat quality influence age and sex distribution in wintering Rusty Blackbirds

    Science.gov (United States)

    Claudia Mettke-Hofmann; Paul B. Hamel; Gerhard Hofmann; Theodore J. Zenzal Jr.; Anne Pellegrini; Jennifer Malpass; Megan Garfinkel; Nathan Schiff; Russell Greenberg

    2015-01-01

    Bird habitat quality is often inferred from species abundance measures during the breeding and non-breeding season and used for conservation management decisions. However, during the non-breeding season age and sex classes often occupy different habitats which suggest a need for more habitat-specific data. Rusty Blackbird (Euphagus carolinus) is a...

  5. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success

    Science.gov (United States)

    James E. Garabedian; Christopher E. Moorman; M. Nils Peterson; John C. Kilgo

    2014-01-01

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides...

  6. Modelling deep water habitats to develop a spatially explicit, fine scale understanding of the distribution of the western rock lobster, Panulirus cygnus.

    Directory of Open Access Journals (Sweden)

    Renae K Hovey

    Full Text Available BACKGROUND: The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. METHODS AND FINDINGS: Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand and dominant biota (kelp, sessile invertebrates and macroalgae within a 40 km(2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D(2 of 64 and an 80% correct classification. CONCLUSIONS: Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical

  7. Modelling deep water habitats to develop a spatially explicit, fine scale understanding of the distribution of the western rock lobster, Panulirus cygnus.

    Science.gov (United States)

    Hovey, Renae K; Van Niel, Kimberly P; Bellchambers, Lynda M; Pember, Matthew B

    2012-01-01

    The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km(2) area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D(2) of 64 and an 80% correct classification. Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats.

  8. Are regional habitat models useful at a local-scale? A case study of threatened and common insectivorous bats in South-Eastern Australia.

    Directory of Open Access Journals (Sweden)

    Anna McConville

    Full Text Available Habitat modelling and predictive mapping are important tools for conservation planning, particularly for lesser known species such as many insectivorous bats. However, the scale at which modelling is undertaken can affect the predictive accuracy and restrict the use of the model at different scales. We assessed the validity of existing regional-scale habitat models at a local-scale and contrasted the habitat use of two morphologically similar species with differing conservation status (Mormopterus norfolkensis and Mormopterus species 2. We used negative binomial generalised linear models created from indices of activity and environmental variables collected from systematic acoustic surveys. We found that habitat type (based on vegetation community best explained activity of both species, which were more active in floodplain areas, with most foraging activity recorded in the freshwater wetland habitat type. The threatened M. norfolkensis avoided urban areas, which contrasts with M. species 2 which occurred frequently in urban bushland. We found that the broad habitat types predicted from local-scale models were generally consistent with those from regional-scale models. However, threshold-dependent accuracy measures indicated a poor fit and we advise caution be applied when using the regional models at a fine scale, particularly when the consequences of false negatives or positives are severe. Additionally, our study illustrates that habitat type classifications can be important predictors and we suggest they are more practical for conservation than complex combinations of raw variables, as they are easily communicated to land managers.

  9. Genetic variation reveals influence of landscape connectivity on population dynamics and resiliency of western trout in disturbance-prone habitats

    Science.gov (United States)

    Helen M. Neville,; Gresswell, Robert E.; Dunham, Jason

    2012-01-01

    Salmonid fishes have evolved and persisted in dynamic ecosystems where disturbance events vary in frequency, magnitude, timing, and duration, as well as the specific nature of associated effects (e.g., changes in thermal or flow regimes, geomorphology, or water chemistry). In the western United States, one of the major drivers of disturbance in stream ecosystems is fire. Although there is a growing consensus that fish populations can ultimately benefit from the productive and heterogeneous habitats created by fire, to persist they obviously have to withstand the immediate and shorter-term effects of fire, which can reduce or even extirpate local populations. Movement among interconnected stream habitats is thought to be an important strategy enabling persistence during and following fire, and there is mounting concern that the extensive isolation of salmonid populations in fragmented habitats is reducing their resiliency to fire. In spite of this concern, there are few direct observations of salmonid responses to fire. In fact, guidance is based largely on a broader understanding of the influences of landscape structure and disturbance in general on salmonid fishes, and there is considerable uncertainty about how best to manage for salmonid resilience to wildfire. Studies are limited by the difficult logistics of following fish responses in the face of unpredictable events such as wildfires. Therefore, BACI (Before-After-Control-Impact) study designs are nearly impossible, and replication is similarly challenging because fires are often low-frequency events. Furthermore, conventional ecological study approaches (e.g., studies of fish distribution, abundance, life histories, and movement) are logistically difficult to implement. Overall, a major challenge to understanding resilience of salmonid populations in fire-prone environments is related to moving beyond localized case studies to those with broader applicability in wildfire management . Genetic data can be

  10. Influence of Fire Mosaics, Habitat Characteristics and Cattle Disturbance on Mammals in Fire-Prone Savanna Landscapes of the Northern Kimberley.

    Directory of Open Access Journals (Sweden)

    Ian J Radford

    Full Text Available Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories ('pyrodiversity', has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat and structural habitat attributes (including an index of cattle disturbance to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age <1 year within 3 km radius and level of cattle disturbance were observed. Shrub cover was positively related to both mammal abundance and richness, and availability of rock crevices, ground vegetation cover and spatial extent of ≥4 years unburnt habitat were all positively associated with at least some of the mammal species modelled. We found little support for diversity of post-fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to

  11. The influence of food abundance, food dispersion and habitat structure on territory selection and size of an Afrotropical terrestrial insectivore

    Science.gov (United States)

    Stanley, Thomas R.; Newmark, William D.

    2015-01-01

    Most tropical insectivorous birds, unlike their temperate counterparts, hold and defend a feeding and breeding territory year-around. However, our understanding of ecological factors influencing territory selection and size in tropical insectivores is limited. Here we examine three prominent hypotheses relating food abundance, food dispersion (spatial arrangement of food items), and habitat structure to territoriality in the Usambara Thrush Turdus roehli. We first compared leaf-litter macro-invertebrate abundance and dispersion, and habitat structure between territories and random sites. We then examined the relation between these same ecological factors and territory size. Invertebrate abundance and dispersion were sparsely and evenly distributed across our study system and did not vary between territories and random sites. In contrast, habitat structure did vary between territories and random sites indicating the Usambara Thrush selects territories with open understorey and closed overstorey habitat. Invertebrate abundance and dispersion within territories of the Usambara Thrush were not associated with habitat structure. We believe the most likely explanation for the Usambara Thrush’s preference for open understorey and closed overstorey habitat relates to foraging behavior. Using information-theoretic model selection we found that invertebrate abundance was the highest-ranked predictor of territory size and was inversely related, consistent with food value theory of territoriality.

  12. Does fire influence the landscape-scale distribution of an invasive mesopredator?

    Directory of Open Access Journals (Sweden)

    Catherine J Payne

    Full Text Available Predation and fire shape the structure and function of ecosystems globally. However, studies exploring interactions between these two processes are rare, especially at large spatial scales. This knowledge gap is significant not only for ecological theory, but also in an applied context, because it limits the ability of landscape managers to predict the outcomes of manipulating fire and predators. We examined the influence of fire on the occurrence of an introduced and widespread mesopredator, the red fox (Vulpes vulpes, in semi-arid Australia. We used two extensive and complimentary datasets collected at two spatial scales. At the landscape-scale, we surveyed red foxes using sand-plots within 28 study landscapes - which incorporated variation in the diversity and proportional extent of fire-age classes - located across a 104 000 km2 study area. At the site-scale, we surveyed red foxes using camera traps at 108 sites stratified along a century-long post-fire chronosequence (0-105 years within a 6630 km2 study area. Red foxes were widespread both at the landscape and site-scale. Fire did not influence fox distribution at either spatial scale, nor did other environmental variables that we measured. Our results show that red foxes exploit a broad range of environmental conditions within semi-arid Australia. The presence of red foxes throughout much of the landscape is likely to have significant implications for native fauna, particularly in recently burnt habitats where reduced cover may increase prey species' predation risk.

  13. REVIEW: Can habitat selection predict abundance?

    Science.gov (United States)

    Boyce, Mark S; Johnson, Chris J; Merrill, Evelyn H; Nielsen, Scott E; Solberg, Erling J; van Moorter, Bram

    2016-01-01

    Habitats have substantial influence on the distribution and abundance of animals. Animals' selective movement yields their habitat use. Animals generally are more abundant in habitats that are selected most strongly. Models of habitat selection can be used to distribute animals on the landscape or their distribution can be modelled based on data of habitat use, occupancy, intensity of use or counts of animals. When the population is at carrying capacity or in an ideal-free distribution, habitat selection and related metrics of habitat use can be used to estimate abundance. If the population is not at equilibrium, models have the flexibility to incorporate density into models of habitat selection; but abundance might be influenced by factors influencing fitness that are not directly related to habitat thereby compromising the use of habitat-based models for predicting population size. Scale and domain of the sampling frame, both in time and space, are crucial considerations limiting application of these models. Ultimately, identifying reliable models for predicting abundance from habitat data requires an understanding of the mechanisms underlying population regulation and limitation. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  14. Factors influencing adoption of Small-Scale Palm Oil Processing ...

    African Journals Online (AJOL)

    The influence of respondents' socio-economic characteristics on adoption was investigated along with other factors influencing adoption of the Small-Scale palm oil Processing Equipment (SSPE) in Delta State, Nigeria. Multistage sampling procedure was used in administrating 164 structured questionnaires. Data were ...

  15. Influence of the shoot density of Halodule wrightii Ascherson from rocky and sandy habitats on associated macroalgal communities

    Directory of Open Access Journals (Sweden)

    Kcrishna Vilanova de Souza Barros

    2013-12-01

    Full Text Available This study evaluated the influence of the shoot density of the shoal grass Halodule wrightii on the composition of the associated algal community, in rocky and sandy habitats on the coast of Ceará in northeastern Brazil. The phycological community included 18 species in 10 families, members of Rodophyta (72.2%, Chlorophyta (22.2% and Phaeophyceae (5.5%. The largest proportion were epilithic (50%, followed by epiphytes on H. wrightii (38.4%, epipsammics (8%, and epiphytes on other algae (4%. Epiphytes on H. wrightii occurred mainly associated with rhizomes, but also tendrils of H. musciformis occurred attached to the leaves. The phycological community varied according to the density of H. wrightii, independently of particular characters of the meadows, although both habitat and other environmental variables seemed to influence the macroalgae composition and diversity. The rocky habitat was more diverse than the sandy habitat, but in the sandy habitat the shoal grass was important for algal settlement in areas where hard substrates were scarce or absent.

  16. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study

    Directory of Open Access Journals (Sweden)

    Els De Roeck

    2014-12-01

    Full Text Available The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke as a case in point, this study illustrates the potential of very high resolution (VHR optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of <5m resolution was acquired in the spring of 2013 for the area around Bruges, Belgium, a region where dairy farms suffer from liver fluke infections transmitted by freshwater snails. The vector thrives in small water bodies (SWBs, such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.

  17. A broad scale analysis of tree risk, mitigation and potential habitat for cavity-nesting birds

    Science.gov (United States)

    Brian Kane; Paige S. Warren; Susannah B. Lerman

    2015-01-01

    Trees in towns and cities provide habitat for wildlife. In particular, cavity-nesting birds nest in the deadand decayed stems and branches of these trees. The same dead and decayed stems and branches alsohave a greater likelihood of failure, which, in some circumstances, increases risk. We examined 1760trees in Baltimore, MD, USA and western MA, USA, assessing tree...

  18. Decadal-scale effects of benthic habitat and marine reserve protection on Philippine goatfish (F: Mullidae)

    Science.gov (United States)

    Russ, Garry R.; Bergseth, Brock J.; Rizzari, Justin R.; Alcala, Angel C.

    2015-09-01

    Reef fish populations can be affected by both fishing and changes in benthic habitat. Yet, partitioning these effects is often difficult, usually requiring an appropriate sampling design and long-term monitoring. Here we quantify, over a 30-yr period, the effects of benthic habitat change and no-take marine reserve (NTMR) protection on the density and species richness of a lightly harvested benthic-feeding reef fish family, the Mullidae (goatfish), at four Philippine islands. Boosted regression trees demonstrated that goatfish density and species richness had strong negative associations with hard coral cover and strong positive associations with cover of dead substratum. No-take marine reserve protection had no effect on the density or species richness of goatfish over 19 and 30 yr at Sumilon and Apo islands, respectively. However, environmental disturbances (e.g., typhoons, coral bleaching) that reduced hard coral cover subsequently led to increases in goatfish numbers for periods ranging from 2 to 8 yr. After initial increases due to benthic disturbance, goatfish populations decreased during coral recovery, occurring on timescales of 10-20 yr. This long-term, "natural experiment" demonstrated that changes to benthic habitat (bottom-up control) had a far greater effect on Philippine goatfish populations than protection from fishing (a top-down effect) in NTMRs. Given the strong positive response of goatfish populations to loss of live hard coral cover, this group of fishes may be a valuable indicator species for habitat degradation on coral reefs.

  19. Using satellite and airborne LiDAR to model woodpecker habitat occupancy at the landscape scale

    Science.gov (United States)

    Lee A. Vierling; Kerri T. Vierling; Patrick Adam; Andrew T. Hudak

    2013-01-01

    Incorporating vertical vegetation structure into models of animal distributions can improve understanding of the patterns and processes governing habitat selection. LiDAR can provide such structural information, but these data are typically collected via aircraft and thus are limited in spatial extent. Our objective was to explore the utility of satellite-based LiDAR...

  20. Influences of forest and rangeland management on salmonid fishes and their habitats

    National Research Council Canada - National Science Library

    Meehan, William R

    1991-01-01

    Contents : Stream ecosystems - Salmonid distributions and life histories - Habitat requirements of salmonids in streams - Natural processes - Timber harvesting, silvicultrue and watershed processes - Forest...

  1. Spatial scale and species identity influence the indigenous-alien diversity relationship in springtails.

    Science.gov (United States)

    Terauds, Aleks; Chown, Steven L; Bergstrom, Dana M

    2011-07-01

    Although theory underlying the invasion paradox, or the change in the relationship between the richness of alien and indigenous species from negative to positive with increasing spatial scale, is well developed and much empirical work on the subject has been undertaken, most of the latter has concerned plants and to a lesser extent marine invertebrates. Here we therefore examine the extent to which the relationships between indigenous and alien species richness change from the local metacommunity to the interaction neighborhood scales, and the influences of abundance, species identity, and environmental favorability thereon, in springtails, a significant component of the soil fauna. Using a suite of modeling techniques, including generalized least squares and geographically weighted regressions to account for spatial autocorrelation or nonstationarity of the data, we show that the abundance and species richness of both indigenous and alien species at the metacommunity scale respond strongly to declining environmental favorability, represented here by altitude. Consequently, alien and indigenous diversity covary positively at this scale. By contrast, relationships are more complex at the interaction neighborhood scale, with the relationship among alien species richness and/or density and the density of indigenous species varying between habitats, being negative in some, but positive in others. Additional analyses demonstrated a strong influence of species identity, with negative relationships identified at the interaction neighborhood scale involving alien hypogastrurid springtails, a group known from elsewhere to have negative effects on indigenous species in areas where they have been introduced. By contrast, diversity relationships were positive with the other alien species. These results are consistent with both theory and previous empirical findings for other taxa, that interactions among indigenous and alien species change substantially with spatial scale and

  2. Migration and parasitism : Habitat use, not migration distance, influences helminth species richness in Charadriiform birds

    NARCIS (Netherlands)

    Gutiérrez, Jorge S.; Rakhimberdiev, Eldar; Piersma, Theunis; Thieltges, David W.

    Aim: Habitat use and migration strategies of animals are often associated with spatial variation in parasite pressure, but how they relate to one another is not well understood. Here, we use a large dataset on helminth species richness of Charadriiform birds to test whether higher habitat diversity

  3. Physical, biotic, and sampling influences on diel habitat use by stream-dwelling bull trout

    Science.gov (United States)

    Nolan P. Banish; James T. Peterson; Russell F. Thurow

    2008-01-01

    We used daytime and nighttime underwater observation to assess microhabitat use by bull trout Salvelinus confluentus (N = 213) in streams of the intermountain western USA during the summers of 2001 and 2002. We recorded fish focal points and measured a set of habitat characteristics as well as habitat availability via line transects. Bull trout were...

  4. Migration and parasitism: habitat use, not migration distance, influences helminth species richness in Charadriiform birds

    NARCIS (Netherlands)

    Gutiérrez, J.S.; Rakhimberdiev, E.; Piersma, T.; Thieltges, D.W.

    2017-01-01

    Aim Habitat use and migration strategies of animals are often associated withspatial variation in parasite pressure, but how they relate to one another is notwell understood. Here, we use a large dataset on helminth species richness ofCharadriiform birds to test whether higher habitat diversity and

  5. Migration and parasitism : Habitat use, not migration distance, influences helminth species richness in Charadriiform birds

    NARCIS (Netherlands)

    Gutiérrez, Jorge S.; Rakhimberdiev, Eldar; Piersma, Theunis; Thieltges, David W.

    2017-01-01

    Aim: Habitat use and migration strategies of animals are often associated with spatial variation in parasite pressure, but how they relate to one another is not well understood. Here, we use a large dataset on helminth species richness of Charadriiform birds to test whether higher habitat diversity

  6. Effects of spatial habitat heterogeneity on habitat selection and annual fecundity for a migratory forest songbird

    Science.gov (United States)

    Cornell, K.L.; Donovan, T.M.

    2010-01-01

    Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales. ?? Springer Science+Business Media B.V. 2009.

  7. Relative importance of habitat and landscape scales on butterfly communities of urbanizing areas

    OpenAIRE

    Lizee, M. H.; Bonardo, R.; Mauffrey, J. F.; Bertaudiere-Montes, V.; Tatoni, Thierry; Deschamps-Cottin, M

    2011-01-01

    Agricultural decline and urbanization entail rapid alterations of the patterns of organization of rural landscapes in Europe. The spread of the urban footprint to the adjacent countryside contributes to the development of new anthropogenic ecosystems in formerly rural hinterlands. In this study, butterflies are considered as biological indicators of these rapid environmental changes. Our purpose is to better understand changes in biodiversity related to the evolution of available habitats in ...

  8. Ecologically scaled responses of forest-dwelling vertebrates to habitat fragmentation

    OpenAIRE

    Ascensão, Fernando Jorge Portela Martins, 1976-

    2013-01-01

    Tese de doutoramento, Biologia (Biologia da Conservação), Universidade de Lisboa, Faculdade de Ciências, 2013 Road habitat fragmentation has been identified as a major threat for biodiversity conservation. Roads induce a ‘barrier effect’ by representing a physical obstacle or promoting animal-vehicle collisions, disrupting daily and seasonal movements and consequently leading to the depletion and genetic subdivision of animal populations. However, road verges may also provide resources for...

  9. Managing multiple diffuse pressures on water quality and ecological habitat: Spatially targeting effective mitigation actions at the landscape scale.

    Science.gov (United States)

    Joyce, Hannah; Reaney, Sim

    2015-04-01

    Catchment systems provide multiple benefits for society, including: land for agriculture, climate regulation and recreational space. Yet, these systems also have undesirable externalities, such as flooding, and the benefits they create can be compromised through societal use. For example, agriculture, forestry and urban land use practices can increase the export of fine sediment and faecal indicator organisms (FIO) delivered to river systems. These diffuse landscape pressures are coupled with pressures on the in stream temperature environment from projected climate change. Such pressures can have detrimental impacts on water quality and ecological habitat and consequently the benefits they provide for society. These diffuse and in-stream pressures can be reduced through actions at the landscape scale but are commonly tackled individually. Any intervention may have benefits for other pressures and hence the challenge is to consider all of the different pressures simultaneously to find solutions with high levels of cross-pressure benefits. This research presents (1) a simple but spatially distributed model to predict the pattern of multiple pressures at the landscape scale, and (2) a method for spatially targeting the optimum location for riparian woodland planting as mitigation action against these pressures. The model follows a minimal information requirement approach along the lines of SCIMAP (www.scimap.org.uk). This approach defines the critical source areas of fine sediment diffuse pollution, rapid overland flow and FIOs, based on the analysis of the pattern of the pressure in the landscape and the connectivity from source areas to rivers. River temperature was modeled using a simple energy balance equation; focusing on temperature of inflowing and outflowing water across a catchment. The model has been calibrated using a long term observed temperature record. The modelling outcomes enabled the identification of the severity of each pressure in relative rather

  10. Landscape-scale processes influence riparian plant composition along a regulated river

    Science.gov (United States)

    Palmquist, Emily C.; Ralston, Barbara; Merritt, David M.; Shafroth, Patrick B.

    2018-01-01

    Hierarchical frameworks are useful constructs when exploring landscape- and local-scale factors affecting patterns of vegetation in riparian areas. In drylands, which have steep environmental gradients and high habitat heterogeneity, landscape-scale variables, such as climate, can change rapidly along a river's course, affecting the relative influence of environmental variables at different scales. To assess how landscape-scale factors change the structure of riparian vegetation, we measured riparian vegetation composition along the Colorado River through Grand Canyon, determined which factors best explain observed changes, identified how richness and functional diversity vary, and described the implications of our results for river management. Cluster analysis identified three divergent floristic groups that are distributed longitudinally along the river. These groups were distributed along gradients of elevation, temperature and seasonal precipitation, but were not associated with annual precipitation or local-scale factors. Species richness and functional diversity decreased as a function of distance downstream showing that changing landscape-scale factors result in changes to ecosystem characteristics. Species composition and distribution remain closely linked to seasonal precipitation and temperature. These patterns in floristic composition in a semiarid system inform management and provide insights into potential future changes as a result of shifts in climate and changes in flow management.

  11. The influence of social structure, habitat, and host traits on the transmission of Escherichia coli in wild elephants.

    Science.gov (United States)

    Chiyo, Patrick I; Grieneisen, Laura E; Wittemyer, George; Moss, Cynthia J; Lee, Phyllis C; Douglas-Hamilton, Iain; Archie, Elizabeth A

    2014-01-01

    Social structure is proposed to influence the transmission of both directly and environmentally transmitted infectious agents. However in natural populations, many other factors also influence transmission, including variation in individual susceptibility and aspects of the environment that promote or inhibit exposure to infection. We used a population genetic approach to investigate the effects of social structure, environment, and host traits on the transmission of Escherichia coli infecting two populations of wild elephants: one in Amboseli National Park and another in Samburu National Reserve, Kenya. If E. coli transmission is strongly influenced by elephant social structure, E. coli infecting elephants from the same social group should be genetically more similar than E. coli sampled from members of different social groups. However, we found no support for this prediction. Instead, E. coli was panmictic across social groups, and transmission patterns were largely dominated by habitat and host traits. For instance, habitat overlap between elephant social groups predicted E. coli genetic similarity, but only in the relatively drier habitat of Samburu, and not in Amboseli, where the habitat contains large, permanent swamps. In terms of host traits, adult males were infected with more diverse haplotypes, and males were slightly more likely to harbor strains with higher pathogenic potential, as compared to adult females. In addition, elephants from similar birth cohorts were infected with genetically more similar E. coli than elephants more disparate in age. This age-structured transmission may be driven by temporal shifts in genetic structure of E. coli in the environment and the effects of age on bacterial colonization. Together, our results support the idea that, in elephants, social structure often will not exhibit strong effects on the transmission of generalist, fecal-oral transmitted bacteria. We discuss our results in the context of social, environmental

  12. The influence of social structure, habitat, and host traits on the transmission of Escherichia coli in wild elephants.

    Directory of Open Access Journals (Sweden)

    Patrick I Chiyo

    Full Text Available Social structure is proposed to influence the transmission of both directly and environmentally transmitted infectious agents. However in natural populations, many other factors also influence transmission, including variation in individual susceptibility and aspects of the environment that promote or inhibit exposure to infection. We used a population genetic approach to investigate the effects of social structure, environment, and host traits on the transmission of Escherichia coli infecting two populations of wild elephants: one in Amboseli National Park and another in Samburu National Reserve, Kenya. If E. coli transmission is strongly influenced by elephant social structure, E. coli infecting elephants from the same social group should be genetically more similar than E. coli sampled from members of different social groups. However, we found no support for this prediction. Instead, E. coli was panmictic across social groups, and transmission patterns were largely dominated by habitat and host traits. For instance, habitat overlap between elephant social groups predicted E. coli genetic similarity, but only in the relatively drier habitat of Samburu, and not in Amboseli, where the habitat contains large, permanent swamps. In terms of host traits, adult males were infected with more diverse haplotypes, and males were slightly more likely to harbor strains with higher pathogenic potential, as compared to adult females. In addition, elephants from similar birth cohorts were infected with genetically more similar E. coli than elephants more disparate in age. This age-structured transmission may be driven by temporal shifts in genetic structure of E. coli in the environment and the effects of age on bacterial colonization. Together, our results support the idea that, in elephants, social structure often will not exhibit strong effects on the transmission of generalist, fecal-oral transmitted bacteria. We discuss our results in the context of

  13. Influence of Small Scale Businesses on Decision Making Capacity ...

    African Journals Online (AJOL)

    Financially independence of women's doesn't always lead in decision making on issues related income utilization and choices of life. This research aimed to assess the influence of small scale business on women's decision making capacity. For the assessment the case of a credit and saving association in Muketure was ...

  14. Production hygiene and training influences on rural small-scale ...

    African Journals Online (AJOL)

    The aim of the study was therefore to determine the extent to which training in organic farming methods, including modules such as the Importance of Production Hygiene' influenced the hygienic farming practices of small-scale, organic farmers in eTholeni, uMbumbulu, KwaZulu-Natal, South Africa. Questionnaires were ...

  15. Influences of environmental cues, migration history, and habitat familiarity on partial migration

    OpenAIRE

    Christian Skov; Kim Aarestrup; Henrik Baktoft; Jakob Brodersen; Christer Brönmark; Lars-Anders Hansson; Nielsen, Einar E.; Tine Nielsen; P Anders Nilsson

    2010-01-01

    The factors that drive partial migration in organisms are not fully understood. Roach (Rutilus rutilus), a freshwater fish, engage in partial migration where parts of populations switch between summer habitats in lakes and winter habitats in connected streams. To test if the partial migration trait is phenotypically plastic or has genetic components, we translocated roach from 2 populations with different opportunities for migration to a lake with migration opportunity, containing a local roa...

  16. Geomorphic Heterogeneity at the Valley Segment Scale: Effects on Habitat Structure, Aquatic Organisms, and Stream-Riparian Food Web Linkages

    Science.gov (United States)

    Baxter, C. V.; Torgersen, C. E.

    2005-05-01

    A distinct domain of heterogeneity at the valley segment scale has long been recognized by geomorphologists, but its implications for stream ecology have received less attention. As opposed to sampling discrete points, stream ecologists' efforts to make maps have generally been applied at only at very large or small spatial scales. We have found mapping of valley segment types a powerful tool for detecting patterns at an intermediate scale, which then sets the stage for interpreting patterns observed at both smaller and larger scales. We report results from a series of studies that describe how valley segment types and their arrangements within river networks affect the expression of habitat structure, the distribution and abundance of species, the makeup of communities, and the flux of resources between aquatic and terrestrial food webs. Study tools such as valley segment mapping provide a more spatially continuous perspective on biophysical heterogeneity in riverine landscapes. In turn, increasing the spatial extent and resolution of data improves the scope of a study, which enhances power to detect patterns and investigate scaling relationships in river networks.

  17. The Influence of Habitat Manipulations on Beneficial Ground-Dwelling Arthropods in a Southeast US Organic Cropping System.

    Science.gov (United States)

    Fox, Aaron F; Orr, David B; Cardoza, Yasmin J

    2015-02-01

    Habitat manipulations, intentional provisioning of natural vegetation along crop edges, have been shown to enhance beneficial epigaeic invertebrate activity in many agricultural settings, but little research has been conducted on this practice in the southeast United States. We conducted a field-scale study to determine if habitat manipulations along the field edges of an organic crop rotation increase the activity-density of beneficial ground-dwelling invertebrates. Pitfall traps were used to collect micro and macro ground-dwelling organisms in nine organic crop fields (three each of maize, soybeans, and hay; 2.5-4.0 ha each) surrounded by four experimental habitat manipulations (planted native grass and prairie flowers, planted prairie flowers only, fallow vegetation, or mowed vegetation) during 2009 and 2010 in eastern North Carolina. Beneficial macro and micro invertebrates collected in these pitfall traps consisted primarily of Carabidae, Araneae, Collembola, and mite species. Results show that habitat manipulations had little effect on the activity-density of the dominant epigaeic invertebrates in our study system. Our results suggest that the activity-density of these organisms were instead determined by a combination of in-field characteristics, such as crop type, weed management practices, and within-field resources, along with the diversity of crop type in neighboring fields and the availability of other resources in the area. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta).

    Science.gov (United States)

    Bennett, Genevieve; Malone, Matthew; Sauther, Michelle L; Cuozzo, Frank P; White, Bryan; Nelson, Karen E; Stumpf, Rebecca M; Knight, Rob; Leigh, Steven R; Amato, Katherine R

    2016-08-01

    The gut microbiota contributes to host health by maintaining homeostasis, increasing digestive efficiency, and facilitating the development of the immune system. The composition of the gut microbiota can change dramatically within and between individuals of a species as a result of diet, age, or habitat. Therefore, understanding the factors determining gut microbiota diversity and composition can contribute to our knowledge of host ecology as well as to conservation efforts. Here we use high-throughput sequencing to describe variation in the gut microbiota of the endangered ring-tailed lemur (Lemur catta) at the Bezà Mahafaly Special Reserve (BMSR) in southwestern Madagascar. Specifically, we measured the diversity and composition of the gut microbiota in relation to social group, age, sex, tooth wear and loss, and habitat disturbance. While we found no significant variation in the diversity of the ring-tailed lemur gut microbiota in response to any variable tested, the taxonomic composition of the gut microbiota was influenced by social group, age, and habitat disturbance. However, effect sizes were small and appear to be driven by the presence or absence of relatively low abundance taxa. These results suggest that habitat disturbance may not impact the lemur gut microbiota as strongly as it impacts the gut microbiota of other primate species, highlighting the importance of distinct host ecological and physiological factors on host-gut microbe relationships. Am. J. Primatol. 78:883-892, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Habitat-forming bryozoans in New Zealand: their known and predicted distribution in relation to broad-scale environmental variables and fishing effort.

    Directory of Open Access Journals (Sweden)

    Anna C L Wood

    Full Text Available Frame-building bryozoans occasionally occur in sufficient densities in New Zealand waters to generate habitat for other macrofauna. The environmental conditions necessary for bryozoans to generate such habitat, and the distributions of these species, are poorly known. Bryozoan-generated habitats are vulnerable to bottom fishing, so knowledge of species' distributions is essential for management purposes. To better understand these distributions, presence records were collated and mapped, and habitat suitability models were generated (Maxent, 1 km(2 grid for the 11 most common habitat-forming bryozoan species: Arachnopusia unicornis, Cellaria immersa, Cellaria tenuirostris, Celleporaria agglutinans, Celleporina grandis, Cinctipora elegans, Diaperoecia purpurascens, Galeopsis porcellanicus, Hippomenella vellicata, Hornera foliacea, and Smittoidea maunganuiensis. The models confirmed known areas of habitat, and indicated other areas as potentially suitable. Water depth, vertical water mixing, tidal currents, and water temperature were useful for describing the distribution of the bryozoan species at broad scales. Areas predicted as suitable for multiple species were identified, and these 'hotspots' were compared to fishing effort data. This showed a potential conflict between fishing and the conservation of bryozoan-generated habitat. Fishing impacts are known from some sites, but damage to large areas of habitat-forming bryozoans is likely to have occurred throughout the study area. In the present study, spatial error associated with the use of historic records and the coarse native resolution of the environmental variables limited both the resolution at which the models could be interpreted and our understanding of the ecological requirements of the study species. However, these models show species distribution modelling has potential to further our understanding of habitat-forming bryozoan ecology and distribution. Importantly, comparisons

  20. Large-scale facilitation of a sessile community by an invasive habitat-forming snail

    Science.gov (United States)

    Thyrring, Jakob; Thomsen, Mads Solgaard; Wernberg, Thomas

    2013-12-01

    We provide an example of extensive facilitation of a sessile community throughout an invaded estuary by the invasive snail Batillaria australis. We show that B. australis greatly increases a limiting resource (attachment space) to a community of sessile organisms and estimate that a large part of the invaded estuary now contain ca. 50 times more sessile individuals associated with the invader than all native snails combined. We argue that native snails are unlikely to have been dramatically reduced by the invader, and we therefore suggest that the shell-attached sessile community, as a functional group, has benefitted significantly from this invasion. These results expand the current understanding of how invaded marine systems respond to habitat-forming invaders.

  1. Small-scale experimental habitat fragmentation reduces colonization rates in species-rich grasslands.

    Science.gov (United States)

    Joshi, Jasmin; Stoll, Peter; Rusterholz, Hans-Peter; Schmid, Bernhard; Dolt, Claudine; Baur, Bruno

    2006-05-01

    Habitat fragmentation is one of the most important threats to biodiversity. Decreasing patch size may lead to a reduction in the size of populations and to an increased extinction risk of remnant populations. Furthermore, colonization rates may be reduced in isolated patches. To investigate the effects of isolation and patch size on extinction and colonization rates of plant species, calcareous grasslands at three sites in the Swiss Jura Mountains were experimentally fragmented into patches of 0.25, 2.25, and 20.25 m2 by frequent mowing of the surrounding area from 1993 to 1999. Species richness in the fragment plots and adjacent control plots of the same sizes was recorded during these 7 years. In agreement with the theory of island biogeography, colonization rate was reduced by 30% in fragments versus non-isolated controls, and extinction increased in small versus large plots. Habitat specialists, in contrast to generalists, were less likely to invade fragments. In the last 4 years of the experiment, extinction rates tended to be higher in fragment than in control plots at two of the three sites. Despite reduced colonization rates and a tendency of increased extinction rates in fragments, fragmented plots had only marginally fewer species than control plots after 7 years. Hence, rates were a more sensitive measure for community change than changes in species richness per se. From a conservation point of view, the detected reduced colonization rates are particularly problematic in small fragments, which are more likely to suffer from high extinction rates in the long run.

  2. Water-energy dynamics, habitat heterogeneity, history, and broad-scale patterns of mammal diversity

    Science.gov (United States)

    Ferrer-Castán, Dolores; Morales-Barbero, Jennifer; Vetaas, Ole R.

    2016-11-01

    Numerous hypotheses on diversity patterns are often presented as if they were mutually exclusive. However, because of multicollinearity, correlational analyses are not able to distinguish the causal effects of different factors on these patterns. For this reason, we examine the interrelationships among current climate, habitat heterogeneity and evolutionary history by partitioning the variation in both total and non-volant mammal species richness in the Iberian Peninsula. Thus, it is possible to determine the variation accounted for by each one of these three components that is not shared by the others, and the respective overlaps. More specifically, we hypothesize that (H1) in warm temperate zones, a small increase in the available energy has strong negative effects on mammal richness if water availability is limiting; (H2) there are functional relationships between woody plant species richness (WOOD) and the richness of mammal species; (H3) there is a signal of evolutionary history in contemporary patterns of species richness, and (H4) mammal richness and the historical variable mean root distance (MRD) respond to the same driving forces. Additionally, we also test for spatial autocorrelation. We found a sharp nonlinear decrease in mammal richness with increasing energy and a monotonic increase with increasing water availability. Moreover, an interaction term between these two climate factors appeared to be statistically significant, so H1 could not be rejected. WOOD remained significant after partialling out both current climate and MRD at the family level (MRDf), supporting H2. The relationship between mammal diversity and MRD averaged by species richness was found to be spurious, but there appeared a significant historical signal using MRDf (this supports H3). The overlaps among these factors are consistent with H4 and suggest that water-energy dynamics have probably been active drivers throughout evolutionary history with habitat heterogeneity, and biotic

  3. Influence of habitat structure and environmental variables on larval fish assemblage in the Johor Strait, Malaysia.

    Science.gov (United States)

    Ara, Roushon; Arshad, Aziz; Amin, S M Nurul; Idris, M H; Gaffar, Mazlan Abd; Romano, Nicholas

    2016-07-01

    Our previous study demonstrated that among different habitat sites (mangrove, estuary, river, seagrass and Open Sea) in Johor Strait, Malaysia, seagrass showed highest family diversity and abundance of larval fish. However, it is unclear whether this was due to difference in habitat complexity or water quality parameters.? To test this, larval fish were collected by using a bongo net equipped with a flow meter by subsurface horizontal towing from different habitats in Johor Strait between October 2007 and September 2008.? Various physico-chemical parameters were measured and then examined for any relationship to fish larvae diversity and abundance. Among the 24 families identified from the sites, seven families (Blenniidae, Clupeidae, Mullidae, Nemipteridae, Syngnathidae, Terapontidae and Uranoscopeidae) were significantly correlated with the tested waters quality parameters.? Salinity showed a positive and negative significant correlation with Clupeidae (p < 0.01) and Uranoscopeidae (p < 0.05), respectively. Terapontidae was significantly correlated with dissolved oxygen (p < 0.01), while both Mullidae and Syngnathidae were significantly correlated with pH (p < 0.05). However, a canonical correspondence analysis test indicated weak overall correlation (36.4%) between larval assemblage and in the seagrass-mangrove ecosystem of Johor Strait, Malaysia. This likely indicates that habitat structure was more important in determining larval abundance (highest in the seagrass habitat) as compared to water quality at the tested sites. This study emphasizes the need to conserve seagrass beds as important nursery grounds for various fish larvae to ensure adequate recruitment and ultimately sustainable fisheries management. ?

  4. Local habitat and landscape influence predation of bird nests on afforested Mediterranean cropland

    Science.gov (United States)

    Sánchez-Oliver, J. S.; Rey Benayas, J. M.; Carrascal, L. M.

    2014-07-01

    Afforestation programs such as the one promoted by the EU Common Agrarian Policy have contributed to spread tree plantations on former cropland. Nevertheless these afforestations may cause severe damage to open habitat species, especially birds of high conservation value. We investigated predation of artificial bird nests at young tree plantations and at the open farmland habitat adjacent to the tree plantations in central Spain. Predation rates were very high at both tree plantations (95.6%) and open farmland habitat (94.2%) after two and three week exposure. Plantation edge/area ratio and development of the tree canopy decreased predation rates and plantation area and magpie (Pica pica) abundance increased predation rates within tree plantations, which were also affected by land use types around plantations. The area of nearby tree plantations (positive effect), distance to the tree plantation edge (negative effect), and habitat type (mainly attributable to the location of nests in vineyards) explained predation rates at open farmland habitat. We conclude that predation rates on artificial nests were particularly high and rapid at or nearby large plantations, with high numbers of magpies and low tree development, and located in homogenous landscapes dominated by herbaceous crops and pastures with no remnants of semi-natural woody vegetation. Landscape planning should not favour tree plantations as the ones studied here in Mediterranean agricultural areas that are highly valuable for ground-nesting bird species.

  5. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity.

    Science.gov (United States)

    Kleckova, Irena; Konvicka, Martin; Klecka, Jan

    2014-04-01

    Mountain butterflies have evolved efficient thermoregulation strategies enabling their survival in marginal conditions with short flight season and unstable weather. Understanding the importance of their behavioural thermoregulation by habitat use can provide novel information for predicting the fate of alpine Lepidoptera and other insects under ongoing climate change. We studied the link between microhabitat use and thermoregulation in adults of seven species of a butterfly genus Erebia co-occurring in the Austrian Alps. We captured individuals in the field and measured their body temperature in relation to microhabitat and air temperature. We asked whether closely related species regulate their body temperature differently, and if so, what is the effect of behaviour, species traits and individual traits on body to air and body to microhabitat temperature differences. Co-occurring species differed in mean body temperature. These differences were driven by active microhabitat selection by individuals and also by species-specific habitat preferences. Species inhabiting grasslands and rocks utilised warmer microclimates to maintain higher body temperature than woodland species. Under low air temperatures, species of rocky habitats heated up more effectively than species of grasslands and woodlands which allowed them to stay active in colder weather. Species morphology and individual traits play rather minor roles in the thermoregulatory differences; although large species and young individuals maintained higher body temperature. We conclude that diverse microhabitat conditions at small spatial scales probably contribute to sympatric occurrence of closely related species with different thermal demands and that preserving heterogeneous conditions in alpine landscapes might mitigate detrimental consequences of predicted climate change. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Modeling the Influence of Forest Structure on Microsite Habitat Use by Snowshoe Hares

    Directory of Open Access Journals (Sweden)

    Angela K. Fuller

    2013-01-01

    Full Text Available Snowshoe hare (Lepus americanus is an important prey species for many Carnivora and has strong influences on community structure and function in northern forests. An understanding of within-stand (microsite forest structural characteristics that promote high use by hares is important to provide forest management guidelines. We measured forest structural characteristics at the microsite-scale in north-central Maine and used an information-theoretic modeling approach to infer which characteristics were most strongly associated with use by hares during winter. We measured overwinter hare pellet density to model relationships among microsite-scale vegetation structure and hare use. Overwinter pellet density was positively associated with live stem cover (3 × coniferous saplings + deciduous saplings and negatively associated with overstory canopy closure; the two variables explained 71% of the variation in microsite use by hares. The highest pellet densities were in grids with canopy closure 22,000 stems/ha. Silvicultural practices that create dense areas of conifer and deciduous saplings should receive high within-stand use by hares in winter. These conditions can be achieved by promoting the release of advanced regeneration and reducing overstory cover to encourage establishment of shade-intolerant species; clearcutting is one such silvicultural prescription to achieve these conditions.

  7. Natural and anthropogenic influences on a red-crowned crane habitat in the Yellow River Delta Natural Reserve, 1992-2008.

    Science.gov (United States)

    Wang, Hong; Gao, Jay; Pu, Ruiliang; Ren, Liliang; Kong, Yan; Li, He; Li, Ling

    2014-07-01

    This study aims to assess the relative importance of natural and anthropogenic variables on the change of the red-crowned crane habitat in the Yellow River Nature Reserve, East China using multitempopral remote sensing and geographic information system. Satellite images were used to detect the change in potential crane habitat, from which suitable crane habitat was determined by excluding fragmented habitat. In this study, a principal component analysis (PCA) with seven variables (channel flow, rainfall, temperature, sediment discharge, number of oil wells, total length of roads, and area of settlements) and linear regression analyses of potential and suitable habitat against the retained principal components were applied to explore the influences of natural and anthropogenic factors on the change of the red-crowned crane habitat. The experimental results indicate that suitable habitat decreased by 5,935 ha despite an increase of 1,409 ha in potential habitat from 1992 to 2008. The area of crane habitat changed caused by natural drivers such as progressive succession, retrogressive succession, and physical fragmentation is almost the same as that caused by anthropogenic forces such as land use change and behavioral fragmentation. The PCA and regression analyses revealed that natural factors (e.g., channel flow, rainfall, temperature, and sediment discharge) play an important role in the crane potential habitat change and human disturbances (e.g., oil wells, roads, and settlements) jointly explain 51.8 % of the variations in suitable habitat area, higher than 48.2 % contributed by natural factors. Thus, it is vital to reduce anthropogenic influences within the reserve in order to reverse the decline in the suitable crane habitat.

  8. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach.

    Science.gov (United States)

    Schwalm, Donelle; Epps, Clinton W; Rodhouse, Thomas J; Monahan, William B; Castillo, Jessica A; Ray, Chris; Jeffress, Mackenzie R

    2016-04-01

    Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species' niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species' niches, resulting in predictions that are generally limited to climate-occupancy interactions. Here, we explore the potential impact of climate change on the American pika using a replicated place-based approach that incorporates climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence-absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmental niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units representing the habitat and climatic breadth of the species across the western United States. We then predicted occurrence probability under current (1981-2010) and three future time periods (out to 2100). Occurrence probabilities and the relative importance of predictor variables varied widely among study areas, revealing important local-scale differences in the realized niche of the American pika. This variation resulted in diverse and - in some cases - highly divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM projections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables. Our findings illustrate the importance of a place-based approach to species distribution modeling that includes fine-scale factors when assessing current and future climate impacts on species' distributions, especially when predictions are intended to manage and

  9. Analysis of the microstructure of Xenodontinae snake scales associated with different habitat occupation strategies.

    Science.gov (United States)

    Rocha-Barbosa, O; Moraes e Silva, R B

    2009-08-01

    The morphology of many organisms seems to be related to the environment they live in. Nonetheless, many snakes are so similar in their morphological patterns that it becomes quite difficult to distinguish any adaptive divergence that may exist. Many authors suggest that the microornamentations on the scales of reptiles have important functional value. Here, we examined variations on the micromorphology of the exposed oberhautchen surface of dorsal, lateral, and ventral scales from the mid-body region of Xenodontinae snakes: Sibynomorphus mikani (terricolous), Imantodes cenchoa (arboreal), Helicops modestus (aquatic) and Atractus pantostictus (fossorial). They were metallized and analyzed through scanning electron microscopy. All species displayed similar microstructures, such as small pits and spinules, which are often directed to the scale caudal region. On the other hand, there were some singular differences in scale shape and in the microstructural pattern of each species. S. mikani and I. cenchoa have larger spinules arranged in a row which overlap the following layers on the scale surface. Species with large serrate borders are expected to have more frictional resistance from the caudal-cranial direction. This can favor life in environments which require more friction, facilitating locomotion. In H. modestus, the spinules are smaller and farther away from the posterior rows, which should help reduce water resistance during swimming. The shallower small pits found in this species can retain impermeable substances, as in aquatic Colubridae snakes. The spinules adhering to the caudal scales of A. pantostictus seem to form a more regular surface, which probably aid their fossorial locomotion, reducing scale-ground friction. Our data appear to support the importance of functional microstructure, contributing to the idea of snake species adaptation to their preferential microhabitats.

  10. Analysis of the microstructure of Xenodontinae snake scales associated with different habitat occupation strategies

    Directory of Open Access Journals (Sweden)

    O. Rocha-Barbosa

    Full Text Available The morphology of many organisms seems to be related to the environment they live in. Nonetheless, many snakes are so similar in their morphological patterns that it becomes quite difficult to distinguish any adaptive divergence that may exist. Many authors suggest that the microornamentations on the scales of reptiles have important functional value. Here, we examined variations on the micromorphology of the exposed oberhautchen surface of dorsal, lateral, and ventral scales from the mid-body region of Xenodontinae snakes: Sibynomorphus mikani (terricolous, Imantodes cenchoa (arboreal, Helicops modestus (aquatic and Atractus pantostictus (fossorial. They were metallized and analyzed through scanning electron microscopy. All species displayed similar microstructures, such as small pits and spinules, which are often directed to the scale caudal region. On the other hand, there were some singular differences in scale shape and in the microstructural pattern of each species. S. mikani and I. cenchoa have larger spinules arranged in a row which overlap the following layers on the scale surface. Species with large serrate borders are expected to have more frictional resistance from the caudal-cranial direction. This can favor life in environments which require more friction, facilitating locomotion. In H. modestus, the spinules are smaller and farther away from the posterior rows, which should help reduce water resistance during swimming. The shallower small pits found in this species can retain impermeable substances, as in aquatic Colubridae snakes. The spinules adhering to the caudal scales of A. pantostictus seem to form a more regular surface, which probably aid their fossorial locomotion, reducing scale-ground friction. Our data appear to support the importance of functional microstructure, contributing to the idea of snake species adaptation to their preferential microhabitats.

  11. Influence of discharge on fish habitat suitability curves in mountain watercourses in IFIM methodology

    Directory of Open Access Journals (Sweden)

    Macura Viliam

    2018-03-01

    Full Text Available In this study, the quality of the aquatic habitats of mountain and piedmont streams was evaluated using the ‘Instream Flow Incremental Methodology (IFIM’ decision-making tool. The quality of habitats was interpreted from the behaviour of bioindicators in the form of habitat suitability curves (HSCs. From 1995 until the present, 59 different reaches of 43 mountain streams in Slovakia and 3 validation reaches were evaluated, and the results analysed. The aim of this study was to generalize the parameters of the HSCs for the brown trout. The generalized curves will be useful for water management planning. It is difficult and time-consuming to take hydrometrical and ichthyological measurements at different water levels. Therefore, we developed a methodology for modifying suitability curves based on an ichthyological survey during a low flow and a flow at which fish lose the ability to resist the flow velocity. The study provides the information how such curves can be modified for a wider flow range. In summary, this study shows that generalized HSCs provide representative data that can be used to support both the design of river restoration and the assessment of the impacts of the water use or of climate change on stream habitat quality.

  12. Experimental illumination of natural habitat : How does artificial light influence daily and seasonal timing?

    NARCIS (Netherlands)

    Spoelstra, K.; van Grunsven, Roy H. A.; Berendse, Frank; Veenendaal, Elmar M.; Visser, M.E.

    2013-01-01

    Artificial illumination has increased dramatically over the last few decades. In natural habitat, anthropogenic light at night may lead to changes in species composition and differences in population densities. On the individual level, the presence of artificial light may disturb the temporal

  13. Invasion of a mined landscape: what habitat characteristics are influencing the occurrence of invasive plants?

    Science.gov (United States)

    D. Lemke; I.A. Tazisong; Y. Wang; J.A. Brown

    2012-01-01

    Throughout the world, the invasion of alien plants is an increasing threat to native biodiversity. Invasion is especially prevalent in areas affected by land transformation and anthropogenic disturbance. Surface mines are a major disturbance, and thus may promote the establishment and expansion of invasive plant communities. Environmental and habitat factors that may...

  14. Stand age and habitat influences on salamanders in Appalachian cove hardwood forests

    Science.gov (United States)

    W. Mark Ford; Brian R. Chapman; Michael A. Menzel; Richard H. Odom

    2002-01-01

    We surveyed cove hardwood stands aged 15, 25, 50, and ≥85 years following clearcutting in the southern Appalachian Mountains of northern Georgia to assess the effects of stand age and stand habitat characteristics on salamander communities using drift-fence array and pitfall methodologies from May 1994 to April 1995. Over a 60,060 pitfall trapnight effort, we...

  15. Habitat structure influences parent-offspring association in a social lizard

    Directory of Open Access Journals (Sweden)

    Thomas Botterill-James

    2016-08-01

    Full Text Available Parental care emerges as a result of an increase in the extent of interaction between parents and their offspring. These interactions can provide the foundation for the evolution of a range of complex parental behaviors. Therefore, fundamental to understanding the evolution of parental care is an understanding of the factors that promote this initial increase in parent-offspring association. Here, we used large outdoor enclosures to test how the spatial structure of high-quality habitat affects the occurrence of parent-offspring associations in a social lizard (Liopholis whitii. We found that the extent of parent-offspring association was higher when high-quality habitat was aggregated relative to when it was dispersed. This may be the result of greater competitive exclusion of adults and offspring from high quality crevices sites in the aggregated treatment compared to the dispersed treatment. Associating with parents had significant benefits for offspring growth and body condition but there were no concomitant effects on offspring survival. We did not find costs of parent-offspring association for parents in terms of increased harassment and loss of body condition. We discuss a number of potential mechanisms underlying these results. Regardless of mechanisms, our results suggest that habitat structure may shape the extent of parent-offspring association in L. whitti, and that highly aggregated habitats may set the stage for the diversification of more complex forms of care observed across closely related species.

  16. Influence of Point Count Length and Repeated Visits on Habitat Model Performance

    Science.gov (United States)

    Randy Dettmers; David A. Buehler; John G. Bartlett; Nathan A. Klaus

    1999-01-01

    Point counts are commonly used to monitor bird populations, and a substantial amount of research has investigated how conducting counts for different lengths of time affects the accuracy of these counts and the subsequent ability to monitor changes in population trends. However, little work has been done io assess how changes in count duration affect bird-habitat...

  17. Environmental and human influences on trumpeter swan habitat occupancy in Alaska

    Science.gov (United States)

    Schmidt, J.H.; Lindberg, M.S.; Johnson, D.S.; Schmultz, J.A.

    2009-01-01

    Approximately 70-80% of the entire population of the Trumpeter Swan (Cygnus huccinator) depends for reproduction on wetlands in Alaska. This makes the identification of important habitat features and the effects of human interactions important for the species' long-term management. We analyzed the swan's habitat preferences in five areas throughout the state and found that swan broods occupied some wetland types, especially larger closed-basin wetlands such as lakes and ponds, at rates much higher than they occupied other wetland types, such as shrubby or forested wetlands. We also found a negative effect of transportation infrastructure on occupancy by broods in and around the Minto Flats State Game Refuge, Kenai National Wildlife Refuge, and Tetlin National Wildlife Refuge. This finding is of particular interest because much of the Minto Flats refuge has recently been licensed for oil and gas exploration and parts of the Kenai refuge have been developed in the past. We also investigated the potential effects of the shrinkage of closed-basin ponds on habitat occupancy by nesting Trumpeter Swans. We compared nesting swans' use of ponds with changes in the ponds' size and other characteristics from 1982 to 1996 and found no relationships between occupancy and changes in pond size. However, we believe that the recent and rapid growth of Trumpeter Swan populations in Alaska may become limited by available breeding habitat, and anthropogenic and climate-induced changes to the swan's breeding habitats have the potential to limit future production. ?? 2009 by The Cooper Ornithological Society. All rights reserved.

  18. A Multi-Scale Approach to Investigating the Red-Crowned Crane-Habitat Relationship in the Yellow River Delta Nature Reserve, China: Implications for Conservation.

    Science.gov (United States)

    Cao, Mingchang; Xu, Haigen; Le, Zhifang; Zhu, Mingchang; Cao, Yun

    2015-01-01

    The red-crowned crane (Grus japonensis (Statius Müller, 1776)) is a rare and endangered species that lives in wetlands. In this study, we used variance partitioning and hierarchical partitioning methods to explore the red-crowned crane-habitat relationship at multiple scales in the Yellow River Delta Nature Reserve (YRDNR). In addition, we used habitat modeling to identify the cranes' habitat distribution pattern and protection gaps in the YRDNR. The variance partitioning results showed that habitat variables accounted for a substantially larger total and pure variation in crane occupancy than the variation accounted for by spatial variables at the first level. Landscape factors had the largest total (45.13%) and independent effects (17.42%) at the second level. The hierarchical partitioning results showed that the percentage of seepweed tidal flats were the main limiting factor at the landscape scale. Vegetation coverage contributed the greatest independent explanatory power at the plot scale, and patch area was the predominant factor at the patch scale. Our habitat modeling results showed that crane suitable habitat covered more than 26% of the reserve area and that there remained a large protection gap with an area of 20,455 ha, which accounted for 69.51% of the total suitable habitat of cranes. Our study indicates that landscape and plot factors make a relatively large contribution to crane occupancy and that the focus of conservation effects should be directed toward landscape- and plot-level factors by enhancing the protection of seepweed tidal flats, tamarisk-seepweed tidal flats, reed marshes and other natural wetlands. We propose that efforts should be made to strengthen wetland restoration, adjust functional zoning maps, and improve the management of human disturbance in the YRDNR.

  19. Wyoming greater sage-grouse habitat prioritization: a collection of multi-scale seasonal models and geographic information systems land management tools

    Science.gov (United States)

    O'Donnell, Michael S.; Aldridge, Cameron L.; Doherty, Kevin E.; Fedy, Bradley C.

    2015-01-01

    With rapidly changing landscape conditions within Wyoming and the potential effects of landscape changes on sage-grouse habitat, land managers and conservation planners, among others, need procedures to assess the location and juxtaposition of important habitats, land-cover, and land-use patterns to balance wildlife requirements with multiple human land uses. Biologists frequently develop habitat-selection studies to identify prioritization efforts for species of conservation concern to increase understanding and help guide habitat-conservation efforts. Recently, the authors undertook a large-scale collaborative effort that developed habitat-selection models for Greater Sage-grouse (Centrocercus urophasianus) across large landscapes in Wyoming, USA and for multiple life-stages (nesting, late brood-rearing, and winter). We developed these habitat models using resource selection functions, based upon sage-grouse telemetry data collected for localized studies and within each life-stage. The models allowed us to characterize and spatially predict seasonal sage-grouse habitat use in Wyoming. Due to the quantity of models, the diversity of model predictors (in the form of geographic information system data) produced by analyses, and the variety of potential applications for these data, we present here a resource that complements our published modeling effort, which will further support land managers.

  20. Wyoming greater sage-grouse habitat prioritization: A collection of multi-scale seasonal models and geographic information systems land management tools

    Science.gov (United States)

    O'Donnell, Michael S.; Aldridge, Cameron L.; Doherty, Kevin E.; Fedy, Bradley C.

    2015-01-01

    With rapidly changing landscape conditions within Wyoming and the potential effects of landscape changes on sage-grouse habitat, land managers and conservation planners, among others, need procedures to assess the location and juxtaposition of important habitats, land-cover, and land-use patterns to balance wildlife requirements with multiple human land uses. Biologists frequently develop habitat-selection studies to identify prioritization efforts for species of conservation concern to increase understanding and help guide habitat-conservation efforts. Recently, the authors undertook a large-scale collaborative effort that developed habitat-selection models for Greater Sage-grouse (Centrocercus urophasianus) across large landscapes in Wyoming, USA and for multiple life-stages (nesting, late brood-rearing, and winter). We developed these habitat models using resource selection functions, based upon sage-grouse telemetry data collected for localized studies and within each life-stage. The models allowed us to characterize and spatially predict seasonal sage-grouse habitat use in Wyoming. Due to the quantity of models, the diversity of model predictors (in the form of geographic information system data) produced by analyses, and the variety of potential applications for these data, we present here a resource that complements our published modeling effort, which will further support land managers.

  1. [Breeding habitat characteristics of red-crowned crane at Zhalong of Northeast China: a multi-scale approach based on TM and ASAR image data].

    Science.gov (United States)

    Liu, Chun-Yue; Jiang, Hong-Xing; Zhang, Shu-Qing; Hou, Yun-Qiu; Lu, Jun

    2012-02-01

    Based on the Landsat TM and Envisat ASAR HH/HV imagery data and by using the GPS data of red-crowned crane nesting sites (n = 28) at Zhalong National Nature Reserve of Northeast China, the models of the breeding habitat selection of red-crowned crane at the Reserve were established by binary Logistic regression to identify the key variables for the habitat selection at eight spatial scales (30-240 m). The relative performance of the two models based on the Landsat TM and Envisat ASAR HH/HV databases was compared, and the prediction capacity of the models across the eight scales was approached. The overall precisions of the two models were satisfactory (> or = 69.0%). At scale 30 m, only variable TCA_2 entered with negative value into the model based on Landsat TM database, which indicated that the crane at this scale avoided selecting higher density reed marshes. At scales 60-120 m, the variable PCA_2 entered with positive value into the two models, indicating that the crane at these scales had higher demand of high density reed marshes to improve its concealment. At scale 90 m, the variable HV backward scatting coefficient also entered into the combined model, which indicated that water condition was the important factor for the habitat selection of the crane at this scale. At scales > 120 m, the texture information of the two satellite sensors started to be involved into the two models, indicating that at larger scales, the crane had decreasing demand on the vegetation features for its breeding habitat selection but increasing sensitivity to the anthropogenic disturbance factors. The introduction of ASAR variables into the models increased the prediction accuracy of the models markedly at all scales.

  2. Adjacent habitat influence on stink bug (Hemiptera: Pentatomidae densities and the associated damage at field corn and soybean edges.

    Directory of Open Access Journals (Sweden)

    P Dilip Venugopal

    Full Text Available The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855, contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields.

  3. Adjacent habitat influence on stink bug (Hemiptera: Pentatomidae) densities and the associated damage at field corn and soybean edges.

    Science.gov (United States)

    Venugopal, P Dilip; Coffey, Peter L; Dively, Galen P; Lamp, William O

    2014-01-01

    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (Stål 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields.

  4. Landscape habitat suitability index software

    Science.gov (United States)

    William D. Dijak; Chadwick D. Rittenhouse; Michael A. Larson; Frank R. III Thompson; Joshua J. Millspaugh

    2007-01-01

    Habitat suitability index (HSI) models are traditionally used to evaluate habitat quality for wildlife at a local scale. Rarely have such models incorporated spatial relationships of habitat components. We introduce Landscape HSImodels, a new Microsoft Windowst (Microsoft, Redmond, WA)-based program that incorporates local habitat as well as landscape-scale attributes...

  5. Influences of environmental cues, migration history and habitat familiarity on partial migration

    DEFF Research Database (Denmark)

    Skov, Christian; Aarestrup, Kim; Baktoft, Henrik

    2010-01-01

    The factors that drive partial migration in organisms are not fully understood. Roach (Rutilus rutilus), a freshwater fish, engage in partial migration where parts of populations switch between summer habitats in lakes and winter habitats in connected streams. To test if the partial migration trait...... is phenotypically plastic or has genetic components, we translocated roach from 2 populations with different opportunities for migration to a lake with migration opportunity, containing a local roach population. This enabled monitoring of partial migration of fish in 3 different situations: 1) previous opportunity...... in the lake with migration opportunity where from group 2 fish were translocated. Directional migration in and out of the lakes was monitored using Passive Integrated Transponder technology. Translocated fish with previous migration opportunity showed migration patterns more similar to local fish than...

  6. Influence of Disturbance on Habitats and Biological Communities in Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Friberg, N.

    2009-01-01

    communities responded to the combined pressure gradient. We used a rigorous classification of the 68 sites, into 5 disturbance groups, with respect to physical and chemical disturbance and studied the effects of disturbance on physical habitat structure and density and diversity of macrophytes....... The analyses also show that the community variable responses to the combined stressors are not linear, which is an important issue implementing the ecological classification in the Water Framework Directive....

  7. The Influence of Channel Regulating Structures on Fish and Wildlife Habitat (GREAT-III).

    Science.gov (United States)

    1982-08-01

    Norm Stucky, who provided information and encourage- ment ; Al Buchanan and Joe Dillard, who edited the manuscript; Linden Trial and Cary Maloney, who...a project designed to docu- ment the use of wing dikes, riprap, and sand habitats by fish in Pool 8 of the Upper Mississippi River. Large walleye...McGraw-Hill Book Company, Inc., New York, New York. 508 pp. Margalef, R. 1957. La Teoria de la Informacions en Ecologia. Mem. Real. Acad. Ciencias y

  8. Fine sediment influence on salmonid spawning habitat in a lowland agricultural stream: a preliminary assessment.

    Science.gov (United States)

    Soulsby, C; Youngson, A F; Moir, H J; Malcolm, I A

    2001-01-29

    Spawning habitat utilized by Atlantic Salmon (Salmo salar) and Sea Trout (Salmo trutta) was characterized in a 1.6-km reach of the Newmills Burn, a small, highly canalized tributary of the River Don in Aberdeenshire. The Newmills Burn is typical of the intensively farmed lower sub-catchments of the major salmon rivers on the east coast of Scotland. Such streams have substantial potential in providing spawning and juvenile habitat for salmonids, with high redd densities resulting in egg deposition rates of > 5 m2. However, in comparison with upland spawning tributaries draining less intensively managed catchments, canalization and intensive cultivation has seriously degraded the physical characteristics of aquatic habitats in many streams. In the Newmills Burn, spawning gravels have a relatively high (> 20% by mass) fine sediment (open gravel matrices (simulated redds) can occur within a week, and probably within a single moderate to large storm event. Appreciable, but small, deposition of organic and silt/clay particles can also affect spawning gravels. Egg mortalities in redds following spawning are variable, but can be as high as 86% in the Newmills Burn. This may be related to fine sediment infiltration, reduced permeability of spawning gravels and reduced oxygen supply to ova. It appears that the main cause of high influx is sediment loads mobilized from intensively managed land. It is suggested that fundamental changes to the management of agricultural land is required if fish habitats are to be improved and degraded streams are allowed to re-naturalize. The need for closely focused investigations of the causal relationships between fine sediment infiltration and egg survival is stressed.

  9. Habitat influence on antioxidant activity and tannin concentrations of Spondias tuberosa.

    Science.gov (United States)

    de Sousa Araújo, Thiago Antônio; de Almeida e Castro, Valerium Thijan Nobre; de Amorim, Elba Lúcia Cavalcanti; de Albuquerque, Ulysses Paulino

    2012-06-01

    Different habitat conditions can be responsible for the production of secondary metabolites and for the antioxidant properties of plant products. Thus, the aim of this study was to evaluate whether the antioxidant activity and tannin concentrations in the stem bark of Spondias tuberosa Arruda (Anacardiaceae) varied with collection site. The bark was collected from 25 individual trees, distributed in five different landscape units, as follows: agroforestry gardens, areas of pastures, maize cultivation areas, mountain areas and mountain bases, with the former 3 being considered as anthropogenic habitats, and the latter 2 considered as habitats with native coverage. The study was conducted in the rural area of the city of Altinho, Pernambuco State (Northeast Brazil). The DPPH (1,1-diphenyl-2-picrylhydrazyl) method was used to measure the antioxidant activity and tannin concentrations were evaluated by using the radial diffusion method. The results demonstrated that there were no significant differences among the tannin concentrations of the individuals from the native (6.27% ± 1.75) or anthropogenic areas (4.63% ± 2.55), (H = 2.24; p > 0.05). In contrast, there were significant differences (H = 5.1723; p 0.05) or in the anthropogenic areas (r = 0.38; p > 0.05). Because the variation of the antioxidant capacity of S. tuberosa bark was not accompanied by a variation in the tannin concentration, this property may be related to the presence of other metabolite(s).

  10. Fine-scale planktonic habitat partitioning at a shelf-slope front revealed by a high-resolution imaging system

    Science.gov (United States)

    Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.

    2015-02-01

    Ocean fronts represent productive regions of the ocean, but predator-prey interactions within these features are poorly understood partially due to the coarse-scale and biases of net-based sampling methods. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to sample across a front near the Georges Bank shelf edge on two separate sampling days in August 2010. Salinity characterized the transition from shelf to slope water, with isopycnals sloping vertically, seaward, and shoaling at the thermocline. A frontal feature defined by the convergence of isopycnals and a surface temperature gradient was sampled inshore of the shallowest zone of the shelf-slope front. Zooplankton and larval fishes were abundant on the shelf side of the front and displayed taxon-dependent depth distributions but were rare in the slope waters. Supervised automated particle counting showed small particles with high solidity, verified to be zooplankton (copepods and appendicularians), aggregating near surface above the front. Salps were most abundant in zones of intermediate chlorophyll-a fluorescence, distinctly separate from high abundances of other grazers and found almost exclusively in colonial form (97.5%). Distributions of gelatinous zooplankton differed among taxa but tended to follow isopycnals. Fine-scale sampling revealed distinct habitat partitioning of various planktonic taxa, resulting from a balance of physical and biological drivers in relation to the front.

  11. The influence of habitat fragmentation on helminth communities in rodent populations from a Brazilian Mountain Atlantic Forest.

    Science.gov (United States)

    Cardoso, T S; Simões, R O; Luque, J L F; Maldonado, A; Gentile, R

    2016-07-01

    The influence of habitat structure on helminth communities of three sigomdontinae rodent species (Akodon cursor, A. montensis and Oligoryzomys nigripes) was investigated in forest fragments within an agricultural landscape in south-eastern Brazil. This is a pionner study correlating the occurrence of helminth species of rodent hosts with microhabitat characteristics. Rodents were collected from 12 fragments and in a continuous conserved area. Up to 13 nematode, three cestode and two trematode species were identified, and habitat fragmentation was found to have more influence on the helminth composition of O. nigripes compared to the other two rodent species. Fragmentation appeared to limit the development of some helminths' life cycles, e.g. with some species such as Trichofreitasia lenti, Protospirura numidica, Cysticercus fasciolaris and Avellaria sp., occurring mostly in areas with less anthropic impact. However, fragmentation did not seem to affect the life cycles of other dominant helminths, such as the trematode Canaania obesa, the nematodes Stilestrongylus lanfrediae, S. eta and S. aculeata, and the cestode Rodentolepis akodontis. The helminth community structure followed a nested pattern of distribution in A. montensis and O. nigripes. Stilestrongylus lanfrediae seemed to be more associated with dense understorey, C. obesa with open canopy and dense understorey, and Guerrerostrongylus zetta with organic matter on the ground. Their presence in each area may be explained by aspects of their life cycles that take place in the external environment outside the host.

  12. Forecasting landscape-scale, cumulative effects of forest management on vegetation and wildlife habitat: a case study of issues, limitations, and opportunities

    Science.gov (United States)

    Stephen R. Shifley; Frank R. Thompson; William D. Dijak; Zhaofei F. Fan

    2008-01-01

    Forest landscape disturbance and succession models have become practical tools for large-scale, long-term analyses of the cumulative effects of forest management on real landscapes. They can provide essential information in a spatial context to address management and policy issues related to forest planning, wildlife habitat quality, timber harvesting, fire effects,...

  13. Hydrographic influence on the spawning habitat suitability of western Baltic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Hüssy, K.; Hinrichsen, H.-H.; Huwer, B.

    2012-01-01

    of early life stages, mediated by environmental conditions of both a physical (water temperature, salinity and oxygen conditions, ocean currents) and a biological nature (i.e. food, predators). The objective of this study is to assess the importance of variability in environmental conditions within...... different western Baltic cod spawning grounds for egg survival. Habitat identification was based on environmental threshold levels for egg survival and development and ambient hydrographical conditions at different times during the spawning season. The long-term resolution of environmental conditions...

  14. Habitat selection by African buffalo (Syncerus caffer in response to landscape-level fluctuations in water availability on two temporal scales.

    Directory of Open Access Journals (Sweden)

    Emily Bennitt

    Full Text Available Seasonal fluctuations in water availability cause predictable changes in the profitability of habitats in tropical ecosystems, and animals evolve adaptive behavioural and spatial responses to these fluctuations. However, stochastic changes in the distribution and abundance of surface water between years can alter resource availability at a landscape scale, causing shifts in animal behaviour. In the Okavango Delta, Botswana, a flood-pulsed ecosystem, the volume of water entering the system doubled between 2008 and 2009, creating a sudden change in the landscape. We used African buffalo (Syncerus caffer to test the hypotheses that seasonal habitat selection would be related to water availability, that increased floodwater levels would decrease forage abundance and affect habitat selection, and that this would decrease buffalo resting time, reduce reproductive success and decrease body condition. Buffalo selected contrasting seasonal habitats, using habitats far from permanent water during the rainy season and seasonally-flooded habitats close to permanent water during the early and late flood seasons. The 2009 water increase reduced forage availability in seasonally-flooded habitats, removing a resource buffer used by the buffalo during the late flood season, when resources were most limited. In response, buffalo used drier habitats in 2009, although there was no significant change in the time spent moving or resting, or daily distance moved. While their reproductive success decreased in 2009, body condition increased. A protracted period of high water levels could prove detrimental to herbivores, especially to smaller-bodied species that require high quality forage. Stochastic annual fluctuations in water levels, predicted to increase as a result of anthropogenically-induced climate change, are likely to have substantial impacts on the functioning of water-driven tropical ecosystems, affecting environmental conditions within protected areas

  15. Brook trout use of thermal refugia and foraging habitat influenced by brown trout

    Science.gov (United States)

    Hitt, Nathaniel P.; Snook, Erin; Massie, Danielle L.

    2017-01-01

    The distribution of native brook trout (Salvelinus fontinalis) in eastern North America is often limited by temperature and introduced brown trout (Salmo trutta), the relative importance of which is poorly understood but critical for conservation and restoration planning. We evaluated effects of brown trout on brook trout behavior and habitat use in experimental streams across increasing temperatures (14–23 °C) with simulated groundwater upwelling zones providing thermal refugia (6–9 °C below ambient temperatures). Allopatric and sympatric trout populations increased their use of upwelling zones as ambient temperatures increased, demonstrating the importance of groundwater as thermal refugia in warming streams. Allopatric brook trout showed greater movement rates and more even spatial distributions within streams than sympatric brook trout, suggesting interference competition by brown trout for access to forage habitats located outside thermal refugia. Our results indicate that removal of introduced brown trout may facilitate native brook trout expansion and population viability in downstream reaches depending in part on the spatial configuration of groundwater upwelling zones.

  16. Effect of spatial and temporal scales on habitat suitability modeling: A case study of Ommastrephes bartramii in the northwest pacific ocean

    Science.gov (United States)

    Gong, Caixia; Chen, Xinjun; Gao, Feng; Tian, Siquan

    2014-12-01

    Temporal and spatial scales play important roles in fishery ecology, and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution. The objective of this study is to evaluate the roles of spatio-temporal scales in habitat suitability modeling, with the western stock of winter-spring cohort of neon flying squid ( Ommastrephes bartramii) in the northwest Pacific Ocean as an example. In this study, the fishery-dependent data from the Chinese Mainland Squid Jigging Technical Group and sea surface temperature (SST) from remote sensing during August to October of 2003-2008 were used. We evaluated the differences in a habitat suitability index model resulting from aggregating data with 36 different spatial scales with a combination of three latitude scales (0.5°, 1° and 2°), four longitude scales (0.5°, 1°, 2° and 4°), and three temporal scales (week, fortnight, and month). The coefficients of variation (CV) of the weekly, biweekly and monthly suitability index (SI) were compared to determine which temporal and spatial scales of SI model are more precise. This study shows that the optimal temporal and spatial scales with the lowest CV are month, and 0.5° latitude and 0.5° longitude for O. bartramii in the northwest Pacific Ocean. This suitability index model developed with an optimal scale can be cost-effective in improving forecasting fishing ground and requires no excessive sampling efforts. We suggest that the uncertainty associated with spatial and temporal scales used in data aggregations needs to be considered in habitat suitability modeling.

  17. Fine-scale habitat use of reintroduced black-footed ferrets on prairie dog colonies in New Mexico

    Science.gov (United States)

    Chipault, Jennifer G.; Biggins, Dean E.; Detling, James K.; Long, Dustin H.; Reich, Robin M.

    2012-01-01

    Black-footed ferrets (Mustela nigripes) are among the most endangered animals in North America. Reintroductions of captive-born ferrets onto prairie dog (Cynomys spp.) colonies are crucial to the conservation of the species. In September 2007, captive-born ferrets were released on a black-tailed prairie dog (Cynomys ludovicianus) colony at the Vermejo Park Ranch, New Mexico. Ferret kits experimentally released in areas of comparatively low and high prairie dog burrow densities were located via spotlight surveys. Some maturing ferret kits were subsequently translocated to areas of low and high burrow densities on nearby prairie dog colonies. For 2 months, fine-scale habitat use was quantified by mapping all burrow openings within a 30-m radius of each ferret location. Spatial statistics accounted for autocorrelation in the burrow densities in areas used by ferrets. It was hypothesized that ferrets would select areas of high burrow densities within colonies; however, burrow densities in areas used by ferrets were generally similar to the available burrow densities. Because ferrets used areas with burrow densities similar to densities available at the colony level and because of the potential energetic benefits for ferrets using areas with high burrow densities, releasing ferrets on colonies with high burrow densities might increase reintroduction success.

  18. Relative Influence of Prior Life Stages and Habitat Variables on Dragonfly (Odonata: Gomphidae Densities among Lake Sites

    Directory of Open Access Journals (Sweden)

    Alysa Remsburg

    2011-04-01

    Full Text Available Many aquatic species have discrete life stages, making it important to understand relative influences of the different habitats occupied within those populations. Although population demographics in one stage can carry over to spatially separated life stages, most studies of habitat associations have been restricted to a single life stage. Among Gomphidae dragonflies (Odonata: Anisoptera, recruitment via adult oviposition establishes initial population sizes of the aquatic larvae. However, spatial variability in larval survivorship could obscure the relationship between adult and larval densities. This study uses surveys conducted during 2005 and 2006 of Gomphidae larval, emergence, and adult stages from 22 lake sites in northern Wisconsin, USA, to investigate (1 whether the Gomphidae density of each life stage correlated spatially with that of the preceding life stage and (2 what habitat factors help explain variation in densities at each life stage. Results indicated that adult densities from the previous season helped predict densities of early-instar larvae. This finding suggests that oviposition site selection controlled the local larval distribution more than larval survivorship or movement. Late-instar larval densities helped predict densities of emerging Gomphidae later the same season, suggesting that variation in survivorship of final-instar larvae among sites is small relative to the variation in larval recruitment. This study demonstrates that locations with higher densities of odonates in the water also have higher densities of odonates on land. In addition to the densities of Gomphidae in previous life stages, water clarity helped predict larval densities, and riparian wetland vegetation helped predict emergent dragonfly densities.

  19. Landscape evaluation of female black bear habitat effectiveness and capability in the North Cascades, Washington.

    Science.gov (United States)

    William L. Gaines; Andrea L. Lyons; John F. Lehmkuhl; Kenneth J. Raedeke

    2005-01-01

    We used logistic regression to derive scaled resource selection functions (RSFs) for female black bears at two study areas in the North Cascades Mountains. We tested the hypothesis that the influence of roads would result in potential habitat effectiveness (RSFs without the influence of roads) being greater than realized habitat effectiveness (RSFs with roads). Roads...

  20. Landscape alterations influence differential habitat use of nesting buteos and ravens within sagebrush ecosystem: implications for transmission line development

    Science.gov (United States)

    Coates, Peter S.; Howe, Kristy B.; Casazza, Michael L.; Delehanty, David J.

    2014-01-01

    A goal in avian ecology is to understand factors that influence differences in nesting habitat and distribution among species, especially within changing landscapes. Over the past 2 decades, humans have altered sagebrush ecosystems as a result of expansion in energy production and transmission. Our primary study objective was to identify differences in the use of landscape characteristics and natural and anthropogenic features by nesting Common Ravens (Corvus corax) and 3 species of buteo (Swainson's Hawk [Buteo swainsoni], Red-tailed Hawk [B. jamaicensis], and Ferruginous Hawk [B. regalis]) within a sagebrush ecosystem in southeastern Idaho. During 2007–2009, we measured multiple environmental factors associated with 212 nest sites using data collected remotely and in the field. We then developed multinomial models to predict nesting probabilities by each species and predictive response curves based on model-averaged estimates. We found differences among species related to nesting substrate (natural vs. anthropogenic), agriculture, native grassland, and edge (interface of 2 cover types). Most important, ravens had a higher probability of nesting on anthropogenic features (0.80) than the other 3 species (Artemisia spp.), favoring increased numbers of nesting ravens and fewer nesting Ferruginous Hawks. Our results indicate that habitat alterations, fragmentation, and forthcoming disturbances anticipated with continued energy development in sagebrush steppe ecosystems can lead to predictable changes in raptor and raven communities.

  1. Ecology And Influence Of Age And Habitats On The Diurnal Activity Patterns Of Cattle Egret Bubulcus Ibis

    Directory of Open Access Journals (Sweden)

    Fredrick Ojija

    2015-08-01

    Full Text Available Abstract It was found that habitat types and age may influence diurnal activities of cattle egrets. In average the grassland comprised 41.59 of all of diurnal activities while forest and bushland comprised 21.54 and 35.79 of all of diurnal activities respectively P0.05. Variation in the performance of diurnal activities overtimes of the day differed significantly P0.05 similarly the time spent by cattle egrets to perform diurnal activities was different P0.05. Activity budget of cattle egrets differed significantly with age classes P0.05. The adult cattle egrets spent much time feeding than sub-adults and juveniles. The feeding behaviour was the diurnal activity of cattle egrets performed most often in the morning hours. The diurnal activity patterns and time budgets of the cattle egrets may be due to their strategies to cope with environmental factors such temperatures different habitats and food availability and high foraging behaviour can be due to high energy demand.

  2. Impact of habitat-specific GPS positional error on detection of movement scales by first-passage time analysis.

    Directory of Open Access Journals (Sweden)

    David M Williams

    Full Text Available Advances in animal tracking technologies have reduced but not eliminated positional error. While aware of such inherent error, scientists often proceed with analyses that assume exact locations. The results of such analyses then represent one realization in a distribution of possible outcomes. Evaluating results within the context of that distribution can strengthen or weaken our confidence in conclusions drawn from the analysis in question. We evaluated the habitat-specific positional error of stationary GPS collars placed under a range of vegetation conditions that produced a gradient of canopy cover. We explored how variation of positional error in different vegetation cover types affects a researcher's ability to discern scales of movement in analyses of first-passage time for white-tailed deer (Odocoileus virginianus. We placed 11 GPS collars in 4 different vegetative canopy cover types classified as the proportion of cover above the collar (0-25%, 26-50%, 51-75%, and 76-100%. We simulated the effect of positional error on individual movement paths using cover-specific error distributions at each location. The different cover classes did not introduce any directional bias in positional observations (1 m≤mean≤6.51 m, 0.24≤p≤0.47, but the standard deviation of positional error of fixes increased significantly with increasing canopy cover class for the 0-25%, 26-50%, 51-75% classes (SD = 2.18 m, 3.07 m, and 4.61 m, respectively and then leveled off in the 76-100% cover class (SD = 4.43 m. We then added cover-specific positional errors to individual deer movement paths and conducted first-passage time analyses on the noisy and original paths. First-passage time analyses were robust to habitat-specific error in a forest-agriculture landscape. For deer in a fragmented forest-agriculture environment, and species that move across similar geographic extents, we suggest that first-passage time analysis is robust with regard to

  3. Integrating habitat restoration and fisheries management : A small-scale case-study to support EEL conservation at the global scale

    Directory of Open Access Journals (Sweden)

    Ciccotti E.

    2013-02-01

    Full Text Available The aim of this work was to develop a methodological framework for the management of local eel stocks that integrates habitat restoration with optimal fishery management. The Bolsena lake (Viterbo, Italy and its emissary, the river Marta, were taken as a reference system. The river flows in the Mediterranean sea but its course is fragmented by a number of dams built in the past century preventing eel migration from and to the sea. Eel fishery in the Bolsena lake is thus sustained by periodic stocking of glass eels caught at the Marta river estuary. A detailed demographic model was applied to simulate fishery yields and potential spawner escapement under different recruitment and management scenarios. It was estimated that the high exploitation rates occurring in the nineties reduced the potential spawner escapement from the Bolsena lake to less than 1 t; under current harvesting rates, the potential spawner escapement is estimated in about 12 t while in pristine conditions (i.e. high recruitment and no fishing estimated spawner escapement is about 21 t. This analysis thus showed that current fishery management would comply with the 40% spawner escapement requirement of the EU regulation 1100/2007 if the connections between the Bolsena lake emissary and the sea were fully re-established. This confirms the opportunity of an integrated approach to management at the catchment area level scale for eel populations, that shall hopefully contribute to the conservation of the global stock.

  4. Habitat fragmentation effects depend on complex interactions between population size and dispersal ability: Modeling influences of roads, agriculture and residential development across a range of life-history characteristics [chapter 20

    Science.gov (United States)

    Samuel A. Cushman; Bradley W. Compton; Kevin McGarigal

    2010-01-01

    Habitat loss and fragmentation are widely believed to be the most important drivers of extinction (Leakey and Lewin 1995). The habitats in which organisms live are spatially structured at a number of scales, and these patterns interact with organism perception and behavior to drive population dynamics and community structure (Johnson et al. 1992). Anthropogenic habitat...

  5. Large decadal scale changes of polar ozone suggest solar influence

    Directory of Open Access Journals (Sweden)

    B.-M. Sinnhuber

    2006-01-01

    Full Text Available Long-term measurements of polar ozone show an unexpectedly large decadal scale variability in the mid-stratosphere during winter. Negative ozone anomalies are strongly correlated with the flux of energetic electrons in the radiation belt, which is modulated by the 11-year solar cycle. The magnitude of the observed decadal ozone changes (≈20% is much larger than any previously reported solar cycle effect in the atmosphere up to this altitude. The early-winter ozone anomalies subsequently propagate downward into the lower stratosphere and may even influence total ozone and meteorological conditions during spring. These findings suggest a previously unrecognized mechanism by which solar variability impacts on climate through changes in polar ozone.

  6. Multi-scale habitat selection in highly territorial bird species: Exploring the contribution of nest, territory and landscape levels to site choice in breeding rallids (Aves: Rallidae)

    Science.gov (United States)

    Jedlikowski, Jan; Chibowski, Piotr; Karasek, Tomasz; Brambilla, Mattia

    2016-05-01

    Habitat selection often involves choices made at different spatial scales, but the underlying mechanisms are still poorly understood, and studies that investigate the relative importance of individual scales are rare. We investigated the effect of three spatial scales (landscape, territory, nest-site) on the occurrence pattern of little crake Zapornia parva and water rail Rallus aquaticus at 74 ponds in the Masurian Lakeland, Poland. Habitat structure, food abundance and water chemical parameters were measured at nests and random points within landscape plots (from 300-m to 50-m radius), territory (14-m) and nest-site plots (3-m). Regression analyses suggested that the most relevant scale was territory level, followed by landscape, and finally by nest-site for both species. Variation partitioning confirmed this pattern for water rail, but also highlighted the importance of nest-site (the level explaining the highest share of unique variation) for little crake. The most important variables determining the occurrence of both species were water body fragmentation (landscape), vegetation density (territory) and water depth (at territory level for little crake, and at nest-site level for water rail). Finally, for both species multi-scale models including factors from different levels were more parsimonious than single-scale ones, i.e. habitat selection was likely a multi-scale process. The importance of particular spatial scales seemed more related to life-history traits than to the extent of the scales considered. In the case of our study species, the territory level was highly important likely because both rallids have to obtain all the resources they need (nest site, food and mates) in relatively small areas, the multi-purpose territories they defend.

  7. Multi-scale Spatial Analysis Of Physical Habitat Of Pseudobagrus ichikawai (Siluriformes: Bagridae) In Third Order Stream Landscapes, Mie Prefecture, Japan

    Science.gov (United States)

    Tashiro, T.; Sagawa, S.; Kayaba, Y.; Saiki, M.; Hasegawa, K.; Amano, K.

    2005-05-01

    The bagrid catfish, Pseudobagrus ichikawai, is threatened with extinction, occurring only in the rivers flowing into Ise and Mikawa Bays. P. ichikawai is perceived to use the interstices of boulder clusters in backwaters. However, its ecology remains unclear owing to its nocturnal habits and unique habitat features. Recently, several river improvement works for controlling floods such as bank revetment, channel shortening and dam construction have decreased such environments in many rivers, and have also been considered to cause the reduction of catfish populations. The conservation of the remaining populations is fundamental not only for preserving species / genetic diversity, but also for sustaining the river landscape with its various environments. In other words, P. ichikawai can be utilized as an indicator species for this original river landscape. Therefore, in order to conserve a tiny population of the catfish, habitat restorations are planned in the 3rd order stream, a small branch of the Inabe River system in Mie Prefecture. The objectives of this study are to clarify the physical characteristics of P. ichikawai habitats and to help implementing habitat restoration in this small branch. This study consists of stratified analysis from the viewpoints of three kinds of spatial scale as follows: (1) landscape scale which includes physical land shape characteristics of the valley with each stream investigated before, (2) reach scale of the longitudinal 100 m length including the riparian zone with the multiple observed points of catfish and (3) micro-habitat scale of the quadrates (2m X 2m) where we observed the catfish individuals. At first, cluster analysis for scale (1) was conducted using variables such as sinuosity of channel, channel / valley width, and longitudinal / cross-sectional valley gradient. These parameters were obtained from general topographic maps and the 3rd order streams where local P. icihikawai populations survived in Mie Prefecture were

  8. Streambed scour of salmon spawning habitat in a regulated river influenced by management of peak discharge

    Science.gov (United States)

    Gendaszek, Andrew S.; Burton, Karl D.; Magirl, Christopher S.; Konrad, Christopher P.

    2017-01-01

    In the Pacific Northwest of the United States, salmon eggs incubating within streambed gravels are susceptible to scour during floods. The threat to egg-to-fry survival by streambed scour is mitigated, in part, by the adaptation of salmon to bury their eggs below the typical depth of scour. In regulated rivers globally, we suggest that water managers consider the effect of dam operations on scour and its impacts on species dependent on benthic habitats.We instrumented salmon-spawning habitat with accelerometer scour monitors (ASMs) at 73 locations in 11 reaches of the Cedar River in western Washington State of the United States from Autumn 2013 through the Spring of 2014. The timing of scour was related to the discharge measured at a nearby gage and compared to previously published ASM data at 26 locations in two reaches of the Cedar River collected between Autumn 2010 and Spring 2011.Thirteen percent of the recovered ASMs recorded scour during a peak-discharge event in March 2014 (2-to 3-year recurrence interval) compared to 71% of the recovered ASMs during a higher peak-discharge event in January 2011 (10-year recurrence interval). Of the 23 locations where ASMs recorded scour during the 2011 and 2014 deployments, 35% had scour when the discharge was ≤87.3 m3/s (3,082 ft3/s) (2-year recurrence interval discharge) with 13% recording scour at or below the 62.3 m3/s (2,200 ft3/s) operational threshold for peak-discharge management during the incubation of salmon eggs.Scour to the depth of salmon egg pockets was limited during peak discharges with frequent (1.25-year or less) recurrence intervals, which managers can regulate through dam operations on the Cedar River. Pairing novel measurements of the timing of streambed scour with discharge data allows the development of peak-discharge management strategies that protect salmon eggs incubating within streambed gravels during floods.

  9. Long-term trends in habitat use of offshore demersal fishes in western Lake Huron suggest large-scale ecosystem change

    Science.gov (United States)

    Riley, Stephen C.; Adams, Jean V.

    2010-01-01

    We estimated mean depths of capture for offshore demersal fish species, grouped into three habitat-based guilds (shallow benthic, pelagic, and deep benthic), using fall bottom trawl data (27–73 m) in the western main basin of Lake Huron from 1976 to 2007. The mean depth of capture of the shallow and deep benthic guilds initially exhibited a trend toward capture in shallower water, switched to a trend toward capture in deeper water in 1991, and changed back to a trend toward capture in shallower water in 2001–2002. Species in the pelagic guild showed a similar pattern, but the initial change point occurred in 1981 for this guild. Individual species in these guilds showed variable patterns of depth distribution, but a feature common to all guilds and all pelagic and deep benthic species was a change to a trend toward capturing fish in shallower water that occurred nearly simultaneously (1999–2002). These common trends suggest that large-scale factors are affecting the habitat use of offshore demersal fish species in Lake Huron. The depth distributions of the three guilds have converged in recent years, indicating that the locations of suitable habitat for offshore demersal fishes may be changing. Our results indicate that the benthic ecology of the western main basin of Lake Huron is undergoing profound changes across a large spatial scale that are affecting the habitat use of offshore demersal fishes. We suggest that these changes are related to recent invasions of exotic species.

  10. Does autocthonous primary production influence oviposition by Aedes japonicus japonicus (Diptera: Culicidae) in container habitats?

    Science.gov (United States)

    Lorenz, Amanda R; Walker, Edward D; Kaufman, Michael G

    2013-01-01

    Aedes (Finlaya) japonicus japonicus (Theobald) (Diptera: Culicidae) is recently invasive in North America and has expanded its range rapidly since 1998. Throughout its native and expanded range, Ae. j. japonicus larvae are commonly observed in many types of natural and artificial water-filled containers that vary in organic matter content and exposure to sunlight. Larvae are most often found in containers with decaying leaf material or algae, and we postulated that the added autocthonous primary production from algae could be both an important food source for larvae and an influential oviposition attractant to adult Ae. j. japonicus. We tested this hypothesis by placing plastic containers with varied levels of shading to manipulate algal density in the field, and then monitored oviposition by natural populations of Ae. j. japonicus. Over 99% of larvae hatching from eggs laid on the walls of our containers were Ae. j. japonicus, indicating that this species is a dominant colonizer of artificial containers in the study areas. Although full shading treatments effectively reduced algal biomass (significant reduction in chlorophyll a levels), at only one of three sites did this appear to affect Ae. j. japonicus oviposition. We conclude that algae in larval habitats are not a major factor in oviposition choices of adult Ae. j. japonicus females except when in situ primary production is high enough to substantially alter overall organic matter content cues.

  11. Ground-living spiders in wooded habitats under human influence on an island in Finland

    Directory of Open Access Journals (Sweden)

    Koponen, Seppo

    2013-06-01

    Full Text Available Spiders were collected by pitfall traps in the south-western archipelago of Finland. Wooded study habitats on a small-sized (1.2 km2 island were: 1 natural open ash grove, 2 dense mixed grove (old overgrown wooded meadow, 3 wooded aspen pasture and 4 wooded meadow, both restored ten years earlier, 5 natural wooded meadow. Highest species and family numbers were found at the natural sites (1 and 5 and the lowest in the dense grove (site 2. Linyphiidae dominated, both at species and individual level, in the groves. Lycosidae were abundant on the wooded meadows and Gnaphosidae on the wooded pasture. The highest faunal similarities were between the groves (70 % species in common and between the wooded meadows (64 %. The lowest similarity was found between the dense grove (17 % and the ash grove (23 % with the aspen pasture. Ten years after clearing, sites 3 and 4 had diverse spider faunas. The fauna at site 4 resembled that on the corresponding natural site (5, thus showing restoration success. Altogether 84 species of spiders were caught. The proportion of Gnaphosidae (16 species found is high. Most species found in the study are common in south-western Finland and many occur across the whole country. Pardosa lugubris was most dominant at three sites, P. pullata and Diplostyla concolor both at one site. Two species, Enoplognatha thoracica and Micaria fulgens, are included in the Finnish Red Data Book.

  12. Measuring acoustic habitats.

    Science.gov (United States)

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-03-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies.

  13. Geomorphic and human influence on large-scale coastal change

    Science.gov (United States)

    Hapke, Cheryl J.; Kratzmann, Meredith G.; Himmelstoss, Emily A.

    2013-01-01

    An increasing need exists for regional-scale measurements of shoreline change to aid in management and planning decisions over a broad portion of the coast and to inform assessments of coastal vulnerabilities and hazards. A recent dataset of regional shoreline change, covering a large portion of the U.S. East coast (New England and Mid-Atlantic), provides rates of shoreline change over historical (~ 150 years) and recent (25–30 years) time periods making it ideal for a broad assessment of the regional variation of shoreline change, and the natural and human-induced influences on coastal behavior. The variable coastal landforms of the region provide an opportunity to investigate how specific geomorphic landforms relate to the spatial variability of shoreline change. In addition to natural influences on the rates of change, we examine the effects that development and human modifications to the coastline have on the measurements of regional shoreline change.Regional variation in the rates of shoreline change is a function of the dominant type and distribution of coastal landform as well as the relative amount of human development. Our results indicate that geomorphology has measurable influence on shoreline change rates. Anthropogenic impacts are found to be greater along the more densely developed and modified portion of the coast where jetties at engineered inlets impound large volumes of sediment resulting in extreme but discrete progradation updrift of jetties. This produces a shift in averaged values of rates that may mask the natural long-term record. Additionally, a strong correlation is found to exist between rates of shoreline change and relative level of human development. Using a geomorphic characterization of the types of coastal landform as a guide for expected relative rates of change, we found that the shoreline appears to be changing naturally only along sparsely developed coasts. Even modest amounts of development influence the rates of change

  14. Diversity in skeletal architecture influences biological heterogeneity and Symbiodinium habitat in corals.

    Science.gov (United States)

    Yost, Denise M; Wang, Li-Hsueh; Fan, Tung-Yung; Chen, Chii-Shiarng; Lee, Raymond W; Sogin, Emilia; Gates, Ruth D

    2013-10-01

    Scleractinian corals vary in response to rapid shifts in the marine environment and changes in reef community structure post-disturbance reveal a clear relationship between coral performance and morphology. With exceptions, massive corals are thought to be more tolerant and branching corals more vulnerable to changing environmental conditions, notably thermal stress. The typical responses of massive and branching coral taxa, respectively, are well documented; however, the biological and functional characteristics that underpin this variation are not well understood. We address this gap by comparing multiple biological attributes that are correlated with skeletal architecture in two perforate (having porous skeletal matrices with intercalating tissues) and two imperforate coral species (Montipora aequituberculata, Porites lobata, Pocillopora damicornis, and Seriatopora hystrix) representing three morphotypes. Our results reveal inherent biological heterogeneity among corals and the potential for perforate skeletons to create complex, three-dimensional internal habitats that impact the dynamics of the symbiosis. Patterns of tissue thickness are correlated with the concentration of symbionts within narrow regions of tissue in imperforate corals versus broad distribution throughout the larger tissue area in perforate corals. Attributes of the perforate and environmentally tolerant P. lobata were notable, with tissues ∼5 times thicker than in the sensitive, imperforate species P. damicornis and S. hystrix. Additionally, P. lobata had the lowest baseline levels of superoxide and Symbiodinium that provisioned high levels of energy. Given our observations, we hypothesize that the complexity of the visually obscured internal environment has an impact on host-symbiont dynamics and ultimately on survival, warranting further scientific investigation. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. The influence of variable snowpacks on habitat use by mountain caribou

    Directory of Open Access Journals (Sweden)

    Trevor A. Kinley

    2007-04-01

    Full Text Available Mountain caribou (Rangifer tarandus caribou in southeastern British Columbia subsist for most of the winter on arboreal hair lichen, mostly Bryoria spp. Foraging occurs mainly in old subalpine fir (Abies lasiocarpa forests near treeline. Here, the lower limit of Bryoria in the canopy is dictated by snowpack depth because hair lichens die when buried in snow. Bryoria is often beyond the reach of caribou in early winter, prompting caribou to move downslope to where lichen occurs lower in the canopy and other foraging modes are possible. Snowpacks are normally deep enough by late winter that caribou can reach Bryoria where it is most abundant, at high elevations. Extending this to inter-annual comparisons, Bryoria should be less accessible during late winter of low-snow years following normal winters, or of normal to low-snow years after deep-snow winters. We hypothesized that when maximum snowpack in late winter is low relative to the deepest of the previous 5 years, mountain caribou will use lower elevations to facilitate foraging (“lichen-snow-caribou” or LSC hypothesis. We tested this with late-winter data from 13 subpopulations. In the dry climatic region generally and for minor snowfall differences in wet and very wet regions, caribou did not shift downslope or in fact were at higher elevations during relatively low-snow years, possibly reflecting the ease of locomotion. The LSC hypothesis was supported within wet and very wet regions when snowpacks were about 1 m or more lower than in recent years. Elevation declined by 300 m (median to 600 m (25th percentile for snowpack differences of at least 1.5 m. Greater use of lodgepole pine and western hemlock stands sometimes also occurred. Management strategies emphasizing subalpine fir stands near treeline should be re-examined to ensure protection of a broader range of winter habitats used by caribou under variable snowpack conditions.

  16. Influence de la toiture sur les conditions de confort dans l'habitat en ...

    African Journals Online (AJOL)

    In tropical region, thermic charges resulting from sunlight influence are one of the principal source of uncomfortabilty in house. Nevertheless, the building of house, adapted to climate, consists in controlling as much as possible the flow of the heat exchanged and/or stocked by the envelope of buildings and the one of ...

  17. Influence of habitat amount, arrangement, and use on population trend estimates of male Kirtland's warblers

    Science.gov (United States)

    Deanh M. Donner; John R. Probst; Christine A. Ribic

    2008-01-01

    Kirtland's warblers (Dendroica kirtlandii) persist in a naturally patchy environment of young, regenerating jack pine forests (i.e., 5-23 years old) created after wildfires and human logging activities. We examined how changing landscape structure from 26 years of forest management and wildfire disturbances influenced population size and spatial...

  18. Reach-scale comparison of habitat and mollusk assemblages for select sites in the Clinch River with regional context

    Science.gov (United States)

    Ostby, Brett J. K.; Krstolic, Jennifer L.; Johnson, Gregory C.

    2014-01-01

    Several hypotheses, including habitat degradation and variation in fluvial geomorphology, have been posed to explain extreme spatial and temporal variation in Clinch River mollusk assemblages. We examined associations between mollusk assemblage metrics (richness, abundance, recruitment) and physical habitat (geomorphology, streambed composition, fish habitat, and riparian condition) at 10 sites selected to represent the range of current assemblage condition in the Clinch River. We compared similar geomorphological units among reaches, employing semi-quantitative and quantitative protocols to characterize mollusk assemblages and a mix of visual assessments and empirical measurements to characterize physical habitat. We found little to no evidence that current assemblage condition was associated with 54 analyzed habitat metrics. When compared to other sites in the Upper Tennessee River Basin (UTRB) that once supported or currently support mollusk assemblages, Clinch River sites were more similar to each other, representing a narrower range of conditions than observed across the larger geographic extent of the UTRB. A post-hoc analysis suggested stream size and average boundary shear stress at bankfull stage may have historically limited species richness in the UTRB (p mollusk assemblages and physical habitat in the UTRB and Clinch River currently appear obscured by other factors limiting richness, abundance, and recruitment.

  19. How landscape scale changes affect ecological processes in conservation areas: external factors influence land use by zebra (Equus burchelli) in the Okavango Delta.

    Science.gov (United States)

    Bartlam-Brooks, Hattie L A; Bonyongo, Mpaphi C; Harris, Stephen

    2013-09-01

    Most large-bodied wildlife populations in sub-Saharan Africa only survive in conservation areas, but are continuing to decline because external changes influence ecological processes within reserves, leading to a lack of functionality. However, failure to understand how landscape scale changes influence ecological processes limits our ability to manage protected areas. We used GPS movement data to calculate dry season home ranges for 14 zebra mares in the Okavango Delta and investigated the effects of a range of landscape characteristics (number of habitat patches, mean patch shape, mean index of juxtaposition, and interspersion) on home range size. Resource utilization functions (RUF) were calculated to investigate how specific landscape characteristics affected space use. Space use by all zebra was clustered. In the wetter (Central) parts of the Delta home range size was negatively correlated with the density of habitat patches, more complex patch shapes, low juxtaposition of habitats and an increased availability of floodplain and grassland habitats. In the drier (Peripheral) parts of the Delta, higher use by zebra was also associated with a greater availability of floodplain and grassland habitats, but a lower density of patches and simpler patch shapes. The most important landscape characteristic was not consistent between zebra within the same area of the Delta, suggesting that no single foraging strategy is substantially superior to others, and so animals using different foraging strategies may all thrive. The distribution and complexity of habitat patches are crucial in determining space use by zebra. The extent and duration of seasonal flooding is the principal process affecting habitat patch characteristics in the Okavango Delta, particularly the availability of floodplains, which are the habitat at greatest risk from climate change and anthropogenic disturbance to the Okavango's catchment basin. Understanding how the factors that determine habitat

  20. Investigation of factors influencing biogas production in a large-scale thermophilic municipal biogas plant

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Agnes; Jerome, Valerie; Freitag, Ruth [Bayreuth Univ. (Germany). Chair for Process Biotechnology; Burghardt, Diana; Likke, Likke; Peiffer, Stefan [Bayreuth Univ. (Germany). Dept. of Hydrology; Hofstetter, Eugen M. [RVT Process Equipment GmbH, Steinwiesen (Germany); Gabler, Ralf [BKW Biokraftwerke Fuerstenwalde GmbH, Fuerstenwalde (Germany)

    2009-10-15

    A continuously operated, thermophilic, municipal biogas plant was observed over 26 months (sampling twice per month) in regard to a number of physicochemical parameters and the biogas production. Biogas yields were put in correlation to parameters such as the volatile fatty acid concentration, the pH and the ammonium concentration. When the residing microbiota was classified via analysis of the 16S rRNA genes, most bacterial sequences matched with unidentified or uncultured bacteria from similar habitats. Of the archaeal sequences, 78.4% were identified as belonging to the genus Methanoculleus, which has not previously been reported for biogas plants, but is known to efficiently use H{sub 2} and CO{sub 2} produced by the degradation of fatty acids by syntrophic microorganisms. In order to further investigate the influence of varied amounts of ammonia (2-8 g/L) and volatile fatty acids on biogas production and composition (methane/CO{sub 2}), laboratory scale satellite experiments were performed in parallel to the technical plant. Finally, ammonia stripping of the process water of the technical plant was accomplished, a measure through which the ammonia entering the biogas reactor via the mash could be nearly halved, which increased the energy output of the biogas plant by almost 20%. (orig.)

  1. Meso-scale habitat simulation for the conservation of the endangered crayfish Austropotamobious pallipes complex in Italy

    Science.gov (United States)

    Vezza, Paolo; Ghia, Daniela; Fea, Gianluca; Spairani, Michele; Comoglio, Claudio; Di Francesco, Monica

    2014-05-01

    Crayfish are the largest mobile freshwater invertebrates, being often considered key species in the aquatic ecosystems of small streams and creeks in Italy. Specifically, Austropotamobius pallipes complex is currently classified as an endangered species, and Italian local populations significantly decreased over the last decades due to habitat modifications and introduction of alien species. Information on A. pallipes ecological requirements is then needed to quantify habitat loss, to simulate restoration scenarios and to implement effective conservation measures. In this work we analyze mesohabitat use of A. pallipes in reference streams and creeks located in the Italian pre-Alps (Lombardia region) and in the mountainous areas of the Gran Sasso e monti della Laga National Park (Abruzzo region). Data from seven morphologically different streams were used to calibrate and validate habitat models for the endangered crayfish A. pallipes complex. The Random Forests algorithm was used to identify the best and the most parsimonious habitat model, to define the lowest number of variables to be surveyed in future model applications. The obtained habitat models were then applied to each stream in order to classify each mesohabitat into suitability categories, and to develop habitat-flow rating curves. Finally, habitat time series analysis was used to define detailed schemes of flow management for individual water diversions in order to represent how physical habitat changes through time and to identify stress conditions for A. pallipes created by persistent limitation in habitat availability. Results indicated that fine substrate (as proportion of gravel and sand), shallow water depth and cover (as presence of boulders, woody debris and undercut banks) revealed to be significant variables for the occurrence of A. pallipes. Habitat models, performing well in both model calibration and validation phases (accuracy ranging from 71% to 87%), are regarded as valuable tools being

  2. The influence of disturbed habitat on the spatial ecology of Argentine black and white tegu (Tupinambis merianae), a recent invader in the Everglades ecosystem (Florida, USA)

    Science.gov (United States)

    Klug, Page E.; Reed, Robert N.; Mazzotti, Frank J.; McEachern, Michelle A.; Vinci, Joy J.; Craven, Katelin K.; Yackel Adams, Amy A.

    2015-01-01

    The threat of invasive species is often intensified in disturbed habitat. To optimize control programs, it is necessary to understand how degraded habitat influences the behavior of invasive species. We conducted a radio telemetry study to characterize movement and habitat use of introduced male Argentine black and white tegus (Tupinambis merianae) in the Everglades of southern Florida from May to August 2012 at the core and periphery of the introduced range. Tegus at the periphery moved farther per day (mean 131.7 ± 11.6 m, n = 6) compared to tegus at the core (mean 50.3 ± 12.4 m, n = 6). However, activity ranges were not significantly smaller in the core (mean 19.4 ± 8.4 ha, n = 6) compared to periphery (mean 29.1 ± 5.2 ha, n = 6). Peripheral activity ranges were more linear due to activity being largely restricted to levee habitat surrounded by open water or marsh. Tegus were located in shrub or tree habitat (mean 96%) more often than expected based on random locations (mean 58%), and the percent cover of trees and shrubs was higher in activity ranges (mean 61%) than the general study area (17%). Our study highlighted the ability of tegus to spread across the Florida landscape, especially in linear disturbed habitats where increased movement occurred and in areas of altered hydrology where movement is not restricted by water.

  3. Do physical habitat complexity and predator cues influence the baseline and stress-induced glucocorticoid levels of a mangrove-associated fish?

    Science.gov (United States)

    Magel, Jennifer M T; Pleizier, Naomi; Wilson, Alexander D M; Shultz, Aaron D; Vera Chang, Marilyn N; Moon, Thomas W; Cooke, Steven J

    2017-01-01

    As human populations continue to expand, increases in coastal development have led to the alteration of much of the world's mangrove habitat, creating problems for the multitude of species that inhabit these unique ecosystems. Habitat alteration often leads to changes in habitat complexity and predation risk, which may serve as additional stressors for those species that rely on mangroves for protection from predators. However, few studies have been conducted to date to assess the effects of these specific stressors on glucocorticoid (GC) stress hormone levels in wild fish populations. Using the checkered puffer as a model, our study sought to examine the effects of physical habitat complexity and predator environment on baseline and acute stress-induced GC levels. This was accomplished by examining changes in glucose and cortisol concentrations of fish placed in artificial environments for short periods (several hours) where substrate type and the presence of mangrove roots and predator cues were manipulated. Our results suggest that baseline and stress-induced GC levels are not significantly influenced by changes in physical habitat complexity or the predator environment using the experimental protocol that we applied. Although more research is required, the current study suggests that checkered puffers may be capable of withstanding changes in habitat complexity and increases in predation risk without experiencing adverse GC-mediated physiological effects, possibly as a result of the puffers' unique morphological and chemical defenses that help them to avoid predation in the wild. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Influence of environmental and prey variables on low tide shorebird habitat use within the Robbins Passage wetlands, Northwest Tasmania

    Science.gov (United States)

    Spruzen, Fiona L.; Richardson, Alastair M. M.; Woehler, Eric J.

    2008-06-01

    Shorebirds feed primarily on tidal flats, and their distribution over these flats is influenced by their prey and abiotic factors. These factors act by influencing the distribution and abundance of the prey, or the shorebirds ability to exploit it. The aims of this study were to investigate the low tide foraging distribution of shorebirds at four sites within the Robbins Passage wetlands, and the environmental and invertebrate factors that may influence their distribution. The greatest densities and number of shorebirds were found at Shipwreck Point and East Inlet. The shorebirds within-site distribution was also non-random, with the shorebirds present in greatest densities at the water's edge and low intertidal stratum, although this varied among species. Generally, on a small spatial scale, invertebrate diversity was positively correlated, and seagrass leaf mass was negatively correlated, with shorebird feeding density. On a large spatial scale, invertebrate biomass and seagrass root mass were positively correlated with shorebird feeding density. Invertebrate biomass and seagrass root mass explained 71% of the variance in total shorebird feeding density on the tidal flats. The variation in shorebird feeding density and diversity was therefore partly explained by invertebrate diversity and biomass, as well as the environmental factors seagrass roots and leaf mass and tidal flat area, although the strength of these relationships was influenced by the two different spatial scales of the study. The strength of the relationships between shorebird feeding density and the invertebrate and environmental variables was stronger on a large spatial scale. The presence of seagrass may have influenced shorebird-feeding density by affecting the invertebrate abundance and composition or the shorebirds ability to detect and capture their prey. The area of the tidal flat had opposing effects on the shorebird species. These results can be used to assist in the development of

  5. Habitat manipulation of Exposed Riverine Sediments (ERS) how does microhabitat, microclimate and food availability influence beetle distributions?

    Science.gov (United States)

    Henshall, S. E.; Sadler, J. P.; Hannah, D. M.

    2009-04-01

    Exposed riverine sediments (ERS) are frequently inundated areas of relatively un-vegetated, fluvially deposited sediment (sand, silt, gravel and pebble). These habitats provide an important interface allowing the interaction of aquatic and terrestrial habitats and species. ERS are highly valuable for many rare and specialist invertebrates particularly beetles. Within an area of ERS, beetle species richness tends to be highest along the water's edge. This higher species richness may be linked to: (1) the availability of food items in the form of emerging and stranded aquatic invertebrates and (2) favourable physical microhabitat conditions in terms of temperature and moisture. This paper explores the role of microclimate and food availability by creating areas of ‘water's edge' habitat in the centre of a gravel bar. Typically these areas are drier, reach higher temperatures and devoid of emerging aquatic invertebrate prey. Four 2m x 2m experimental plots were created: one wet plot, one wet- fed plot, one dry-fed plot and one dry plot (control). These plots were each replicated on three separate areas of ERS. Sixty colour marked ERS specialist ground beetles (Bembidion atrocaeruleum) were released into each plot to monitor beetle persistence and movement on and between plots. The plots were maintained wet using a capillary pump system, and fed with dried blood worms for 30 days. Sediment temperature (0.05 m depth) was measured at 15 minute intervals and spot measurements of surface temperature were taken daily. A hand search was carried out on 25% of each plot after 7, 14, 21 and 30 days. Significant temperature differences were observed between the wet and dry sediment and air temperature. The wet plots on average were 1.8oC cooler than the dry plots and had a reduced temperature range. Both wet and dry sediments remained significantly warmer than air temperature. The wet and wet-fed plots yielded significantly greater numbers of beetles and marked beetles than

  6. Physiological, morphological, and ecological tradeoffs influence vertical habitat use of deep-diving toothed-whales in the Bahamas.

    Science.gov (United States)

    Joyce, Trevor W; Durban, John W; Claridge, Diane E; Dunn, Charlotte A; Fearnbach, Holly; Parsons, Kim M; Andrews, Russel D; Ballance, Lisa T

    2017-01-01

    Dive capacity among toothed whales (suborder: Odontoceti) has been shown to generally increase with body mass in a relationship closely linked to the allometric scaling of metabolic rates. However, two odontocete species tagged in this study, the Blainville's beaked whale Mesoplodon densirostris and the Cuvier's beaked whale Ziphius cavirostris, confounded expectations of a simple allometric relationship, with exceptionally long (mean: 46.1 min & 65.4 min) and deep dives (mean: 1129 m & 1179 m), and comparatively small body masses (med.: 842.9 kg & 1556.7 kg). These two species also exhibited exceptionally long recovery periods between successive deep dives, or inter-deep-dive intervals (M. densirostris: med. 62 min; Z. cavirostris: med. 68 min). We examined competing hypotheses to explain observed patterns of vertical habitat use based on body mass, oxygen binding protein concentrations, and inter-deep-dive intervals in an assemblage of five sympatric toothed whales species in the Bahamas. Hypotheses were evaluated using dive data from satellite tags attached to the two beaked whales (M. densirostris, n = 12; Z. cavirostris, n = 7), as well as melon-headed whales Peponocephala electra (n = 13), short-finned pilot whales Globicephala macrorhynchus (n = 15), and sperm whales Physeter macrocephalus (n = 27). Body mass and myoglobin concentration together explained only 36% of the variance in maximum dive durations. The inclusion of inter-deep-dive intervals, substantially improved model fits (R2 = 0.92). This finding supported a hypothesis that beaked whales extend foraging dives by exceeding aerobic dive limits, with the extension of inter-deep-dive intervals corresponding to metabolism of accumulated lactic acid. This inference points to intriguing tradeoffs between body size, access to prey in different depth strata, and time allocation within dive cycles. These tradeoffs and resulting differences in habitat use have important implications for spatial distribution

  7. Anthropogenic influences on heavy metals across marine habitats in the western coast of Venezuela

    Science.gov (United States)

    García, E. M.; Cruz-Motta, J. J.; Farina, O.; Bastidas, C.

    2008-12-01

    Concentrations of ten metals were measured in waters and sediments at 14 sites during four sampling periods (1996-1997). These sites include various marine ecosystems that are highly influenced by industry, tourism and river discharges, nine of which are within the Morrocoy National Park. Spatially, metal concentrations in water were homogenous, whereas in sediments their distributions were related to grain size. Maximum concentrations of cadmium (Cd) and mean concentrations of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in water were above the guideline values proposed by NOAA, indicating the potential of these metals for producing chronic effects in marine biota. Sheltered sites showed the highest metal concentrations in sediments; with Cd and Zn above these guidelines. Enrichment factors and geo-accumulation indexes suggested that metals in sediments were largely of natural origin except for Pb, Cd and vanadium (V), which were apparently associated with industrial effluents. A disruption of the spatial distribution of metals after heavy rainfall, when exposed sites reached concentrations as high as those in sheltered sites, showed the influence of nearby rivers. The potential increase of such climatic events could represent additional stress for natural protected areas in the Caribbean.

  8. Horse Chestnut (Aesculus hippocastanum L. Urban Habitat - Pollution Influence on Some Phenotypic and Morphological Characteristics

    Directory of Open Access Journals (Sweden)

    Fran Poštenjak

    2012-12-01

    Full Text Available Background and Purpose: Horse chestnut (Aesculus hippocastanum L. may be found in most urban areas in Croatia. Over the years it showed to be resistant to various negative urban influences. In this research we tested trees on randomly selected streets with intense traffic in smaller towns. The main goal of this research was to establish the link between pollution and tree growth and to analyze to what extent pollution influences the increase in the measured parameters. Material and Methods: The research was done in 7 settlements, in towns with the population of up to 75 000 inhabitants. The measured parameters were the morphological characteristics of trees, shoots, leaves and nuts. From the selected branches we measured the annual shoot (thickness and length, leaves, the number of flowers and nuts. The crown transparency was assessed according to the ICP Forest method. Results and Conclusion: The phenotype of the urban Horse chestnut significantly differs from its natural phenotype, and it is transformed by multiple radical pruning, what may be seen in the following ratios: the diameter at breast height - tree height, trunk height - tree height, crown height – tree height, crown width – crown height. The most significant characteristic of the tree is the vitality expressed by crown-damage classes. On the selected trees the worst crown damage class was “3b” and the best was “0”. The measured parameters of yearly shoot characteristics were defined. All measured parameters (trees, shoots, leafs and nuts show significant differences from the given average values.

  9. Patterns in Habitat and Fish Assemblages within Great Lakes Coastal Wetlands and Implications for Sampling Design

    Science.gov (United States)

    Discerning fish - habitat associations at a variety of spatial scales is relevant to evaluating stressor responses and assessment protocols in Great Lakes coastal wetlands. NMDS ordination of electrofishing catch-per-effort data identified an overriding influence of geography an...

  10. Landscape-scale Habitat Templates and Life Histories of Endangered and Invasive Fish Species in Large Rivers of the Mid-Continent USA (Invited)

    Science.gov (United States)

    Jacobson, R. B.; Braaten, P. J.; Chapman, D.; DeLonay, A. J.

    2013-12-01

    Many fish species migrate through river systems to complete their life cycles, occupying specific habitats during specific life stages. Regional geomorphology sets a template for their habitat-use patterns and ontogenetic development. In large rivers of the Mid-continent USA, understanding of relations of fish life histories to landscape-scale habitat templates informs recovery of endangered species and prevention of spread of invasive species. The endangered pallid sturgeon has evolved in the Missouri-Mississippi river system over 150 Ma. Its present-day distribution probably results from extensive drainage re-arrangements during the Pleistocene, followed by contemporary fragmentation. The reproductive and early life-stage needs of pallid sturgeon encompass hundreds of km, as adults migrate upstream to spawn and free embryos and larvae disperse downstream. Spawning requires coarse, hard substrate for incubation of adhesive eggs but adult pallid sturgeon are found predominately over sand, indicating that coarse substrate is a critical but transient habitat need. Once hatched, free-embryos initiate 9-17 days of downstream dispersal that distributes them over several hundreds of km. Lotic conditions at the dispersal terminus are required for survival. Persistent recruitment failure has been attributed to dams and channelization, which have fragmented migration and dispersal corridors, altered flow regimes, and diminished rearing habitats. Key elements of the natural history of this species remain poorly understood because adults are rare and difficult to observe, while the earliest life stages are nearly undetectable. Recent understanding has been accelerated using telemetry and hydroacoustics, but such assessments occur in altered systems and may not be indicative of natural behaviors. Restoration activities attempt - within considerable uncertainty -- to restore elements of the habitat template where they are needed. In comparison, invasive Asian carps have been

  11. Using Field Data and GIS-Derived Variables to Model Occurrence of Williamson’s Sapsucker Nesting Habitat at Multiple Spatial Scales

    Science.gov (United States)

    2015-01-01

    Williamson's sapsucker (Sphyrapicus thyroideus) is a migratory woodpecker that breeds in mixed coniferous forests in western North America. In Canada, the range of this woodpecker is restricted to three small populations in southern British Columbia, precipitating a national listing as ‘Endangered’ in 2005, and the need to characterize critical habitat for its survival and recovery. We compared habitat attributes between Williamson’s sapsucker nest territories and random points without nests or detections of this sapsucker as part of a resource selection analysis to identify the habitat features that best explain the probability of nest occurrence in two separate geographic regions in British Columbia. We compared the relative explanatory power of generalized linear models based on field-derived and Geographic Information System (GIS) data within both a 225 m and 800 m radius of a nest or random point. The model based on field-derived variables explained the most variation in nest occurrence in the Okanagan-East Kootenay Region, whereas nest occurrence was best explained by GIS information at the 800 m scale in the Western Region. Probability of nest occurrence was strongly tied to densities of potential nest trees, which included open forests with very large (diameter at breast height, DBH, ≥57.5 cm) western larch (Larix occidentalis) trees in the Okanagan-East Kootenay Region, and very large ponderosa pine (Pinus ponderosa) and large (DBH 17.5–57.5 cm) trembling aspen (Populus tremuloides) trees in the Western Region. Our results have the potential to guide identification and protection of critical habitat as required by the Species at Risk Act in Canada, and to better manage Williamson’s sapsucker habitat overall in North America. In particular, management should focus on the maintenance and recruitment of very large western larch and ponderosa pine trees. PMID:26177286

  12. Influence of fish on habitat choice of water birds: a whole system experiment.

    Science.gov (United States)

    Haas, Karin; Köhler, Ursula; Diehl, Sebastian; Köhler, Peter; Dietrich, Sabine; Holler, Stefan; Jaensch, Andreas; Niedermaier, Manfred; Vilsmeier, Johanna

    2007-11-01

    It is notoriously difficult to study population interactions among highly mobile animals that cannot be meaningfully confined to experimental plots of limited size. For example, migratory water birds are believed to suffer from competition with resident fish populations for shared food resources. While observational evidence in support of this hypothesis is accumulating, replicated experiments addressing this issue at the proper spatial scale are lacking. Here, we report from a replicated whole-system experiment in which we stocked large (0.07 km2), shallow (food resources during summer over several years. In all years, the biomasses of benthic macroinvertebrates, macroalgae, and macrophytes as well as the densities of herbivorous, carnivorous, and omnivorous water birds were reduced in carp ponds compared to fishless ponds. The negative effects of carp on food resources and on the numbers of water birds feeding in carp ponds increased over the season (May-September) and were stronger at high than at low stocking densities of carp. Consequently, differences in resource densities between ponds with and without carp increased, and the ranking of ponds with respect to resource densities became more predictable over the season. These factors may have contributed to a seasonal improvement of the birds' abilities to track resource densities across ponds, as suggested by tight correlations of bird numbers on ponds with resource densities late, but not early, in the season.

  13. Landscape-scale fuel treatment and wildfire impacts on carbon stocks and fire hazard in California spotted owl habitat

    Science.gov (United States)

    Lindsay A. Chiono; Danny L. Fry; Brandon M. Collins; Andrea H. Chatfield; Scott L. Stephens

    2017-01-01

    Forest managers are challenged with meeting numerous demands that often include wildlife habitat and carbon (C) sequestration. We used a probabilistic framework of wildfire occurrence to (1) estimate the potential for fuel treatments to reduce fire risk and hazard across the landscape and within protected California spotted owl (Strix occidentalis...

  14. The Influence of Data Resolution on Predicted Distribution and Estimates of Extent of Current Protection of Three 'Listed' Deep-Sea Habitats.

    Directory of Open Access Journals (Sweden)

    Lauren K Ross

    Full Text Available Modelling approaches have the potential to significantly contribute to the spatial management of the deep-sea ecosystem in a cost effective manner. However, we currently have little understanding of the accuracy of such models, developed using limited data, of varying resolution. The aim of this study was to investigate the performance of predictive models constructed using non-simulated (real world data of different resolution. Predicted distribution maps for three deep-sea habitats were constructed using MaxEnt modelling methods using high resolution multibeam bathymetric data and associated terrain derived variables as predictors. Model performance was evaluated using repeated 75/25 training/test data partitions using AUC and threshold-dependent assessment methods. The overall extent and distribution of each habitat, and the percentage contained within an existing MPA network were quantified and compared to results from low resolution GEBCO models. Predicted spatial extent for scleractinian coral reef and Syringammina fragilissima aggregations decreased with an increase in model resolution, whereas Pheronema carpenteri total suitable area increased. Distinct differences in predicted habitat distribution were observed for all three habitats. Estimates of habitat extent contained within the MPA network all increased when modelled at fine scale. High resolution models performed better than low resolution models according to threshold-dependent evaluation. We recommend the use of high resolution multibeam bathymetry data over low resolution bathymetry data for use in modelling approaches. We do not recommend the use of predictive models to produce absolute values of habitat extent, but likely areas of suitable habitat. Assessments of MPA network effectiveness based on calculations of percentage area protection (policy driven conservation targets from low resolution models are likely to be fit for purpose.

  15. Habitat structure and diversity influence the nesting success of an endangered large cavity-nesting bird, the Southern Ground-hornbill

    Directory of Open Access Journals (Sweden)

    Leigh Combrink

    2017-01-01

    Full Text Available Habitat features can have a profound effect on the nesting success of birds. Savannas are often managed with predators and large herbivores as priority species, with little thought to the many bird species that management decisions could affect. Using a data set spanning seven breeding seasons, we examined how nesting success of Southern Ground-hornbills (SGHs Bucorvus leadbeateri in the Kruger National Park varied as a result of various environmental and habitat factors within a radius of 3 km surrounding the nest site. Identifying which factors affect nesting success will allow for targeted management efforts to ensure the long-term survival of SGHs both within and outside of protected areas. Habitat structure and diversity of the vegetation surrounding the nest were the most influential factors on SGH nesting success. SGHs require open grassy areas for foraging and areas with large trees for nesting. Savanna habitat drivers such as elephants and fire should be managed to ensure that sufficient large trees are able to establish in the landscape and to control for bush encroachment. This is especially important in areas earmarked for SGH reintroductions. Nest sites of SGHs should be monitored to mitigate any structural changes in the habitat surrounding the nests. Nests should be modified or artificial nest sites provided, where nests have been damaged or lost, to ensure the continued presence of these birds in African savannas.Conservation implications: Habitat structure and diversity surrounding Southern Groundhornbill nests has a significant impact on their nesting success. This highlights the importance of monitoring vegetation change in savanna habitats where they occur. Management of savanna areas should take factors that influence bush encroachment, such as fire and elephants, into account to ensure the long-term persistence of these birds.

  16. Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity.

    Science.gov (United States)

    Bates, Adam J; Sadler, Jon P; Grundy, Dave; Lowe, Norman; Davis, George; Baker, David; Bridge, Malcolm; Freestone, Roger; Gardner, David; Gibson, Chris; Hemming, Robin; Howarth, Stephen; Orridge, Steve; Shaw, Mark; Tams, Tom; Young, Heather

    2014-01-01

    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria. However, vulnerable species were more strongly negatively affected by urbanization than increasing species. Two hypotheses are proposed to explain this observation: (1) that the underlying factors causing declines in vulnerable species (e.g., possibilities include fragmentation, habitat deterioration, agrochemical pollution) across Britain are the same in urban areas, but that these deleterious effects are more intense in urban areas; and/or (2) that urban areas can act as ecological traps for some vulnerable species of

  17. Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity.

    Directory of Open Access Journals (Sweden)

    Adam J Bates

    Full Text Available Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union criteria. However, vulnerable species were more strongly negatively affected by urbanization than increasing species. Two hypotheses are proposed to explain this observation: (1 that the underlying factors causing declines in vulnerable species (e.g., possibilities include fragmentation, habitat deterioration, agrochemical pollution across Britain are the same in urban areas, but that these deleterious effects are more intense in urban areas; and/or (2 that urban areas can act as ecological traps for some

  18. Habitat traits and patterns of abundance of the purple sea urchin, Paracentrotus lividus (Lamarck, 1816), at multiple scales along the north Portuguese coast

    Science.gov (United States)

    Domínguez, Rula; Domínguez Godino, Jorge; Freitas, Cristiano; Machado, Inês; Bertocci, Iacopo

    2015-03-01

    Spatial and temporal patterns of abundance and distribution of sea urchins (Paracentrotus lividus) from intertidal rockpools of the north Portuguese coast were examined in relation to physical (surface, altitude, depth, topographic complexity and exposure) and biological (substrate cover by dominant organisms) habitat traits. The methodology was based on a multi-factorial design where the total number and the abundance of urchins in each of six size classes were sampled over a range of spatial scales, from 10s of cm to kms, and a temporal scale of five months. The results highlighted three main features of the studied system: (1) the largest proportion of variability of sea urchins occurred at the smallest scale examined; (2) urchins from different size classes showed different patterns of abundance in relation to habitat traits; (3) variables normally invoked as potential drivers of distribution of urchins at a range of scales, such as hydrodynamics and shore height, were relatively less important than other abiotic (i.e. pool area, pool mean depth calculated over five replicate measures and sand cover) and biological (i.e. space occupancy by the reef-forming polychaete Sabellaria alveolata and mussels vs. availability of bare rock) variables to provide a considerable contribution to the variability of sea urchins. Intertidal populations of sea urchins are abundant on many rocky shores, where they are socially and economically important as food resource and ecologically key as habitat modelers. This study provides new clues on relatively unstudied populations, with relevant implications for possible management decisions, including the implementation of protection schemes able to preserve the main recruitment, settlement and development areas of P. lividus.

  19. Influence of environmental parameters on movements and habitat utilization of humpback whales (Megaptera novaeangliae) in the Madagascar breeding ground.

    Science.gov (United States)

    Trudelle, Laurène; Cerchio, Salvatore; Zerbini, Alexandre N; Geyer, Ygor; Mayer, François-Xavier; Jung, Jean-Luc; Hervé, Maxime R; Pous, Stephane; Sallée, Jean-Baptiste; Rosenbaum, Howard C; Adam, Olivier; Charrassin, Jean-Benoit

    2016-12-01

    Assessing the movement patterns and key habitat features of breeding humpback whales is a prerequisite for the conservation management of this philopatric species. To investigate the interactions between humpback whale movements and environmental conditions off Madagascar, we deployed 25 satellite tags in the northeast and southwest coast of Madagascar. For each recorded position, we collated estimates of environmental variables and computed two behavioural metrics: behavioural state of 'transiting' (consistent/directional) versus 'localized' (variable/non-directional), and active swimming speed (i.e. speed relative to the current). On coastal habitats (i.e. bathymetry humpback whales probably exploit prevailing ocean currents to maximize displacement. This study provides evidence that coastal areas, generally subject to strong human pressure, remain the core habitat of humpback whales off Madagascar. Our results expand the knowledge of humpback whale habitat use in oceanic habitat and response to variability of environmental factors such as oceanic current and chlorophyll level.

  20. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Costello, Cecily M; van Manen, Frank T.; Haroldson, Mark A.; Ebinger, Michael R.; Cain, Steven L; Gunther, Kerry A.; Bjornlie, Daniel D

    2014-01-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

  1. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Costello, Cecily M; van Manen, Frank T; Haroldson, Mark A; Ebinger, Michael R; Cain, Steven L; Gunther, Kerry A; Bjornlie, Daniel D

    2014-05-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August-30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000-2011. We calculated Manly-Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

  2. Production hygiene and training influences on rural small-scale

    African Journals Online (AJOL)

    user

    Questions of hygiene and sub- sequent microbial quality in the rural small-scale farming sector of South Africa are even more crucial, given the policy drive to develop small- scale farming as a measure for reinforcement of household food security and reduction of pover- ty (Matshe, 2009; Statistics South Africa, 2012:6. -7).

  3. Influence of small-scale turbulence on cup anemometer calibrations

    Science.gov (United States)

    Marraccini, M.; Bak-Kristensen, K.; Horn, A.; Fifield, E.; Hansen, S. O.

    2017-11-01

    The paper presents and discusses the calibration results of cup anemometers under different levels of small-scale turbulence. Small-scale turbulence is known to govern the curvature of shear layers around structures and is not related to the traditional under and over speeding of cup anemometers originating from large-scale turbulence components. The paper has shown that the small-scale turbulence has a significant effect on the calibration results obtained for cup anemometers. At 10m/s the rotational speed seems to change by approx. 0.5% due to different simulations of the small-scale turbulence. The work which this paper is based on, is part of the TrueWind research project, aiming to increase accuracy of mast top-mounted cup anemometer measurements.

  4. Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale

    Energy Technology Data Exchange (ETDEWEB)

    Owen, S.M.; Boissard, C.; Hewitt, C.N. [Institute of Environmental and Natural Sciences, Lancaster University, Lancaster (United Kingdom). Department of Environmental Science

    2001-07-01

    Forty native Mediterranean plant species were screened for emissions of the C5 and C10 hydrocarbons, isoprene and monoterpenes, in five different habitats. A total of 32 compounds were observed in the emissions from these plants. The number of compounds emitted by different plant species varied from 19 (Quercus ilex) to a single compound emission, usually of isoprene. Emission rates were normalised to generate emission factors for each plant species for each sampling event at standard conditions of temperature and light intensity. Plant species were categorised according to their main emitted compound, the major groups being isoprene, {alpha}-pinene, linalool, and limonene emitters. Estimates of habitat fluxes for each emitted compound were derived from the contributing plant species' emission factors, biomass and ground cover. Emissions of individual compounds ranged from 0.002 to 505gha{sup -1}h{sup -1} (camphene from garrigue in Spain in autumn and isoprene from riverside habitats in Spain in late spring, respectively). Emissions of isoprene ranged from 0.3 to 505gha{sup -1}h{sup -1} (macchia in Italy in late spring and autumn, and riverside in Spain in late spring, respectively) and {alpha}-pinene emissions ranged from 0.51 to 52.92gha{sup -1}h{sup -1} (garrigue in Spain in late spring, and forest in France in autumn, respectively). Habitat fluxes of most compounds in autumn were greater than in late spring, dominated by emissions from Quercus ilex, Gemista scorpius and Quercus pubescens. This study contributes to regional emission inventories and will be of use to tropospheric chemical modellers. (author)

  5. Spatial ecology and multi-scale habitat selection of the Copperhead (Agkistrodon contortrix) in a managed forest landscape

    Science.gov (United States)

    WB Sutton; Y Wang; Callie Schweitzer; C.  McClure

    2017-01-01

    We evaluated the spatial ecology and habitat use of the Copperhead (Agkistrodon contortrix) in managed, pine-hardwood forests in the William B. Bankhead National Forest, Alabama. We used radiotelemetry to monitor 31 snakes (23 males, 8 females [5 gravid and 3 non-gravid females]) over a period of 3 years (2006–2008). Snakes were tracked for one or more seasons in a...

  6. Breeding Habitat Selection of Reeves's Pheasant (Syrmaticus reevesii) in Dongzhai National Nature Reserve, Henan Province, China.

    Science.gov (United States)

    Xu, Ji-Liang; Zhang, Xiao-Hui; Zhang, Zheng-Wang; Zheng, Guang-Mei; Ruan, Xiang-Feng; Zhang, Ke-Yin; Xi, Bo

    2010-04-01

    Reeves's Pheasant (Syrmaticus reevesii) is a threatened pheasant species endemic to China. The habitat use of territorial male birds was surveyed by the help of live decoys in a core area of Dongzhai National Nature Reserve. The breeding habitat selection of this pheasant was examined at two scales (115 m and 250 m scale, i.e. 4.15 hm(2 ) and 19.63 hm(2 ), respectively), including the characteristics at distance scale. Investigation was based on line transect, RS and GIS in Dongzhai National Natural Reserve from 2001 to 2003. Moreover, a range of habitat variables were compared between used and control points at each scale, and stepwise logistic regression was applied to select the key scale and the key habitat factors in relation to breeding habitat selection of this bird. Our results stated that the territorial males at Baiyun occurred mostly in mixed forests, followed by fir forests, pine forests, shrubs, and broadleaf forests. The area of conifer forests was the key factor influencing habitat selection of this bird in breeding period at the scales of 115 m and 250 m, and the proximity of farmland was important for habitat selection in breeding seasons. Furthermore, Reeves's Pheasants attached great importance to the scale of 115 m. When considering a range of habitat variables at all scales within a multivariate regression, the leading factors having effect on habitat selection in the breeding period were areas of conifer forests at 115 m scale and the distance to farmland. In addition, these above results suggested that strengthening the management of suitable habitat, and optimizing the habitat configuration are important in promoting conservation of this bird. However, it also highlighted the importance of initiating future researches on the conifer forests and their impact on the population of Reeves's Pheasants, which would be beneficial to promote the habitat conservation of this pheasant more effectively.

  7. VT Wildlife Linkage Habitat

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Wildlife Linkage Habitat Analysis uses landscape scale data to identify or predict the location of potentially significant wildlife linkage...

  8. Floodplain complexity and surface metrics: influences of scale and geomorphology

    Science.gov (United States)

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Many studies of fluvial geomorphology and landscape ecology examine a single river or landscape, thus lack generality, making it difficult to develop a general understanding of the linkages between landscape patterns and larger-scale driving variables. We examined the spatial complexity of eight floodplain surfaces in widely different geographic settings and determined how patterns measured at different scales relate to different environmental drivers. Floodplain surface complexity is defined as having highly variable surface conditions that are also highly organised in space. These two components of floodplain surface complexity were measured across multiple sampling scales from LiDAR-derived DEMs. The surface character and variability of each floodplain were measured using four surface metrics; namely, standard deviation, skewness, coefficient of variation, and standard deviation of curvature from a series of moving window analyses ranging from 50 to 1000 m in radius. The spatial organisation of each floodplain surface was measured using spatial correlograms of the four surface metrics. Surface character, variability, and spatial organisation differed among the eight floodplains; and random, fragmented, highly patchy, and simple gradient spatial patterns were exhibited, depending upon the metric and window size. Differences in surface character and variability among the floodplains became statistically stronger with increasing sampling scale (window size), as did their associations with environmental variables. Sediment yield was consistently associated with differences in surface character and variability, as were flow discharge and variability at smaller sampling scales. Floodplain width was associated with differences in the spatial organization of surface conditions at smaller sampling scales, while valley slope was weakly associated with differences in spatial organisation at larger scales. A comparison of floodplain landscape patterns measured at different

  9. Peer-Driven Justice: Development and Validation of the Teen Court Peer Influence Scale

    Science.gov (United States)

    Smith, Scott; Chonody, Jill M.

    2010-01-01

    The authors report a validation study of the Teen Court Peer Influence Scale (TCPIS), a newly developed scale, to examine its factor structure, reliability, and evidence of validity. Methods: The scale was disseminated to 202 participants in six teen courts in the state of Florida, and the authors conducted exploratory factor analyses. Content…

  10. Where to nest? Ecological determinants of chimpanzee nest abundance and distribution at the habitat and tree species scale.

    Science.gov (United States)

    Carvalho, Joana S; Meyer, Christoph F J; Vicente, Luis; Marques, Tiago A

    2015-02-01

    Conversion of forests to anthropogenic land-uses increasingly subjects chimpanzee populations to habitat changes and concomitant alterations in the plant resources available to them for nesting and feeding. Based on nest count surveys conducted during the dry season, we investigated nest tree species selection and the effect of vegetation attributes on nest abundance of the western chimpanzee, Pan troglodytes verus, at Lagoas de Cufada Natural Park (LCNP), Guinea-Bissau, a forest-savannah mosaic widely disturbed by humans. Further, we assessed patterns of nest height distribution to determine support for the anti-predator hypothesis. A zero-altered generalized linear mixed model showed that nest abundance was negatively related to floristic diversity (exponential form of the Shannon index) and positively with the availability of smaller-sized trees, reflecting characteristics of dense-canopy forest. A positive correlation between nest abundance and floristic richness (number of plant species) and composition indicated that species-rich open habitats are also important in nest site selection. Restricting this analysis to feeding trees, nest abundance was again positively associated with the availability of smaller-sized trees, further supporting the preference for nesting in food tree species from dense forest. Nest tree species selection was non-random, and oil palms were used at a much lower proportion (10%) than previously reported from other study sites in forest-savannah mosaics. While this study suggests that human disturbance may underlie the exclusive arboreal nesting at LCNP, better quantitative data are needed to determine to what extent the construction of elevated nests is in fact a response to predators able to climb trees. Given the importance of LCNP as refuge for Pan t. verus our findings can improve conservation decisions for the management of this important umbrella species as well as its remaining suitable habitats. © 2014 Wiley Periodicals, Inc.

  11. [Multi-scale correlation analysis of soil organic carbon with its influence factors using wavelet transform].

    Science.gov (United States)

    Jiang, Chun; Qian, Le-Xiang; Wu, Zhi-Feng; Wen, Ya; Deng, Nan-Rong

    2013-12-01

    Based on GIS, this paper chose the soil organic carbon (SOC) density in soil surface layer (0-20 cm) and its influence factors (NDVI, elevation, slope and aspect) as research objects, one-dimensional discrete wavelet transform (DWT) was used as the multi-scale decomposition tool to quantitatively revealed the multi-scale correlation relationships among SOC density and its influence factors on the grid scale along 4 transects of the mountainous area of Guangdong Province. The results showed that the correlation among SOC density and its influence factors was scale-dependent with varying degree. The influence of NDVI was strongest at the scales of 2, 8 and 16 km, while elevation showed its greatest influence at the scales of 8 and 16 km. The control action of slope was rather weak, with a less significant correlation depending on scale. The negative effect of aspect became stronger with increasing scale at > 2 km scale. The SOC density of the different transects was affected by various factors, of which NDVI and elevation were the main factors, and slope and aspect only reacted with individual transects at larger scales.

  12. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity

    Czech Academy of Sciences Publication Activity Database

    Klečková, Irena; Konvička, Martin; Klečka, Jan

    2014-01-01

    Roč. 41, č. 1 (2014), s. 50-58 ISSN 0306-4565 R&D Projects: GA ČR GAP505/10/2248 Grant - others:GA ČR(CZ) GAP505/10/1630; GA JU(CZ) 106/2010/P; GA JU(CZ) 135/2010/P; GA JU(CZ) 145/2010/P Institutional support: RVO:60077344 Keywords : alpine habitats * behavioural thermoregulation * climate change Subject RIV: EH - Ecology, Behaviour Impact factor: 1.505, year: 2014

  13. A multi-scale method of mapping urban influence

    Science.gov (United States)

    Timothy G. Wade; James D. Wickham; Nicola Zacarelli; Kurt H. Riitters

    2009-01-01

    Urban development can impact environmental quality and ecosystem services well beyond urban extent. Many methods to map urban areas have been developed and used in the past, but most have simply tried to map existing extent of urban development, and all have been single-scale techniques. The method presented here uses a clustering approach to look beyond the extant...

  14. Factors Influencing Uptake of a Large Scale Curriculum Innovation.

    Science.gov (United States)

    Adey, Philip S.

    Educational research has all too often failed to be implemented on a large-scale basis. This paper describes the multiplier effect of a professional development program for teachers and for trainers in the United Kingdom, and how that program was developed, monitored, and evaluated. Cognitive Acceleration through Science Education (CASE) is a…

  15. Large-Scale Environmental Influences on Aquatic Animal Health

    Science.gov (United States)

    In the latter portion of the 20th century, North America experienced numerous large-scale mortality events affecting a broad diversity of aquatic animals. Short-term forensic investigations of these events have sometimes characterized a causative agent or condition, but have rare...

  16. Managing harvest and habitat as integrated components

    Science.gov (United States)

    Osnas, Erik; Runge, Michael C.; Mattsson, Brady J.; Austin, Jane E.; Boomer, G. S.; Clark, R. G.; Devers, P.; Eadie, J. M.; Lonsdorf, E. V.; Tavernia, Brian G.

    2014-01-01

    In 2007, several important initiatives in the North American waterfowl management community called for an integrated approach to habitat and harvest management. The essence of the call for integration is that harvest and habitat management affect the same resources, yet exist as separate endeavours with very different regulatory contexts. A common modelling framework could help these management streams to better understand their mutual effects. Particularly, how does successful habitat management increase harvest potential? Also, how do regional habitat programmes and large-scale harvest strategies affect continental population sizes (a metric used to express habitat goals)? In the ensuing five years, several projects took on different aspects of these challenges. While all of these projects are still on-going, and are not yet sufficiently developed to produce guidance for management decisions, they have been influential in expanding the dialogue and producing some important emerging lessons. The first lesson has been that one of the more difficult aspects of integration is not the integration across decision contexts, but the integration across spatial and temporal scales. Habitat management occurs at local and regional scales. Harvest management decisions are made at a continental scale. How do these actions, taken at different scales, combine to influence waterfowl population dynamics at all scales? The second lesson has been that consideration of the interface of habitat and harvest management can generate important insights into the objectives underlying the decision context. Often the objectives are very complex and trade-off against one another. The third lesson follows from the second – if an understanding of the fundamental objectives is paramount, there is no escaping the need for a better understanding of human dimensions, specifically the desires of hunters and nonhunters and the role they play in conservation. In the end, the compelling question is

  17. Species associations and habitat influence the range-wide distribution of breeding Canada Geese (Branta canadensis interior) on Western Hudson Bay

    Science.gov (United States)

    Reiter, Matthew E.; Andersen, David E.; Raedeke, Andrew H.; Humburg, Dale D.

    2017-01-01

    Inter- and intra-specific interactions are potentially important factors influencing the distribution of populations. Aerial survey data, collected during range-wide breeding population surveys for Eastern Prairie Population (EPP) Canada Geese (Branta canadensis interior), 1987–2008, were evaluated to assess factors influencing their nesting distribution. Specifically, associations between nesting Lesser Snow Geese (Chen caerulescens caerulescens) and EPP Canada Geese were quantified; and changes in the spatial distribution of EPP Canada Geese were identified. Mixed-effects Poisson regression models of EPP Canada Goose nest counts were evaluated within a cross-validation framework. The total count of EPP Canada Goose nests varied moderately among years between 1987 and 2008 with no long-term trend; however, the total count of nesting Lesser Snow Geese generally increased. Three models containing factors related to previous EPP Canada Goose nest density (representing recruitment), distance to Hudson Bay (representing brood-habitat), nesting habitat type, and Lesser Snow Goose nest density (inter-specific associations) were the most accurate, improving prediction accuracy by 45% when compared to intercept-only models. EPP Canada Goose nest density varied by habitat type, was negatively associated with distance to coastal brood-rearing areas, and suggested density-dependent intra-specific effects on recruitment. However, a non-linear relationship between Lesser Snow and EPP Canada Goose nest density suggests that as nesting Lesser Snow Geese increase, EPP Canada Geese locally decline and subsequently the spatial distribution of EPP Canada Geese on western Hudson Bay has changed.

  18. Habitat conditions and phenological tree traits overrule the influence of tree genotype in the needle mycobiome-Picea glauca system at an arctic treeline ecotone.

    Science.gov (United States)

    Eusemann, Pascal; Schnittler, Martin; Nilsson, R Henrik; Jumpponen, Ari; Dahl, Mathilde B; Würth, David G; Buras, Allan; Wilmking, Martin; Unterseher, Martin

    2016-09-01

    Plant-associated mycobiomes in extreme habitats are understudied and poorly understood. We analysed Illumina-generated ITS1 sequences from the needle mycobiome of white spruce (Picea glauca) at the northern treeline in Alaska (USA). Sequences were obtained from the same DNA that was used for tree genotyping. In the present study, fungal metabarcoding and tree microsatellite data were compared for the first time. In general, neighbouring trees shared more fungal taxa with each other than trees growing in further distance. Mycobiomes correlated strongly with phenological host traits and local habitat characteristics contrasting a dense forest stand with an open treeline site. Genetic similarity between trees did not influence fungal composition and no significant correlation existed between needle mycobiome and tree genotype. Our results suggest the pronounced influence of local habitat conditions and phenotypic tree traits on needle-inhabiting fungi. By contrast, the tree genetic identity cannot be benchmarked as a dominant driver for needle-inhabiting mycobiomes, at least not for white spruce in this extreme environment. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Changes in fish communities on a small spatial scale, an effect of increased habitat complexity by an offshore wind farm.

    Science.gov (United States)

    van Hal, R; Griffioen, A B; van Keeken, O A

    2017-05-01

    The number of offshore wind farms (OWF) is increasing to meet the demands for renewable energy. The piles and hard substrate surrounding these piles creates new habitat for species with preference to hard substrates. We studied the impact of this hard substrate on the fish community in a Dutch OWF in the sandy southern North Sea, which had been in operation for five years. Multi-mesh gillnets were placed near the OWF structures on the hard substrate protection revetments and on the sandy bottom in the middle of the farm. The catches indicated attraction of cod, pouting, bullrout and edible and velvet crab, while attraction to the sandy habitat was shown for flatfish and whiting. Further, two species previously not caught in this area, goldsinny wrasse and grey trigger fish, were caught on the hard substrate. In addition a Dual-Frequency Identification Sonar (DIDSON) was used to record transects through the farm to observe individual fish in the water column throughout the farm and very near the OWF structures. High abundances of fish near the structure were observed during some days, while during other days equal distribution of fish in the area was observed. The area around the structures is thus only used temporarily for shelter or feeding. The DIDSON also allowed looking at the aggregation level of the fish. Seasonally the aggregation level differed most likely due to different species occurring in the area. In April, most fish were aggregated in schools, while in summer most observations were individual fish or loose aggregations. The wind farm structures had limited effect on the aggregation level compared to season or weather conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Habitat availability does not explain the species richness patterns of European lentic and lotic freshwater animals

    DEFF Research Database (Denmark)

    Dehling, D.M.; Hof, C.; Brandle, M.

    2010-01-01

    Aim In Europe, the relationships between species richness and latitude differ for lentic (standing water) and lotic (running water) species. Freshwater animals are highly dependent on suitable habitat, and thus the distribution of available habitat should strongly influence large-scale patterns...... of species richness. We tested whether habitat availability can account for the differences in species richness patterns between European lentic and lotic freshwater animals. Location Europe. Methods We compiled occurrence data of 1959 lentic and 2445 lotic species as well as data on the amount of lentic...... and lotic habitats across 25 pre-defined biogeographical regions of European freshwaters. We used the range of elevation of each region as a proxy for habitat diversity. We investigated the relationships between species richness, habitat availability and habitat diversity with univariate and multiple...

  1. Habitat use, but not gene flow, is influenced by human activities in two ecotypes of Egyptian fruit bat (Rousettus aegyptiacus).

    Science.gov (United States)

    Centeno-Cuadros, A; Hulva, P; Romportl, D; Santoro, S; Stříbná, T; Shohami, D; Evin, A; Tsoar, A; Benda, P; Horáček, I; Nathan, R

    2017-09-26

    Understanding the ecological, behavioural and evolutionary response of organisms to changing environments is of primary importance in a human-altered world. It is crucial to elucidate how human activities alter gene flow and what are the consequences for the genetic structure of a species. We studied two lineages of the Egyptian fruit bat (Rousettus aegyptiacus) throughout the contact zone between mesic and arid Ecozones in the Middle East to evaluate the species' response to the growing proportion of human-altered habitats in the desert. We integrated population genetics, morphometrics and movement ecology to analyse population structure, morphological variation and habitat use from GPS- or radio-tagged individuals from both desert and Mediterranean areas. We classified the spatial distribution and environmental stratification by describing physical-geographical conditions and land cover. We analysed this information to estimate patch occupancy and used an isolation-by-resistance approach to model gene flow patterns. Our results suggest that lineages from desert and Mediterranean habitats, despite their admixture, are isolated by environment and by adaptation supporting their classification as ecotypes. We found a positive effect of human-altered habitats on patch occupancy and habitat use of fruit bats by increasing the availability of roosting and foraging areas. While this commensalism promotes the distribution of fruit bats throughout the Middle East, gene flow between colonies has not been altered by human activities. This discrepancy between habitat use and gene flow patterns may, therefore, be explained by the breeding system of the species and modifications of natal dispersal patterns. © 2017 John Wiley & Sons Ltd.

  2. Very high resolution Earth Observation features for testing the direct and indirect effects of landscape structure on local habitat quality

    Science.gov (United States)

    Mairota, Paola; Cafarelli, Barbara; Labadessa, Rocco; Lovergine, Francesco P.; Tarantino, Cristina; Nagendra, Harini; Didham, Raphael K.

    2015-02-01

    Modelling the empirical relationships between habitat quality and species distribution patterns is the first step to understanding human impacts on biodiversity. It is important to build on this understanding to develop a broader conceptual appreciation of the influence of surrounding landscape structure on local habitat quality, across multiple spatial scales. Traditional models which report that 'habitat amount' in the landscape is sufficient to explain patterns of biodiversity, irrespective of habitat configuration or spatial variation in habitat quality at edges, implicitly treat each unit of habitat as interchangeable and ignore the high degree of interdependence between spatial components of land-use change. Here, we test the contrasting hypothesis, that local habitat units are not interchangeable in their habitat attributes, but are instead dependent on variation in surrounding habitat structure at both patch- and landscape levels. As the statistical approaches needed to implement such hierarchical causal models are observation-intensive, we utilise very high resolution (VHR) Earth Observation (EO) images to rapidly generate fine-grained measures of habitat patch internal heterogeneities over large spatial extents. We use linear mixed-effects models to test whether these remotely-sensed proxies for habitat quality were influenced by surrounding patch or landscape structure. The results demonstrate the significant influence of surrounding patch and landscape context on local habitat quality. They further indicate that such an influence can be direct, when a landscape variable alone influences the habitat structure variable, and/or indirect when the landscape and patch attributes have a conjoined effect on the response variable. We conclude that a substantial degree of interaction among spatial configuration effects is likely to be the norm in determining the ecological consequences of habitat fragmentation, thus corroborating the notion of the spatial context

  3. Plant epiphytism in semiarid conditions revealed the influence of habitat and climate variables on AM fungi communities distribution

    Science.gov (United States)

    Torrecillas, Emma; Torres, Pilar; Díaz, Gisela; del Mar Alguacil, Maria; Querejeta, Jose Ignacio; García, Fuensanta; Roldán, Antonio

    2014-05-01

    In semiarid Mediterranean ecosystems epiphytic plant species are practically absent and only some species of palm-trees can support epiphytes growing in their lower crown area, such as Phoenix dactylifera L. (date palm). In this study we focused in Sonchus tenerrimus L. plants growing as facultative epiphytes in P. dactylifera and its terrestrial forms growing in adjacent soils, Our aim was to determine the possible presence of AMF in these peculiar habitats and to relate AMF communities with climatic variations. We investigated the AMF community composition of epiphytic and terrestrial S. tenerrimus plants along a temperature and precipitation gradient across 12 localities. Epiphytic roots were colonized by AM fungi as determined by microscopic observation, all epiphytic and terrestrial samples analysed showed AMF sequences from taxa belonging to the phylum Glomeromycota, which were grouped in 30 AMF OTUs. The AMF community composition was clearly different between epiphytic and terrestrial root samples and this could be attributable to dispersal constraints and/or the contrasting environmental and ecophysiological conditions prevailing in each habitat. Across sites, the richness and diversity of terrestrial AMF communities was positively correlated with rainfall amount during the most recent growing season. In contrast, there was no significant correlation between climate variables and AMF richness and diversity for epiphytic AMF communities, which suggests that the composition of AMF communities in epiphytic habitats appears to be largely determined by the availability and dispersion of fungal propagules from adjacent terrestrial habitats.

  4. Influence of forest and rangeland management on anadromous fish habitat in Western North America: water transportation and storage of logs.

    Science.gov (United States)

    J.R. Sedell; W.S. Duval

    1985-01-01

    Environmental effects of water transportation of logs in western North America include the historical driving of logs in rivers and streams, and the current dumping, sorting, transportation, and storage of logs in rivers and estuaries in British Columbia and southeastern Alaska. The historical discussion focuses on habitat losses and volumes of...

  5. Fine-scale habitat use by orang-utans in a disturbed peat swamp forest, central Kalimantan, and implications for conservation management.

    Science.gov (United States)

    Morrogh-Bernard, Helen C; Husson, Simon J; Harsanto, Fransiskus A; Chivers, David J

    2014-01-01

    This study was conducted to see how orang-utans (Pongo pygmaeus wurmbii) were coping with fine-scale habitat disturbance in a selectively logged peat swamp forest in Central Kalimantan, Borneo. Seven habitat classes were defined, and orang-utans were found to use all of these, but were selective in their preference for certain classes over others. Overall, the tall forest classes (≥20 m) were preferred. They were preferred for feeding, irrespective of canopy connectivity, whereas classes with a connected canopy (canopy cover ≥75%), irrespective of canopy height, were preferred for resting and nesting, suggesting that tall trees are preferred for feeding and connected canopy for security and protection. The smaller forest classes (≤10 m high) were least preferred and were used mainly for travelling from patch to patch. Thus, selective logging is demonstrated here to be compatible with orang-utan survival as long as large food trees and patches of primary forest remain. Logged forest, therefore, should not automatically be designated as 'degraded'. These findings have important implications for forest management, forest classification and the designation of protected areas for orang-utan conservation.

  6. Evaluation of seabed mapping methods for fine-scale classification of extremely shallow benthic habitats - Application to the Venice Lagoon, Italy

    Science.gov (United States)

    Montereale Gavazzi, G.; Madricardo, F.; Janowski, L.; Kruss, A.; Blondel, P.; Sigovini, M.; Foglini, F.

    2016-03-01

    Recent technological developments of multibeam echosounder systems (MBES) allow mapping of benthic habitats with unprecedented detail. MBES can now be employed in extremely shallow waters, challenging data acquisition (as these instruments were often designed for deeper waters) and data interpretation (honed on datasets with resolution sometimes orders of magnitude lower). With extremely high-resolution bathymetry and co-located backscatter data, it is now possible to map the spatial distribution of fine scale benthic habitats, even identifying the acoustic signatures of single sponges. In this context, it is necessary to understand which of the commonly used segmentation methods is best suited to account for such level of detail. At the same time, new sampling protocols for precisely geo-referenced ground truth data need to be developed to validate the benthic environmental classification. This study focuses on a dataset collected in a shallow (2-10 m deep) tidal channel of the Lagoon of Venice, Italy. Using 0.05-m and 0.2-m raster grids, we compared a range of classifications, both pixel-based and object-based approaches, including manual, Maximum Likelihood Classifier, Jenks Optimization clustering, textural analysis and Object Based Image Analysis. Through a comprehensive and accurately geo-referenced ground truth dataset, we were able to identify five different classes of the substrate composition, including sponges, mixed submerged aquatic vegetation, mixed detritic bottom (fine and coarse) and unconsolidated bare sediment. We computed estimates of accuracy (namely Overall, User, Producer Accuracies and the Kappa statistic) by cross tabulating predicted and reference instances. Overall, pixel based segmentations produced the highest accuracies and the accuracy assessment is strongly dependent on the number of classes chosen for the thematic output. Tidal channels in the Venice Lagoon are extremely important in terms of habitats and sediment distribution

  7. Gender Invariance of Family, School, and Peer Influence on Volunteerism Scale

    Science.gov (United States)

    Law, Ben; Shek, Daniel; Ma, Cecilia

    2015-01-01

    Objective: This article examines the measurement invariance of "Family, School, and Peer Influence on Volunteerism Scale" (FSPV) across genders using the mean and covariance structure analysis approach. Method: A total of 2,845 Chinese high school adolescents aged 11 to 15 years completed the FSPV scale. Results: Results of the…

  8. Identifying Large- and Small-Scale Habitat Characteristics of Monarch Butterfly Migratory Roost Sites with Citizen Science Observations

    Directory of Open Access Journals (Sweden)

    Andrew K. Davis

    2012-01-01

    Full Text Available Monarch butterflies (Danaus plexippus in eastern North America must make frequent stops to rest and refuel during their annual migration. During these stopovers, monarchs form communal roosts, which are often observed by laypersons. Journey North is a citizen science program that compiles roost observations, and we examined these data in an attempt to identify habitat characteristics of roosts. From each observation we extracted information on the type of vegetation used, and we used GIS and a national landcover data set to determine land cover characteristics within a 10 km radius of the roost. Ninety-seven percent of roosts were reported on trees; most were in pines and conifers, maples, oaks, pecans and willows. Conifers and maples were used most often in northern flyway regions, while pecans and oaks were more-frequently used in southern regions. No one landcover type was directly associated with roost sites, although there was more open water near roost sites than around random sites. Roosts in southern Texas were associated primarily with grasslands, but this was not the case elsewhere. Considering the large variety of tree types used and the diversity of landcover types around roost sites, monarchs appear highly-adaptable in terms of roost site selection.

  9. Validation of Family, School, and Peer Influence on Volunteerism Scale among Adolescents

    Science.gov (United States)

    Law, Ben M. F.; Shek, Daniel T. L.; Ma, Cecilia M. S.

    2013-01-01

    Social systems, particularly family, school, and peer, are especially critical in influencing adolescents to participate in volunteer service; however, no objective measures of this construct exist. Objectives: This study examined the psychometric properties of the Family, School, and Peer Influence on Volunteerism scale (FSPV) among Chinese…

  10. Large wood influence on stream metabolism at a reach-scale in the Assabet River, Massachusetts

    Science.gov (United States)

    David, G. C. L.; Snyder, N. P.; Rosario, G. M.

    2016-12-01

    Total stream metabolism (TSM) represents the transfer of carbon through a channel by both primary production and respiration, and thus represents the movement of energy through a watershed. Large wood (LW) creates geomorphically complex channels by diverting flows, altering shear stresses on the channel bed and banks, and pool development. The increase in habitat complexity around LW is expected to increase TSM, but this change has not been directly measured. In this study, we measured changes in TSM around a LW jam in a Massachusetts river. Dissolved oxygen (DO) time series data are used to quantify gross primary production (GPP), ecosystem respiration (ER), which equal TSM when summed. Two primary objectives of this study are to (1) assess changes in TSM around LW and (2) compare empirical methods of deriving TSM to Grace et al.'s (2015) BASE model. We hypothesized that LW would increase TSM by providing larger pools, increasing coverage for fish and macroinvertebrates, increasing organic matter accumulation, and providing a place for primary producers to anchor and grow. The Assabet River is a 78 km2 drainage basin in central Massachusetts that provides public water supply to 7 towns. A change in TSM over a reach-scale was assessed using two YSI 6-Series Multiparameter Water Quality sondes over a 140 m long pool-riffle open meadow section. The reach included 6 pools and one LW jam. Every two weeks from July to November 2015, the sondes were moved to different pools. The sondes collected DO, temperature, depth, pH, salinity, light intensity, and turbidity at 15-minute intervals. Velocity (V) and discharge (Q) were measured weekly around the sondes and at established cross sections. Instantaneous V and Q were calculated for each sonde by modeling flows in HEC-RAS. Overall, TSM was heavily influenced by the pool size and indirectly to the LW jam which was associated with the largest pool. The largest error in TSM calculations is related to the empirically

  11. Modelling Water Level Influence on Habitat Choice and Food Availability for Zostera Feeding Brent Geese Branta bernicla in Non-Tidal Areas

    DEFF Research Database (Denmark)

    Clausen, P.

    2000-01-01

    Brent geese Branta bernicla spring fattening around Agero, Denmark, alternate between feeding on saltmarshes and submerged Zostera beds in Limfjorden. It appeared from field observations that these alternations depended on the water level in Limfjorden. A model was developed to assess the impact ......). The models presented may be considered as tools in investigations of habitat use and carrying capacity of seagrass beds in non-tidal areas, where birds' access to feeding areas regularly may be hindered by high water levels.......Brent geese Branta bernicla spring fattening around Agero, Denmark, alternate between feeding on saltmarshes and submerged Zostera beds in Limfjorden. It appeared from field observations that these alternations depended on the water level in Limfjorden. A model was developed to assess the impact...... of water level fluctuations on the habitat use. A second model was developed to estimate the impact of water level on Zostera availability. The first model was successful in demonstrating that fluctuations in water levels had considerable influence on habitat use by the brent geese, i.e. they fed...

  12. Cultural transmission of tool use combined with habitat specializations leads to fine-scale genetic structure in bottlenose dolphins

    NARCIS (Netherlands)

    Kopps, Anna M.; Ackermann, Corinne Y.; Sherwin, William B.; Allen, Simon J.; Bejder, Lars; Kruetzen, Michael

    2014-01-01

    Socially learned behaviours leading to genetic population structure have rarely been described outside humans. Here, we provide evidence of fine-scale genetic structure that has probably arisen based on socially transmitted behaviours in bottlenose dolphins (Tursiops sp.) in western Shark Bay,

  13. Development of scales to assess children's perceptions of friend and parental influences on physical activity

    Directory of Open Access Journals (Sweden)

    Brockman Rowan

    2009-10-01

    Full Text Available Abstract Background Many children do not meet physical activity guidelines. Parents and friends are likely to influence children's physical activity but there is a shortage of measures that are able to capture these influences. Methods A new questionnaire with the following three scales was developed: 1 Parental influence on physical activity; 2 Motives for activity with friends scale; and 3 Physical activity and sedentary group normative values. Content for each scale was informed by qualitative work. One hundred and seventy three, 10-11 year old children completed the new questionnaire twice, one week apart. Participants also wore an accelerometer for 5 days and mean minutes of moderate to vigorous physical activity, light physical activity and sedentary time per day were obtained. Test-retest reliability of the items was calculated and Principal Component analysis of the scales performed and sub-scales produced. Alphas were calculated for main scales and sub-scales. Correlations were calculated among sub-scales. Correlations between each sub-scale and accelerometer physical activity variables were calculated for all participants and stratified by sex. Results The Parental influence scale yielded four factors which accounted for 67.5% of the variance in the items and had good (α > 0.7 internal consistency. The Motives for physical activity scale yielded four factors that accounted for 66.1% and had good internal consistency. The Physical activity norms scale yielded 4 factors that accounted for 67.4% of the variance, with good internal consistency for the sub-scales and alpha of .642 for the overall scale. Associations between the sub-scales and physical activity differed by sex. Although only 6 of the 11 sub-scales were significantly correlated with physical activity there were a number of associations that were positively correlated >0.15 indicating that these factors may contribute to the explanation of children's physical activity

  14. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    Science.gov (United States)

    Bird, Matthew S; Day, Jenny A

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%), relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  15. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    Directory of Open Access Journals (Sweden)

    Matthew S Bird

    Full Text Available Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m; although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%, relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%. The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  16. Wetlands in Changed Landscapes: The Influence of Habitat Transformation on the Physico-Chemistry of Temporary Depression Wetlands

    OpenAIRE

    Bird, Matthew S.; Jenny A Day

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetl...

  17. Habitat-Forming Bryozoans in New Zealand: Their Known and Predicted Distribution in Relation to Broad-Scale Environmental Variables and Fishing Effort

    NARCIS (Netherlands)

    Wood, A.C.L.; Rowden, A.; Compton, T.C.; Gordon, D.P.; Probert, K.

    2013-01-01

    Frame-building bryozoans occasionally occur in sufficient densities in New Zealand waters to generate habitat forother macrofauna. The environmental conditions necessary for bryozoans to generate such habitat, and thedistributions of these species, are poorly known. Bryozoan-generated habitats are

  18. Influence of breeding habitat on bear predation and age at maturity and sexual dimorphism of sockeye salmon populations

    Science.gov (United States)

    Quinn, Thomas P.; Wetzel, Lisa A.; Bishop, Susan; Overberg, Kristi; Rogers, Donald E.

    2001-01-01

    Age structure and morphology differ among Pacific salmon (Oncorhynchus spp.) populations. Sexual selection and reproductive capacity (fecundity and egg size) generally favor large (old), deep-bodied fish. We hypothesized that natural selection from physical access to spawning grounds and size-biased predation by bears, Ursus spp., opposes such large, deep-bodied salmon. Accordingly, size and shape of salmon should vary predictably among spawning habitats. We tested this hypothesis by measuring the age composition and body depth of sockeye salmon, Oncorhynchus nerka, and the intensity of predation in a range of breeding habitats in southwestern Alaska. Stream width was positively correlated with age at maturity and negatively correlated with predation level. However, salmon spawning on lake beaches were not consistently old, indicating that different factors affect age in riverine- and beach-spawning populations. Body depths of male and female salmon were positively correlated with water depth across all sites, as predicted. However, the mouths of some streams were so shallow that they might select against large or deep-bodied salmon, even in the absence of bear predation. Taken together, the results indicated that habitat has direct and indirect effects (via predation) on life history and morphology of mature salmon.

  19. Trace elements in Antarctic fish species and the influence of foraging habitats and dietary habits on mercury levels

    Energy Technology Data Exchange (ETDEWEB)

    Goutte, Aurélie, E-mail: aurelie.goutte@ephe.sorbonne.fr [École Pratique des Hautes Études (EPHE), SPL, UPMC Univ Paris 06, UMR 7619 METIS, F-75005, 4 place Jussieu, Paris (France); Cherel, Yves [Centre d' Etudes Biologiques de Chizé, UMR 7372, CNRS-Université de La Rochelle, 79360 Villiers-en-Bois (France); Churlaud, Carine [Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Ponthus, Jean-Pierre [École Pratique des Hautes Études (EPHE), SPL, UPMC Univ Paris 06, UMR 7619 METIS, F-75005, 4 place Jussieu, Paris (France); Massé, Guillaume [Unité Mixte Internationale Takuvik, Pavillon Alexandre-Vachon, Université Laval, QC, Québec (Canada); Bustamante, Paco [Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France)

    2015-12-15

    This study aims at describing and interpreting concentration profiles of trace elements in seven Antarctic fish species (N = 132 specimens) off Adélie Land. Ichthyofauna plays a key role in the Antarctic ecosystem, as they occupy various ecological niches, including cryopelagic (ice-associated), pelagic, and benthic habitats. Firstly, trace element levels in the studied specimens were similar to those previously observed in fish from the Southern Ocean. Apart from manganese and zinc, concentrations of arsenic, cadmium, copper, iron, mercury (Hg), nickel, selenium and silver differed among fish species. Muscle δ{sup 13}C and δ{sup 15}N values were determined to investigate whether the fish foraging habitats and dietary habits could explain Hg levels. Species and foraging habitat (δ{sup 13}C) were strong predictors for variations of Hg concentrations in muscle tissues. The highest Hg contamination was found in shallow benthic fish compared to cryopelagic and pelagic fish. This pattern was likely due to the methylation of Hg in the coastal sediment and the photodemethylation by ultraviolet radiation in surface waters. - Highlights: • Trace elements and stable isotopes were analyzed in seven Antarctic fish species. • Levels of trace elements in liver and in muscle differed among species. • Hg load was higher in benthic fish than in cryopelagic and pelagic fish. • These findings could be due to the high methylation rate of Hg in the sediment.

  20. Habitat fragmentation and ecological traits influence the prevalence of avian blood parasites in a tropical rainforest landscape.

    Science.gov (United States)

    Laurance, Susan G W; Jones, Dean; Westcott, David; McKeown, Adam; Harrington, Graham; Hilbert, David W

    2013-01-01

    In the tropical rainforests of northern Australia, we investigated the effects of habitat fragmentation and ecological parameters on the prevalence of blood-borne parasites (Plasmodium and Haemoproteus) in bird communities. Using mist-nets on forest edges and interiors, we sampled bird communities across six study sites: 3 large fragments (20-85 ha) and 3 continuous-forest sites. From 335 mist-net captures, we recorded 28 bird species and screened 299 bird samples with PCR to amplify and detect target DNA. Of the 28 bird species sampled, 19 were infected with Plasmodium and/or Haemoproteus and 9 species were without infection. Over one third of screened birds (99 individuals) were positive for Haemoproteus and/or Plasmodium. In forest fragments, bird capture rates were significantly higher than in continuous forests, but bird species richness did not differ. Unexpectedly, we found that the prevalence of the dominant haemosporidian infection, Haemoproteus, was significantly higher in continuous forest than in habitat fragments. Further, we found that ecological traits such as diet, foraging height, habitat specialisation and distributional ranges were significantly associated with blood-borne infections.

  1. Habitat selection of the pink shrimp Farfantepenaeus paulensis and the blue crab Callinectes sapidus in an estuary in southern Brazil: influence of salinity and submerged seagrass meadows

    Directory of Open Access Journals (Sweden)

    Vinicius Mendes Ruas

    Full Text Available This study was conducted in two estuarine inlets (Saco da Mangueira and Saco do Arraial at the Patos Lagoon estuary, southern Brazil. The changes in relative abundance and size of post-larvae and juvenile shrimp Farfantepenaeus paulensis and juvenile blue crab Callinectes sapidus were compared, considering the influence of salinity and the presence of submerged seagrass meadows. The analyses were performed using generalized linear models (GLM for abundance variations and ANOVA for variations on the size of individuals. The pink shrimp was more abundant at Saco da Mangueira, in seagrass meadows and areas of higher salinity. The blue crab was more abundant at Saco do Arraial and in lower levels of salinity. The importance of submerged vegetation for the blue crab lies in a preference of smaller crabs of the species for the seagrass meadows. It has been shown that these species choose different habitats in the estuary, and both the salinity and the presence of submerged seagrass meadows influence the selection of habitat.

  2. Multiple scales of selection influence the evolutionary emergence of novel pathogens

    Science.gov (United States)

    Park, Miran; Loverdo, Claude; Schreiber, Sebastian J.; Lloyd-Smith, James O.

    2013-01-01

    When pathogens encounter a novel environment, such as a new host species or treatment with an antimicrobial drug, their fitness may be reduced so that adaptation is necessary to avoid extinction. Evolutionary emergence is the process by which new pathogen strains arise in response to such selective pressures. Theoretical studies over the last decade have clarified some determinants of emergence risk, but have neglected the influence of fitness on evolutionary rates and have not accounted for the multiple scales at which pathogens must compete successfully. We present a cross-scale theory for evolutionary emergence, which embeds a mechanistic model of within-host selection into a stochastic model for emergence at the population scale. We explore how fitness landscapes at within-host and between-host scales can interact to influence the probability that a pathogen lineage will emerge successfully. Results show that positive correlations between fitnesses across scales can greatly facilitate emergence, while cross-scale conflicts in selection can lead to evolutionary dead ends. The local genotype space of the initial strain of a pathogen can have disproportionate influence on emergence probability. Our cross-scale model represents a step towards integrating laboratory experiments with field surveillance data to create a rational framework to assess emergence risk. PMID:23382433

  3. Foraging habits in a generalist predator: sex and age influence habitat selection and resource use among bottlenose dolphins (Tursiops truncatus)

    Science.gov (United States)

    Sam Rossman,; McCabe, Elizabeth Berens; Nelio B. Barros,; Hasand Gandhi,; Peggy H. Ostrom,; Stricker, Craig A.; Randall S. Wells,

    2015-01-01

    This study examines resource use (diet, habitat use, and trophic level) within and among demographic groups (males, females, and juveniles) of bottlenose dolphins (Tursiops truncatus). We analyzed the δ13C and δ15N values of 15 prey species constituting 84% of the species found in stomach contents. We used these data to establish a trophic enrichment factor (TEF) to inform dietary analysis using a Bayesian isotope mixing model. We document a TEF of 0‰ and 2.0‰ for δ13C and δ15N, respectively. The dietary results showed that all demographic groups relied heavily on low trophic level seagrass-associated prey. Bayesian standard ellipse areas (SEAb) were calculated to assess diversity in resource use. The SEAb of females was nearly four times larger than that of males indicating varied resource use, likely a consequence of small home ranges and habitat specialization. Juveniles possessed an intermediate SEAb, generally feeding at a lower trophic level compared to females, potentially an effect of natal philopatry and immature foraging skills. The small SEAb of males reflects a high degree of specialization on seagrass associated prey. Patterns in resource use by the demographic groups are likely linked to differences in the relative importance of social and ecological factors.

  4. Study of influence of an experiment scale on cylinder test results

    Directory of Open Access Journals (Sweden)

    Waldemar A. Trzciński

    2014-03-01

    Full Text Available In the work, influence of a scale of experiment on the results of cylindrical test used todetermine the acceleration capabilities of explosives was analyzed. Explosives used in ammunition(TNT, hexogen and explosives for civil purpose (ammonals were selected for testing. Copper tubeswith different diameters and wall thickness were used. Conclusions are drawn regarding the advisabilityof increasing or decreasing the scale of the cylinder test.[b]Keywords[/b]: explosives, acceleration ability, cylinder test

  5. Tie Strength, Embeddedness, and Social Influence: A Large-Scale Networked Experiment

    OpenAIRE

    Walker, Dylan; Aral, Sinan Kayhan

    2012-01-01

    We leverage the newly emerging business analytical capability to rapidly deploy and iterate large-scale, microlevel, in vivo randomized experiments to understand how social influence in networks impacts consumer demand. Understanding peer influence is critical to estimating product demand and diffusion, creating effective viral marketing, and designing “network interventions” to promote positive social change. But several statistical challenges make it difficult to econometrically identify pe...

  6. FACTORS INFLUENCING FARMERS’ DECISION TO INCREASE BEEF CATTLE BUSINESS SCALE IN CENTRAL JAVA PROVINCE

    Directory of Open Access Journals (Sweden)

    W. Roessali

    2011-03-01

    Full Text Available The purpose of this research was to analyze factors influencing farmers decision to increase beef cattle business scale through improved technology. The research was conducted by using a survey method. Five districts were purposively selected in three base areas and two non-base areas of beef cattle in Central Java Province, Indonesia. Twenty beef cattle groups were selected based on the largest cattle population managed and their performance, while 196 respondents were randomly selected. Farmers decision to increase beef cattle business scale was determined using a probit model. Result of the research indicated that the number of family labor and expectation to increase income had a significantly positive influence on the farmers’ decision to increase beef cattle business scale. It meant that if the total number of family labor increased, so did the farmers’ decision to increase the beef cattle business scale. Also, if the expectation to revenue increased, so did the farmers’ decision to increase the beef cattle business scale. On the contrary, education level and business risk had negative significant influence on the farmers decision to increase the beef cattle business scale with the significance levels of 1.1 and 0.84, respectively.

  7. Effects of landscape metrics and land-use variables on macroinvertebrate communities and habitat characteristics

    OpenAIRE

    Cortes, R.M.V.; Varandas, S.D.G.P.; Teixeira, A.; Hughes, S.J.; Magalhães, M.; Barquín, J.; ¿?lvarez-Cabria, M.; Fernández, D.

    2011-01-01

    The growing number of studies establishing links between stream biota, environmental factors and river classification has contributed to a better understanding of fluvial ecosystem function. Environmental factors influencing river systems are distributed over hierarchically organised spatial scales. We used a nested hierarchical sampling design across four catchments to assess how benthic macroinvertebrate community composition and lower spatial scale habitat descriptors were shaped ...

  8. Past and present aquatic habitats and fish populations of the Yazoo-Mississippi Delta

    Science.gov (United States)

    M.D. Bryant

    2010-01-01

    The goal of this review and synthesis of the literature, published and unpublished, is to describe the major processes that shape and influence the aquatic habitats and fish communities in the Yazoo-Mississippi Delta (YMD) and to outline a program of research. The YMD is influenced by the large geographic and temporal scales of the Mississippi River watershed. It...

  9. Predicted Deep-Sea Coral Habitat Suitability for the U.S. West Coast

    Science.gov (United States)

    Guinotte, John M.; Davies, Andrew J.

    2014-01-01

    Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington). Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH)) and identify suitable habitat within U.S. National Marine Sanctuaries (NMS). Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate) that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled. PMID:24759613

  10. Genetic and Environmental Influences on Conduct Disorder: Symptom, Domain and Full-Scale Analyses

    Science.gov (United States)

    Gelhorn, Heather L.; Stallings, Michael C.; Young, Susan E.; Corley, Robin P.; Rhee, Soo Hyun; Hewitt, John K.

    2005-01-01

    Background: We used variable threshold models which accounted for age and gender differences to investigate the genetic and environmental influences on DSM-IV conduct disorder (CD) at the level of symptoms, aggressive versus non-aggressive domains, and full-scale. Method: A community sample of 1100 twin pairs (age 11-18) was interviewed using the…

  11. Influencing Public School Policy in the United States: The Role of Large-Scale Assessments

    Science.gov (United States)

    Schmidt, William H.; Burroughs, Nathan A.

    2016-01-01

    The authors review the influence of state, national and international large-scale assessments (LSAs) on education policy and research. They distinguish between two main uses of LSAs: as a means for conducting research that informs educational reform and LSAs as a tool for implementing standards and enforcing accountability. The authors discuss the…

  12. Habitat Observations

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data provide information on the relationship between California red-legged frogs and their habitat in a unique ecosystem to better conserve this threatened...

  13. Tick (Ixodes ricinus) abundance and seasonality at recreational sites in the UK: hazards in relation to fine-scale habitat types revealed by complementary sampling methods.

    Science.gov (United States)

    Dobson, Andrew D M; Taylor, Jennifer L; Randolph, Sarah E

    2011-06-01

    The seasonal risk to humans of picking up Ixodes ricinus ticks in different habitats at 3 recreational sites in the UK was assessed. A comprehensive range of vegetation types was sampled at 3-weekly intervals for 2 years, using standard blanket-dragging complemented by woollen leggings and square 'heel flags'. Ticks were found in all vegetation types sampled, including short grass close to car parks, but highest densities were consistently found in plots with trees present. Blankets picked up the greatest number of ticks, but heel flags provided important complementary counts of the immature stages in bracken plots; they showed clearly that the decline in tick numbers on blankets in early summer was due to the seasonal growth of vegetation that lifted the blanket clear of the typical questing height, but in reality ticks remained abundant through the summer. Leggings picked up only 11% of the total nymphs and 22% of total adults counted, but this still represented a significant hazard to humans. These results should prompt a greater awareness of the fine-scale distribution of this species in relation to human activities that determines the most likely zones of contact between humans and ticks. Risk communication may then be designed accordingly. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Sage-grouse habitat selection during winter in Alberta

    Science.gov (United States)

    Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.

    2010-01-01

    Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.

  15. The relative effects of habitat loss, fragmentation, and degradation on population extinction

    Science.gov (United States)

    The most prominent conservation concerns are typically habitat loss and habitat fragmentation. The role of habitat degradation has received comparatively little attention. But research has shown that the quality of habitat patches can significantly influence wildlife population d...

  16. Factors affecting stem borer parasitoid species diversity and parasitism in cultivated and natural habitats.

    Science.gov (United States)

    Mailafiya, Duna Madu; Le Ru, Bruno Pierre; Kairu, Eunice Waitherero; Calatayud, Paul-André; Dupas, Stéphane

    2010-02-01

    The effects of biotic and abiotic factors on stem borer parasitoid diversity, abundance, and parasitism were studied in cultivated and natural habitats in four agroecological zones in Kenya. Comparing habitat types, we found partial support for the "natural enemy" hypothesis, whereby, across all localities, parasitoid diversity was higher in more diverse host plant communities in natural habitats, whereas parasitoid abundance was higher in cultivated habitats. For both habitats, parasitoid richness was mainly influenced by stem borer density and/or its interaction with stem borer richness, whereas parasitoid abundance was mainly affected by stem borer abundance. Parasitoid richness was higher in localities (with bimodal rainfall distribution) with increased spatial and temporal availability of host plants that harbored the borers. Across seasons, parasitoid richness was lower in both cultivated and natural habitats in the driest locality, Mtito Andei. Overall, parasitoid diversity was low in Suam and Mtito Andei, where maize cultivation was practiced on a commercial scale and intense grazing activities persist across seasons, respectively. Across localities, habitats, and seasons, stem borer parasitism was positively correlated with parasitoid richness and abundance. Furthermore, the interaction of rainfall and altitude influenced the presence and absence of parasitoids, and consequently, stem borer parasitism. Parasitism was positively and negatively correlated with temperature in cultivated and natural habitats, respectively. Overall, natural habitats seem to serve as important refugia for sustaining parasitoid diversity, which in turn can affect stem borer parasitism in the cereal cropping system.

  17. FACTORS INFLUENCING FARMERS’ DECISION TO INCREASE BEEF CATTLE BUSINESS SCALE IN CENTRAL JAVA PROVINCE

    Directory of Open Access Journals (Sweden)

    W. Roessali

    2014-10-01

    Full Text Available The purpose of this research was to analyze factors influencing farmers' decision to increasebeef cattle business scale through improved technology. The research was conducted by using a surveymethod. Five districts were purposively selected in three base areas and two non-base areas of beefcattle in Central Java Province, Indonesia. Twenty beef cattle groups were selected based on the largestcattle population managed and their performance, while 196 respondents were randomly selected.Farmers’ decision to increase beef cattle business scale was determined using a probit model. Result ofthe research indicated that the number of family labor and expectation to increase income had asignificantly positive influence on the farmers’ decision to increase beef cattle business scale. It meantthat if the total number of family labor increased, so did the farmers’ decision to increase the beef cattlebusiness scale. Also, if the expectation to revenue increased, so did the farmers’ decision to increase thebeef cattle business scale. On the contrary, education level and business risk had negative significantinfluence on the farmers’ decision to increase the beef cattle business scale with the significance levelsof 1.1 and 0.84, respectively.

  18. Influences of Human-induced Habitat Modifications on Basin-wide Fish Species Richness in the Danshuei River Watershed of Taiwan

    Science.gov (United States)

    Cheng, S. T.; Yu, C. J.; Tsai, W. P.; Chang, F. J.

    2016-12-01

    The intensive exploitation of water resources has seriously degraded riverine environments and threatened inhabitant biota. In this study, we aim to assess the influences of human-induced habitat modifications on basin-wide fish species richness based on multi-year heterogeneous datasets collected from the Danshuei River Watershed of Taiwan. We aggregated long-term datasets (2003-2012) of fish composition, river network structures, dam locations and water quality parameters including water temperature, pH, conductivity, turbidity, dissolved oxygen and total phosphorus, at 45 sampling sites across the Danshuei River Watershed. We first used a multiple linear regression model to relate river network structures, water quality parameters, land-use changes and dam locations with fish species richness. Then we performed an unsupervised learning and clustering method, the self-organizing map (SOM), to nonlinearly interrelate the complex hydro-chemo-ecosystems. Following that, we compared the major forcing factors detected by different models to evaluate the anthropogenic influences on fish species richness. Our results showed that although based on the same datasets, the forcing factors identified by different methods may not be consistent, and therefore would result in distinct method-oriented stressor-response relationships. Patterns described by linear models focused on the changes of fish species richness with the use of the selected predictors; while patterns described by nonlinear models tended to systematically link multiple variables without the identification of major predictors. Based on the results of our analysis, we recommend that a more effective watershed management strategy should consider landscape as well as riverine habitats as a whole and maintain long-term monitoring programs as a key element to river conservation.

  19. Food resources influence spatial ecology, habitat selection, and foraging behavior in an ambush-hunting snake (Viperidae: Bothrops asper): an experimental study.

    Science.gov (United States)

    Wasko, Dennis K; Sasa, Mahmood

    2012-06-01

    Prey availability affects many aspects of predators' life history and is considered a primary factor influencing individuals' decisions regarding spatial ecology and behavior, but few experimental data are currently available. Snakes may represent ideal model organisms relative to other animal groups for addressing such resource dependency, due to a presumably more direct link between food resources and many aspects of behavior and natural history. We experimentally investigated the relationship between food intake and spatial behavior in a population of the snake Bothrops asper in a Costa Rican lowland rainforest. Six adult snakes were allowed to forage naturally while six were offered supplemental food in the field, with both groups monitored using radiotelemetry. Mean home range size did not differ between groups presumably due to small sample size, but supplementally fed snakes demonstrated altered patterns of macro- and microhabitat selection, shorter and less frequent movements, and increased mass acquisition. Fed snakes also devoted less time to foraging efforts, instead more frequently remaining inactive and utilizing shelter. Because snakes were always fed in situ and not at designated feeding stations, observed shifts in habitat selection are not explained by animals simply moving to areas of higher food availability. Rather, B. asper may have moved to swamps in order to feed on amphibians when necessary, but remained in preferred forest habitat when food was otherwise abundant. The strong behavioral and spatiotemporal responses of snakes in this population may have been influenced by an overall scarcity of mammalian prey during the study period. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Influence of biofilm formation on corrosion and scaling in geothermal plants

    Science.gov (United States)

    Kleyböcker, Anne; Lerm, Stephanie; Monika, Kasina; Tobias, Lienen; Florian, Eichinger; Andrea, Seibt; Markus, Wolfgramm; Hilke, Würdemann

    2017-04-01

    Process failures may occur due to corrosion and scaling processes in open loop geothermal systems. Especially after heat extraction, sulfate reducing bacteria (SRB) contribute to corrosion processes due to a more favorable temperature for their growth. In biofilms containing FeS scales, corrosion processes are enhanced. Furthermore, scales can lead to reduced pipe profiles, to a diminished heat transfer and a decrease in the wellbore injectivity. Inhibitors are frequently applied to minimize scaling in technical systems. A prerequisite for the application of inhibitors in geothermal plants located in the Molasse basin is their degradability under reservoir conditions, e. g. in a reduced environment. In order to determine the effects of scale-inhibitors on the subsurface and microbial processes, laboratory experiments were performed focusing on the microbial inhibitor degradation. First results indicate that the inhibitor degradation under anaerobic conditions is possible. Besides the inhibitor application also other techniques are investigated to economically reduce corrosion and scaling in geothermal plants. In a mobile bypass system, the influence of biofilm formation on corrosion and scaling was investigated. The bypass system was tested at a geothermal heat store in the North German Basin. The plant is operated with highly saline fluid (salinity 130 g/L) and known to be affected by SRB. The SRB contributed to corrosion damages especially at the pump in the well on the cold side. Heat shocks were successfully used in the bypass system to reduce biofilm formation as well as corrosion and scaling processes.

  1. Vacant habitats in the Universe.

    Science.gov (United States)

    Cockell, Charles S

    2011-02-01

    The search for life on other planets usually makes the assumption that where there is a habitat, it will contain life. On the present-day Earth, uninhabited habitats (or vacant habitats) are rare, but might occur, for example, in subsurface oils or impact craters that have been thermally sterilized in the past. Beyond Earth, vacant habitats might similarly exist on inhabited planets or on uninhabited planets, for example on a habitable planet where life never originated. The hypothesis that vacant habitats are abundant in the Universe is testable by studying other planets. In this review, I discuss how the study of vacant habitats might ultimately inform an understanding of how life has influenced geochemical conditions on Earth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Influence of Anthropogenic Disturbances on Stand Structural Complexity in Andean Temperate Forests: Implications for Managing Key Habitat for Biodiversity

    Science.gov (United States)

    2017-01-01

    Forest attributes and their abundances define the stand structural complexity available as habitat for faunal biodiversity; however, intensive anthropogenic disturbances have the potential to degrade and simplify forest stands. In this paper we develop an index of stand structural complexity and show how anthropogenic disturbances, namely fire, logging, livestock, and their combined presence, affect stand structural complexity in a southern Global Biodiversity Hotspot. From 2011 to 2013, we measured forest structural attributes as well as the presence of anthropogenic disturbances in 505 plots in the Andean zone of the La Araucanía Region, Chile. In each plot, understory density, coarse woody debris, number of snags, tree diameter at breast height, and litter depth were measured, along with signs of the presence of anthropogenic disturbances. Ninety-five percent of the plots showed signs of anthropogenic disturbance (N = 475), with the combined presence of fire, logging, and livestock being the most common disturbance (N = 222; 44% of plots). The lowest values for the index were measured in plots combining fire, logging, and livestock. Undisturbed plots and plots with the presence of relatively old fires (> 70 years) showed the highest values for the index of stand structural complexity. Our results suggest that secondary forests forests should be managed to retain structural attributes, including understory density (7.2 ± 2.5 # contacts), volume of CWD (22.4 ± 25.8 m3/ha), snag density (94.4 ± 71.0 stems/ha), stand basal area (61.2 ± 31.4 m2/ha), and litter depth (7.5 ± 2.7 cm). Achieving these values will increase forest structural complexity, likely benefiting a range of faunal species in South American temperate forests. PMID:28068349

  3. Cause, catalyst or conjunction? The influence of the Habitats Directive on policy instrument choice in Member States

    NARCIS (Netherlands)

    Bouwma, I.; Arts, B.J.M.; Liefferink, J.D.

    2017-01-01

    In the process of implementing EU policy, Member States sometimes introduce new policy instruments in cases where this is not obligatory. To better understand this phenomenon, this paper reviews three cases in which new instruments emerged and develops a methodology to trace back the influence of EU

  4. Cause, catalyst or conjunction? The influence of the Habitats Directive on policy instrument choice in Member States

    NARCIS (Netherlands)

    Bouwma, Irene; Arts, Bas; Liefferink, Duncan

    2017-01-01

    In the process of implementing EU policy, Member States sometimes introduce new policy instruments in cases where this is not obligatory. To better understand this phenomenon, this paper reviews three cases in which new instruments emerged and develops a methodology to trace back the influence of

  5. Linking the influence and dependence of people on biodiversity across scales

    Science.gov (United States)

    Isbell, Forest; Gonzalez, Andrew; Loreau, Michel; Cowles, Jane; Díaz, Sandra; Hector, Andy; Mace, Georgina M.; Wardle, David A.; O’Connor, Mary I.; Duffy, J. Emmett; Turnbull, Lindsay A.; Thompson, Patrick L.; Larigauderie, Anne

    2017-01-01

    Biodiversity enhances many of nature’s benefits to people, including the regulation of climate and the production of wood in forests, livestock forage in grasslands and fish in aquatic ecosystems. Yet people are now driving the sixth mass extinction event in Earth’s history. Human dependence and influence on biodiversity have mainly been studied separately and at contrasting scales of space and time, but new multiscale knowledge is beginning to link these relationships. Biodiversity loss substantially diminishes several ecosystem services by altering ecosystem functioning and stability, especially at the large temporal and spatial scales that are most relevant for policy and conservation. PMID:28569811

  6. Habitat structure mediates biodiversity effects on ecosystem properties

    Science.gov (United States)

    Godbold, J. A.; Bulling, M. T.; Solan, M.

    2011-01-01

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised. PMID:21227969

  7. Habitat structure mediates biodiversity effects on ecosystem properties.

    Science.gov (United States)

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  8. Influence of operating parameters on cake formation in pilot scale pulse-jet bag filter

    OpenAIRE

    Saleem, Mahmood; Krammer, Gernot; Khan, Rafi Ullah; Tahir, M. Suleman

    2012-01-01

    Bag filters are commonly used for fine particles removal in off-gas purification. There dust laden gas pervades through permeable filter media starting at a lower pressure drop limit leaving dust (called filter cake) on the filter media. The filter cakeformation is influenced by many factors including filtration velocity, dust concentration, pressure drop limits, and filter media resistance. Effect of the stated parameters is investigated experimentally in a pilot scale pulse-jet bag filter t...

  9. Characterisation of juvenile flatfish habitats in the Baltic Sea

    Science.gov (United States)

    Florin, Ann-Britt; Sundblad, Göran; Bergström, Ulf

    2009-04-01

    Survival and growth of the earliest life-stages is considered a key factor in determining the abundance of many marine fish species. For flatfishes, the availability of high quality nursery areas is essential for successful recruitment. Regarding the Baltic Sea, there are large gaps in knowledge on factors that influence the distribution of flatfishes during this sensitive stage. To identify the characteristics of important nursery areas in the Baltic for flounder ( Platichthys flesus) and turbot ( Psetta maxima), a field survey with push net sampling was conducted in the northern Baltic proper during autumn 2006. The sampling stations were stratified to cover several different habitat types defined by substrate and wave exposure. Apart from density of young-of-the-year (YOY) flatfishes, a number of ecological characteristics of the habitat were recorded. Physical habitat variables included substrate type, salinity, depth, turbidity, vegetation and habitat structure. Variables describing biotic processes, such as prey availability and abundance of competitors, were also sampled. The relationships between the spatial distribution of species and these ecological characteristics were fitted to presence/absence data of juvenile flatfish using generalized additive models (GAM). The best habitat descriptors for flounder in order of contribution were: substrate, habitat structure, salinity, wave exposure and occurrence of filamentous algae. Positive effects of increasing wave exposure, salinity and structure were detected while a high cover of filamentous algae had a negative effect. Sand and gravel were preferred over soft and stony substrates. For turbot the best habitat descriptors in order of contribution were: occurrence of filamentous algae, substrate and turbidity. Turbot showed a preference for areas with a low cover of filamentous algae, high turbidity and sandy substrate. Prey availability and abundance of competitors were not included in the models, indicating

  10. Hydrodynamic modeling to evaluate the influence of constructed side-channel habitat on larval drift of pallid strugeon in the Lower Missouri River

    Science.gov (United States)

    Erwin, Susannah O.; Jacobson, Robert B.

    2015-01-01

    Larval drift is a critical phase of ontogeny for many species of lotic fishes. Downstream advection and dispersion of drifting larvae or eggs is controlled by the complex interaction of flow regime, channel planform, local channel morphology, and the resulting hydraulic gradients. In many regulated rivers, channel engineering and perturbations to the flow regime may disrupt natural dispersal processes and prevent successful recruitment of native fishes. Here, we explore the influence of flow regime and channel morphology on the downstream transport, dispersion, and retention of free embryos of pallid sturgeon (Scaphirhychus albus), an endangered species endemic to the Mississippi River basin and the focus of significant conservation effort on the Missouri River. The transition from drifting free embryo to exogenously feeding larvae has been identified as a potential life stage bottleneck for the pallid sturgeon. We use a two-dimensional hydrodynamic model to evaluate the sensitivity of drift and dispersion to in-channel navigation structures, constructed shallow-water habitat, and flood hydrology. In the simulations, larvae were treated as passively drifting particles and calculated retention times were used as an index of potential for settling and retention within specific environments. During low flows, retention of larvae is promoted by shallow, low velocity conditions provided by constructed side-channel habitats. At higher flows, retention is driven by overbank flows that inundate the floodplain. Based on insights gained from the analysis of field data and modeling outputs, we consider the effects of flow regime modifications or channel re-engineering on the distribution and retention of free embryos within the Lower Missouri River.

  11. [The application and influence factors of FACIT Fatigue Scale in SLE patients].

    Science.gov (United States)

    Li, H J; Du, Q; Wang, S Y; Guan, S Q; Zhan, H H; Tian, W; Shao, Y X; Zhang, Z Y; Mei, Y F

    2017-09-19

    Objective: To evaluate the application and influence factors of the Functional Assessment of Chronic Illness Therapy (FACIT-Fatigue) scale in patients with systemic lupus erythematosus (SLE). Methods: SF-36 questionnaires were used to estimate the health-related quality of life (HRQOL) of SLE patients in Chinese Han population.FACIT-Fatigue scale was applied to measure fatigue.Disease activity was determined by SLE disease activity index (SLEDAI), meanwhile demographic parameters such as gender, disease duration, etc. were recorded. Results: A total of 223 patients with SLE were enrolled in the survey.FACIT-Fatigue scale was negatively correlated with SF-36 (PSLE were correlated with education, erythrocyte sedimentation rate (ESR), C3, and SLEDAI score (PSLE.There fore, reduce the disease activity and improve the quality of life of SLE patients may be helpful to reduce the fatigue of patients with SLE.

  12. Measuring Fine-Scale White-Tailed Deer Movements and Environmental Influences Using GPS Collars

    Directory of Open Access Journals (Sweden)

    Stephen L. Webb

    2010-01-01

    Full Text Available Few studies have documented fine-scale movements of ungulate species, including white-tailed deer (Odocoileus virginianus, despite the advent of global positioning system (GPS technology incorporated into tracking devices. We collected fine-scale temporal location estimates (i.e., 15 min/relocation attempt from 17 female and 15 male white-tailed deer over 7 years and 3 seasons in Oklahoma, USA. Our objectives were to document fine-scale movements of females and males and determine effects of reproductive phase, moon phase, and short-term weather patterns on movements. Female and male movements were primarily crepuscular. Male total daily movements were 20% greater during rut (7,363m±364 than postrut (6,156m±260. Female daily movements were greatest during postparturition (3,357m±91, followed by parturition (2,902m±107, and preparturition (2,682m±121. We found moon phase had no effect on daily, nocturnal, and diurnal deer movements and fine-scale temporal weather conditions had an inconsistent influence on deer movement patterns within season. Our data suggest that hourly and daily variation in weather events have minimal impact on movements of white-tailed deer in southern latitudes. Instead, routine crepuscular movements, presumed to maximize thermoregulation and minimize predation risk, appear to be the most important factors influencing movements.

  13. Cape Lookout, North Carolina, 2012 National Wetlands Inventory Habitat Classification

    Science.gov (United States)

    Spear, Kathryn A.; Jones, William R.

    2016-01-01

    , activity, habitat, and band data. Habitat maps of federal lands in the study area will be created using National Wetlands Inventory mapping standards to assess storm impacts on available nesting habitat. Ground-based LIDAR and high-accuracy GPS data will be collected to develop methods to estimate shorebird nest elevation and microtopography to make predictions about nest site selection and success. Microtopography information collected from lidar data in the area immediately surrounding nest site locations will be used to analyze site specific nesting habitat selection criteria related to topography, substrate (coarseness of sand or cobble), and vegetation cover. The data will be used in future models to assess storm impacts on nest locations, predict long-term population impacts, and influence landscape-scale habitat management strategies that might lessen future impacts of hurricanes on coastal birds and lead to better restoration alternatives.

  14. Factors influencing outcome in acute ischaemic stroke : outcome scales, the role of blood glucose and rtPA treatment

    NARCIS (Netherlands)

    Uyttenboogaart, Maarten

    2008-01-01

    This thesis describes several aspects that influence outcome in acute ischaemic strok. In the first part, two frequently used outcome scales - the Barthel index and modified Rankin scale - are studied and for both scales, optimal endpoints for stroke trials are proposed. In the second part, the

  15. Habitat fragmentation influences gene structure and gene differentiation among the Loxoblemmus aomoriensis populations in the Thousand Island Lake.

    Science.gov (United States)

    Lv, Kun; Zhou, Jing; Gu, Jian-Qiang; Zhou, Guo-Xing; Wang, Wei; Xu, Zhi-Hong

    2017-02-16

    Thousand Island Lake (TIL) is a fragmented landscape consisting of more than 1000 land-bridge islands isolated during reservoir formation. To evaluate the effects of fragmentation and island attributes on insect populations, we examined the genetic structure of Loxoblemmus aomoriensis, a species of cricket widely distributed in TIL, and compared genetic diversity between islands samples. Population genetic analyses was conducted based on mitochondrial DNA haplotype frequencies of 10 sample islands. By comparing three island attributes with population genetic diversity reveals that island area influenced population genetic diversity (r(2 )=( )0.5094, p = 0.00204). Using Pairwise Fst values, we also found that long-distance isolation increased the genetic differentiation, while short-distance isolation can be offset by dispersal. These results indicate that fragmentation can impact populations on a genetic level.

  16. At what scale and extent environmental gradients and climatic changes influence stream invertebrate communities?

    Science.gov (United States)

    Van Looy, Kris; Piffady, Jérémy; Floury, Mathieu

    2017-02-15

    In a context of increasing landscape modifications and climatic changes, scale hierarchy becomes an ever more crucial issue to integrate in the analysis of drivers and stressors of biological communities, especially in river networks. To cope with this issue, we developed (i) spatial hierarchical models of functional diversity of stream invertebrate communities to assess the relative influence of local- vs. regional-scale factors in structuring community assembly, and (ii) analysis of metacommunity elements to determine the ecological processes behind the structuring. The spatial structuring of benthic invertebrate communities was investigated over 568 sites in South-eastern France. Community structure was mainly driven by the altitudinal gradient and spring flow variation at broad scales, with functional diversity gradually decreasing with elevation and being maximized at intermediate levels of flow variability. According to the 'elements of metacommunity structure' analysis, the prevailing influence of the altitudinal gradient was also supported by a Clementsian structuration of invertebrate communities. Conversely, the influence of observed climatic changes in temperature and rainfall was weak and observed only at fine scales. As a result, natural environmental filters were stronger drivers of the functional diversity of communities than human-induced stressors (e.g. water pollution and hydromorphological alterations). More broadly, our results suggest that management needs to embrace the possibilities of gathering high spatial and taxonomical resolution data when analysing and predicting flow variation and climate change effects in order to preserve and restore functionally diverse communities. Moreover, to develop environmental flow schemes or restoration and climate change adaptation strategies for freshwater communities, local and regional processes need to be addressed simultaneously; equally responsible as drivers of community diversity. Copyright © 2016

  17. Analyzing the proximity to cover in a landscape of fear: a new approach applied to fine-scale habitat use by rabbits facing feral cat predation on Kerguelen archipelago

    Directory of Open Access Journals (Sweden)

    Pierrick Blanchard

    2016-03-01

    Full Text Available Although proximity to cover has been routinely considered as an explanatory variable in studies investigating prey behavioral adjustments to predation pressure, the way it shapes risk perception still remains equivocal. This paradox arises from both the ambivalent nature of cover as potentially both obstructive and protective, making its impact on risk perception complex and context-dependent, and from the choice of the proxy used to measure proximity to cover in the field, which leads to an incomplete picture of the landscape of fear experienced by the prey. Here, we study a simple predator-prey-habitat system, i.e., rabbits Oryctolagus cuniculus facing feral cat Felis catus predation on Kerguelen archipelago. We assess how cover shapes risk perception in prey and develop an easily implementable field method to improve the estimation of proximity to cover. In contrast to protocols considering the “distance to nearest cover”, we focus on the overall “area to cover”. We show that fine-scale habitat use by rabbits is clearly related to our measure, in accordance with our hypothesis of higher risk in patches with smaller area to cover in this predator-prey-habitat system. In contrast, classical measures of proximity to cover are not retained in the best predictive models of habitat use. The use of this new approach, together with a more in-depth consideration of contrasting properties of cover, could help to better understand the role of this complex yet decisive parameter for predator-prey ecology.

  18. Analyzing the proximity to cover in a landscape of fear: a new approach applied to fine-scale habitat use by rabbits facing feral cat predation on Kerguelen archipelago.

    Science.gov (United States)

    Blanchard, Pierrick; Lauzeral, Christine; Chamaillé-Jammes, Simon; Yoccoz, Nigel G; Pontier, Dominique

    2016-01-01

    Although proximity to cover has been routinely considered as an explanatory variable in studies investigating prey behavioral adjustments to predation pressure, the way it shapes risk perception still remains equivocal. This paradox arises from both the ambivalent nature of cover as potentially both obstructive and protective, making its impact on risk perception complex and context-dependent, and from the choice of the proxy used to measure proximity to cover in the field, which leads to an incomplete picture of the landscape of fear experienced by the prey. Here, we study a simple predator-prey-habitat system, i.e., rabbits Oryctolagus cuniculus facing feral cat Felis catus predation on Kerguelen archipelago. We assess how cover shapes risk perception in prey and develop an easily implementable field method to improve the estimation of proximity to cover. In contrast to protocols considering the "distance to nearest cover", we focus on the overall "area to cover". We show that fine-scale habitat use by rabbits is clearly related to our measure, in accordance with our hypothesis of higher risk in patches with smaller area to cover in this predator-prey-habitat system. In contrast, classical measures of proximity to cover are not retained in the best predictive models of habitat use. The use of this new approach, together with a more in-depth consideration of contrasting properties of cover, could help to better understand the role of this complex yet decisive parameter for predator-prey ecology.

  19. Cross-cultural differences in social desirability scales: Influence of cognitive ability

    Directory of Open Access Journals (Sweden)

    Aletta Odendaal

    2015-02-01

    Full Text Available Orientation: The use of personality tests for selection and screening has been consistently criticised resulting from the risk of socially desirable responding amongst job applicants. Research purpose: This study examined the magnitude of culture and language group meanscore differences amongst job applicants and the moderating effect of race on the relationship between social desirability and cognitive ability. Motivation for the study: The influence of cognitive ability and potential race and ethnic group differences in social desirability scale scores, which can lead to disproportional selection ratios, has not been extensively researched in South Africa. Research design, approach and method: A quantitative, cross-sectional research design, based on secondary datasets obtained from the test publisher, was employed. The dataset consisted of 1640 job applicants across industry sectors. Main findings: Moderated multiple regression analyses revealed that the relationship between social desirability and general reasoning was moderated by culture and language, with group differences in social desirability being more pronounced at the low general reasoning level. This suggests that social desirability scales may be an ambiguous indicator of faking as the scales may indicate tendency to fake, but not the ability to fake, that is likely to be connected to the level of cognitive ability of the respondent.Practical/managerial implications: Individual differences in social desirability are not fully explained by cognitive ability as cultural differences also played a role. Responding in a certain manner, reflects a level of psychological sophistication that is informed by the level of education and socio-economic status. In relation to selection practice, this study provided evidence of the potentially adverse consequences of using social desirability scales to detect response distortion. Contribution/value-add: The exploration of cross

  20. Influence of Sediment Cohesion on Deltaic Morphodynamics and Stratigraphy Over Basin-Filling Time Scales

    Science.gov (United States)

    Li, Qi; Matthew Benson, W.; Harlan, Margaret; Robichaux, Patrick; Sha, Xiaoyu; Xu, Kehui; Straub, Kyle M.

    2017-10-01

    Results from physical and numerical experiments suggest that sediment cohesion influences deltaic morphodynamics by promoting the development and maintenance of channels. As a result, cohesion is thought to increase the magnitude and time scales of internally generated (autogenic) processes and the dimensions of their stratigraphic products. We test these hypotheses by examining the surface processes and stratigraphic products from a suite of physical experiments where the influence of cohesion is isolated over temporal and spatial scales important for basin filling. Given the stochastic nature of autogenic sediment transport processes, we develop and employ a range of statistical tools and metrics. We observe that (1) an increase in sediment cohesion decreases lateral channel mobility and thus increases the time necessary to regrade deltaic surfaces; (2) enhanced channelization, due to sediment cohesion, increases the time necessary for the deposits of autogenic processes to average together and produce stratigraphic products with shapes set by the generation of regional accommodation; (3) cohesion promotes the transport of suspended sediment to terrestrial overbank and marine environments, which decreases the volume of channel, relative to overbank and marine deposits in the stratigraphic record. This increase in overbank and marine deposition changes the spatial distribution of sand in stratigraphy, with higher cohesion linked to enhanced segregation of fine particles from coarse sand in the experimental deposits. Combined, these results illustrate how the cohesion of sediment is fundamental in setting autogenic spatial and temporal scales and needs to be considered when inverting stratigraphic architecture for paleo-environmental history.

  1. Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient.

    Science.gov (United States)

    Pillsbury, Finn C; Miller, James R

    2008-07-01

    Urbanization has been cited as an important factor in worldwide amphibian declines, and although recent work has illustrated the important influence of broad-scale ecological patterns and processes on amphibian populations, little is known about the factors structuring amphibian communities in urban landscapes. We therefore examined amphibian community responses to wetland habitat availability and landscape characteristics along an urban-rural gradient in central Iowa, USA, a region experiencing rapid suburban growth. We conducted call surveys at 61 wetlands to estimate anuran calling activity, and quantified wetland habitat structure and landscape context. We used canonical correspondence analysis (CCA) to examine patterns in anuran community structure and identify the most important variables associated with those patterns. Urban density at the landscape scale had a significant negative influence on overall anuran abundance and diversity. While every species exhibited a decrease in abundance with increasing urban density, this pattern was especially pronounced for species requiring post-breeding upland habitats. Anurans most affected by urbanization were those associated with short hydroperiods, early breeding activity, and substantial upland habitat use. We suggest that broad-scale landscape fragmentation is an important factor underlying anuran community structure in this region, possibly due to limitations on the accessibility of otherwise suitable habitat in fragmented urban landscapes. This study underscores the importance of a regional approach to amphibian conservation in urban and urbanizing areas; in fragmented landscapes, a network of interconnected wetland and upland habitats may be more likely to support a successful, diverse anuran community than will isolated sites.

  2. From hydrological regimes to water use regimes: influence of the type of habitat on drinking water demand dynamics in alpine tourist resorts.

    Science.gov (United States)

    Calianno, Martin

    2017-04-01

    In the last decades, integrated water resources management studies produced integrated models that focus mainly on the assessment of water resources and water stress in the future. In some cases, socioeconomic development results to cause more impacts on the evolution of water systems than climate (Reynard et al., 2014). There is thus a need to develop demand-side approaches in the observation and modeling of human-influenced hydrological systems (Grouillet et al., 2015). We define the notion of water use cycle to differentiate water volumes that are withdrawn from the hydrological system and that circulate through anthropic hydro-systems along various steps: withdrawals, distribution, demands, consumption, restitution (Calianno et al., submitted). To address the spatial distribution and the temporal dynamics of the water use cycle, we define the concepts of water use basins and water use regimes (Calianno et al., submitted). The assessment of the temporal variability of water demands is important at thin time steps in touristic areas, where water resource regimes and water demands are highly variable. This is the case for are alpine ski resorts, where the high touristic season (winter) takes place during the low flow period in nival and glacio-nival basins. In this work, a monitoring of drinking water demands was undergone, at high temporal resolution, on different types of buildings in the ski resort of Megève (France). A dataset was created, from which a typology of water demand regimes was extracted. The analysis of these temporal signatures highlighted the factors influencing the volumes and the dynamics of drinking water demand. The main factors are the type of habitat (single family, collective, house, apartment blocks), the presence of a garden or an infrastructure linked to high standing chalets (pool, spa), the proportion of permanent and temporary habitat, the presence of snow in the ski resort. Also, temporalities linked to weekends and weekly tourism

  3. Habitat classification modelling with incomplete data: Pushing the habitat envelope

    Science.gov (United States)

    Phoebe L. Zarnetske; Thomas C. Edwards; Gretchen G. Moisen

    2007-01-01

    Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical...

  4. Microbiological Aspects of Geothermal Energy: Influence of Microbial Activity on Scaling and Clogging in a Cold Storage

    Science.gov (United States)

    Lerm, Stephanie; Alawi, Mashal; Miethling-Graff, Rona; Vieth, Andrea; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2010-05-01

    The development of strategies to substantially reduce emission of greenhouse gases to the atmosphere is one of the major challenges of the next decades. Therefore, the utilization of subsurface stored energy arouses increasing interest. Corrosion and scaling are major problems in geothermal operation which create significant maintenance and cleaning costs. In the scope of the research project AquiScreen the operational reliability of geothermal used aquifer systems was investigated under microbial, geochemical, mineralogical, and petrologic aspects (see also Alawi et al.; General Assembly EGU 2010). This presentation focuses on the investigation of a cold storage in Berlin (Reichstag building, depth 30-50 m). In order to evaluate the impact of microbial processes in the low saline aquifer (see also Vetter et al.; General Assembly EGU 2010), the microbial communities of fluid and filter samples were investigated by Fluorescent in situ hybridization (FISH) and DNA fingerprinting techniques based on PCR amplified partial 16S rRNA genes. Analyses of fluid samples revealed a bacterial community dominated by iron and sulfur oxidizing bacteria closely related to Siderooxidans lithoautotrophicus, Gallionella sp. and Thiotrix unzii. Scanning electron microscope analysis revealed iron hydroxide formation and precipitation in the filter of the top side facility and the well, corresponding to the abundance of iron oxidizing bacteria. Besides oxidizing bacteria sulfate reducing bacteria (SRB) were detected as well, indicating the formation of micro-habitats with divergent redox zones. After several years of operation and routine maintenance procedures the injectivity of the injection wells and the endurance of the top side facility filters were reduced drastically due to clogging. Mechanical cleaning and a disinfection treatment with hydrogen peroxide (H2O2) were successful to re-establish the injectivity of the wells. The results of the microbiological investigations prove

  5. Small-scale estimation of relative abundance for the coastal spotted dolphins (Stenella attenuata in Costa Rica: the effect of habitat and seasonality

    Directory of Open Access Journals (Sweden)

    Laura J May-Collado

    2012-04-01

    Full Text Available The coastal spotted dolphin (Stenella attenuata graffmani is one of the most common species of dolphin in inshore Pacific waters of Costa Rica. We conducted surveys in protected waters of the Papagayo Gulf, Costa Rica, to determine relative abundance of dolphins in relation to environmental variables. We used Generalized Additive Models to investigate the influence of a particular set of environmental factors and determine inter-annual trends in relative abundance. School sizes ranged from 1 to 50 individuals ( mean 9.95, SD=10.28. The number of dolphins increased linearly with water depth and transparency, and non-linearly with the dissolved oxygen concentration. High variability in the relative abundance occurred during the dry season (January-April. A previous study on this population found that high number of groups are involved in foraging activities during the dry season. Seasonal changes in relative abundance probably are associated with food availability, a variable that we did not measure. Understanding local resident populations may have important implications for conservation and management strategies. Large-scale studies may overlook variables affecting the abundance of local resident populations that may be detected with studies on a smaller scale such as this one.

  6. The influence of anthropogenic edge effects on primate populations and their habitat in a fragmented rainforest in Costa Rica.

    Science.gov (United States)

    Bolt, Laura M; Schreier, Amy L; Voss, Kristofor A; Sheehan, Elizabeth A; Barrickman, Nancy L; Pryor, Nathaniel P; Barton, Matthew C

    2018-02-06

    When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.

  7. Hydroclimatological influences at multi-spatial scales on recently increased droughts in China's largest freshwater lake

    Science.gov (United States)

    Liu, Y.; Wu, G.

    2014-05-01

    Lake droughts are the consequences of climatic, hydrologic and anthropogenic influences. It may produce substantial impacts on local water sources, inhabitants and economy, but few studies have determined the contributions from the individual influences, especially under the changing climate, which is of highly valuable for policymakers to make effective adaption. This study proposes to use a multi-scale hydroclimatic analysis for the determination, taking Poyang Lake as an example. It is the China's largest freshwater lake, which has been undergoing drastic hydrological alterations in recent decade. Our analysis demonstrates that in the recent decade the lake droughts worsened in terms of duration, frequency, magnitude and severity, and intensified in magnitude significantly. At the lake region, water deficiency severed as the hydroclimatic foundation for the worsening droughts. Overall contribution to the lake droughts included decreased inflow (45%), increased outflow (24%), reduced local precipitation (23%), and increased evapotranspiration (8%). At the basin scale, the decreased inflow was ascribed to reduced basin-scale precipitation (82%) and increased evapotranspiration (18%). The increased outflow was principally controlled by the weakened blocking effects of the Yangtze River, which serves as a boundary condition of Poyang Lake. Water impoundments of the Three Gorges Dam (TGD) established upstream should not be responsible for the increased drought occurrence, but they may have enhanced the drought magnitude with a limit contribution. The findings provide an example of intensified lake droughts, and offer an insightful view into lake droughts under the changing climate and anthropogenic influences. It should be valuable for improving our understanding and for promoting effective climate adaptation and water resources management practices.

  8. SCALES FOR MEASURING PERCEIVED RISK IN E-COMMERCE - TESTING INFLUENCES ON RELIABILITY

    Directory of Open Access Journals (Sweden)

    Patricea Elena BERTEA

    2010-01-01

    Full Text Available The present study analyzes the importance of research design in measuring perceived risk in e-commerce by revealing the influences that certain variables might have on the reliability of scales. Perceived risk is known as a major behavioral determinant, moreover it has been found to be a barrier against e-commerce adoption. This is why it is important for marketing researchers to have reliable measurement instruments. By performing a meta-analysis on 19 papers that developed scales for perceived risk in e-commerce, we aimed to identify what research design characteristics can determine the increase or decrease of alpha Cronbach estimates. Results were mixed, as only one of four hypotheses was supported. However, important issues for further research have been discovered here, being of great relevance for academics as well as for practitioners.

  9. INFLUENCE OF NANOFILTRATION PRETREATMENT ON SCALE DEPOSITION IN MULTI-STAGE FLASH THERMAL DESALINATION PLANTS

    Directory of Open Access Journals (Sweden)

    Aiman E Al-Rawajfeh

    2011-01-01

    Full Text Available Scale formation represents a major operational problem encountered in thermal desalination plants. In current installed plants, and to allow for a reasonable safety margin, sulfate scale deposition limits the top brine temperature (TBT in multi-stage flash (MSF distillers up to 110-112oC. This has significant effect on the unit capital, operational and water production cost. In this work, the influence of nanofiltration (NF pretreatment on the scale deposition potential and increasing TBT in MSF thermal desalination plants is modeled on the basis of mass transfer with chemical reaction of solutes in the brine. Full and partial NF-pretreatment of the feed water were investigated. TBT can be increased in MSF by increasing the percentage of NF-treated feed. Full NF pretreatment of the make-up allows TBT in the MSF plant to be raised up to 175oC in the case of di hybrid NF-MSF and up to 165oC in the case of tri hybrid NF-RO-MSF. The significant scale reduction is associated with increasing flashing range, unit recovery, unit performance, and will lead to reduction in heat transfer surface area, pumping power and therefore, water production cost.

  10. Soil loss risk and habitat quality in streams of a meso-scale river basin Risco de perda de solo e qualidade do habitat numa bacia hidrográfica de meso-escala

    Directory of Open Access Journals (Sweden)

    Alexandre Marco da Silva

    2007-08-01

    Full Text Available Soil loss expectation and possible relationships among soil erosion, riparian vegetation and water quality were studied in the São José dos Dourados River basin, State of São Paulo, Brazil. Through Geographic Information System (GIS resources and technology, Soil Loss Expectation (SLE data obtained using the Universal Soil Loss Equation (USLE model were analyzed. For the whole catchment area and for the 30 m buffer strips of the streams of 22 randomly selected catchments, the predominant land use and habitat quality were studied. Owing mainly to the high soil erodibility, the river basin is highly susceptible to erosive processes. Habitat quality analyses revealed that the superficial water from the catchments is not chemically impacted but suffers physical damage. A high chemical purity is observed since there are no urban areas along the catchments. The water is physically poor because of high rates of sediment delivery and the almost nonexistence of riparian vegetation.Expectativa de perda de solo e possíveis relações entre erosão, vegetação ripária e qualidade da água foram estudados na bacia do rio São José dos Dourados (SP. Através de recursos de geoprocessamento e da Equação Universal de Perda de Solos, os dados sobre expectativa de perda de solo foram levantados. Para a área de drenagem total e a faixa tampão dos corpos d'água de 22 sub-bacias aleatoriamente selecionadas, analisou-se a cobertura do solo predominante e qualidade do habitat. Devido principalmente à alta erodibilidade do solo, a área estudada é altamente suscetível ao processo erosivo. As análises de qualidade da água revelaram que as águas superficiais das sub-bacias estão quimicamente não impactadas, mas fisicamente degradadas. A alta pureza química deve-se, possivelmente, à ausência de áreas urbanizadas ao longo das sub-bacias e as alterações nas características físicas são, possivelmente, decorrentes das altas taxas de transfer

  11. Predators on private land: broad-scale socioeconomic interactions influence large predator management

    Directory of Open Access Journals (Sweden)

    Hayley S. Clements

    2016-06-01

    Full Text Available The proliferation of private land conservation areas (PLCAs is placing increasing pressure on conservation authorities to effectively regulate their ecological management. Many PLCAs depend on tourism for income, and charismatic large mammal species are considered important for attracting international visitors. Broad-scale socioeconomic factors therefore have the potential to drive fine-scale ecological management, creating a systemic scale mismatch that can reduce long-term sustainability in cases where economic and conservation objectives are not perfectly aligned. We assessed the socioeconomic drivers and outcomes of large predator management on 71 PLCAs in South Africa. Owners of PLCAs that are stocking free-roaming large predators identified revenue generation as influencing most or all of their management decisions, and rated profit generation as a more important objective than did the owners of PLCAs that did not stock large predators. Ecotourism revenue increased with increasing lion (Panthera leo density, which created a potential economic incentive for stocking lion at high densities. Despite this potential mismatch between economic and ecological objectives, lion densities were sustainable relative to available prey. Regional-scale policy guidelines for free-roaming lion management were ecologically sound. By contrast, policy guidelines underestimated the area required to sustain cheetah (Acinonyx jubatus, which occurred at unsustainable densities relative to available prey. Evidence of predator overstocking included predator diet supplementation and frequent reintroduction of game. We conclude that effective facilitation of conservation on private land requires consideration of the strong and not necessarily beneficial multiscale socioeconomic factors that influence private land management.

  12. Influence of Slope-Scale Snowmelt on Catchment Response Simulated With the Alpine3D Model

    Science.gov (United States)

    Brauchli, Tristan; Trujillo, Ernesto; Huwald, Hendrik; Lehning, Michael

    2017-12-01

    Snow and hydrological modeling in alpine environments remains challenging because of the complexity of the processes affecting the mass and energy balance. This study examines the influence of snowmelt on the hydrological response of a high-alpine catchment of 43.2 km2 in the Swiss Alps during the water year 2014-2015. Based on recent advances in Alpine3D, we examine how snow distributions and liquid water transport within the snowpack influence runoff dynamics. By combining these results with multiscale observations (snow lysimeter, distributed snow depths, and streamflow), we demonstrate the added value of a more realistic snow distribution at the onset of melt season. At the site scale, snowpack runoff is well simulated when the mass balance errors are corrected (R2 = 0.95 versus R2 = 0.61). At the subbasin scale, a more heterogeneous snowpack leads to a more rapid runoff pulse originating in the shallower areas while an extended melting period (by a month) is caused by snowmelt from deeper areas. This is a marked improvement over results obtained using a traditional precipitation interpolation method. Hydrological response is also improved by the more realistic snowpack (NSE of 0.85 versus 0.74), even though calibration processes smoothen out the differences. The added value of a more complex liquid water transport scheme is obvious at the site scale but decreases at larger scales. Our results highlight not only the importance but also the difficulty of getting a realistic snowpack distribution even in a well-instrumented area and present a model validation from multiscale experimental data sets.

  13. Using novel acoustic and visual mapping tools to predict the small-scale spatial distribution of live biogenic reef framework in cold-water coral habitats

    NARCIS (Netherlands)

    De Clippele, L. H.; Gafeira, J.; Robert, K.; Hennige, S.; Lavaleye, M.S.; Duineveld, G.C.A.; Huvenne, V.A.I.; Roberts, J.M.

    2017-01-01

    Cold-water corals form substantial biogenic habitats on continental shelves and in deep-sea areas with topographic highs, such as banks and seamounts. In the Atlantic, many reef and mound complexes are engineered by Lophelia pertusa, the dominant framework-forming coral. In this study, a variety of

  14. Cross-scale feedbacks and scale mismatches as influences on cultural services and the resilience of protected areas.

    Science.gov (United States)

    Maciejewski, Kristine; De Vos, Alta; Cumming, Graeme S; Moore, Christine; Biggs, Duan

    2015-01-01

    Protected areas are a central strategy for achieving global conservation goals, but their continued existence depends heavily on maintaining sufficient social and political support to outweigh economic interests or other motives for land conversion. Thus, the resilience of protected areas can be considered a function of their perceived benefits to society. Nature-based tourism (NBT), a cultural ecosystem service, provides a key source of income to protected areas, facilitating a sustainable solution to conservation. The ability of tourism to generate income depends, however, on both the scales at which this cultural service is provided and the scales at which tourists respond to services on offer. This observation raises a set of location-, context-, and scale-related questions that need to be confronted before we can understand and value cultural service provision appropriately. We combine elements of resilience analysis with a systems ecology framework and apply this to NBT in protected areas to investigate cross-scale interactions and scale mismatches. We postulate that cross-scale effects can either have a positive effect on protected area resilience or lead to scale mismatches, depending on their interactions with cross-scale feedbacks. To demonstrate this, we compare spatial scales and nested levels of institutions to develop a typology of scale mismatches for common scenarios in NBT. In our new typology, the severity of a scale mismatch is expressed as the ratio of spatial scale to institutional level, producing 25 possible outcomes with differing consequences for system resilience. We predict that greater differences between interacting scales and levels, and greater magnitudes of cross-scale interactions, will lead to greater magnitudes of scale mismatch. Achieving a better understanding of feedbacks and mismatches, and finding ways of aligning spatial and institutional scales, will be critical for strengthening the resilience of protected areas that

  15. Cross-cultural adaptation: translation and Portuguese language content validation of the Tripartite Influence Scale for body dissatisfaction

    National Research Council Canada - National Science Library

    Conti, Maria Aparecida; Scagliusi, Fernanda; Queiroz, Gisele Kawamura de Oliveira; Hearst, Norman; Cordás, Táki Athanássios

    2010-01-01

    The aim of this study was to translate and adapt the Tripartite Influence Scale to the Portuguese language and evaluate its content validity and internal consistency. Six steps included: (1) translation; (2) back-translation; (3...

  16. Factors Influencing the Reliability of the Glasgow Coma Scale: A Systematic Review.

    Science.gov (United States)

    Reith, Florence Cm; Synnot, Anneliese; van den Brande, Ruben; Gruen, Russell L; Maas, Andrew Ir

    2017-06-01

    The Glasgow Coma Scale (GCS) characterizes patients with diminished consciousness. In a recent systematic review, we found overall adequate reliability across different clinical settings, but reliability estimates varied considerably between studies, and methodological quality of studies was overall poor. Identifying and understanding factors that can affect its reliability is important, in order to promote high standards for clinical use of the GCS. The aim of this systematic review was to identify factors that influence reliability and to provide an evidence base for promoting consistent and reliable application of the GCS. A comprehensive literature search was undertaken in MEDLINE, EMBASE, and CINAHL from 1974 to July 2016. Studies assessing the reliability of the GCS in adults or describing any factor that influences reliability were included. Two reviewers independently screened citations, selected full texts, and undertook data extraction and critical appraisal. Methodological quality of studies was evaluated with the consensus-based standards for the selection of health measurement instruments checklist. Data were synthesized narratively and presented in tables. Forty-one studies were included for analysis. Factors identified that may influence reliability are education and training, the level of consciousness, and type of stimuli used. Conflicting results were found for experience of the observer, the pathology causing the reduced consciousness, and intubation/sedation. No clear influence was found for the professional background of observers. Reliability of the GCS is influenced by multiple factors and as such is context dependent. This review points to the potential for improvement from training and education and standardization of assessment methods, for which recommendations are presented.

  17. Faunal assemblages and multi-scale habitat patterns in headwater tributaries of the South Fork Trinity River - an unregulated river embedded within a multiple-use landscape

    Science.gov (United States)

    Welsh, H.H.; Hodgson, G.R.; Duda, J.J.; Emlen, J.M.

    2010-01-01

    Headwaters can represent 80% of stream kilometers in a watershed, and they also have unique physical and biological properties that have only recently been recognized for their importance in sustaining healthy functioning stream networks and their ecological services. We sampled 60 headwater tributaries in the South Fork Trinity River, a 2,430 km2, mostly forested, multiple-use watershed in northwestern California. Our objectives were: (1) to differentiate unique headwater types using 69 abiotic and vegetation variables measured at three spatial scales, and then to reduce these to informative subsets; (2) determine if distinct biota occupied the different tributary types; (3) determine the environmental attributes associated with the presence and abundance of these biotic assemblages; and (4) using niche modeling, determine key attribute thresholds to illustrate how these biota could be employed as metrics of system integrity and ecological services. Several taxa were sufficiently abundant and widespread to use as bio-indicators: the presence and abundance of steelhead trout (Oncorhynchus mykiss), herpetofauna (reptile and amphibian) species richness, and signal crayfish (Pacifastacus leniusculus) represented different trophic positions, value as commercial resources (steelhead), sensitivity to environmental stress (amphibians), and indicators of biodiversity (herpetofauna species richness). Herpetofauna species richness did not differ, but abundances of steelhead trout, signal crayfish, and amphibian richness all differed significantly among tributary types. Niche models indicated that distribution and abundance patterns in both riparian and aquatic environments were associated with physical and structural attributes at multiple spatial scales, both within and around reaches. The bio-indicators responded to unique sets of attributes, reflecting the high environmental heterogeneity in headwater tributaries across this large watershed. These niche attributes

  18. Influence of oxidation temperature on the oxide scale formation of NiCoCrAl coatings

    Science.gov (United States)

    Sugiarti, E.; Zaini, K. A.; Sundawa, R.; Wang, Y.; Ohnuki, S.; Hayashi, S.

    2017-04-01

    Intermetalic coatings of NiCoCrAl have been successfully developed on low carbon steel substrate to improve oxidation resistance in extreme environments. The influence of oxidation temperature on the oxide scale formation was studied in the temperature range of 600-1000 °C. The measurements were made in air under isothermal oxidation test for 100 h. The surface morphology showed that a cauliflower like structure developed entire the oxide scale of sample oxidized at 800 °C and 1000 °C, while partly distributed on the surface of sample oxidized at 600 °C. The XRD analysis identified Cr2O3 phase predominantly formed on the oxidized sample at 600 °C and meta-stable Al2O3 with several polymorphs crystalline structures: η, δ, θ, κ, and α-Al2O3 at relatively high temperatures, i.e. 800 °C and 1000 °C. A Cross-sectional microstructure showed that complex and porous structures formed on the top surface of 600 °C and 1000 °C samples. In contrast, a very thin oxide scale formed on 800 °C oxidized samples and it appeared to act as a diffusion barrier of oxygen to diffuse inward, hence could increase in the service life of carbon steel substrate.

  19. Differential effects of habitat isolation and landscape composition on wasps, bees, and their enemies.

    Science.gov (United States)

    Schüepp, Christof; Herrmann, John D; Herzog, Felix; Schmidt-Entling, Martin H

    2011-03-01

    Habitat loss and fragmentation are major threats to biodiversity and ecosystem functioning. Effects of these usually intercorrelated processes on biodiversity have rarely been separated at a landscape scale. We studied the independent effects of amount of woody habitat in the landscape and three levels of isolation from the next woody habitat (patch isolation) on trap nesting bees, wasps, and their enemies at 30 farmland sites in the Swiss plateau. Species richness of wasps was negatively affected by patch isolation and positively affected by the amount of woody habitat in the landscape. In contrast, species richness of bees was neither influenced by patch isolation nor by landscape composition. Isolation from woody habitats reduced species richness and abundance of natural enemies more strongly than of their hosts, so that parasitism rate was lowered by half in isolated sites compared to forest edges. Thus, population regulation of the hosts may be weakened by habitat fragmentation. We conclude that habitat amount at the landscape scale and local patch connectivity are simultaneously important for biodiversity conservation.

  20. Foliar fungal communities strongly differ between habitat patches in a landscape mosaic

    Directory of Open Access Journals (Sweden)

    Thomas Fort

    2016-11-01

    Full Text Available Background Dispersal events between habitat patches in a landscape mosaic can structure ecological communities and influence the functioning of agrosystems. Here we investigated whether short-distance dispersal events between vineyard and forest patches shape foliar fungal communities. We hypothesized that these communities homogenize between habitats over the course of the growing season, particularly along habitat edges, because of aerial dispersal of spores. Methods We monitored the richness and composition of foliar and airborne fungal communities over the season, along transects perpendicular to edges between vineyard and forest patches, using Illumina sequencing of the Internal Transcribed Spacer 2 (ITS2 region. Results In contrast to our expectation, foliar fungal communities in vineyards and forest patches increasingly differentiate over the growing season, even along habitat edges. Moreover, the richness of foliar fungal communities in grapevine drastically decreased over the growing season, in contrast to that of forest trees. The composition of airborne communities did not differ between habitats. The composition of oak foliar fungal communities change between forest edge and centre. Discussion These results suggest that dispersal events between habitat patches are not major drivers of foliar fungal communities at the landscape scale. Selective pressures exerted in each habitat by the host plant, the microclimate and the agricultural practices play a greater role, and might account for the differentiation of foliar fugal communities between habitats.

  1. Site-scale disturbance and habitat development best predict an index of amphibian biotic integrity in Ohio shrub and forested wetlands

    Science.gov (United States)

    Micacchion, Mick; Stapanian, Martin A.; Adams, Jean V.

    2015-01-01

    We determined the best predictors of an index of amphibian biotic integrity calculated from 54 shrub and forested wetlands in Ohio, USA using a two-step sequential holdout validation procedure. We considered 13 variables as predictors: four metrics of wetland condition from the Ohio Rapid Assessment Method (ORAM), a wetland vegetation index of biotic integrity, and eight metrics from a landscape disturbance index. For all iterations, the best model included the single ORAM metric that assesses habitat alteration, substrate disturbance, and habitat development within a wetland. Our results align with results of similar studies that have associated high scores for wetland vegetation indices of biotic integrity with low habitat alteration and substrate disturbance within wetlands. Thus, implementing similar management practices (e.g., not removing downed woody debris, retaining natural morphological features, decreasing nutrient input from surrounding agricultural lands) could concurrently increase ecological integrity of both plant and amphibian communities in a wetland. Further, our results have the unexpected effect of making progress toward a more unifying theory of ecological indices.

  2. The influence of scales of atmospheric motion on air pollution over Portugal

    Science.gov (United States)

    Russo, Ana; Trigo, Ricardo; Mendes, Manuel; Jerez, Sonia; Gouveia, Célia Marina

    2014-05-01

    Air pollution is determined by the combination of different factors, namely, emissions, physical constrains, meteorology and chemical processes [1,2,3]. The relative importance of such factors is influenced by their interaction on diverse scales of atmospheric motion. Each scale depicts different meteorological conditions, which, when combined with the different air pollution sources and photochemistry, result in varying ambient concentrations [2]. Identifying the dominant scales of atmospheric motion over a given airshed can be of great importance for many applications such as air pollution and pollen dispersion or wind energy management [2]. Portugal has been affected by numerous air pollution episodes during the last decade. These episodes are often related to peak emissions from local industry or transport, but can also be associated to regional transport from other urban areas or to exceptional emission events, such as forest fires. This research aims to identify the scales of atmospheric motion which contribute to an increase of air pollution. A method is proposed for differentiating between the scales of atmospheric motion that can be applied on a daily basis from data collected at several wind-measuring sites in a given airshed and to reanalysis datasets. The method is based on the daily mean wind recirculation and the mean and standard deviation between sites. The determination of the thresholds between scales is performed empirically following the approach of Levy et al. [2] and also through a automatic statistical approach computed taking into account the tails of the distributions (e.g. 95% and 99% percentile) of the different wind samples. A comparison is made with two objective approaches: 1) daily synoptic classification for the same period over the region [4] and 2) a 3-D backward trajectory approach [5,6] for specific episodes. Furthermore, the outcomes are expected to support the Portuguese authorities on the implementation of strategies for a

  3. Small mammal associations with habitat structure, and their influence on selected species interactions at the Rocky Mountain Arsenal : comprehensive examination proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document proposes an applied project at the Rocky Mountain Arsenal intended to address habitat relationships and selection, and interspecific competition, in...

  4. Scaling of Mixing Rate in Mantle Convection Models: Influence of Plate Tectonics, Melting and Crustal Production

    Science.gov (United States)

    Tackley, Paul

    2017-04-01

    It is generally thought that the early Earth's mantle was hotter than today, which using conventional convective scalings should have led to vigorous convection and mixing. Geochemical observations, however, suggest that mixing was not as rapid as would be expected, leading to the suggestion that early Earth had stagnant lid convection [Debaille et al., 2003]. Additionally, the mantle's thermal evolution is difficult to explain using conventional scalings because early heat loss would have been too rapid, which has led to the hypothesis that plate tectonics convection does not follow the conventional convective scalings [Korenaga, 2003]. One physical process that could be important in this context is partial melting leading to crustal production, which has been shown to have the major effects of buffering mantle temperature and carrying a significant fraction of the heat from hot mantle [Nakagawa & Tackley, 2012], making plate tectonics easier [Lourenco et al., 2016], and causing compositional differentiation of the mantle that can buffer core heat loss [Nakagawa & Tackley, 2010]. Here, the influence of this process on mantle mixing is examined, using secular thermo-chemical models that simulate Earth's evolution over 4.5 billion years. Mixing is quantified both in terms of how rapidly stretching occurs, and in terms of dispersion: how rapidly initially close heterogeneities are dispersed horizontally and vertically through the mantle. It is found that convection with plate tectonics, melting and crustal production does not follow the conventional Nu-Ra and velocity-Ra scalings derived from boundary-layer theory, and thus mixing in the early Earth is much less rapid than earlier thought. Reasons for this will be analysed in this presentation.

  5. The Influence of Vibration on CaCO3 Scale Formation in Piping System

    Directory of Open Access Journals (Sweden)

    Mangestiyono W.

    2016-01-01

    Full Text Available Carbonate scale is a common problem found in a piping system of industrial process. The presence of mechanical equipment such as turbine, compressor, blower, mixer and extruder produce a mechanical vibration on the piping system which is placed near these equipments. The influence of vibration on the CaCO3 scale formation in the piping system was experimentally investigated in the present study. The aim of the research was to understand the effect of vibration on the kinetics, deposition rates and the crystals formation in the synthetic solution. The solution was prepared using CaCl2 and Na2CO3 for concentration of calcium of 3.500 ppm, while the induction time, deposition rate, crystal growth were investigated at temperature of 25°C. In generating the vibration force, the mechanical equipment consisting of electrical motor, crankshaft, connecting rod and a vibration table were employed, including four coupons inside the pipe for investigating the scale formed. Frequency of the vibration was set at 0.00, 1.00 Hz and 2.00 Hz, respectively. A dosing pump with two inlets and two outlets was used to circulate the solutions at flowrate of 30 ml/min from each vessel to the coupons. After running for three hours, the induction time was recorded at 17; 10 and 8 minute with vibration frequency of 0.00; 1.00 and 2.00 Hz, respectively. The scale formed was then characterized using SEM/EDX for crystal morphology and elemental analysis. The results show that the deposition rates were 0.9457 and 3.3441 gram/h for the frequency of 1.00 and 2.00 Hz. The carbonate crystals found in coupon and filter were vaterite.

  6. Forest Conversion, Agricultural Transitions and the Influence of Multi-scale Market Factors in Southwest Cameroon

    Science.gov (United States)

    Ordway, E.; Lambin, E.; Asner, G. P.

    2015-12-01

    The changing structure of demand for commodities associated with food security and energy has had a startling impact on land use change in tropical forests in recent decades. Yet, the composition of conversion in the Congo basin remains a major uncertainty, particularly with regards to the scale of drivers of change. Owing to rapid expansion of production globally and longstanding historical production locally in the Congo basin, oil palm offers a lens through which to evaluate local land use decisions across a spectrum of small- to large-scales of production as well as interactions with regional and global supply chains. We examined the effect of global commodity crop expansion on land use change in Southwest Cameroon using a mixed-methods approach to integrate remote sensing, field surveys and socioeconomic data. Southwest Cameroon (2.5 Mha) has a long history of large- and small-scale agriculture, ranging from mixed crop subsistence agriculture to large monocrop plantations of oil palm, cocoa, and rubber. Trends and spatial patterns of forest conversion and agricultural transitions were analyzed from 2000-2015 using satellite imagery. We used economic, demographic and field survey datasets to assess how regional and global market factors and local commodity crop decisions affect land use patterns. Our results show that oil palm is a major commodity crop expanding in this region, and that conversion is occurring primarily through expansion by medium-scale producers and local elites. Results also indicate that global and regional supply chain dynamics influence local land use decision making. This research contributes new information on land use patterns and dynamics in the Congo basin, an understudied region. More specifically, results from this research contribute information on recent trends of oil palm expansion in Cameroon that will be used in national land use planning strategies.

  7. How spatial scale influences novel and disappeared climate predictions in Alaska

    Science.gov (United States)

    Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hug, B.; Hu, F.; Greenberg, J. A.

    2016-12-01

    Climate projections suggest that by the end of the 21st century, Earth may experience climates not found at present, and some present-day climates may disappear. These changes may produce species range shifts, novel communities, increased extinction and expansion risk, altered disturbance regimes, and other ecological responses. Data on historical species ranges support the idea that where past climates lack modern analogs, this led to novel species associations and biomes with no modern equivalent. Thus, quantifying novel and disappeared climates can lead to insight into changes in plant communities. The spatial resolution of climate used to predict novel and disappearing climates is an essential property to consider when conducting analyses on plant-climate interactions. Prior studies have suggested that coarse-scale climate data averages climate over broader areas leading to less environmental variability and overestimation of species ranges. In this study, we assessed how the spatial scale of climate surfaces influences predictions of novel and disappeared climates from the Last Glacial Maximum (LGM) to present day in Alaska. To accomplish this, we produced downscaled climate surfaces (shortwave radiation, minimum and maximum temperature, rain, snow, potential evapotranspiration, actual evapotranspiration, and water deficit) to scales ranging from 60m to 100km resolution for the LGM and present day. From this, we quantified the distribution of disappeared climates (climates that existed during the LGM but had no modern analog) and novel climates (climates that exist today, but had no past analog) across all scales. Overall, we found a general trend in which novel and disappeared climates were more common at coarser spatial resolutions. At finer resolutions, the impacts of topographic complexity (which were averaged out at coarser scales) led to the presence of microclimates that had analogs in both time periods, although these similar climates were often in

  8. Deep Space Habitat Concept Demonstrator

    Science.gov (United States)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  9. Influence of dynamical condensation on epidemic spreading in scale-free networks.

    Science.gov (United States)

    Tang, Ming; Liu, Li; Liu, Zonghua

    2009-01-01

    Considering the accumulation phenomenon in public places, we investigate how the condensation of moving bosonic particles influences the epidemic spreading in scale-free metapopulation networks. Our mean-field theory shows that condensation can significantly enhance the effect of epidemic spreading and reduce the threshold for epidemic to survive, in contrast to the case of without condensation. In the stationary state, the number of infected particles increases with the degree k linearly when kk_{c}, where k_{c} denotes the crossover degree of the nodes with unity particle. The dependence of critical infective rate beta_{c} on the parameters k_{max}, micro, and delta, is figured out, where k_{max}, micro, and delta denote the largest degree, recovery rate, and jumping exponent, respectively. Numerical simulations have confirmed the theoretical predictions.

  10. Characterizing the Influence of Abstraction in Full-Scale Wind Turbine Nacelle Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schkoda, Ryan; Bibo, Amin; Guo, Yi; Lambert, Scott; Wallen, Robb

    2016-08-01

    In recent years, there has been a growing interest in full-scale wind turbine nacelle testing to complement individual component testing. As a result, several wind turbine nacelle test benches have been built to perform such testing with the intent of loading the integrated components as they are in the field. However, when mounted on a test bench the nacelle is not on the top of a tower and does not have blades attached to it--this is a form of abstraction. This paper aims to quantify the influence of such an abstraction on the dynamic response of the nacelle through a series of simulation case studies. The responses of several nacelle components are studied including the main bearing, main shaft, gearbox supports, generator, and yaw bearing interface. Results are presented to highlight the differences in the dynamic response of the nacelle caused by the abstraction. Additionally, the authors provide recommendations for mitigating the effects of the abstraction.

  11. Characterizing the Influence of Abstraction in Full-Scale Wind Turbine Nacelle Testing

    Energy Technology Data Exchange (ETDEWEB)

    Schkoda, Ryan; Bibo, Amin; Guo, Yi; Lambert, Scott; Wallen, Robb

    2016-08-21

    In recent years, there has been a growing interest in full-scale wind turbine nacelle testing to complement individual component testing. As a result, several wind turbine nacelle test benches have been built to perform such testing with the intent of loading the integrated components as they are in the field. However, when mounted on a test bench the nacelle is not on the top of a tower and does not have blades attached to it - this is a form of abstraction. This paper aims to quantify the influence of such an abstraction on the dynamic response of the nacelle through a series of simulation case studies. The responses of several nacelle components are studied including the main bearing, main shaft, gearbox supports, generator, and yaw bearing interface. Results are presented to highlight the differences in the dynamic response of the nacelle caused by the abstraction. Additionally, the authors provide recommendations for mitigating the effects of the abstraction.

  12. The Multidimensional Media Influence Scale: confirmatory factor structure and relationship with body dissatisfaction among African American and Anglo American children.

    Science.gov (United States)

    Harrison, Kristen

    2009-06-01

    The Multidimensional Media Influence Scale (MMIS; Cusumano & Thompson, 2001). Media influence and body image in 8-11-year-old boys and girls: A preliminary report on the multidimensional media influence scale. International Journal of Eating Disorders, 29, 37-44) is a child-appropriate, 3-factor scale designed to assess perceived media influence on body image. It has been used in studies exploring the relationship between the entire scale as well as its subscales (awareness, internalization, and pressure) and variables related to body image. However, the 3-factor structure of the scale has never been confirmed via confirmatory factor analysis (CFA), nor has the scale been evaluated with a racially diverse sample of children. This paper reports the results of CFAs establishing the multidimensionality of the scale and the unidimensionality of its subscales among a sample of 661 girls and boys aged 7-12 years, primarily African American and Anglo American. The pressure factor of the MMIS predicted the idealization of a thinner current (child) and future (adult) body both cross-sectionally and one year later for girls and for Anglo American children.

  13. The influence of snow on discharge at different temporal scales in Switzerland

    Science.gov (United States)

    Rössler, Ole; Weingartner, Rolf

    2013-04-01

    The temporal storage of precipitation as snow plays an important role for discharge generation. This is indicated for example by the frequent occurrence of snowmelt floods and rain-on-snow floods in the Alps. In terms of the former, it can be questioned whether the spring flood is a direct function of the winter snow amount; concerning the latter, it is known that flood forecasting is very challenging after short term snow accumulation. Hence, there is a need to improve our understanding of the role of snow on runoff generation. In this study we exemplarily studied the influence of snow on runoff at different time scales. First, the importance of the temporal storage of water as snow on a short time scale is illustrated by analyzing the snow melt contribution during a rain-on-snow event in October 2011 in Switzerland. This flood was a non-forecasted rain-on-snow flood that generated severe damages. We analyzed why the existing models were not able to forecast the event. Second, the seasonal influence of winter snow cover on spring floods are estimated by evaluating observational data from the Bernese Oberland, Switzerland, during the last 15 years. In addition, we set up a model-experiment combining the last 15 years of snow data with the last 15 years of weather conditions during springtime. Assuming that these years cover at least a part of the natural variability, exceedance probabilities for different winter snow amounts or different weather conditions can be derived. We found that the snow amount causes primarily higher mean flow values while the effect on spring flood peaks are a function of weather. Finally, we want to give an outlook, how these dispositions and exceedance probabilities might change under climate change conditions.

  14. Organizational Influences on Interdisciplinary Interactions during Research and Design of Large-Scale Complex Engineered Systems

    Science.gov (United States)

    McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.

    2012-01-01

    The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.

  15. Influence of small-scale disturbances by kangaroo rats on Chihuahuan Desert ants.

    Science.gov (United States)

    Schooley, R L; Bestelmeyer, B T; Kelly, J F

    2000-10-01

    Banner-tailed kangaroo rats (Dipodomys spectabilis) are prominent ecosystem engineers that build large mounds that influence the spatial structuring of fungi, plants, and some ground-dwelling animals. Ants are diverse and functionally important components of arid ecosystems; some species are also ecosystem engineers. We investigated the effects of patch disturbances created by D. spectabilis mounds on ant assemblages in a Chihuahuan Desert grassland in southern New Mexico by using pitfall traps in a paired design (mound vs. matrix). Although the disturbances did not alter species richness or harbor unique ant communities relative to the matrix, they did alter species composition; the abundances of 6 of 26 species were affected. The disturbances might also act to disrupt spatial patterning of ants caused by other environmental gradients. In contrast to previous investigations of larger-scale disturbances, we detected no effects of the disturbances on ants at the functional-group level. Whether ant communities respond to disturbance at a functional-group or within-functional-group level may depend on the size and intensity of the disturbance. Useful functional-group schemes also may be scale-dependent, however, or species may respond idiosyncratically. Interactions between disturbance-generating mammals and ants may produce a nested spatial structure of patches.

  16. Trophic disruption: a meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems.

    Science.gov (United States)

    Martinson, Holly M; Fagan, William F

    2014-09-01

    Habitat fragmentation is a complex process that affects ecological systems in diverse ways, altering everything from population persistence to ecosystem function. Despite widespread recognition that habitat fragmentation can influence food web interactions, consensus on the factors underlying variation in the impacts of fragmentation across systems remains elusive. In this study, we conduct a systematic review and meta-analysis to quantify the effects of habitat fragmentation and spatial habitat structure on resource consumption in terrestrial arthropod food webs. Across 419 studies, we found a negative overall effect of fragmentation on resource consumption. Variation in effect size was extensive but predictable. Specifically, resource consumption was reduced on small, isolated habitat fragments, higher at patch edges, and neutral with respect to landscape-scale spatial variables. In general, resource consumption increased in fragmented settings for habitat generalist consumers but decreased for specialist consumers. Our study demonstrates widespread disruption of trophic interactions in fragmented habitats and describes variation among studies that is largely predictable based on the ecological traits of the interacting species. We highlight future prospects for understanding how changes in spatial habitat structure may influence trophic modules and food webs. © 2014 John Wiley & Sons Ltd/CNRS.

  17. The influence of small-scale interlayer heterogeneity on DDT removal efficiency for flushing technology

    Science.gov (United States)

    Wang, Xingwei; Chen, Jiajun

    2017-06-01

    With an aim to investigate the influence of small-scale interlayer heterogeneity on DDT removal efficiency, batch test including surfactant-stabilized foam flushing and solution flushing were carried out. Two man-made heterogeneous patterns consisting of coarse and fine quartz sand were designed to reveal the influencing mechanism. Moreover, the removal mechanism and the corresponding contribution by foam flushing were quantitatively studied. Compared with surfactant solution flushing, the DDT removal efficiency by surfactant-stabilized foam flushing increased by 9.47% and 11.28% under heterogeneous patterns 1 and 2, respectively. The DDT removal contributions of improving sweep efficiency for heterogeneous patterns 1 and 2 by foam flushing were 40.82% and 45.98%, and the contribution of dissolving capacity were 59.18% and 54.02%, respectively. The dissolving capacity of DDT played a major role in DDT removal efficiency by foam flushing under laboratory conditions. And the DDT removal contribution of significant improving sweep efficiency was higher than that of removal decline caused by weak solubilizing ability of foam film compared with solution flushing. The obtained results indicated that the difference of DDT removal efficiency by foam flushing was decreased under two different heterogeneous patterns with the increase of the contribution of improving foam flushing sweep efficiency. It suggested that foam flushing can reduce the disturbance from interlayer heterogeneity in remediating DDT contaminated heterogeneous medium.

  18. Visual influence on path integration in darkness indicates a multimodal representation of large-scale space.

    Science.gov (United States)

    Tcheang, Lili; Bülthoff, Heinrich H; Burgess, Neil

    2011-01-18

    Our ability to return to the start of a route recently performed in darkness is thought to reflect path integration of motion-related information. Here we provide evidence that motion-related interoceptive representations (proprioceptive, vestibular, and motor efference copy) combine with visual representations to form a single multimodal representation guiding navigation. We used immersive virtual reality to decouple visual input from motion-related interoception by manipulating the rotation or translation gain of the visual projection. First, participants walked an outbound path with both visual and interoceptive input, and returned to the start in darkness, demonstrating the influences of both visual and interoceptive information in a virtual reality environment. Next, participants adapted to visual rotation gains in the virtual environment, and then performed the path integration task entirely in darkness. Our findings were accurately predicted by a quantitative model in which visual and interoceptive inputs combine into a single multimodal representation guiding navigation, and are incompatible with a model of separate visual and interoceptive influences on action (in which path integration in darkness must rely solely on interoceptive representations). Overall, our findings suggest that a combined multimodal representation guides large-scale navigation, consistent with a role for visual imagery or a cognitive map.

  19. The influence of small-scale interlayer heterogeneity on DDT removal efficiency for flushing technology.

    Science.gov (United States)

    Wang, Xingwei; Chen, Jiajun

    2017-06-01

    With an aim to investigate the influence of small-scale interlayer heterogeneity on DDT removal efficiency, batch test including surfactant-stabilized foam flushing and solution flushing were carried out. Two man-made heterogeneous patterns consisting of coarse and fine quartz sand were designed to reveal the influencing mechanism. Moreover, the removal mechanism and the corresponding contribution by foam flushing were quantitatively studied. Compared with surfactant solution flushing, the DDT removal efficiency by surfactant-stabilized foam flushing increased by 9.47% and 11.28% under heterogeneous patterns 1 and 2, respectively. The DDT removal contributions of improving sweep efficiency for heterogeneous patterns 1 and 2 by foam flushing were 40.82% and 45.98%, and the contribution of dissolving capacity were 59.18% and 54.02%, respectively. The dissolving capacity of DDT played a major role in DDT removal efficiency by foam flushing under laboratory conditions. And the DDT removal contribution of significant improving sweep efficiency was higher than that of removal decline caused by weak solubilizing ability of foam film compared with solution flushing. The obtained results indicated that the difference of DDT removal efficiency by foam flushing was decreased under two different heterogeneous patterns with the increase of the contribution of improving foam flushing sweep e