WorldWideScience

Sample records for scale effects related

  1. Large scale obscuration and related climate effects open literature bibliography

    International Nuclear Information System (INIS)

    Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

    1994-05-01

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ''Nuclear Winter Controversy'' in the early 1980's. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest

  2. Large scale obscuration and related climate effects open literature bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

    1994-05-01

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

  3. Surface Rupture Effects on Earthquake Moment-Area Scaling Relations

    Science.gov (United States)

    Luo, Yingdi; Ampuero, Jean-Paul; Miyakoshi, Ken; Irikura, Kojiro

    2017-09-01

    Empirical earthquake scaling relations play a central role in fundamental studies of earthquake physics and in current practice of earthquake hazard assessment, and are being refined by advances in earthquake source analysis. A scaling relation between seismic moment ( M 0) and rupture area ( A) currently in use for ground motion prediction in Japan features a transition regime of the form M 0- A 2, between the well-recognized small (self-similar) and very large (W-model) earthquake regimes, which has counter-intuitive attributes and uncertain theoretical underpinnings. Here, we investigate the mechanical origin of this transition regime via earthquake cycle simulations, analytical dislocation models and numerical crack models on strike-slip faults. We find that, even if stress drop is assumed constant, the properties of the transition regime are controlled by surface rupture effects, comprising an effective rupture elongation along-dip due to a mirror effect and systematic changes of the shape factor relating slip to stress drop. Based on this physical insight, we propose a simplified formula to account for these effects in M 0- A scaling relations for strike-slip earthquakes.

  4. Large Scale Obscuration and Related Climate Effects Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zak, B.D.; Russell, N.A.; Church, H.W.; Einfeld, W.; Yoon, D.; Behl, Y.K. [eds.

    1994-05-01

    A Workshop on Large Scale Obsurcation and Related Climate Effects was held 29--31 January, 1992, in Albuquerque, New Mexico. The objectives of the workshop were: to determine through the use of expert judgement the current state of understanding of regional and global obscuration and related climate effects associated with nuclear weapons detonations; to estimate how large the uncertainties are in the parameters associated with these phenomena (given specific scenarios); to evaluate the impact of these uncertainties on obscuration predictions; and to develop an approach for the prioritization of further work on newly-available data sets to reduce the uncertainties. The workshop consisted of formal presentations by the 35 participants, and subsequent topical working sessions on: the source term; aerosol optical properties; atmospheric processes; and electro-optical systems performance and climatic impacts. Summaries of the conclusions reached in the working sessions are presented in the body of the report. Copies of the transparencies shown as part of each formal presentation are contained in the appendices (microfiche).

  5. Psychological effects of relational job characteristics: validation of the scale for hospital nurses.

    Science.gov (United States)

    Santos, Alda; Castanheira, Filipa; Chambel, Maria José; Amarante, Michael Vieira; Costa, Carlos

    2017-07-01

    This study validates the Portuguese version of the psychological effects of the relational job characteristics scale among hospital nurses in Portugal and Brazil. Increasing attention has been given to the social dimension of work, following the transition to a service economy. Nevertheless, and despite the unquestionable relational characteristics of nursing work, scarce research has been developed among nurses under a relational job design framework. Moreover, it is important to develop instruments that study the effects of relational job characteristics among nurses. We followed Messick's framework for scale validation, comprising the steps regarding the response process and internal structure, as well as relationships with other variables (work engagement and burnout). Statistical analysis included exploratory factor analysis and confirmatory factor analysis. The psychological effects of the relational job characteristics scale provided evidence of good psychometric properties with Portuguese and Brazilian hospital nurses. Also, the psychological effects of the relational job characteristics are associated with nurses' work-related well-being: positively with work engagement and negatively concerning burnout. Hospitals that foster the relational characteristics of nursing work are contributing to their nurses' work-related well-being, which may be reflected in the quality of care and patient safety. © 2017 John Wiley & Sons Ltd.

  6. Laboratory-scale measurements of effective relative permeability for layered sands

    Energy Technology Data Exchange (ETDEWEB)

    Butts, M.G.; Korsgaard, S.

    1996-12-31

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs.

  7. Laboratory-scale measurements of effective relative permeability for layered sands

    International Nuclear Information System (INIS)

    Butts, M.G.; Korsgaard, S.

    1996-01-01

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs

  8. Scale Effects Related to Small Physical Modelling of Overtopping of Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke

    2009-01-01

    By comparison of overtopping discharges recorded in prototype and small scale physical models it was demonstrated in the EU-CLASH project that small scale tests significantly underestimate smaller discharges. Deviations in overtopping are due to model and scale effects. These effects are discusse...... armour on the upper part of the slope. This effect is believed to be the main reason for the found deviations between overtopping in prototype and small scale tests....

  9. Scaling relation of the anomalous Hall effect in (Ga,Mn)As

    Science.gov (United States)

    Glunk, M.; Daeubler, J.; Schoch, W.; Sauer, R.; Limmer, W.

    2009-09-01

    We present magnetotransport studies performed on an extended set of (Ga,Mn)As samples at 4.2 K with longitudinal conductivities σxx ranging from the low-conductivity to the high-conductivity regime. The anomalous Hall conductivity σxy(AH) is extracted from the measured longitudinal and Hall resistivities. A transition from σxy(AH)=20Ω-1cm-1 due to the Berry phase effect in the high-conductivity regime to a scaling relation σxy(AH)∝σxx1.6 for low-conductivity samples is observed. This scaling relation is consistent with a recently developed unified theory of the anomalous Hall effect in the framework of the Keldysh formalism. It turns out to be independent of crystallographic orientation, growth conditions, Mn concentration, and strain, and can therefore be considered universal for low-conductivity (Ga,Mn)As. The relation plays a crucial role when deriving values of the hole concentration from magnetotransport measurements in low-conductivity (Ga,Mn)As. In addition, the hole diffusion constants for the high-conductivity samples are determined from the measured longitudinal conductivities.

  10. City-scale analysis of water-related energy identifies more cost-effective solutions.

    Science.gov (United States)

    Lam, Ka Leung; Kenway, Steven J; Lant, Paul A

    2017-02-01

    Energy and greenhouse gas management in urban water systems typically focus on optimising within the direct system boundary of water utilities that covers the centralised water supply and wastewater treatment systems, despite a greater energy influence by the water end use. This work develops a cost curve of water-related energy management options from a city perspective for a hypothetical Australian city. It is compared with that from the water utility perspective. The curves are based on 18 water-related energy management options that have been implemented or evaluated in Australia. In the studied scenario, the cost-effective energy saving potential from a city perspective (292 GWh/year) is far more significant than that from a utility perspective (65 GWh/year). In some cases, for similar capital cost, if regional water planners invested in end use options instead of utility options, a greater energy saving potential at a greater cost-effectiveness could be achieved in urban water systems. For example, upgrading a wastewater treatment plant for biogas recovery at a capital cost of $27.2 million would save 31 GWh/year with a marginal cost saving of $63/MWh, while solar hot water system rebates at a cost of $28.6 million would save 67 GWh/year with a marginal cost saving of $111/MWh. Options related to hot water use such as water-efficient shower heads, water-efficient clothes washers and solar hot water system rebates are among the most cost-effective city-scale opportunities. This study demonstrates the use of cost curves to compare both utility and end use options in a consistent framework. It also illustrates that focusing solely on managing the energy use within the utility would miss substantial non-utility water-related energy saving opportunities. There is a need to broaden the conventional scope of cost curve analysis to include water-related energy and greenhouse gas at the water end use, and to value their management from a city perspective. This

  11. Optimal renormalization scales and commensurate scale relations

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Lu, H.J.

    1996-01-01

    Commensurate scale relations relate observables to observables and thus are independent of theoretical conventions, such as the choice of intermediate renormalization scheme. The physical quantities are related at commensurate scales which satisfy a transitivity rule which ensures that predictions are independent of the choice of an intermediate renormalization scheme. QCD can thus be tested in a new and precise way by checking that the observables track both in their relative normalization and in their commensurate scale dependence. For example, the radiative corrections to the Bjorken sum rule at a given momentum transfer Q can be predicted from measurements of the e+e - annihilation cross section at a corresponding commensurate energy scale √s ∝ Q, thus generalizing Crewther's relation to non-conformal QCD. The coefficients that appear in this perturbative expansion take the form of a simple geometric series and thus have no renormalon divergent behavior. The authors also discuss scale-fixed relations between the threshold corrections to the heavy quark production cross section in e+e - annihilation and the heavy quark coupling α V which is measurable in lattice gauge theory

  12. Effect of primordial non-Gaussianities on galaxy clusters scaling relations

    Science.gov (United States)

    Trindade, A. M. M.; da Silva, Antonio

    2017-07-01

    Galaxy clusters are a valuable source of cosmological information. Their formation and evolution depends on the underlying cosmology and on the statistical nature of the primordial density fluctuations. Here we investigate the impact of primordial non-Gaussianities (PNG) on the scaling properties of galaxy clusters. We performed a series of hydrodynamic N-body simulations featuring adiabatic gas physics and different levels of non-Gaussianity within the Λ cold dark matter framework. We focus on the T-M, S-M, Y-M and YX-M scalings relating the total cluster mass with temperature, entropy and Sunyaev-Zeld'ovich integrated pressure that reflect the thermodynamic state of the intracluster medium. Our results show that PNG have an impact on cluster scalings laws. The scalings mass power-law indexes are almost unaffected by the existence of PNG, but the amplitude and redshift evolution of their normalizations are clearly affected. Changes in the Y-M and YX-M normalizations are as high as 22 per cent and 16 per cent when fNL varies from -500 to 500, respectively. Results are consistent with the view that positive/negative fNL affect cluster profiles due to an increase/decrease of cluster concentrations. At low values of fNL, as suggested by present Planck constraints on a scale invariant fNL, the impact on the scaling normalizations is only a few per cent. However, if fNL varies with scale, PNG may have larger amplitudes at clusters scales; thus, our results suggest that PNG should be taken into account when cluster data are used to infer or forecast cosmological parameters from existing or future cluster surveys.

  13. LoCuSS: THE SUNYAEV–ZEL'DOVICH EFFECT AND WEAK-LENSING MASS SCALING RELATION

    International Nuclear Information System (INIS)

    Marrone, Daniel P.; Carlstrom, John E.; Gralla, Megan; Greer, Christopher H.; Hennessy, Ryan; Leitch, Erik M.; Plagge, Thomas; Smith, Graham P.; Okabe, Nobuhiro; Bonamente, Massimiliano; Hasler, Nicole; Culverhouse, Thomas L.; Hawkins, David; Lamb, James W.; Muchovej, Stephen; Joy, Marshall; Martino, Rossella; Mazzotta, Pasquale; Miller, Amber; Mroczkowski, Tony

    2012-01-01

    We present the first weak-lensing-based scaling relation between galaxy cluster mass, M WL , and integrated Compton parameter Y sph . Observations of 18 galaxy clusters at z ≅ 0.2 were obtained with the Subaru 8.2 m telescope and the Sunyaev-Zel'dovich Array. The M WL -Y sph scaling relations, measured at Δ = 500, 1000, and 2500 ρ c , are consistent in slope and normalization with previous results derived under the assumption of hydrostatic equilibrium (HSE). We find an intrinsic scatter in M WL at fixed Y sph of 20%, larger than both previous measurements of M HSE -Y sph scatter as well as the scatter in true mass at fixed Y sph found in simulations. Moreover, the scatter in our lensing-based scaling relations is morphology dependent, with 30%-40% larger M WL for undisturbed compared to disturbed clusters at the same Y sph at r 500 . Further examination suggests that the segregation may be explained by the inability of our spherical lens models to faithfully describe the three-dimensional structure of the clusters, in particular, the structure along the line of sight. We find that the ellipticity of the brightest cluster galaxy, a proxy for halo orientation, correlates well with the offset in mass from the mean scaling relation, which supports this picture. This provides empirical evidence that line-of-sight projection effects are an important systematic uncertainty in lensing-based scaling relations.

  14. The effect of pore-scale geometry and wettability on two-phase relative permeabilities within elementary cells

    Science.gov (United States)

    Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto

    2017-04-01

    We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities characterizing steady state immiscible two-phase flow in porous media. We do so by considering elementary cells, which are typically employed in upscaling frameworks based on, e.g., homogenization or volume averaging. In this context one typically relies on the solution of pore-scale physics at a scale which is much smaller than that of an investigated porous system. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths (principal pathways), giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the unit cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale. Our findings suggest the need to perform systematic upscaling studies in a stochastic context, to propagate the effects of uncertain pore space geometries to a probabilistic description of relative permeability curves at the continuum scale.

  15. LoCuSS: THE SUNYAEV-ZEL'DOVICH EFFECT AND WEAK-LENSING MASS SCALING RELATION

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, Daniel P.; Carlstrom, John E.; Gralla, Megan; Greer, Christopher H.; Hennessy, Ryan; Leitch, Erik M.; Plagge, Thomas [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Smith, Graham P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Okabe, Nobuhiro [Astronomical Institute, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578 (Japan); Bonamente, Massimiliano; Hasler, Nicole [Department of Physics, University of Alabama, Huntsville, AL 35899 (United States); Culverhouse, Thomas L. [Radio Astronomy Lab, 601 Campbell Hall, University of California, Berkeley, CA 94720 (United States); Hawkins, David; Lamb, James W.; Muchovej, Stephen [Owens Valley Radio Observatory, California Institute of Technology, Big Pine, CA 93513 (United States); Joy, Marshall [Space Science-VP62, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Martino, Rossella; Mazzotta, Pasquale [Dipartimento di Fisica, Universita degli Studi di Roma ' Tor Vergata' , via della Ricerca Scientifica 1, 00133, Roma (Italy); Miller, Amber [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Mroczkowski, Tony, E-mail: dmarrone@email.arizona.edu [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); and others

    2012-08-01

    We present the first weak-lensing-based scaling relation between galaxy cluster mass, M{sub WL}, and integrated Compton parameter Y{sub sph}. Observations of 18 galaxy clusters at z {approx_equal} 0.2 were obtained with the Subaru 8.2 m telescope and the Sunyaev-Zel'dovich Array. The M{sub WL}-Y{sub sph} scaling relations, measured at {Delta} = 500, 1000, and 2500 {rho}{sub c}, are consistent in slope and normalization with previous results derived under the assumption of hydrostatic equilibrium (HSE). We find an intrinsic scatter in M{sub WL} at fixed Y{sub sph} of 20%, larger than both previous measurements of M{sub HSE}-Y{sub sph} scatter as well as the scatter in true mass at fixed Y{sub sph} found in simulations. Moreover, the scatter in our lensing-based scaling relations is morphology dependent, with 30%-40% larger M{sub WL} for undisturbed compared to disturbed clusters at the same Y{sub sph} at r{sub 500}. Further examination suggests that the segregation may be explained by the inability of our spherical lens models to faithfully describe the three-dimensional structure of the clusters, in particular, the structure along the line of sight. We find that the ellipticity of the brightest cluster galaxy, a proxy for halo orientation, correlates well with the offset in mass from the mean scaling relation, which supports this picture. This provides empirical evidence that line-of-sight projection effects are an important systematic uncertainty in lensing-based scaling relations.

  16. The MUSIC of galaxy clusters - I. Baryon properties and scaling relations of the thermal Sunyaev-Zel'dovich effect

    Science.gov (United States)

    Sembolini, Federico; Yepes, Gustavo; De Petris, Marco; Gottlöber, Stefan; Lamagna, Luca; Comis, Barbara

    2013-02-01

    background matter density: we show that the latter definition is more successful in probing the same fraction of the virial radius at different redshifts, providing a more reliable derivation of the time evolution of integrated quantities. We also present in this paper a detailed analysis of the scaling relations of the thermal Sunyaev-Zel'dovich (SZ) effect derived from MUSIC clusters. The integrated SZ brightness, Y, is related to the cluster total mass, M, as well as, the M - Y counterpart which is more suitable for observational applications. Both laws are consistent with predictions from the self-similar model, showing a very low scatter which is σlog Y ≃ 0.04 and even a smaller one (σlog M ≃ 0.03) for the inverse M-Y relation. The effects of the gas fraction on the Y-M scaling relation are also studied. At high overdensities, the dispersion of the gas fractions introduces non-negligible deviation from self-similarity, which is directly related to the fgas-M relation. The presence of a possible redshift dependence on the Y-M scaling relation is also explored. No significant evolution of the SZ relations is found at lower overdensities, regardless of the definition of overdensity used.

  17. On the evolution of cluster scaling relations

    International Nuclear Information System (INIS)

    Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud

    2013-01-01

    Understanding the evolution of scaling relations between the observable properties of clusters and their total mass is key to realizing their potential as cosmological probes. In this study, we investigate whether the evolution of cluster scaling relations is affected by the spurious evolution of mass caused by the evolving reference density with respect to which halo masses are defined (pseudo-evolution). We use the relation between mass, M, and velocity dispersion, σ, as a test case, and show that the deviation from the M-σ relation of cluster-sized halos caused by pseudo-evolution is smaller than 10% for a wide range of mass definitions. The reason for this small impact is a tight relation between the velocity dispersion and mass profiles, σ(relation is generically expected for a variety of density profiles, as long as halos are in approximate Jeans equilibrium. Thus, as the outer 'virial' radius used to define the halo mass, R, increases due to pseudo-evolution, halos approximately preserve their M-σ relation. This result highlights the fact that tight scaling relations are the result of tight equilibrium relations between radial profiles of physical quantities. We find exceptions at very small and very large radii, where the profiles deviate from the relations they exhibit at intermediate radii. We discuss the implications of these results for other cluster scaling relations and argue that pseudo-evolution should have a small effect on most scaling relations, except for those that involve the stellar masses of galaxies. In particular, we show that the relation between stellar-mass fraction and total mass is affected by pseudo-evolution and is largely shaped by it for halo masses ≲ 10 14 M ☉ .

  18. Cosmology and cluster halo scaling relations

    NARCIS (Netherlands)

    Araya-Melo, Pablo A.; van de Weygaert, Rien; Jones, Bernard J. T.

    2009-01-01

    We explore the effects of dark matter and dark energy on the dynamical scaling properties of galaxy clusters. We investigate the cluster Faber-Jackson (FJ), Kormendy and Fundamental Plane (FP) relations between the mass, radius and velocity dispersion of cluster-sized haloes in cosmological N-body

  19. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies—1. Effect of Seed BH Mass

    Energy Technology Data Exchange (ETDEWEB)

    Shirakata, Hikari [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo (Japan); Kawaguchi, Toshihiro [Department of Economics, Management and Information Science, Onomichi City University, Onomichi (Japan); Okamoto, Takashi [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo (Japan); Makiya, Ryu [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwa (Japan); Max-Planck-Institut fur Astrophysik, Garching (Germany); Ishiyama, Tomoaki [Institute of Management and Information Technologies, Chiba University, Chiba (Japan); Matsuoka, Yoshiki [Research Center for Space and Cosmic Evolution, Ehime University, Matsuyama (Japan); Nagashima, Masahiro [Faculty of Education, Bunkyo University, Koshigaya (Japan); Enoki, Motohiro [Faculty of Business Administration, Tokyo Keizai University, Kokubunji (Japan); Oogi, Taira [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwa (Japan); Kobayashi, Masakazu A. R., E-mail: shirakata@astro1.sci.hokudai.ac.jp [Faculty of Natural Sciences, National Institute of Technology, Kure College, Kure (Japan)

    2017-09-21

    We use a semi-analytic model of galaxy formation and investigate how the mass of a seed black hole affect the scaling relation between black hole mass and bulge mass at z ~ 0. When the mass of the seed is set at 10{sup 5}M{sub ⊙}, we find that the model results become inconsistent with recent observational results of the scaling relation for dwarf galaxies. On the other hand, when we set seed black hole mass as 10{sup 3}M{sub ⊙} or as randomly chosen value within a 10{sup 3-5}M{sub ⊙} range, we find the results are consistent with observational results including the dispersion. We also find that black hole mass—bulge mass relations for less massive bulges at z ~ 0 put stronger constraints on the seed BH mass than the relations at higher redshifts.

  20. Heritage and scale: settings, boundaries and relations

    DEFF Research Database (Denmark)

    Harvey, David

    2015-01-01

    of individuals and communities, towns and cities, regions, nations, continents or globally – becomes ever more important. Partly reflecting this crisis of the national container, researchers have sought opportunities both through processes of ‘downscaling’, towards community, family and even personal forms...... relations. This paper examines how heritage is produced and practised, consumed and experienced, managed and deployed at a variety of scales, exploring how notions of scale, territory and boundedness have a profound effect on the heritage process. Drawing on the work of Doreen Massey and others, the paper...

  1. THE ATACAMA COSMOLOGY TELESCOPE: DYNAMICAL MASSES AND SCALING RELATIONS FOR A SAMPLE OF MASSIVE SUNYAEV-ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS ,

    International Nuclear Information System (INIS)

    Sifón, Cristóbal; Barrientos, L. Felipe; González, Jorge; Infante, Leopoldo; Dünner, Rolando; Menanteau, Felipe; Hughes, John P.; Baker, Andrew J.; Hasselfield, Matthew; Marriage, Tobias A.; Crichton, Devin; Gralla, Megan B.; Addison, Graeme E.; Dunkley, Joanna; Battaglia, Nick; Bond, J. Richard; Hajian, Amir; Das, Sudeep; Devlin, Mark J.; Hilton, Matt

    2013-01-01

    We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 deg 2 area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R ∼ 700-800) spectra and redshifts for ≈60 member galaxies on average per cluster. The dynamical masses M 200c of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z = 0.50 and a median mass M 200c ≅12×10 14 h 70 -1 M sun with a lower limit M 200c ≅6×10 14 h 70 -1 M sun , consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude y 0 -tilde, the central Compton parameter y 0 , and the integrated Compton signal Y 200c , which we use to derive SZE-mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter (∼< 20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the three-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that ∼50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations, but given the current sample sizes, these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations

  2. Sunyaev-Zel'dovich Effect and X-ray Scaling Relations from Weak-Lensing Mass Calibration of 32 SPT Selected Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, J.P.; et al.

    2017-11-14

    Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based weak lensing observations of 19 South Pole Telescope (SPT) selected clusters and combine them with previously reported space-based observations of 13 galaxy clusters to constrain the cluster mass scaling relations with the Sunyaev-Zel'dovich effect (SZE), the cluster gas mass $M_\\mathrm{gas}$, and $Y_\\mathrm{X}$, the product of $M_\\mathrm{gas}$ and X-ray temperature. We extend a previously used framework for the analysis of scaling relations and cosmological constraints obtained from SPT-selected clusters to make use of weak lensing information. We introduce a new approach to estimate the effective average redshift distribution of background galaxies and quantify a number of systematic errors affecting the weak lensing modelling. These errors include a calibration of the bias incurred by fitting a Navarro-Frenk-White profile to the reduced shear using $N$-body simulations. We blind the analysis to avoid confirmation bias. We are able to limit the systematic uncertainties to 6.4% in cluster mass (68% confidence). Our constraints on the mass-X-ray observable scaling relations parameters are consistent with those obtained by earlier studies, and our constraints for the mass-SZE scaling relation are consistent with the the simulation-based prior used in the most recent SPT-SZ cosmology analysis. We can now replace the external mass calibration priors used in previous SPT-SZ cosmology studies with a direct, internal calibration obtained on the same clusters.

  3. Modified dispersion relations, inflation, and scale invariance

    Science.gov (United States)

    Bianco, Stefano; Friedhoff, Victor Nicolai; Wilson-Ewing, Edward

    2018-02-01

    For a certain type of modified dispersion relations, the vacuum quantum state for very short wavelength cosmological perturbations is scale-invariant and it has been suggested that this may be the source of the scale-invariance observed in the temperature anisotropies in the cosmic microwave background. We point out that for this scenario to be possible, it is necessary to redshift these short wavelength modes to cosmological scales in such a way that the scale-invariance is not lost. This requires nontrivial background dynamics before the onset of standard radiation-dominated cosmology; we demonstrate that one possible solution is inflation with a sufficiently large Hubble rate, for this slow roll is not necessary. In addition, we also show that if the slow-roll condition is added to inflation with a large Hubble rate, then for any power law modified dispersion relation quantum vacuum fluctuations become nearly scale-invariant when they exit the Hubble radius.

  4. THE ATACAMA COSMOLOGY TELESCOPE: DYNAMICAL MASSES AND SCALING RELATIONS FOR A SAMPLE OF MASSIVE SUNYAEV-ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Sifon, Cristobal; Barrientos, L. Felipe; Gonzalez, Jorge; Infante, Leopoldo; Duenner, Rolando [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Menanteau, Felipe; Hughes, John P.; Baker, Andrew J. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Marriage, Tobias A.; Crichton, Devin; Gralla, Megan B. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States); Addison, Graeme E.; Dunkley, Joanna [Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Battaglia, Nick; Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); and others

    2013-07-20

    We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 deg{sup 2} area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R {approx} 700-800) spectra and redshifts for Almost-Equal-To 60 member galaxies on average per cluster. The dynamical masses M{sub 200c} of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z = 0.50 and a median mass M{sub 200c}{approx_equal}12 Multiplication-Sign 10{sup 14} h{sub 70}{sup -1} M{sub sun} with a lower limit M{sub 200c}{approx_equal}6 Multiplication-Sign 10{sup 14} h{sub 70}{sup -1} M{sub sun}, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude y{sub 0}-tilde, the central Compton parameter y{sub 0}, and the integrated Compton signal Y{sub 200c}, which we use to derive SZE-mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter ({approx}< 20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the three-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that {approx}50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations, but given the current sample sizes, these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations.

  5. Origins of scaling relations in nonequilibrium growth

    International Nuclear Information System (INIS)

    Escudero, Carlos; Korutcheva, Elka

    2012-01-01

    Scaling and hyperscaling laws provide exact relations among critical exponents describing the behavior of a system at criticality. For nonequilibrium growth models with a conserved drift, there exist few of them. One such relation is α + z = 4, found to be inexact in a renormalization group calculation for several classical models in this field. Herein, we focus on the two-dimensional case and show that it is possible to construct conserved surface growth equations for which the relation α + z = 4 is exact in the renormalization group sense. We explain the presence of this scaling law in terms of the existence of geometric principles dominating the dynamics. (paper)

  6. Scaling relations for eddy current phenomena

    International Nuclear Information System (INIS)

    Dodd, C.V.; Deeds, W.E.

    1975-11-01

    Formulas are given for various electromagnetic quantities for coils in the presence of conductors, with the scaling parameters factored out so that small-scale model experiments can be related to large-scale apparatus. Particular emphasis is given to such quantities as eddy current heating, forces, power, and induced magnetic fields. For axially symmetric problems, closed-form integrals are available for the vector potential and all the other quantities obtainable from it. For unsymmetrical problems, a three-dimensional relaxation program can be used to obtain the vector potential and then the derivable quantities. Data on experimental measurements are given to verify the validity of the scaling laws for forces, inductances, and impedances. Indirectly these also support the validity of the scaling of the vector potential and all of the other quantities obtained from it

  7. HIV-Related Medical Admissions to a South African District Hospital Remain Frequent Despite Effective Antiretroviral Therapy Scale-Up

    NARCIS (Netherlands)

    Meintjes, Graeme; Kerkhoff, Andrew D.; Burton, Rosie; Schutz, Charlotte; Boulle, Andrew; van Wyk, Gavin; Blumenthal, Liz; Nicol, Mark P.; Lawn, Stephen D.

    2015-01-01

    The public sector scale-up of antiretroviral therapy (ART) in South Africa commenced in 2004. We aimed to describe the hospital-level disease burden and factors contributing to morbidity and mortality among hospitalized HIV-positive patients in the era of widespread ART availability. Between June

  8. Universal Scaling Relations in Scale-Free Structure Formation

    Science.gov (United States)

    Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.

    2018-04-01

    A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM∝M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters and even dark matter halos. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power law tail of dA/d lnΣ∝Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D∝R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM halos) tend to a ρ∝R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation and detailed "full physics" hydrodynamical simulations. We find that these power-laws are good first order descriptions in all cases.

  9. Large-scale tides in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Ip, Hiu Yan; Schmidt, Fabian, E-mail: iphys@mpa-garching.mpg.de, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-02-01

    Density perturbations in cosmology, i.e. spherically symmetric adiabatic perturbations of a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) spacetime, are locally exactly equivalent to a different FLRW solution, as long as their wavelength is much larger than the sound horizon of all fluid components. This fact is known as the 'separate universe' paradigm. However, no such relation is known for anisotropic adiabatic perturbations, which correspond to an FLRW spacetime with large-scale tidal fields. Here, we provide a closed, fully relativistic set of evolutionary equations for the nonlinear evolution of such modes, based on the conformal Fermi (CFC) frame. We show explicitly that the tidal effects are encoded by the Weyl tensor, and are hence entirely different from an anisotropic Bianchi I spacetime, where the anisotropy is sourced by the Ricci tensor. In order to close the system, certain higher derivative terms have to be dropped. We show that this approximation is equivalent to the local tidal approximation of Hui and Bertschinger [1]. We also show that this very simple set of equations matches the exact evolution of the density field at second order, but fails at third and higher order. This provides a useful, easy-to-use framework for computing the fully relativistic growth of structure at second order.

  10. Commensurate scale relations: Precise tests of quantum chromodynamics without scale or scheme ambiguity

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Lu, H.J.

    1994-10-01

    We derive commensurate scale relations which relate perturbatively calculable QCD observables to each other, including the annihilation ratio R e+ e - , the heavy quark potential, τ decay, and radiative corrections to structure function sum rules. For each such observable one can define an effective charge, such as α R (√s)/π ≡ R e+ e - (√s)/(3Σe q 2 )-1. The commensurate scale relation connecting the effective charges for observables A and B has the form α A (Q A ) α B (Q B )(1 + r A/Bπ / αB + hor-ellipsis), where the coefficient r A/B is independent of the number of flavors ∫ contributing to coupling renormalization, as in BLM scale-fixing. The ratio of scales Q A /Q B is unique at leading order and guarantees that the observables A and B pass through new quark thresholds at the same physical scale. In higher orders a different renormalization scale Q n* is assigned for each order n in the perturbative series such that the coefficients of the series are identical to that of a invariant theory. The commensurate scale relations and scales satisfy the renormalization group transitivity rule which ensures that predictions in PQCD are independent of the choice of an intermediate renormalization scheme C. In particular, scale-fixed predictions can be made without reference to theoretically constructed singular renormalization schemes such as MS. QCD can thus be tested in a new and precise way by checking that the effective charges of observables track both in their relative normalization and in their commensurate scale dependence. The commensurate scale relations which relate the radiative corrections to the annihilation ratio R e + e - to the radiative corrections for the Bjorken and Gross-Llewellyn Smith sum rules are particularly elegant and interesting

  11. Commensurate scale relations and the Abelian correspondence principle

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1998-06-01

    Commensurate scale relations are perturbative QCD predictions which relate observable to observable at fixed relative scales, independent of the choice of intermediate renormalization scheme or other theoretical conventions. A prominent example is the generalized Crewther relation which connects the Bjorken and Gross-Llewellyn Smith deep inelastic scattering sum rules to measurements of the e + e - annihilation cross section. Commensurate scale relations also provide an extension of the standard minimal subtraction scheme which is analytic in the quark masses, has non-ambiguous scale-setting properties, and inherits the physical properties of the effective charge α V (Q 2 ) defined from the heavy quark potential. The author also discusses a property of perturbation theory, the Abelian correspondence principle, which provides an analytic constraint on non-Abelian gauge theory for N C → 0

  12. Planck-scale-modified dispersion relations in FRW spacetime

    Science.gov (United States)

    Rosati, Giacomo; Amelino-Camelia, Giovanni; Marcianò, Antonino; Matassa, Marco

    2015-12-01

    In recent years, Planck-scale modifications of the dispersion relation have been attracting increasing interest also from the viewpoint of possible applications in astrophysics and cosmology, where spacetime curvature cannot be neglected. Nonetheless, the interplay between Planck-scale effects and spacetime curvature is still poorly understood, particularly in cases where curvature is not constant. These challenges have been so far postponed by relying on an ansatz, first introduced by Jacob and Piran. We propose here a general strategy of analysis of the effects of modifications of the dispersion relation in Friedmann-Robertson-Walker spacetimes, applicable both to cases where the relativistic equivalence of frames is spoiled ("preferred-frame scenarios") and to the alternative possibility of "DSR-relativistic theories," theories that are fully relativistic but with relativistic laws deformed so that the modified dispersion relation is observer independent. We show that the Jacob-Piran ansatz implicitly assumes that spacetime translations are not affected by the Planck scale, while under rather general conditions, the same Planck-scale quantum-spacetime structures producing modifications of the dispersion relation also affect translations. Through the explicit analysis of one of the effects produced by modifications of the dispersion relation, an effect amounting to Planck-scale corrections to travel times, we show that our concerns are not merely conceptual but rather can have significant quantitative implications.

  13. Special relativity at the quantum scale.

    Directory of Open Access Journals (Sweden)

    Pui K Lam

    Full Text Available It has been suggested that the space-time structure as described by the theory of special relativity is a macroscopic manifestation of a more fundamental quantum structure (pre-geometry. Efforts to quantify this idea have come mainly from the area of abstract quantum logic theory. Here we present a preliminary attempt to develop a quantum formulation of special relativity based on a model that retains some geometric attributes. Our model is Feynman's "checker-board" trajectory for a 1-D relativistic free particle. We use this model to guide us in identifying (1 the quantum version of the postulates of special relativity and (2 the appropriate quantum "coordinates". This model possesses a useful feature that it admits an interpretation both in terms of paths in space-time and in terms of quantum states. Based on the quantum version of the postulates, we derive a transformation rule for velocity. This rule reduces to the Einstein's velocity-addition formula in the macroscopic limit and reveals an interesting aspect of time. The 3-D case, time-dilation effect, and invariant interval are also discussed in term of this new formulation. This is a preliminary investigation; some results are derived, while others are interesting observations at this point.

  14. Special relativity at the quantum scale.

    Science.gov (United States)

    Lam, Pui K

    2014-01-01

    It has been suggested that the space-time structure as described by the theory of special relativity is a macroscopic manifestation of a more fundamental quantum structure (pre-geometry). Efforts to quantify this idea have come mainly from the area of abstract quantum logic theory. Here we present a preliminary attempt to develop a quantum formulation of special relativity based on a model that retains some geometric attributes. Our model is Feynman's "checker-board" trajectory for a 1-D relativistic free particle. We use this model to guide us in identifying (1) the quantum version of the postulates of special relativity and (2) the appropriate quantum "coordinates". This model possesses a useful feature that it admits an interpretation both in terms of paths in space-time and in terms of quantum states. Based on the quantum version of the postulates, we derive a transformation rule for velocity. This rule reduces to the Einstein's velocity-addition formula in the macroscopic limit and reveals an interesting aspect of time. The 3-D case, time-dilation effect, and invariant interval are also discussed in term of this new formulation. This is a preliminary investigation; some results are derived, while others are interesting observations at this point.

  15. Atomic-scale friction : thermal effects and capillary condensation

    NARCIS (Netherlands)

    Jinesh, Kochupurackal Balakrishna Pillai

    2006-01-01

    This work entitled as "Atomic-scale friction: thermal effects and capillary condensation" is a study on the fundamental aspects of the origin of friction from the atomic-scale. We study two realistic aspects of atomic-scale friction, namely the effect of temperature and the effect of relative

  16. The effect of an occupation-based intervention in patients with hand-related disorders grouped using the sense of coherence scale: Study protocol

    DEFF Research Database (Denmark)

    Hansen, Alice Ø; Cederlund, Ragnhild; Kristensen, Hanne Kaae

    2016-01-01

    Introduction: High-quality rehabilitation is required if patients with hand-related disorders are to achieve high levels of functioning. Occupation-based interventions are effective in stroke, hip fractures, and for elderly people, but there is limited knowledge of their effect in hand therapy...

  17. Relative Effects at Work

    NARCIS (Netherlands)

    Braeken, Johan; Mulder, Joris; Wood, Stephen

    2015-01-01

    Assessing the relative importance of predictors has been of historical importance in a variety of disciplines including management, medicine, economics, and psychology. When approaching hypotheses on the relative ordering of the magnitude of predicted effects (e.g., the effects of discrimination

  18. Effects of Small-scale Vegetation-related Roughness on Overland Flow and Infiltration in Semi-arid Grassland and Shrublands

    Science.gov (United States)

    Bedford, D.

    2012-12-01

    We studied the effects of small-scale roughness on overland flow/runoff and the spatial pattern of infiltration. Our semi-arid sites include a grassland and shrubland in Central New Mexico and a shrubland in the Eastern Mojave Desert. Vegetation exerts strong controls on small-scale surface roughness in the form of plant mounds and other microtopography such as depressions and rills. We quantified the effects of densely measured soil surface heterogeneity using model simulations of runoff and infiltration. Microtopographic roughness associated with vegetation patterns, on the scale of mm-cm's in height, has a larger effect on runoff and infiltration than spatially correlated saturated conductivity. The magnitude and pattern of the effect of roughness largely depends on the vegetation and landform type, and rainfall depth and intensity. In all cases, runoff and infiltration amount and patterns were most strongly affected by depression storage. In the grassland we studied in central New Mexico, soil surface roughness had a large effect on runoff and infiltration where vegetation mounds coalesced, forming large storage volumes that require filling and overtopping in order for overland flow to concentrate into runoff. Total discharge over rough surfaces was reduced 100-200% compared to simulations in which no surface roughness was accounted for. For shrublands, total discharge was reduced 30-40% by microtopography on gently sloping alluvial fans and only 10-20% on steep hillslopes. This difference is largely due to the lack of storage elements on steep slopes. For our sites, we found that overland flow can increase infiltration by up to 2.5 times the total rainfall by filling depressions. The redistribution of water via overland flow can affect up to 20% of an area but varies with vegetation type and landform. This infiltration augmentation by overland flow tends to occur near the edges of vegetation canopies where overland flow depths are deep and infiltration rates

  19. Scale-Independent Relational Query Processing

    Science.gov (United States)

    2013-10-04

    source options are also available, including Postgresql, MySQL , and SQLite. These mod- ern relational databases are generally very complex software systems...and Their Application to Data Stream Management. IGI Global, 2010. [68] George Reese. Database Programming with JDBC and Java , Second Edition. Ed. by

  20. Cavitation erosion - scale effect and model investigations

    Science.gov (United States)

    Geiger, F.; Rutschmann, P.

    2015-12-01

    The experimental works presented in here contribute to the clarification of erosive effects of hydrodynamic cavitation. Comprehensive cavitation erosion test series were conducted for transient cloud cavitation in the shear layer of prismatic bodies. The erosion pattern and erosion rates were determined with a mineral based volume loss technique and with a metal based pit count system competitively. The results clarified the underlying scale effects and revealed a strong non-linear material dependency, which indicated significantly different damage processes for both material types. Furthermore, the size and dynamics of the cavitation clouds have been assessed by optical detection. The fluctuations of the cloud sizes showed a maximum value for those cavitation numbers related to maximum erosive aggressiveness. The finding suggests the suitability of a model approach which relates the erosion process to cavitation cloud dynamics. An enhanced experimental setup is projected to further clarify these issues.

  1. Scale dependency of American marten (Martes americana) habitat relations [Chapter 12

    Science.gov (United States)

    Andrew J. Shirk; Tzeidle N. Wasserman; Samuel A. Cushman; Martin G. Raphael

    2012-01-01

    Animals select habitat resources at multiple spatial scales; therefore, explicit attention to scale-dependency when modeling habitat relations is critical to understanding how organisms select habitat in complex landscapes. Models that evaluate habitat variables calculated at a single spatial scale (e.g., patch, home range) fail to account for the effects of...

  2. Non-Abelian gauge field theory in scale relativity

    International Nuclear Information System (INIS)

    Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry

    2006-01-01

    Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description

  3. Scale relativity: from quantum mechanics to chaotic dynamics.

    Science.gov (United States)

    Nottale, L.

    Scale relativity is a new approach to the problem of the origin of fundamental scales and of scaling laws in physics, which consists in generalizing Einstein's principle of relativity to the case of scale transformations of resolutions. We recall here how it leads one to the concept of fractal space-time, and to introduce a new complex time derivative operator which allows to recover the Schrödinger equation, then to generalize it. In high energy quantum physics, it leads to the introduction of a Lorentzian renormalization group, in which the Planck length is reinterpreted as a lowest, unpassable scale, invariant under dilatations. These methods are successively applied to two problems: in quantum mechanics, that of the mass spectrum of elementary particles; in chaotic dynamics, that of the distribution of planets in the Solar System.

  4. Scaling up Effects in the Organic Laboratory

    Science.gov (United States)

    Persson, Anna; Lindstrom, Ulf M.

    2004-01-01

    A simple and effective way of exposing chemistry students to some of the effects of scaling up an organic reaction is described. It gives the student an experience that may encounter in an industrial setting.

  5. Ambiguous tests of general relativity on cosmological scales

    International Nuclear Information System (INIS)

    Zuntz, Joe; Baker, Tessa; Ferreira, Pedro G.; Skordis, Constantinos

    2012-01-01

    There are a number of approaches to testing General Relativity (GR) on linear scales using parameterized frameworks for modifying cosmological perturbation theory. It is sometimes assumed that the details of any given parameterization are unimportant if one uses it as a diagnostic for deviations from GR. In this brief report we argue that this is not necessarily so. First we show that adopting alternative combinations of modifications to the field equations significantly changes the constraints that one obtains. In addition, we show that using a parameterization with insufficient freedom significantly tightens the apparent theoretical constraints. Fundamentally we argue that it is almost never appropriate to consider modifications to the perturbed Einstein equations as being constraints on the effective gravitational constant, for example, in the same sense that solar system constraints are. The only consistent modifications are either those that grant near-total freedom, as in decomposition methods, or ones which map directly to a particular part of theory space

  6. The Relation between Cosmological Redshift and Scale Factor for Photons

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Shuxun, E-mail: tshuxun@mail.bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Department of Physics, Wuhan University, Wuhan 430072 (China)

    2017-09-10

    The cosmological constant problem has become one of the most important ones in modern cosmology. In this paper, we try to construct a model that can avoid the cosmological constant problem and have the potential to explain the apparent late-time accelerating expansion of the universe in both luminosity distance and angular diameter distance measurement channels. In our model, the core is to modify the relation between cosmological redshift and scale factor for photons. We point out three ways to test our hypothesis: the supernova time dilation; the gravitational waves and its electromagnetic counterparts emitted by the binary neutron star systems; and the Sandage–Loeb effect. All of this method is feasible now or in the near future.

  7. Effect of Additives and Fuel Blending on Emissions and Ash-Related Problems from Small-Scale Combustion of Reed Canary Grass

    Directory of Open Access Journals (Sweden)

    Sébastien Fournel

    2015-07-01

    Full Text Available Agricultural producers are interested in using biomass available on farms to substitute fossil fuels for heat production. However, energy crops like reed canary grass contain high nitrogen (N, sulfur (S, potassium (K and other ash-forming elements which lead to increased emissions of gases and particulate matter (PM and ash-related operational problems (e.g., melting during combustion. To address these problematic behaviors, reed canary grass was blended with wood (50 wt% and fuel additives (3 wt% such as aluminum silicates (sewage sludge, calcium (limestone and sulfur (lignosulfonate based additives. When burned in a top-feed pellet boiler (29 kW, the four blends resulted in a 17%–29% decrease of PM concentrations compared to pure reed canary grass probably because of a reduction of K release to flue gas. Nitrogen oxides (NOx and sulfur dioxide (SO2 emissions varied according to fuel N and S contents. This explains the lower NOx and SO2 levels obtained with wood based products and the higher SO2 generation with the grass/lignosulfonate blend. The proportion of clinkers found in combustion ash was greatly lessened (27%–98% with the use of additives, except for lignosulfonate. The positive effects of some additives may allow agricultural fuels to become viable alternatives.

  8. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.C.; Mani, V.; Mohanty, K.K. [Univ. of Houston, TX (United States)

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  9. Relating quality of life to Glasgow outcome scale health states.

    Science.gov (United States)

    Kosty, Jennifer; Macyszyn, Luke; Lai, Kevin; McCroskery, James; Park, Hae-Ran; Stein, Sherman C

    2012-05-01

    There has recently been a call for the adoption of comparative effectiveness research (CER) and related research approaches for studying traumatic brain injury (TBI). These methods allow researchers to compare the effectiveness of different therapies in producing patient-oriented outcomes of interest. Heretofore, the only measures by which to compare such therapies have been mortality and rate of poor outcome. Better comparisons can be made if parametric, preference-based quality-of-life (QOL) values are available for intermediate outcomes, such as those described by the Glasgow Outcome Scale Extended (GOSE). Our objective was therefore to determine QOL for the health states described by the GOSE. We interviewed community members at least 18 years of age using the standard gamble method to assess QOL for descriptions of GOSE scores of 2-7 derived from the structured interview. Linear regression analysis was also performed to assess the effect of age, gender, and years of education on QOL. One hundred and one participants between the ages of 18 and 83 were interviewed (mean age 40 ± 19 years), including 55 men and 46 women. Functional impairment and QOL showed a strong inverse relationship, as assessed by both linear regression and the Spearman rank order coefficient. No consistent effect or age, gender, or years of education was seen. As expected, QOL decreased with functional outcome as described by the GOSE. The results of this study will provide the groundwork for future groups seeking to apply CER methods to clinical studies of TBI.

  10. Modelling of rate effects at multiple scales

    DEFF Research Database (Denmark)

    Pedersen, R.R.; Simone, A.; Sluys, L. J.

    2008-01-01

    , the length scale in the meso-model and the macro-model can be coupled. In this fashion, a bridging of length scales can be established. A computational analysis of  a Split Hopkinson bar test at medium and high impact load is carried out at macro-scale and meso-scale including information from  the micro-scale.......At the macro- and meso-scales a rate dependent constitutive model is used in which visco-elasticity is coupled to visco-plasticity and damage. A viscous length scale effect is introduced to control the size of the fracture process zone. By comparison of the widths of the fracture process zone...

  11. An allometric scaling relation based on logistic growth of cities

    International Nuclear Information System (INIS)

    Chen, Yanguang

    2014-01-01

    Highlights: • An allometric scaling based on logistic process can be used to model urban growth. • The traditional allometry is based on exponential growth instead of logistic growth. • The exponential allometry represents a local scaling of urban growth. • The logistic allometry represents a global scaling of urban growth. • The exponential allometry is an approximation relation of the logistic allometry. - Abstract: The relationships between urban area and population size have been empirically demonstrated to follow the scaling law of allometric growth. This allometric scaling is based on exponential growth of city size and can be termed “exponential allometry”, which is associated with the concepts of fractals. However, both city population and urban area comply with the course of logistic growth rather than exponential growth. In this paper, I will present a new allometric scaling based on logistic growth to solve the above mentioned problem. The logistic growth is a process of replacement dynamics. Defining a pair of replacement quotients as new measurements, which are functions of urban area and population, we can derive an allometric scaling relation from the logistic processes of urban growth, which can be termed “logistic allometry”. The exponential allometric relation between urban area and population is the approximate expression of the logistic allometric equation when the city size is not large enough. The proper range of the allometric scaling exponent value is reconsidered through the logistic process. Then, a medium-sized city of Henan Province, China, is employed as an example to validate the new allometric relation. The logistic allometry is helpful for further understanding the fractal property and self-organized process of urban evolution in the right perspective

  12. Effects of degree correlation on scale-free gradient networks

    International Nuclear Information System (INIS)

    Pan Guijun; Yan Xiaoqing; Ma Weichuan; Luo Yihui; Huang Zhongbing

    2010-01-01

    We have studied the effects of degree correlation on congestion pressure in scale-free gradient networks. It is observed that the jamming coefficient J is insensitive to the degree correlation coefficient r for assortative and strongly disassortative scale-free networks, and J markedly decreases with an increase in r for weakly disassortative scale-free networks. We have also investigated the effects of degree correlation on the topology structure of scale-free gradient networks, and discussed the relation between the topology structure properties and transport efficiency of gradient networks.

  13. Fluid transfers in fractured media: scale effects

    International Nuclear Information System (INIS)

    Bour, Olivier

    1996-01-01

    As there has been a growing interest in the study of fluid circulations in fractured media for the last fifteen years, for example for projects of underground storage of different waste types, or to improve water resources, or for exploitation of underground oil products or geothermal resources, this research thesis first gives a large overview of the modelling and transport properties of fractured media. He presents the main notions related to fluid transfers in fractured media (structures of fracture networks, hydraulic properties of fractured media), and the various adopted approaches (the effective medium theory, the percolation theory, double porosity models, deterministic discrete fracture models, equivalent discontinuous model, fractal models), and outlines the originality of the approach developed in this research: scale change, conceptual hypotheses, methodology, tools). The second part addresses scale rules in fracture networks: presentation of fracture networks (mechanical aspects, statistical analysis), distribution of fracture lengths and of fracture networks, length-position relationship, modelling attempt, lessons learned and consequences in terms of hydraulic and mechanical properties, and of relationship between length distribution and fractal dimension. The third part proposes two articles published by the author and addressing the connectivity properties of fracture networks. The fifth chapter reports the application to natural media. It contains an article on the application of percolation theory to 2D natural fracture networks, and reports information collected on a site [fr

  14. Functional Independent Scaling Relation for ORR/OER Catalysts

    DEFF Research Database (Denmark)

    Christensen, Rune; Hansen, Heine Anton; Dickens, Colin F.

    2016-01-01

    reactions. Here, we show that the oxygen-oxygen bond in the OOH* intermediate is, however, not well described with the previously used class of exchange-correlation functionals. By quantifying and correcting the systematic error, an improved description of gaseous peroxide species versus experimental data...... and a reduction in calculational uncertainty is obtained. For adsorbates, we find that the systematic error largely cancels the vdW interaction missing in the original determination of the scaling relation. An improved scaling relation, which is fully independent of the applied exchange-correlation functional...

  15. Anomalous scaling of stochastic processes and the Moses effect.

    Science.gov (United States)

    Chen, Lijian; Bassler, Kevin E; McCauley, Joseph L; Gunaratne, Gemunu H

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t^{1/2}. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  16. Anomalous scaling of stochastic processes and the Moses effect

    Science.gov (United States)

    Chen, Lijian; Bassler, Kevin E.; McCauley, Joseph L.; Gunaratne, Gemunu H.

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t1/2. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  17. An allometric scaling relation based on logistic growth of cities

    Science.gov (United States)

    Chen, Yanguang

    2014-08-01

    The relationships between urban area and population size have been empirically demonstrated to follow the scaling law of allometric growth. This allometric scaling is based on exponential growth of city size and can be termed "exponential allometry", which is associated with the concepts of fractals. However, both city population and urban area comply with the course of logistic growth rather than exponential growth. In this paper, I will present a new allometric scaling based on logistic growth to solve the abovementioned problem. The logistic growth is a process of replacement dynamics. Defining a pair of replacement quotients as new measurements, which are functions of urban area and population, we can derive an allometric scaling relation from the logistic processes of urban growth, which can be termed "logistic allometry". The exponential allometric relation between urban area and population is the approximate expression of the logistic allometric equation when the city size is not large enough. The proper range of the allometric scaling exponent value is reconsidered through the logistic process. Then, a medium-sized city of Henan Province, China, is employed as an example to validate the new allometric relation. The logistic allometry is helpful for further understanding the fractal property and self-organized process of urban evolution in the right perspective.

  18. Violence-Related Attitudes and Beliefs: Scale Construction and Psychometrics

    Science.gov (United States)

    Brand, Pamela A.; Anastasio, Phyllis A.

    2006-01-01

    The 50-item Violence-Related Attitudes and Beliefs Scale (V-RABS) includes three subscales measuring possible causes of violent behavior (environmental influences, biological influences, and mental illness) and four subscales assessing possible controls of violent behavior (death penalty, punishment, prevention, and catharsis). Each subscale…

  19. Work related injuries and associated factors among small scale ...

    African Journals Online (AJOL)

    Objective: This study aims to assess the magnitude of work related injury and associated factors among small scale industrial workers in Mizan-Aman town, Bench Maji Zone, Southwest Ethiopia. Method: A cross-sectional study design was conducted from February to May, 2016. Data was collected using a structured face to ...

  20. Scheme-Independent Predictions in QCD: Commensurate Scale Relations and Physical Renormalization Schemes

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    1998-01-01

    Commensurate scale relations are perturbative QCD predictions which relate observable to observable at fixed relative scale, such as the ''generalized Crewther relation'', which connects the Bjorken and Gross-Llewellyn Smith deep inelastic scattering sum rules to measurements of the e + e - annihilation cross section. All non-conformal effects are absorbed by fixing the ratio of the respective momentum transfer and energy scales. In the case of fixed-point theories, commensurate scale relations relate both the ratio of couplings and the ratio of scales as the fixed point is approached. The relations between the observables are independent of the choice of intermediate renormalization scheme or other theoretical conventions. Commensurate scale relations also provide an extension of the standard minimal subtraction scheme, which is analytic in the quark masses, has non-ambiguous scale-setting properties, and inherits the physical properties of the effective charge α V (Q 2 ) defined from the heavy quark potential. The application of the analytic scheme to the calculation of quark-mass-dependent QCD corrections to the Z width is also reviewed

  1. Scale dependence of effective media properties

    International Nuclear Information System (INIS)

    Tidwell, V.C.; VonDoemming, J.D.; Martinez, K.

    1992-01-01

    For problems where media properties are measured at one scale and applied at another, scaling laws or models must be used in order to define effective properties at the scale of interest. The accuracy of such models will play a critical role in predicting flow and transport through the Yucca Mountain Test Site given the sensitivity of these calculations to the input property fields. Therefore, a research programhas been established to gain a fundamental understanding of how properties scale with the aim of developing and testing models that describe scaling behavior in a quantitative-manner. Scaling of constitutive rock properties is investigated through physical experimentation involving the collection of suites of gas permeability data measured over a range of discrete scales. Also, various physical characteristics of property heterogeneity and the means by which the heterogeneity is measured and described are systematically investigated to evaluate their influence on scaling behavior. This paper summarizes the approach that isbeing taken toward this goal and presents the results of a scoping study that was conducted to evaluate the feasibility of the proposed research

  2. Relative scale and the strength and deformability of rock masses

    Science.gov (United States)

    Schultz, Richard A.

    1996-09-01

    The strength and deformation of rocks depend strongly on the degree of fracturing, which can be assessed in the field and related systematically to these properties. Appropriate Mohr envelopes obtained from the Rock Mass Rating (RMR) classification system and the Hoek-Brown criterion for outcrops and other large-scale exposures of fractured rocks show that rock-mass cohesive strength, tensile strength, and unconfined compressive strength can be reduced by as much as a factor often relative to values for the unfractured material. The rock-mass deformation modulus is also reduced relative to Young's modulus. A "cook-book" example illustrates the use of RMR in field applications. The smaller values of rock-mass strength and deformability imply that there is a particular scale of observation whose identification is critical to applying laboratory measurements and associated failure criteria to geologic structures.

  3. Lagrangian space consistency relation for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-01-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space

  4. Improving the coastal record of tsunamis in the ESI-07 scale: Tsunami Environmental Effects Scale (TEE-16 scale)

    Energy Technology Data Exchange (ETDEWEB)

    Lario, J.; Bardaji, T.; Silva, P.G.; Zazo, C.; Goy, J.L.

    2016-07-01

    This paper discusses possibilities to improve the Environmental Seismic Intensity Scale (ESI-07 scale), a scale based on the effects of earthquakes in the environment. This scale comprises twelve intensity degrees and considers primary and secondary effects, one of them the occurrence of tsunamis. Terminology and physical tsunami parameters corresponding to different intensity levels are often misleading and confusing. The present work proposes: i) a revised and updated catalogue of environmental and geological effects of tsunamis, gathering all the available information on Tsunami Environmental Effects (TEEs) produced by recent earthquake-tsunamis; ii) a specific intensity scale (TEE-16) for the effects of tsunamis in the natural environment at coastal areas. The proposed scale could be used in future tsunami events and, in historic and paleo-tsunami studies. The new TEE- 16 scale incorporates the size specific parameters already considered in the ESI-07 scale, such as wave height, run-up and inland extension of inundation, and a comprehensive and more accurate terminology that covers all the different intensity levels identifiable in the geological record (intensities VI-XII). The TEE-16 scale integrates the description and quantification of the potential sedimentary and erosional features (beach scours, transported boulders and classical tsunamites) derived from different tsunami events at diverse coastal environments (e.g. beaches, estuaries, rocky cliffs,). This new approach represents an innovative advance in relation to the tsunami descriptions provided by the ESI-07 scale, and allows the full application of the proposed scale in paleoseismological studies. The analysis of the revised and updated tsunami environmental damage suggests that local intensities recorded in coastal areas do not correlate well with the TEE-16 intensity (normally higher), but shows a good correlation with the earthquake magnitude (Mw). Tsunamis generated by earthquakes can then be

  5. The initial development of the Pregnancy-related Anxiety Scale.

    Science.gov (United States)

    Brunton, Robyn J; Dryer, Rachel; Saliba, Anthony; Kohlhoff, Jane

    2018-05-30

    Pregnancy-related anxiety is a distinct anxiety characterised by pregnancy-specific concerns. This anxiety is consistently associated with adverse birth outcomes, and obstetric and paediatric risk factors, associations generally not seen with other anxieties. The need exists for a psychometrically sound scale for this anxiety type. This study, therefore, reports on the initial development of the Pregnancy-related Anxiety Scale. The item pool was developed following a literature review and the formulation of a definition for pregnancy-related anxiety. An Expert Review Panel reviewed the definition, item pool and test specifications. Pregnant women were recruited online (N=671). Using a subsample (N=262, M=27.94, SD=4.99), fourteen factors were extracted using Principal Components Analysis accounting for 63.18% of the variance. Further refinement resulted in 11 distinct factors. Confirmatory Factor Analysis further tested the model with a second subsample (N=369, M=26.59, SD=4.76). After additional refinement, the resulting model was a good fit with nine factors (childbirth, appearance, attitudes towards childbirth, motherhood, acceptance, anxiety, medical, avoidance, and baby concerns). Internal consistency reliability was good with the majority of subscales exceeding α=.80. The Pregnancy-related Anxiety Scale is easy to administer with higher scores indicative of greater pregnancy-related anxiety. The inclusion of reverse-scored items is a potential limitation with poorer reliability evident for these factors. Although still in its development stage, the Pregnancy-related Anxiety Scale will eventually be useful both clinically (affording early intervention) and in research settings. Copyright © 2018 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  6. Rectenna related atmospheric effects

    Science.gov (United States)

    Lee, J.

    1980-01-01

    Possible meteorological effects arising from the existence and operations of a solar power satellite (SPS) system rectenna are examined. Analysis and model simulations in some chosen site situations and meteorological conditions indicate that the meteorological effects of the construction and operation of a rectenna are small, particularly outside the boundary of the structure. From weather and climate points of view, installation of an SPS rectenna seems likely to have effects comparable with those due to other nonindustrial land use changes covering the same area. The absorption and scattering of microwave radiation in the troposphere would have negligible atmospheric effects.

  7. Cumulative effects assessment: Does scale matter?

    International Nuclear Information System (INIS)

    Therivel, Riki; Ross, Bill

    2007-01-01

    Cumulative effects assessment (CEA) is (or should be) an integral part of environmental assessment at both the project and the more strategic level. CEA helps to link the different scales of environmental assessment in that it focuses on how a given receptor is affected by the totality of plans, projects and activities, rather than on the effects of a particular plan or project. This article reviews how CEAs consider, and could consider, scale issues: spatial extent, level of detail, and temporal issues. It is based on an analysis of Canadian project-level CEAs and UK strategic-level CEAs. Based on a review of literature and, especially, case studies with which the authors are familiar, it concludes that scale issues are poorly considered at both levels, with particular problems being unclear or non-existing cumulative effects scoping methodologies; poor consideration of past or likely future human activities beyond the plan or project in question; attempts to apportion 'blame' for cumulative effects; and, at the plan level, limited management of cumulative effects caused particularly by the absence of consent regimes. Scale issues are important in most of these problems. However both strategic-level and project-level CEA have much potential for managing cumulative effects through better siting and phasing of development, demand reduction and other behavioural changes, and particularly through setting development consent rules for projects. The lack of strategic resource-based thresholds constrains the robust management of strategic-level cumulative effects

  8. Implicit Priors in Galaxy Cluster Mass and Scaling Relation Determinations

    Science.gov (United States)

    Mantz, A.; Allen, S. W.

    2011-01-01

    Deriving the total masses of galaxy clusters from observations of the intracluster medium (ICM) generally requires some prior information, in addition to the assumptions of hydrostatic equilibrium and spherical symmetry. Often, this information takes the form of particular parametrized functions used to describe the cluster gas density and temperature profiles. In this paper, we investigate the implicit priors on hydrostatic masses that result from this fully parametric approach, and the implications of such priors for scaling relations formed from those masses. We show that the application of such fully parametric models of the ICM naturally imposes a prior on the slopes of the derived scaling relations, favoring the self-similar model, and argue that this prior may be influential in practice. In contrast, this bias does not exist for techniques which adopt an explicit prior on the form of the mass profile but describe the ICM non-parametrically. Constraints on the slope of the cluster mass-temperature relation in the literature show a separation based the approach employed, with the results from fully parametric ICM modeling clustering nearer the self-similar value. Given that a primary goal of scaling relation analyses is to test the self-similar model, the application of methods subject to strong, implicit priors should be avoided. Alternative methods and best practices are discussed.

  9. Scaling Relations between Gas and Star Formation in Nearby Galaxies

    Science.gov (United States)

    Bigiel, Frank; Leroy, Adam; Walter, Fabian

    2011-04-01

    High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of H i, H2 and star formation rate (ΣHI, ΣH2, ΣSFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. ΣH2, traced by CO intensity, shows a strong correlation with ΣSFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2 Gyr in large spiral galaxies. Within the star-forming disks of galaxies, ΣSFR shows almost no correlation with ΣHI. In the outer parts of galaxies, however, ΣSFR does scale with ΣHI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Σgas - ΣSFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Σgas - ΣSFR space.

  10. Boundary layers and scaling relations in natural thermal convection

    Science.gov (United States)

    Shishkina, Olga; Lohse, Detlef; Grossmann, Siegfried

    2017-11-01

    We analyse the boundary layer (BL) equations in natural thermal convection, which includes vertical convection (VC), where the fluid is confined between two differently heated vertical walls, horizontal convection (HC), where the fluid is heated at one part of the bottom plate and cooled at some other part, and Rayleigh-Benard convection (RBC). For BL dominated regimes we derive the scaling relations of the Nusselt and Reynolds numbers (Nu, Re) with the Rayleigh and Prandtl numbers (Ra, Pr). For VC the scaling relations are obtained directly from the BL equations, while for HC they are derived by applying the Grossmann-Lohse theory to the case of VC. In particular, for RBC with large Pr we derive Nu Pr0Ra1/3 and Re Pr-1Ra2/3. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  11. Testing general relativity at cosmological scales: Implementation and parameter correlations

    International Nuclear Information System (INIS)

    Dossett, Jason N.; Ishak, Mustapha; Moldenhauer, Jacob

    2011-01-01

    The testing of general relativity at cosmological scales has become a possible and timely endeavor that is not only motivated by the pressing question of cosmic acceleration but also by the proposals of some extensions to general relativity that would manifest themselves at large scales of distance. We analyze here correlations between modified gravity growth parameters and some core cosmological parameters using the latest cosmological data sets including the refined Cosmic Evolution Survey 3D weak lensing. We provide the parametrized modified growth equations and their evolution. We implement known functional and binning approaches, and propose a new hybrid approach to evolve the modified gravity parameters in redshift (time) and scale. The hybrid parametrization combines a binned redshift dependence and a smooth evolution in scale avoiding a jump in the matter power spectrum. The formalism developed to test the consistency of current and future data with general relativity is implemented in a package that we make publicly available and call ISiTGR (Integrated Software in Testing General Relativity), an integrated set of modified modules for the publicly available packages CosmoMC and CAMB, including a modified version of the integrated Sachs-Wolfe-galaxy cross correlation module of Ho et al. and a new weak-lensing likelihood module for the refined Hubble Space Telescope Cosmic Evolution Survey weak gravitational lensing tomography data. We obtain parameter constraints and correlation coefficients finding that modified gravity parameters are significantly correlated with σ 8 and mildly correlated with Ω m , for all evolution methods. The degeneracies between σ 8 and modified gravity parameters are found to be substantial for the functional form and also for some specific bins in the hybrid and binned methods indicating that these degeneracies will need to be taken into consideration when using future high precision data.

  12. Scaling Relations of Starburst-driven Galactic Winds

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Ryan [Department of Chemistry and Physics, Augusta University, Augusta, GA 30912 (United States); Cecil, Gerald; Heitsch, Fabian, E-mail: rytanner@augusta.edu [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States)

    2017-07-10

    Using synthetic absorption lines generated from 3D hydrodynamical simulations, we explore how the velocity of a starburst-driven galactic wind correlates with the star formation rate (SFR) and SFR density. We find strong correlations for neutral and low ionized gas, but no correlation for highly ionized gas. The correlations for neutral and low ionized gas only hold for SFRs below a critical limit set by the mass loading of the starburst, above which point the scaling relations flatten abruptly. Below this point the scaling relations depend on the temperature regime being probed by the absorption line, not on the mass loading. The exact scaling relation depends on whether the maximum or mean velocity of the absorption line is used. We find that the outflow velocity of neutral gas can be up to five times lower than the average velocity of ionized gas, with the velocity difference increasing for higher ionization states. Furthermore, the velocity difference depends on both the SFR and mass loading of the starburst. Thus, absorption lines of neutral or low ionized gas cannot easily be used as a proxy for the outflow velocity of the hot gas.

  13. Universal Dark Halo Scaling Relation for the Dwarf Spheroidal Satellites

    Science.gov (United States)

    Hayashi, Kohei; Ishiyama, Tomoaki; Ogiya, Go; Chiba, Masashi; Inoue, Shigeki; Mori, Masao

    2017-07-01

    Motivated by a recently found interesting property of the dark halo surface density within a radius, {r}\\max , giving the maximum circular velocity, {V}\\max , we investigate it for dark halos of the Milky Way’s and Andromeda’s dwarf satellites based on cosmological simulations. We select and analyze the simulated subhalos associated with Milky-Way-sized dark halos and find that the values of their surface densities, {{{Σ }}}{V\\max }, are in good agreement with those for the observed dwarf spheroidal satellites even without employing any fitting procedures. Moreover, all subhalos on the small scales of dwarf satellites are expected to obey the universal relation, irrespective of differences in their orbital evolutions, host halo properties, and observed redshifts. Therefore, we find that the universal scaling relation for dark halos on dwarf galaxy mass scales surely exists and provides us with important clues for understanding fundamental properties of dark halos. We also investigate orbital and dynamical evolutions of subhalos to understand the origin of this universal dark halo relation and find that most subhalos evolve generally along the {r}\\max \\propto {V}\\max sequence, even though these subhalos have undergone different histories of mass assembly and tidal stripping. This sequence, therefore, should be the key feature for understanding the nature of the universality of {{{Σ }}}{V\\max }.

  14. Scaling Relations of Starburst-driven Galactic Winds

    International Nuclear Information System (INIS)

    Tanner, Ryan; Cecil, Gerald; Heitsch, Fabian

    2017-01-01

    Using synthetic absorption lines generated from 3D hydrodynamical simulations, we explore how the velocity of a starburst-driven galactic wind correlates with the star formation rate (SFR) and SFR density. We find strong correlations for neutral and low ionized gas, but no correlation for highly ionized gas. The correlations for neutral and low ionized gas only hold for SFRs below a critical limit set by the mass loading of the starburst, above which point the scaling relations flatten abruptly. Below this point the scaling relations depend on the temperature regime being probed by the absorption line, not on the mass loading. The exact scaling relation depends on whether the maximum or mean velocity of the absorption line is used. We find that the outflow velocity of neutral gas can be up to five times lower than the average velocity of ionized gas, with the velocity difference increasing for higher ionization states. Furthermore, the velocity difference depends on both the SFR and mass loading of the starburst. Thus, absorption lines of neutral or low ionized gas cannot easily be used as a proxy for the outflow velocity of the hot gas.

  15. Estimating scaled treatment effects with multiple outcomes.

    Science.gov (United States)

    Kennedy, Edward H; Kangovi, Shreya; Mitra, Nandita

    2017-01-01

    In classical study designs, the aim is often to learn about the effects of a treatment or intervention on a single outcome; in many modern studies, however, data on multiple outcomes are collected and it is of interest to explore effects on multiple outcomes simultaneously. Such designs can be particularly useful in patient-centered research, where different outcomes might be more or less important to different patients. In this paper, we propose scaled effect measures (via potential outcomes) that translate effects on multiple outcomes to a common scale, using mean-variance and median-interquartile range based standardizations. We present efficient, nonparametric, doubly robust methods for estimating these scaled effects (and weighted average summary measures), and for testing the null hypothesis that treatment affects all outcomes equally. We also discuss methods for exploring how treatment effects depend on covariates (i.e., effect modification). In addition to describing efficiency theory for our estimands and the asymptotic behavior of our estimators, we illustrate the methods in a simulation study and a data analysis. Importantly, and in contrast to much of the literature concerning effects on multiple outcomes, our methods are nonparametric and can be used not only in randomized trials to yield increased efficiency, but also in observational studies with high-dimensional covariates to reduce confounding bias.

  16. Scaling Effects on Materials Tribology: From Macro to Micro Scale.

    Science.gov (United States)

    Stoyanov, Pantcho; Chromik, Richard R

    2017-05-18

    The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale.

  17. Planck Scale Effects in Astrophysics and Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Thanu [Astrophysics (IUCAA), Poona University Campus, Post Bag No. 4, Ganeshkhind, Pune 411007 (India)

    2007-08-07

    It has been generally agreed that putting together the principles of quantum theory and general relativity will usher the next revolution in physics. The trouble, of course, is that we have been now waiting for several decades for this revolution to take place. While people get excited about different directions of development every once in a while (with some excitements propped up by a larger number of researchers than others), it is probably fair to say that nothing which can be called definitive progress has taken place in the last several decades. Given the state of affairs it is definitely worthwhile to keep an open mind regarding new ideas and have at least a small fraction of researchers working somewhat away from the mainstream. This could possibly lead to new insights which have been missed by the more conventional mainstream approaches and could even finally provide a much awaited breakthrough. The collection of articles in this book should probably be viewed against such a backdrop. A few of the articles contained in the book deal with topics which are probably not mainstream. But all the speakers have presented their ideas clearly and in a proper setting, making many of the articles quite useful for a person who wants to obtain a bird's eye view. The connecting thread is essentially whether some aspects of quantum gravitational physics can lead to potentially observable effects or provide explanations for known effects. The book also contains a few overview articles of exceptional clarity. In particular I would like to mention the one by E Alvarez on quantum gravity, the one by L Smolin on loop quantum gravity and J Martin's article on the origin of cosmological perturbations. The rest of the articles are more focussed on possible quantum gravity phenomenology and discuss diverse topics such as astrophysical bounds of Lorentz violations, doubly special relativity and the role of quantum form in quantum gravity phenomenon. I thoroughly enjoyed

  18. Scaling Relations for Adsorption Energies on Doped Molybdenum Phosphide Surfaces

    International Nuclear Information System (INIS)

    Fields, Meredith; Tsai, Charlie; Chen, Leanne D.; Abild-Pedersen, Frank; Nørskov, Jens K.; Chan, Karen

    2017-01-01

    Molybdenum phosphide (MoP), a well-documented catalyst for applications ranging from hydrotreating reactions to electrochemical hydrogen evolution, has yet to be mapped from a more fundamental perspective, particularly in the context of transition-metal scaling relations. In this work, we use periodic density functional theory to extend linear scaling arguments to doped MoP surfaces and understand the behavior of the phosphorus active site. The derived linear relationships for hydrogenated C, N, and O species on a variety of doped surfaces suggest that phosphorus experiences a shift in preferred bond order depending on the degree of hydrogen substitution on the adsorbate molecule. This shift in phosphorus hybridization, dependent on the bond order of the adsorbate to the surface, can result in selective bond weakening or strengthening of chemically similar species. As a result, we discuss how this behavior deviates from transition-metal, sulfide, carbide, and nitride scaling relations, and we discuss potential applications in the context of electrochemical reduction reactions.

  19. Conformal Symmetry as a Template:Commensurate Scale Relations and Physical Renormalization Schemes

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    1999-01-01

    Commensurate scale relations are perturbative QCD predictions which relate observable to observable at fixed relative scale, such as the ''generalized Crewther relation'', which connects the Bjorken and Gross-Llewellyn Smith deep inelastic scattering sum rules to measurements of the e + e - annihilation cross section. We show how conformal symmetry provides a template for such QCD predictions, providing relations between observables which are present even in theories which are not scale invariant. All non-conformal effects are absorbed by fixing the ratio of the respective momentum transfer and energy scales. In the case of fixed-point theories, commensurate scale relations relate both the ratio of couplings and the ratio of scales as the fixed point is approached. In the case of the α V scheme defined from heavy quark interactions, virtual corrections due to fermion pairs are analytically incorporated into the Gell-Mann Low function, thus avoiding the problem of explicitly computing and resuming quark mass corrections related to the running of the coupling. Applications to the decay width of the Z boson, the BFKL pomeron, and virtual photon scattering are discussed

  20. Ramp injector scale effects on supersonic combustion

    Science.gov (United States)

    Trebs, Adam

    The combustion field downstream of a 10 degree compression ramp injector has been studied experimentally using wall static pressure measurement, OH-PLIF, and 2 kHz intensified video filtered for OH emission at 320 nm. Nominal test section entrance conditions were Mach 2, 131 kPa static pressure, and 756K stagnation temperature. The experiment was equipped with a variable length inlet duct that facilitated varying the boundary layer development length while the injector shock structure in relation to the combustor geometry remained nearly fixed. As the boundary within an engine varies with flight condition and does not scale linearly with the physical scale of the engine, the boundary layer scale relative to mixing structures of the engine becomes relevant to the problem of engine scaling and general engine performance. By varying the boundary layer thickness from 40% of the ramp height to 150% of the ramp height, changes in the combustion flowfield downstream of the injector could be diagnosed. It was found that flame shape changed, the persistence of the vortex cores was reduced, and combustion efficiency rose as the incident boundary layer grew.

  1. Micro- and meso-scale effects of forested terrain

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Sogachev, Andrey

    2011-01-01

    scales are the height of the planetary boundary layer and the Monin-Obukhov length, which both are related to the energy balance of the surface. Examples of important micro- and meso-scale effects of forested terrain are shown using data and model results from recent and ongoing experiments. For micro......The height and rotor diameter of modern wind turbines are so extensive, that the wind conditions they encounter often are well above the surface layer, where traditionally it is assumed that wind direction and turbulent fluxes are constant with respect to height, if the surface is homogenous....... Deviations from the requirement of homogeneity are often the focus of micro-scale studies in forested areas. Yet, to explain the wind climate in the relevant height range for turbines, it is necessary to also account for the length scales that are important parameters for the meso-scale flow. These length...

  2. Examining Similarity Structure: Multidimensional Scaling and Related Approaches in Neuroimaging

    Directory of Open Access Journals (Sweden)

    Svetlana V. Shinkareva

    2013-01-01

    Full Text Available This paper covers similarity analyses, a subset of multivariate pattern analysis techniques that are based on similarity spaces defined by multivariate patterns. These techniques offer several advantages and complement other methods for brain data analyses, as they allow for comparison of representational structure across individuals, brain regions, and data acquisition methods. Particular attention is paid to multidimensional scaling and related approaches that yield spatial representations or provide methods for characterizing individual differences. We highlight unique contributions of these methods by reviewing recent applications to functional magnetic resonance imaging data and emphasize areas of caution in applying and interpreting similarity analysis methods.

  3. Fractional Nottale's Scale Relativity and emergence of complexified gravity

    International Nuclear Information System (INIS)

    EL-Nabulsi, Ahmad Rami

    2009-01-01

    Fractional calculus of variations has recently gained significance in studying weak dissipative and nonconservative dynamical systems ranging from classical mechanics to quantum field theories. In this paper, fractional Nottale's Scale Relativity (NSR) for an arbitrary fractal dimension is introduced within the framework of fractional action-like variational approach recently introduced by the author. The formalism is based on fractional differential operators that generalize the differential operators of conventional NSR but that reduces to the standard formalism in the integer limit. Our main aim is to build the fractional setting for the NSR dynamical equations. Many interesting consequences arise, in particular the emergence of complexified gravity and complex time.

  4. EI Scale: an environmental impact assessment scale related to the construction materials used in the reinforced concrete

    Directory of Open Access Journals (Sweden)

    Gilson Morales

    2010-12-01

    Full Text Available This study aimed to create EI Scal, an environmental impact assessment scal, related to construction materials used in the reinforced concrete structure production. The main reason for that was based on the need to classify the environmental impact levels through indicators to assess the damage level process. The scale allowed converting information to estimate the environmental impact caused. Indicators were defined trough the requirements and classification criteria of impact aspects considering the eco-design theory. Moreover, the scale allowed classifying the materials and processes environmental impact through four score categories which resulted in a single final impact score. It was concluded that the EI scale could be cheap, accessible, and relevant tool for environmental impact controlling and reduction, allowing the planning and material specification to minimize the construction negative effects caused in the environment.

  5. Spectral properties and scaling relations in off diagonally disordered chains

    International Nuclear Information System (INIS)

    Ure, J.E.; Majlis, N.

    1987-07-01

    We obtain the localization length L as a function of the energy E and the disorder width W for an off-diagonally disordered chain. This is done performing numerical simulations involving the continued fraction representations of the transfer matrix. The scaling relation L=W s is obtained with values of the exponent s in agreement with calculations of other authors. We also obtain the relation L ∼ |E| v for E → 0, and use it in the Herbert-Spencer-Thouless formula for L to describe the singularity of the density of states near E=0. We show that the slightest diagonal disorder obliterates this singularity. A practical method is presented to calculate the Green function by exploiting its continued fraction expansion. (author). 20 refs, 4 figs

  6. X-Ray Scaling Relations of Early-type Galaxies

    Science.gov (United States)

    Babyk, Iu. V.; McNamara, B. R.; Nulsen, P. E. J.; Hogan, M. T.; Vantyghem, A. N.; Russell, H. R.; Pulido, F. A.; Edge, A. C.

    2018-04-01

    X-ray luminosity, temperature, gas mass, total mass, and their scaling relations are derived for 94 early-type galaxies (ETGs) using archival Chandra X-ray Observatory observations. Consistent with earlier studies, the scaling relations, L X ∝ T 4.5±0.2, M ∝ T 2.4±0.2, and L X ∝ M 2.8±0.3, are significantly steeper than expected from self-similarity. This steepening indicates that their atmospheres are heated above the level expected from gravitational infall alone. Energetic feedback from nuclear black holes and supernova explosions are likely heating agents. The tight L X –T correlation for low-luminosity systems (i.e., below 1040 erg s‑1) are at variance with hydrodynamical simulations, which generally predict higher temperatures for low-luminosity galaxies. We also investigate the relationship between total mass and pressure, Y X = M g × T, finding M\\propto {Y}X0.45+/- 0.04. We explore the gas mass to total mass fraction in ETGs and find a range of 0.1%–1.0%. We find no correlation between the gas-to-total mass fraction with temperature or total mass. Higher stellar velocity dispersions and higher metallicities are found in hotter, brighter, and more massive atmospheres. X-ray core radii derived from β-model fitting are used to characterize the degree of core and cuspiness of hot atmospheres.

  7. The development and psychometric analysis of the Chinese HIV-Related Fatigue Scale.

    Science.gov (United States)

    Li, Su-Yin; Wu, Hua-Shan; Barroso, Julie

    2016-04-01

    To develop a Chinese version of the human immunodeficiency virus-related Fatigue Scale and examine its reliability and validity. Fatigue is found in more than 70% of people infected with human immunodeficiency virus. However, a scale to assess fatigue in human immunodeficiency virus-positive people has not yet been developed for use in Chinese-speaking countries. A methodologic study involving instrument development and psychometric evaluation was used. The human immunodeficiency virus-related Fatigue Scale was examined through a two-step procedure: (1) translation and back translation and (2) psychometric analysis. A sample of 142 human immunodeficiency virus-positive patients was recruited from the Infectious Disease Outpatient Clinic in central Taiwan. Their fatigue data were analysed with Cronbach's α for internal consistency. Two weeks later, the data of a random sample of 28 patients from the original 142 were analysed for test-retest reliability. The correlation between the World Health Organization Quality of Life Assessment-Human Immunodeficiency Virus and the Chinese version of the human immunodeficiency virus-related Fatigue Scale was analysed for concurrent validity. The Chinese version of the human immunodeficiency virus-related Fatigue Scale scores of human immunodeficiency virus-positive patients with highly active antiretroviral therapy and those without were compared to demonstrate construct validity. The internal consistency and test-retest reliability of the Chinese version of the human immunodeficiency virus-related Fatigue Scale were 0·97 and 0·686, respectively. In regard to concurrent validity, a negative correlation was found between the scores of the Chinese version of the human immunodeficiency virus-related Fatigue Scale and the World Health Organization Quality of Life Assessment-Human Immunodeficiency Virus. Additionally, the Chinese version of the human immunodeficiency virus-related Fatigue Scale could be used to effectively

  8. Consistency relations in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Munshi, Dipak; Regan, Donough, E-mail: D.Munshi@sussex.ac.uk, E-mail: D.Regan@sussex.ac.uk [Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2017-06-01

    The consistency relations in large scale structure relate the lower-order correlation functions with their higher-order counterparts. They are direct outcome of the underlying symmetries of a dynamical system and can be tested using data from future surveys such as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which adjusts the SPT predictions to account for the departure from the ideal fluid description on small scales. We provide detailed results for the 3D density contrast δ as well as the scaled divergence of velocity θ-bar . Assuming a ΛCDM background cosmology, we find the correction to SPT results becomes important at k ∼> 0.05 h/Mpc and that the suppression from EFT to SPT results that scales as square of the wave number k , can reach 40% of the total at k ≈ 0.25 h/Mpc at z = 0. We have also investigated whether effective field theory corrections to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the results to be rather insensitive to these counterterms. In addition, we present the EFT corrections to the squeezed limit of the bispectrum in redshift space which may be of interest for tests of theories of modified gravity.

  9. Global hydrobelts: improved reporting scale for water-related issues?

    Science.gov (United States)

    Meybeck, M.; Kummu, M.; Dürr, H. H.

    2012-08-01

    Questions related to water such as its availability, water needs or stress, or management, are mapped at various resolutions at the global scale. They are reported at many scales, mostly along political or continental boundaries. As such, they ignore the fundamental heterogeneity of the hydroclimate and the natural boundaries of the river basins. Here, we describe the continental landmasses according to eight global-scale hydrobelts strictly limited by river basins, defined at a 30' (0.5°) resolution. The belts were defined and delineated, based primarily on the annual average temperature (T) and runoff (q), to maximise interbelt differences and minimise intrabelt variability. The belts were further divided into 29 hydroregions based on continental limits. This new global puzzle defines homogeneous and near-contiguous entities with similar hydrological and thermal regimes, glacial and postglacial basin histories, endorheism distribution and sensitivity to climate variations. The Mid-Latitude, Dry and Subtropical belts have northern and southern analogues and a general symmetry can be observed for T and q between them. The Boreal and Equatorial belts are unique. The hydroregions (median size 4.7 Mkm2) contrast strongly, with the average q ranging between 6 and 1393 mm yr-1 and the average T between -9.7 and +26.3 °C. Unlike the hydroclimate, the population density between the North and South belts and between the continents varies greatly, resulting in pronounced differences between the belts with analogues in both hemispheres. The population density ranges from 0.7 to 0.8 p km-2 for the North American Boreal and some Australian hydroregions to 280 p km-2 for the Asian part of the Northern Mid-Latitude belt. The combination of population densities and hydroclimate features results in very specific expressions of water-related characteristics in each of the 29 hydroregions. Our initial tests suggest that hydrobelt and hydroregion divisions are often more

  10. Direction of Wording Effects in Balanced Scales.

    Science.gov (United States)

    Miller, Timothy R.; Cleary, T. Anne

    1993-01-01

    The degree to which statistical item selection reduces direction-of-wording effects in balanced affective measures developed from relatively small item pools was investigated with 171 male and 228 female undergraduate and graduate students at 2 U.S. universities. Clearest direction-of-wording effects result from selection of items with high…

  11. Variable scaling method and Stark effect in hydrogen atom

    International Nuclear Information System (INIS)

    Choudhury, R.K.R.; Ghosh, B.

    1983-09-01

    By relating the Stark effect problem in hydrogen-like atoms to that of the spherical anharmonic oscillator we have found simple formulas for energy eigenvalues for the Stark effect. Matrix elements have been calculated using 0(2,1) algebra technique after Armstrong and then the variable scaling method has been used to find optimal solutions. Our numerical results are compared with those of Hioe and Yoo and also with the results obtained by Lanczos. (author)

  12. Single-field consistency relations of large scale structure

    International Nuclear Information System (INIS)

    Creminelli, Paolo; Noreña, Jorge; Simonović, Marko; Vernizzi, Filippo

    2013-01-01

    We derive consistency relations for the late universe (CDM and ΛCDM): relations between an n-point function of the density contrast δ and an (n+1)-point function in the limit in which one of the (n+1) momenta becomes much smaller than the others. These are based on the observation that a long mode, in single-field models of inflation, reduces to a diffeomorphism since its freezing during inflation all the way until the late universe, even when the long mode is inside the horizon (but out of the sound horizon). These results are derived in Newtonian gauge, at first and second order in the small momentum q of the long mode and they are valid non-perturbatively in the short-scale δ. In the non-relativistic limit our results match with [1]. These relations are a consequence of diffeomorphism invariance; they are not satisfied in the presence of extra degrees of freedom during inflation or violation of the Equivalence Principle (extra forces) in the late universe

  13. The Effective Planck Mass and the Scale of Inflation

    CERN Document Server

    Antoniadis, Ignatios

    2015-01-01

    Observable quantities in cosmology are dimensionless, and therefore independent of the units in which they are measured. This is true of all physical quantities associated with the primordial perturbations that source cosmic microwave background anisotropies such as their amplitude and spectral properties. However, if one were to try and infer an absolute energy scale for inflation-- a priori, one of the more immediate corollaries of detecting primordial tensor modes-- one necessarily makes reference to a particular choice of units, the natural choice for which is Planck units. In this note, we discuss various aspects of how inferring the energy scale of inflation is complicated by the fact that the effective strength of gravity as seen by inflationary quanta necessarily differs from that seen by gravitational experiments at presently accessible scales. The uncertainty in the former relative to the latter has to do with the unknown spectrum of universally coupled particles between laboratory scales and the pu...

  14. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  15. Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer

    Science.gov (United States)

    Schnieders, Jana; Garbe, Christoph

    2014-05-01

    The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale

  16. Planck scale effects in neutrino physics

    International Nuclear Information System (INIS)

    Akhmedov, E.K.; Berezhiani, Z.G.; Senjanovic, G.; Tao, Z.

    1993-01-01

    We study the phenomenology and cosmology of the Majoron (flavon) models of three active and one inert neutrino paying special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects which provide the breaking of the lepton charge, we show how in this picture one can incorporate the solutions to some of the central issues in neutrino physics such as the solar and atmospheric neutrino puzzles and the dark matter problem with the possible existence of a heavy (1--10 keV) neutrino. These gravitational effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron-neutrino mass in the range of 0.1--1 eV

  17. Planck scale effects in neutrino physics

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Senjanovic, G.; Tao Zhijan; Berezhiani, Z.G.

    1992-08-01

    We study the phenomenology and cosmology of the Majoron (flavon) models of three active and one inert neutrino paying special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects which provide the breaking of the lepton charge, we show how in this picture one can incorporate the solutions to some of the central issues in neutrino physics such as the solar and atmospheric neutrino puzzles, dark matter and a 17 keV neutrino. These gravitation effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron neutrino mass in the range of 0.1-1 eV. (author). 32 refs, 1 fig., 1 tab

  18. Glucose effectiveness in nondiabetic relatives

    DEFF Research Database (Denmark)

    Egede, M B; Henriksen, J-E; Durck, T T

    2014-01-01

    AIMS: Reduced glucose effectiveness is a predictor of future glucose tolerance in individuals with a family history of type 2 diabetes. We examined retrospectively at 10 years in normoglycemic relatives of diabetic subjects (RELs) the pathophysiological role of glucose effectiveness in the develo...

  19. Development and Validation of a PTSD-Related Impairment Scale

    Science.gov (United States)

    2012-06-01

    Social Adjustment Scale (SAS-SR) (58] Dyadic Adjustment Scale (DAS) [59] Life Stressors and Social Resources Inventory ( LISRES ) [60] 3...measure that gauges on- 200 Social Resources lnven- 2. Spouse/partner going life stressors and social resources tory ( LISRES ; Moos & 3. Finances as well...measures (e.g., ICF checklist, LISRES ; Moos, Penn, & Billings, 1988) may nor be practical or desirable in many healthcare settings or in large-scale

  20. Interspecific scaling patterns of talar articular surfaces within primates and their closest living relatives

    Science.gov (United States)

    Yapuncich, Gabriel S; Boyer, Doug M

    2014-01-01

    The articular facets of interosseous joints must transmit forces while maintaining relatively low stresses. To prevent overloading, joints that transmit higher forces should therefore have larger facet areas. The relative contributions of body mass and muscle-induced forces to joint stress are unclear, but generate opposing hypotheses. If mass-induced forces dominate, facet area should scale with positive allometry to body mass. Alternatively, muscle-induced forces should cause facets to scale isometrically with body mass. Within primates, both scaling patterns have been reported for articular surfaces of the femoral and humeral heads, but more distal elements are less well studied. Additionally, examination of complex articular surfaces has largely been limited to linear measurements, so that ‘true area' remains poorly assessed. To re-assess these scaling relationships, we examine the relationship between body size and articular surface areas of the talus. Area measurements were taken from microCT scan-generated surfaces of all talar facets from a comprehensive sample of extant euarchontan taxa (primates, treeshrews, and colugos). Log-transformed data were regressed on literature-derived log-body mass using reduced major axis and phylogenetic least squares regressions. We examine the scaling patterns of muscle mass and physiological cross-sectional area (PCSA) to body mass, as these relationships may complicate each model. Finally, we examine the scaling pattern of hindlimb muscle PCSA to talar articular surface area, a direct test of the effect of mass-induced forces on joint surfaces. Among most groups, there is an overall trend toward positive allometry for articular surfaces. The ectal (= posterior calcaneal) facet scales with positive allometry among all groups except ‘sundatherians', strepsirrhines, galagids, and lorisids. The medial tibial facet scales isometrically among all groups except lemuroids. Scaling coefficients are not correlated with sample

  1. New SCALE-4 features related to cross-section processing

    International Nuclear Information System (INIS)

    Petrie, L.M.; Landers, N.F.; Greene, N.M.; Parks, C.V.

    1991-01-01

    The SCALE code system has a standardized scheme for processing problem-dependent cross section from problem-independent waste libraries. Some improvements and new capabilities in the processing scheme have been incorporated into the new Version 4 release of the SCALE system. The new features include the capability to consider annular cylindrical and spherical unit cells, and improved Dancoff factor formulation, and changes to the NITAWL-II module to perform resonance self-shielding with reference to infinite dilute values. A review of these major changes in the cross-section processing scheme for SCALE-4 is presented in this paper

  2. Regional scale ecological risk assessment: using the relative risk model

    National Research Council Canada - National Science Library

    Landis, Wayne G

    2005-01-01

    ...) in the performance of regional-scale ecological risk assessments. The initial chapters present the methodology and the critical nature of the interaction between risk assessors and decision makers...

  3. Scaling effects concerning the analysis of small break experiments

    International Nuclear Information System (INIS)

    Austregesilo Filho, H.

    1985-01-01

    Some scaling effects related to the experimental facilities as well as to the analytical models used for the design and safety analysis of nuclear power plants are discussed or the basis of phenomena expected to occur during small-break loss - of - coolant accidents. The results of isolated small-break experiments should not be directly extrapolated to the safety analysis of commercial reactors, due to the scaling distortions inherent to the test facilities. With respect to the analytical models used to simulate thermohydraulic processes in experimental facilities, their eventual dependence relative to the system dimension should be examined in order to assess their applicability to the safety analysis of commercial power plants. (Author) [pt

  4. Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution

    Science.gov (United States)

    Truong, N.; Rasia, E.; Mazzotta, P.; Planelles, S.; Biffi, V.; Fabjan, D.; Beck, A. M.; Borgani, S.; Dolag, K.; Gaspari, M.; Granato, G. L.; Murante, G.; Ragone-Figueroa, C.; Steinborn, L. K.

    2018-03-01

    We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and YX. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with M500 > 1014 M⊙E(z)-1, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the relations even at z ˜ 2. The results of the analysis show a general agreement with observations. The values of the slope of the mass-gas mass and mass-temperature relations at z = 2 are 10 per cent lower with respect to z = 0 due to the applied mass selection, in the former case, and to the effect of early merger in the latter. We investigate the impact of the slope variation on the study of the evolution of the normalization. We conclude that cosmological studies through scaling relations should be limited to the redshift range z = 0-1, where we find that the slope, the scatter, and the covariance matrix of the relations are stable. The scaling between mass and YX is confirmed to be the most robust relation, being almost independent of the gas physics. At higher redshifts, the scaling relations are sensitive to the inclusion of AGNs which influences low-mass systems. The detailed study of these objects will be crucial to evaluate the AGN effect on the ICM.

  5. Scaling Relations of Local Magnitude versus Moment Magnitude for Sequences of Similar Earthquakes in Switzerland

    KAUST Repository

    Bethmann, F.

    2011-03-22

    Theoretical considerations and empirical regressions show that, in the magnitude range between 3 and 5, local magnitude, ML, and moment magnitude, Mw, scale 1:1. Previous studies suggest that for smaller magnitudes this 1:1 scaling breaks down. However, the scatter between ML and Mw at small magnitudes is usually large and the resulting scaling relations are therefore uncertain. In an attempt to reduce these uncertainties, we first analyze the ML versus Mw relation based on 195 events, induced by the stimulation of a geothermal reservoir below the city of Basel, Switzerland. Values of ML range from 0.7 to 3.4. From these data we derive a scaling of ML ~ 1:5Mw over the given magnitude range. We then compare peak Wood-Anderson amplitudes to the low-frequency plateau of the displacement spectra for six sequences of similar earthquakes in Switzerland in the range of 0:5 ≤ ML ≤ 4:1. Because effects due to the radiation pattern and to the propagation path between source and receiver are nearly identical at a particular station for all events in a given sequence, the scatter in the data is substantially reduced. Again we obtain a scaling equivalent to ML ~ 1:5Mw. Based on simulations using synthetic source time functions for different magnitudes and Q values estimated from spectral ratios between downhole and surface recordings, we conclude that the observed scaling can be explained by attenuation and scattering along the path. Other effects that could explain the observed magnitude scaling, such as a possible systematic increase of stress drop or rupture velocity with moment magnitude, are masked by attenuation along the path.

  6. Network features of sector indexes spillover effects in China: A multi-scale view

    Science.gov (United States)

    Feng, Sida; Huang, Shupei; Qi, Yabin; Liu, Xueyong; Sun, Qingru; Wen, Shaobo

    2018-04-01

    The spillover effects among sectors are of concern for distinct market participants, who are in distinct investment horizons and concerned with the information in different time scales. In order to uncover the hidden spillover information in multi-time scales in the rapidly changing stock market and thereby offer guidance to different investors concerning distinct time scales from a system perspective, this paper constructed directional spillover effect networks for the economic sectors in distinct time scales. The results are as follows: (1) The "2-4 days" scale is the most risky scale, and the "8-16 days" scale is the least risky one. (2) The most influential and sensitive sectors are distinct in different time scales. (3) Although two sectors in the same community may not have direct spillover relations, the volatility of one sector will have a relatively strong influence on the other through indirect relations.

  7. Testing Scaling Relations for Solar-like Oscillations from the Main Sequence to Red Giants Using Kepler Data

    DEFF Research Database (Denmark)

    Huber, D.; Bedding, T.R.; Stello, D.

    2011-01-01

    ), and oscillation amplitudes. We show that the difference of the Δν-νmax relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M) s......We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (νmax), the large frequency separation (Δν...... scaling nor the revised scaling relation by Kjeldsen & Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of ~25%. The residuals show...

  8. On the effects of scale for ecosystem services mapping.

    Science.gov (United States)

    Grêt-Regamey, Adrienne; Weibel, Bettina; Bagstad, Kenneth J; Ferrari, Marika; Geneletti, Davide; Klug, Hermann; Schirpke, Uta; Tappeiner, Ulrike

    2014-01-01

    Ecosystems provide life-sustaining services upon which human civilization depends, but their degradation largely continues unabated. Spatially explicit information on ecosystem services (ES) provision is required to better guide decision making, particularly for mountain systems, which are characterized by vertical gradients and isolation with high topographic complexity, making them particularly sensitive to global change. But while spatially explicit ES quantification and valuation allows the identification of areas of abundant or limited supply of and demand for ES, the accuracy and usefulness of the information varies considerably depending on the scale and methods used. Using four case studies from mountainous regions in Europe and the U.S., we quantify information gains and losses when mapping five ES - carbon sequestration, flood regulation, agricultural production, timber harvest, and scenic beauty - at coarse and fine resolution (250 m vs. 25 m in Europe and 300 m vs. 30 m in the U.S.). We analyze the effects of scale on ES estimates and their spatial pattern and show how these effects are related to different ES, terrain structure and model properties. ES estimates differ substantially between the fine and coarse resolution analyses in all case studies and across all services. This scale effect is not equally strong for all ES. We show that spatially explicit information about non-clustered, isolated ES tends to be lost at coarse resolution and against expectation, mainly in less rugged terrain, which calls for finer resolution assessments in such contexts. The effect of terrain ruggedness is also related to model properties such as dependency on land use-land cover data. We close with recommendations for mapping ES to make the resulting maps more comparable, and suggest a four-step approach to address the issue of scale when mapping ES that can deliver information to support ES-based decision making with greater accuracy and reliability.

  9. On the effects of scale for ecosystem services mapping.

    Directory of Open Access Journals (Sweden)

    Adrienne Grêt-Regamey

    Full Text Available Ecosystems provide life-sustaining services upon which human civilization depends, but their degradation largely continues unabated. Spatially explicit information on ecosystem services (ES provision is required to better guide decision making, particularly for mountain systems, which are characterized by vertical gradients and isolation with high topographic complexity, making them particularly sensitive to global change. But while spatially explicit ES quantification and valuation allows the identification of areas of abundant or limited supply of and demand for ES, the accuracy and usefulness of the information varies considerably depending on the scale and methods used. Using four case studies from mountainous regions in Europe and the U.S., we quantify information gains and losses when mapping five ES - carbon sequestration, flood regulation, agricultural production, timber harvest, and scenic beauty - at coarse and fine resolution (250 m vs. 25 m in Europe and 300 m vs. 30 m in the U.S.. We analyze the effects of scale on ES estimates and their spatial pattern and show how these effects are related to different ES, terrain structure and model properties. ES estimates differ substantially between the fine and coarse resolution analyses in all case studies and across all services. This scale effect is not equally strong for all ES. We show that spatially explicit information about non-clustered, isolated ES tends to be lost at coarse resolution and against expectation, mainly in less rugged terrain, which calls for finer resolution assessments in such contexts. The effect of terrain ruggedness is also related to model properties such as dependency on land use-land cover data. We close with recommendations for mapping ES to make the resulting maps more comparable, and suggest a four-step approach to address the issue of scale when mapping ES that can deliver information to support ES-based decision making with greater accuracy and reliability.

  10. On the effects of scale for ecosystem services mapping

    Science.gov (United States)

    Grêt-Regamey, Adrienne; Weibel, Bettina; Bagstad, Kenneth J.; Ferrari, Marika; Geneletti, Davide; Klug, Hermann; Schirpke, Uta; Tappeiner, Ulrike

    2014-01-01

    Ecosystems provide life-sustaining services upon which human civilization depends, but their degradation largely continues unabated. Spatially explicit information on ecosystem services (ES) provision is required to better guide decision making, particularly for mountain systems, which are characterized by vertical gradients and isolation with high topographic complexity, making them particularly sensitive to global change. But while spatially explicit ES quantification and valuation allows the identification of areas of abundant or limited supply of and demand for ES, the accuracy and usefulness of the information varies considerably depending on the scale and methods used. Using four case studies from mountainous regions in Europe and the U.S., we quantify information gains and losses when mapping five ES - carbon sequestration, flood regulation, agricultural production, timber harvest, and scenic beauty - at coarse and fine resolution (250 m vs. 25 m in Europe and 300 m vs. 30 m in the U.S.). We analyze the effects of scale on ES estimates and their spatial pattern and show how these effects are related to different ES, terrain structure and model properties. ES estimates differ substantially between the fine and coarse resolution analyses in all case studies and across all services. This scale effect is not equally strong for all ES. We show that spatially explicit information about non-clustered, isolated ES tends to be lost at coarse resolution and against expectation, mainly in less rugged terrain, which calls for finer resolution assessments in such contexts. The effect of terrain ruggedness is also related to model properties such as dependency on land use-land cover data. We close with recommendations for mapping ES to make the resulting maps more comparable, and suggest a four-step approach to address the issue of scale when mapping ES that can deliver information to support ES-based decision making with greater accuracy and reliability.

  11. Large-scale structure observables in general relativity

    International Nuclear Information System (INIS)

    Jeong, Donghui; Schmidt, Fabian

    2015-01-01

    We review recent studies that rigorously define several key observables of the large-scale structure of the Universe in a general relativistic context. Specifically, we consider (i) redshift perturbation of cosmic clock events; (ii) distortion of cosmic rulers, including weak lensing shear and magnification; and (iii) observed number density of tracers of the large-scale structure. We provide covariant and gauge-invariant expressions of these observables. Our expressions are given for a linearly perturbed flat Friedmann–Robertson–Walker metric including scalar, vector, and tensor metric perturbations. While we restrict ourselves to linear order in perturbation theory, the approach can be straightforwardly generalized to higher order. (paper)

  12. Wave-particle duality through an extended model of the scale relativity theory

    International Nuclear Information System (INIS)

    Ioannou, P D; Nica, P; Agop, M; Paun, V; Vizureanu, P

    2008-01-01

    Considering that the chaotic effect of associated wave packet on the particle itself results in movements on the fractal (continuous and non-differentiable) curves of fractal dimension D F , wave-particle duality through an extension of the scale relativity theory is given. It results through an equation of motion for the complex speed field, that in a fractal fluid, the convection, dissipation and dispersion are reciprocally compensating at any scale (differentiable or non-differentiable). From here, for an irrotational movement, a generalized Schroedinger equation is obtained. The absence of dispersion implies a generalized Navier-Stokes type equation, whereas, for the irrotational movement and the fractal dimension, D F = 2, the usual Schroedinger equation results. The absence of dissipation implies a generalized Korteweg-de Vries type equation. In such conjecture, at the differentiable scale, the duality is achieved through the flowing regimes of the fractal fluid, i.e. the wave character by means of the non-quasi-autonomous flowing regime and the particle character by means of the quasi-autonomous flowing regime. These flowing regimes are separated by '0.7 structure'. At the non-differentiable scale, a fractal potential acts as an energy accumulator and controls through the coherence the duality. The correspondence between the differentiable and non-differentiable scales implies a Cantor space-time. Moreover, the wave-particle duality implies at any scale a fractal.

  13. Wording effect leads to a controversy over the construct of the social dominance orientation scale.

    Science.gov (United States)

    Xin, Ziqiang; Chi, Liping

    2010-01-01

    Most investigations of individuals' social dominance orientation (SDO) have used the 16-item SDO scale developed by F. Pratto, J. Sidanius, L. M. Stallworth, and B. F. Malle (1994). The scale's authors believed it to be a unidimensional scale, but other researchers have found the scale has 2 or more factors. The present authors proposed a new hypothesis: The controversy of the scale structure was related to the wording effect of the scale. Based on a sample of Americans, Canadians, and Chinese, the present study indicated that what the scale measured was not only 1 trait of SDO, but also a negative-wording effect factor and that the scale structure was invariant across the 3 cultural groups. The existence of a wording effect reminds us to be cautious of the construct validity of the scale and interpretations of results.

  14. Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence

    OpenAIRE

    Schmitt , François G

    2005-01-01

    Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field. Here we focus on Lagrangian passive scalar scaling exponents, and discuss their p...

  15. Development and psychometric testing of the Nursing Workplace Relational Environment Scale (NWRES).

    Science.gov (United States)

    Duddle, Maree; Boughton, Maureen

    2009-03-01

    The aim of this study was to develop and test the psychometric properties of the Nursing Workplace Relational Environment Scale (NWRES). A positive relational environment in the workplace is characterised by a sense of connectedness and belonging, support and cooperation among colleagues, open communication and effectively managed conflict. A poor relational environment in the workplace may contribute to job dissatisfaction and early turnover of staff. Quantitative survey. A three-stage process was used to design and test the NWRES. In Stage 1, an extensive literature review was conducted on professional working relationships and the nursing work environment. Three key concepts; collegiality, workplace conflict and job satisfaction were identified and defined. In Stage 2, a pool of items was developed from the dimensions of each concept and formulated into a 35-item scale which was piloted on a convenience sample of 31 nurses. In Stage 3, the newly refined 28-item scale was administered randomly to a convenience sample of 150 nurses. Psychometric testing was conducted to establish the construct validity and reliability of the scale. Exploratory factor analysis resulted in a 22-item scale. The factor analysis indicated a four-factor structure: collegial behaviours, relational atmosphere, outcomes of conflict and job satisfaction which explained 68.12% of the total variance. Cronbach's alpha coefficient for the NWRES was 0.872 and the subscales ranged from 0.781-0.927. The results of the study confirm the reliability and validity of the NWRES. Replication of this study with a larger sample is indicated to determine relationships among the subscales. The results of this study have implications for health managers in terms of understanding the impact of the relational environment of the workplace on job satisfaction and retention.

  16. Gauge-independent scales related to the Standard Model vacuum instability

    International Nuclear Information System (INIS)

    Espinosa, J.R.; Garny, M.; Konstandin, T.; Riotto, A.

    2016-08-01

    The measured (central) values of the Higgs and top quark masses indicate that the Standard Model (SM) effective potential develops an instability at high field values. The scale of this instability, determined as the Higgs field value at which the potential drops below the electroweak minimum, is about 10"1"1 GeV. However, such a scale is unphysical as it is not gauge invariant and suffers from a gauge-fixing uncertainty of up to two orders of magnitude. Subjecting our system, the SM, to several probes of the instability (adding higher order operators to the potential; letting the vacuum decay through critical bubbles; heating up the system to very high temperature; inflating it) and asking in each case physical questions, we are able to provide several gauge-invariant scales related with the Higgs potential instability.

  17. Gauge-Independent Scales Related to the Standard Model Vacuum Instability

    CERN Document Server

    Espinosa, Jose R.; Konstandin, Thomas; Riotto, Antonio

    2017-01-01

    The measured (central) values of the Higgs and top quark masses indicate that the Standard Model (SM) effective potential develops an instability at high field values. The scale of this instability, determined as the Higgs field value at which the potential drops below the electroweak minimum, is about $10^{11}$ GeV. However, such a scale is unphysical as it is not gauge-invariant and suffers from a gauge-fixing uncertainty of up to two orders of magnitude. Subjecting our system, the SM, to several probes of the instability (adding higher order operators to the potential; letting the vacuum decay through critical bubbles; heating up the system to very high temperature; inflating it) and asking in each case physical questions, we are able to provide several gauge-invariant scales related with the Higgs potential instability.

  18. Scaling considerations related to interactions of hydrologic, pedologic and geomorphic processes (Invited)

    Science.gov (United States)

    Sidle, R. C.

    2013-12-01

    Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K) and infiltration capacity at small scales generally underestimates these values for application at larger field, hillslope, or catchment scales. Both vertical and slope-parallel saturated flow and related contaminant transport are often influenced by interconnected networks of preferential flow paths, which are not captured in K measurements derived from soil cores. Using such K values in models may underestimate water and contaminant fluxes and runoff peaks. As shown in small-scale runoff plot studies, infiltration rates are typically lower than integrated infiltration across a hillslope or in headwater catchments. The resultant greater infiltration-excess overland flow in small plots compared to larger landscapes is attributed to the lack of preferential flow continuity; plot border effects; greater homogeneity of rainfall inputs, topography and soil physical properties; and magnified effects of hydrophobicity in small plots. At the hillslope scale, isolated areas with high infiltration capacity can greatly reduce surface runoff and surface erosion at the hillslope scale. These hydropedologic and hydrogeomorphic processes are also relevant to both occurrence and timing of landslides. The focus of many landslide studies has typically been either on small-scale vadose zone process and how these affect soil mechanical properties or on larger scale, more descriptive geomorphic studies. One of the issues in translating laboratory-based investigations on geotechnical behavior of soils to field scales where landslides occur is the characterization of large-scale hydrological processes and flow paths that occur in heterogeneous and anisotropic porous media. These processes are not only affected

  19. THE EVOLUTION OF BLACK HOLE SCALING RELATIONS IN GALAXY MERGERS

    International Nuclear Information System (INIS)

    Johansson, Peter H.; Burkert, Andreas; Naab, Thorsten

    2009-01-01

    We study the evolution of black holes (BHs) on the M BH -σ and M BH -M bulge planes as a function of time in disk galaxies undergoing mergers. We begin the simulations with the progenitor BH masses being initially below (Δlog M BH,i ∼ -2), on (Δlog M BH,i ∼ 0), and above (Δlog M BH,i ∼ 0.5) the observed local relations. The final relations are rapidly established after the final coalescence of the galaxies and their BHs. Progenitors with low initial gas fractions (f gas = 0.2) starting below the relations evolve onto the relations (Δlog M BH,f ∼ -0.18), progenitors on the relations stay there (Δlog M BH,f ∼ 0), and finally progenitors above the relations evolve toward the relations, but still remain above them (Δlog M BH,f ∼ 0.35). Mergers in which the progenitors have high initial gas fractions (f gas = 0.8) evolve above the relations in all cases (Δlog M BH,f ∼ 0.5). We find that the initial gas fraction is the prime source of scatter in the observed relations, dominating over the scatter arising from the evolutionary stage of the merger remnants. The fact that BHs starting above the relations do not evolve onto the relations indicates that our simulations rule out the scenario in which overmassive BHs evolve onto the relations through gas-rich mergers. By implication our simulations thus disfavor the picture in which supermassive BHs develop significantly before their parent bulges.

  20. The MUSIC of galaxy clusters - II. X-ray global properties and scaling relations

    Science.gov (United States)

    Biffi, V.; Sembolini, F.; De Petris, M.; Valdarnini, R.; Yepes, G.; Gottlöber, S.

    2014-03-01

    We present the X-ray properties and scaling relations of a large sample of clusters extracted from the Marenostrum MUltidark SImulations of galaxy Clusters (MUSIC) data set. We focus on a sub-sample of 179 clusters at redshift z ˜ 0.11, with 3.2 × 1014 h-1 M⊙ mass. We employed the X-ray photon simulator PHOX to obtain synthetic Chandra observations and derive observable-like global properties of the intracluster medium (ICM), as X-ray temperature (TX) and luminosity (LX). TX is found to slightly underestimate the true mass-weighted temperature, although tracing fairly well the cluster total mass. We also study the effects of TX on scaling relations with cluster intrinsic properties: total (M500 and gas Mg,500 mass; integrated Compton parameter (YSZ) of the Sunyaev-Zel'dovich (SZ) thermal effect; YX = Mg,500 TX. We confirm that YX is a very good mass proxy, with a scatter on M500-YX and YSZ-YX lower than 5 per cent. The study of scaling relations among X-ray, intrinsic and SZ properties indicates that simulated MUSIC clusters reasonably resemble the self-similar prediction, especially for correlations involving TX. The observational approach also allows for a more direct comparison with real clusters, from which we find deviations mainly due to the physical description of the ICM, affecting TX and, particularly, LX.

  1. Precision Scaling Relations for Disk Galaxies in the Local Universe

    Science.gov (United States)

    Lapi, A.; Salucci, P.; Danese, L.

    2018-05-01

    We build templates of rotation curves as a function of the I-band luminosity via the mass modeling (by the sum of a thin exponential disk and a cored halo profile) of suitably normalized, stacked data from wide samples of local spiral galaxies. We then exploit such templates to determine fundamental stellar and halo properties for a sample of about 550 local disk-dominated galaxies with high-quality measurements of the optical radius R opt and of the corresponding rotation velocity V opt. Specifically, we determine the stellar M ⋆ and halo M H masses, the halo size R H and velocity scale V H, and the specific angular momenta of the stellar j ⋆ and dark matter j H components. We derive global scaling relationships involving such stellar and halo properties both for the individual galaxies in our sample and for their mean within bins; the latter are found to be in pleasing agreement with previous determinations by independent methods (e.g., abundance matching techniques, weak-lensing observations, and individual rotation curve modeling). Remarkably, the size of our sample and the robustness of our statistical approach allow us to attain an unprecedented level of precision over an extended range of mass and velocity scales, with 1σ dispersion around the mean relationships of less than 0.1 dex. We thus set new standard local relationships that must be reproduced by detailed physical models, which offer a basis for improving the subgrid recipes in numerical simulations, that provide a benchmark to gauge independent observations and check for systematics, and that constitute a basic step toward the future exploitation of the spiral galaxy population as a cosmological probe.

  2. Machian effects in general relativity

    International Nuclear Information System (INIS)

    Embacher, F.

    1988-01-01

    As a consequence of Mach's principle, rotating matter should cause local inertial frames or gyroscopes in its vicinity to undergo a small rotation which is not present in the Newtonian picture. H. Thirring and J. Lense were the first to derive similar predictions from the field equations of general relativity. Since these early days of relativity, a lot of exact and approximate solutions to Einstein's equations have been examined under this point of view. The qualitative features of Machian effects are most easily demonstrated in the cylinder symmetric case, where some exact results are available. For example, space-time is flat inside a uniformly rotating matter shell, and the rotation of this interior with respect to 'infinity' (the distant stars) has a clear meaning. In the more realistic case of what happens near a massive rotating star, one is forced to perform certain approximations. In modern language, Machian effects are described in terms of the twist of timelike killing vector fields. In the linearized theory, the equations that determine the Machian structure generated by a given matter distribution, resemble to some extent those of classical electrodynamics. This correspondence provides a pedagogical approach how to compute the quantitative extent of inertial frame 'dragging'. 6 refs., 5 figs. (Author)

  3. Evaluating broad scale patterns among related species using resource experiments in tropical hummingbirds.

    Science.gov (United States)

    Weinstein, Ben G; Graham, Catherine H

    2016-08-01

    A challenge in community ecology is connecting biogeographic patterns with local scale observations. In Neotropical hummingbirds, closely related species often co-occur less frequently than expected (overdispersion) when compared to a regional species pool. While this pattern has been attributed to interspecific competition, it is important to connect these findings with local scale mechanisms of coexistence. We measured the importance of the presence of competitors and the availability of resources on selectivity at experimental feeders for Andean hummingbirds along a wide elevation gradient. Selectivity was measured as the time a bird fed at a feeder with a high sucrose concentration when presented with feeders of both low and high sucrose concentrations. Resource selection was measured using time-lapse cameras to identity which floral resources were used by each hummingbird species. We found that the increased abundance of preferred resources surrounding the feeder best explained increased species selectivity, and that related hummingbirds with similar morphology chose similar floral resources. We did not find strong support for direct agonism based on differences in body size or phylogenetic relatedness in predicting selectivity. These results suggest closely related hummingbird species have overlapping resource niches, and that the intensity of interspecific competition is related to the abundance of those preferred resources. If these competitive interactions have negative demographic effects, our results could help explain the pattern of phylogenetic overdispersion observed at regional scales. © 2016 by the Ecological Society of America.

  4. Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue

    International Nuclear Information System (INIS)

    Desmorat, R.; Kane, A.; Seyedi, M.; Sermage, J.P.

    2007-01-01

    On the idea that fatigue damage is localized at the microscopic scale, a scale smaller than the mesoscopic one of the Representative Volume Element (RVE), a three-dimensional two scale damage model has been proposed for High Cycle Fatigue applications. It is extended here to aniso-thermal cases and then to thermo-mechanical fatigue. The modeling consists in the micro-mechanics analysis of a weak micro-inclusion subjected to plasticity and damage embedded in an elastic meso-element (the RVE of continuum mechanics). The consideration of plasticity coupled with damage equations at micro-scale, altogether with Eshelby-Kroner localization law, allows to compute the value of microscopic damage up to failure for any kind of loading, 1D or 3D, cyclic or random, isothermal or aniso-thermal, mechanical, thermal or thermo-mechanical. A robust numerical scheme is proposed in order to make the computations fast. A post-processor for damage and fatigue (DAMAGE-2005) has been developed. It applies to complex thermo-mechanical loadings. Examples of the representation by the two scale damage model of physical phenomena related to High Cycle Fatigue are given such as the mean stress effect, the non-linear accumulation of damage. Examples of thermal and thermo-mechanical fatigue as well as complex applications on real size testing structure subjected to thermo-mechanical fatigue are detailed. (authors)

  5. Development and validation of the Chinese version of dry eye related quality of life scale.

    Science.gov (United States)

    Zheng, Bang; Liu, Xiao-Jing; Sun, Yue-Qian Fiona; Su, Jia-Zeng; Zhao, Yang; Xie, Zheng; Yu, Guang-Yan

    2017-07-17

    To develop the Chinese version of quality of life scale for dry eye patients based on the Impact of Dry Eye on Everyday Life (IDEEL) questionnaire and to assess the reliability and validity of the developed scale. The original IDEEL was adapted cross-culturally to Chinese language and further developed following standard procedures. A total of 100 Chinese patients diagnosed with dry eye syndrome were included to investigate the psychometric properties of the Chinese version of scale. Psychometric tests included internal consistency (Cronbach's ɑ coefficients), construct validity (exploratory factor analysis), and known-groups validity (the analysis of variance). The Chinese version of Dry Eye Related Quality of Life (CDERQOL) Scale contains 45 items classified into 5 domains. Good to excellent internal consistency reliability was demonstrated for all 5 domains (Cronbach's ɑ coefficients range from 0.716 to 0.913). Construct validity assessment indicated a consistent factorial structure of the CDERQOL scale with hypothesized construct, with the exception of "Dry Eye Symptom-Bother" domain. All domain scores were detected with significant difference across three severity groups of dry eye patients (P dry eye syndrome among Chinese population, and could be used as a supplementary diagnostic and treatment-effectiveness measure.

  6. Planck Scale Effects in Astrophysics and Cosmology

    International Nuclear Information System (INIS)

    Padmanabhan, Thanu

    2007-01-01

    It has been generally agreed that putting together the principles of quantum theory and general relativity will usher the next revolution in physics. The trouble, of course, is that we have been now waiting for several decades for this revolution to take place. While people get excited about different directions of development every once in a while (with some excitements propped up by a larger number of researchers than others), it is probably fair to say that nothing which can be called definitive progress has taken place in the last several decades. Given the state of affairs it is definitely worthwhile to keep an open mind regarding new ideas and have at least a small fraction of researchers working somewhat away from the mainstream. This could possibly lead to new insights which have been missed by the more conventional mainstream approaches and could even finally provide a much awaited breakthrough. The collection of articles in this book should probably be viewed against such a backdrop. A few of the articles contained in the book deal with topics which are probably not mainstream. But all the speakers have presented their ideas clearly and in a proper setting, making many of the articles quite useful for a person who wants to obtain a bird's eye view. The connecting thread is essentially whether some aspects of quantum gravitational physics can lead to potentially observable effects or provide explanations for known effects. The book also contains a few overview articles of exceptional clarity. In particular I would like to mention the one by E Alvarez on quantum gravity, the one by L Smolin on loop quantum gravity and J Martin's article on the origin of cosmological perturbations. The rest of the articles are more focussed on possible quantum gravity phenomenology and discuss diverse topics such as astrophysical bounds of Lorentz violations, doubly special relativity and the role of quantum form in quantum gravity phenomenon. I thoroughly enjoyed reading

  7. Spatial patterns of correlated scale size and scale color in relation to color pattern elements in butterfly wings.

    Science.gov (United States)

    Iwata, Masaki; Otaki, Joji M

    2016-02-01

    Complex butterfly wing color patterns are coordinated throughout a wing by unknown mechanisms that provide undifferentiated immature scale cells with positional information for scale color. Because there is a reasonable level of correspondence between the color pattern element and scale size at least in Junonia orithya and Junonia oenone, a single morphogenic signal may contain positional information for both color and size. However, this color-size relationship has not been demonstrated in other species of the family Nymphalidae. Here, we investigated the distribution patterns of scale size in relation to color pattern elements on the hindwings of the peacock pansy butterfly Junonia almana, together with other nymphalid butterflies, Vanessa indica and Danaus chrysippus. In these species, we observed a general decrease in scale size from the basal to the distal areas, although the size gradient was small in D. chrysippus. Scales of dark color in color pattern elements, including eyespot black rings, parafocal elements, and submarginal bands, were larger than those of their surroundings. Within an eyespot, the largest scales were found at the focal white area, although there were exceptional cases. Similarly, ectopic eyespots that were induced by physical damage on the J. almana background area had larger scales than in the surrounding area. These results are consistent with the previous finding that scale color and size coordinate to form color pattern elements. We propose a ploidy hypothesis to explain the color-size relationship in which the putative morphogenic signal induces the polyploidization (genome amplification) of immature scale cells and that the degrees of ploidy (gene dosage) determine scale color and scale size simultaneously in butterfly wings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Selective vulnerability related to aging in large-scale resting brain networks.

    Science.gov (United States)

    Zhang, Hong-Ying; Chen, Wen-Xin; Jiao, Yun; Xu, Yao; Zhang, Xiang-Rong; Wu, Jing-Tao

    2014-01-01

    Normal aging is associated with cognitive decline. Evidence indicates that large-scale brain networks are affected by aging; however, it has not been established whether aging has equivalent effects on specific large-scale networks. In the present study, 40 healthy subjects including 22 older (aged 60-80 years) and 18 younger (aged 22-33 years) adults underwent resting-state functional MRI scanning. Four canonical resting-state networks, including the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN) and salience network, were extracted, and the functional connectivities in these canonical networks were compared between the younger and older groups. We found distinct, disruptive alterations present in the large-scale aging-related resting brain networks: the ECN was affected the most, followed by the DAN. However, the DMN and salience networks showed limited functional connectivity disruption. The visual network served as a control and was similarly preserved in both groups. Our findings suggest that the aged brain is characterized by selective vulnerability in large-scale brain networks. These results could help improve our understanding of the mechanism of degeneration in the aging brain. Additional work is warranted to determine whether selective alterations in the intrinsic networks are related to impairments in behavioral performance.

  9. ALGORITHM FOR DYNAMIC SCALING RELATIONAL DATABASE IN CLOUDS

    Directory of Open Access Journals (Sweden)

    Alexander V. Boichenko

    2014-01-01

    Full Text Available This article analyzes the main methods of scalingdatabases (replication, sharding and their supportat the popular relational databases and NoSQLsolutions with different data models: document-oriented, key-value, column-oriented and graph.The article presents an algorithm for the dynamicscaling of a relational database (DB, that takesinto account the specifics of the different types of logic database model. This article was prepared with the support of RFBR (grant № 13-07-00749.

  10. REVISITING SCALING RELATIONS FOR GIANT RADIO HALOS IN GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, R.; Brunetti, G.; Venturi, T.; Kale, R. [INAF/IRA, via Gobetti 101, I-40129 Bologna (Italy); Ettori, S. [INAF/Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Giacintucci, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Pratt, G. W. [Laboratoire AIM, IRFU/Service dAstrophysique-CEA/DSM-CNRS-Université Paris Diderot, Bât. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Dolag, K. [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Markevitch, M. [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-11-10

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R{sub 500} as P{sub 1.4}∼L{sup 2.1±0.2}{sub 500}. Our bigger and more homogenous sample confirms that the X-ray luminous (L{sub 500} > 5 × 10{sup 44} erg s{sup –1}) clusters branch into two populations—radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P{sub 1.4} scales with the cluster integrated SZ signal within R{sub 500}, measured by Planck, as P{sub 1.4}∼Y{sup 2.05±0.28}{sub 500}, in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that 'SZ-luminous' Y{sub 500} > 6 × 10{sup –5} Mpc{sup 2} clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the

  11. Industrial versus Laboratory Clinker Processing Using Grinding Aids (Scale Effect

    Directory of Open Access Journals (Sweden)

    Joseph Jean Assaad

    2015-01-01

    Full Text Available The evaluation of grinding aid (GA effect on clinker processing in laboratory grinding mills is relatively simple. Yet, the results obtained cannot be directly transposed to industrial mills, given the fundamentally different operational modes and grinding parameters. This paper seeks to evaluate the scale effect by comparing the results obtained from a closed-circuit tube mill operating at 90 ton/hr to those determined using a 50-liter laboratory mill. Tests results have shown that the decrease in specific energy consumption (Ec due to glycol or amine-based GA can be evaluated under laboratory conditions. However, such tests underestimate the actual performance that could be achieved in real-scale mills; the Ec reduction due to GA is around twofold higher when grinding is performed in real-scale mill. Compared to industrial tests, the cement particle size distribution curves widened and shifted towards higher diameters when grinding was performed under laboratory conditions, particularly with GA additions. This led to remarkable changes in water demand, setting time, and 1- and 28-day compressive strengths.

  12. Mental Illness Related Internalized Stigma: Psychometric Properties of the Brief ISMI Scale in Greece.

    Science.gov (United States)

    Paraskevoulakou, Alexia; Vrettou, Kassiani; Pikouli, Katerina; Triantafillou, Evgenia; Lykou, Anastasia; Economou, Marina

    2017-09-01

    Since evaluation regarding the impact of mental illness related internalized stigma is scarce, there is a great need for psychometric instruments which could contribute to understanding its adverse effects among Greek patients with severe mental illness. The Brief Internalized Stigma of Mental Illness (ISMI) scale is one of the most widely used measures designed to assess the subjective experience of stigma related to mental illness. The present study aimed to investigate the psychometric properties of the Greek version of the Brief ISMI scale. In addition to presenting psychometric findings, we explored the relationship of the Greek version of the Brief ISMI subscales with indicators of self-esteem and quality of life. 272 outpatients (108 males, 164 females) meeting the DSM-IV TR criteria for severe mental disorder (schizophrenia, bipolar disorder, major depression) completed the Brief ISMI, the RSES and the WHOQOL-BREF scales. Patients reported age and educational level. A retest was conducted with 124 patients. The Chronbach's alpha coefficient was 0 0.83. The test-retest reliability coefficients varied from 0.81 to 0.91, indicating substantial agreement. The ICC was for the total score 0.83 and for the two factors, 0.69 and 0.77 respectively. Factor analysis provided strong evidence for a two factor model. Factors 1 and 2 were named respectively "how others view me" and "how I view myself". They were negatively correlated with both RSES and WHOQOL-BREF scales, as well as with educational level. Factor 2 was significantly associated with the type of diagnosis. The Greek version of the Brief ISMI scale can be used as a reliable and valid tool for assessing mental illness related internalized stigma among Greek patients with severe mental illness.

  13. Illness Attitudes Scale dimensions and their associations with anxiety-related constructs in a nonclinical sample.

    Science.gov (United States)

    Stewart, S H; Watt, M C

    2000-01-01

    The Illness Attitudes Scale (IAS) is a self-rated measure that consists of nine subscales designed to assess fears, attitudes and beliefs associated with hypochondriacal concerns and abnormal illness behavior [Kellner, R. (1986). Somatization and hypochondriasis. New York: Praeger; Kellner, R. (1987). Abridged manual of the Illness Attitudes Scale. Department of Psychiatry, School of Medicine, University of New Mexico]. The purposes of the present study were to explore the hierarchical factor structure of the IAS in a nonclinical sample of young adult volunteers and to examine the relations of each illness attitudes dimension to a set of anxiety-related measures. One-hundred and ninety-seven undergraduate university students (156 F, 41 M; mean age = 21.9 years) completed the IAS as well as measures of anxiety sensitivity, trait anxiety and panic attack history. The results of principal components analyses with oblique (Oblimin) rotation suggested that the IAS is best conceptualized as a four-factor measure at the lower order level (with lower-order dimensions tapping illness-related Fears, Behavior, Beliefs and Effects, respectively), and a unifactorial measure at the higher-order level (i.e. higher-order dimension tapping General Hypochondriacal Concerns). The factor structure overlapped to some degree with the scoring of the IAS proposed by Kellner (1986, 1987), as well as with the factor structures identified in previously-tested clinical and nonclinical samples [Ferguson, E. & Daniel, E. (1995). The Illness Attitudes Scale (IAS): a psychometric evaluation on a nonclinical population. Personality and Individual Differences, 18, 463-469; Hadjistavropoulos, H. D. & Asmundson, G. J. G. (1998). Factor analytic investigation of the Illness Attitudes Scale in a chronic pain sample. Behaviour Research and Therapy, 36, 1185-1195; Hadjistavropoulos, H. D., Frombach, I. & Asmundson, G. J. G. (in press). Exploratory and confirmatory factor analytic investigations of the

  14. Regional-scale risk assessment methodology using the Relative ...

    African Journals Online (AJOL)

    2012-04-18

    Apr 18, 2012 ... water aquatic ecosystems are dynamic and difficult to manage effectively. Sound management ..... important to ensure that the decision-making needs of the ... The study area contains 5 lotic (river) systems and 1 lentic.

  15. Confirmation of general relativity on large scales from weak lensing and galaxy velocities

    Science.gov (United States)

    Reyes, Reinabelle; Mandelbaum, Rachel; Seljak, Uros; Baldauf, Tobias; Gunn, James E.; Lombriser, Lucas; Smith, Robert E.

    2010-03-01

    Although general relativity underlies modern cosmology, its applicability on cosmological length scales has yet to be stringently tested. Such a test has recently been proposed, using a quantity, EG, that combines measures of large-scale gravitational lensing, galaxy clustering and structure growth rate. The combination is insensitive to `galaxy bias' (the difference between the clustering of visible galaxies and invisible dark matter) and is thus robust to the uncertainty in this parameter. Modified theories of gravity generally predict values of EG different from the general relativistic prediction because, in these theories, the `gravitational slip' (the difference between the two potentials that describe perturbations in the gravitational metric) is non-zero, which leads to changes in the growth of structure and the strength of the gravitational lensing effect. Here we report that EG = 0.39+/-0.06 on length scales of tens of megaparsecs, in agreement with the general relativistic prediction of EG~0.4. The measured value excludes a model within the tensor-vector-scalar gravity theory, which modifies both Newtonian and Einstein gravity. However, the relatively large uncertainty still permits models within f() theory, which is an extension of general relativity. A fivefold decrease in uncertainty is needed to rule out these models.

  16. Regional-scale risk assessment methodology using the Relative ...

    African Journals Online (AJOL)

    To maximise the long-term use of limited ecosystem services in South Africa, managers continually require approaches to optimise the establishment of balances between the use and protection of ecosystems to ensure sustainability. Surface freshwater aquatic ecosystems are dynamic and difficult to manage effectively.

  17. A new multiscale model to describe a modified Hall-Petch relation at different scales for nano and micro materials

    Science.gov (United States)

    Fadhil, Sadeem Abbas; Alrawi, Aoday Hashim; Azeez, Jazeel H.; Hassan, Mohsen A.

    2018-04-01

    In the present work, a multiscale model is presented and used to modify the Hall-Petch relation for different scales from nano to micro. The modified Hall-Petch relation is derived from a multiscale equation that determines the cohesive energy between the atoms and their neighboring grains. This brings with it a new term that was originally ignored even in the atomistic models. The new term makes it easy to combine all other effects to derive one modified equation for the Hall-Petch relation that works for all scales together, without the need to divide the scales into two scales, each scale with a different equation, as it is usually done in other works. Due to that, applying the new relation does not require a previous knowledge of the grain size distribution. This makes the new derived relation more consistent and easier to be applied for all scales. The new relation is used to fit the data for Copper and Nickel and it is applied well for the whole range of grain sizes from nano to micro scales.

  18. Scaling Relations for Viscous and Gravitational Flow Instabilities in Multiphase Multicomponent Compressible Flow

    Science.gov (United States)

    Moortgat, J.; Amooie, M. A.; Soltanian, M. R.

    2016-12-01

    Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows

  19. Spatiotemporal Scaling Effect on Rainfall Network Design Using Entropy

    Directory of Open Access Journals (Sweden)

    Chiang Wei

    2014-08-01

    Full Text Available Because of high variation in mountainous areas, rainfall data at different spatiotemporal scales may yield potential uncertainty for network design. However, few studies focus on the scaling effect on both the spatial and the temporal scale. By calculating the maximum joint entropy of hourly typhoon events, monthly, six dry and wet months and annual rainfall between 1992 and 2012 for 1-, 3-, and 5-km grids, the relocated candidate rain gauges in the National Taiwan University Experimental Forest of Central Taiwan are prioritized. The results show: (1 the network exhibits different locations for first prioritized candidate rain gauges for different spatiotemporal scales; (2 the effect of spatial scales is insignificant compared to temporal scales; and (3 a smaller number and a lower percentage of required stations (PRS reach stable joint entropy for a long duration at finer spatial scale. Prioritized candidate rain gauges provide key reference points for adjusting the network to capture more accurate information and minimize redundancy.

  20. Stability of neutrino parameters and self-complementarity relation with varying SUSY breaking scale

    Science.gov (United States)

    Singh, K. Sashikanta; Roy, Subhankar; Singh, N. Nimai

    2018-03-01

    The scale at which supersymmetry (SUSY) breaks (ms) is still unknown. The present article, following a top-down approach, endeavors to study the effect of varying ms on the radiative stability of the observational parameters associated with the neutrino mixing. These parameters get additional contributions in the minimal supersymmetric model (MSSM). A variation in ms will influence the bounds for which the Standard Model (SM) and MSSM work and hence, will account for the different radiative contributions received from both sectors, respectively, while running the renormalization group equations (RGE). The present work establishes the invariance of the self complementarity relation among the three mixing angles, θ13+θ12≈θ23 against the radiative evolution. A similar result concerning the mass ratio, m2:m1 is also found to be valid. In addition to varying ms, the work incorporates a range of different seesaw (SS) scales and tries to see how the latter affects the parameters.

  1. Relative age effect: implications for effective practice.

    Science.gov (United States)

    Andronikos, Georgios; Elumaro, Adeboye Israel; Westbury, Tony; Martindale, Russell J J

    2016-01-01

    Physical and psychological differences related to birthdate amongst athletes of the same selection year have been characterised as the "relative age effects" (RAEs). RAEs have been identified in a variety of sports, both at youth and adult level, and are linked with dropout of athletes and a reduction of the talent pool. This study examined the existence, mechanisms and possible solutions to RAEs using qualitative methodology. Seven experts in the field of talent identification and development were interviewed. Inductive analysis of the data showed that, while there was mixed evidence for the existence of RAEs across sports, the eradication of RAEs was attributed to controllable features of the development environment. The factors reported included the structure of "categories" used to group athletes within the sport (e.g. age, weight, size, skills), recognition and prioritisation of long-term development over "short term win focus." Education of relevant parties (e.g. coaches, scouts, clubs) about RAEs and the nature of "talent" within a long-term context was suggested, along with careful consideration of the structure of the development environment (e.g. delayed selection, provision for late developers, focus on skills not results, use of challenge). Implications for research and practice are discussed.

  2. The growth of the tearing mode - Boundary and scaling effects

    Science.gov (United States)

    Steinolfson, R. S.; Van Hoven, G.

    1983-01-01

    A numerical model of resistive magnetic tearing is developed in order to verify and relate the results of the principal approximations used in analytic analyses and to investigate the solutions and their growth-rate scalings over a large range of primary parameters which include parametric values applicable to the solar atmosphere. The computations cover the linear behavior for a variety of boundary conditions, emphasizing effects which differentiate magnetic tearing in astrophysical situations from that in laboratory devices. Eigenfunction profiles for long and short wavelengths are computed and the applicability of the 'constant psi' approximation is investigated. The growth rate is computed for values of the magnetic Reynolds number up to a trillion and of the dimensionless wavelength parameter down to 0.001. The analysis predicts significant effects due to differing values of the magnetic Reynolds number.

  3. Nano-scale effects in electrochemistry

    DEFF Research Database (Denmark)

    Meier, J.; Schiøtz, Jakob; Liu, Ping

    2004-01-01

    as the diameter of the palladium particles parallel to the support surface decreases from 200 to 6 nm. Density functional theory (DFT) calculations combined with molecular dynamics (MD) simulations have been used to investigate the origin of the effect. It is concluded that the size effect is given...

  4. Combined scale effects for effective brazing at low temperatures

    Directory of Open Access Journals (Sweden)

    Bartout D.

    2012-12-01

    Full Text Available In modern joining technology, the focus is on effective brazing and soldering of temperature sensitive materials. Here, as well as in diffusion welding processes the needed thermal energy is externally realized in the joint zone. This produces a heating of the whole joining parts, since in laminar joining the thermal energy is transported in interior by thermal conduction. An excess of critical temperatures or tolerable impact periods in wide parts of materials and respectively components is often not avoidable. This leads to thermal damages. In this point of view nanotechnology shows promising possibilities as scale effects and their resulting thermophysical effects such as melting temperature reduction and high diffusion rates can be used for providing a self-propagating high-temperature synthesis at room temperature. After ignition by an external energy source a self-propagating exothermic reaction is started. By producing a multilayer system with alternately arranged nanoscaled layers of e.g. Al and Ni the resulting thin foil can be used as heat source for melting the braze or solder material within the joining zone without any external preheating. Due to the high process velocities up to 30 m/s and the local heat input significant thermal influences on the joined parts are not detectable.

  5. Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics.

    Science.gov (United States)

    Nottale, Laurent; Auffray, Charles

    2008-05-01

    In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential

  6. Effectiveness of a sanguinarine regimen after scaling and root planing.

    Science.gov (United States)

    Tenenbaum, H; Dahan, M; Soell, M

    1999-03-01

    A variety of chemical agents have been evaluated relative to their abilities to inhibit dental plaque and to improve gingival health. Chlorhexidine gluconate is the best known and most widely used member of these agents, but its long-term use is compromised by different side effects, especially extrinsic tooth and tongue staining. Another agent, sanguinarine, which is currently used in both a mouthrinse and toothpaste, leads in some cases only to a transient burning sensation and could be used on a long-term basis. The purpose of this 14-week controlled clinical trial was to assess the effectiveness of a toothpaste and oral rinse containing sanguinaria extract after scaling, root planing and a chlorhexidine regimen. Sixty patients diagnosed as having adult periodontitis received initial periodontal therapy including scaling and root planing, followed by a 2-week oral care regimen which included rinsing with 0.2% chlorhexidine gluconate oral rinse. Upon completion of this 2-week initial therapy phase, patients were randomly assigned to either sanguinarine toothpaste and oral rinse or to control toothpaste and oral rinse without sanguinarine. Plaque (modified Quigley-Hein index) and gingivitis (gingival index) were measured prior to periodontal therapy, at the end of the chlorhexidine phase (2 weeks), and after 8 and 14 weeks. Sanguinarine-containing toothpaste and oral rinse significantly inhibited the redevelopment of gingivitis through the 12 weeks following the chlorhexidine phase compared to the control toothpaste and rinse. Patients in the test group had 26% fewer bleeding sites at 8 weeks, and 32% fewer at 14 weeks, than the control group. Our results support the combined use of chlorhexidine mouthrinse for a short term (2 weeks) followed by sanguinaria mouthrinse and toothpaste up to 3 months in order to optimize the effectiveness of chlorhexidine without side effects. Further studies on the long-term effect of this combination should be established.

  7. Identifying food-related life style segments by a cross-culturally valid scaling device

    DEFF Research Database (Denmark)

    Brunsø, Karen; Grunert, Klaus G.

    1994-01-01

    -related life style in a cross-culturally valid way. To this end, we have col-lected a pool of 202 items, collected data in three countries, and have con-structed scales based on cross-culturally stable patterns. These scales have then been subjected to a number of tests of reliability and vali-dity. We have...... then applied the set of scales to a fourth country, Germany, based on a representative sample of 1000 respondents. The scales had, with a fe exceptions, moderately good reliabilities. A cluster ana-ly-sis led to the identification of 5 segments, which differed on all 23 scales....

  8. Scale effects on solid rocket combustion instability behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Greatrix, D. R. [Ryerson University, Department of Aerospace Engineering, Toronto, Ontario (Canada)

    2011-07-01

    The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combustion response to pressure wave activity above the burning propellant surface, is applied to the investigation of scale effects (motor size, i.e., grain length and internal port diameter) on influencing instability-related behaviour in a cylindrical-grain motor. The results of this investigation reveal that the motor's size has a significant influence on transient pressure wave magnitude and structure, and on the appearance and magnitude of an associated base pressure rise. (author)

  9. Scale Effects on Solid Rocket Combustion Instability Behaviour

    Directory of Open Access Journals (Sweden)

    David R. Greatrix

    2011-01-01

    Full Text Available The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combustion response to pressure wave activity above the burning propellant surface, is applied to the investigation of scale effects (motor size, i.e., grain length and internal port diameter on influencing instability-related behaviour in a cylindrical-grain motor. The results of this investigation reveal that the motor’s size has a significant influence on transient pressure wave magnitude and structure, and on the appearance and magnitude of an associated base pressure rise.

  10. Scaling relations in elastic scattering cross sections between multiply charged ions and hydrogen

    International Nuclear Information System (INIS)

    Rodriguez, V.D.

    1991-01-01

    Differential elastic scattering cross sections of bare ions from hydrogen are calculated using the eikonal approximation. The results satisfy a scaling relation involving the scattering angle, the ion charge and a factor related to the ion mass. A semiclassical explanation in terms of a distant collision hypothesis for small scattering angle is proposed. A unified picture of related scaling rules found in direct processes is discussed. (author)

  11. The Effects of Scales on Autorotation of Monarch Butterfly Forewings

    Science.gov (United States)

    Dechello, Nicole; Lang, Amy

    2014-11-01

    The wings of Monarch butterflies (Danus plexippus) have scales of approximately 100 micrometers that cover their wings in a roof-shingle pattern, and these scales are hypothesized to help improve flight efficiency for their long migration. The aerodynamic effects of the scales, particularly involving the leading edge vortex formation and resulting lift, were investigated by observing the natural autorotation of forewing specimen when dropped in quiescent air. A high-speed camera recorded drop tests of 32 forewings both with scales and after removal of the scales. It was found that the scales, on average, comprised 17% of the forewing mass. Tracking software was used to analyze the videos for several parameters, including descent speed and radius of rotation. NSF ECE Grant #1358991 supported the first author as an research experience for undergraduate (REU) student.

  12. TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA

    Energy Technology Data Exchange (ETDEWEB)

    Huber, D.; Bedding, T. R.; Stello, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Hekker, S. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Mosser, B. [LESIA, CNRS, Universite Pierre et Marie Curie, Universite Denis, Diderot, Observatoire de Paris, 92195 Meudon cedex (France); Verner, G. A.; Elsworth, Y. P.; Hale, S. J.; Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Bonanno, A. [INAF Osservatorio Astrofisico di Catania (Italy); Buzasi, D. L. [Eureka Scientific, 2452 Delmer Street Suite 100, Oakland, CA 94602-3017 (United States); Campante, T. L. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Kallinger, T. [Department of Physics and Astronomy, University of British Columbia, Vancouver (Canada); Silva Aguirre, V. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); De Ridder, J. [Instituut voor Sterrenkunde, K.U.Leuven (Belgium); Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS, Universite Paris 7 Diderot, IRFU/SAp, Centre de Saclay, 91191, Gif-sur-Yvette (France); Appourchaux, T. [Institut d' Astrophysique Spatiale, UMR 8617, Universite Paris Sud, 91405 Orsay Cedex (France); Frandsen, S. [Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Houdek, G., E-mail: dhuber@physics.usyd.edu.au [Institute of Astronomy, University of Vienna, 1180 Vienna (Austria); and others

    2011-12-20

    We have analyzed solar-like oscillations in {approx}1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power ({nu}{sub max}), the large frequency separation ({Delta}{nu}), and oscillation amplitudes. We show that the difference of the {Delta}{nu}-{nu}{sub max} relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M){sup s} scaling nor the revised scaling relation by Kjeldsen and Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of {approx}25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.

  13. Lifshitz scaling effects on holographic superconductors

    International Nuclear Information System (INIS)

    Lu, Jun-Wang; Wu, Ya-Bo; Qian, Peng; Zhao, Yue-Yue; Zhang, Xue; Zhang, Nan

    2014-01-01

    Via numerical and analytical methods, the effects of the Lifshitz dynamical exponent z on the holographic superconductor models are studied in some detail, including s-wave and p-wave models. Working in the probe limit, we calculate the condensation and conductivity in both Lifshitz black hole and soliton backgrounds with a general z. For both the s-wave and p-wave models in the black hole backgrounds, as z increases, the phase transition becomes difficult and the conductivity is suppressed. For the Lifshitz soliton background, when z increases, the critical chemical potential increases in both the s-wave model (with a fixed mass of the scalar field) and p-wave model. For the p-wave model in both the Lifshitz black hole and soliton backgrounds, the anisotropy between the AC conductivity in different spatial directions is suppressed when z increases. In all cases, we find that the critical exponent of the condensation is always 1/2, independent of z and spacetime dimension. The analytical results from the Sturm–Liouville variational method uphold the numerical calculations. The implications of these results are discussed

  14. [Development of Autogenic Training Clinical Effectiveness Scale (ATCES)].

    Science.gov (United States)

    Ikezuki, Makoto; Miyauchi, Yuko; Yamaguchi, Hajime; Koshikawa, Fusako

    2002-02-01

    The purpose of the present study was to develop a scale measuring clinical effectiveness of autogenic training. In Study 1, 167 undergraduates completed a survey of items concerning physical and mental states, which were thought to vary in the course of autogenic training. With item and factor analyses, 20 items were selected, and the resulting scale (ATCES) had high discrimination and clear factor structure. In Study 2, reliability and concurrent and clinical validity of the scale were examined with three groups of respondents: 85 mentally healthy, 31 control, 13 clinical persons. The scale showed a high test-retest correlation (r = .83) and alpha coefficient (alpha = .86). ATCES had a Pearson correlation coefficient of r = .56 with General Health Questionnaire (GHQ-12), and r = .73 with trait anxiety (STAI-T). And ATCES successfully discriminated the mentally healthy and clinical groups in terms of clinical effectiveness. These results demonstrated high reliability and sufficient concurrent and clinical validity of the new scale.

  15. EI Scale: an environmental impact assessment scale related to the construction materials used in the reinforced concrete

    OpenAIRE

    Gilson Morales; Antonio Edésio Jungles; Sheila Elisa Scheidemantel Klein; Juliana Guarda

    2010-01-01

    This study aimed to create EI Scal, an environmental impact assessment scal, related to construction materials used in the reinforced concrete structure production. The main reason for that was based on the need to classify the environmental impact levels through indicators to assess the damage level process. The scale allowed converting information to estimate the environmental impact caused. Indicators were defined trough the requirements and classification criteria of impact aspects consid...

  16. Effect of relative humidity on solar potential

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2005-01-01

    In this study, the effect of relative humidity on solar potential is investigated using artificial neural-networks. Two different models are used to train the neural networks. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine-duration, and mean temperature) are used in the input layer of the network (Model 1). But, relative humidity values are added to one network in model (Model 2). In other words, the only difference between the models is relative humidity. New formulae based on meteorological and geographical data, have been developed to determine the solar energy potential in Turkey using the networks' weights for both models. Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer-function were used in the network. The best approach was obtained by the SCG algorithm with nine neurons for both models. Meteorological data for the four years, 2000-2003, for 18 cities (Artvin, Cesme, Bozkurt, Malkara, Florya, Tosya, Kizilcahamam, Yenisehir, Edremit, Gediz, Kangal, Solhan, Ergani, Selcuk, Milas, Seydisehir, Siverek and Kilis) spread over Turkey have been used as data in order to train the neural network. Solar radiation is in output layer. One month for each city was used as test data, and these months have not been used for training. The maximum mean absolute percentage errors (MAPEs) for Tosya are 2.770394% and 2.8597% for Models 1 and 2, respectively. The minimum MAPEs for Seydisehir are 1.055205% and 1.041% with R 2 (99.9862%, 99.9842%) for Models 1 and 2, respectively, in the SCG algorithm with nine neurons. The best value of R 2 for Models 1 and 2 are for Seydisehir. The minimum value of R 2 for Model 1 is 99.8855% for Tosya, and the value for Model 2 is 99.9001% for Yenisehir. Results show that the humidity has only a negligible effect upon the prediction of solar potential using artificial neural-networks

  17. Communicating Climate Uncertainties: Challenges and Opportunities Related to Spatial Scales, Extreme Events, and the Warming 'Hiatus'

    Science.gov (United States)

    Casola, J. H.; Huber, D.

    2013-12-01

    Many media, academic, government, and advocacy organizations have achieved sophistication in developing effective messages based on scientific information, and can quickly translate salient aspects of emerging climate research and evolving observations. However, there are several ways in which valid messages can be misconstrued by decision makers, leading them to inaccurate conclusions about the risks associated with climate impacts. Three cases will be discussed: 1) Issues of spatial scale in interpreting climate observations: Local climate observations may contradict summary statements about the effects of climate change on larger regional or global spatial scales. Effectively addressing these differences often requires communicators to understand local and regional climate drivers, and the distinction between a 'signal' associated with climate change and local climate 'noise.' Hydrological statistics in Missouri and California are shown to illustrate this case. 2) Issues of complexity related to extreme events: Climate change is typically invoked following a wide range of damaging meteorological events (e.g., heat waves, landfalling hurricanes, tornadoes), regardless of the strength of the relationship between anthropogenic climate change and the frequency or severity of that type of event. Examples are drawn from media coverage of several recent events, contrasting useful and potentially confusing word choices and frames. 3) Issues revolving around climate sensitivity: The so-called 'pause' or 'hiatus' in global warming has reverberated strongly through political and business discussions of climate change. Addressing the recent slowdown in warming yields an important opportunity to raise climate literacy in these communities. Attempts to use recent observations as a wedge between climate 'believers' and 'deniers' is likely to be counterproductive. Examples are drawn from Congressional testimony and media stories. All three cases illustrate ways that decision

  18. Sulfur and Moisture Effects on Alumina Scale and TBC Spallation

    Science.gov (United States)

    Smialek, James L.

    2007-01-01

    cause is related to a hydrogen embrittlement reaction: Al alloy + 3 H2O = Al(OH)3 + 3H(+) + 3e(-). This mechanism is derived from an analogous moisture-induced hydrogen embrittlement mechanism originally shown for Ni3Al and FeAl intermetallics. Consequently, a cathodic hydrogen charging technique was used to demonstrate that electrolytic de-scaling occurs for these otherwise adherent alumina scales formed on Y-doped Rene'N5, in support of hydrogen effects. Finally, some TBC observations are discussed in light of all of the above. Plasma sprayed 8YSZ coatings, produced on PWA1484 without a bond coat, were found to survive more than 1000 1-hr cycles at 1100 C when desulfurized to below 0.1 ppmw. At higher sulfur (1.2 ppmw) levels, moisture sensitivity and delayed TBC failure, referred to as Desk Top Spallation, occurred at just 200 hr. Despite a large degree of scatter, a factor of 5 in life improvement is indicated for desulfurized samples in cyclic furnace tests, confirming the beneficial effect of low sulfur alloys on model TBC systems. (DTS and moisture effects are also observed on commercially applied PVD 7YSZ coatings on Rene'N5+Y with Pt-aluminide bond coats). These types of catastrophic failure were subverted on the model system by segmenting the substrate into a network of 0.010 high ribs, spaced in. apart, prior to plasma spraying. No failures occurred after 1000 cycles at 1150 C or after 2000 cycles at 1100 C, even after water immersion. The benefit is described in terms of elasticity models and a critical buckling stress.

  19. Weak Lensing Calibrated M-T Scaling Relation of Galaxy Groups in the COSMOS Field

    NARCIS (Netherlands)

    Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J.; Spinelli, P.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H.; Koekemoer, A.

    2013-01-01

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10

  20. Suicide-Related Experiences Among Blacks: An Empirical Test of a Suicide Potential Scale

    Science.gov (United States)

    Wenz, Friedrich V.

    1978-01-01

    Developing a Suicide Potential Scale for a number of socially differentiated, stratified census tract populations in a northern city, this paper argues that scores on this scale are related to actual suicidal behavior. These data support the position that variation in suicide among blacks is mainly determined by economic status. (Author)

  1. Scales

    Science.gov (United States)

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...

  2. 2002 Status of the Armed Forces Survey - Workplace and Gender Relations: Report on Scales and Measures

    National Research Council Canada - National Science Library

    Ormerod, Alayne

    2003-01-01

    ...: Workplace and Gender Relations Survey (2002 WGR). This report describes advances from previous surveys and presents results on scale development as obtained from 19,960 respondents to this survey...

  3. Oscillating red giants in eclipsing binary systems: empirical reference value for asteroseismic scaling relation

    Science.gov (United States)

    Themeßl, N.; Hekker, S.; Southworth, J.; Beck, P. G.; Pavlovski, K.; Tkachenko, A.; Angelou, G. C.; Ball, W. H.; Barban, C.; Corsaro, E.; Elsworth, Y.; Handberg, R.; Kallinger, T.

    2018-05-01

    The internal structures and properties of oscillating red-giant stars can be accurately inferred through their global oscillation modes (asteroseismology). Based on 1460 days of Kepler observations we perform a thorough asteroseismic study to probe the stellar parameters and evolutionary stages of three red giants in eclipsing binary systems. We present the first detailed analysis of individual oscillation modes of the red-giant components of KIC 8410637, KIC 5640750 and KIC 9540226. We obtain estimates of their asteroseismic masses, radii, mean densities and logarithmic surface gravities by using the asteroseismic scaling relations as well as grid-based modelling. As these red giants are in double-lined eclipsing binaries, it is possible to derive their independent dynamical masses and radii from the orbital solution and compare it with the seismically inferred values. For KIC 5640750 we compute the first spectroscopic orbit based on both components of this system. We use high-resolution spectroscopic data and light curves of the three systems to determine up-to-date values of the dynamical stellar parameters. With our comprehensive set of stellar parameters we explore consistencies between binary analysis and asteroseismic methods, and test the reliability of the well-known scaling relations. For the three red giants under study, we find agreement between dynamical and asteroseismic stellar parameters in cases where the asteroseismic methods account for metallicity, temperature and mass dependence as well as surface effects. We are able to attain agreement from the scaling laws in all three systems if we use Δνref, emp = 130.8 ± 0.9 μHz instead of the usual solar reference value.

  4. Who is Distressed Applying the Diabetes Related Distress Scale in a Diabetes Clinic

    Science.gov (United States)

    2017-06-09

    59 MDW /SGVU SUBJECT: Professional Presentation Approval 7APR 2017 1. Your paper, entitled Who is Distressed? Applying the Diabetes -Related Distress...Scale in A Diabetes Clinic presented at/published to American Diabetes Association 2017 Meeting, San Francisco, CA (National Conference), 9-16 June...as a publication/presentation, a new 59 MOW Form 3039 must be submitted for review and approval.) Using the Diabetes -Related Distress Scale in

  5. Public relations effectiveness in public health institutions.

    Science.gov (United States)

    Springston, Jeffrey K; Weaver Lariscy, Ruth Ann

    2005-01-01

    This article explores public relations effectiveness in public health institutions. First, the two major elements that comprise public relations effectiveness are discussed: reputation management and stakeholder relations. The factors that define effective reputation management are examined, as are the roles of issues and crisis management in building and maintaining reputation. The article also examines the major facets of stakeholder relations, including an inventory of stakeholder linkages and key audiences, such as the media. Finally, methods of evaluating public relations effectiveness at both the program level and the institutional level are explored.

  6. On the Effects of Frequency Scaling Over Capacity Scaling in Underwater Networks—Part I

    DEFF Research Database (Denmark)

    Shin, Won-Yong; Roetter, Daniel Enrique Lucani; Médard, Muriel

    2013-01-01

    power-limited network. Interestingly, it is shown that the upper bound is intrinsically related to the attenuation parameter but not the spreading factor. Furthermore, we propose an achievable communication scheme based on the nearest-neighbor MH transmission, which is suitable due to the low......In this two-part paper, information-theoretic capacity scaling laws are analyzed in an underwater acoustic network with n regularly located nodes on a square, in which both bandwidth and received signal power can be limited significantly. Parts I and II deal with an extended network of unit node...... parameter that depends on the frequency scaling as well as the transmission distance. Upper and lower bounds on the capacity scaling are then derived. In Part I, we show that the upper bound on capacity for extended networks is inversely proportional to the attenuation parameter, thus resulting in a highly...

  7. Length scales in glass-forming liquids and related systems: a review

    International Nuclear Information System (INIS)

    Karmakar, Smarajit; Dasgupta, Chandan; Sastry, Srikanth

    2016-01-01

    The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed. (review article)

  8. Channeling and related crystal effects

    International Nuclear Information System (INIS)

    Uggerhoj, Erik

    1995-01-01

    Channeling, the interaction of particles with oriented crystals, has been applied in a wide variety of scientific and technological areas. A workshop at Aarhus, Denmark, this summer highlighted progress and future directions. Radiation emission has been explored and linked to coherent bremsstrahlung and other oriented crystal radiations. Dramatic effects have been found for ultra-relativistic electrons with Lorentz factors of 105 6. Single crystals are unique for investigations of quantum electrodynamics in strong external fields because probabilities for processes in axial/ planar fields are determined by the magnitude of these fields in the particle rest frame. Erik Uggerhoj of Aarhus reported on an extensive series of experiments concerning radiation emission, pair production, and shower formation carried out at CERN by the NA43 collaboration. As Vladimir Baier of Novosibirsk and Yuri Kononets of Kurchatov noted, theoretical treatment of these interconnected radiation distributions is challenging and much work needs to be done. In general, the agreement with the CERN experiments is good, but many areas like polarization phenomena and particle production need investigation. Prominent among high energy applications is extraction from accelerators. At the workshop, Alexei Asseev reported on beam extraction using a bent crystal at Serpukhov. Konrad Elsener and Jukka Klem reviewed recent CERN SPS studies driven by the possibility of using crystals for extraction of LHC beams. Thornton Murphy of Fermilab announced a step in that direction, with a demonstration this summer of extraction from the Tevatron at 900 GeV. Bent crystal channeling is also used for handling extracted high energy beams. Niels Doble presented a beautiful example of a beam for the CERN NA48 CP-violation experiment. Yuri Chesnokov reported that beams had been deflected through angles up to 150 milliradians at Serpukhov

  9. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model

    Science.gov (United States)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2018-01-01

    Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration by innovative methods of model resolution alteration based on the spatial data variability and scaling of flows in urban hydrology.

  10. Rosenberg's Self-Esteem Scale: Two Factors or Method Effects.

    Science.gov (United States)

    Tomas, Jose M.; Oliver, Amparo

    1999-01-01

    Results of a study with 640 Spanish high school students suggest the existence of a global self-esteem factor underlying responses to Rosenberg's (M. Rosenberg, 1965) Self-Esteem Scale, although the inclusion of method effects is needed to achieve a good model fit. Method effects are associated with item wording. (SLD)

  11. Extended general relativity: Large-scale antigravity and short-scale gravity with ω=-1 from five-dimensional vacuum

    International Nuclear Information System (INIS)

    Madriz Aguilar, Jose Edgar; Bellini, Mauricio

    2009-01-01

    Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with ω=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.

  12. Extended general relativity: Large-scale antigravity and short-scale gravity with ω=-1 from five-dimensional vacuum

    Science.gov (United States)

    Madriz Aguilar, José Edgar; Bellini, Mauricio

    2009-08-01

    Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with ω=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.

  13. Extended general relativity: Large-scale antigravity and short-scale gravity with {omega}=-1 from five-dimensional vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Madriz Aguilar, Jose Edgar [Instituto de Fisica de la Universidad de Guanajuato, C.P. 37150, Leon Guanajuato (Mexico); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina)], E-mail: madriz@mdp.edu.ar; Bellini, Mauricio [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)], E-mail: mbellini@mdp.edu.ar

    2009-08-31

    Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with {omega}=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.

  14. A NEW SCALING RELATION FOR H II REGIONS IN SPIRAL GALAXIES: UNVEILING THE TRUE NATURE OF THE MASS-METALLICITY RELATION

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Ortega, F. F.; Diaz, A. I. [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Sanchez, S. F.; Iglesias-Paramo, J.; Vilchez, J. M.; Mast, D. [Instituto de Astrofisica de Andalucia (CSIC), Camino Bajo de Huetor s/n, Aptdo. 3004, E-18080 Granada (Spain); Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); Husemann, B., E-mail: frosales@cantab.net [Leibniz-Institut fuer Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2012-09-10

    We demonstrate the existence of a local mass, metallicity, star formation relation using spatially resolved optical spectroscopy of H II regions in the local universe. One of the projections of this distribution-the local mass-metallicity relation-extends over a wide range in this parameter space: three orders of magnitude in mass and a factor of eight in metallicity. We explain the new relation as the combined effect of the differential distributions of mass and metallicity in the disks of galaxies, and a selective star formation efficiency. We use this local relation to reproduce-with a noticeable agreement-the mass-metallicity relation seen in galaxies, and conclude that the latter is a scale-up integrated effect of a local relation, supporting the inside-out growth and downsizing scenarios of galaxy evolution.

  15. PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions

    Science.gov (United States)

    Tacconi, L. J.; Genzel, R.; Saintonge, A.; Combes, F.; García-Burillo, S.; Neri, R.; Bolatto, A.; Contini, T.; Förster Schreiber, N. M.; Lilly, S.; Lutz, D.; Wuyts, S.; Accurso, G.; Boissier, J.; Boone, F.; Bouché, N.; Bournaud, F.; Burkert, A.; Carollo, M.; Cooper, M.; Cox, P.; Feruglio, C.; Freundlich, J.; Herrera-Camus, R.; Juneau, S.; Lippa, M.; Naab, T.; Renzini, A.; Salome, P.; Sternberg, A.; Tadaki, K.; Übler, H.; Walter, F.; Weiner, B.; Weiss, A.

    2018-02-01

    This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ∼1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M */M ⊙) = 9.0–11.8, and SFRs relative to that on the MS, δMS = SFR/SFR(MS), from 10‑1.3 to 102.2. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t depl, defined as the ratio of molecular gas mass to SFR, scales as (1 + z)‑0.6 × (δMS)‑0.44 and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass μ gas depends on (1+z{)}2.5× {(δ {MS})}0.52× {({M}* )}-0.36, which tracks the evolution of the specific SFR. The redshift dependence of μ gas requires a curvature term, as may the mass dependences of t depl and μ gas. We find no or only weak correlations of t depl and μ gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z. Based on observations of an IRAM Legacy Program carried out with the NOEMA, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  16. Factors associated with metabolic syndrome and related medical costs by the scale of enterprise in Korea.

    Science.gov (United States)

    Kong, Hyung-Sik; Lee, Kang-Sook; Yim, Eun-Shil; Lee, Seon-Young; Cho, Hyun-Young; Lee, Bin Na; Park, Jee Young

    2013-10-21

    The purpose of this study was to identify the risk factors of metabolic syndrome (MS) and to analyze the relationship between the risk factors of MS and medical cost of major diseases related to MS in Korean workers, according to the scale of the enterprise. Data was obtained from annual physical examinations, health insurance qualification and premiums, and health insurance benefits of 4,094,217 male and female workers who underwent medical examinations provided by the National Health Insurance Corporation in 2009. Logistic regression analyses were used to the identify risk factors of MS and multiple regression was used to find factors associated with medical expenditures due to major diseases related to MS. The study found that low-income workers were more likely to work in small-scale enterprises. The prevalence rate of MS in males and females, respectively, was 17.2% and 9.4% in small-scale enterprises, 15.9% and 8.9% in medium-scale enterprises, and 15.9% and 5.5% in large-scale enterprises. The risks of MS increased with age, lower income status, and smoking in small-scale enterprise workers. The medical costs increased in workers with old age and past smoking history. There was also a gender difference in the pattern of medical expenditures related to MS. Health promotion programs to manage metabolic syndrome should be developed to focus on workers who smoke, drink, and do little exercise in small scale enterprises.

  17. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model

    Science.gov (United States)

    Thogmartin, W.E.; Knutson, M.G.

    2007-01-01

    Much of what is known about avian species-habitat relations has been derived from studies of birds at local scales. It is entirely unclear whether the relations observed at these scales translate to the larger landscape in a predictable linear fashion. We derived habitat models and mapped predicted abundances for three forest bird species of eastern North America using bird counts, environmental variables, and hierarchical models applied at three spatial scales. Our purpose was to understand habitat associations at multiple spatial scales and create predictive abundance maps for purposes of conservation planning at a landscape scale given the constraint that the variables used in this exercise were derived from local-level studies. Our models indicated a substantial influence of landscape context for all species, many of which were counter to reported associations at finer spatial extents. We found land cover composition provided the greatest contribution to the relative explained variance in counts for all three species; spatial structure was second in importance. No single spatial scale dominated any model, indicating that these species are responding to factors at multiple spatial scales. For purposes of conservation planning, areas of predicted high abundance should be investigated to evaluate the conservation potential of the landscape in their general vicinity. In addition, the models and spatial patterns of abundance among species suggest locations where conservation actions may benefit more than one species. ?? 2006 Springer Science+Business Media B.V.

  18. Snake scales, partial exposure, and the Snake Detection Theory: A human event-related potentials study

    Science.gov (United States)

    Van Strien, Jan W.; Isbell, Lynne A.

    2017-01-01

    Studies of event-related potentials in humans have established larger early posterior negativity (EPN) in response to pictures depicting snakes than to pictures depicting other creatures. Ethological research has recently shown that macaques and wild vervet monkeys respond strongly to partially exposed snake models and scale patterns on the snake skin. Here, we examined whether snake skin patterns and partially exposed snakes elicit a larger EPN in humans. In Task 1, we employed pictures with close-ups of snake skins, lizard skins, and bird plumage. In task 2, we employed pictures of partially exposed snakes, lizards, and birds. Participants watched a random rapid serial visual presentation of these pictures. The EPN was scored as the mean activity (225–300 ms after picture onset) at occipital and parieto-occipital electrodes. Consistent with previous studies, and with the Snake Detection Theory, the EPN was significantly larger for snake skin pictures than for lizard skin and bird plumage pictures, and for lizard skin pictures than for bird plumage pictures. Likewise, the EPN was larger for partially exposed snakes than for partially exposed lizards and birds. The results suggest that the EPN snake effect is partly driven by snake skin scale patterns which are otherwise rare in nature. PMID:28387376

  19. Scales, strategies and actions for effective energy planning: A review

    International Nuclear Information System (INIS)

    Pasimeni, Maria Rita; Petrosillo, Irene; Aretano, Roberta; Semeraro, Teodoro; De Marco, Antonella; Zaccarelli, Nicola; Zurlini, Giovanni

    2014-01-01

    This paper is a review of the most recent literature on the interaction between climate change, land-use and energy, based on the analysis of papers collected through the most relevant scientific literature databases. A total of 114 papers published between 2000 and 2011 were reviewed. The aims of this review are: in general (1) to identify the different research topics that have been developed related to the interaction between climate change, land-use and energy; more specifically, (2) to analyze what are the most suitable spatial and temporal scales of investigation to focus on for actions and strategies to reduce critical issues in the field of energy and environment; (3) to identify which actions and strategies are deemed as the most appropriate to mitigate critical issues in energy and environment; and given the research gaps found in the review, (4) to propose research recommendations in the context of effective climate-energy planning. We argue that there are certain gaps and needs for a “nested” environmental governance. It is necessary to understand how different environmental policies overlap and how they can be integrated in order to verify whether there are conflicting targets that may negate each other in the long term. - Highlights: • Energy production and consumption can directly or indirectly affect climate change. • Energy sector is influenced directly and indirectly by changes in climate conditions. • Energy sector and climate change affect and limit alternative uses of land, causing land-use changes. • The most suitable spatial scale for energy planning is the municipal level requiring short-term perspectives. • Several research recommendations to deal with the complexity of energy-land-use-climate change issue are proposed

  20. Analysis of environmental issues related to small-scale hydroelectric development. III. Water level fluctuation

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, S.G. (ed.)

    1980-10-01

    Potential environmental impacts in reservoirs and downstream river reaches below dams that may be caused by the water level fluctuation resulting from development and operation of small scale (under 25MW) hydroelectric projects are identified. The impacts discussed will be of potential concern at only those small-scale hydroelectric projects that are operated in a store and release (peaking) mode. Potential impacts on physical and chemical characteristics in reservoirs resulting from water level fluctuation include resuspension and redistribution of bank and bed sediment; leaching of soluble organic matter from sediment in the littoral zone; and changes in water quality resulting from changes in sediment and nutrient trap efficiency. Potential impacts on reservoir biota as a result of water level fluctuation include habitat destruction and the resulting partial or total loss of aquatic species; changes in habitat quality, which result in reduced standing crop and production of aquatic biota; and possible shifts in species diversity. The potential physical effects of water level fluctuation on downstream systems below dams are streambed and bank erosion and water quality problems related to resuspension and redistribution of these materials. Potential biological impacts of water level fluctuation on downstream systems below dams result from changes in current velocity, habitat reduction, and alteration in food supply. These alterations, either singly or in combination, can adversely affect aquatic populations below dams. The nature and potential significance of adverse impacts resulting from water level fluctuation are discussed. Recommendations for site-specific evaluation of water level fluctuation at small-scale hydroelectric projects are presented.

  1. New parametrization for the scale dependent growth function in general relativity

    International Nuclear Information System (INIS)

    Dent, James B.; Dutta, Sourish; Perivolaropoulos, Leandros

    2009-01-01

    We study the scale-dependent evolution of the growth function δ(a,k) of cosmological perturbations in dark energy models based on general relativity. This scale dependence is more prominent on cosmological scales of 100h -1 Mpc or larger. We derive a new scale-dependent parametrization which generalizes the well-known Newtonian approximation result f 0 (a)≡(dlnδ 0 /dlna)=Ω(a) γ (γ=(6/11) for ΛCDM) which is a good approximation on scales less than 50h -1 Mpc. Our generalized parametrization is of the form f(a)=(f 0 (a)/1+ξ(a,k)), where ξ(a,k)=(3H 0 2 Ω 0m )/(ak 2 ). We demonstrate that this parametrization fits the exact result of a full general relativistic evaluation of the growth function up to horizon scales for both ΛCDM and dynamical dark energy. In contrast, the scale independent parametrization does not provide a good fit on scales beyond 5% of the horizon scale (k≅0.01h -1 Mpc).

  2. Scale and size effects in dynamic fracture of concretes and rocks

    Directory of Open Access Journals (Sweden)

    Petrov Y.

    2015-01-01

    Full Text Available Structural-temporal approach based on the notion of incubation time is used for interpretation of strain-rate effects in the fracture process of concretes and rocks. It is established that temporal dependences of concretes and rocks are calculated by the incubation time criterion. Experimentally observed different relations between ultimate stresses of concrete and mortar in static and dynamic conditions are explained. It is obtained that compressive strength of mortar at a low strain rate is greater than that of concrete, but at a high strain rate the opposite is true. Influence of confinement pressure on the mechanism of dynamic strength for concretes and rocks is discussed. Both size effect and scale effect for concrete and rocks samples subjected to impact loading are analyzed. Statistical nature of a size effect contrasts to a scale effect that is related to the definition of a spatio-temporal representative volume determining the fracture event on the given scale level.

  3. Scaling relations for soliton compression and dispersive-wave generation in tapered optical fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2018-01-01

    In this paper, scaling relations for soliton compression in tapered optical fibers are derived and discussed. The relations allow simple and semi-accurate estimates of the compression point and output noise level, which is useful, for example, for tunable dispersive-wave generation with an agile ...

  4. Scaling relations between structure and rheology of ageing casein particle gels

    NARCIS (Netherlands)

    Mellema, M.

    2000-01-01

    Mellema, M. (Michel), Scaling relations between structure and rheology of ageing casein particle gels , PhD Thesis, Wageningen University, 150 + 10 pages, references by chapter, English and Dutch summaries (2000).

    The relation between (colloidal)

  5. Scale relation in logσ - logε diagrams for Zry-4

    International Nuclear Information System (INIS)

    Cuniberti, A.M.; Picasso, A.C.

    1991-01-01

    The stress relaxation assay allows access to information about plastic behaviour of the corresponding material. This work describes a stress relaxation test carried out on polycrystalline Zry-4 at 293 K to verify the existence of a scale relation related to the plastic state equation. (Author) [es

  6. Using relational databases for improved sequence similarity searching and large-scale genomic analyses.

    Science.gov (United States)

    Mackey, Aaron J; Pearson, William R

    2004-10-01

    Relational databases are designed to integrate diverse types of information and manage large sets of search results, greatly simplifying genome-scale analyses. Relational databases are essential for management and analysis of large-scale sequence analyses, and can also be used to improve the statistical significance of similarity searches by focusing on subsets of sequence libraries most likely to contain homologs. This unit describes using relational databases to improve the efficiency of sequence similarity searching and to demonstrate various large-scale genomic analyses of homology-related data. This unit describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. These include basic use of the database to generate a novel sequence library subset, how to extend and use seqdb_demo for the storage of sequence similarity search results and making use of various kinds of stored search results to address aspects of comparative genomic analysis.

  7. DISK GALAXY SCALING RELATIONS IN THE SFI++: INTRINSIC SCATTER AND APPLICATIONS

    International Nuclear Information System (INIS)

    Saintonge, Amelie; Spekkens, Kristine

    2011-01-01

    We study the scaling relations between the luminosities, sizes, and rotation velocities of disk galaxies in the SFI++, with a focus on the size-luminosity (RL) and size-rotation velocity (RV) relations. Using isophotal radii instead of disk scale lengths as a size indicator, we find relations that are significantly tighter than previously reported: the correlation coefficients of the template RL and RV relations are r = 0.97 and r= 0.85, respectively, which rival that of the more widely studied LV (Tully-Fisher) relation. The scatter in the SFI++ RL relation is 2.5-4 times smaller than previously reported for various samples, which we attribute to the reliability of isophotal radii relative to disk scale lengths. After carefully accounting for all measurement errors, our scaling relation error budgets are consistent with a constant intrinsic scatter in the LV and RV relations for velocity widths log W ∼> 2.4, with evidence for increasing intrinsic scatter below this threshold. The scatter in the RL relation is consistent with constant intrinsic scatter that is biased by incompleteness at the low-L end. Possible applications of the unprecedentedly tight SFI++ RV and RL relations are investigated. Just like the Tully-Fisher relation, the RV relation can be used as a distance indicator: we derive distances to galaxies with primary Cepheid distances that are accurate to 25%, and reverse the problem to measure a Hubble constant H 0 = 72 ± 7 km s -1 Mpc -1 . Combining the small intrinsic scatter of our RL relation (ε int = 0.034 ± 0.001log [h -1 kpc]) with a simple model for disk galaxy formation, we find an upper limit in the range of disk spin parameters that is a factor of ∼7 smaller than that of the halo spin parameters predicted by cosmological simulations. This likely implies that the halos hosting Sc galaxies have a much narrower distribution of spin parameters than previously thought.

  8. The effective potential in the presence of several mass scales

    International Nuclear Information System (INIS)

    Casas, J.A.; Di Clemente, V.; Quiros, M.

    1999-01-01

    We consider the problem of improving the effective potential in mass independent schemes, as e.g. the MS-bar or DR-bar renormalization scheme, in the presence of an arbitrary number of fields with PHI-dependent masses M i(PHI c ) . We use the decoupling theorem at the scales μ i M i (PHI c ) such that the matching between the effective (low energy) and complete (high energy) one-loop theories contains no thresholds. We find that for any value of PHI c , there is a convenient scale μ * ≡ min i M i (PHI c ), at which the loop expansion has the best behaviour and the effective potential has the least μ-dependence. Furthermore, at this scale the effective potential coincides with the (improved) tree-level one in the effective field theory. The decoupling method is explicitly illustrated with a simple Higgs-Yukawa model, along with its relationship with other decoupling prescriptions and with proposed multi-scale renormalization approaches. The procedure leads to a nice suppression of potentially large logarithms and can be easily adapted to include higher-loop effects, which is explicitly shown at the two-loop level

  9. A low Fermi scale from a simple gaugino-scalar mass relation

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, F. [International School for Advanced Studies, Trieste (Italy); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    In supersymmetric extensions of the Standard Model, the Fermi scale of electroweak symmetry breaking is determined by the pattern of supersymmetry breaking. We present an example, motivated by a higher-dimensional GUT model, where a particular mass relation between the gauginos, third-generation squarks and Higgs fields of the MSSM leads to a Fermi scale smaller than the soft mass scale. This is in agreement with the measured Higgs boson mass. The {mu} parameter is generated independently of supersymmetry breaking, however the {mu} problem becomes less acute due to the little hierarchy between the soft mass scale and the Fermi scale as we argue. The resulting superparticle mass spectra depend on the localization of quark and lepton fields in higher dimensions. In one case, the squarks of the first two generations as well as the gauginos and higgsinos can be in the range of the LHC. Alternatively, only the higgsinos may be accessible at colliders. The lightest superparticle is the gravitino.

  10. Working memory performance inversely predicts spontaneous delta and theta-band scaling relations.

    Science.gov (United States)

    Euler, Matthew J; Wiltshire, Travis J; Niermeyer, Madison A; Butner, Jonathan E

    2016-04-15

    Electrophysiological studies have strongly implicated theta-band activity in human working memory processes. Concurrently, work on spontaneous, non-task-related oscillations has revealed the presence of long-range temporal correlations (LRTCs) within sub-bands of the ongoing EEG, and has begun to demonstrate their functional significance. However, few studies have yet assessed the relation of LRTCs (also called scaling relations) to individual differences in cognitive abilities. The present study addressed the intersection of these two literatures by investigating the relation of narrow-band EEG scaling relations to individual differences in working memory ability, with a particular focus on the theta band. Fifty-four healthy adults completed standardized assessments of working memory and separate recordings of their spontaneous, non-task-related EEG. Scaling relations were quantified in each of the five classical EEG frequency bands via the estimation of the Hurst exponent obtained from detrended fluctuation analysis. A multilevel modeling framework was used to characterize the relation of working memory performance to scaling relations as a function of general scalp location in Cartesian space. Overall, results indicated an inverse relationship between both delta and theta scaling relations and working memory ability, which was most prominent at posterior sensors, and was independent of either spatial or individual variability in band-specific power. These findings add to the growing literature demonstrating the relevance of neural LRTCs for understanding brain functioning, and support a construct- and state-dependent view of their functional implications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effects of Contingency versus Constraints on the Body-Mass Scaling of Metabolic Rate

    Directory of Open Access Journals (Sweden)

    Douglas S. Glazier

    2018-01-01

    Full Text Available I illustrate the effects of both contingency and constraints on the body-mass scaling of metabolic rate by analyzing the significantly different influences of ambient temperature (Ta on metabolic scaling in ectothermic versus endothermic animals. Interspecific comparisons show that increasing Ta results in decreasing metabolic scaling slopes in ectotherms, but increasing slopes in endotherms, a pattern uniquely predicted by the metabolic-level boundaries hypothesis, as amended to include effects of the scaling of thermal conductance in endotherms outside their thermoneutral zone. No other published theoretical model explicitly predicts this striking variation in metabolic scaling, which I explain in terms of contingent effects of Ta and thermoregulatory strategy in the context of physical and geometric constraints related to the scaling of surface area, volume, and heat flow across surfaces. My analysis shows that theoretical models focused on an ideal 3/4-power law, as explained by a single universally applicable mechanism, are clearly inadequate for explaining the diversity and environmental sensitivity of metabolic scaling. An important challenge is to develop a theory of metabolic scaling that recognizes the contingent effects of multiple mechanisms that are modulated by several extrinsic and intrinsic factors within specified constraints.

  12. A NEW SCALING RELATION FOR H II REGIONS IN SPIRAL GALAXIES: UNVEILING THE TRUE NATURE OF THE MASS-METALLICITY RELATION

    International Nuclear Information System (INIS)

    Rosales-Ortega, F. F.; Díaz, A. I.; Sánchez, S. F.; Iglesias-Páramo, J.; Vílchez, J. M.; Mast, D.; Bland-Hawthorn, J.; Husemann, B.

    2012-01-01

    We demonstrate the existence of a local mass, metallicity, star formation relation using spatially resolved optical spectroscopy of H II regions in the local universe. One of the projections of this distribution—the local mass-metallicity relation—extends over a wide range in this parameter space: three orders of magnitude in mass and a factor of eight in metallicity. We explain the new relation as the combined effect of the differential distributions of mass and metallicity in the disks of galaxies, and a selective star formation efficiency. We use this local relation to reproduce—with a noticeable agreement—the mass-metallicity relation seen in galaxies, and conclude that the latter is a scale-up integrated effect of a local relation, supporting the inside-out growth and downsizing scenarios of galaxy evolution.

  13. Trapped Bose-Einstein condensates with Planck-scale induced deformation of the energy-momentum dispersion relation

    International Nuclear Information System (INIS)

    Briscese, F.

    2012-01-01

    We show that harmonically trapped Bose-Einstein condensates can be used to constrain Planck-scale physics. In particular we prove that a Planck-scale induced deformation of the Minkowski energy-momentum dispersion relation δE≃ξ 1 mcp/2M p produces a shift in the condensation temperature T c of about ΔT c /T c 0 ≃10 -6 ξ 1 for typical laboratory conditions. Such a shift allows to bound the deformation parameter up to |ξ 1 |≤10 4 . Moreover we show that it is possible to enlarge ΔT c /T c 0 and improve the bound on ξ 1 lowering the frequency of the harmonic trap. Finally we compare the Planck-scale induced shift in T c with similar effects due to interboson interactions and finite size effects.

  14. Scaling relation between earthquake magnitude and the departure time from P wave similar growth

    Science.gov (United States)

    Noda, Shunta; Ellsworth, William L.

    2016-01-01

    We introduce a new scaling relation between earthquake magnitude (M) and a characteristic of initial P wave displacement. By examining Japanese K-NET data averaged in bins partitioned by Mw and hypocentral distance, we demonstrate that the P wave displacement briefly displays similar growth at the onset of rupture and that the departure time (Tdp), which is defined as the time of departure from similarity of the absolute displacement after applying a band-pass filter, correlates with the final M in a range of 4.5 ≤ Mw ≤ 7. The scaling relation between Mw and Tdp implies that useful information on the final M can be derived while the event is still in progress because Tdp occurs before the completion of rupture. We conclude that the scaling relation is important not only for earthquake early warning but also for the source physics of earthquakes.

  15. Large-scale circulation departures related to wet episodes in north-east Brazil

    Science.gov (United States)

    Sikdar, Dhirendra N.; Elsner, James B.

    1987-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season is divided into dry and wet periods; the FGGE and geostationary satellite data was averaged; and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLPs have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  16. Large-scale circulation departures related to wet episodes in northeast Brazil

    Science.gov (United States)

    Sikdar, D. N.; Elsner, J. B.

    1985-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season season is devided into dry and wet periods, the FGGE and geostationary satellite data was averaged and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLP's have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  17. Correlates of the Rosenberg Self-Esteem Scale Method Effects

    Science.gov (United States)

    Quilty, Lena C.; Oakman, Jonathan M.; Risko, Evan

    2006-01-01

    Investigators of personality assessment are becoming aware that using positively and negatively worded items in questionnaires to prevent acquiescence may negatively impact construct validity. The Rosenberg Self-Esteem Scale (RSES) has demonstrated a bifactorial structure typically proposed to result from these method effects. Recent work suggests…

  18. COOLING COIL EFFECTS ON BLENDING IN A PILOT SCALE TANK

    International Nuclear Information System (INIS)

    Leishear, R.; Poirier, M.; Fowley, M.; Steeper, T.

    2010-01-01

    Blending, or mixing, processes in 1.3 million gallon nuclear waste tanks are complicated by the fact that miles of serpentine, vertical, cooling coils are installed in the tanks. As a step toward investigating blending interference due to coils in this type of tank, a 1/10.85 scale tank and pump model were constructed for pilot scale testing. A series of tests were performed in this scaled tank by adding blue dye to visualize blending, and by adding acid or base tracers to solution to quantify the time required to effectively blend the tank contents. The acid and base tests were monitored with pH probes, which were located in the pilot scale tank to ensure that representative samples were obtained. Using the probes, the hydronium ion concentration [H + ] was measured to ensure that a uniform concentration was obtained throughout the tank. As a result of pilot scale testing, a significantly improved understanding of mixing, or blending, in nuclear waste tanks has been achieved. Evaluation of test data showed that cooling coils in the waste tank model increased pilot scale blending times by 200% in the recommended operating range, compared to previous theoretical estimates of a 10-50% increase. Below the planned operating range, pilot scale blending times were increased by as much as 700% in a tank with coils installed. One pump, rather than two or more, was shown to effectively blend the tank contents, and dual pump nozzles installed parallel to the tank wall were shown to provide optimal blending. In short, experimental results varied significantly from expectations.

  19. Psychometric properties of the satisfaction with food-related Life Scale

    DEFF Research Database (Denmark)

    Schnettler, Berta; Miranda, Horacio; Sepúlveda, José

    2013-01-01

    with proportional attachment per city. Results: The results of the confirmatory factor analysis showed an adequate level of internal consistency and a good fit (root mean square error of approximation ¼ 0.071, goodness-of-fit index ¼ 0.95, adjusted goodness-of-fit index ¼ 0.92) to the SWFL data (1-dimensional......Objective: To evaluate the psychometric properties of the Satisfaction with Food-related Life (SWFL) scale and its relation to the Satisfaction with Life Scale (SWLS) in southern Chile. Methods: A survey was applied to a sample of 316 persons in the principal cities of southern Chile distributed...

  20. Accuracy of a digital weight scale relative to the nintendo wii in measuring limb load asymmetry.

    Science.gov (United States)

    Kumar, Ns Senthil; Omar, Baharudin; Joseph, Leonard H; Hamdan, Nor; Htwe, Ohnmar; Hamidun, Nursalbiyah

    2014-08-01

    [Purpose] The aim of the present study was to investigate the accuracy of a digital weight scale relative to the Wii in limb loading measurement during static standing. [Methods] This was a cross-sectional study conducted at a public university teaching hospital. The sample consisted of 24 participants (12 with osteoarthritis and 12 healthy) recruited through convenient sampling. Limb loading measurements were obtained using a digital weight scale and the Nintendo Wii in static standing with three trials under an eyes-open condition. The limb load asymmetry was computed as the symmetry index. [Results] The accuracy of measurement with the digital weight scale relative to the Nintendo Wii was analyzed using the receiver operating characteristic (ROC) curve and Kolmogorov-Smirnov test (K-S test). The area under the ROC curve was found to be 0.67. Logistic regression confirmed the validity of digital weight scale relative to the Nintendo Wii. The D statistics value from the K-S test was found to be 0.16, which confirmed that there was no significant difference in measurement between the equipment. [Conclusion] The digital weight scale is an accurate tool for measuring limb load asymmetry. The low price, easy availability, and maneuverability make it a good potential tool in clinical settings for measuring limb load asymmetry.

  1. OBSERVED SCALING RELATIONS FOR STRONG LENSING CLUSTERS: CONSEQUENCES FOR COSMOLOGY AND CLUSTER ASSEMBLY

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Moustakas, Leonidas A.; Natarajan, Priyamvada

    2010-01-01

    Scaling relations of observed galaxy cluster properties are useful tools for constraining cosmological parameters as well as cluster formation histories. One of the key cosmological parameters, σ 8 , is constrained using observed clusters of galaxies, although current estimates of σ 8 from the scaling relations of dynamically relaxed galaxy clusters are limited by the large scatter in the observed cluster mass-temperature (M-T) relation. With a sample of eight strong lensing clusters at 0.3 8 , but combining the cluster concentration-mass relation with the M-T relation enables the inclusion of unrelaxed clusters as well. Thus, the resultant gains in the accuracy of σ 8 measurements from clusters are twofold: the errors on σ 8 are reduced and the cluster sample size is increased. Therefore, the statistics on σ 8 determination from clusters are greatly improved by the inclusion of unrelaxed clusters. Exploring cluster scaling relations further, we find that the correlation between brightest cluster galaxy (BCG) luminosity and cluster mass offers insight into the assembly histories of clusters. We find preliminary evidence for a steeper BCG luminosity-cluster mass relation for strong lensing clusters than the general cluster population, hinting that strong lensing clusters may have had more active merging histories.

  2. Anomalous Hall effect scaling in ferromagnetic thin films

    KAUST Repository

    Grigoryan, Vahram L.

    2017-10-23

    We propose a scaling law for anomalous Hall effect in ferromagnetic thin films. Our approach distinguishes multiple scattering sources, namely, bulk impurity, phonon for Hall resistivity, and most importantly the rough surface contribution to longitudinal resistivity. In stark contrast to earlier laws that rely on temperature- and thickness-dependent fitting coefficients, this scaling law fits the recent experimental data excellently with constant parameters that are independent of temperature and film thickness, strongly indicating that this law captures the underlying physical processes. Based on a few data points, this scaling law can even fit all experimental data in full temperature and thickness range. We apply this law to interpret the experimental data for Fe, Co, and Ni and conclude that (i) the phonon-induced skew scattering is unimportant as expected; (ii) contribution from the impurity-induced skew scattering is negative; (iii) the intrinsic (extrinsic) mechanism dominates in Fe (Co), and both the extrinsic and intrinsic contributions are important in Ni.

  3. Anomalous Hall effect scaling in ferromagnetic thin films

    KAUST Repository

    Grigoryan, Vahram L.; Xiao, Jiang; Wang, Xuhui; Xia, Ke

    2017-01-01

    We propose a scaling law for anomalous Hall effect in ferromagnetic thin films. Our approach distinguishes multiple scattering sources, namely, bulk impurity, phonon for Hall resistivity, and most importantly the rough surface contribution to longitudinal resistivity. In stark contrast to earlier laws that rely on temperature- and thickness-dependent fitting coefficients, this scaling law fits the recent experimental data excellently with constant parameters that are independent of temperature and film thickness, strongly indicating that this law captures the underlying physical processes. Based on a few data points, this scaling law can even fit all experimental data in full temperature and thickness range. We apply this law to interpret the experimental data for Fe, Co, and Ni and conclude that (i) the phonon-induced skew scattering is unimportant as expected; (ii) contribution from the impurity-induced skew scattering is negative; (iii) the intrinsic (extrinsic) mechanism dominates in Fe (Co), and both the extrinsic and intrinsic contributions are important in Ni.

  4. Ecosystem assessment methods for cumulative effects at the regional scale

    International Nuclear Information System (INIS)

    Hunsaker, C.T.

    1989-01-01

    Environmental issues such as nonpoint-source pollution, acid rain, reduced biodiversity, land use change, and climate change have widespread ecological impacts and require an integrated assessment approach. Since 1978, the implementing regulations for the National Environmental Policy Act (NEPA) have required assessment of potential cumulative environmental impacts. Current environmental issues have encouraged ecologists to improve their understanding of ecosystem process and function at several spatial scales. However, management activities usually occur at the local scale, and there is little consideration of the potential impacts to the environmental quality of a region. This paper proposes that regional ecological risk assessment provides a useful approach for assisting scientists in accomplishing the task of assessing cumulative impacts. Critical issues such as spatial heterogeneity, boundary definition, and data aggregation are discussed. Examples from an assessment of acidic deposition effects on fish in Adirondack lakes illustrate the importance of integrated data bases, associated modeling efforts, and boundary definition at the regional scale

  5. Scaling Relations for the Thermal Structure of Segmented Oceanic Transform Faults

    Science.gov (United States)

    Wolfson-Schwehr, M.; Boettcher, M. S.; Behn, M. D.

    2015-12-01

    Mid-ocean ridge-transform faults (RTFs) are a natural laboratory for studying strike-slip earthquake behavior due to their relatively simple geometry, well-constrained slip rates, and quasi-periodic seismic cycles. However, deficiencies in our understanding of the limited size of the largest RTF earthquakes are due, in part, to not considering the effect of short intra-transform spreading centers (ITSCs) on fault thermal structure. We use COMSOL Multiphysics to run a series of 3D finite element simulations of segmented RTFs with visco-plastic rheology. The models test a range of RTF segment lengths (L = 10-150 km), ITSC offset lengths (O = 1-30 km), and spreading rates (V = 2-14 cm/yr). The lithosphere and upper mantle are approximated as steady-state, incompressible flow. Coulomb failure incorporates brittle processes in the lithosphere, and a temperature-dependent flow law for dislocation creep of olivine activates ductile deformation in the mantle. ITSC offsets as small as 2 km affect the thermal structure underlying many segmented RTFs, reducing the area above the 600˚C isotherm, A600, and thus the size of the largest expected earthquakes, Mc. We develop a scaling relation for the critical ITSC offset length, OC, which significantly reduces the thermal affect of adjacent fault segments of length L1 and L2. OC is defined as the ITSC offset that results in an area loss ratio of R = (Aunbroken - Acombined)/Aunbroken - Adecoupled) = 63%, where Aunbroken = C600(L1+L2)1.5V-0.6 is A600 for an RTF of length L1 + L2; Adecoupled = C600(L11.5+L21.5)V-0.6 is the combined A600 of RTFs of lengths L1 and L2, respectively; and Acombined = Aunbroken exp(-O/ OC) + Adecoupled (1-exp(-O/ OC)). C600 is a constant. We use OC and kinematic fault parameters (L1, L2, O, and V) to develop a scaling relation for the approximate seismogenic area, Aseg, for each segment of a RTF system composed of two fault segments. Finally, we estimate the size of Mc on a fault segment based on Aseg. We

  6. On the mass-coupling relation of multi-scale quantum integrable models

    Energy Technology Data Exchange (ETDEWEB)

    Bajnok, Zoltán; Balog, János [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Ito, Katsushi [Department of Physics, Tokyo Institute of Technology,2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Satoh, Yuji [Institute of Physics, University of Tsukuba,1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Tóth, Gábor Zsolt [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary)

    2016-06-13

    We determine exactly the mass-coupling relation for the simplest multi-scale quantum integrable model, the homogenous sine-Gordon model with two independent mass-scales. We first reformulate its perturbed coset CFT description in terms of the perturbation of a projected product of minimal models. This representation enables us to identify conserved tensor currents on the UV side. These UV operators are then mapped via form factor perturbation theory to operators on the IR side, which are characterized by their form factors. The relation between the UV and IR operators is given in terms of the sought-for mass-coupling relation. By generalizing the Θ sum rule Ward identity we are able to derive differential equations for the mass-coupling relation, which we solve in terms of hypergeometric functions. We check these results against the data obtained by numerically solving the thermodynamic Bethe Ansatz equations, and find a complete agreement.

  7. One-loop potential with scale invariance and effective operators

    CERN Document Server

    Ghilencea, D M

    2016-01-01

    We study quantum corrections to the scalar potential in classically scale invariant theories, using a manifestly scale invariant regularization. To this purpose, the subtraction scale $\\mu$ of the dimensional regularization is generated after spontaneous scale symmetry breaking, from a subtraction function of the fields, $\\mu(\\phi,\\sigma)$. This function is then uniquely determined from general principles showing that it depends on the dilaton only, with $\\mu(\\sigma)\\sim \\sigma$. The result is a scale invariant one-loop potential $U$ for a higgs field $\\phi$ and dilaton $\\sigma$ that contains an additional {\\it finite} quantum correction $\\Delta U(\\phi,\\sigma)$, beyond the Coleman Weinberg term. $\\Delta U$ contains new, non-polynomial effective operators like $\\phi^6/\\sigma^2$ whose quantum origin is explained. A flat direction is maintained at the quantum level, the model has vanishing vacuum energy and the one-loop correction to the mass of $\\phi$ remains small without tuning (of its self-coupling, etc) bey...

  8. Scale-location specific relations between soil nutrients and topographic factors in the Fen River Basin, Chinese Loess Plateau

    Science.gov (United States)

    Zhu, Hongfen; Bi, Rutian; Duan, Yonghong; Xu, Zhanjun

    2017-06-01

    Understanding scale- and location-specific variations of soil nutrients in cultivated land is a crucial consideration for managing agriculture and natural resources effectively. In the present study, wavelet coherency was used to reveal the scale-location specific correlations between soil nutrients, including soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK), as well as topographic factors (elevation, slope, aspect, and wetness index) in the cultivated land of the Fen River Basin in Shanxi Province, China. The results showed that SOM, TN, AP, and AK were significantly inter-correlated, and that the scales at which soil nutrients were correlated differed in different landscapes, and were generally smaller in topographically rougher terrain. All soil nutrients but TN were significantly influenced by the wetness index at relatively large scales (32-72 km) and AK was significantly affected by the aspect at large scales at partial locations, showing localized features. The results of this study imply that the wetness index should be taken into account during farming practices to improve the soil nutrients of cultivated land in the Fen River Basin at large scales.

  9. Renormalization group and relations between scattering amplitudes in a theory with different mass scales

    International Nuclear Information System (INIS)

    Gulov, A.V.; Skalozub, V.V.

    2000-01-01

    In the Yukawa model with two different mass scales the renormalization group equation is used to obtain relations between scattering amplitudes at low energies. Considering fermion-fermion scattering as an example, a basic one-loop renormalization group relation is derived which gives possibility to reduce the problem to the scattering of light particles on the external field substituting a heavy virtual state. Applications of the results to problem of searching new physics beyond the Standard Model are discussed [ru

  10. The Work-Related Quality of Life Scale for Higher Education Employees

    Science.gov (United States)

    Edwards, Julian A.; Van Laar, Darren; Easton, Simon; Kinman, Gail

    2009-01-01

    Previous research suggests that higher education employees experience comparatively high levels of job stress. A range of instruments, both generic and job-specific, has been used to measure stressors and strains in this occupational context. The Work-related Quality of Life (WRQoL) scale is a measure designed to capture perceptions of the working…

  11. Planck early results. XII. Cluster Sunyaev-Zeldovich optical scaling relations

    DEFF Research Database (Denmark)

    Poutanen, T.; Natoli, P.; Polenta, G.

    2011-01-01

    We present the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y500 - N200) for the MaxBCG cluster catalogue. Employing a multi-frequency matched filter on the Planck sky maps, we measure the SZ signal for each cluster by adapting the filter according to weak-lensing calibrated mass-r...

  12. The spatial extent of rainfall events and its relation to precipitation scaling

    NARCIS (Netherlands)

    Lochbihler, K.U.; Lenderink, Geert; Siebesma, A.P.

    2017-01-01

    Observations show that subdaily precipitation extremes increase with dew point temperature at a rate exceeding the Clausius-Clapeyron (CC) relation. The understanding of this so-called super CC scaling is still incomplete, and observations of convective cell properties could provide important

  13. Constraints on Dark Energy, Observable-mass Scaling Relations, Neutrino Properties and Gravity from Galaxy Clusters

    DEFF Research Database (Denmark)

    Rapetti Serra, David Angelo

    Using a data set of 238 cluster detections drawn from the ROSAT All-Sky Survey and X-ray follow-up observations from the Chandra X-ray Observatory and/or ROSAT for 94 of those clusters we obtain tight constraints on dark energy, both luminosity-mass and temperature-mass scaling relations, neutrin...

  14. Intrinsic symmetry of the scaling laws and generalized relations for critical indices

    International Nuclear Information System (INIS)

    Plechko, V.N.

    1982-01-01

    It is shown that the scating taws for criticat induces can be expressed as a consequence of a simple symmetry principle. Heuristic relations for critical induces of generalizing scaling laws for the case of arbitrary order parameters are presented, which manifestiy have a symmetric form and include the standard scalling laws as a particular case

  15. How covalence breaks adsorption-energy scaling relations and solvation restores them

    DEFF Research Database (Denmark)

    Vallejo, Federico Calle; Krabbe, Alexander; García Lastra, Juan Maria

    2017-01-01

    It is known that breaking the scaling relations between the adsorption energies of *O, *OH, and *OOH is paramount in catalyzing more efficiently the reduction of O2 in fuel cells and its evolution in electrolyzers. Taking metalloporphyrins as a case study, we evaluate here the adsorption energies...

  16. Scaling of lifting forces in relation to object size in whole body lifting

    NARCIS (Netherlands)

    Kingma, I.; van Dieen, J.H.; Toussaint, H.M.

    2005-01-01

    Subjects prepare for a whole body lifting movement by adjusting their posture and scaling their lifting forces to the expected object weight. The expectancy is based on visual and haptic size cues. This study aimed to find out whether lifting force overshoots related to object size cues disappear or

  17. An empirical velocity scale relation for modelling a design of large mesh pelagic trawl

    NARCIS (Netherlands)

    Ferro, R.S.T.; Marlen, van B.; Hansen, K.E.

    1996-01-01

    Physical models of fishing nets are used in fishing technology research at scales of 1:40 or smaller. As with all modelling involving fluid flow, a set of rules is required to determine the geometry of the model and its velocity relative to the water. Appropriate rules ensure that the model is

  18. Planck-scale effects on WIMP dark matter

    Directory of Open Access Journals (Sweden)

    Sofiane M Boucenna

    2014-01-01

    Full Text Available There exists a widely known conjecture that gravitational effects violate global symmetries. We study the effect of global-symmetry violating higher-dimension operators induced by Planck-scale physics on the properties of WIMP dark matter. Using an effective description, we show that the lifetime of the WIMP dark matter candidate can satisfy cosmological bounds under reasonable assumptions regarding the strength of the dimension-five operators. On the other hand, the indirect WIMP dark matter detection signal is significantly enhanced due to new decay channels.

  19. NGC 1275: An Outlier of the Black Hole-Host Scaling Relations

    Directory of Open Access Journals (Sweden)

    Eleonora Sani

    2018-02-01

    Full Text Available The active galaxy NGC 1275 lies at the center of the Perseus cluster of galaxies, being an archetypal BH-galaxy system that is supposed to fit well with the MBH-host scaling relations obtained for quiescent galaxies. Since it harbors an obscured AGN, only recently our group has been able to estimate its black hole mass. Here our aim is to pinpoint NGC 1275 on the less dispersed scaling relations, namely the MBH-σ⋆ and MBH−Lbul planes. Starting from our previous work (Ricci et al., 2017a, we estimate that NGC 1275 falls well outside the intrinsic dispersion of the MBH-σ⋆ plane being 1.2 dex (in black hole mass displaced with respect to the scaling relations. We then perform a 2D morphological decomposition analysis on Spitzer/IRAC images at 3.6 μm and find that, beyond the bright compact nucleus that dominates the central emission, NGC 1275 follows a de Vaucouleurs profile with no sign of significant star formation nor clear merger remnants. Nonetheless, its displacement on the MBH−L3.6,bul plane with respect to the scaling relation is as high as observed in the MBH-σ⋆. We explore various scenarios to interpret such behaviors, of which the most realistic one is the evolutionary pattern followed by NGC 1275 to approach the scaling relation. We indeed speculate that NGC 1275 might be a specimen for those galaxies in which the black holes adjusted to its host.

  20. Scale-Dependent Assessment of Relative Disease Resistance to Plant Pathogens

    Directory of Open Access Journals (Sweden)

    Peter Skelsey

    2014-03-01

    Full Text Available Phenotyping trials may not take into account sufficient spatial context to infer quantitative disease resistance of recommended varieties in commercial production settings. Recent ecological theory—the dispersal scaling hypothesis—provides evidence that host heterogeneity and scale of host heterogeneity interact in a predictable and straightforward manner to produce a unimodal (“humpbacked” distribution of epidemic outcomes. This suggests that the intrinsic artificiality (scale and design of experimental set-ups may lead to spurious conclusions regarding the resistance of selected elite cultivars, due to the failure of experimental efforts to accurately represent disease pressure in real agricultural situations. In this model-based study we investigate the interaction of host heterogeneity and scale as a confounding factor in the inference from ex-situ assessment of quantitative disease resistance to commercial production settings. We use standard modelling approaches in plant disease epidemiology and a number of different agronomic scenarios. Model results revealed that the interaction of heterogeneity and scale is a determinant of relative varietal performance under epidemic conditions. This is a previously unreported phenomenon that could provide a new basis for informing the design of future phenotyping platforms, and optimising the scale at which quantitative disease resistance is assessed.

  1. Scale dependence of the effective matrix diffusion coefficient: Evidence and preliminary interpretation

    International Nuclear Information System (INIS)

    Liu, Hui-Hai; Zhang, Yingqi; Molz, Fred J.

    2006-01-01

    The exchange of solute mass (through molecular diffusion) between fluid in fractures and fluid in the rock matrix is called matrix diffusion. Owing to the orders-of-magnitude slower flow velocity in the matrix compared to fractures, matrix diffusion can significantly retard solute transport in fractured rock, and therefore is an important process for a variety of problems, including remediation of subsurface contamination and geological disposal of nuclear waste. The effective matrix diffusion coefficient (molecular diffusion coefficient in free water multiplied by matrix tortuosity) is an important parameter for describing matrix diffusion, and in many cases largely determines overall solute transport behavior. While matrix diffusion coefficient values measured from small rock samples in the laboratory are generally used for modeling field-scale solute transport in fractured rock (Boving and Grathwohl, 2001), several research groups recently have independently found that effective matrix diffusion coefficients much larger than laboratory measurements are needed to match field-scale tracer-test data (Neretnieks, 2002; Becker and Shapiro, 2000; Shapiro, 2001; Liu et al., 2003, 2004a). In addition to the observed enhancement, Liu et al. (2004b), based on a relatively small number of field-test results, reported that the effective matrix diffusion coefficient might be scale dependent, and, like permeability and dispersivity, it seems to increases with test scale. This scale-dependence has important implications for large-scale solute transport in fractured rock. Although a number of mechanisms have been proposed to explain the enhancement of the effective matrix diffusion coefficient, the potential scale dependence and its mechanisms are not fully investigated at this stage. The major objective of this study is to again demonstrate (based on more data published in the literature than those used in Liu et al. [2004b]) the potential scale dependence of the effective

  2. Scale Dependence of the Effective Matrix Diffusion Coefficient : Evidence and Preliminary Interpretation

    International Nuclear Information System (INIS)

    H.H. Liu; Y. Zhang

    2006-01-01

    The exchange of solute mass (through molecular diffusion) between fluid in fractures and fluid in the rock matrix is called matrix diffusion. Owing to the orders-of-magnitude slower flow velocity in the matrix compared to fractures, matrix diffusion can significantly retard solute transport in fractured rock, and therefore is an important process for a variety of problems, including remediation of subsurface contamination and geological disposal of nuclear waste. The effective matrix diffusion coefficient (molecular diffusion coefficient in free water multiplied by matrix tortuosity) is an important parameter for describing matrix diffusion, and in many cases largely determines overall solute transport behavior. While matrix diffusion coefficient values measured from small rock samples in the laboratory are generally used for modeling field-scale solute transport in fractured rock (Boving and Grathwohl, 2001), several research groups recently have independently found that effective matrix diffusion coefficients much larger than laboratory measurements are needed to match field-scale tracer-test data (Neretnieks, 2002; Becker and Shapiro, 2000; Shapiro, 2001; Liu et al., 2003,2004a). In addition to the observed enhancement, Liu et al. (2004b), based on a relatively small number of field-test results, reported that the effective matrix diffusion coefficient might be scale dependent, and, like permeability and dispersivity, it seems to increases with test scale. This scale-dependence has important implications for large-scale solute transport in fractured rock. Although a number of mechanisms have been proposed to explain the enhancement of the effective matrix diffusion coefficient, the potential scale dependence and its mechanisms are not fully investigated at this stage. The major objective of this study is to again demonstrate (based on more data published in the literature than those used in Liu et al. [2004b]) the potential scale dependence of the effective

  3. Scaling of Anomalous Hall Effects in Facing-Target Reactively Sputtered Fe4N Films

    KAUST Repository

    Zhang, Yan

    2015-05-13

    Anomalous Hall effect (AHE) in the reactively sputtered epitaxial and polycrystalline γ′-Fe4N films is investigated systematically. The Hall resistivity is positive in the entire temperature range. The magnetization, carrier density and grain boundaries scattering have a major impact on the AHE scaling law. The scaling exponent γ in the conventional scaling of is larger than 2 in both the epitaxial and polycrystalline γ′-Fe4N films. Although γ>2 has been found in heterogeneous systems due to the effects of the surface and interface scattering on AHE, γ>2 is not expected in homogenous epitaxial systems. We demonstrated that γ>2 results from residual resistivity (ρxx0) in γ′-Fe4N films. Furthermore, the side-jump and intrinsic mechanisms are dominant in both epitaxial and polycrystalline samples according to the proper scaling relation.

  4. Intrinsic noise in aggressively scaled field-effect transistors

    International Nuclear Information System (INIS)

    Albareda, G; Jiménez, D; Oriols, X

    2009-01-01

    According to roadmap projections, nanoscale field-effect transistors (FETs) with channel lengths below 30 nm and several gates (for improving their gate control over the source–drain conductance) will come to the market in the next few years. However, few studies deal with the noise performance of these aggressively scaled FETs. In this work, a study of the effect of the intrinsic (thermal and shot) noise of such FETs on the performance of an analog amplifier and a digital inverter is carried out by means of numerical simulations with a powerful Monte Carlo (quantum) simulator. The numerical data indicate important drawbacks in the noise performance of aggressively scaled FETs that could invalidate roadmap projections as regards analog and digital applications

  5. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  6. Renormalization and effective actions for general relativity

    International Nuclear Information System (INIS)

    Neugebohrn, F.

    2007-05-01

    Quantum gravity is analyzed from the viewpoint of the renormalization group. The analysis is based on methods introduced by J. Polchinski concerning the perturbative renormalization with flow equations. In the first part of this work, the program of renormalization with flow equations is reviewed and then extended to effective field theories that have a finite UV cutoff. This is done for a scalar field theory by imposing additional renormalization conditions for some of the nonrenormalizable couplings. It turns out that one so obtains a statement on the predictivity of the effective theory at scales far below the UV cutoff. In particular, nonrenormalizable theories can be treated without problems in the proposed framework. In the second part, the standard covariant BRS quantization program for Euclidean Einstein gravity is applied. A momentum cutoff regularization is imposed and the resulting violation of the Slavnov-Taylor identities is discussed. Deriving Polchinski's renormalization group equation for Euclidean quantum gravity, the predictivity of effective quantum gravity at scales far below the Planck scale is investigated with flow equations. A fine-tuning procedure for restoring the violated Slavnov-Taylor identities is proposed and it is argued that in the effective quantum gravity context, the restoration will only be accomplished with finite accuracy. Finally, the no-cutoff limit of Euclidean quantum gravity is analyzed from the viewpoint of the Polchinski method. It is speculated whether a limit with nonvanishing gravitational constant might exist where the latter would ultimatively be determined by the cosmological constant and the masses of the elementary particles. (orig.)

  7. Renormalization and effective actions for general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Neugebohrn, F.

    2007-05-15

    Quantum gravity is analyzed from the viewpoint of the renormalization group. The analysis is based on methods introduced by J. Polchinski concerning the perturbative renormalization with flow equations. In the first part of this work, the program of renormalization with flow equations is reviewed and then extended to effective field theories that have a finite UV cutoff. This is done for a scalar field theory by imposing additional renormalization conditions for some of the nonrenormalizable couplings. It turns out that one so obtains a statement on the predictivity of the effective theory at scales far below the UV cutoff. In particular, nonrenormalizable theories can be treated without problems in the proposed framework. In the second part, the standard covariant BRS quantization program for Euclidean Einstein gravity is applied. A momentum cutoff regularization is imposed and the resulting violation of the Slavnov-Taylor identities is discussed. Deriving Polchinski's renormalization group equation for Euclidean quantum gravity, the predictivity of effective quantum gravity at scales far below the Planck scale is investigated with flow equations. A fine-tuning procedure for restoring the violated Slavnov-Taylor identities is proposed and it is argued that in the effective quantum gravity context, the restoration will only be accomplished with finite accuracy. Finally, the no-cutoff limit of Euclidean quantum gravity is analyzed from the viewpoint of the Polchinski method. It is speculated whether a limit with nonvanishing gravitational constant might exist where the latter would ultimatively be determined by the cosmological constant and the masses of the elementary particles. (orig.)

  8. Stress and adhesion of chromia-rich scales on ferritic stainless steels in relation with spallation

    Directory of Open Access Journals (Sweden)

    A. Galerie

    2004-03-01

    Full Text Available The relation between chromia scale spallation during oxidation or cooling down of ferritic stainless steels is generally discussed in terms of mechanical stresses induced by volume changes or differential thermal expansion. In the present paper, growth and thermal stress measurements in scales grown on different ferritic steel grades have shown that the main stress accumulation occurs during isothermal scale growth and that thermal stresses are of minor importance. However, when spallation occurs, it is always during cooling down. Steel-oxide interface undulation seems to play a major role at this stage, thus relating spallation to the metal mechanical properties, thickness and surface preparation. A major influence on spallation of the minor stabilizing elements of the steels was observed which could not be related to any difference in stress state. Therefore, an original inverted blister test was developed to derive quantitative values of the metal-oxide adhesion energy. These values clearly confirmed that this parameter was influenced by scale thickness and by minor additions, titanium greatly increasing adhesion whereas niobium decreased it.

  9. UPDATED MASS SCALING RELATIONS FOR NUCLEAR STAR CLUSTERS AND A COMPARISON TO SUPERMASSIVE BLACK HOLES

    International Nuclear Information System (INIS)

    Scott, Nicholas; Graham, Alister W.

    2013-01-01

    We investigate whether or not nuclear star clusters and supermassive black holes (SMBHs) follow a common set of mass scaling relations with their host galaxy's properties, and hence can be considered to form a single class of central massive object (CMO). We have compiled a large sample of galaxies with measured nuclear star cluster masses and host galaxy properties from the literature and fit log-linear scaling relations. We find that nuclear star cluster mass, M NC , correlates most tightly with the host galaxy's velocity dispersion: log M NC = (2.11 ± 0.31)log (σ/54) + (6.63 ± 0.09), but has a slope dramatically shallower than the relation defined by SMBHs. We find that the nuclear star cluster mass relations involving host galaxy (and spheroid) luminosity and stellar and dynamical mass, intercept with but are in general shallower than the corresponding black hole scaling relations. In particular, M NC ∝M 0.55±0.15 Gal,dyn ; the nuclear cluster mass is not a constant fraction of its host galaxy or spheroid mass. We conclude that nuclear stellar clusters and SMBHs do not form a single family of CMOs.

  10. Universal scaling behaviors of meteorological variables’ volatility and relations with original records

    Science.gov (United States)

    Lu, Feiyu; Yuan, Naiming; Fu, Zuntao; Mao, Jiangyu

    2012-10-01

    Volatility series (defined as the magnitude of the increments between successive elements) of five different meteorological variables over China are analyzed by means of detrended fluctuation analysis (DFA for short). Universal scaling behaviors are found in all volatility records, whose scaling exponents take similar distributions with similar mean values and standard deviations. To reconfirm the relation between long-range correlations in volatility and nonlinearity in original series, DFA is also applied to the magnitude records (defined as the absolute values of the original records). The results clearly indicate that the nonlinearity of the original series is more pronounced in the magnitude series.

  11. Measuring emotions during epistemic activities: the Epistemically-Related Emotion Scales.

    Science.gov (United States)

    Pekrun, Reinhard; Vogl, Elisabeth; Muis, Krista R; Sinatra, Gale M

    2017-09-01

    Measurement instruments assessing multiple emotions during epistemic activities are largely lacking. We describe the construction and validation of the Epistemically-Related Emotion Scales, which measure surprise, curiosity, enjoyment, confusion, anxiety, frustration, and boredom occurring during epistemic cognitive activities. The instrument was tested in a multinational study of emotions during learning from conflicting texts (N = 438 university students from the United States, Canada, and Germany). The findings document the reliability, internal validity, and external validity of the instrument. A seven-factor model best fit the data, suggesting that epistemically-related emotions should be conceptualised in terms of discrete emotion categories, and the scales showed metric invariance across the North American and German samples. Furthermore, emotion scores changed over time as a function of conflicting task information and related significantly to perceived task value and use of cognitive and metacognitive learning strategies.

  12. Electron beam absorption in solid and in water phantoms: depth scaling and energy-range relations

    International Nuclear Information System (INIS)

    Grosswendt, B.; Roos, M.

    1989-01-01

    In electron dosimetry energy parameters are used with values evaluated from ranges in water. The electron ranges in water may be deduced from ranges measured in solid phantoms. Several procedures recommended by national and international organisations differ both in the scaling of the ranges and in the energy-range relations for water. Using the Monte Carlo method the application of different procedures for electron energies below 10 MeV is studied for different phantom materials. It is shown that deviations in the range scaling and in the energy-range relations for water may accumulate to give energy errors of several per cent. In consequence energy-range relations are deduced for several solid phantom materials which enable a single-step energy determination. (author)

  13. How to ask about patient satisfaction? The visual analogue scale is less vulnerable to confounding factors and ceiling effect than a symmetric Likert scale.

    Science.gov (United States)

    Voutilainen, Ari; Pitkäaho, Taina; Kvist, Tarja; Vehviläinen-Julkunen, Katri

    2016-04-01

    To study the effects of scale type (visual analogue scale vs. Likert), item order (systematic vs. random), item non-response and patient-related characteristics (age, gender, subjective health, need for assistance with filling out the questionnaire and length of stay) on the results of patient satisfaction surveys. Although patient satisfaction is one of the most intensely studied issues in the health sciences, research information about the effects of possible instrument-related confounding factors on patient satisfaction surveys is scant. A quasi-experimental design was employed. A non-randomized sample of 150 surgical patients was gathered to minimize possible alterations in care quality. Data were collected in May-September 2014 from one tertiary hospital in Finland using the Revised Humane Caring Scale instrument. New versions of the instrument were created for the present purposes. In these versions, items were either in a visual analogue format or Likert-scaled, in systematic or random order. The data were analysed using an analysis of covariance and a paired samples t-test. The visual analogue scale items were less vulnerable to bias from confounding factors than were the Likert-scaled items. The visual analogue scale also avoided the ceiling effect better than Likert and the time needed to complete the visual analogue scale questionnaire was 28% shorter than that needed to complete the Likert-scaled questionnaire. The present results supported the use of visual analogue scale rather than Likert scaling in patient satisfaction surveys and stressed the need to account for as many potential confounding factors as possible. © 2015 John Wiley & Sons Ltd.

  14. Scaling Green-Kubo Relation and Application to Three Aging Systems

    Directory of Open Access Journals (Sweden)

    A. Dechant

    2014-02-01

    Full Text Available The Green-Kubo formula relates the spatial diffusion coefficient to the stationary velocity autocorrelation function. We derive a generalization of the Green-Kubo formula that is valid for systems with long-range or nonstationary correlations for which the standard approach is no longer valid. For the systems under consideration, the velocity autocorrelation function ⟨v(t+τv(t⟩ asymptotically exhibits a certain scaling behavior and the diffusion is anomalous, ⟨x^{2}(t⟩≃2D_{ν}t^{ν}. We show how both the anomalous diffusion coefficient D_{ν} and the exponent ν can be extracted from this scaling form. Our scaling Green-Kubo relation thus extends an important relation between transport properties and correlation functions to generic systems with scale-invariant dynamics. This includes stationary systems with slowly decaying power-law correlations, as well as aging systems, systems whose properties depend on the age of the system. Even for systems that are stationary in the long-time limit, we find that the long-time diffusive behavior can strongly depend on the initial preparation of the system. In these cases, the diffusivity D_{ν} is not unique, and we determine its values, respectively, for a stationary or nonstationary initial state. We discuss three applications of the scaling Green-Kubo relation: free diffusion with nonlinear friction corresponding to cold atoms diffusing in optical lattices, the fractional Langevin equation with external noise recently suggested to model active transport in cells, and the Lévy walk with numerous applications, in particular, blinking quantum dots. These examples underline the wide applicability of our approach, which is able to treat very different mechanisms of anomalous diffusion.

  15. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    1997-01-01

    This book deals with special relativity theory and its application to cosmology. It presents Einstein's theory of space and time in detail, and describes the large scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The book will be of interest to cosmologists, astrophysicists, theoretical

  16. Isolating relativistic effects in large-scale structure

    Science.gov (United States)

    Bonvin, Camille

    2014-12-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  17. Degradation and effect of hydrogen peroxide in small-scale recirculation aquaculture system biofilters

    DEFF Research Database (Denmark)

    Møller, Martin Sune; Arvin, Erik; Pedersen, Lars-Flemming

    2010-01-01

    From an environmental point of view, hydrogen peroxide (HP) has beneficial attributes compared with other disinfectants in terms of its ready degradation and neutral by-products. The rapid degradation of HP can, however, cause difficulties with regard to safe and efficient water treatment when...... applied in different systems. In this study, we investigated the degradation kinetics of HP in biofilters from water recirculating aquaculture systems (RAS). The potential effect of HP on the nitrification process in the biofilters was also examined. Biofilter elements from two different pilot-scale RAS......−1 maintained over 3 h had a moderate inhibitory effect on the biofilter elements from one of the RAS with relatively high organic loading, while the nitrification was severely inhibited in the pilot-scale biofilters from the other RAS with a relatively low organic loading. A pilot-scale RAS...

  18. Nonlinear effects of dark energy clustering beyond the acoustic scales

    International Nuclear Information System (INIS)

    Anselmi, Stefano; Nacir, Diana López; Sefusatti, Emiliano

    2014-01-01

    We extend the resummation method of Anselmi and Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available

  19. Nonlinear effects of dark energy clustering beyond the acoustic scales

    Energy Technology Data Exchange (ETDEWEB)

    Anselmi, Stefano [Department of Physics/CERCA/ISO, Case Western Reserve University, Cleveland, OH 44106-7079 (United States); Nacir, Diana López [The Abdus Salam International Center for Theoretical Physics, Strada costiera 11, I-34151 Trieste (Italy); Sefusatti, Emiliano, E-mail: stefano.anselmi@case.edu, E-mail: dlopez_n@ictp.it, E-mail: emiliano.sefusatti@brera.inaf.it [INAF - Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Saint Lucia) (Italy)

    2014-07-01

    We extend the resummation method of Anselmi and Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available.

  20. Sensitivity and responsiveness of the health-related quality of life in stroke patients-40 (HRQOLISP-40) scale.

    Science.gov (United States)

    Vincent-Onabajo, Grace O; Owolabi, Mayowa O; Hamzat, Talhatu K

    2014-01-01

    To investigate the sensitivity and responsiveness of the Health-Related Quality of Life in Stroke Patients-40 (HRQOLISP-40) scale in evaluating stroke patients from onset to 12 months. Fifty-five patients with first-incidence stroke were followed-up for 12 months. The HRQOLISP-40 scale was used to assess health-related quality of life (HRQOL) while stroke severity was assessed with the Stroke Levity Scale. Sensitivity to change was assessed by analyzing changes in the HRQOLISP-40 scores between pairs of months with paired samples t-test. Standardized effect size (SES) and standardized response mean (SRM) were used to express responsiveness. Overall HRQOL and domains in the physical sphere of the HRQOLISP-40 were sensitive to change at different time intervals in the first 12 months post-stroke. Marked responsiveness (SES and SRM >0.7) was demonstrated by the overall scale, and the physical, psycho-emotional and cognitive domains at varying time intervals. For instance, SRM was greater than 0.7 between 1 and 6, 3 and 12, 1 and 9, and 1 and 12 months for both the physical and psycho-emotional domains. The HRQOLISP-40 is a sensitive and responsive stroke-specific quality of life measure that can be used to evaluate the outcome of stroke rehabilitation. Enhancing the health-related quality of life (HRQOL) of stroke survivors can be regarded as the ultimate goal of stroke rehabilitation. Sensitive and responsive stroke-specific HRQOL measures are required for use in evaluative studies, and clinical trials and practice. The Health-Related Quality of Life in Stroke Patients-40 (HRQOLISP-40) is a sensitive and responsive stroke-specific scale.

  1. Cultural adaptation of the Tuberculosis-related stigma scale to Brazil.

    Science.gov (United States)

    Crispim, Juliane de Almeida; Touso, Michelle Mosna; Yamamura, Mellina; Popolin, Marcela Paschoal; Garcia, Maria Concebida da Cunha; Santos, Cláudia Benedita Dos; Palha, Pedro Fredemir; Arcêncio, Ricardo Alexandre

    2016-06-01

    The process of stigmatization associated with TB has been undervalued in national research as this social aspect is important in the control of the disease, especially in marginalized populations. This paper introduces the stages of the process of cultural adaptation in Brazil of the Tuberculosis-related stigma scale for TB patients. It is a methodological study in which the items of the scale were translated and back-translated with semantic validation with 15 individuals of the target population. After translation, the reconciled back-translated version was compared with the original version by the project coordinator in Southern Thailand, who approved the final version in Brazilian Portuguese. The results of the semantic validation conducted with TB patients enable the identification that, in general, the scale was well accepted and easily understood by the participants.

  2. The resource-based relative value scale and physician reimbursement policy.

    Science.gov (United States)

    Laugesen, Miriam J

    2014-11-01

    Most physicians are unfamiliar with the details of the Resource-Based Relative Value Scale (RBRVS) and how changes in the RBRVS influence Medicare and private reimbursement rates. Physicians in a wide variety of settings may benefit from understanding the RBRVS, including physicians who are employees, because many organizations use relative value units as productivity measures. Despite the complexity of the RBRVS, its logic and ideal are simple: In theory, the resource usage (comprising physician work, practice expense, and liability insurance premium costs) for one service is relative to the resource usage of all others. Ensuring relativity when new services are introduced or existing services are changed is, therefore, critical. Since the inception of the RBRVS, the American Medical Association's Relative Value Scale Update Committee (RUC) has made recommendations to the Centers for Medicare & Medicaid Services on changes to relative value units. The RUC's core focus is to develop estimates of physician work, but work estimates also partly determine practice expense payments. Critics have attributed various health-care system problems, including declining and growing gaps between primary care and specialist incomes, to the RUC's role in the RBRVS update process. There are persistent concerns regarding the quality of data used in the process and the potential for services to be overvalued. The Affordable Care Act addresses some of these concerns by increasing payments to primary care physicians, requiring reevaluation of the data underlying work relative value units, and reviewing misvalued codes.

  3. Testing the Abbreviated Food Technology Neophobia Scale and its relation to satisfaction with food-related life in university students.

    Science.gov (United States)

    Schnettler, Berta; Grunert, Klaus G; Miranda-Zapata, Edgardo; Orellana, Ligia; Sepúlveda, José; Lobos, Germán; Hueche, Clementina; Höger, Yesli

    2017-06-01

    The aims of this study were to test the relationships between food neophobia, satisfaction with food-related life and food technology neophobia, distinguishing consumer segments according to these variables and characterizing them according to willingness to purchase food produced with novel technologies. A survey was conducted with 372 university students (mean aged=20.4years, SD=2.4). The questionnaire included the Abbreviated version of the Food Technology Neophobia Scale (AFTNS), Satisfaction with Life Scale (SWLS), and a 6-item version of the Food Neophobia Scale (FNS). Using confirmatory factor analysis, it was confirmed that SWFL correlated inversely with FNS, whereas FNS correlated inversely with AFTNS. No relationship was found between SWFL and AFTNS. Two main segments were identified using cluster analysis; these segments differed according to gender and family size. Group 1 (57.8%) possessed higher AFTNS and FNS scores than Group 2 (28.5%). However, these groups did not differ in their SWFL scores. Group 1 was less willing to purchase foods produced with new technologies than Group 2. The AFTNS and the 6-item version of the FNS are suitable instruments to measure acceptance of foods produced using new technologies in South American developing countries. The AFTNS constitutes a parsimonious alternative for the international study of food technology neophobia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The effect of assessment scale and metric selection on the greenhouse gas benefits of woody biomass

    International Nuclear Information System (INIS)

    Galik, Christopher S.; Abt, Robert C.

    2012-01-01

    Recent attention has focused on the net greenhouse gas (GHG) implications of using woody biomass to produce energy. In particular, a great deal of controversy has erupted over the appropriate manner and scale at which to evaluate these GHG effects. Here, we conduct a comparative assessment of six different assessment scales and four different metric calculation techniques against the backdrop of a common biomass demand scenario. We evaluate the net GHG balance of woody biomass co-firing in existing coal-fired facilities in the state of Virginia, finding that assessment scale and metric calculation technique do in fact strongly influence the net GHG balance yielded by this common scenario. Those assessment scales that do not include possible market effects attributable to increased biomass demand, including changes in forest area, forest management intensity, and traditional industry production, generally produce less-favorable GHG balances than those that do. Given the potential difficulty small operators may have generating or accessing information on the extent of these market effects, however, it is likely that stakeholders and policy makers will need to balance accuracy and comprehensiveness with reporting and administrative simplicity. -- Highlights: ► Greenhouse gas (GHG) effects of co-firing forest biomass with coal are assessed. ► GHG effect of replacing coal with forest biomass linked to scale, analytic approach. ► Not accounting for indirect market effects yields poorer relative GHG balances. ► Accounting systems must balance comprehensiveness with administrative simplicity.

  5. The development and validation of the Relational Self-Esteem Scale.

    Science.gov (United States)

    Du, Hongfei; King, Ronnel B; Chi, Peilian

    2012-06-01

    According to the tripartite model of the self (Brewer & Gardner, 1996), the self consists of three aspects: personal, relational, and collective. Correspondingly, individuals can achieve a sense of self-worth through their personal attributes (personal self-esteem), relationship with significant others (relational self-esteem), or social group membership (collective self-esteem). Existing measures on personal and collective self-esteem are available in the literature; however, no scale exists that assesses relational self-esteem. The authors developed a scale to measure individual differences in relational self-esteem and tested it with two samples of Chinese university students. Between and within-network approaches to construct validation were used. The scale showed adequate internal consistency reliability and results of the confirmatory factor analysis showed good fit. It also exhibited meaningful correlations with theoretically relevant constructs in the nomological network. Implications and directions for future research are discussed. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.

  6. Large Scale Water Vapor Sources Relative to the October 2000 Piedmont Flood

    Science.gov (United States)

    Turato, Barbara; Reale, Oreste; Siccardi, Franco

    2003-01-01

    Very intense mesoscale or synoptic-scale rainfall events can occasionally be observed in the Mediterranean region without any deep cyclone developing over the areas affected by precipitation. In these perplexing cases the synoptic situation can superficially look similar to cases in which very little precipitation occurs. These situations could possibly baffle the operational weather forecasters. In this article, the major precipitation event that affected Piedmont (Italy) between 13 and 16 October 2000 is investigated. This is one of the cases in which no intense cyclone was observed within the Mediterranean region at any time, only a moderate system was present, and yet exceptional rainfall and flooding occurred. The emphasis of this study is on the moisture origin and transport. Moisture and energy balances are computed on different space- and time-scales, revealing that precipitation exceeds evaporation over an area inclusive of Piedmont and the northwestern Mediterranean region, on a time-scale encompassing the event and about two weeks preceding it. This is suggestive of an important moisture contribution originating from outside the region. A synoptic and dynamic analysis is then performed to outline the potential mechanisms that could have contributed to the large-scale moisture transport. The central part of the work uses a quasi-isentropic water-vapor back trajectory technique. The moisture sources obtained by this technique are compared with the results of the balances and with the synoptic situation, to unveil possible dynamic mechanisms and physical processes involved. It is found that moisture sources on a variety of atmospheric scales contribute to this event. First, an important contribution is caused by the extratropical remnants of former tropical storm Leslie. The large-scale environment related to this system allows a significant amount of moisture to be carried towards Europe. This happens on a time- scale of about 5-15 days preceding the

  7. Short scales to assess cannabis-related problems: a review of psychometric properties

    Directory of Open Access Journals (Sweden)

    Klempova Danica

    2008-12-01

    Full Text Available Abstract Aims The purpose of this paper is to summarize the psychometric properties of four short screening scales to assess problematic forms of cannabis use: Severity of Dependence Scale (SDS, Cannabis Use Disorders Identification Test (CUDIT, Cannabis Abuse Screening Test (CAST and Problematic Use of Marijuana (PUM. Methods A systematic computer-based literature search was conducted within the databases of PubMed, PsychINFO and Addiction Abstracts. A total of 12 publications reporting measures of reliability or validity were identified: 8 concerning SDS, 2 concerning CUDIT and one concerning CAST and PUM. Studies spanned adult and adolescent samples from general and specific user populations in a number of countries worldwide. Results All screening scales tended to have moderate to high internal consistency (Cronbach's α ranging from .72 to .92. Test-retest reliability and item total correlation have been reported for SDS with acceptable results. Results of validation studies varied depending on study population and standards used for validity assessment, but generally sensitivity, specificity and predictive power are satisfactory. Standard diagnostic cut-off points that can be generalized to different populations do not exist for any scale. Conclusion Short screening scales to assess dependence and other problems related to the use of cannabis seem to be a time and cost saving opportunity to estimate overall prevalences of cannabis-related negative consequences and to identify at-risk persons prior to using more extensive diagnostic instruments. Nevertheless, further research is needed to assess the performance of the tests in different populations and in comparison to broader criteria of cannabis-related problems other than dependence.

  8. On the renormalization of the effective field theory of large scale structures

    International Nuclear Information System (INIS)

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P in ∼ k n . After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections

  9. On the renormalization of the effective field theory of large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Pajer, Enrico [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Zaldarriaga, Matias, E-mail: enrico.pajer@gmail.com, E-mail: matiasz@ias.edu [Institute for Advanced Study, Princeton, NJ 08544 (United States)

    2013-08-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P{sub in} ∼ k{sup n}. After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections.

  10. Relations between effective potentials in different dimensions

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1983-01-01

    Using dimensional regularization, the one-loop approximation for the effective potential (finite temperature) is computed as an analytic function of the number of dimensions. It is shown that a simple relation exists between potentials for different dimensions. This relation reduces to a simple derivative when these numbers differ by two units. The limit of zero temperature is calculated and also the finite temperature corrections are given. (Author) [pt

  11. Relations between overturning length scales at the Spanish planetary boundary layer

    Science.gov (United States)

    López, Pilar; Cano, José L.

    2016-04-01

    We analyze the behavior of the maximum Thorpe displacement (dT)max and the Thorpe scale LTat the atmospheric boundary layer (ABL), extending previous research with new data and improving our studies related to the novel use of the Thorpe method applied to ABL. The maximum Thorpe displacements vary between -900 m and 950 m for the different field campaigns. The maximum Thorpe displacement is always greater under convective conditions than under stable ones, independently of its sign. The Thorpe scale LT ranges between 0.2 m and 680 m for the different data sets which cover different stratified mixing conditions (turbulence shear-driven and convective regions). The Thorpe scale does not exceed several tens of meters under stable and neutral stratification conditions related to instantaneous density gradients. In contrast, under convective conditions, Thorpe scales are relatively large, they exceed hundreds of meters which may be related to convective bursts. We analyze the relation between (dT)max and the Thorpe scale LT and we deduce that they verify a power law. We also deduce that there is a difference in exponents of the power laws for convective conditions and shear-driven conditions. These different power laws could identify overturns created under different mechanisms. References Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M., Infante, C., Buenestado, P., Espinalt, Joergensen, H., Rees, J., Vilà, J., Redondo, J., Cantalapiedra, I. and Conangla, L.: Stable atmospheric boundary-layer experiment in Spain (Sables 98). A report, Boundary-Layer Meteorology, 96, 337-370, 2000. Dillon, T. M.: Vertical Overturns: A Comparison of Thorpe and Ozmidov Length Scales, J. Geophys. Res., 87(C12), 9601-9613, 1982. Itsweire, E. C.: Measurements of vertical overturns in stably stratified turbulent flow, Phys. Fluids, 27(4), 764-766, 1984. Kitade, Y., Matsuyama, M. and Yoshida, J.: Distribution of overturn induced by internal

  12. Single-field consistency relations of large scale structure part III: test of the equivalence principle

    Energy Technology Data Exchange (ETDEWEB)

    Creminelli, Paolo [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste, 34151 (Italy); Gleyzes, Jérôme; Vernizzi, Filippo [CEA, Institut de Physique Théorique, Gif-sur-Yvette cédex, F-91191 France (France); Hui, Lam [Physics Department and Institute for Strings, Cosmology and Astroparticle Physics, Columbia University, New York, NY, 10027 (United States); Simonović, Marko, E-mail: creminel@ictp.it, E-mail: jerome.gleyzes@cea.fr, E-mail: lhui@astro.columbia.edu, E-mail: msimonov@sissa.it, E-mail: filippo.vernizzi@cea.fr [SISSA, via Bonomea 265, Trieste, 34136 (Italy)

    2014-06-01

    The recently derived consistency relations for Large Scale Structure do not hold if the Equivalence Principle (EP) is violated. We show it explicitly in a toy model with two fluids, one of which is coupled to a fifth force. We explore the constraints that galaxy surveys can set on EP violation looking at the squeezed limit of the 3-point function involving two populations of objects. We find that one can explore EP violations of order 10{sup −3}÷10{sup −4} on cosmological scales. Chameleon models are already very constrained by the requirement of screening within the Solar System and only a very tiny region of the parameter space can be explored with this method. We show that no violation of the consistency relations is expected in Galileon models.

  13. [Scale Relativity Theory in living beings morphogenesis: fratal, determinism and chance].

    Science.gov (United States)

    Chaline, J

    2012-10-01

    The Scale Relativity Theory has many biological applications from linear to non-linear and, from classical mechanics to quantum mechanics. Self-similar laws have been used as model for the description of a huge number of biological systems. Theses laws may explain the origin of basal life structures. Log-periodic behaviors of acceleration or deceleration can be applied to branching macroevolution, to the time sequences of major evolutionary leaps. The existence of such a law does not mean that the role of chance in evolution is reduced, but instead that randomness and contingency may occur within a framework which may itself be structured in a partly statistical way. The scale relativity theory can open new perspectives in evolution. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Kinematic scaling relations of CALIFA galaxies: A dynamical mass proxy for galaxies across the Hubble sequence.

    Science.gov (United States)

    Aquino-Ortíz, E.; Valenzuela, O.; Sánchez, S. F.; Hernández-Toledo, H.; Ávila-Reese, V.; van de Ven, G.; Rodríguez-Puebla, A.; Zhu, L.; Mancillas, B.; Cano-Díaz, M.; García-Benito, R.

    2018-06-01

    We used ionized gas and stellar kinematics for 667 spatially resolved galaxies publicly available from the Calar Alto Legacy Integral Field Area survey (CALIFA) 3rd Data Release with the aim of studying kinematic scaling relations as the Tully & Fisher (TF) relation using rotation velocity, Vrot, the Faber & Jackson (FJ) relation using velocity dispersion, σ, and also a combination of Vrot and σ through the SK parameter defined as SK^2 = KV_{rot}^2 + σ ^2 with constant K. Late-type and early-type galaxies reproduce the TF and FJ relations. Some early-type galaxies also follow the TF relation and some late-type galaxies the FJ relation, but always with larger scatter. On the contrary, when we use the SK parameter, all galaxies, regardless of the morphological type, lie on the same scaling relation, showing a tight correlation with the total stellar mass, M⋆. Indeed, we find that the scatter in this relation is smaller or equal to that of the TF and FJ relations. We explore different values of the K parameter without significant differences (slope and scatter) in our final results with respect the case K = 0.5 besides than a small change in the zero point. We calibrate the kinematic SK^2 dynamical mass proxy in order to make it consistent with sophisticated published dynamical models within 0.15 dex. We show that the SK proxy is able to reproduce the relation between the dynamical mass and the stellar mass in the inner regions of galaxies. Our result may be useful in order to produce fast estimations of the central dynamical mass in galaxies and to study correlations in large galaxy surveys.

  15. Mass and metallicity scaling relations of high-redshift star-forming galaxies selected by GRBs

    DEFF Research Database (Denmark)

    Arabsalmani, M.; Møller, P.; Perley, D.~A.

    2018-01-01

    -metallicity relation of the general population. It is hard to decide whether this relatively small offset is due to systematic effects or the intrinsic nature of GRB hosts. We also investigate the possibility of using absorption-line metallicity measurements of GRB hosts to study the mass-metallicity relation at high...

  16. Scale free effects in world currency exchange network

    Science.gov (United States)

    Górski, A. Z.; Drożdż, S.; Kwapień, J.

    2008-11-01

    A large collection of daily time series for 60 world currencies' exchange rates is considered. The correlation matrices are calculated and the corresponding Minimal Spanning Tree (MST) graphs are constructed for each of those currencies used as reference for the remaining ones. It is shown that multiplicity of the MST graphs' nodes to a good approximation develops a power like, scale free distribution with the scaling exponent similar as for several other complex systems studied so far. Furthermore, quantitative arguments in favor of the hierarchical organization of the world currency exchange network are provided by relating the structure of the above MST graphs and their scaling exponents to those that are derived from an exactly solvable hierarchical network model. A special status of the USD during the period considered can be attributed to some departures of the MST features, when this currency (or some other tied to it) is used as reference, from characteristics typical to such a hierarchical clustering of nodes towards those that correspond to the random graphs. Even though in general the basic structure of the MST is robust with respect to changing the reference currency some trace of a systematic transition from somewhat dispersed - like the USD case - towards more compact MST topology can be observed when correlations increase.

  17. Effective strategies for scaling up evidence-based practices in primary care: a systematic review.

    Science.gov (United States)

    Ben Charif, Ali; Zomahoun, Hervé Tchala Vignon; LeBlanc, Annie; Langlois, Léa; Wolfenden, Luke; Yoong, Sze Lin; Williams, Christopher M; Lépine, Roxanne; Légaré, France

    2017-11-22

    While an extensive array of existing evidence-based practices (EBPs) have the potential to improve patient outcomes, little is known about how to implement EBPs on a larger scale. Therefore, we sought to identify effective strategies for scaling up EBPs in primary care. We conducted a systematic review with the following inclusion criteria: (i) study design: randomized and non-randomized controlled trials, before-and-after (with/without control), and interrupted time series; (ii) participants: primary care-related units (e.g., clinical sites, patients); (iii) intervention: any strategy used to scale up an EBP; (iv) comparator: no restrictions; and (v) outcomes: no restrictions. We searched MEDLINE, Embase, PsycINFO, Web of Science, CINAHL, and the Cochrane Library from database inception to August 2016 and consulted clinical trial registries and gray literature. Two reviewers independently selected eligible studies, then extracted and analyzed data following the Cochrane methodology. We extracted components of scaling-up strategies and classified them into five categories: infrastructure, policy/regulation, financial, human resources-related, and patient involvement. We extracted scaling-up process outcomes, such as coverage, and provider/patient outcomes. We validated data extraction with study authors. We included 14 studies. They were published since 2003 and primarily conducted in low-/middle-income countries (n = 11). Most were funded by governmental organizations (n = 8). The clinical area most represented was infectious diseases (HIV, tuberculosis, and malaria, n = 8), followed by newborn/child care (n = 4), depression (n = 1), and preventing seniors' falls (n = 1). Study designs were mostly before-and-after (without control, n = 8). The most frequently targeted unit of scaling up was the clinical site (n = 11). The component of a scaling-up strategy most frequently mentioned was human resource-related (n = 12). All

  18. Effective strategies for scaling up evidence-based practices in primary care: a systematic review

    Directory of Open Access Journals (Sweden)

    Ali Ben Charif

    2017-11-01

    Full Text Available Abstract Background While an extensive array of existing evidence-based practices (EBPs have the potential to improve patient outcomes, little is known about how to implement EBPs on a larger scale. Therefore, we sought to identify effective strategies for scaling up EBPs in primary care. Methods We conducted a systematic review with the following inclusion criteria: (i study design: randomized and non-randomized controlled trials, before-and-after (with/without control, and interrupted time series; (ii participants: primary care-related units (e.g., clinical sites, patients; (iii intervention: any strategy used to scale up an EBP; (iv comparator: no restrictions; and (v outcomes: no restrictions. We searched MEDLINE, Embase, PsycINFO, Web of Science, CINAHL, and the Cochrane Library from database inception to August 2016 and consulted clinical trial registries and gray literature. Two reviewers independently selected eligible studies, then extracted and analyzed data following the Cochrane methodology. We extracted components of scaling-up strategies and classified them into five categories: infrastructure, policy/regulation, financial, human resources-related, and patient involvement. We extracted scaling-up process outcomes, such as coverage, and provider/patient outcomes. We validated data extraction with study authors. Results We included 14 studies. They were published since 2003 and primarily conducted in low-/middle-income countries (n = 11. Most were funded by governmental organizations (n = 8. The clinical area most represented was infectious diseases (HIV, tuberculosis, and malaria, n = 8, followed by newborn/child care (n = 4, depression (n = 1, and preventing seniors’ falls (n = 1. Study designs were mostly before-and-after (without control, n = 8. The most frequently targeted unit of scaling up was the clinical site (n = 11. The component of a scaling-up strategy most frequently mentioned was

  19. The Debye light scattering equation’s scaling relation reveals the purity of synthetic dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Hui-Yu; Chen, Hsiao-Ping [National Chung Cheng University, Department of Chemistry and Biochemistry (China); Tang, Yi-Hsuan [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry (China); Chen, Hui-Ting [Kaohsiung Medical University, Department of Fragrance and Cosmetic Science (China); Kao, Chai-Lin, E-mail: clkao@kmu.edu.tw [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry (China); Wang, Shau-Chun, E-mail: chescw@ccu.edu.tw [National Chung Cheng University, Department of Chemistry and Biochemistry (China)

    2016-03-15

    Spherical dendrimer structures cannot be structurally modeled using conventional polymer models of random coil or rod-like configurations during the calibration of the static light scattering (LS) detectors used to determine the molecular weight (M.W.) of a dendrimer or directly assess the purity of a synthetic compound. In this paper, we used the Debye equation-based scaling relation, which predicts that the static LS intensity per unit concentration is linearly proportional to the M.W. of a synthetic dendrimer in a dilute solution, as a tool to examine the purity of high-generational compounds and to monitor the progress of dendrimer preparations. Without using expensive equipment, such as nuclear magnetic resonance or mass spectrometry, this method only required an affordable flow injection set-up with an LS detector. Solutions of the purified dendrimers, including the poly(amidoamine) (PAMAM) dendrimer and its fourth to seventh generation pyridine derivatives with size range of 5–9 nm, were used to establish the scaling relation with high linearity. The use of artificially impure mixtures of six or seven generations revealed significant deviations from linearity. The raw synthesized products of the pyridine-modified PAMAM dendrimer, which included incompletely reacted dendrimers, were also examined to gauge the reaction progress. As a reaction toward a particular generational derivative of the PAMAM dendrimers proceeded over time, deviations from the linear scaling relation decreased. The difference between the polydispersity index of the incompletely converted products and that of the pure compounds was only about 0.01. The use of the Debye equation-based scaling relation, therefore, is much more useful than the polydispersity index for monitoring conversion processes toward an indicated functionality number in a given preparation.Graphical abstract.

  20. TESTING THE ASTEROSEISMIC SCALING RELATIONS FOR RED GIANTS WITH ECLIPSING BINARIES OBSERVED BY KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Gaulme, P.; McKeever, J.; Jackiewicz, J.; Rawls, M. L. [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Corsaro, E. [Laboratoire AIM, CEA/DRF-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Mosser, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Université Pierre et Marie Curie, Université Denis Diderot, F-92195 Meudon (France); Southworth, J. [Astrophysics Group, Keele University, Staffordshire, ST5 5BG (United Kingdom); Mahadevan, S.; Bender, C.; Deshpande, R., E-mail: gaulme@nmsu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2016-12-01

    Given the potential of ensemble asteroseismology for understanding fundamental properties of large numbers of stars, it is critical to determine the accuracy of the scaling relations on which these measurements are based. From several powerful validation techniques, all indications so far show that stellar radius estimates from the asteroseismic scaling relations are accurate to within a few percent. Eclipsing binary systems hosting at least one star with detectable solar-like oscillations constitute the ideal test objects for validating asteroseismic radius and mass inferences. By combining radial velocity (RV) measurements and photometric time series of eclipses, it is possible to determine the masses and radii of each component of a double-lined spectroscopic binary. We report the results of a four-year RV survey performed with the échelle spectrometer of the Astrophysical Research Consortium’s 3.5 m telescope and the APOGEE spectrometer at Apache Point Observatory. We compare the masses and radii of 10 red giants (RGs) obtained by combining radial velocities and eclipse photometry with the estimates from the asteroseismic scaling relations. We find that the asteroseismic scaling relations overestimate RG radii by about 5% on average and masses by about 15% for stars at various stages of RG evolution. Systematic overestimation of mass leads to underestimation of stellar age, which can have important implications for ensemble asteroseismology used for Galactic studies. As part of a second objective, where asteroseismology is used for understanding binary systems, we confirm that oscillations of RGs in close binaries can be suppressed enough to be undetectable, a hypothesis that was proposed in a previous work.

  1. The Debye light scattering equation’s scaling relation reveals the purity of synthetic dendrimers

    International Nuclear Information System (INIS)

    Tseng, Hui-Yu; Chen, Hsiao-Ping; Tang, Yi-Hsuan; Chen, Hui-Ting; Kao, Chai-Lin; Wang, Shau-Chun

    2016-01-01

    Spherical dendrimer structures cannot be structurally modeled using conventional polymer models of random coil or rod-like configurations during the calibration of the static light scattering (LS) detectors used to determine the molecular weight (M.W.) of a dendrimer or directly assess the purity of a synthetic compound. In this paper, we used the Debye equation-based scaling relation, which predicts that the static LS intensity per unit concentration is linearly proportional to the M.W. of a synthetic dendrimer in a dilute solution, as a tool to examine the purity of high-generational compounds and to monitor the progress of dendrimer preparations. Without using expensive equipment, such as nuclear magnetic resonance or mass spectrometry, this method only required an affordable flow injection set-up with an LS detector. Solutions of the purified dendrimers, including the poly(amidoamine) (PAMAM) dendrimer and its fourth to seventh generation pyridine derivatives with size range of 5–9 nm, were used to establish the scaling relation with high linearity. The use of artificially impure mixtures of six or seven generations revealed significant deviations from linearity. The raw synthesized products of the pyridine-modified PAMAM dendrimer, which included incompletely reacted dendrimers, were also examined to gauge the reaction progress. As a reaction toward a particular generational derivative of the PAMAM dendrimers proceeded over time, deviations from the linear scaling relation decreased. The difference between the polydispersity index of the incompletely converted products and that of the pure compounds was only about 0.01. The use of the Debye equation-based scaling relation, therefore, is much more useful than the polydispersity index for monitoring conversion processes toward an indicated functionality number in a given preparation.Graphical abstract

  2. Scale Dependence of Female Ungulate Reproductive Success in Relation to Nutritional Condition, Resource Selection and Multi-Predator Avoidance.

    Directory of Open Access Journals (Sweden)

    Jared F Duquette

    Full Text Available Female ungulate reproductive success is dependent on the survival of their young, and affected by maternal resource selection, predator avoidance, and nutritional condition. However, potential hierarchical effects of these factors on reproductive success are largely unknown, especially in multi-predator landscapes. We expanded on previous research of neonatal white-tailed deer (Odocoileus virginianus daily survival within home ranges to assess if resource use, integrated risk of 4 mammalian predators, maternal nutrition, winter severity, hiding cover, or interactions among these variables best explained landscape scale variation in daily or seasonal survival during the post-partum period. We hypothesized that reproductive success would be limited greater by predation risk at coarser spatiotemporal scales, but habitat use at finer scales. An additive model of daily non-ideal resource use and maternal nutrition explained the most (69% variation in survival; though 65% of this variation was related to maternal nutrition. Strong support of maternal nutrition across spatiotemporal scales did not fully support our hypothesis, but suggested reproductive success was related to dam behaviors directed at increasing nutritional condition. These behaviors were especially important following severe winters, when dams produced smaller fawns with less probability of survival. To increase nutritional condition and decrease wolf (Canis lupus predation risk, dams appeared to place fawns in isolated deciduous forest patches near roads. However, this resource selection represented non-ideal resources for fawns, which had greater predation risk that led to additive mortalities beyond those related to resources alone. Although the reproductive strategy of dams resulted in greater predation of fawns from alternative predators, it likely improved the life-long reproductive success of dams, as many were late-aged (>10 years old and could have produced multiple litters

  3. The effect of scale on the interpretation of geochemical anomalies

    Science.gov (United States)

    Theobald, P.K.; Eppinger, R.G.; Turner, R.L.; Shiquan, S.

    1991-01-01

    The purpose of geochemical surveys changes with scale. Regional surveys identify areas where mineral deposits are most likely to occur, whereas intermediate surveys identify and prioritize specific targets. At detailed scales specific deposit models may be applied and deposits delineated. The interpretation of regional geochemical surveys must take into account scale-dependent difference in the nature and objectives of this type of survey. Overinterpretation of regional data should be resisted, as should recommendations to restrict intermediate or detailed follow-up surveys to the search for specific deposit types or to a too limited suite of elements. Regional surveys identify metallogenic provinces within which a variety of deposit types and metals are most likely to be found. At intermediate scale, these regional provinces often dissipate into discrete clusters of anomalous areas. At detailed scale, individual anomalous areas reflect local conditions of mineralization and may seem unrelated to each other. Four examples from arid environments illustrate the dramatic change in patterns of anomalies between regional and more detailed surveys. On the Arabian Shield, a broad regional anomaly reflects the distribution of highly differentiated anorogenic granites. A particularly prominent part of the regional anomaly includes, in addition to the usual elements related to the granites, the assemblage of Mo, W and Sn. Initial interpretation suggested potential for granite-related, stockwork Mo deposits. Detailed work identified three separate sources for the anomaly: a metal-rich granite, a silicified and stockwork-veined area with scheelite and molybdenite, and scheelite/powellite concentrations in skarn deposits adjacent to a ring-dike complex. Regional geochemical, geophysical and remote-sensing data in the Sonoran Desert, Mexico, define a series of linear features interpreted to reflect fundamental, northeast-trending fractures in the crust that served as the prime

  4. H-mode threshold power scaling and the ∇B drift effect

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Burrell, K.H.; Groebner, R.J.; Staebler, G.M.

    1997-06-01

    One of the largest influences on the H-mode power threshold (P TH ) is the direction of the ion ∇B drift relative to the X-point location, where factors of 2--3 increase in P TH are observed for the ion ∇B drift away from the X-point. It is proposed that the threshold power scaling observed in single-null configurations with the ion ∇B drift toward the X-point location (P TH ∼ nB, where n is the plasma density, and B is the toroidal field) is due to the scaling of the magnitude of the ∇B drift effect. Hinton and later Hinton and Stebler have modeled this effect as neoclassical cross field fluxes of both heat and particles driven by poloidal temperature gradients on the open field lines in the scrape-off layer (SOL). The ∇B drift effect influences the power threshold by affecting the edge conditions needed for the L-H transition. It is not essential for the L-H transition itself since transitions are observed with either direction of B. Predictions of this model include saturation of the B scaling of P TH at high field, 1/B scaling of P TH with reverse B, and no B scaling of P TH in balanced double-null configurations. This last prediction is consistent with the observed scaling of p TH in double-null plasma sin DIII-D

  5. Committee Representation and Medicare Reimbursements-An Examination of the Resource-Based Relative Value Scale.

    Science.gov (United States)

    Gao, Y Nina

    2018-04-06

    The Resource-Based Relative Value Scale Update Committee (RUC) submits recommended reimbursement values for physician work (wRVUs) under Medicare Part B. The RUC includes rotating representatives from medical specialties. To identify changes in physician reimbursements associated with RUC rotating seat representation. Relative Value Scale Update Committee members 1994-2013; Medicare Part B Relative Value Scale 1994-2013; Physician/Supplier Procedure Summary Master File 2007; Part B National Summary Data File 2000-2011. I match service and procedure codes to specialties using 2007 Medicare billing data. Subsequently, I model wRVUs as a function of RUC rotating committee representation and level of code specialization. An annual RUC rotating seat membership is associated with a statistically significant 3-5 percent increase in Medicare expenditures for codes billed to that specialty. For codes that are performed by a small number of physicians, the association between reimbursement and rotating subspecialty representation is positive, 0.177 (SE = 0.024). For codes that are performed by a large number of physicians, the association is negative, -0.183 (SE = 0.026). Rotating representation on the RUC is correlated with overall reimbursement rates. The resulting differential changes may exacerbate existing reimbursement discrepancies between generalist and specialist practitioners. © Health Research and Educational Trust.

  6. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    2002-01-01

    This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g

  7. Gravitation and Special Relativity from Compton Wave Interactions at the Planck Scale: An Algorithmic Approach

    Science.gov (United States)

    Blackwell, William C., Jr.

    2004-01-01

    In this paper space is modeled as a lattice of Compton wave oscillators (CWOs) of near- Planck size. It is shown that gravitation and special relativity emerge from the interaction between particles Compton waves. To develop this CWO model an algorithmic approach was taken, incorporating simple rules of interaction at the Planck-scale developed using well known physical laws. This technique naturally leads to Newton s law of gravitation and a new form of doubly special relativity. The model is in apparent agreement with the holographic principle, and it predicts a cutoff energy for ultrahigh-energy cosmic rays that is consistent with observational data.

  8. Scaling relations for plasma production and acceleration of rotating plasma flows

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Tanabe, Toshio; Mase, Hiroshi; Sekine, Ryusuke; Hasegawa, Kazuyuki.

    1989-01-01

    Scaling relations are investigated theoretically and experimentally of the plasma production and acceleration in the rotating plasma gun which has been developed as a new means of plasma centrifuge. Two operational modes: the gas-discharge mode for gaseous elements and the vacuum-discharge mode for solid elements are studied. Relations of the plasma density and velocities to the discharge current and the magnetic field are derived. The agreement between experiment and theory is quite well. It is found that fully-ionized rotating plasmas produced in the gas-discharge mode is most advantageous to realize efficient plasma centrifuge. (author)

  9. Scale-invariant Green-Kubo relation for time-averaged diffusivity

    Science.gov (United States)

    Meyer, Philipp; Barkai, Eli; Kantz, Holger

    2017-12-01

    In recent years it was shown both theoretically and experimentally that in certain systems exhibiting anomalous diffusion the time- and ensemble-averaged mean-squared displacement are remarkably different. The ensemble-averaged diffusivity is obtained from a scaling Green-Kubo relation, which connects the scale-invariant nonstationary velocity correlation function with the transport coefficient. Here we obtain the relation between time-averaged diffusivity, usually recorded in single-particle tracking experiments, and the underlying scale-invariant velocity correlation function. The time-averaged mean-squared displacement is given by 〈δ2¯〉 ˜2 DνtβΔν -β , where t is the total measurement time and Δ is the lag time. Here ν is the anomalous diffusion exponent obtained from ensemble-averaged measurements 〈x2〉 ˜tν , while β ≥-1 marks the growth or decline of the kinetic energy 〈v2〉 ˜tβ . Thus, we establish a connection between exponents that can be read off the asymptotic properties of the velocity correlation function and similarly for the transport constant Dν. We demonstrate our results with nonstationary scale-invariant stochastic and deterministic models, thereby highlighting that systems with equivalent behavior in the ensemble average can differ strongly in their time average. If the averaged kinetic energy is finite, β =0 , the time scaling of 〈δ2¯〉 and 〈x2〉 are identical; however, the time-averaged transport coefficient Dν is not identical to the corresponding ensemble-averaged diffusion constant.

  10. Latent structure of the social anxiety scale and relations between social anxiety and irrational beliefs

    Directory of Open Access Journals (Sweden)

    Tovilović Snežana

    2004-01-01

    Full Text Available The research which was realized belongs to one of three research fields within framework of rational-emotional-behavioral therapy (REBT - to the theory of emotional disorders. It was undertaken with the aim to establish presence and nature of relations between social anxiety, treated as dimension and the construct of irrational beliefs from REBT theory. The research was carried out on the sample of 261 students of Novi Sad University, both genders, age 18 to 26. First of all, the latent structure of newly constructed Scale of Social Anxiety (SA of the author Tovilović S. was tested. SA scale was proved to be of satisfying reliability (α =0.92. Principal-component factor analysis was conducted under gathered data. Four factors of social anxiety, which explain 44,09% of total variance of the items of SA scale, were named: social-evaluation anxiety, inhibition in social-uncertain situations, low self-respect and hypersensitivity on rejection. The other test that was used is Scale of General Attitudes and Beliefs of the author Marić Z. Reliability of the sub-scale of irrational beliefs that was got on our sample is α =0.91 yet the subscale of rational beliefs is α =0.70. Canonical correlational analysis was conducted under manifest variables of both scales. Three pairs of statistically significant canonical factors were got, with correlations within the span between Rc=0.78 and Rc=0.64. We discussed nature of correlation between social anxiety and irrational beliefs in the light of REBT model of social phobia, REBT theory of emotional disorder, researches and model of social anxiety in wider, cognitive-behavioral framework.

  11. Defensive effects of extrafloral nectaries in quaking aspen differ with scale.

    Science.gov (United States)

    Mortensen, Brent; Wagner, Diane; Doak, Patricia

    2011-04-01

    The effects of plant defenses on herbivory can differ among spatial scales. This may be particularly common with indirect defenses, such as extrafloral nectaries (EFNs), that attract predatory arthropods and are dependent on predator distribution, abundance, and behavior. We tested the defensive effects of EFNs in quaking aspen (Populus tremuloides Michx.) against damage by a specialist herbivore, the aspen leaf miner (Phyllocnistis populiella Cham.), at the scale of individual leaves and entire ramets (i.e., stems). Experiments excluding crawling arthropods revealed that the effects of aspen EFNs differed at the leaf and ramet scales. Crawling predators caused similar reductions in the percent leaf area mined on individual leaves with and without EFNs. However, the extent to which crawling predators increased leaf miner mortality and, consequently, reduced mining damage increased with EFN expression at the ramet scale. Thus, aspen EFNs provided a diffuse defense, reducing damage to leaves across a ramet regardless of leaf-scale EFN expression. We detected lower leaf miner damage and survival unassociated with crawling predators on EFN-bearing leaves, suggesting that direct defenses (e.g., chemical defenses) were stronger on leaves with than without EFNs. Greater direct defenses on EFN-bearing leaves may reduce the probability of losing these leaves and thus weakening ramet-scale EFN defense. Aspen growth was not related to EFN expression or the presence of crawling predators over the course of a single season. Different effects of aspen EFNs at the leaf and ramet scales suggest that future studies may benefit from examining indirect defenses simultaneously at multiple scales.

  12. Projection Of The Stellar To Halo Mass Relation Into The Scaling Relations Of A Disc Galaxy Population

    Science.gov (United States)

    Mancillas, Brisa; Ávila-Reese, Vladimir; Rodríguez-Puebla, Aldo; Valls-Gabaud, David

    2017-06-01

    Several pieces of evidence suggest that disk formation is the generic process of assembly of galaxies, while the spheroidal component arises from the merging/interactions of disks as well as from their secular evolution. To understand galaxy formation and evolution, a cosmological framework is required. The current cosmological paradigm is summarized in the so-called Λ-cold dark matter model (ΛCDM). The statistical connection between the masses of the observed galaxies and those of the simulated CDM halos in large volumes leads us to the galaxy-halo mass relation, which summarizes the main astrophysical processes of galaxy formation and evolution (gas heating and cooling, SF, SN- and AGN-driven feedback, etc.). An important question is how this relation constrained by semi-empirical methods (e.g., Rodriguez-Puebla et al. 2014) is "projected" into the disk galaxy scaling relations and other galaxy correlations. To explore this question, we generate a synthetic catalog of thousands of disk/halo systems by means of an extended Mo, Mao & White (1998) model, and by using as input the baryonic-to-halo mass relation, fbar(Mh), of local disk galaxy as recently constrained by Calette et al. (2015).

  13. Ward identities and consistency relations for the large scale structure with multiple species

    International Nuclear Information System (INIS)

    Peloso, Marco; Pietroni, Massimo

    2014-01-01

    We present fully nonlinear consistency relations for the squeezed bispectrum of Large Scale Structure. These relations hold when the matter component of the Universe is composed of one or more species, and generalize those obtained in [1,2] in the single species case. The multi-species relations apply to the standard dark matter + baryons scenario, as well as to the case in which some of the fields are auxiliary quantities describing a particular population, such as dark matter halos or a specific galaxy class. If a large scale velocity bias exists between the different populations new terms appear in the consistency relations with respect to the single species case. As an illustration, we discuss two physical cases in which such a velocity bias can exist: (1) a new long range scalar force in the dark matter sector (resulting in a violation of the equivalence principle in the dark matter-baryon system), and (2) the distribution of dark matter halos relative to that of the underlying dark matter field

  14. Measurement of Galaxy Cluster Integrated Comptonization and Mass Scaling Relations with the South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Saliwanchik, B. R.; et al.

    2015-01-22

    We describe a method for measuring the integrated Comptonization (Y (SZ)) of clusters of galaxies from measurements of the Sunyaev-Zel'dovich (SZ) effect in multiple frequency bands and use this method to characterize a sample of galaxy clusters detected in the South Pole Telescope (SPT) data. We use a Markov Chain Monte Carlo method to fit a β-model source profile and integrate Y (SZ) within an angular aperture on the sky. In simulated observations of an SPT-like survey that include cosmic microwave background anisotropy, point sources, and atmospheric and instrumental noise at typical SPT-SZ survey levels, we show that we can accurately recover β-model parameters for inputted clusters. We measure Y (SZ) for simulated semi-analytic clusters and find that Y (SZ) is most accurately determined in an angular aperture comparable to the SPT beam size. We demonstrate the utility of this method to measure Y (SZ) and to constrain mass scaling relations using X-ray mass estimates for a sample of 18 galaxy clusters from the SPT-SZ survey. Measuring Y (SZ) within a 0.'75 radius aperture, we find an intrinsic log-normal scatter of 21% ± 11% in Y (SZ) at a fixed mass. Measuring Y (SZ) within a 0.3 Mpc projected radius (equivalent to 0.'75 at the survey median redshift z = 0.6), we find a scatter of 26% ± 9%. Prior to this study, the SPT observable found to have the lowest scatter with mass was cluster detection significance. We demonstrate, from both simulations and SPT observed clusters that Y (SZ) measured within an aperture comparable to the SPT beam size is equivalent, in terms of scatter with cluster mass, to SPT cluster detection significance.

  15. Relative Effects of Psychological Flexibility, Parental Involvement ...

    African Journals Online (AJOL)

    A critical analysis and understanding of secondary students' experiences and of safety in public schools are currently lacking in the literature and warrant further research. This study investigated the relative effects of psychological flexibility, parental involvement and school climate on secondary school student's school ...

  16. Scale effect in fatigue resistance under complex stressed state

    International Nuclear Information System (INIS)

    Sosnovskij, L.A.

    1979-01-01

    On the basis the of the fatigue failure statistic theory obtained is the formula for calculated estimation of probabillity of failure under complex stressed state according to partial probabilities of failure under linear stressed state with provision for the scale effect. Also the formula for calculation of equivalent stress is obtained. The verification of both formulae using literary experimental data for plane stressed state torsion has shown that the error of estimations does not exceed 10% for materials with the ultimate strength changing from 61 to 124 kg/mm 2

  17. Scaling relations between trabecular bone volume fraction and microstructure at different skeletal sites.

    Science.gov (United States)

    Räth, Christoph; Baum, Thomas; Monetti, Roberto; Sidorenko, Irina; Wolf, Petra; Eckstein, Felix; Matsuura, Maiko; Lochmüller, Eva-Maria; Zysset, Philippe K; Rummeny, Ernst J; Link, Thomas M; Bauer, Jan S

    2013-12-01

    In this study, we investigated the scaling relations between trabecular bone volume fraction (BV/TV) and parameters of the trabecular microstructure at different skeletal sites. Cylindrical bone samples with a diameter of 8mm were harvested from different skeletal sites of 154 human donors in vitro: 87 from the distal radius, 59/69 from the thoracic/lumbar spine, 51 from the femoral neck, and 83 from the greater trochanter. μCT images were obtained with an isotropic spatial resolution of 26μm. BV/TV and trabecular microstructure parameters (TbN, TbTh, TbSp, scaling indices ( and σ of α and αz), and Minkowski Functionals (Surface, Curvature, Euler)) were computed for each sample. The regression coefficient β was determined for each skeletal site as the slope of a linear fit in the double-logarithmic representations of the correlations of BV/TV versus the respective microstructure parameter. Statistically significant correlation coefficients ranging from r=0.36 to r=0.97 were observed for BV/TV versus microstructure parameters, except for Curvature and Euler. The regression coefficients β were 0.19 to 0.23 (TbN), 0.21 to 0.30 (TbTh), -0.28 to -0.24 (TbSp), 0.58 to 0.71 (Surface) and 0.12 to 0.16 (), 0.07 to 0.11 (), -0.44 to -0.30 (σ(α)), and -0.39 to -0.14 (σ(αz)) at the different skeletal sites. The 95% confidence intervals of β overlapped for almost all microstructure parameters at the different skeletal sites. The scaling relations were independent of vertebral fracture status and similar for subjects aged 60-69, 70-79, and >79years. In conclusion, the bone volume fraction-microstructure scaling relations showed a rather universal character. © 2013.

  18. The effect of polymer type on electric breakdown strength on a nanosecond time scale

    Institute of Scientific and Technical Information of China (English)

    Zhao Liang; Su Jian-Cang; Pan Ya-Feng; Zhang Xi-Bo

    2012-01-01

    Based on the concepts of fast polarization,effective electric field and electron impact ionization criterion,the effect of polymer type on electric breakdown strength (EBD) on a nanosecond time scale is investigated,and a formula that qualitatively characterizes the relation between the electric breakdown strength and the polymer type is derived.According to this formula,it is found that the electric breakdown strength decreases with an increase in the effective relative dielectric constants of the polymers.By calculating the effective relative dielectric constants for different types of polymers,the theoretical relation for the electric breakdown strengths of common polymers is predicted.To verify the prediction,the polymers of PE (polyethylene),PTFE (polytetrafluoroethelene),PMMA (organic glass) and Nylon are tested with a nanosecond-pulse generator.The experimental result shows EBD (PTFE) > EBD (PMMA) > EBD (Nylon) > EBD (PE).This result is consistent with the theoretical prediction.

  19. Assessment of the Effectiveness of Green Infrastructure Stormwater Best Management Practices (BMPs) at the Small Watershed Scale

    Science.gov (United States)

    There have been numerous studies of the water quantity and quality functions of stormwater BMPs at the site scale, but relatively few assessments at the watershed scale. This presentation will present an overview and initial results of projects to evaluate the effectiveness of g...

  20. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    Science.gov (United States)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach

  1. Relating rheology to geometry in large-scale natural shear zones

    Science.gov (United States)

    Platt, John

    2016-04-01

    The geometry and width of the ductile roots of plate boundary scale faults are very poorly understood. Some field and geophysical data suggests widths of tens of km in the lower crust, possibly more in the upper mantle. Other observations suggest they are much narrower. Dip slip shear zones may flatten out and merge into zones of subhorizontal lower crustal or asthenospheric flow. The width of a ductile shear zone is simply related to relative velocity and strain rate. Strain rate is related to stress through the constitutive relationship. Can we constrain the stress, and do we understand the rheology of materials in ductile shear zones? A lot depends on how shear zones are initiated. If they are localized by pre-existing structures, width and/or rheology may be inherited, and we have too many variables. If shear zones are localized primarily by shear heating, initial shear stress has to be very high (> 1 GPa) to overcome conductive heat loss, and very large feedbacks (both positive and negative) make the system highly unstable. Microstructural weakening requires a minimum level of stress to cause deformation and damage in surrounding rock, thereby buffering the stress. Microstructural weakening leads to grain-size sensitive creep, for which we have constitutive laws, but these are complicated by phase mixing in polyphase materials, by viscous anisotropy, by hydration, and by changes in mineral assemblage. Here are some questions that need to be addressed. (1) If grain-size reduction by dynamic recrystallization results in a switch to grain-size sensitive creep (GSSC) in a stress-buffered shear zone, does dynamic recrystallization stop? Does grain growth set in? If grain-size is still controlled by dislocation processes, then the effective stress exponent for GSSC is 4-5, even though the dominant mechanism may be diffusion and/or grain-boundary sliding (GBS). (2) Is phase mixing in ultramylonites primarily a result of GBS + neighbour switching, creep cavitation and

  2. Coulometric-potentiometric determination of autoprotolysis constant and relative acidity scale of water

    Directory of Open Access Journals (Sweden)

    Džudović Radmila M.

    2010-01-01

    Full Text Available The autoprotolysis constant and relative acidity scale of water were determined by applying the coulometric-potentiometric method and a hydrogen/palladium (H2/Pd generator anode. In the described procedure for the evaluation of autoprotolysis constant, a strong base generated coulometrically at the platinum cathode in situ in the electrolytic cell, in presence of sodium perchlorate as the supporting electrolyte, is titrated with hydrogen ions obtained by the anodic oxidation of hydrogen dissolved in palladium electrode. The titration was carried out with a glass-SCE electrode pair at 25.0±0.1°C. The value obtained pKw = 13.91 ± 0.06 is in agreement with literature data. The range of acidity scale of water is determined from the difference between the halfneutralization potentials of electrogenerated perchloric acid and that of sodium hydroxide in a sodium perchlorate medium. The halfneutralization potentials were measured using both a glass-SCE and a (H2/Pdind-SCE electrode pairs. A wider range of relative acidity scale of water was obtained with the glass-SCE electrode pair.

  3. Adaptation study of the Turkish version of the Gambling-Related Cognitions Scale (GRCS-T).

    Science.gov (United States)

    Arcan, K; Karanci, A N

    2015-03-01

    This study aimed to adapt and to test the validity and the reliability of the Turkish version of the Gambling-Related Cognitions Scale (GRCS-T) that was developed by Raylu and Oei (Addiction 99(6):757-769, 2004a). The significance of erroneous cognitions in the development and the maintenance of gambling problems, the importance of promoting gambling research in different cultures, and the limited information about the gambling individuals in Turkey due to limited gambling research interest inspired the present study. The sample consisted of 354 voluntary male participants who were above age 17 and betting on sports and horse races selected through convenience sampling in betting terminals. The results of the confirmatory factor analysis following the original scale's five factor structure indicated a good fit for the data. The analyses were carried out with 21 items due to relatively inadequate psychometric properties of two GRCS-T items. Correlational analyses and group comparison tests supported the concurrent and the criterion validity of the GRCS-T. Cronbach's alpha coefficient for the whole scale was 0.84 whereas the coefficients ranged between 0.52 and 0.78 for the subscales of GRCS-T. The findings suggesting that GRCS-T is a valid and reliable instrument to identify gambling cognitions in Turkish samples are discussed considering the possible influence of the sample make-up and cultural texture within the limitations of the present study and in the light of the relevant literature.

  4. Urban energy consumption and related carbon emission estimation: a study at the sector scale

    Science.gov (United States)

    Lu, Weiwei; Chen, Chen; Su, Meirong; Chen, Bin; Cai, Yanpeng; Xing, Tao

    2013-12-01

    With rapid economic development and energy consumption growth, China has become the largest energy consumer in the world. Impelled by extensive international concern, there is an urgent need to analyze the characteristics of energy consumption and related carbon emission, with the objective of saving energy, reducing carbon emission, and lessening environmental impact. Focusing on urban ecosystems, the biggest energy consumer, a method for estimating energy consumption and related carbon emission was established at the urban sector scale in this paper. Based on data for 1996-2010, the proposed method was applied to Beijing in a case study to analyze the consumption of different energy resources (i.e., coal, oil, gas, and electricity) and related carbon emission in different sectors (i.e., agriculture, industry, construction, transportation, household, and service sectors). The results showed that coal and oil contributed most to energy consumption and carbon emission among different energy resources during the study period, while the industrial sector consumed the most energy and emitted the most carbon among different sectors. Suggestions were put forward for energy conservation and emission reduction in Beijing. The analysis of energy consumption and related carbon emission at the sector scale is helpful for practical energy saving and emission reduction in urban ecosystems.

  5. Giant molecular cloud scaling relations: the role of the cloud definition

    Science.gov (United States)

    Khoperskov, S. A.; Vasiliev, E. O.; Ladeyschikov, D. A.; Sobolev, A. M.; Khoperskov, A. V.

    2016-01-01

    We investigate the physical properties of molecular clouds in disc galaxies with different morphologies: a galaxy without prominent structure, a spiral barred galaxy and a galaxy with flocculent structure. Our N-body/hydrodynamical simulations take into account non-equilibrium H2 and CO chemical kinetics, self-gravity, star formation and feedback processes. For the simulated galaxies, the scaling relations of giant molecular clouds, or so-called Larson's relations, are studied for two types of cloud definition (or extraction method): the first is based on total column density position-position (PP) data sets and the second is indicated by the CO (1-0) line emission used in position-position-velocity (PPV) data. We find that the cloud populations obtained using both cloud extraction methods generally have similar physical parameters, except that for the CO data the mass spectrum of clouds has a tail with low-mass objects M ˜ 103-104 M⊙. Owing toa varying column density threshold, the power-law indices in the scaling relations are significantly changed. In contrast, the relations are invariant to the CO brightness temperature threshold. Finally, we find that the mass spectra of clouds for PPV data are almost insensitive to the galactic morphology, whereas the spectra for PP data demonstrate significant variation.

  6. Reionization on large scales. IV. Predictions for the 21 cm signal incorporating the light cone effect

    Energy Technology Data Exchange (ETDEWEB)

    La Plante, P.; Battaglia, N.; Natarajan, A.; Peterson, J. B.; Trac, H. [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Cen, R. [Department of Astrophysical Science, Princeton University, Princeton, NJ 08544 (United States); Loeb, A., E-mail: plaplant@andrew.cmu.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2014-07-01

    We present predictions for the 21 cm brightness temperature power spectrum during the Epoch of Reionization (EoR). We discuss the implications of the 'light cone' effect, which incorporates evolution of the neutral hydrogen fraction and 21 cm brightness temperature along the line of sight. Using a novel method calibrated against radiation-hydrodynamic simulations, we model the neutral hydrogen density field and 21 cm signal in large volumes (L = 2 Gpc h {sup –1}). The inclusion of the light cone effect leads to a relative decrease of about 50% in the 21 cm power spectrum on all scales. We also find that the effect is more prominent at the midpoint of reionization and later. The light cone effect can also introduce an anisotropy along the line of sight. By decomposing the 3D power spectrum into components perpendicular to and along the line of sight, we find that in our fiducial reionization model, there is no significant anisotropy. However, parallel modes can contribute up to 40% more power for shorter reionization scenarios. The scales on which the light cone effect is relevant are comparable to scales where one measures the baryon acoustic oscillation. We argue that due to its large comoving scale and introduction of anisotropy, the light cone effect is important when considering redshift space distortions and future application to the Alcock-Paczyński test for the determination of cosmological parameters.

  7. Effects of tooth scaling reminders for dental outpatients.

    Science.gov (United States)

    Cheng, Chi-Chia J; Li, Chung-Yi; Hu, Yih-Jin; Shen, Hsi-Che; Huang, Shay-Min

    2013-06-01

    We investigated the effect of sending reminders for patients to attend appointments for tooth scaling. A total of 389 outpatients were assigned to three intervention groups (reminders sent by postcard, mobile-phone text message or telephone call) and one control group. Reminders accompanied by short health education messages were sent to patients in each of the intervention groups. The outpatient revisiting behaviour of the patients was monitored. Patients who were reminded to come in for tooth scaling were 2.6 (95% CI 1.3-5.4) to 2.9 (CI 1.1-7.8) times more likely to revisit compared to those who were not reminded. For every one point increase in the patient satisfaction score, patients were 3.8 (CI 1.2-11.6) times more likely to revisit. Patients with a high level of patient satisfaction and who had also received a reminder had the highest return rates (26%). Most patients (89-96%) had good feelings regarding the reminders; 65% of the patients agreed that reminders had enhanced their intention to revisit; 91% of patients hoped to continue to receive reminders concerning broader dental health information. A reminder combined with health education is an effective way of improving preventative dental visiting behaviour.

  8. The brief negative symptom scale (BNSS): Sensitivity to treatment effects.

    Science.gov (United States)

    Kirkpatrick, Brian; Saoud, Jay B; Strauss, Gregory P; Ahmed, Anthony O; Tatsumi, Kazunori; Opler, Mark; Luthringer, Remy; Davidson, Michael

    2017-12-21

    The Brief Negative Symptom Scale (BNSS) grew out of a recommendation by the NIMH-sponsored Consensus Development Conference on Negative Symptoms that a scale based on contemporary concepts be developed. We assessed sensitivity to change of the BNSS in a trial of MIN-101, which showed efficacy for negative symptoms (PANSS pentagonal model) at daily doses of 32 and 64mg/day. Using mixed-effects model for repeated measures, we examined change in BNSS total score and in the BNSS factors of anhedonia/avolition/asociality (AAA), and expressivity (EXP). Compared to placebo, the 64mg group (N=83) showed a significant decrease in BNSS total score (effect size d [ES] 0.56, psymptom scores; covarying for disorganization, positive symptoms, or anxiety/depression did not cause a meaningful change in the significance of the BNSS total or factor scores in this group. The 32mg group (N=78) did not differ significantly from placebo (N=83) on BNSS total score (ES=0.33, p<0.09), AAA (ES=0.25, p<0.20) or EXP (ES=0.30, p<0.12) scores. These results demonstrate the BNSS is sensitive to change. Copyright © 2017. Published by Elsevier B.V.

  9. Fingerprints of heavy scales in electroweak effective Lagrangians

    Science.gov (United States)

    Pich, Antonio; Rosell, Ignasi; Santos, Joaquín; Sanz-Cillero, Juan José

    2017-04-01

    The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2) L ⊗ SU(2) R → SU(2) L+ R , which couples the known particle fields to heavier states with bosonic quantum numbers J P = 0± and 1±. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.

  10. Fingerprints of heavy scales in electroweak effective Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    Pich, Antonio [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, Ignasi [Departamento de Matemáticas, Física y Ciencias Tecnológicas,Universidad CEU Cardenal Herrera, E-46115 Alfara del Patriarca, València (Spain); Santos, Joaquín [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Sanz-Cillero, Juan José [Departamento de Física Teórica I, Universidad Complutense de Madrid,E-28040 Madrid (Spain)

    2017-04-04

    The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, which couples the known particle fields to heavier states with bosonic quantum numbers J{sup P}=0{sup ±} and 1{sup ±}. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.

  11. Scale effects and morphological diversification in hindlimb segment mass proportions in neognath birds.

    Science.gov (United States)

    Kilbourne, Brandon M

    2014-01-01

    In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses - thigh, shank, pes, tarsometatarsal segment, and digits - from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel's λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel's λ) and increasing or decreasing rates of trait change over time (i.e., Pagel's δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may

  12. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport

    Science.gov (United States)

    Leung, Juliana Y.; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  13. Longitudinal multigroup invariance analysis of the satisfaction with food-related life scale in university students

    DEFF Research Database (Denmark)

    Schnettler, Berta; Miranda, Horacio; Miranda-Zapata, Edgardo

    2017-01-01

    This study examined longitudinal measurement invariance in the Satisfaction with Food-related Life (SWFL) scale using follow-up data from university students. We examined this measure of the SWFL in different groups of students, separated by various characteristics. Through non......-probabilistic longitudinal sampling, 114 university students (65.8% female, mean age: 22.5) completed the SWFL questionnaire three times, over intervals of approximately one year. Confirmatory factor analysis was used to examine longitudinal measurement invariance. Two types of analysis were conducted: first, a longitudinal...... students of both sexes, and among those older and younger than 22 years. Generally, these findings suggest that the SWFL scale has satisfactory psychometric properties for longitudinal measurement invariance in university students with similar characteristics as the students that participated...

  14. Temporal and Latitudinal Variations of the Length-Scales and Relative Intensities of the Chromospheric Network

    Science.gov (United States)

    Raju, K. P.

    2018-05-01

    The Calcium K spectroheliograms of the Sun from Kodaikanal have a data span of about 100 years and covers over 9 solar cycles. The Ca line is a strong chromospheric line dominated by chromospheric network and plages which are good indicators of solar activity. Length-scales and relative intensities of the chromospheric network have been obtained in the solar latitudes from 50 degree N to 50 degree S from the spectroheliograms. The length-scale was obtained from the half-width of the two-dimensional autocorrelation of the latitude strip which gives a measure of the width of the network boundary. As reported earlier for the transition region extreme ultraviolet (EUV) network, relative intensity and width of the chromospheric network boundary are found to be dependent on the solar cycle. A varying phase difference has been noticed in the quantities in different solar latitudes. A cross-correlation analysis of the quantities from other latitudes with ±30 degree latitude revealed an interesting phase difference pattern indicating flux transfer. Evidence of equatorward flux transfer has been observed. The average equatorward flux transfer was estimated to be 5.8 ms-1. The possible reasons of the drift could be meridional circulation, torsional oscillations, or the bright point migration. Cross-correlation of intensity and length-scale from the same latitude showed increasing phase difference with increasing latitude. We have also obtained the cross correlation of the quantities across the equator to see the possible phase lags in the two hemispheres. Signatures of lags are seen in the length scales of southern hemisphere near the equatorial latitudes, but no such lags in the intensity are observed. The results have important implications on the flux transfer over the solar surface and hence on the solar activity and dynamo.

  15. Relating system-to-CFD coupled code analyses to theoretical framework of a multi-scale method

    International Nuclear Information System (INIS)

    Cadinu, F.; Kozlowski, T.; Dinh, T.N.

    2007-01-01

    Over past decades, analyses of transient processes and accidents in a nuclear power plant have been performed, to a significant extent and with a great success, by means of so called system codes, e.g. RELAP5, CATHARE, ATHLET codes. These computer codes, based on a multi-fluid model of two-phase flow, provide an effective, one-dimensional description of the coolant thermal-hydraulics in the reactor system. For some components in the system, wherever needed, the effect of multi-dimensional flow is accounted for through approximate models. The later are derived from scaled experiments conducted for selected accident scenarios. Increasingly, however, we have to deal with newer and ever more complex accident scenarios. In some such cases the system codes fail to serve as simulation vehicle, largely due to its deficient treatment of multi-dimensional flow (in e.g. downcomer, lower plenum). A possible way of improvement is to use the techniques of Computational Fluid Dynamics (CFD). Based on solving Navier-Stokes equations, CFD codes have been developed and used, broadly, to perform analysis of multi-dimensional flow, dominantly in non-nuclear industry and for single-phase flow applications. It is clear that CFD simulations can not substitute system codes but just complement them. Given the intrinsic multi-scale nature of this problem, we propose to relate it to the more general field of research on multi-scale simulations. Even though multi-scale methods are developed on case-by-case basis, the need for a unified framework brought to the development of the heterogeneous multi-scale method (HMM)

  16. Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation

    Science.gov (United States)

    Torrey, Paul; Vogelsberger, Mark; Hernquist, Lars; McKinnon, Ryan; Marinacci, Federico; Simcoe, Robert A.; Springel, Volker; Pillepich, Annalisa; Naiman, Jill; Pakmor, Rüdiger; Weinberger, Rainer; Nelson, Dylan; Genel, Shy

    2018-06-01

    The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fixed stellar mass are correlated with galactic SFR. In this Letter, we use hydrodynamical simulations to quantify the time-scales over which populations of galaxies oscillate about the average SFR and metallicity values at fixed stellar mass. We find that Illustris and IllustrisTNG predict that galaxy offsets from the star formation main sequence and MZR oscillate over similar time-scales, are often anticorrelated in their evolution, evolve with the halo dynamical time, and produce a pronounced FMR. Our models indicate that galaxies oscillate about equilibrium SFR and metallicity values - set by the galaxy's stellar mass - and that SFR and metallicity offsets evolve in an anticorrelated fashion. This anticorrelated variability of the metallicity and SFR offsets drives the existence of the FMR in our models. In contrast to Illustris and IllustrisTNG, we speculate that the SFR and metallicity evolution tracks may become decoupled in galaxy formation models dominated by feedback-driven globally bursty SFR histories, which could weaken the FMR residual correlation strength. This opens the possibility of discriminating between bursty and non-bursty feedback models based on the strength and persistence of the FMR - especially at high redshift.

  17. THE NON-CAUSAL ORIGIN OF THE BLACK-HOLE-GALAXY SCALING RELATIONS

    International Nuclear Information System (INIS)

    Jahnke, Knud; Maccio, Andrea V.

    2011-01-01

    We show that the M BH -M bulge scaling relations observed from the local to the high-z universe can be largely or even entirely explained by a non-causal origin, i.e., they do not imply the need for any physically coupled growth of black hole (BH) and bulge mass, for example, through feedback by active galactic nuclei (AGNs). Provided some physics for the absolute normalization, the creation of the scaling relations can be fully explained by the hierarchical assembly of BH and stellar mass through galaxy merging, from an initially uncorrelated distribution of BH and stellar masses in the early universe. We show this with a suite of dark matter halo merger trees for which we make assumptions about (uncorrelated) BH and stellar mass values at early cosmic times. We then follow the halos in the presence of global star formation and BH accretion recipes that (1) work without any coupling of the two properties per individual galaxy and (2) correctly reproduce the observed star formation and BH accretion rate density in the universe. With disk-to-bulge conversion in mergers included, our simulations even create the observed slope of ∼1.1 for the M BH -M bulge relation at z = 0. This also implies that AGN feedback is not a required (though still a possible) ingredient in galaxy evolution. In light of this, other mechanisms that can be invoked to truncate star formation in massive galaxies are equally justified.

  18. Effect of sulfur removal on scale adhesion to PWA 1480

    International Nuclear Information System (INIS)

    Smialek, J.L.; Tubbs, B.K.

    1995-01-01

    A commercial superalloy, PWA 1480, was annealed in hydrogen at 1,000 C to 1,300 C in order to remove a 10 ppmw sulfur impurity. This treatment was very successful above 1,200 C, resulting in residual sulfur contents below 0.1 ppmw. The degree of scale adhesion in subsequent 1,100 C cyclic oxidation tests was inversely related to residual sulfur content. Control of adhesion by desulfurization in the absence of reactive elements supports an adhesion mechanism based on oxide-metal bonding weakened by sulfur segregation. Attempts at sulfur purging and improving adhesion by repeated oxidation/polishing were not successful, in contrast to previous studies on NiCrAl

  19. Scale models: A proven cost-effective tool for outage planning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R. [Commonwealth Edison Co., Morris, IL (United States); Segroves, R. [Sargent & Lundy, Chicago, IL (United States)

    1995-03-01

    As generation costs for operating nuclear stations have risen, more nuclear utilities have initiated efforts to improve cost effectiveness. Nuclear plant owners are also being challenged with lower radiation exposure limits and new revised radiation protection related regulations (10 CFR 20), which places further stress on their budgets. As source term reduction activities continue to lower radiation fields, reducing the amount of time spent in radiation fields becomes one of the most cost-effective ways of reducing radiation exposure. An effective approach for minimizing time spent in radiation areas is to use a physical scale model for worker orientation planning and monitoring maintenance, modifications, and outage activities. To meet the challenge of continued reduction in the annual cumulative radiation exposures, new cost-effective tools are required. One field-tested and proven tool is the physical scale model.

  20. The effect of allometric scaling in coral thermal microenvironments.

    Directory of Open Access Journals (Sweden)

    Robert H Ong

    Full Text Available A long-standing interest in marine science is in the degree to which environmental conditions of flow and irradiance, combined with optical, thermal and morphological characteristics of individual coral colonies, affects their sensitivity of thermal microenvironments and susceptibility to stress-induced bleaching within and/or among colonies. The physiological processes in Scleractinian corals tend to scale allometrically as a result of physical and geometric constraints on body size and shape. There is a direct relationship between scaling to thermal stress, thus, the relationship between allometric scaling and rates of heating and cooling in coral microenvironments is a subject of great interest. The primary aim of this study was to develop an approximation that predicts coral thermal microenvironments as a function of colony morphology (shape and size, light or irradiance, and flow velocity or regime. To do so, we provided intuitive interpretation of their energy budgets for both massive and branching colonies, and then quantified the heat-size exponent (b* and allometric constant (m using logarithmic linear regression. The data demonstrated a positive relationship between thermal rates and changes in irradiance, A/V ratio, and flow, with an interaction where turbulent regime had less influence on overall stress which may serve to ameliorate the effects of temperature rise compared to the laminar regime. These findings indicated that smaller corals have disproportionately higher stress, however they can reach thermal equilibrium quicker. Moreover, excellent agreements between the predicted and simulated microscale temperature values with no significant bias were observed for both the massive and branching colonies, indicating that the numerical approximation should be within the accuracy with which they could be measured. This study may assist in estimating the coral microscale temperature under known conditions of water flow and irradiance

  1. Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling.

    Science.gov (United States)

    Li, Xin; Cai, Yu; Moloney, Brendan; Chen, Yiyi; Huang, Wei; Woods, Mark; Coakley, Fergus V; Rooney, William D; Garzotto, Mark G; Springer, Charles S

    2016-08-01

    Dynamic-Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been used widely for clinical applications. Pharmacokinetic modeling of DCE-MRI data that extracts quantitative contrast reagent/tissue-specific model parameters is the most investigated method. One of the primary challenges in pharmacokinetic analysis of DCE-MRI data is accurate and reliable measurement of the arterial input function (AIF), which is the driving force behind all pharmacokinetics. Because of effects such as inflow and partial volume averaging, AIF measured from individual arteries sometimes require amplitude scaling for better representation of the blood contrast reagent (CR) concentration time-courses. Empirical approaches like blinded AIF estimation or reference tissue AIF derivation can be useful and practical, especially when there is no clearly visible blood vessel within the imaging field-of-view (FOV). Similarly, these approaches generally also require magnitude scaling of the derived AIF time-courses. Since the AIF varies among individuals even with the same CR injection protocol and the perfect scaling factor for reconstructing the ground truth AIF often remains unknown, variations in estimated pharmacokinetic parameters due to varying AIF scaling factors are of special interest. In this work, using simulated and real prostate cancer DCE-MRI data, we examined parameter variations associated with AIF scaling. Our results show that, for both the fast-exchange-limit (FXL) Tofts model and the water exchange sensitized fast-exchange-regime (FXR) model, the commonly fitted CR transfer constant (K(trans)) and the extravascular, extracellular volume fraction (ve) scale nearly proportionally with the AIF, whereas the FXR-specific unidirectional cellular water efflux rate constant, kio, and the CR intravasation rate constant, kep, are both AIF scaling insensitive. This indicates that, for DCE-MRI of prostate cancer and possibly other cancers, kio and kep may be more suitable imaging

  2. Magnetic hysteresis scaling in thulium: Implication of irreversibility-related scaling for soliton wall motion in an Ising system

    International Nuclear Information System (INIS)

    Kobayashi, Satoru

    2013-01-01

    We report low-field magnetic hysteresis scaling in thulium with strong uniaxial anisotropy. A power-law hysteresis scaling with an exponent of 1.13±0.02 is found between hysteresis loss and remanent flux density of minor loops in the low-temperature ferrimagnetic phase. This exponent value is slightly lower than 1.25–1.4 observed previously for ferromagnets and helimagnets. Unlike spiral and/or Bloch walls with a finite transition width, typical for Dy, Tb, and Ho with planar anisotropy, a soliton wall with a sudden phase shift between neighboring domains may dominate in Tm due to its Ising-like character. The observations imply the presence of universality class of hysteresis scaling that depends on the type of magnetic anisotropy. - Highlights: ► We observe magnetic hysteresis scaling in thulium with a power law exponent of 1.13. ► Irreversibility of soliton walls dominates owing to its strong uniaxial anisotropy. ► The exponent is lower than those for Bloch wall and spiral wall. ► The results imply the presence of universality class that depends on the wall type.

  3. Fractional Nottale's Scale Relativity and emergence of complexified gravity

    Energy Technology Data Exchange (ETDEWEB)

    EL-Nabulsi, Ahmad Rami [Department of Nuclear and Energy Engineering, Cheju National University, Ara-dong 1, Jeju 690-756 (Korea, Republic of)], E-mail: nabulsiahmadrami@yahoo.fr

    2009-12-15

    Fractional calculus of variations has recently gained significance in studying weak dissipative and nonconservative dynamical systems ranging from classical mechanics to quantum field theories. In this paper, fractional Nottale's Scale Relativity (NSR) for an arbitrary fractal dimension is introduced within the framework of fractional action-like variational approach recently introduced by the author. The formalism is based on fractional differential operators that generalize the differential operators of conventional NSR but that reduces to the standard formalism in the integer limit. Our main aim is to build the fractional setting for the NSR dynamical equations. Many interesting consequences arise, in particular the emergence of complexified gravity and complex time.

  4. Using scaling relations to understand trends in the catalytic activity of transition metals

    International Nuclear Information System (INIS)

    Jones, G; Bligaard, T; Abild-Pedersen, F; Noerskov, J K

    2008-01-01

    A method is developed to estimate the potential energy diagram for a full catalytic reaction for a range of late transition metals on the basis of a calculation (or an experimental determination) for a single metal. The method, which employs scaling relations between adsorption energies, is illustrated by calculating the potential energy diagram for the methanation reaction and ammonia synthesis for 11 different metals on the basis of results calculated for Ru. It is also shown that considering the free energy diagram for the reactions, under typical industrial conditions, provides additional insight into reactivity trends

  5. Testing the Effectiveness of Environmental Variables to Explain European Terrestrial Vertebrate Species Richness across Biogeographical Scales.

    Directory of Open Access Journals (Sweden)

    Maud Mouchet

    Full Text Available We compared the effectiveness of environmental variables, and in particular of land-use indicators, to explain species richness patterns across taxonomic groups and biogeographical scales (i.e. overall pan-Europe and ecoregions within pan-Europe. Using boosted regression trees that handle non-linear relationships, we compared the relative influence (as a measure of effectiveness of environmental variables related to climate, landscape (or habitat heterogeneity, land-use intensity or energy availability to explain European vertebrate species richness (birds, amphibians, and mammals at the continental and ecoregion scales. We found that dominant land cover and actual evapotranspiration that relate to energy availability were the main correlates of vertebrate species richness over Europe. At the ecoregion scale, we identified four distinct groups of ecoregions where species richness was essentially associated to (i seasonality of temperature, (ii actual evapotranspiration and/or mean annual temperature, (iii seasonality of precipitation, actual evapotranspiration and land cover and (iv and an even combination of the environmental variables. This typology of ecoregions remained valid for total vertebrate richness and the three vertebrate groups taken separately. Despite the overwhelming influence of land cover and actual evapotranspiration to explain vertebrate species richness patterns at European scale, the ranking of the main correlates of species richness varied between regions. Interestingly, landscape and land-use indicators did not stand out at the continental scale but their influence greatly increased in southern ecoregions, revealing the long-lasting human footprint on land-use-land-cover changes. Our study provides one of the first multi-scale descriptions of the variability in the ranking of correlates across several taxa.

  6. Incremental Validity of the Subscales of the Emotional Regulation Related to Testing Scale for Predicting Test Anxiety

    Science.gov (United States)

    Feldt, Ronald; Lindley, Kyla; Louison, Rebecca; Roe, Allison; Timm, Megan; Utinkova, Nikola

    2015-01-01

    The Emotional Regulation Related to Testing Scale (ERT Scale) assesses strategies students use to regulate emotion related to academic testing. It has four dimensions: Cognitive Appraising Processes (CAP), Emotion-Focusing Processes (EFP), Task-Focusing Processes (TFP), and Regaining Task-Focusing Processes (RTFP). The study examined the factor…

  7. A numerical study of scale effects on performance of a tractor type podded propeller

    Directory of Open Access Journals (Sweden)

    Choi Jung-Kyu

    2014-06-01

    Full Text Available In this study, the scale effect on the performance of the podded propeller of tractor type is investigated. Turbulent flow computations are carried out for Reynolds numbers increasing progressively from model scale to full scale using the CFD analysis. The result of the flow calculation for model scale Reynolds numbers agrees well with that of the experiment of a large cavitation tunnel. The existing numerical analysis indicates that the performance of the podded propeller blades is mainly influenced by the advance coefficient and relatively little by the Reynolds number. However, the drag of pod housing with propeller in operation is different from that of pod housing without propeller due to the acceleration and swirl of propeller slipstream which is altered by propeller loading as well as the pressure recovery and friction according to Reynolds number, which suggests that the pod housing drag under the condition of propeller in operation is the key factor of the scale effect on the performance between model and full scale podded propellers. The so called ‘drag ratio’, which is the ratio of pod housing drag to total thrust of podded propeller, increases as the advance coefficient increases due to accelerated flow in the slipstream of the podded propeller. However, the increasing rate of the drag ratio reduces continuously as the Reynolds number increases from model to full scale progressively. The contribution of hydrodynamic forces, which acts on the parts composed of the pod housing with propeller operating in various loading conditions, to the thrust and the torque of the total propeller unit are presented for a range of Reynolds numbers from model to full scales.

  8. Latent hardening size effect in small-scale plasticity

    Science.gov (United States)

    Bardella, Lorenzo; Segurado, Javier; Panteghini, Andrea; Llorca, Javier

    2013-07-01

    We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.

  9. Latent hardening size effect in small-scale plasticity

    International Nuclear Information System (INIS)

    Bardella, Lorenzo; Panteghini, Andrea; Segurado, Javier; Llorca, Javier

    2013-01-01

    We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 µm, 6 µm] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view. (paper)

  10. A Toy Cosmology Using a Hubble-Scale Casimir Effect

    Directory of Open Access Journals (Sweden)

    Michael E. McCulloch

    2014-02-01

    Full Text Available The visible mass of the observable universe agrees with that needed for a flat cosmos, and the reason for this is not known. It is shown that this can be explained by modelling the Hubble volume as a black hole that emits Hawking radiation inwards, disallowing wavelengths that do not fit exactly into the Hubble diameter, since partial waves would allow an inference of what lies outside the horizon. This model of “horizon wave censorship” is equivalent to a Hubble-scale Casimir effect. This incomplete toy model is presented to stimulate discussion. It predicts a minimum mass and acceleration for the observable universe which are in agreement with the observed mass and acceleration, and predicts that the observable universe gains mass as it expands and was hotter in the past. It also predicts a suppression of variation on the largest cosmic scales that agrees with the low-l cosmic microwave background anomaly seen by the Planck satellite.

  11. Scaling behavior in the convection-driven Brazil nut effect

    Science.gov (United States)

    Hejmady, Prakhyat; Bandyopadhyay, Ranjini; Sabhapandit, Sanjib; Dhar, Abhishek

    2012-11-01

    The Brazil nut effect is the phenomenon in which a large intruder particle immersed in a vertically shaken bed of smaller particles rises to the top, even when it is much denser. The usual practice while describing these experiments has been to use the dimensionless acceleration Γ=aω2/g, where a and ω are, respectively, the amplitude and the angular frequency of vibration and g is the acceleration due to gravity. Considering a vibrated quasi-two-dimensional bed of mustard seeds, we show here that the peak-to-peak velocity of shaking v=aω, rather than Γ, is the relevant parameter in the regime where boundary-driven granular convection is the main driving mechanism. We find that the rise time τ of an intruder is described by the scaling law τ˜(v-vc)-α, where vc is identified as the critical vibration velocity for the onset of convective motion of the mustard seeds. This scaling form holds over a wide range of (a,ω), diameter, and density of the intruder.

  12. Are self-report scales as effective as clinician rating scales in measuring treatment response in routine clinical practice?

    Science.gov (United States)

    Zimmerman, Mark; Walsh, Emily; Friedman, Michael; Boerescu, Daniela A; Attiullah, Naureen

    2018-01-01

    Recent treatment guidelines have suggested that outcome should be measured in routine clinical practice. In the present report from the Rhode Island Methods to Improve Diagnostic Assessment and Services (MIDAS) project, we compared three self-report scales of depressive symptoms and the two most widely used clinician administered scales in treatment studies in their sensitivity to change and evaluation of treatment response in depressed patients treated in routine practice. At baseline and 4-month follow-up 153 depressed outpatients with DSM-IV MDD completed the Clinically Useful Depression Outcome Scale (CUDOS), Quick Inventory of Depressive Symptomatology-Self-report version (QIDS-SR), and Patient Health Questionnaire (PHQ-9). The patients were rated on the 17-item Hamilton Depression Rating Scale (HAMD) and the Montgomery-Asberg Depression Rating Scale (MADRS). On each scale treatment response was defined as a 50% or greater reduction in scores from baseline. While there were some differences in the percentage of patients considered to be responders on the different scales, a large effect size was found for each scale, with little variability amongst the scales. The level of agreement between the three self-report scales and the clinician rating scales was approximately the same LIMITATIONS: The present study was conducted in a single clinical practice in which the majority of the patients were white, female, and had health insurance. When measuring outcome in clinical practice the magnitude of change in depressive symptoms is as great on self-report scales as on clinician rating scales. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The relative biological effectiveness of antiprotons

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Alsner, Jan; Bassler, Niels

    2016-01-01

    Background and purpose: Aside from the enhancement of physical dose deposited by antiprotons annihilating in tissue-like material compared to protons of the same range a further increase of biological effective dose has been demonstrated. This enhancement can be expressed in an increase of the re......Background and purpose: Aside from the enhancement of physical dose deposited by antiprotons annihilating in tissue-like material compared to protons of the same range a further increase of biological effective dose has been demonstrated. This enhancement can be expressed in an increase...... of the relative biological effectiveness (RBE) of antiprotons near the end of range. We have performed the first-ever direct measurement of the RBE of antiprotons both at rest and in flight. Materials and methods: Experimental data were generated on the RBE of an antiproton beam entering a tissue-like target...

  14. Estimates of the pion-nucleon sigma term using dispersion relations and taking into account the relation between chiral and scale invariance breaking

    International Nuclear Information System (INIS)

    Efrosinin, V.P.; Zaikin, D.A.

    1983-01-01

    We study the possible reasons for the disagreement between the estimates of the pion-nucleon sigma term obtained by the method of dispersion relations with extrapolation to the Cheng-Dashen point and by other methods which do not involve this extrapolation. One reason for the disagreement may be the nonanalyticity of the πN amplitude in the variable t for ν = 0. We propose a method for estimating the sigma term using the threshold data for the πN amplitude, in which the effect of this nonanalyticity is minimized. We discuss the relation between scale invariance violation and chiral symmetry breaking and give the corresponding estimate of the sigma term. The two estimates are similar (42 and 34 MeV) and are in agreement when the uncertainties of the two methods are taken into consideration

  15. Test methods of total dose effects in very large scale integrated circuits

    International Nuclear Information System (INIS)

    He Chaohui; Geng Bin; He Baoping; Yao Yujuan; Li Yonghong; Peng Honglun; Lin Dongsheng; Zhou Hui; Chen Yusheng

    2004-01-01

    A kind of test method of total dose effects (TDE) is presented for very large scale integrated circuits (VLSI). The consumption current of devices is measured while function parameters of devices (or circuits) are measured. Then the relation between data errors and consumption current can be analyzed and mechanism of TDE in VLSI can be proposed. Experimental results of 60 Co γ TDEs are given for SRAMs, EEPROMs, FLASH ROMs and a kind of CPU

  16. Large-scale biophysical evaluation of protein PEGylation effects

    DEFF Research Database (Denmark)

    Vernet, Erik; Popa, Gina; Pozdnyakova, Irina

    2016-01-01

    PEGylation is the most widely used method to chemically modify protein biopharmaceuticals, but surprisingly limited public data is available on the biophysical effects of protein PEGylation. Here we report the first large-scale study, with site-specific mono-PEGylation of 15 different proteins...... of PEGylation on the thermal stability of a protein based on data generated by circular dichroism (CD), differential scanning calorimetry (DSC), or differential scanning fluorimetry (DSF). In addition, DSF was validated as a fast and inexpensive screening method for thermal unfolding studies of PEGylated...... proteins. Multivariate data analysis revealed clear trends in biophysical properties upon PEGylation for a subset of proteins, although no universal trends were found. Taken together, these findings are important in the consideration of biophysical methods and evaluation of second...

  17. Sustainability effects of household-scale biogas in rural China

    International Nuclear Information System (INIS)

    Gosens, Jorrit; Lu, Yonglong; He, Guizhen; Bluemling, Bettina; Beckers, Theo A.M.

    2013-01-01

    Households in rural China rely heavily on low quality fuels which results in reduced quality of life and environmental degradation. This study assesses the comparative contribution of household scale biogas installations to the broad set of sustainability objectives in the Chinese biogas policy framework, which targets household budget, fuel collection workload, forest degradation, indoor air quality and health, renewable energy supply, and climate change. A household survey was used to determine how biogas affected consumption levels of crop residues, fuel wood, coal, LPG, and electricity. Biogas users were found to reduce consumption of biomass fuels but not coal. Although LPG is not a highly commonly used fuel in rural China, biogas users nearly cease to use it altogether. A big reduction in fuel wood consumption results in strongly reduced workload and forest degradation. Although household scale biogas has alleviated all sustainability issues targeted by Chinese policies, low quality fuel use remains abundant, even in households using biogas. Continued promotion of the construction of biogas installations is advisable, but additional policies are needed to ensure higher quality heating energy supply and cleaner uses of biomass fuels. - Highlights: ► Household biogas alleviated all sustainability issues targeted by policy. ► Biogas users consume less biomass fuels, much less LPG, but similar amounts of coal. ► Strongest sustainability effects are reduced workload and forest degradation. ► Household budget effects are slight as commercial cooking fuel use is limited. ► Low quality fuel use remains abundant and further policy efforts are needed

  18. Frequency effects on the scale and behavior of acoustic streaming.

    Science.gov (United States)

    Dentry, Michael B; Yeo, Leslie Y; Friend, James R

    2014-01-01

    Acoustic streaming underpins an exciting range of fluid manipulation phenomena of rapidly growing significance in microfluidics, where the streaming often assumes the form of a steady, laminar jet emanating from the device surface, driven by the attenuation of acoustic energy within the beam of sound propagating through the liquid. The frequencies used to drive such phenomena are often chosen ad hoc to accommodate fabrication and material issues. In this work, we seek a better understanding of the effects of sound frequency and power on acoustic streaming. We present and, using surface acoustic waves, experimentally verify a laminar jet model that is based on the turbulent jet model of Lighthill, which is appropriate for acoustic streaming seen at micro- to nanoscales, between 20 and 936 MHz and over a broad range of input power. Our model eliminates the critically problematic acoustic source singularity present in Lighthill's model, replacing it with a finite emission area and enabling determination of the streaming velocity close to the source. At high acoustic power P (and hence high jet Reynolds numbers ReJ associated with fast streaming), the laminar jet model predicts a one-half power dependence (U∼P1/2∼ ReJ) similar to the turbulent jet model. However, the laminar model may also be applied to jets produced at low powers-and hence low jet Reynolds numbers ReJ-where a linear relationship between the beam power and streaming velocity exists: U∼P∼ReJ2. The ability of the laminar jet model to predict the acoustic streaming behavior across a broad range of frequencies and power provides a useful tool in the analysis of microfluidics devices, explaining peculiar observations made by several researchers in the literature. In particular, by elucidating the effects of frequency on the scale of acoustically driven flows, we show that the choice of frequency is a vitally important consideration in the design of small-scale devices employing acoustic streaming

  19. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status

    Science.gov (United States)

    Jongschaap, Raymond E. E.; Booij, Remmie

    2004-09-01

    Chlorophyll contents in vegetation depend on soil nitrogen availability and on crop nitrogen uptake, which are important management factors in arable farming. Crop nitrogen uptake is important, as nitrogen is needed for chlorophyll formation, which is important for photosynthesis, i.e. the conversion of absorbed radiance into plant biomass. The objective of this study was to estimate leaf and canopy nitrogen contents by near and remote sensing observations and to link observations at leaf, plant and canopy level. A theoretical base is presented for scaling-up leaf optical properties to whole plants and crops, by linking different optical recording techniques at leaf, plant and canopy levels through the integration of vertical nitrogen distribution. Field data come from potato experiments in The Netherlands in 1997 and 1998, comprising two potato varieties: Eersteling and Bintje, receiving similar nitrogen treatments (0, 100, 200 and 300 kg N ha -1) in varying application schemes to create differences in canopy nitrogen status during the growing season. Ten standard destructive field samplings were performed to follow leaf area index and crop dry weight evolution. Samples were analysed for inorganic nitrogen and total nitrogen contents. At sampling dates, spectral measurements were taken both at leaf level and at canopy level. At leaf level, an exponential relation between SPAD-502 readings and leaf organic nitrogen contents with a high correlation factor of 0.91 was found. At canopy level, an exponential relation between canopy organic nitrogen contents and red edge position ( λrep, nm) derived from reflectance measurements was found with a good correlation of 0.82. Spectral measurements (SPAD-502) at leaf level of a few square mm were related to canopy reflectance measurements (CropScan™) of approximately 0.44 m 2. Statistical regression techniques were used to optimise theoretical vertical nitrogen profiles that allowed scaling-up leaf chlorophyll measurements

  20. Scaling relations for a beam-deflecting TM110 mode in an asymmetric cavity

    International Nuclear Information System (INIS)

    Takeda, H.

    1989-01-01

    A deflecting mode in an rf cavity caused by an aperture of the coupling hole from a waveguide is studied. If the coupling hole was a finite size, the rf modes in the cavity can be distorted. We consider the distorted mode as a sum of the accelerating mode, and the deflecting mode. The finite-size coupling hole can be considered as radiating dipole sources in a closed cavity. Following the prescription given by H. Bethe, the relative strength of the deflecting mode TM 110 to the accelerating TM 010 mode is calculated by decomposing the dipole source field into cavity eigenmodes. Scaling relations are obtained as a function of the coupling hole radius. 2 refs., 6 figs

  1. Quantum cosmological relational model of shape and scale in 1D

    International Nuclear Information System (INIS)

    Anderson, Edward

    2011-01-01

    Relational particle models are useful toy models for quantum cosmology and the problem of time in quantum general relativity. This paper shows how to extend existing work on concrete examples of relational particle models in 1D to include a notion of scale. This is useful as regards forming a tight analogy with quantum cosmology and the emergent semiclassical time and hidden time approaches to the problem of time. This paper shows furthermore that the correspondence between relational particle models and classical and quantum cosmology can be strengthened using judicious choices of the mechanical potential. This gives relational particle mechanics models with analogues of spatial curvature, cosmological constant, dust and radiation terms. A number of these models are then tractable at the quantum level. These models can be used to study important issues (1) in canonical quantum gravity: the problem of time, the semiclassical approach to it and timeless approaches to it (such as the naive Schroedinger interpretation and records theory) and (2) in quantum cosmology, such as in the investigation of uniform states, robustness and the qualitative understanding of the origin of structure formation.

  2. Scale Effect of Premixed Methane-Air Combustion in Confined Space Using LES Model

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2015-12-01

    Full Text Available Gas explosion is the most hazardous incident occurring in underground airways. Computational Fluid Dynamics (CFD techniques are sophisticated in simulating explosions in confined spaces; specifically, when testing large-scale gaseous explosions, such as methane explosions in underground mines. The dimensions of a confined space where explosions could occur vary significantly. Thus, the scale effect on explosion parameters is worth investigating. In this paper, the impact of scaling on explosion overpressures is investigated by employing two scaling factors: The Gas-fill Length Scaling Factor (FLSF and the Hydraulic Diameter Scaling Factor (HDSF. The combinations of eight FLSFs and five HDSFs will cover a wide range of space dimensions where flammable gas could accumulate. Experiments were also conducted to evaluate the selected numerical models. The Large Eddy Simulation turbulence model was selected because it shows accuracy compared to the widely used Reynolds’ averaged models for the scenarios investigated in the experiments. Three major conclusions can be drawn: (1 The overpressure increases with both FLSF and HDSF within the deflagration regime; (2 In an explosion duct with a length to diameter ratio greater than 54, detonation is more likely to be triggered for a stoichiometric methane/air mixture; (3 Overpressure increases as an increment hydraulic diameter of a geometry within deflagration regime. A relative error of 7% is found when predicting blast peak overpressure for the base case compared to the experiment; a good agreement for the wave arrival time is also achieved.

  3. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    Energy Technology Data Exchange (ETDEWEB)

    Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  4. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins.

    Science.gov (United States)

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Cillero-Castro, Carmen; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechaty, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Karakaya, Nusret; Häggqvist, Kerstin; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Özhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Kaloudis, Triantafyllos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Catalán, Nuria; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Gonçalves, Vítor; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Mankiewicz-Boczek, Joana; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Soylu, Elif Neyran; Maraşlıoğlu, Faruk; Napiórkowska-Krzebietke, Agnieszka; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Antão-Geraldes, Ana M.; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Špoljarić Maronić, Dubravka; Stević, Filip; Žuna Pfeiffer, Tanja; Fonvielle, Jeremy; Straile, Dietmar; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Úbeda, Bárbara; Gálvez, José Ángel; Özen, Arda; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Leira, Manel; Hernández, Armand; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Gligora Udovič, Marija; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Maliaka, Valentini; Kangro, Kersti; Grossart, Hans-Peter; Paerl, Hans W.; Carey, Cayelan C.; Ibelings, Bas W.

    2018-04-13

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  5. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Directory of Open Access Journals (Sweden)

    Evanthia Mantzouki

    2018-04-01

    Full Text Available Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins. Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a and cytotoxins (e.g., cylindrospermopsin due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  6. Longitudinal multigroup invariance analysis of the satisfaction with food-related life scale in university students.

    Science.gov (United States)

    Schnettler, Berta; Miranda, Horacio; Miranda-Zapata, Edgardo; Salinas-Oñate, Natalia; Grunert, Klaus G; Lobos, Germán; Sepúlveda, José; Orellana, Ligia; Hueche, Clementina; Bonilla, Héctor

    2017-06-01

    This study examined longitudinal measurement invariance in the Satisfaction with Food-related Life (SWFL) scale using follow-up data from university students. We examined this measure of the SWFL in different groups of students, separated by various characteristics. Through non-probabilistic longitudinal sampling, 114 university students (65.8% female, mean age: 22.5) completed the SWFL questionnaire three times, over intervals of approximately one year. Confirmatory factor analysis was used to examine longitudinal measurement invariance. Two types of analysis were conducted: first, a longitudinal invariance by time, and second, a multigroup longitudinal invariance by sex, age, socio-economic status and place of residence during the study period. Results showed that the 3-item version of the SWFL exhibited strong longitudinal invariance (equal factor loadings and equal indicator intercepts). Longitudinal multigroup invariance analysis also showed that the 3-item version of the SWFL displays strong invariance by socio-economic status and place of residence during the study period over time. Nevertheless, it was only possible to demonstrate equivalence of the longitudinal factor structure among students of both sexes, and among those older and younger than 22 years. Generally, these findings suggest that the SWFL scale has satisfactory psychometric properties for longitudinal measurement invariance in university students with similar characteristics as the students that participated in this research. It is also possible to suggest that satisfaction with food-related life is associated with sex and age. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Event classification related to overflow of solvent containing uranium according to the INES scale (International Nuclear and Radiological Event Scale)

    International Nuclear Information System (INIS)

    Dourado, Eneida R.G.; Assis, Juliana T. de; Lage, Ricardo F.; Lopes, Karina B.

    2013-01-01

    This paper aims to frame the event overflow organic solvent rich in uranium, from a decanter of ore beneficiation plant, caused by the fall in the supply of electricity, according to the criteria established by the International Nuclear Event Scale and radiological (INES), facilitating the understanding of the occurrence and communication with the public regarding the radiation safety aspects involved. With the fall of electricity, routine procedures in situations of installation stop were performed, however, due to operational failure, the valve on the transfer line liquor was not closed. Thus, the mixer continued being fed with liquor, that led the consequent leakage of solvent loaded with uranium. It reached the drainage system, and the box of rainwater harvesting of the plant. However, immediately after the detection of the event, corrective actions were initiated and the overflow was contained. Regulatory agencies followed the removal of the solvent and on the results of the analysis of environmental monitoring, found that the event did not provide exposure to workers or any other impact. Therefore, comparing the characteristics of the event and the guidelines proposed by the INES scale, it is concluded that the classification of the event is below scale/level 0, confirming the absence of risk to the local population, workers and the environment

  8. Effective Rating Scale Development for Speaking Tests: Performance Decision Trees

    Science.gov (United States)

    Fulcher, Glenn; Davidson, Fred; Kemp, Jenny

    2011-01-01

    Rating scale design and development for testing speaking is generally conducted using one of two approaches: the measurement-driven approach or the performance data-driven approach. The measurement-driven approach prioritizes the ordering of descriptors onto a single scale. Meaning is derived from the scaling methodology and the agreement of…

  9. Age Effects on Wechsler Adult Intelligence Scale-Revised Tests.

    Science.gov (United States)

    Sattler, Jerome M.

    1982-01-01

    Studied age norms for 11 individual Wechsler Adult Intelligence Scale-Revised (WAIS-R) tests. Digit Symbol showed the most decline. Results suggest that fluid intelligence, as measured by the performance scale tests, shows more of a decline with age than crystallized intelligence, as measured by the verbal scale tests. (Author)

  10. Micro-CT Pore Scale Study Of Flow In Porous Media: Effect Of Voxel Resolution

    Science.gov (United States)

    Shah, S.; Gray, F.; Crawshaw, J.; Boek, E.

    2014-12-01

    In the last few years, pore scale studies have become the key to understanding the complex fluid flow processes in the fields of groundwater remediation, hydrocarbon recovery and environmental issues related to carbon storage and capture. A pore scale study is often comprised of two key procedures: 3D pore scale imaging and numerical modelling techniques. The essence of a pore scale study is to test the physics implemented in a model of complicated fluid flow processes at one scale (microscopic) and then apply the model to solve the problems associated with water resources and oil recovery at other scales (macroscopic and field). However, the process of up-scaling from the pore scale to the macroscopic scale has encountered many challenges due to both pore scale imaging and modelling techniques. Due to the technical limitations in the imaging method, there is always a compromise between the spatial (voxel) resolution and the physical volume of the sample (field of view, FOV) to be scanned by the imaging methods, specifically X-ray micro-CT (XMT) in our case In this study, a careful analysis was done to understand the effect of voxel size, using XMT to image the 3D pore space of a variety of porous media from sandstones to carbonates scanned at different voxel resolution (4.5 μm, 6.2 μm, 8.3 μm and 10.2 μm) but keeping the scanned FOV constant for all the samples. We systematically segment the micro-CT images into three phases, the macro-pore phase, an intermediate phase (unresolved micro-pores + grains) and the grain phase and then study the effect of voxel size on the structure of the macro-pore and the intermediate phases and the fluid flow properties using lattice-Boltzmann (LB) and pore network (PN) modelling methods. We have also applied a numerical coarsening algorithm (up-scale method) to reduce the computational power and time required to accurately predict the flow properties using the LB and PN method.

  11. Manifestly scale-invariant regularization and quantum effective operators

    CERN Document Server

    Ghilencea, D.M.

    2016-01-01

    Scale invariant theories are often used to address the hierarchy problem, however the regularization of their quantum corrections introduces a dimensionful coupling (dimensional regularization) or scale (Pauli-Villars, etc) which break this symmetry explicitly. We show how to avoid this problem and study the implications of a manifestly scale invariant regularization in (classical) scale invariant theories. We use a dilaton-dependent subtraction function $\\mu(\\sigma)$ which after spontaneous breaking of scale symmetry generates the usual DR subtraction scale $\\mu(\\langle\\sigma\\rangle)$. One consequence is that "evanescent" interactions generated by scale invariance of the action in $d=4-2\\epsilon$ (but vanishing in $d=4$), give rise to new, finite quantum corrections. We find a (finite) correction $\\Delta U(\\phi,\\sigma)$ to the one-loop scalar potential for $\\phi$ and $\\sigma$, beyond the Coleman-Weinberg term. $\\Delta U$ is due to an evanescent correction ($\\propto\\epsilon$) to the field-dependent masses (of...

  12. Precipitation-productivity Relation in Grassland in Northern China: Investigations at Multiple Spatiotemporal Scales

    Science.gov (United States)

    Hu, Z.

    2017-12-01

    Climate change is predicted to cause dramatic variability in precipitation regime, not only in terms of change in annual precipitation amount, but also in precipitation seasonal distribution and precipitation event characteristics (high frenquency extrem precipitation, larger but fewer precipitation events), which combined to influence productivity of grassland in arid and semiarid regions. In this study, combining remote sensing products with in-situ measurements of aboveground net primary productivity (ANPP) and gross primary productivity (GPP) data from eddy covariance system in grassland of northern China, we quantified the effects of spatio-temporal vairation in precipitation on productivity from local sites to region scale. We found that, for an individual precipitation event, the duration of GPP-response to the individual precipitation event and the maximum absolute GPP response induced by the individual precipitation event increased linearly with the size of precipitation events. Comparison of the productivity-precipitation relationships between multi-sites determined that the predominant characteristics of precipitation events (PEC) that affected GPP differed remarkably between the water-limited temperate steppe and the temperature-limited alpine meadow. The number of heavy precipitation events (>10 mm d-1) was the most important PEC to impact GPP in the temperate steppe through affecting soil moisture at different soil profiles, while precipitation interval was the factor that affected GPP most in the alpine meadow via its effects on temperature. At the region scale, shape of ANPP-precipitation relationship varies with distinct spatial scales, and besides annual precipitation, precipitation seasonal distribution also has comparable impacts on spatial variation in ANPP. Temporal variability in ANPP was lower at both the dry and wet end, and peaked at a precipitation of 243.1±3.5mm, which is the transition region between typical steppe and desert steppe

  13. Effects of Isometric Scaling on Vertical Jumping Performance

    Science.gov (United States)

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  14. Effects of isometric scaling on vertical jumping performance.

    Directory of Open Access Journals (Sweden)

    Maarten F Bobbert

    Full Text Available Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  15. Grey relational and neural network approach for multi-objective optimization in small scale resistance spot welding of titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei [Huazhong University of Science and Technology, Wuhan (China)

    2016-06-15

    The prediction and optimization of weld quality characteristics in small scale resistance spot welding of TC2 titanium alloy were investigated. Grey relational analysis, neural network and genetic algorithm were applied separately. Quality characteristics were selected as nugget diameter, failure load, failure displacement and failure energy. Welding parameters to be optimized were set as electrode force, welding current and welding time. Grey relational analysis was conducted for a rough estimation of the optimum welding parameters. Results showed that welding current played a key role in weld quality improvement. Different back propagation neural network architectures were then arranged to predict multiple quality characteristics. Interaction effects of welding parameters were analyzed with the proposed neural network. Failure load was found more sensitive to the change of welding parameters than nugget diameter. Optimum welding parameters were determined by genetic algorithm. The predicted responses showed good agreement with confirmation experiments.

  16. Effective potentials for supersymmetric three-scale hierarchies

    International Nuclear Information System (INIS)

    Polchinski, J.

    1983-01-01

    We consider the effective potential in models in which supersymmetry breaks at a scale μ but the Goldstone fermion couples only to fields of mass M>>μ. We show that all large perturbative logarithms are removed by taking the renormalization point to be O(M). This makes it possible to calculate the effective potential at large X in those inverted-hierarchy models where the Goldstone fermion couples only to superheavy fields. A general formula for the one-loop logarithm in these models is given. We illustrate the results with an SU(n) example in which the direction as well as the magnitude of the gauge symmetry breaking is undetermined at the tree level. For this example a large perturbative hierarchy does not form and the unbroken subgroup is always SU(n-1) x U(1). In an appendix we show that O'Raifeartaigh models with just one undetermined scalar field always have a decoupled Goldstone fermion when the undetermined field is large, but that this need not be true in more general inverted-hierarchy models

  17. Optical drift effects in general relativity

    Science.gov (United States)

    Korzyński, Mikołaj; Kopiński, Jarosław

    2018-03-01

    We consider the question of determining the optical drift effects in general relativity, i.e. the rate of change of the apparent position, redshift, Jacobi matrix, angular distance and luminosity distance of a distant object as registered by an observer in an arbitrary spacetime. We present a fully relativistic and covariant approach, in which the problem is reduced to a hierarchy of ODE's solved along the line of sight. The 4-velocities and 4-accelerations of the observer and the emitter and the geometry of the spacetime along the line of sight constitute the input data. We build on the standard relativistic geometric optics formalism and extend it to include the time derivatives of the observables. In the process we obtain two general, non-perturbative relations: the first one between the gravitational lensing, represented by the Jacobi matrix, and the apparent position drift, also called the cosmic parallax, and the second one between the apparent position drift and the redshift drift. The applications of the results include the theoretical study of the drift effects of cosmological origin (so-called real-time cosmology) in numerical or exact Universe models.

  18. Gambling-Related Cognition Scale (GRCS): Are skills-based games at a disadvantage?

    Science.gov (United States)

    Lévesque, David; Sévigny, Serge; Giroux, Isabelle; Jacques, Christian

    2017-09-01

    The Gambling-Related Cognition Scale (GRCS; Raylu & Oei, 2004) was developed to evaluate gambling-related cognitive distortions for all types of gamblers, regardless of their gambling activities (poker, slot machine, etc.). It is therefore imperative to ascertain the validity of its interpretation across different types of gamblers; however, some skills-related items endorsed by players could be interpreted as a cognitive distortion despite the fact that they play skills-related games. Using an intergroup (168 poker players and 73 video lottery terminal [VLT] players) differential item functioning (DIF) analysis, this study examined the possible manifestation of item biases associated with the GRCS. DIF was analyzed with ordinal logistic regressions (OLRs) and Ramsay's (1991) nonparametric kernel smoothing approach with TestGraf. Results show that half of the items display at least moderate DIF between groups and, depending on the type of analysis used, 3 to 7 items displayed large DIF. The 5 items with the most DIF were more significantly endorsed by poker players (uniform DIF) and were all related to skills, knowledge, learning, or probabilities. Poker players' interpretations of some skills-related items may lead to an overestimation of their cognitive distortions due to their total score increased by measurement artifact. Findings indicate that the current structure of the GRCS contains potential biases to be considered when poker players are surveyed. The present study conveys new and important information on bias issues to ponder carefully before using and interpreting the GRCS and other similar wide-range instruments with poker players. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. A Multi-Scale Perspective of the Effects of Forest Fragmentation on Birds in Eastern Forests

    Science.gov (United States)

    Frank R. Thompson; Therese M. Donovan; Richard M. DeGraff; John Faaborg; Scott K. Robinson

    2002-01-01

    We propose a model that considers forest fragmentation within a spatial hierarchy that includes regional or biogeographic effects, landscape-level fragmentation effects, and local habitat effects. We hypothesize that effects operate "top down" in that larger scale effects provide constraints or context for smaller scale effects. Bird species' abundance...

  20. Effects of input uncertainty on cross-scale crop modeling

    Science.gov (United States)

    Waha, Katharina; Huth, Neil; Carberry, Peter

    2014-05-01

    The quality of data on climate, soils and agricultural management in the tropics is in general low or data is scarce leading to uncertainty in process-based modeling of cropping systems. Process-based crop models are common tools for simulating crop yields and crop production in climate change impact studies, studies on mitigation and adaptation options or food security studies. Crop modelers are concerned about input data accuracy as this, together with an adequate representation of plant physiology processes and choice of model parameters, are the key factors for a reliable simulation. For example, assuming an error in measurements of air temperature, radiation and precipitation of ± 0.2°C, ± 2 % and ± 3 % respectively, Fodor & Kovacs (2005) estimate that this translates into an uncertainty of 5-7 % in yield and biomass simulations. In our study we seek to answer the following questions: (1) are there important uncertainties in the spatial variability of simulated crop yields on the grid-cell level displayed on maps, (2) are there important uncertainties in the temporal variability of simulated crop yields on the aggregated, national level displayed in time-series, and (3) how does the accuracy of different soil, climate and management information influence the simulated crop yields in two crop models designed for use at different spatial scales? The study will help to determine whether more detailed information improves the simulations and to advise model users on the uncertainty related to input data. We analyse the performance of the point-scale crop model APSIM (Keating et al., 2003) and the global scale crop model LPJmL (Bondeau et al., 2007) with different climate information (monthly and daily) and soil conditions (global soil map and African soil map) under different agricultural management (uniform and variable sowing dates) for the low-input maize-growing areas in Burkina Faso/West Africa. We test the models' response to different levels of input

  1. Evaluation of treatment related fear using a newly developed fear scale for children: "Fear assessment picture scale" and its association with physiological response.

    Science.gov (United States)

    Tiwari, Nishidha; Tiwari, Shilpi; Thakur, Ruchi; Agrawal, Nikita; Shashikiran, N D; Singla, Shilpy

    2015-01-01

    Dental treatment is usually a poignant phenomenon for children. Projective scales are preferred over psychometric scales to recognize it, and to obtain the self-report from children. The aims were to evaluate treatment related fear using a newly developed fear scale for children, fear assessment picture scale (FAPS), and anxiety with colored version of modified facial affective scale (MFAS) - three faces along with physiologic responses (pulse rate and oxygen saturation) obtained by pulse oximeter before and during pulpectomy procedure. Total, 60 children of age 6-8 years who were visiting the dental hospital for the first time and needed pulpectomy treatment were selected. Children selected were of sound physical, physiological, and mental condition. Two projective scales were used; one to assess fear - FAPS and to assess anxiety - colored version of MFAS - three faces. These were co-related with the physiological responses (oxygen saturation and pulse rate) of children obtained by pulse oximeter before and during the pulpectomy procedure. Shapiro-Wilk test, McNemar's test, Wilcoxon signed ranks test, Kruskal-Wallis test, Mann-Whitney test were applied in the study. The physiological responses showed association with FAPS and MFAS though not significant. However, oxygen saturation with MFAS showed a significant change between "no anxiety" and "some anxiety" as quantified by Kruskal-Wallis test value 6.287, P = 0.043 (test is easy and fast to apply on children and reduces the chair-side time.

  2. Scaling of avian bipedal locomotion reveals independent effects of body mass and leg posture on gait.

    Science.gov (United States)

    Daley, Monica A; Birn-Jeffery, Aleksandra

    2018-05-22

    Birds provide an interesting opportunity to study the relationships between body size, limb morphology and bipedal locomotor function. Birds are ecologically diverse and span a large range of body size and limb proportions, yet all use their hindlimbs for bipedal terrestrial locomotion, for at least some part of their life history. Here, we review the scaling of avian striding bipedal gaits to explore how body mass and leg morphology influence walking and running. We collate literature data from 21 species, spanning a 2500× range in body mass from painted quail to ostriches. Using dynamic similarity theory to interpret scaling trends, we find evidence for independent effects of body mass, leg length and leg posture on gait. We find no evidence for scaling of duty factor with body size, suggesting that vertical forces scale with dynamic similarity. However, at dynamically similar speeds, large birds use relatively shorter stride lengths and higher stride frequencies compared with small birds. We also find that birds with long legs for their mass, such as the white stork and red-legged seriema, use longer strides and lower swing frequencies, consistent with the influence of high limb inertia on gait. We discuss the observed scaling of avian bipedal gait in relation to mechanical demands for force, work and power relative to muscle actuator capacity, muscle activation costs related to leg cycling frequency, and considerations of stability and agility. Many opportunities remain for future work to investigate how morphology influences gait dynamics among birds specialized for different habitats and locomotor behaviors. © 2018. Published by The Company of Biologists Ltd.

  3. Scaling and clustering effects of extreme precipitation distributions

    Science.gov (United States)

    Zhang, Qiang; Zhou, Yu; Singh, Vijay P.; Li, Jianfeng

    2012-08-01

    SummaryOne of the impacts of climate change and human activities on the hydrological cycle is the change in the precipitation structure. Closely related to the precipitation structure are two characteristics: the volume (m) of wet periods (WPs) and the time interval between WPs or waiting time (t). Using daily precipitation data for a period of 1960-2005 from 590 rain gauge stations in China, these two characteristics are analyzed, involving scaling and clustering of precipitation episodes. Our findings indicate that m and t follow similar probability distribution curves, implying that precipitation processes are controlled by similar underlying thermo-dynamics. Analysis of conditional probability distributions shows a significant dependence of m and t on their previous values of similar volumes, and the dependence tends to be stronger when m is larger or t is longer. It indicates that a higher probability can be expected when high-intensity precipitation is followed by precipitation episodes with similar precipitation intensity and longer waiting time between WPs is followed by the waiting time of similar duration. This result indicates the clustering of extreme precipitation episodes and severe droughts or floods are apt to occur in groups.

  4. Effect of Integrating Hydrologic Scaling Concepts on Students Learning and Decision Making Experiences

    Science.gov (United States)

    Najm, Majdi R. Abou; Mohtar, Rabi H.; Cherkauer, Keith A.; French, Brian F.

    2010-01-01

    Proper understanding of scaling and large-scale hydrologic processes is often not explicitly incorporated in the teaching curriculum. This makes it difficult for students to connect the effect of small scale processes and properties (like soil texture and structure, aggregation, shrinkage, and cracking) on large scale hydrologic responses (like…

  5. EFFECTS OF CHANGING SCALE ON LANDSCAPE PATTERN ANALYSIS: SCALING RELATIONS. (R827676)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Universal scaling relations for the energies of many-electron Hooke atoms

    Science.gov (United States)

    Odriazola, A.; Solanpää, J.; Kylänpää, I.; González, A.; Räsänen, E.

    2017-04-01

    A three-dimensional harmonic oscillator consisting of N ≥2 Coulomb-interacting charged particles, often called a (many-electron) Hooke atom, is a popular model in computational physics for, e.g., semiconductor quantum dots and ultracold ions. Starting from Thomas-Fermi theory, we show that the ground-state energy of such a system satisfies a nontrivial relation: Eg s=ω N4 /3fg s(β N1 /2) , where ω is the oscillator strength, β is the ratio between Coulomb and oscillator characteristic energies, and fg s is a universal function. We perform extensive numerical calculations to verify the applicability of the relation. In addition, we show that the chemical potentials and addition energies also satisfy approximate scaling relations. In all cases, analytic expressions for the universal functions are provided. The results have predictive power in estimating the key ground-state properties of the system in the large-N limit, and can be used in the development of approximative methods in electronic structure theory.

  7. Mercury exposure of workers and health problems related with small-scale gold panning and extraction

    International Nuclear Information System (INIS)

    Khan, S.; Shah, M.T.; Din, I.U.; Rehman, S.

    2012-01-01

    This study was conducted to investigate mercury (Hg) exposure and health problems related to small-scale gold panning and extraction (GPE) in the northern Pakistan. Urine and blood samples of occupational and non-occupational persons were analyzed for total Hg, while blood's fractions including red blood cells and plasma were analyzed for total Hg and its inorganic and organic species. The concentrations of Hg in urine and blood samples were significantly (P<0.01) higher in occupational persons as compared to non-occupational and exceeded the permissible limits set by World Health Organization (WHO) and United State Environmental Protection Agency (US-EPA). Furthermore, the data indicated that numerous health problems were present in occupational persons involved in GPE. (author)

  8. Development and preliminary validation of a Korean version of the Personal Relative Deprivation Scale.

    Science.gov (United States)

    Kim, Hyunji; Kim, Eunbee; Suh, Eunkook M; Callan, Mitchell J

    2018-01-01

    The current research developed and validated a Korean-translated version of the Personal Relative Deprivation Scale (PRDS). The PRDS measures individual differences in people's tendencies to feel resentful about what they have compared to what other people like them have. Across 2 studies, Exploratory Factor Analyses revealed that the two reverse-worded items from the original PRDS did not load onto the primary factor for the Korean-translated PRDS. A reduced 3-item Korean PRDS, however, showed good convergent validity. Replicating previous findings using Western samples, greater tendencies to make social comparisons of abilities (but not opinions) were associated with higher PRDS (Studies 1 and 2), and participants scoring higher on the 3-item Korean PRDS were more materialistic (Studies 1 and 2), reported worse physical health (Study 1), had lower self-esteem (Study 2) and experienced higher stress (Study 2).

  9. To address surface reaction network complexity using scaling relations machine learning and DFT calculations

    International Nuclear Information System (INIS)

    Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas; Nørskov, Jens K.

    2017-01-01

    Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying these methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.

  10. The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations.

    Science.gov (United States)

    Montoya, Joseph H; Tsai, Charlie; Vojvodic, Aleksandra; Nørskov, Jens K

    2015-07-08

    The electrochemical production of NH3 under ambient conditions represents an attractive prospect for sustainable agriculture, but electrocatalysts that selectively reduce N2 to NH3 remain elusive. In this work, we present insights from DFT calculations that describe limitations on the low-temperature electrocatalytic production of NH3 from N2 . In particular, we highlight the linear scaling relations of the adsorption energies of intermediates that can be used to model the overpotential requirements in this process. By using a two-variable description of the theoretical overpotential, we identify fundamental limitations on N2 reduction analogous to those present in processes such as oxygen evolution. Using these trends, we propose new strategies for catalyst design that may help guide the search for an electrocatalyst that can achieve selective N2 reduction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparison of relativity theories with observer-independent scales of both velocity and length/mass

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Benedetti, Dario; D'Andrea, Francesco; Procaccini, Andrea

    2003-01-01

    We consider the two most studied proposals of relativity theories with observer-independent scales of both velocity and length/mass: the one discussed by Amelino-Camelia as an illustrative example for the original proposal (Preprint gr-qc/0012051) of theories with two relativistic invariants, and an alternative more recently proposed by Magueijo and Smolin (Preprint hep-th/0112090). We show that these two relativistic theories are much more closely connected than it would appear on the basis of a naive analysis of their original formulations. In particular, in spite of adopting a rather different formal description of the deformed boost generators, they end up assigning the same dependence of momentum on rapidity, which can be described as the core feature of these relativistic theories. We show that this observation can be used to clarify the concepts of particle mass, particle velocity and energy-momentum conservation rules in these theories with two relativistic invariants

  12. Estimation and applicability of attenuation characteristics for source parameters and scaling relations in the Garhwal Kumaun Himalaya region, India

    Science.gov (United States)

    Singh, Rakesh; Paul, Ajay; Kumar, Arjun; Kumar, Parveen; Sundriyal, Y. P.

    2018-06-01

    Source parameters of the small to moderate earthquakes are significant for understanding the dynamic rupture process, the scaling relations of the earthquakes and for assessment of seismic hazard potential of a region. In this study, the source parameters were determined for 58 small to moderate size earthquakes (3.0 ≤ Mw ≤ 5.0) occurred during 2007-2015 in the Garhwal-Kumaun region. The estimated shear wave quality factor (Qβ(f)) values for each station at different frequencies have been applied to eliminate any bias in the determination of source parameters. The Qβ(f) values have been estimated by using coda wave normalization method in the frequency range 1.5-16 Hz. A frequency-dependent S wave quality factor relation is obtained as Qβ(f) = (152.9 ± 7) f(0.82±0.005) by fitting a power-law frequency dependence model for the estimated values over the whole study region. The spectral (low-frequency spectral level and corner frequency) and source (static stress drop, seismic moment, apparent stress and radiated energy) parameters are obtained assuming ω-2 source model. The displacement spectra are corrected for estimated frequency-dependent attenuation, site effect using spectral decay parameter "Kappa". The frequency resolution limit was resolved by quantifying the bias in corner frequencies, stress drop and radiated energy estimates due to finite-bandwidth effect. The data of the region shows shallow focused earthquakes with low stress drop. The estimation of Zúñiga parameter (ε) suggests the partial stress drop mechanism in the region. The observed low stress drop and apparent stress can be explained by partial stress drop and low effective stress model. Presence of subsurface fluid at seismogenic depth certainly manipulates the dynamics of the region. However, the limited event selection may strongly bias the scaling relation even after taking as much as possible precaution in considering effects of finite bandwidth, attenuation and site corrections

  13. Soil organic matter dynamics and CO2 fluxes in relation to landscape scale processes: linking process understanding to regional scale carbon mass-balances

    Science.gov (United States)

    Van Oost, Kristof; Nadeu, Elisabet; Wiaux, François; Wang, Zhengang; Stevens, François; Vanclooster, Marnik; Tran, Anh; Bogaert, Patrick; Doetterl, Sebastian; Lambot, Sébastien; Van wesemael, Bas

    2014-05-01

    In this paper, we synthesize the main outcomes of a collaborative project (2009-2014) initiated at the UCL (Belgium). The main objective of the project was to increase our understanding of soil organic matter dynamics in complex landscapes and use this to improve predictions of regional scale soil carbon balances. In a first phase, the project characterized the emergent spatial variability in soil organic matter storage and key soil properties at the regional scale. Based on the integration of remote sensing, geomorphological and soil analysis techniques, we quantified the temporal and spatial variability of soil carbon stock and pool distribution at the local and regional scales. This work showed a linkage between lateral fluxes of C in relation with sediment transport and the spatial variation in carbon storage at multiple spatial scales. In a second phase, the project focused on characterizing key controlling factors and process interactions at the catena scale. In-situ experiments of soil CO2 respiration showed that the soil carbon response at the catena scale was spatially heterogeneous and was mainly controlled by the catenary variation of soil physical attributes (soil moisture, temperature, C quality). The hillslope scale characterization relied on advanced hydrogeophysical techniques such as GPR (Ground Penetrating Radar), EMI (Electromagnetic induction), ERT (Electrical Resistivity Tomography), and geophysical inversion and data mining tools. Finally, we report on the integration of these insights into a coupled and spatially explicit model and its application. Simulations showed that C stocks and redistribution of mass and energy fluxes are closely coupled, they induce structured spatial and temporal patterns with non negligible attached uncertainties. We discuss the main outcomes of these activities in relation to sink-source behavior and relevance of erosion processes for larger-scale C budgets.

  14. Subscales of the Barratt Impulsiveness Scale differentially relate to the Big Five factors of personality.

    Science.gov (United States)

    Lange, Florian; Wagner, Adina; Müller, Astrid; Eggert, Frank

    2017-06-01

    The place of impulsiveness in multidimensional personality frameworks is still unclear. In particular, no consensus has yet been reached with regard to the relation of impulsiveness to Neuroticism and Extraversion. We aim to contribute to a clearer understanding of these relationships by accounting for the multidimensional structure of impulsiveness. In three independent studies, we related the subscales of the Barratt Impulsiveness Scale (BIS) to the Big Five factors of personality. Study 1 investigated the associations between the BIS subscales and the Big Five factors as measured by the NEO Five-Factor Inventory (NEO-FFI) in a student sample (N = 113). Selective positive correlations emerged between motor impulsiveness and Extraversion and between attentional impulsiveness and Neuroticism. This pattern of results was replicated in Study 2 (N = 132) using a 10-item short version of the Big Five Inventory. In Study 3, we analyzed BIS and NEO-FFI data obtained from a sample of patients with pathological buying (N = 68). In these patients, the relationship between motor impulsiveness and Extraversion was significantly weakened when compared to the non-clinical samples. At the same time, the relationship between attentional impulsiveness and Neuroticism was substantially stronger in the clinical sample. Our studies highlight the utility of the BIS subscales for clarifying the relationship between impulsiveness and the Big Five personality factors. We conclude that impulsiveness might occupy multiple places in multidimensional personality frameworks, which need to be specified to improve the interpretability of impulsiveness scales. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  15. AIRS Observations Based Evaluation of Relative Climate Feedback Strengths on a GCM Grid-Scale

    Science.gov (United States)

    Molnar, G. I.; Susskind, J.

    2012-12-01

    Climate feedback strengths, especially those associated with moist processes, still have a rather wide range in GCMs, the primary tools to predict future climate changes associated with man's ever increasing influences on our planet. Here, we make use of the first 10 years of AIRS observations to evaluate interrelationships/correlations of atmospheric moist parameter anomalies computed from AIRS Version 5 Level-3 products, and demonstrate their usefulness to assess relative feedback strengths. Although one may argue about the possible usability of shorter-term, observed climate parameter anomalies for estimating the strength of various (mostly moist processes related) feedbacks, recent works, in particular analyses by Dessler [2008, 2010], have demonstrated their usefulness in assessing global water vapor and cloud feedbacks. First, we create AIRS-observed monthly anomaly time-series (ATs) of outgoing longwave radiation, water vapor, clouds and temperature profile over a 10-year long (Sept. 2002 through Aug. 2012) period using 1x1 degree resolution (a common GCM grid-scale). Next, we evaluate the interrelationships of ATs of the above parameters with the corresponding 1x1 degree, as well as global surface temperature ATs. The latter provides insight comparable with more traditional climate feedback definitions (e. g., Zelinka and Hartmann, 2012) whilst the former is related to a new definition of "local (in surface temperature too) feedback strengths" on a GCM grid-scale. Comparing the correlation maps generated provides valuable new information on the spatial distribution of relative climate feedback strengths. We argue that for GCMs to be trusted for predicting longer-term climate variability, they should be able to reproduce these observed relationships/metrics as closely as possible. For this time period the main climate "forcing" was associated with the El Niño/La Niña variability (e. g., Dessler, 2010), so these assessments may not be descriptive of longer

  16. EXPLORING PHYSICIANS' DISSATISFACTION AND WORK-RELATED STRESS: DEVELOPMENT OF THE PhyDis SCALE

    Directory of Open Access Journals (Sweden)

    Monica Pedrazza

    2016-08-01

    Full Text Available Research, all over the world, is starting to recognize the potential impact of physicians’ dissatisfaction and burnout on their productivity, that is, on their intent to leave the job, on their work ability, on the amount of sick leave days, on their intent to continue practicing, and last but not least, on the quality of the services provided, which is an essential part of the general medical care system. It was interest of the provincial medical board’s ethical committee to acquire information about physician’s work-related stress and dissatisfaction. The research group was committed to define the indicators of dissatisfaction and work-related stressors. Focus groups were carried out, 21 stressful experience’s indicators were identified; we developed an online questionnaire to assess the amount of perceived stress relating to each indicator at work (3070 physicians were contacted by e-mail; quantitative and qualitative data analysis were carried out. The grounded theory perspective was applied in order to assure the most reliable procedure to investigate the concepts’ structure of work-related stress. We tested the five dimensions' model of the stressful experience with a confirmatory factor analysis: Personal Costs; Decline in Public Image and Role Uncertainty; Physician's Responsibility toward hopelessly ill Patients; Relationship with Staff and Colleagues; Bureaucracy. We split the sample according to attachment style (secure and insecure -anxious and avoidant-. Results show the complex representation of physicians’ dissatisfaction at work also with references to the variable of individual difference of attachment security/insecurity. The discriminant validity of the scale was tested. The original contribution of this paper lies on the one hand in the qualitative in depth inductive analysis of physicians’ dissatisfaction starting from physicians’ perception, on the other hand, it represents the first attempt to analyze the

  17. Exploring Physicians' Dissatisfaction and Work-Related Stress: Development of the PhyDis Scale.

    Science.gov (United States)

    Pedrazza, Monica; Berlanda, Sabrina; Trifiletti, Elena; Bressan, Franco

    2016-01-01

    Research, all over the world, is starting to recognize the potential impact of physicians' dissatisfaction and burnout on their productivity, that is, on their intent to leave the job, on their work ability, on the amount of sick leave days, on their intent to continue practicing, and last but not least, on the quality of the services provided, which is an essential part of the general medical care system. It was interest of the provincial medical board's ethical committee to acquire information about physician's work-related stress and dissatisfaction. The research group was committed to define the indicators of dissatisfaction and work-related stressors. Focus groups were carried out, 21 stressful experience's indicators were identified; we developed an online questionnaire to assess the amount of perceived stress relating to each indicator at work (3070 physicians were contacted by e-mail); quantitative and qualitative data analysis were carried out. The grounded theory perspective was applied in order to assure the most reliable procedure to investigate the concepts' structure of "work-related stress." We tested the five dimensions' model of the stressful experience with a confirmatory factor analysis: Personal Costs; Decline in Public Image and Role Uncertainty; Physician's Responsibility toward hopelessly ill Patients; Relationship with Staff and Colleagues; Bureaucracy. We split the sample according to attachment style (secure and insecure -anxious and avoidant-). Results show the complex representation of physicians' dissatisfaction at work also with references to the variable of individual difference of attachment security/insecurity. The discriminant validity of the scale was tested. The original contribution of this paper lies on the one hand in the qualitative in depth inductive analysis of physicians' dissatisfaction starting from physicians' perception, on the other hand, it represents the first attempt to analyze the physicians' dissatisfaction with

  18. Origins of individual differences in anxiety proneness: a twin/adoption study of the anxiety-related scales from the Karolinska Scales of Personality (KSP).

    Science.gov (United States)

    Gustavsson, J P; Pedersen, N L; Asberg, M; Schalling, D

    1996-06-01

    The genetic and environmental origins of individual differences in scores on the anxiety-proneness scales from the Karolinska Scales of Personality were explored using a twin/adoption study design in a sample consisting of 15 monozygotic twin pairs reared apart, and 26 monozygotic and 29 dizygotic twin pairs reared together. The results showed that genetic factors accounted for individual differences in scores on the psychasthenia and somatic anxiety scales. The genetic determinants were not specific to each scale, but were common to both scales. Shared-rearing environmental determinants were important for individual differences in lack of assertiveness and psychic anxiety, and were common to both scales. Individual differences in muscular tension were found to be attributable to the effects of correlated environments. The most important factor explaining individual differences for all scales was the non-shared environment component. The evidence for an aetiologically heterogeneous anxiety-proneness construct emphasizes the appropriateness of a multi-dimensional approach to anxiety proneness.

  19. Test-retest reliability of Antonovsky's 13-item sense of coherence scale in patients with hand-related disorders

    DEFF Research Database (Denmark)

    Hansen, Alice Ørts; Kristensen, Hanne Kaae; Cederlund, Ragnhild

    2017-01-01

    to be a powerful tool to measure the ICF component personal factors, which could have an impact on patients' rehabilitation outcomes. Implications for rehabilitation Antonovsky's SOC-13 scale showed test-retest reliability for patients with hand-related disorders. The SOC-13 scale could be a suitable tool to help...... measure personal factors....

  20. Top-spray fluid bed coating: Scale-up in terms of relative droplet size and drying force

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn

    2008-01-01

    in terms of particle size fractions larger than 425 mu m determined by sieve analysis. Results indicated that the particle size distribution may be reproduced across scale with statistical valid precision by keeping the drying force and the relative droplet size constant across scale. It is also shown...

  1. Effective horizons, junction conditions and large-scale magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, Massimo [CERN, Department of Physics, Theory Division, Geneva (Switzerland); INFN, Milan (Italy)

    2017-08-15

    The quantum mechanical generation of hypermagnetic and hyperelectric fields in four-dimensional conformally flat background geometries rests on the simultaneous continuity of the effective horizon and of the extrinsic curvature across the inflationary boundary. The junction conditions for the gauge fields are derived in general terms and corroborated by explicit examples with particular attention to the limit of a sudden (but nonetheless continuous) transition of the effective horizon. After reducing the dynamics to a pair of integral equations related by duality transformations, we compute the power spectra and deduce a novel class of logarithmic corrections which turn out to be, however, numerically insignificant and overwhelmed by the conductivity effects once the gauge modes reenter the effective horizon. In this perspective the magnetogenesis requirements and the role of the postinflationary conductivity are clarified and reappraised. As long as the total duration of the inflationary phase is nearly minimal, quasi-flat hypermagnetic power spectra are comparatively more common than in the case of vacuum initial data. (orig.)

  2. Relative amplitude of medium-scale traveling ionospheric disturbances as deduced from global GPS network

    Science.gov (United States)

    Voeykov, S. V.; Afraimovich, E. L.; Kosogorov, E. A.; Perevalova, N. P.; Zhivetiev, I. V.

    We worked out a new method for estimation of relative amplitude dI I of total electron content TEC variations corresponding to medium-scale 30-300 km traveling ionospheric disturbances MS TIDs Daily and latitudinal dependences of dI I and dI I probability distributions are obtained for 52 days of 1999-2005 with different level of geomagnetic activity Statistical estimations were obtained for the analysis of 10 6 series of TEC with 2 3-hour duration To obtain statistically significant results three latitudinal regions were chosen North America high-latitudinal region 50-80 r N 200-300 r E 59 GPS receivers North America mid-latitudinal region 20-50 r N 200-300 r E 817 receivers equatorial belt -20 20 r N 0-360 r E 76 receivers We found that average daily value of the relative amplitude of TEC variations dI I changes from 0 3 to 10 proportionally to the value of geomagnetic index Kp This dependence is strong at high latitudes dI I 0 37 cdot Kp 1 5 and it is some weaker at mid latitudes dI I 0 2 cdot Kp 0 35 At the equator belt we found the weakest dependence dI I on the geomagnetic activity level dI I 0 1 cdot Kp 0 6 The most important and the most interesting result of our work is that during geomagnetic quiet conditions the relative amplitude of TEC variations at night considerably exceeds daily values by 3-5 times at equatorial and at high latitudes and by 2 times at mid latitudes But during strong magnetic storms the relative amplitude dI I at high

  3. Termites Are Resistant to the Effects of Fire at Multiple Spatial Scales.

    Directory of Open Access Journals (Sweden)

    Sarah C Avitabile

    Full Text Available Termites play an important ecological role in many ecosystems, particularly in nutrient-poor arid and semi-arid environments. We examined the distribution and occurrence of termites in the fire-prone, semi-arid mallee region of south-eastern Australia. In addition to periodic large wildfires, land managers use fire as a tool to achieve both asset protection and ecological outcomes in this region. Twelve taxa of termites were detected by using systematic searches and grids of cellulose baits at 560 sites, clustered in 28 landscapes selected to represent different fire mosaic patterns. There was no evidence of a significant relationship between the occurrence of termite species and time-since-fire at the site scale. Rather, the occurrence of species was related to habitat features such as the density of mallee trees and large logs (>10 cm diameter. Species richness was greater in chenopod mallee vegetation on heavier soils in swales, rather than Triodia mallee vegetation of the sandy dune slopes. At the landscape scale, there was little evidence that the frequency of occurrence of termite species was related to fire, and no evidence that habitat heterogeneity generated by fire influenced termite species richness. The most influential factor at the landscape scale was the environmental gradient represented by average annual rainfall. Although termites may be associated with flammable habitat components (e.g. dead wood, they appear to be buffered from the effects of fire by behavioural traits, including nesting underground, and the continued availability of dead wood after fire. There is no evidence to support the hypothesis that a fine-scale, diverse mosaic of post-fire age-classes will enhance the diversity of termites. Rather, termites appear to be resistant to the effects of fire at multiple spatial scales.

  4. The small length scale effect for a non-local cantilever beam: a paradox solved.

    Science.gov (United States)

    Challamel, N; Wang, C M

    2008-08-27

    Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.

  5. Preliminary Results of Testing of Flow Effects on Evaporator Scaling

    Energy Technology Data Exchange (ETDEWEB)

    Hu, M.Z.

    2002-02-15

    This investigation has focused on the effects of fluid flow on solids deposition from solutions that simulate the feed to the 2H evaporator at the Savannah River Site. Literature studies indicate that the fluid flow (or shear) affects particle-particle and particle-surface interactions and thus the phenomena of particle aggregation in solution and particle deposition (i.e., scale formation) onto solid surfaces. Experimental tests were conducted with two configurations: (1) using a rheometer to provide controlled shear conditions and (2) using controlled flow of reactive solution through samples of stainless steel tubing. All tests were conducted at 80 C and at high silicon and aluminum concentrations, 0.133 M each, in solutions containing 4 M sodium hydroxide and 1 A4 each of sodium nitrate and sodium nitrite. Two findings from these experiments are important for consideration in developing approaches for reducing or eliminating evaporator scaling problems: (1) The rheometer tests suggested that for the conditions studied, maximum solids deposition occurs at a moderate shear rate, approximately 12 s{sup -1}. That value is expected to be on the order of shear rates that will occur in various parts of the evaporator system; for instance, a 6 gal/min single-phase liquid flow through the 2-in. lift or gravity drain lines would result in a shear rate of approximately 16 s{sup -1}. These results imply that engineering approaches aimed at reducing deposits through increased mixing would need to generate shear near all surfaces significantly greater than 12 s{sup -1}. However, further testing is needed to set a target value for shear that is applicable to evaporator operation. This is because the measured trend is not statistically significant at the 95% confidence interval due to variability in the results. In addition, testing at higher temperatures and lower concentrations of aluminum and silicon would more accurately represent conditions in the evaporator. Without

  6. Scaling Relations of Local Magnitude versus Moment Magnitude for Sequences of Similar Earthquakes in Switzerland

    KAUST Repository

    Bethmann, F.; Deichmann, N.; Mai, Paul Martin

    2011-01-01

    Theoretical considerations and empirical regressions show that, in the magnitude range between 3 and 5, local magnitude, ML, and moment magnitude, Mw, scale 1:1. Previous studies suggest that for smaller magnitudes this 1:1 scaling breaks down

  7. The effect of scale in daily precipitation hazard assessment

    Directory of Open Access Journals (Sweden)

    J. J. Egozcue

    2006-01-01

    Full Text Available Daily precipitation is recorded as the total amount of water collected by a rain-gauge in 24 h. Events are modelled as a Poisson process and the 24 h precipitation by a Generalised Pareto Distribution (GPD of excesses. Hazard assessment is complete when estimates of the Poisson rate and the distribution parameters, together with a measure of their uncertainty, are obtained. The shape parameter of the GPD determines the support of the variable: Weibull domain of attraction (DA corresponds to finite support variables as should be for natural phenomena. However, Fréchet DA has been reported for daily precipitation, which implies an infinite support and a heavy-tailed distribution. Bayesian techniques are used to estimate the parameters. The approach is illustrated with precipitation data from the Eastern coast of the Iberian Peninsula affected by severe convective precipitation. The estimated GPD is mainly in the Fréchet DA, something incompatible with the common sense assumption of that precipitation is a bounded phenomenon. The bounded character of precipitation is then taken as a priori hypothesis. Consistency of this hypothesis with the data is checked in two cases: using the raw-data (in mm and using log-transformed data. As expected, a Bayesian model checking clearly rejects the model in the raw-data case. However, log-transformed data seem to be consistent with the model. This fact may be due to the adequacy of the log-scale to represent positive measurements for which differences are better relative than absolute.

  8. Scale effects and human impact on the elevational species richness gradients

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Araújo, M B; Romdal, T

    2008-01-01

    ), the derived species richness pattern changed progressively from hump-shaped to a monotonic pattern as the scale of extent diminished. Scale effects alone gave rise to as many conflicting patterns of species richness as had previously been reported in the literature, and scale effects lent significantly...

  9. Probing galaxy growth through metallicity scaling relations over the past 12 Gyr of cosmic history

    Science.gov (United States)

    Sanders, Ryan; MOSDEF team

    2018-01-01

    A primary goal of galaxy evolution studies is to understand the processes governing the growth of the baryonic content of galaxies over cosmic history. Observations of galaxy metallicity scaling relations and their evolution with redshift, in combination with chemical evolution models, provide unique insight into the interplay between star formation, gas accretion, and feedback/outflows. I present measurements of the stellar mass-gas phase metallicity relation and its evolution over the past 12 Gyr from z~0 to z~3.5, utilizing data from the Mosfire Deep Evolution Field survey that uniquely provides rest-frame optical spectra of >1000 uniformly-selected galaxies at z=1.3-3.8. We find evolution towards lower metallicity at fixed stellar mass with increasing redshift that is consistent with current cosmological simulations including chemical evolution, with a large evolution of ~0.3 dex from z~0 to z~2.5 and minor evolution of 2, and discuss the potential of current and next-generation observational facilities to obtain statistical auroral-line samples at high redshifts.

  10. THE SCALING RELATIONS AND THE FUNDAMENTAL PLANE FOR RADIO HALOS AND RELICS OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2015-01-01

    Diffuse radio emission in galaxy clusters is known to be related to cluster mass and cluster dynamical state. We collect the observed fluxes of radio halos, relics, and mini-halos for a sample of galaxy clusters from the literature, and calculate their radio powers. We then obtain the values of cluster mass or mass proxies from previous observations, and also obtain the various dynamical parameters of these galaxy clusters from optical and X-ray data. The radio powers of relics, halos, and mini-halos are correlated with the cluster masses or mass proxies, as found by previous authors, while the correlations concerning giant radio halos are in general the strongest. We found that the inclusion of dynamical parameters as the third dimension can significantly reduce the data scatter for the scaling relations, especially for radio halos. We therefore conclude that the substructures in X-ray images of galaxy clusters and the irregular distributions of optical brightness of member galaxies can be used to quantitatively characterize the shock waves and turbulence in the intracluster medium responsible for re-accelerating particles to generate the observed diffuse radio emission. The power of radio halos and relics is correlated with cluster mass proxies and dynamical parameters in the form of a fundamental plane

  11. On the link between column density distribution and density scaling relation in star formation regions

    Science.gov (United States)

    Veltchev, Todor; Donkov, Sava; Stanchev, Orlin

    2017-07-01

    We present a method to derive the density scaling relation ∝ L^{-α} in regions of star formation or in their turbulent vicinities from straightforward binning of the column-density distribution (N-pdf). The outcome of the method is studied for three types of N-pdf: power law (7/5≤α≤5/3), lognormal (0.7≲α≲1.4) and combination of lognormals. In the last case, the method of Stanchev et al. (2015) was also applied for comparison and a very weak (or close to zero) correlation was found. We conclude that the considered `binning approach' reflects rather the local morphology of the N-pdf with no reference to the physical conditions in a considered region. The rough consistency of the derived slopes with the widely adopted Larson's (1981) value α˜1.1 is suggested to support claims that the density-size relation in molecular clouds is indeed an artifact of the observed N-pdf.

  12. Aging on a different scale--chronological versus pathology-related aging.

    Science.gov (United States)

    Melis, Joost P M; Jonker, Martijs J; Vijg, Jan; Hoeijmakers, Jan H J; Breit, Timo M; van Steeg, Harry

    2013-10-01

    In the next decades the elderly population will increase dramatically, demanding appropriate solutions in health care and aging research focusing on healthy aging to prevent high burdens and costs in health care. For this, research targeting tissue-specific and individual aging is paramount to make the necessary progression in aging research. In a recently published study we have attempted to make a step interpreting aging data on chronological as well as pathological scale. For this, we sampled five major tissues at regular time intervals during the entire C57BL/6J murine lifespan from a controlled in vivo aging study, measured the whole transcriptome and incorporated temporal as well as physical health aspects into the analyses. In total, we used 18 different age-related pathological parameters and transcriptomic profiles of liver, kidney, spleen, lung and brain and created a database that can now be used for a broad systems biology approach. In our study, we focused on the dynamics of biological processes during chronological aging and the comparison between chronological and pathology-related aging.

  13. Effect of the scale inhibitor on ion content in reverse osmosis system for seawater desalination

    Science.gov (United States)

    Gao, Yuhua; Liu, Zhenfa; Zhang, Lihui; Li, Haihua

    2017-09-01

    A scale inhibitor was synthesized from polysuccinimide with 2-aminoethanesulfonic acid and aspartic acid. The effect of scale inhibitor on ion content in reverse osmosis system for seawater desalination was studied. The results showed that the ion content of permeate water is lower with the scale inhibitor added in RO system for seawater desalination than without scale inhibitor. On the contrary, the ion content of concentrate water is higher when with scale inhibitor in RO system.

  14. Connotations of pixel-based scale effect in remote sensing and the modified fractal-based analysis method

    Science.gov (United States)

    Feng, Guixiang; Ming, Dongping; Wang, Min; Yang, Jianyu

    2017-06-01

    Scale problems are a major source of concern in the field of remote sensing. Since the remote sensing is a complex technology system, there is a lack of enough cognition on the connotation of scale and scale effect in remote sensing. Thus, this paper first introduces the connotations of pixel-based scale and summarizes the general understanding of pixel-based scale effect. Pixel-based scale effect analysis is essentially important for choosing the appropriate remote sensing data and the proper processing parameters. Fractal dimension is a useful measurement to analysis pixel-based scale. However in traditional fractal dimension calculation, the impact of spatial resolution is not considered, which leads that the scale effect change with spatial resolution can't be clearly reflected. Therefore, this paper proposes to use spatial resolution as the modified scale parameter of two fractal methods to further analyze the pixel-based scale effect. To verify the results of two modified methods (MFBM (Modified Windowed Fractal Brownian Motion Based on the Surface Area) and MDBM (Modified Windowed Double Blanket Method)); the existing scale effect analysis method (information entropy method) is used to evaluate. And six sub-regions of building areas and farmland areas were cut out from QuickBird images to be used as the experimental data. The results of the experiment show that both the fractal dimension and information entropy present the same trend with the decrease of spatial resolution, and some inflection points appear at the same feature scales. Further analysis shows that these feature scales (corresponding to the inflection points) are related to the actual sizes of the geo-object, which results in fewer mixed pixels in the image, and these inflection points are significantly indicative of the observed features. Therefore, the experiment results indicate that the modified fractal methods are effective to reflect the pixel-based scale effect existing in remote sensing

  15. Scaling of Primate Forearm Muscle Architecture as It Relates to Locomotion and Posture.

    Science.gov (United States)

    Leischner, Carissa L; Crouch, Michael; Allen, Kari L; Marchi, Damiano; Pastor, Francisco; Hartstone-Rose, Adam

    2018-03-01

    It has been previously proposed that distal humerus morphology may reflect the locomotor pattern and substrate preferred by different primates. However, relationships between these behaviors and the morphological capabilities of muscles originating on these osteological structures have not been fully explored. Here, we present data about forearm muscle architecture in a sample of 44 primate species (N = 55 specimens): 9 strepsirrhines, 15 platyrrhines, and 20 catarrhines. The sample includes all major locomotor and substrate use groups. We isolated each antebrachial muscle and categorized them into functional groups: wrist and digital extensors and flexors, antebrachial mm. that do not cross the wrist, and functional combinations thereof. Muscle mass, physiological cross-sectional area (PCSA), reduced PCSA (RPCSA), and fiber length (FL) are examined in the context of higher taxonomic group, as well as locomotor/postural and substrate preferences. Results show that muscle masses, PCSA, and RPCSA scale with positive allometry while FL scales with isometry indicating that larger primates have relatively stronger, but neither faster nor more flexible, forearms across the sample. When accounting for variation in body size, we found no statistically significant difference in architecture among higher taxonomic groups or locomotor/postural groups. However, we found that arboreal primates have significantly greater FL than terrestrial ones, suggesting that these species are adapted for greater speed and/or flexibility in the trees. These data may affect our interpretation of the mechanisms for variation in humeral morphology and provide information for refining biomechanical models of joint stress and movement in extant and fossil primates. Anat Rec, 301:484-495, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  16. Biodegradation of alkanolamine-related wastes in bioslurries and bench-scale landfarms

    International Nuclear Information System (INIS)

    Gallagher, J.R.; Sorensen, J.A.; Knutson, R.

    1997-01-01

    The subsurface transport and fate of monoethanolamine (MEA) and its related reaction products were studied and the effectiveness of landfarming as a technique for the remediation of MEA-sludge contaminated soil was examined. MEAs are used regularly by the natural gas industry to remove hydrogen sulfide, carbon dioxide and other acid gases from natural gas. The following critical issues were examined: (1) the biodegradability of the recalcitrant fraction observed in slurry bioreactor investigations, (2) the biodegradability of selected MEA-related thermal reaction products, and (3) the effectiveness of landfarming for the remediation of MEA-contaminated soils. Key factors that may limit biodegradation of the recalcitrant fraction of organic matter in MEA wastes included inhibition due to ammonia, nutrient limitations, and insufficient time to adapt to the material and inherent resistance to biodegradation. A land treatment alternative that collects leachate for possible treatment may be the most suitable method to deal with these wastes

  17. Scales for Experience of Eating During in Childhood, Eating-related Coping Skills, and Desirable Dietary Habits

    OpenAIRE

    江坂,美佐子; 田中,宏二

    2015-01-01

     We conducted a survey on a total of 261 first- and second-year university and junior college students (92 men, 169 women), and created scales for experience of eating during in childhood, eating-related coping skills, and desirable dietary habits. The scale for experience of eating during in childhood comprised nine items and two factors (experience of enjoying eating at home and connection to dietary education at school). The scale for eating-related coping skills comprised seven items and ...

  18. Effective Planck Mass and the Scale of Inflation

    CERN Document Server

    Kleban, Matthew; Porrati, Massimo

    2016-01-11

    A recent paper argued that it is not possible to infer the energy scale of inflation from the amplitude of tensor fluctuations in the Cosmic Microwave Background, because the usual connection is substantially altered if there are a large number of universally coupled fields present during inflation, with mass less than the inflationary Hubble scale. We give a simple argument demonstrating that this is incorrect.

  19. Effect of Variable Spatial Scales on USLE-GIS Computations

    Science.gov (United States)

    Patil, R. J.; Sharma, S. K.

    2017-12-01

    Use of appropriate spatial scale is very important in Universal Soil Loss Equation (USLE) based spatially distributed soil erosion modelling. This study aimed at assessment of annual rates of soil erosion at different spatial scales/grid sizes and analysing how changes in spatial scales affect USLE-GIS computations using simulation and statistical variabilities. Efforts have been made in this study to recommend an optimum spatial scale for further USLE-GIS computations for management and planning in the study area. The present research study was conducted in Shakkar River watershed, situated in Narsinghpur and Chhindwara districts of Madhya Pradesh, India. Remote Sensing and GIS techniques were integrated with Universal Soil Loss Equation (USLE) to predict spatial distribution of soil erosion in the study area at four different spatial scales viz; 30 m, 50 m, 100 m, and 200 m. Rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and satellite image of the area were used for preparation of the thematic maps for various USLE factors. Annual rates of soil erosion were estimated for 15 years (1992 to 2006) at four different grid sizes. The statistical analysis of four estimated datasets showed that sediment loss dataset at 30 m spatial scale has a minimum standard deviation (2.16), variance (4.68), percent deviation from observed values (2.68 - 18.91 %), and highest coefficient of determination (R2 = 0.874) among all the four datasets. Thus, it is recommended to adopt this spatial scale for USLE-GIS computations in the study area due to its minimum statistical variability and better agreement with the observed sediment loss data. This study also indicates large scope for use of finer spatial scales in spatially distributed soil erosion modelling.

  20. CFD Analysis of Scale Effects on Conventional and Tip-Modified Propellers

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul

    2017-01-01

    Full-scale propeller performance is traditionally predictedby scaling model-scale test results, but the traditionalscaling methods do not take into account hydrodynamicdistinctions of tip-modified propellers in full-scaleperformance. An open-water CFD analysis is made onscale effects of tip...... the transition model shows that laminar and transitionalflow modeling is crucial in model-scale computations.Grid-independent solutions at model and full scale areachieved by grid verification studies. The CFD analysis of scale effects shows that theefficiency gain of the tip-modified propeller is increasedat...

  1. Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects.

    Science.gov (United States)

    Devaraju, N; Bala, Govindasamy; Modak, Angshuman

    2015-03-17

    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures.

  2. On the Effects of Frequency Scaling over Capacity Scaling in Underwater Networks

    DEFF Research Database (Denmark)

    Shin, Won-Yong; Roetter, Daniel Enrique Lucani; Médard, Muriel

    2013-01-01

    that there exists either a bandwidth or power limitation, or both, according to the operating regimes (i.e., path-loss attenuation regimes), thus yielding the upper bound that follows three fundamentally different information transfer arguments. In addition, an achievability result based on the multi-hop (MH......) transmission is presented for dense networks. MH is shown to guarantee the order optimality under certain operating regimes. More specifically, it turns out that scaling the carrier frequency faster than or as is instrumental towards achieving the order optimality of the MH protocol....

  3. Hydrogen-related effects in crystalline semiconductors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1988-08-01

    Recent experimental and theoretical information regarding the states of hydrogen in crystalline semiconductors is reviewed. The abundance of results illustrates that hydrogen does not preferentially occupy a few specific lattice sites but that it binds to native defects and impurities, forming a large variety of neutral and electrically active complexes. The study of hydrogen passivated shallow acceptors and donors and of partially passivated multivalent acceptors has yielded information on the electronic and real space structure and on the chemical composition of these complexes. Infrared spectroscopy, ion channeling, hydrogen isotope substitution and electric field drift experiments have shown that both static trigonal complexes as well as centers with tunneling hydrogen exist. Total energy calculations indicate that the charge state of the hydrogen ion which leads to passivation dominates, i.e., H + in p-type and H/sup /minus// in n-type crystals. Recent theoretical calculations indicate that is unlikely for a large fraction of the atomic hydrogen to exist in its neutral state, a result which is consistent with the total absence of any Electron Paramagnetic Resonance (EPR) signal. An alternative explanation for this result is the formation of H 2 . Despite the numerous experimental and theoretical results on hydrogen-related effects in Ge and Si there remains a wealth of interesting physics to be explored, especially in compound and alloy semiconductors. 6 refs., 6 figs

  4. A critical look at spatial scale choices in satellite-based aerosol indirect effect studies

    Science.gov (United States)

    Grandey, B. S.; Stier, P.

    2010-12-01

    Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of font-size: 10px; color: #000;">dlnNefont-size: 10px; color: #000;">dlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of font-size: 10px; color: #000;">dlnrefont-size: 10px; color: #000;">dlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4° × 4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of font-size: 10px; color: #000;">dlnNefont-size: 10px; color: #000;">dlnτa and font-size: 10px; color: #000;">dlnrefont-size: 10px; color: #000;">dlnτa. For regions on the scale of 60° × 60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80% relative to that calculated for regions on the scale of 1° × 1°.

  5. Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines

    Science.gov (United States)

    Grant, Evan H. Campbell; Miller, David A. W.; Schmidt, Benedikt R.; Adams, Michael J.; Amburgey, Staci M.; Chambert, Thierry A.; Cruickshank, Sam S.; Fisher, Robert N.; Green, David M.; Hossack, Blake R.; Johnson, Pieter T.J.; Joseph, Maxwell B.; Rittenhouse, Tracy A. G.; Ryan, Maureen E.; Waddle, J. Hardin; Walls, Susan C.; Bailey, Larissa L.; Fellers, Gary M.; Gorman, Thomas A.; Ray, Andrew M.; Pilliod, David S.; Price, Steven J.; Saenz, Daniel; Sadinski, Walt; Muths, Erin L.

    2016-01-01

    Since amphibian declines were first proposed as a global phenomenon over a quarter century ago, the conservation community has made little progress in halting or reversing these trends. The early search for a “smoking gun” was replaced with the expectation that declines are caused by multiple drivers. While field observations and experiments have identified factors leading to increased local extinction risk, evidence for effects of these drivers is lacking at large spatial scales. Here, we use observations of 389 time-series of 83 species and complexes from 61 study areas across North America to test the effects of 4 of the major hypothesized drivers of declines. While we find that local amphibian populations are being lost from metapopulations at an average rate of 3.79% per year, these declines are not related to any particular threat at the continental scale; likewise the effect of each stressor is variable at regional scales. This result - that exposure to threats varies spatially, and populations vary in their response - provides little generality in the development of conservation strategies. Greater emphasis on local solutions to this globally shared phenomenon is needed.

  6. Evaluation of treatment related fear using a newly developed fear scale for children: "Fear assessment picture scale" and its association with physiological response

    Directory of Open Access Journals (Sweden)

    Nishidha Tiwari

    2015-01-01

    Full Text Available Introduction: Dental treatment is usually a poignant phenomenon for children. Projective scales are preferred over psychometric scales to recognize it, and to obtain the self-report from children. Aims: The aims were to evaluate treatment related fear using a newly developed fear scale for children, fear assessment picture scale (FAPS, and anxiety with colored version of modified facial affective scale (MFAS - three faces along with physiologic responses (pulse rate and oxygen saturation obtained by pulse oximeter before and during pulpectomy procedure. Settings and Design: Total, 60 children of age 6-8 years who were visiting the dental hospital for the first time and needed pulpectomy treatment were selected. Children selected were of sound physical, physiological, and mental condition. Two projective scales were used; one to assess fear - FAPS and to assess anxiety - colored version of MFAS - three faces. These were co-related with the physiological responses (oxygen saturation and pulse rate of children obtained by pulse oximeter before and during the pulpectomy procedure. Statistical Analysis Used: Shapiro-Wilk test, McNemar′s test, Wilcoxon signed ranks test, Kruskal-Wallis test, Mann-Whitney test were applied in the study. Results: The physiological responses showed association with FAPS and MFAS though not significant. However, oxygen saturation with MFAS showed a significant change between "no anxiety" and "some anxiety" as quantified by Kruskal-Wallis test value 6.287, P = 0.043 (<0.05 before pulpectomy procedure. Conclusions: The FAPS can prove to be a pragmatic tool in spotting the fear among young children. This test is easy and fast to apply on children and reduces the chair-side time.

  7. Generality of a congruity effect in judgements of relative order.

    Science.gov (United States)

    Liu, Yang S; Chan, Michelle; Caplan, Jeremy B

    2014-10-01

    The judgement of relative order (JOR) procedure is used to investigate serial-order memory. Measuring response times, the wording of the instructions (whether the earlier or the later item was designated as the target) reversed the direction of search in subspan lists (Chan, Ross, Earle, & Caplan Psychonomic Bulletin & Review, 16(5), 945-951, 2009). If a similar congruity effect applied to above-span lists and, furthermore, with error rate as the measure, this could suggest how to model order memory across scales. Participants performed JORs on lists of nouns (Experiment 1: list lengths = 4, 6, 8, 10) or consonants (Experiment 2: list lengths = 4, 8). In addition to the usual distance, primacy, and recency effects, instructions interacted with serial position of the later probe in both experiments, not only in response time, but also in error rate, suggesting that availability, not just accessibility, is affected by instructions. The congruity effect challenges current memory models. We fitted Hacker's (Journal of Experimental Psychology: Human Learning and Memory, 6(6), 651-675, 1980) self-terminating search model to our data and found that a switch in search direction could explain the congruity effect for short lists, but not longer lists. This suggests that JORs may need to be understood via direct-access models, adapted to produce a congruity effect, or a mix of mechanisms.

  8. [Adverse Effect Predictions Based on Computational Toxicology Techniques and Large-scale Databases].

    Science.gov (United States)

    Uesawa, Yoshihiro

    2018-01-01

     Understanding the features of chemical structures related to the adverse effects of drugs is useful for identifying potential adverse effects of new drugs. This can be based on the limited information available from post-marketing surveillance, assessment of the potential toxicities of metabolites and illegal drugs with unclear characteristics, screening of lead compounds at the drug discovery stage, and identification of leads for the discovery of new pharmacological mechanisms. This present paper describes techniques used in computational toxicology to investigate the content of large-scale spontaneous report databases of adverse effects, and it is illustrated with examples. Furthermore, volcano plotting, a new visualization method for clarifying the relationships between drugs and adverse effects via comprehensive analyses, will be introduced. These analyses may produce a great amount of data that can be applied to drug repositioning.

  9. Age-related differences in the relations between individualised HRM and organisational performance: a large-scale employer survey

    NARCIS (Netherlands)

    Bal, P.M.; Dorenbosch, L.

    2015-01-01

    The current study aimed to investigate the relationship between individualised HRM practices and several measures of organisational performance, including the moderating role of employee age in these relationships. A large-scale representative study among 4,591 organisations in the Netherlands

  10. Worksite health and safety climate: scale development and effects of a health promotion intervention.

    Science.gov (United States)

    Basen-Engquist, K; Hudmon, K S; Tripp, M; Chamberlain, R

    1998-01-01

    Environmental influences on health and health behavior have an important place in research on worksite health promotion. We tested the validity and internal consistency of a new measure of organizational health and safety climate that was used in a large randomized trial of a worksite cancer prevention program (the Working Well Trial). The resulting scales then were applied to assess intervention effects. This study uses data from a subset of 40 worksites in the Working Well Trial. Employees at 20 natural gas pipeline worksite and 20 rural electrical cooperatives completed a cross-sectional questionnaire at baseline and 3-year follow-up. A factor analysis of this self-report instrument produced a two-factor solution. The resulting health and safety climate scales had good internal consistency (Cronbach's alpha = 0.74 and 0.82, respectively) and concurrent validity. The health climate scale was correlated more highly with organizational measures that were indicative of a supportive health climate than those indicating supportive safety climate, while the reverse was true of the safety climate scale. Changes in health climate were associated with the number of smoking and smokeless tobacco programs offered at the worksites at the time of the 3-year follow-up (r = 0.46 and 0.42, respectively). The scales were not correlated with most employee health behaviors. The health climate scores increased at intervention worksites, compared with scores at control worksites (F[1,36] = 7.57, P = 0.009). The health and safety climate scales developed for this study provide useful instruments for measuring organizational change related to worksite health promotion activities. The Working Well Intervention resulted in a significant improvement in worksite health climate.

  11. Effects of thermal inflation on small scale density perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sungwook E. [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Seoul 130-722 (Korea, Republic of); Lee, Hyung-Joo; Lee, Young Jae; Stewart, Ewan D. [Department of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Zoe, Heeseung, E-mail: swhong@kias.re.kr, E-mail: ohsk111@kaist.ac.kr, E-mail: noasac@kaist.ac.kr, E-mail: jcap@profstewart.org, E-mail: heezoe@dgist.ac.kr [School of Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno jungang-daero, Daegu 711-873 (Korea, Republic of)

    2015-06-01

    In cosmological scenarios with thermal inflation, extra eras of moduli matter domination, thermal inflation and flaton matter domination exist between primordial inflation and the radiation domination of Big Bang nucleosynthesis. During these eras, cosmological perturbations on small scales can enter and re-exit the horizon, modifying the power spectrum on those scales. The largest modified scale, k{sub b}, touches the horizon size when the expansion changes from deflation to inflation at the transition from moduli domination to thermal inflation. We analytically calculate the evolution of perturbations from moduli domination through thermal inflation and evaluate the curvature perturbation on the constant radiation density hypersurface at the end of thermal inflation to determine the late time curvature perturbation. Our resulting transfer function suppresses the power spectrum by a factor 0∼ 5 at k >> k{sub b}, with k{sub b} corresponding to anywhere from megaparsec to subparsec scales depending on the parameters of thermal inflation. Thus, thermal inflation might be constrained or detected by small scale observations such as CMB distortions or 21cm hydrogen line observations.

  12. The predictive validity of the Drinking-Related Cognitions Scale in alcohol-dependent patients under abstinence-oriented treatment

    Directory of Open Access Journals (Sweden)

    Sawayama Toru

    2012-05-01

    Full Text Available Abstract Background Cognitive factors associated with drinking behavior such as positive alcohol expectancies, self-efficacy, perception of impaired control over drinking and perception of drinking problems are considered to have a significant influence on treatment effects and outcome in alcohol-dependent patients. However, the development of a rating scale on lack of perception or denial of drinking problems and impaired control over drinking has not been substantial, even though these are important factors in patients under abstinence-oriented treatment as well as participants in self-help groups such as Alcoholics Anonymous (AA. The Drinking-Related Cognitions Scale (DRCS is a new self-reported rating scale developed to briefly measure cognitive factors associated with drinking behavior in alcohol-dependent patients under abstinence-oriented treatment, including positive alcohol expectancies, abstinence self-efficacy, perception of impaired control over drinking, and perception of drinking problems. Here, we conducted a prospective cohort study to explore the predictive validity of DRCS. Methods Participants in this study were 175 middle-aged and elderly Japanese male patients who met the DSM-IV Diagnostic Criteria for Alcohol Dependence. DRCS scores were recorded before and after the inpatient abstinence-oriented treatment program, and treatment outcome was evaluated one year after discharge. Results Of the 175 participants, 30 were not available for follow-up; thus the number of subjects for analysis in this study was 145. When the total DRCS score and subscale scores were compared before and after inpatient treatment, a significant increase was seen for both scores. Both the total DRCS score and each subscale score were significantly related to total abstinence, percentage of abstinent days, and the first drinking occasion during the one-year post-treatment period. Therefore, good treatment outcome was significantly predicted by low

  13. Consistent rationalization of type-2 topoisomerases' unknotting, decatenating, supercoil-relaxing actions and their scaling relation.

    Science.gov (United States)

    Liu, Zhirong; Chan, Hue Sun

    2015-09-09

    How type-2 topoisomerases discern global topology from local properties of DNA is not known precisely but the hypothesis that the enzymes selectively pass double-helix strands at hook-like juxtapositions is promising. Building upon an investigation of unknotting and decatenating using an improved wormlike DNA model, here we focus primarily on the enzymes' action in narrowing the distribution of linking number (Lk) in supercoiled DNA. Consistent with experiments, with selective passage at a hooked juxtaposition, the simulated narrowing factor RLk diminishes with decreasing DNA circle size but approaches an asymptotic RLk ≈ 1.7-1.8 for circle size ≳3.5 kb. For the larger DNA circles, we found that (RLk - 1) ≈ 0.42log10RK ≈ 0.68log10RL and thus RK ≈ (RL)(1.6) holds for the computed RLk and knot and catenane reduction factors RK and RL attained by selective passage at different juxtaposition geometries. Remarkably, this general scaling relation is essentially identical to that observed experimentally for several type-2 topoisomerases from a variety of organisms, indicating that the different disentangling powers of the topoisomerases likely arise from variations in the hooked geometries they select. Taken together, our results suggest strongly that type-2 topoisomerases recognize not only the curvature of the G-segment but also that of the T-segment.

  14. Worldwide F(ST) estimates relative to five continental-scale populations.

    Science.gov (United States)

    Steele, Christopher D; Court, Denise Syndercombe; Balding, David J

    2014-11-01

    We estimate the population genetics parameter FST (also referred to as the fixation index) from short tandem repeat (STR) allele frequencies, comparing many worldwide human subpopulations at approximately the national level with continental-scale populations. FST is commonly used to measure population differentiation, and is important in forensic DNA analysis to account for remote shared ancestry between a suspect and an alternative source of the DNA. We estimate FST comparing subpopulations with a hypothetical ancestral population, which is the approach most widely used in population genetics, and also compare a subpopulation with a sampled reference population, which is more appropriate for forensic applications. Both estimation methods are likelihood-based, in which FST is related to the variance of the multinomial-Dirichlet distribution for allele counts. Overall, we find low FST values, with posterior 97.5 percentiles estimates, and are also about half the magnitude of STR-based estimates from population genetics surveys that focus on distinct ethnic groups rather than a general population. Our findings support the use of FST up to 3% in forensic calculations, which corresponds to some current practice.

  15. Complexity Index as Applied to Magnetic Resonance: Study Based on a Scale of Relative Units

    International Nuclear Information System (INIS)

    Capelastegui, A.; Villanua, J.

    2003-01-01

    To analyze the merit and repercussions of measuring magnetic resonance (MR) activity in units of radiological activity, and of using complexity index (CI) as an activity indicator. We studied the MR activity of Osatek, Inc. during an 8-year period (1994-2001). We measured this activity both in number of MR procedures performed and in units of radiological activity, such units being based on the scale of relative units published in the Radiological Services Administration Guidelines published by the Spanish Society or Medical Radiology. We calculated the annual complexity index, this being a quotient between the number of MR procedures performed and corresponding value in units of radiological activity. We also analyzed factors that can have an impact on the CI: type of exploration and power of the equipment's magnetic field. The CL stayed practically stable during the first 4 years of the study, while it increased during the second 4 years. There exists a direct relationship between this increase and the percentage of explorations that we term complex (basically, body-and angio-MR). The increasing complexity of MR studies in the last years is evident from a consideration of CI. MR productivity is more realistically expressed in units of radiological activity than in number of procedures performed by any one center. It also allows for making external comparisons. CI is a useful indicator that can be utilized as an administrative tool. (Author) 13 refs

  16. German National Proficiency Scales in Biology: Internal Structure, Relations to General Cognitive Abilities and Verbal Skills

    Science.gov (United States)

    KÖLLER, OLAF

    2016-01-01

    ABSTRACT National and international large‐scale assessments (LSA) have a major impact on educational systems, which raises fundamental questions about the validity of the measures regarding their internal structure and their relations to relevant covariates. Given its importance, research on the validity of instruments specifically developed for LSA is still sparse, especially in science and its subdomains biology, chemistry, and physics. However, policy decisions for the improvement of educational quality based on LSA can only be helpful if valid information on students’ achievement levels is provided. In the present study, the nature of the measurement instruments based on the German Educational Standards in Biology is examined. On the basis of data from 3,165 students in Grade 10, we present dimensional analyses and report the relationship between different subdimensions of biology literacy and cognitive covariates such as general cognitive abilities and verbal skills. A theory‐driven two‐dimensional model fitted the data best. Content knowledge and scientific inquiry, two subdimensions of biology literacy, are highly correlated and show differential correlational patterns to the covariates. We argue that the underlying structure of biology should be incorporated into curricula, teacher training and future assessments. PMID:27818532

  17. On the dimensionality of the stress-related growth scale: one, three, or seven factors?

    Science.gov (United States)

    Roesch, Scott C; Rowley, Anthony A; Vaughn, Allison A

    2004-06-01

    We examined the factorial validity and dimensionality of the Stress-Related Growth Scale (SRGS; Park, Cohen, & Murch, 1996) using a large multiethnic sample (n = 1,070). Exploratory and confirmatory factor analyses suggested that a multidimensional representation of the SRGS fit better than a unidimensional representation. Specifically, we cross-validated both a 3-factor model and a 7-factor model using confirmatory factor analysis and were shown to be invariant across gender and ethnic groups. The 3-factor model was represented by global dimensions of growth that included rational/mature thinking, affective/emotional growth, and religious/spiritual growth. We replicated the 7-factor model of Armeli, Gunthert, and Cohen (2001) and it represented more specific components of growth such as Self-Understanding and Treatment of Others. However, some factors of the 7-factor model had questionable internal consistency and were strongly intercorrelated, suggesting redundancy. The findings support the notion that the factor structure of both the original 1-factor and revised 7-factor models are unstable and that the 3-factor model developed in this research has more reliable psychometric properties and structure.

  18. Effective field theory analysis on μ problem in low-scale gauge mediation

    International Nuclear Information System (INIS)

    Zheng Sibo

    2012-01-01

    Supersymmetric models based on the scenario of gauge mediation often suffer from the well-known μ problem. In this paper, we reconsider this problem in low-scale gauge mediation in terms of effective field theory analysis. In this paradigm, all high energy input soft mass can be expressed via loop expansions. If the corrections coming from messenger thresholds are small, as we assume in this letter, then all RG evaluations can be taken as linearly approximation for low-scale supersymmetric breaking. Due to these observations, the parameter space can be systematically classified and studied after constraints coming from electro-weak symmetry breaking are imposed. We find that some old proposals in the literature are reproduced, and two new classes are uncovered. We refer to a microscopic model, where the specific relations among coefficients in one of the new classes are well motivated. Also, we discuss some primary phenomenologies.

  19. Threshold effects on renormalization group running of neutrino parameters in the low-scale seesaw model

    International Nuclear Information System (INIS)

    Bergstroem, Johannes; Ohlsson, Tommy; Zhang He

    2011-01-01

    We show that, in the low-scale type-I seesaw model, renormalization group running of neutrino parameters may lead to significant modifications of the leptonic mixing angles in view of so-called seesaw threshold effects. Especially, we derive analytical formulas for radiative corrections to neutrino parameters in crossing the different seesaw thresholds, and show that there may exist enhancement factors efficiently boosting the renormalization group running of the leptonic mixing angles. We find that, as a result of the seesaw threshold corrections to the leptonic mixing angles, various flavor symmetric mixing patterns (e.g., bi-maximal and tri-bimaximal mixing patterns) can be easily accommodated at relatively low energy scales, which is well within the reach of running and forthcoming experiments (e.g., the LHC).

  20. Scale-dependence of land use effects on water quality of streams in agricultural catchments

    International Nuclear Information System (INIS)

    Buck, Oliver; Niyogi, Dev K.; Townsend, Colin R.

    2004-01-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive. - Land use influences water quality of streams at various spatial scales

  1. Scale-dependence of land use effects on water quality of streams in agricultural catchments

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Oliver; Niyogi, Dev K.; Townsend, Colin R

    2004-07-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive. - Land use influences water quality of streams at various spatial scales.

  2. The Large-scale Effect of Environment on Galactic Conformity

    Science.gov (United States)

    Sun, Shuangpeng; Guo, Qi; Wang, Lan; Wang, Jie; Gao, Liang; Lacey, Cedric G.; Pan, Jun

    2018-04-01

    We use a volume-limited galaxy sample from the SDSS Data Release 7 to explore the dependence of galactic conformity on the large-scale environment, measured on ˜ 4 Mpc scales. We find that the star formation activity of neighbour galaxies depends more strongly on the environment than on the activity of their primary galaxies. In under-dense regions most neighbour galaxies tend to be active, while in over-dense regions neighbour galaxies are mostly passive, regardless of the activity of their primary galaxies. At a given stellar mass, passive primary galaxies reside in higher density regions than active primary galaxies, leading to the apparently strong conformity signal. The dependence of the activity of neighbour galaxies on environment can be explained by the corresponding dependence of the fraction of satellite galaxies. Similar results are found for galaxies in a semi-analytical model, suggesting that no new physics is required to explain the observed large-scale conformity.

  3. Climatological changing effects on wind, precipitation and erosion: Large, meso and small scale analysis

    International Nuclear Information System (INIS)

    Aslan, Z.

    2004-01-01

    The Fourier transformation analysis for monthly average values of meteorological parameters has been considered, and amplitudes, phase angles have been calculated by using ground measurements in Turkey. The first order harmonics of meteorological parameters show large scale effects, while higher order harmonics show the effects of small scale fluctuations. The variations of first through sixth order harmonic amplitudes and phases provide a useful means of understanding the large and local scale effects on meteorological parameters. The phase angle can be used to determine the time of year the maximum or minimum of a given harmonic occurs. The analysis helps us to distinguish different pressure, relative humidity, temperature, precipitation and wind speed regimes and transition regions. Local and large scale phenomenon and some unusual seasonal patterns are also defined near Keban Dam and the irrigation area. Analysis of precipitation based on long term data shows that semi-annual fluctuations are predominant in the study area. Similarly, pressure variations are mostly influenced by semi-annual fluctuations. Temperature and humidity variations are mostly influenced by meso and micro scale fluctuations. Many large and meso scale climate change simulations for the 21st century are based on concentration of green house gases. A better understanding of these effects on soil erosion is necessary to determine social, economic and other impacts of erosion. The second part of this study covers the time series analysis of precipitation, rainfall erosivity and wind erosion at the Marmara Region. Rainfall and runoff erosivity factors are defined by considering the results of field measurements at 10 stations. Climatological changing effects on rainfall erosion have been determined by monitoring meteorological variables. In the previous studies, Fournier Index is defined to estimate the rainfall erosivity for the study area. The Fournier Index or in other words a climatic index

  4. A Statistical Model and Computer program for Preliminary Calculations Related to the Scaling of Sensor Arrays; TOPICAL

    International Nuclear Information System (INIS)

    Max Morris

    2001-01-01

    Recent advances in sensor technology and engineering have made it possible to assemble many related sensors in a common array, often of small physical size. Sensor arrays may report an entire vector of measured values in each data collection cycle, typically one value per sensor per sampling time. The larger quantities of data provided by larger arrays certainly contain more information, however in some cases experience suggests that dramatic increases in array size do not always lead to corresponding improvements in the practical value of the data. The work leading to this report was motivated by the need to develop computational planning tools to approximate the relative effectiveness of arrays of different size (or scale) in a wide variety of contexts. The basis of the work is a statistical model of a generic sensor array. It includes features representing measurement error, both common to all sensors and independent from sensor to sensor, and the stochastic relationships between the quantities to be measured by the sensors. The model can be used to assess the effectiveness of hypothetical arrays in classifying objects or events from two classes. A computer program is presented for evaluating the misclassification rates which can be expected when arrays are calibrated using a given number of training samples, or the number of training samples required to attain a given level of classification accuracy. The program is also available via email from the first author for a limited time

  5. Environmental remediation: Addressing public concerns through effective community relations

    International Nuclear Information System (INIS)

    Davis, S.; Heywood, J.; Wood, M.B.; Arellano, M.; Pfister, S.

    1998-01-01

    The public's perception of risk drives their response to any potential environmental remediation project. Even if the actual environmental and health risks may be relatively low, public perception of high risk may doom the project to an uphill struggle characterized by heated public meetings, negative media coverage, reluctant regulators, project delays and increased costs. The ultimate Catch 22 in such a case is that the contamination remains in-place until the public drama is concluded. This paper explores the development and implementation of a Community Relations Plan for the clean up of a Manufactured Gas Plant (MGP) site owned and operated by corporate predecessors of Arizona Public Service Company (APS) near the turn of the century. The unique challenges associated with this project were that the former MGP was located in downtown Phoenix at the site of a future federal courthouse. Although the MGP site had been under investigation for some time, the clean-up schedule was driven by a tight courthouse construction schedule. Compounding these challenges were the logistics associated with conducting a large-scale cleanup in a congested, highly visible downtown location. An effective Community Relations Plan can mean the difference between the success and failure of an environmental remediation project. Elements of an effective plan are: identifying key stakeholders and involving them in the project from the beginning; providing timely information and being open and honest about the potential environmental and health risks; involving your company's community relations and media staff; and educating affected company employees. The Community Relations Plan developed for this project was designed to alleviate public concern about potential risks (perceived or real) associated with the project by keeping key stakeholders informed of all activities well in advance

  6. Large-Scale Variation in Forest Carbon Turnover Rate and its Relation to Climate - Remote Sensing vs. Global Vegetation Models

    Science.gov (United States)

    Carvalhais, N.; Thurner, M.; Beer, C.; Forkel, M.; Rademacher, T. T.; Santoro, M.; Tum, M.; Schmullius, C.

    2015-12-01

    While vegetation productivity is known to be strongly correlated to climate, there is a need for an improved understanding of the underlying processes of vegetation carbon turnover and their importance at a global scale. This shortcoming has been due to the lack of spatially extensive information on vegetation carbon stocks, which we recently have been able to overcome by a biomass dataset covering northern boreal and temperate forests originating from radar remote sensing. Based on state-of-the-art products on biomass and NPP, we are for the first time able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests. The implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current global vegetation models. In contrast to our observation-based findings, investigated models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well to observation-based NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in global vegetation models and estimating their impact on the land carbon balance.

  7. Enhancing criterion-related validity through bottom-up contextualization of personality inventories: The construction of an ecological conscientiousness scale

    NARCIS (Netherlands)

    dr René Butter; Marise Born

    2011-01-01

    In this paper the concept of "ecological personality scales" is introduced. These are contextualized inventories with a high ecological validity. They are developed in a bottom-up or qualitative way and combine a relatively high trait specificity with a relatively high situational specificity. An

  8. Effects of artisanal small-scale gold mining on fisheries ...

    African Journals Online (AJOL)

    Artisanal Small-scale Gold Mining (ASGM) has direct and indirect impacts on fisheries management. These impacts are mainly about the quality of the water where fish lives, ownership of the surrounding waters, land and human health. This study was carried out in two landing sites of Wagusu and Riskis Kogwari in ...

  9. Sustainability effects of household-scale biogas in rural China

    NARCIS (Netherlands)

    Gosens, J.; Lu Yonglong,; He Guizhen,; Bluemling, B.; Beckers, T.A.M.

    2013-01-01

    Households in rural China rely heavily on low quality fuels which results in reduced quality of life and environmental degradation. This study assesses the comparative contribution of household scale biogas installations to the broad set of sustainability objectives in the Chinese biogas policy

  10. Matter composition at high density by effective scaled lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Chang Ho; Min, Dong Pil [Dept. of Physics, Seoul National Univ., Seoul (Korea, Republic of)

    1998-06-01

    We investigate the matter composition at around the neutron star densities with a model lagrangian satisfying Brown-Rho scaling law. We calculate the neutron star properties such as maximum mass, radius, hyperon compositions and central density. We compare our results with those of Walecka model. (orig.)

  11. Cost effective pilot scale production of biofertilizer using Rhizobium ...

    African Journals Online (AJOL)

    We standardized the protocol for pilot scale production of Rhizobium and Azotobacter biofertilizer technology using region specific and environmental stress compatible strains isolated from various agro climatic regions of Odisha, India. The cost benefit of biofertilizer production through a cottage industry is also presented.

  12. Importance of proper scaling of aerobic power when relating to cardiometabolic risk factors in children

    DEFF Research Database (Denmark)

    McMurray, Robert; Hosick ‎, Peter; Bugge, Anna

    2011-01-01

    . VO(2max) was estimated in mL/min from cycle ergometry and scaled to body mass (kg), fat free mass (kg(FFM)), body surface area (m(2)), height (cm) and allometric (mL/kg(0.67)/min). RESULTS: Unadjusted correlations between CMRF and many of the scaled VO(2max) units were significant (p

  13. Using Relational Reasoning to Learn about Scientific Phenomena at Unfamiliar Scales

    Science.gov (United States)

    Resnick, Ilyse; Davatzes, Alexandra; Newcombe, Nora S.; Shipley, Thomas F.

    2017-01-01

    Many scientific theories and discoveries involve reasoning about extreme scales, removed from human experience, such as time in geology and size in nanoscience. Thus, understanding scale is central to science, technology, engineering, and mathematics. Unfortunately, novices have trouble understanding and comparing sizes of unfamiliar large and…

  14. Scale issues in soil hydrology related to measurement and simulation: A case study in Colorado

    Science.gov (United States)

    State variables, such as soil water content (SWC), are typically measured or inferred at very small scales while being simulated at larger scales relevant to spatial management or hillslope areas. Thus there is an implicit spatial disparity that is often ignored. Surface runoff, on the other hand, ...

  15. Arctic energy budget in relation to sea-ice variability on monthly to annual time scales

    Science.gov (United States)

    Krikken, Folmer; Hazeleger, Wilco

    2015-04-01

    The strong decrease in Arctic sea-ice in recent years has triggered a strong interest in Arctic sea-ice predictions on seasonal to decadal time scales. Hence, it is key to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. The authors report on an analysis of natural variability of Arctic sea-ice from an energy budget perspective, using 15 CMIP5 climate models, and comparing these results to atmospheric and oceanic reanalyses data. We quantify the persistence of sea ice anomalies and the cross-correlation with the surface and top energy budget components. The Arctic energy balance components primarily indicate the important role of the seasonal sea-ice albedo feedback, in which sea-ice anomalies in the melt season reemerge in the growth season. This is a robust anomaly reemergence mechanism among all 15 climate models. The role of ocean lies mainly in storing heat content anomalies in spring, and releasing them in autumn. Ocean heat flux variations only play a minor role. The role of clouds is further investigated. We demonstrate that there is no direct atmospheric response of clouds to spring sea-ice anomalies, but a delayed response is evident in autumn. Hence, there is no cloud-ice feedback in late spring and summer, but there is a cloud-ice feedback in autumn, which strengthens the ice-albedo feedback. Anomalies in insolation are positively correlated with sea-ice variability. This is primarily a result of reduced multiple-reflection of insolation due to an albedo decrease. This effect counteracts the sea-ice albedo effect up to 50%. ERA-Interim and ORAS4 confirm the main findings from the climate models.

  16. Scaling relation and regime map of explosive gas–liquid flow of binary Lennard-Jones particle system

    KAUST Repository

    Inaoka, Hajime

    2012-02-01

    We study explosive gasliquid flows caused by rapid depressurization using a molecular dynamics model of Lennard-Jones particle systems. A unique feature of our model is that it consists of two types of particles: liquid particles, which tend to form liquid droplets, and gas particles, which remain supercritical gaseous states under the depressurization realized by simulations. The system has a pipe-like structure similar to the model of a shock tube. We observed physical quantities and flow regimes in systems with various combinations of initial particle number densities and initial temperatures. It is observed that a physical quantity Q, such as pressure, at position z measured along a pipe-like system at time t follows a scaling relation Q(z,t)=Q(zt) with a scaling function Q(ζ). A similar scaling relation holds for time evolution of flow regimes in a system. These scaling relations lead to a regime map of explosive flows in parameter spaces of local physical quantities. The validity of the scaling relations of physical quantities means that physics of equilibrium systems, such as an equation of state, is applicable to explosive flows in our simulations, though the explosive flows involve highly nonequilibrium processes. In other words, if the breaking of the scaling relations is observed, it means that the explosive flows cannot be fully described by physics of equilibrium systems. We show the possibility of breaking of the scaling relations and discuss its implications in the last section. © 2011 Elsevier B.V. All rights reserved.

  17. Gender Effect According to Item Directionality on the Perceived Stress Scale for Adults with Multiple Sclerosis

    Science.gov (United States)

    Gitchel, W. Dent; Roessler, Richard T.; Turner, Ronna C.

    2011-01-01

    Assessment is critical to rehabilitation practice and research, and self-reports are a commonly used form of assessment. This study examines a gender effect according to item wording on the "Perceived Stress Scale" for adults with multiple sclerosis. Past studies have demonstrated two-factor solutions on this scale and other scales measuring…

  18. Turkish Adaptation of the Mentorship Effectiveness Scale: A Validity and Reliability Study

    Science.gov (United States)

    Yirci, Ramazan; Karakose, Turgut; Uygun, Harun; Ozdemir, Tuncay Yavuz

    2016-01-01

    The purpose of this study is to adapt the Mentoring Relationship Effectiveness Scale to Turkish, and to conduct validity and reliability tests regarding the scale. The study group consisted of 156 university science students receiving graduate education. Construct validity and factor structure of the scale was analyzed first through exploratory…

  19. Structural validity of a 16-item abridged version of the Cervantes Health-Related Quality of Life scale for menopause: the Cervantes Short-Form Scale.

    Science.gov (United States)

    Coronado, Pluvio J; Borrego, Rafael Sánchez; Palacios, Santiago; Ruiz, Miguel A; Rejas, Javier

    2015-03-01

    The Cervantes Scale is a specific health-related quality of life questionnaire that was originally developed in Spanish to be used in Spain for women through and beyond menopause. It contains 31 items and is time-consuming. The aim of this study was to produce an abridged version with the same dimensional structure and with similar psychometric properties. A representative sample of 516 postmenopausal women (mean [SD] age, 57 [4.31] y) seen in outpatient gynecology clinics and extracted from an observational cross-sectional study was used. Item analysis, internal consistency reliability, item-total and item-dimension correlations, and item correlation with the 12-item Medical Outcomes Study Short Form Health Survey Version 2.0 were studied. Dimensional and full-model confirmatory factor analyses were used to check structure stability. A threefold cross-validation method was used to obtain stable estimates by means of multigroup analysis. The scale was reduced to a 16-item version, the Cervantes Short-Form Scale, containing four main dimensions (Menopause and Health, Psychological, Sexuality, and Couple Relations), with the first dimension composed of three subdimensions (Vasomotor Symptoms, Health, and Aging). Goodness-of-fit statistics were better than those of the extended version (χ(2)/df = 2.493; adjusted goodness-of-fit index, 0.802; parsimony comparative fit index, 0.749; root mean standard error of approximation, 0.054). Internal consistency was good (Cronbach's α = 0.880). Correlations between the extended and the reduced dimensions were high and significant in all cases (P < 0.001; r values ranged from 0.90 for Sexuality to 0.969 for Vasomotor Symptoms). The Cervantes Scale can be reduced to a 16-item abridged version (Cervantes Short-Form Scale) that maintains the original dimensional structure and psychometric properties. At 51% of the original length, this version can be administered faster, making it especially suitable for routine medical practice.

  20. Effect of nuclear stars gravity on quasar radiation feedback on the parsec-scale

    Science.gov (United States)

    Yang, Xiao-Hong; Bu, De-Fu

    2018-05-01

    It is often suggested that a super massive black hole is embedded in a nuclear bulge of size of a few 102 parsec . The nuclear stars gravity is not negligible near ˜10parsec. In order to study the effect of nuclear stars gravity on quasar radiation feedback on the parsec scale, we have simulated the parsec scale flows irradiated by a quasar by taking into account the gravitational potential of both the black hole and the nuclear star cluster. We find that the effect of nuclear stars gravity on the parsec-scale flows is related to the fraction of X-ray photons in quasar radiation. For the models in which the fraction of X-ray photons is not small (e.g. the X-ray photons contribute to 20% of the quasar radiation), the nuclear stars gravity is very helpful to collimate the outflows driven by UV photons, significantly weakens the outflow power at the outer boundary and significantly enhances the net accretion rate onto the black hole. For the models in which X-ray photons are significantly decreased (e.g. the X-ray photons contribute to 5% of the quasar radiation), the nuclear stars gravity can just slightly change properties of outflow and slightly enhance the net accretion rate onto the black hole.

  1. Turbulence-enhanced prey encounter rates in larval fish : Effects of spatial scale, larval behaviour and size

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; MacKenzie, Brian

    1995-01-01

    Turbulent water motion has several effects on the feeding ecology of larval fish and other planktivorous predators. In this paper, we consider the appropriate spatial scales for estimating relative velocities between larval fish predators and their prey, and the effect that different choices of s...... in the range in which turbulent intensity has an overall positive effect on larval fish ingestion rate probability. However, experimental data to test the model predictions are lacking. We suggest that the model inputs require further empirical study....

  2. A framework for the quantitative assessment of climate change impacts on water-related activities at the basin scale

    OpenAIRE

    Anghileri, D.; Pianosi, F.; Soncini-Sessa, R.

    2011-01-01

    While quantitative assessment of the climate change impact on hydrology at the basin scale is quite addressed in the literature, extension of quantitative analysis to impact on the ecological, economic and social sphere is still limited, although well recognized as a key issue to support water resource planning and promote public participation. In this paper we propose a framework for assessing climate change impact on water-related activities at the basin scale. The specific features of our ...

  3. Internet-Related Disorders: Development of the Short Compulsive Internet Use Scale.

    Science.gov (United States)

    Besser, Bettina; Rumpf, Hans-Jürgen; Bischof, Anja; Meerkerk, Gert-Jan; Higuchi, Susumu; Bischof, Gallus

    2017-11-01

    The addiction treatment system only reaches a small number of individuals suffering from Internet-related disorders. Therefore, it is important to improve case detection for preventive measures and brief interventions. Existing screening instruments are often time-consuming and rarely validated using clinical criteria. The aim of this study is to develop an optimized short screening for problematic Internet use and Internet addiction (IA). A regression analysis was conducted in random subsamples of a merged sample (N = 3,040; N = 1,209) to examine the item performance of the Compulsive Internet Use Scale (CIUS). Based on the results, a short version of the CIUS was developed and compared with the original CIUS. A fully structured diagnostic interview, covering the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for the Internet gaming disorder with a broader focus on all Internet activities, was conducted. A five-item version of the short screening performed best across the samples. Comparing the area under the curve (AUC) of the receiver operating characteristic between the Short CIUS and the original test revealed no significant difference (AUC = 0.968; 0.977). A cutoff point of 7 turned out to perform best for case detection and yielded a sensitivity of 0.95 and a specificity of 0.87, Cronbach's alpha was 0.77. The analysis showed that the performance of the Short CIUS is just as good in detecting problematical Internet use and IA as the performance of the original CIUS. The Short CIUS provides an economical and valid instrument for the assessment of problematic Internet use and IA.

  4. Effects of climate variability on global scale flood risk

    Science.gov (United States)

    Ward, P.; Dettinger, M. D.; Kummu, M.; Jongman, B.; Sperna Weiland, F.; Winsemius, H.

    2013-12-01

    In this contribution we demonstrate the influence of climate variability on flood risk. Globally, flooding is one of the worst natural hazards in terms of economic damages; Munich Re estimates global losses in the last decade to be in excess of $240 billion. As a result, scientifically sound estimates of flood risk at the largest scales are increasingly needed by industry (including multinational companies and the insurance industry) and policy communities. Several assessments of global scale flood risk under current and conditions have recently become available, and this year has seen the first studies assessing how flood risk may change in the future due to global change. However, the influence of climate variability on flood risk has as yet hardly been studied, despite the fact that: (a) in other fields (drought, hurricane damage, food production) this variability is as important for policy and practice as long term change; and (b) climate variability has a strong influence in peak riverflows around the world. To address this issue, this contribution illustrates the influence of ENSO-driven climate variability on flood risk, at both the globally aggregated scale and the scale of countries and large river basins. Although it exerts significant and widespread influences on flood peak discharges in many parts of the world, we show that ENSO does not have a statistically significant influence on flood risk once aggregated to global totals. At the scale of individual countries, though, strong relationships exist over large parts of the Earth's surface. For example, we find particularly strong anomalies of flood risk in El Niño or La Niña years (compared to all years) in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially for La Niña), and parts of South America. These findings have large implications for both decadal climate-risk projections and long-term future climate change

  5. Generalization and consolidation of scaling laws of potential formation and associated effects in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Cho, T.; Hirata, M.; Hojo, H.; Ichimura, M.; Ishii, K.; Itakura, A.; Katanuma, I.; Kohagura, J.; Nakashima, Y.; Saito, T.; Tanaka, S.; Tatematsu, Y.; Yoshikawa, M.; Numakura, T.; Minami, R.; Nagashima, S.; Watanabe, H.; Yoshida, M.; Sakamoto, Y.; Tamano, T.; Yatsu, K.; Miyoshi, S.

    2001-01-01

    Generalized scaling laws for the formation of plasma confining potentials and the associated effectiveness of the potentials produced are systematically investigated to find the physics essentials common to the representative tandem mirror operational modes of GAMMA 10, and to explore novel extended operational modes from the scaling bases constructed. (a) The potential formation scalings are generalized using a novel finding of wider validity of Cohen's strong ECH theory covering the representative modes. (b) The potentials produced, in turn, provide a favourable novel scaling of the increase in the central cell electron temperatures T e with increasing thermal barrier potentials φ b , limited by the available ECH power. The scaling of T e with φ b is well interpreted in terms of the generalized Pastukhov theory of plasma potential confinement. A detailed comparison of the results from several related modified theories is also made. (c) Consolidation of the two major scalings of (a) and (b) in a tandem mirror is carried out by the use of an electron energy balance equation for the first time. In addition, (d) an empirical scaling of φ c with ECH power in the plug region and the central cell densities are studied to discover whether there is the possibility of extending these theoretically well interpreted scaling data to parameters in the future scalable regime. There is also a discussion about numerical scalings in the three dimensional parameter spaces. (author)

  6. On the Renormalization of the Effective Field Theory of Large Scale Structures

    OpenAIRE

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory o...

  7. [Organizational well-being and work-related stress in health care organizations: validation of the Work-related Stress Assessment Scale].

    Science.gov (United States)

    Coluccia, Anna; Lorini, Francesca; Ferretti, Fabio; Pozza, Andrea; Gaetani, Marco

    2015-01-01

    The issue of the assessment of work-related stress has stimulated in recent years, the production of several theoretical paradigms and assessment tools. In this paper we present a new scale for the assessment of organizational well-being and work-related stress specific for healthcare organizations (Work-related Stress Assessment Scale - WSAS). The goal of the authors is to examine the psychometric properties of the scale, so that it can be used in the healthcare setting as a work-related stress assessment tool. The answers of 230 healthcare professionals belonging to different roles have been analyzed. The study was realized in 16 Units of the University Hospital "S. Maria alle Scotte "of Siena. The exploratory factor analysis (EFA) revealed the presence of five factors with good internal consistency and reliability, "relationship to the structure of proximity" (α = 0.93) "change" (α = 0.92), "organization of work "(α = 0.81)," relationship with the company / Governance "(α = 0.87)" working environment "(α = 0.83). The analysis of SEM (Structural Equation Models) has confirmed the goodness of the factor solution (NNFI = 0.835, CFI = 0.921, RMSEA = 0.060). The good psychometric qualities, the shortness and simplicity of the scale WSAS makes it a useful aid in the assessment of work-related stress in health care organizations.

  8. Single and two-phase similarity analysis of a reduced-scale natural convection loop relative to a full-scale prototype

    International Nuclear Information System (INIS)

    Botelho, David A.; Faccini, Jose L.H.

    2002-01-01

    The main topic in this paper is a new device being considered to improve nuclear reactor safety employing the natural circulation. A scaled experiment used to demonstrate the performance of the device is also described. We also applied a similarity analysis method for single and two-phase natural convection loop flow to the IEN CCN experiment and to an APEX like experiment to verify the degree of similarity relative to a full-scale prototype like the AP600. Most of the CCN similarity numbers that represent important single and two-phase similarity conditions are comparable to the APEX like loop non-dimensional numbers calculated employing the same methodology. Despite the much smaller geometric, pressure, and power scales, we conclude that the IEN CCN has single and two-phase natural circulation similarity numbers that represent fairly well the full-scale prototype. even lacking most complementary primary and safety systems, this IEN circuit provided a much valid experience to develop human, experimental, and analytical resources, besides its utilization as a training tool. (author)

  9. Does the effective Lagrangian for low-energy QCD scale?

    International Nuclear Information System (INIS)

    Birse, M.C.

    1994-01-01

    Quantum chromodynamics is not an approximately scale-invariant theory. Hence a dilaton field is not expected to provide a good description of the low-energy dynamics associated with the gluon condensate. Even if such a field is introduced, it remains almost unchanged in hadronic matter at normal densities. This is because the large glueball mass together with the size of the phenomenological gluon condensate ensure that changes to that condensate are very small at such densities. Any changes in hadronic masses and decay constants in matter generated by that condensate will be much smaller than those produced directly by changes in the quark condensate. Hence, masses and decay constants are not expected to display a universal scaling. (author)

  10. Climate and chemistry effects of a regional scale nuclear conflict

    Science.gov (United States)

    Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.

    2013-10-01

    Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North America and Eurasia to a

  11. Climate and chemistry effects of a regional scale nuclear conflict

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2013-10-01

    Full Text Available Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size" against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North

  12. Systematic renormalization of the effective theory of Large Scale Structure

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Mirbabayi, Mehrdad; Pajer, Enrico

    2016-01-01

    A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k 2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.

  13. Adaptation of a pattern-scaling approach for assessment of local (village/valley) scale water resources and related vulnerabilities in the Upper Indus Basin

    Science.gov (United States)

    Forsythe, Nathan; Kilsby, Chris G.; Fowler, Hayley J.; Archer, David R.

    2010-05-01

    sites for medium-scale infrastructure projects. These catchments are placed in their context within the hydrological regime classification using the spatial data and (remote sensing) observations as well as river gauging measurements. The study assesses the degree of similarity with the larger basins of the same hydrological regime. This assessment focuses on the measured response to observed climate variable anomalies. The smallest scale considered is comprised of a number of case studies at the ungauged village/valley scale. These examples are based on the delineation of areas to which specific communities (villages) have customary (riparian) water rights. These examples were suggested by non-governmental organisations working on grassroots economic development initiatives and small-scale infrastructure projects in the region. The direct observations available for these subcatchments are limited to spatial data (elevation, snow parameters). The challenge at this level is to accurately extrapolate areal values (precipitation, temperature, runoff) from point observations at the basin scale. The study assesses both the degree of similarity in the distribution of spatial parameters to the larger gauged basins and the interannual variability (spatial heterogeneity) of remotely-sensed snow cover and snow-water-equivalent at this subcatchment scale. Based upon the characterisation of spatial and interannual variability at these three spatial scales, the challenges facing local water resource managers and infrastructure operators are enumerated. Local vulnerabilities include, but are not limited to, varying thresholds in irrigation water requirements based on crop-type, minimum base flows for micro-hydropower generation during winter (high load) months and relatively small but growing demand for domestic water usage. In conclusion the study posits potential strategies for managing interannual variability and potential emerging trends. Suggested strategies are guided by the

  14. The effective theory of Borel equivalence relations

    DEFF Research Database (Denmark)

    Fokina, E.B.; Friedman, S.-D.; Törnquist, Asger Dag

    2010-01-01

    effectively Borel sets of reals, neither of which contains the range of the other under any effectively Borel function; the proof of this result applies Barwise compactness to a deep theorem of Harrington (see [5,16]) establishing for any recursive ordinal α the existence of Π singletons whose α...

  15. Species frequency dynamics in an old-field succession: Effects of disturbance, fertilization and scale

    Science.gov (United States)

    Gibson, D.J.; Middleton, B.A.; Foster, K.; Honu, Y.A.K.; Hoyer, E.W.; Mathis, M.

    2005-01-01

    Question: Can patterns of species frequency in an old-field be explained within the context of a metapopulation model? Are the patterns observed related to time, spatial scale, disturbance, and nutrient availability? Location: Upland and lowland old-fields in Illinois, USA. Method: Species richness was recorded annually for seven years following plowing of an upland and lowland old-field subject to crossed fertilizer and disturbance treatments (mowing and rototilling). Species occupancy distributions were assessed with respect to the numbers of core and satellite species. Results: In both fields, species richness became higher in disturbed plots than in undisturbed plots over time, and decreased in fertilized plots irrespective of time. A bimodal pattern of species richness consistent with the Core-satellite species (CSS) hypothesis occurred in the initial seed bank and through the course of early succession. The identity of native and exotic core species (those present in > 90% of blocks) changed with time. Some core species from the seed bank became core species in the vegetation, albeit after several years. At the scale of individual plots, a bimodal fit consistent with the CSS hypothesis applied only in year 1 and rarely thereafter. Conclusions: The CSS hypothesis provides a metapopulation perspective for understanding patterns of species richness but requires the assessment of spatial and temporal scaling effects. Regional processes (e.g. propagule availability) at the largest scale have the greatest impact influencing community structure during early secondary succession. Local processes (e.g., disturbance and soil nutrients) are more important at smaller scales and place constraints on species establishment and community structure of both native and exotic species. Under the highest intensity of disturbance, exotic species may be able to use resources unavailable to, or unused by, native species. ?? IAVS; Opulus Press.

  16. Effects of land use on lake nutrients: The importance of scale, hydrologic connectivity, and region

    Science.gov (United States)

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate

    2015-01-01

    Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales.

  17. Rendering Large-Scale Terrain Models and Positioning Objects in Relation to 3D Terrain

    National Research Council Canada - National Science Library

    Hittner, Brian

    2003-01-01

    .... Rendering large scale landscapes based on 3D geometry generally did not occur because the scenes generated tended to use up too much system memory and overburden 3D graphics cards with too many polygons...

  18. A relation connecting scale transformation, Galilean transformation and Baecklund transformation for the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Steudel, H.

    1980-01-01

    It is shown that the two-parameter manifold of Baecklund transformations known for the nonlinear Schroedinger equation can be generated from one Baecklund transformation with specified parameters by use of scale transformation and Galilean transformation. (orig.)

  19. Large-scale coastal behaviour in relation to coastal zone management

    NARCIS (Netherlands)

    Stive, M.J.F.

    1990-01-01

    The development of coastal erosion management - addressing typical traditional erosion problems - towards coastal zone management addressing the evaluation of alternative solutions to guarantee a variety of coastal zone functions on their economic time scale - has necessitated the formulation of

  20. Understanding Emerging Impacts and Requirements Related to Utility-Scale Solar Development

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Heidi M. [Argonne National Lab. (ANL), Argonne, IL (United States); Grippo, Mark A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heath, Garvin A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Karen P. [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, Robert G. [Argonne National Lab. (ANL), Argonne, IL (United States); Walston, Leroy J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wescott, Konstance L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    Utility-scale solar energy plays an important role in the nation’s strategy to address climate change threats through increased deployment of renewable energy technologies, and both the federal government and individual states have established specific goals for increased solar energy development. In order to achieve these goals, much attention is paid to making utility-scale solar energy cost-competitive with other conventional energy sources, while concurrently conducting solar development in an environmentally sound manner.

  1. 2006 Workplace and Gender Relations Survey of Active Duty Members: Report on Scales and Measures

    Science.gov (United States)

    2008-03-01

    Originally a 15-item scale, the FS was adapted from an emotions scale by Folkman and Lazarus (1985) and measures the extent individuals assess sexually...152-175. Folkman , S., & Lazarus , R.S. (1985). If it changes it must be a process: Study of emotion and coping during three stages of a college...Questionnaire (SEQ-DoD). Military Psychology, 3, 243-264. Fitzgerald, L. F., Shullman, S., Bailey, N., Richards, M., Swecker, J., Gold, Y ., Ormerod

  2. Nonlinear cosmological consistency relations and effective matter stresses

    International Nuclear Information System (INIS)

    Ballesteros, Guillermo; Hollenstein, Lukas; Jain, Rajeev Kumar; Kunz, Martin

    2012-01-01

    We propose a fully nonlinear framework to construct consistency relations for testing generic cosmological scenarios using the evolution of large scale structure. It is based on the covariant approach in combination with a frame that is purely given by the metric, the normal frame. As an example, we apply this framework to the ΛCDM model, by extending the usual first order conditions on the metric potentials to second order, where the two potentials start to differ from each other. We argue that working in the normal frame is not only a practical choice but also helps with the physical interpretation of nonlinear dynamics. In this frame, effective pressures and anisotropic stresses appear at second order in perturbation theory, even for ''pressureless'' dust. We quantify their effect and compare them, for illustration, to the pressure of a generic clustering dark energy fluid and the anisotropic stress in the DGP model. Besides, we also discuss the effect of a mismatch of the potentials on the determination of galaxy bias

  3. Relative-locality effects in Snyder spacetime

    International Nuclear Information System (INIS)

    Mignemi, S.; Samsarov, A.

    2017-01-01

    Most models of noncommutative geometry and doubly special relativity suggest that the principle of absolute locality should be replaced by the milder notion of relative locality. In particular, they predict the occurrence of a delay in the time of arrival of massless particle of different energies emitted by a distant observer. In this letter, we show that this is not the case with Snyder spacetime, essentially because the Lorentz invariance is not deformed in this case. Distant observers may however measure different times of flight for massive particles. - Highlights: • We discuss the dynamics of the Snyder model from the point of view of relative locality. • We show that no time delay is present for particles emitted by distant observers. • We ascribe this fact to the Lorentz invariance of the model. • Distant observers may however measure different times of flight for massive particle.

  4. Relative-locality effects in Snyder spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Samsarov, A., E-mail: andjelo.samsarov@irb.hr [Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb (Croatia)

    2017-05-18

    Most models of noncommutative geometry and doubly special relativity suggest that the principle of absolute locality should be replaced by the milder notion of relative locality. In particular, they predict the occurrence of a delay in the time of arrival of massless particle of different energies emitted by a distant observer. In this letter, we show that this is not the case with Snyder spacetime, essentially because the Lorentz invariance is not deformed in this case. Distant observers may however measure different times of flight for massive particles. - Highlights: • We discuss the dynamics of the Snyder model from the point of view of relative locality. • We show that no time delay is present for particles emitted by distant observers. • We ascribe this fact to the Lorentz invariance of the model. • Distant observers may however measure different times of flight for massive particle.

  5. The evolution of the Y-M scaling relation in MUSIC clusters

    Science.gov (United States)

    Sembolini, F.; Yepes, G.; De Petris, M.; Gottlöber, S.; Lamagna, L.; Comis, B.

    2013-04-01

    This work describes the baryon content and Sunyaev-Zeld'ovich properties of the MUSIC (Marenostrum-MultiDark SImulations of galaxy clusters) dataset and their evolution with redshift and aperture radius. The MUSIC dataset is one of the largest samples of hydrodynamically simulated galaxy clusters (more than 2000 objects, including more than 500 clusters). We show that when the effects of cooling and stellar feedbacks are properly taken into account, the gas fraction of the MUSIC clusters consistently agrees with recent observational results. Moreover, the gas fraction has a net dependence with the total mass of the cluster and increases slightly with redshift at high overdensities. The study of the Y-M relation confirms the consistence of the self-similar model, showing no evolution with redshift at low overdensities.

  6. [Development of social activities-related daily life satisfaction scale for the elderly and evaluation of its reliability and validity].

    Science.gov (United States)

    Okamoto, Hideaki

    2010-07-01

    The purpose of this study was to develop a Social Activities-Related Daily Life Satisfaction Scale specifically applicable to elderly people in communities and to evaluate its reliability and validity. Sixteen items were extracted from an initial pool and assessed for inclusion in the scale by correlation and exploratory factor analyses. To confirm validity, confirmatory factor analysis was conducted and correlation coefficients were calculated. In addition, t-tests were performed in order to generate scores of the subscale related to activity. To prove reliability, Cronbach's coefficient alpha values were calculated. Data for 755 older adults aged 65 to 84 years were obtained from a mail survey in Ichikawa City, Chiba Prefecture. Exploratory factor analyses indicated that four factors, "satisfaction with learning" (four items), "satisfaction with usefulness to others and society" (four items), "satisfaction with health and physical strength" (three items), and "satisfaction with friends" (three items) should be extracted. Confirmatory factor analysis for assessing the 14-item four-factor model showed high goodness of fit indices (GFI = 0.943, AGFI = 0.915, RMSEA = 0.068). Concurrent validity was established by comparing the score of the scale with five external variables (Activity and Daily Life Satisfaction Scale for the Elderly, Life Satisfaction Index K, etc). Student's t-tests revealed that each score of the subscale was positively associated with activity variable. The overall Cronbach's coefficient alpha for the scale was 0.919 and for its four subscales values ranged from 0.814 to 0.887. A Social Activities-Related Daily Life Satisfaction Scale was derived consisting of four subscales, "satisfaction with learning", "satisfaction with usefulness to others and society", "satisfaction with health and physical strength", and "satisfaction with friends". The results of the present study suggested that the Social Activities-Related Daily Life Satisfaction Scale

  7. EFFECTS OF PROCUREMENT RELATED FACTORS ON ...

    African Journals Online (AJOL)

    Osondu

    2013-03-04

    Mar 4, 2013 ... Policy makers in government, clients, and private developers into housing projects should give adequate .... constraints, payment method, finding methods and ... price and negotiation of contract details and firm ... All these discussed .... Decision. Cost related factors. 31.83. 3. 9.34. 0.00. S*. Accept H1.

  8. The Effect of Large Scale Salinity Gradient on Langmuir Turbulence

    Science.gov (United States)

    Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.

    2017-12-01

    Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by

  9. Effects of condition in vitro on the irradiation sensitivity of scales

    International Nuclear Information System (INIS)

    Zhang Dongxue; Wang Dan; Zhang Zhiwei

    2007-01-01

    The effects of irradiation and the interactions between irradiation and the ingredients of culture medium and the type of explants on radiation sensitivity of scales of lily were studied. The results showed that when lily scales were exposed to after cultured in vitro for about six days. The survival rate of scales in vitro decreased with the increase of irradiation dose. Irradiation significantly inhibited the sprouting rate and the number of sprouts of scales in vitro. During the bud induction, the effects of ingredients of culture medium on radiation sensitivity of scales were obvious at certain degree, and also the culture time. Both exterior scales and middle scales appeared an identical irradiation sensitivity. (authors)

  10. The Scale Effects of Engineered Inlets in Urban Hydrologic Processes

    Science.gov (United States)

    Shevade, L.; Montalto, F. A.

    2017-12-01

    Runoff from urban surfaces is typically captured by engineered inlets for conveyance to receiving water bodies or treatment plants. Normative hydrologic and hydraulic (H&H) modeling tools generally assume 100% efficient inlets, though observations by the authors suggest this assumption is invalid. The discrepancy is key since the more efficiently the inlet, the more linearly hydrologic processes scale with catchment area. Using several years of remote sensing, the observed efficiencies of urban green infrastructure (GI) facility inlets in New York City are presented, as a function of the morphological and climatological properties of their catchments and events. The rainfall-runoff response is modeled with EPA to assess the degree of inaccuracy that the assumption of efficient inlets introduces in block and neighborhood-scale simulations. Next, an algorithm is presented that incorporates inlet efficiency into SWMM and the improved predictive skill evaluated using Nash-Sutcliffe and root-mean-square error (RMSE). The results are used to evaluate the extent to which decentralized green stormwater management facilities positioned at the low points of urban catchments ought to be designed with larger capacities than their counterparts located further upslope.

  11. Analysis of TRMM-LIS Lightning and Related Microphysics Using a Cell-Scale Database

    Science.gov (United States)

    Leroy, Anita; Petersen, Walter A.

    2010-01-01

    Previous studies of tropical lightning activity using Tropical Rainfall Measurement Mission (TRMM) Lightning Imaging Sensor (LIS) data performed analyses of lightning behavior over mesoscale "feature" scales or over uniform grids. In order to study lightning and the governing ice microphysics intrinsic to thunderstorms at a more process-specific scale (i.e., the scale over which electrification processes and lightning occur in a "unit" thunderstorm), a new convective cell-scale database was developed by analyzing and refining the University of Utah's Precipitation Features database and retaining precipitation data parameters computed from the TRMM precipitation radar (PR), microwave imager (TMI) and LIS instruments. The resulting data base was to conduct a limited four-year study of tropical continental convection occurring over the Amazon Basin, Congo, Maritime Continent and the western Pacific Ocean. The analysis reveals expected strong correlations between lightning flash counts per cell and ice proxies, such as ice water path, minimum and average 85GHz brightness temperatures, and 18dBz echo top heights above the freezing level in all regimes, as well as regime-specific relationships between lighting flash counts and PR-derived surface rainfall rates. Additionally, radar CFADs were used to partition the 3D structure of cells in each regime at different flash counts. The resulting cell-scale analyses are compared to previous mesoscale feature and gridded studies wherever possible.

  12. Scaling Relations and Self-Similarity of 3-Dimensional Reynolds-Averaged Navier-Stokes Equations.

    Science.gov (United States)

    Ercan, Ali; Kavvas, M Levent

    2017-07-25

    Scaling conditions to achieve self-similar solutions of 3-Dimensional (3D) Reynolds-Averaged Navier-Stokes Equations, as an initial and boundary value problem, are obtained by utilizing Lie Group of Point Scaling Transformations. By means of an open-source Navier-Stokes solver and the derived self-similarity conditions, we demonstrated self-similarity within the time variation of flow dynamics for a rigid-lid cavity problem under both up-scaled and down-scaled domains. The strength of the proposed approach lies in its ability to consider the underlying flow dynamics through not only from the governing equations under consideration but also from the initial and boundary conditions, hence allowing to obtain perfect self-similarity in different time and space scales. The proposed methodology can be a valuable tool in obtaining self-similar flow dynamics under preferred level of detail, which can be represented by initial and boundary value problems under specific assumptions.

  13. Elementary student self efficacy scale development and validation focused on student learning, peer relations, and resisting drug use.

    Science.gov (United States)

    Fertman, Carl I; Primack, Brian A

    2009-01-01

    The purpose of this study was to investigate the psychometric properties of a child self efficacy scale for learning, peer interactions, and resisting pressure to use drugs, to use in an elementary school drug prevention education program based on social cognitive theory. A diverse cohort of 392 4th and 5th grade students completed the 20-item self efficacy scale and social support and social skills instruments. The results provide evidence for a valid and reliable 3-factor self efficacy scale. Subscale internal consistency reliability was good to excellent (Cronbach's alpha = 0.75, 0.83, 0.91). Construct validity was supported by correlations between each subscale and social skills, social support, and demographic data. The scale has potential as a tool to measure self efficacy in children related to learning, peer interactions, and resisting peer pressure to use drugs and to help shape drug education programs.

  14. Assessment of nuclear data needs for broad-group SCALE library related to WWER spent fuel applications

    International Nuclear Information System (INIS)

    Zalesky, K.; Markova, L.

    1999-12-01

    A preliminary study aimed at the issue of feasibility to generate a broad-group SCALE library related to WWER spent fuel applications was made. The SCALE code system has been installed and is being used in many countries operating WWER-type reactors for criticality and shielding analyses as well as spent fuel isotopic inventory calculations but still without an extensive validation and verification for the WWER environment. This study should be a contribution to QA connected with the SCALE code system application for the WWER calculations as a basis on which the generation of the specific WWER SCALE library can be prepared. Possible ways of the broad-group library development are described. (author)

  15. Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles

    International Nuclear Information System (INIS)

    Rosa, B.; Parishani, H.; Ayala, O.; Wang, L.-P.

    2015-01-01

    In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate

  16. Scaling analysis of the effects of load on hand tremor movements in essential tremor

    Science.gov (United States)

    Blesić, S.; Stratimirović, Dj.; Milošević, S.; Marić, J.; Kostić, V.; Ljubisavljević, M.

    2011-05-01

    In this paper we have used the Wavelet Transform (WT) and the Detrended Fluctuation Analysis (DFA) methods to analyze hand tremor movements in essential tremor (ET), in two different recording conditions (before and after the addition of wrist-cuff load). We have analyzed the time series comprised of peak-to-peak (PtP) intervals, extracted from regions around the first three main frequency components of the power spectra (PwS) of the recorded tremors, in order to substantiate results related to the effects of load on ET, to distinguish between multiple sources of ET, and to separate the influence of peripheral factors on ET. Our results show that, in ET, the dynamical characteristics, that is, values of respective scaling exponents, of the main frequency component of recorded tremors change after the addition of load. Our results also show that in all the observed cases the scaling behavior of the calculated functions changes as well-the calculated WT scalegrams and DFA functions display a shift in the position of the crossover when the load is added. We conclude that the difference in behavior of the WT and DFA functions between different conditions in ET could be associated with the expected pathology in ET, or with some additional mechanism that controls movements in ET patients, and causes the observed changes in scaling behavior.

  17. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK: RESULTS FROM LITERATURE SURVEY

    International Nuclear Information System (INIS)

    Zhou, Q.; Hui-Hai Liu; Molz, F.J.; Zhang, Y.; Bodvarsson, G.S.

    2005-01-01

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D m e , a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D m e values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F D (defined as the ratio of D m e to the lab-scale matrix diffusion coefficient [D m ] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F D value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F D value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F D value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation

  18. Relational Principles for Effective Church Leadership

    Science.gov (United States)

    Watt, Willis M.

    2014-01-01

    In the 21st century, effective church leaders need to be prepared to emphasize and demonstrate ethical leadership, personal responsibility, and community service. The foundation for success in all those areas lies in the ability of church leaders to initiate, develop, and maintain positive functioning relationships. Based on over 40 year's…

  19. Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand's southern beech treelines.

    Science.gov (United States)

    Case, Bradley S; Buckley, Hannah L

    2015-01-01

    Although treeline elevations are limited globally by growing season temperature, at regional scales treelines frequently deviate below their climatic limit. The cause of these deviations relate to a host of climatic, disturbance, and geomorphic factors that operate at multiple scales. The ability to disentangle the relative effects of these factors is currently hampered by the lack of reliable topoclimatic data, which describe how regional climatic characteristics are modified by topographic effects in mountain areas. In this study we present an analysis of the combined effects of local- and regional-scale factors on southern beech treeline elevation variability at 28 study areas across New Zealand. We apply a mesoscale atmospheric model to generate local-scale (200 m) meteorological data at these treelines and, from these data, we derive a set of topoclimatic indices that reflect possible detrimental and ameliorative influences on tree physiological functioning. Principal components analysis of meteorological data revealed geographic structure in how study areas were situated in multivariate space along gradients of topoclimate. Random forest and conditional inference tree modelling enabled us to tease apart the relative effects of 17 explanatory factors on local-scale treeline elevation variability. Overall, modelling explained about 50% of the variation in treeline elevation variability across the 28 study areas, with local landform and topoclimatic effects generally outweighing those from regional-scale factors across the 28 study areas. Further, the nature of the relationships between treeline elevation variability and the explanatory variables were complex, frequently non-linear, and consistent with the treeline literature. To our knowledge, this is the first study where model-generated meteorological data, and derived topoclimatic indices, have been developed and applied to explain treeline variation. Our results demonstrate the potential of such an approach

  20. Effect of environment and fallow period on Cosmopolites sordidus population dynamics at the landscape scale.

    Science.gov (United States)

    Duyck, P-F; Dortel, E; Vinatier, F; Gaujoux, E; Carval, D; Tixier, P

    2012-10-01

    Understanding how the population dynamics of insect pests are affected by environmental factors and agricultural practices is important for pest management. To investigate how the abundance of the banana weevil, Cosmopolites sordidus (Coleoptera: Curculionidae), is related to environmental factors and the length of the fallow period in Martinique, we developed an extensive data set (18,130 observations of weevil abundance obtained with pheromone traps plus associated environmental data) and analysed it with generalized mixed-effects models. At the island scale, C. sordidus abundance was positively related to mean temperature and negatively related to mean rainfall but was not related to soil type. The number of insects trapped was highest during the driest months of the year. Abundance of C. sordidus decreased as the duration of the preceding fallow period increased. The latter finding is inconsistent with the view that fallow-generated decomposing banana tissue is an important resource for larvae that leads to an increase in the pest population. The results are consistent with the view that fallows, in association with pheromone traps, are effective for the control of the banana weevil.

  1. Attitude toward euthanasia scale: psychometric properties and relations with religious orientation, personality, and life satisfaction.

    Science.gov (United States)

    Aghababaei, Naser; Wasserman, Jason Adam

    2013-12-01

    End-of-life decisions (ELDs) represent a controversial subject, with ethical dilemmas and empirical ambiguities that stand at the intersection of ethics and medicine. In a non-Western population, we examined individual differences in perceiving ELDs that end the life of a patient as acceptable and found that an attitude toward euthanasia (ATE) scale consists of 2 factors representing voluntary and nonvoluntary euthanasia. Also, acceptance of ELDs that end the life of a patient negatively correlated with life satisfaction, honesty-humility, conscientiousness, and intrinsic and extrinsic personal motivation toward religion. These findings provided additional construct validity of the ATE scale.

  2. Butterfly effects: novel functional materials inspired from the wings scales.

    Science.gov (United States)

    Zhang, Wang; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Fan, Tongxiang; Zhang, Di

    2014-10-07

    Through millions of years of evolutionary selection, nature has created biological materials with various functional properties for survival. Many complex natural architectures, such as shells, bones, and honeycombs, have been studied and imitated in the design and fabrication of materials with enhanced hardness and stiffness. Recently, more and more researchers have started to research the wings of butterflies, mostly because of their dazzling colors. It was found that most of these iridescent colors are caused by periodic photonic structures on the scales that make up the surfaces of these wings. These materials have recently become a focus of multidiscipline research because of their promising applications in the display of structural colors, and in advanced sensors, photonic crystals, and solar cells. This paper review aims to provide a perspective overview of the research inspired by these wing structures in recent years.

  3. A Causal Contiguity Effect That Persists across Time Scales

    Science.gov (United States)

    Kilic, Asli; Criss, Amy H.; Howard, Marc W.

    2013-01-01

    The contiguity effect refers to the tendency to recall an item from nearby study positions of the just recalled item. Causal models of contiguity suggest that recalled items are used as probes, causing a change in the memory state for subsequent recall attempts. Noncausal models of the contiguity effect assume the memory state is unaffected by…

  4. Flaws in Flynn Effect Research with the Wechsler Scales

    Science.gov (United States)

    Weiss, Lawrence G.; Gregoire, Jacques; Zhu, Jianjun

    2016-01-01

    Many Flynn effect (FE) studies compare scores across different editions of Wechsler's IQ tests. When construct changes are introduced by the test developers in the new edition, however, the presumed generational effects are difficult to untangle from changes due to test content. To remove this confound, we use the same edition of Wechsler…

  5. Residual strain, scale effects, and time-dependent behaviour at the 240-m level of the underground research laboratory

    International Nuclear Information System (INIS)

    Read, R.S.

    1990-01-01

    Two subhorizontal, orthogonal boreholes were monitored continuously during concentric overcoring at the 240-m level of the Underground Research Laboratory (URL). The magnitude and orientation of principal residual strain components in the near-field stress regime were determined assuming linear elastic behaviour of the rock mass and isotropic conditions. In terms of magnitude, results compared favourably with those from previous tests at the 240-m level. However, orientation results were inconclusive. The effects of scale and borehole orientation relative to the principal stress direction on the results from a modified CSIR triaxial cell overcore test were also investigated; no scale effects were apparent in the experiment, but borehole orientation did affect results. Finally, time-dependent behaviour was detected in the Lac du Bonnet granite, and was monitored between successive overcore tests in one of the boreholes. Results on residual strain, scale effects, and time-dependent behaviour are presented, along with limitations and possible modifications to the testing procedure

  6. Analysis of Environmental Issues Related to Small-Scale Hydroelectric Development IV: Fish Mortality Resulting From Turbine Passage

    Energy Technology Data Exchange (ETDEWEB)

    Turbak, Susan C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reichle, Donna R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shriner, Carole R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1981-01-01

    The purpose of this report is to provide summary information for use by potential developers and regulators of small-scale hydroelectric projects (defined as existing dams that can be retrofitted to a total site capacity of ≤30 MW), where turbine-related mortality of fish is a potential issue affecting site-specific development. Mitigation techniques for turbine-related mortality are not covered in this report.

  7. The effect of Interaction Anxiousness Scale and Brief Social Phobia Scale for screening social anxiety disorder in college students: a study on discriminative validity.

    Science.gov (United States)

    Cao, Jianqin; Yang, Jinwei; Zhou, Yuqiu; Chu, Fuliu; Zhao, Xiwu; Wang, Weiren; Wang, Yunlong; Peng, Tao

    2016-12-01

    Social anxiety disorder (SAD) is one of the most prevalent mental health problems, but there is little research concerning the effective screening instruments in practice. This study was designed to examine the discriminative validity of Interaction Anxiousness Scale (IAS) and Brief Social Phobia Scale (BSPS) for the screening of SAD through the compared and combined analysis. Firstly, 421 Chinese undergraduates were screened by the IAS and BSPS. Secondly, in the follow-up stage, 248 students were interviewed by the Structured Clinical Interview for DSM-IV. Receiver operating characteristic (ROC) analysis was used, and the related psychometric characters were checked. The results indicated that the ROC in these two scales demonstrated discrimination is in satisfactory level (range: 0.7-0.8). However, the highest agreement (92.17%) was identified when a cut-off point of 50 measured by the IAS and a cut-off point of 34 by the BSPS were combined, also with higher PPV, SENS, SPEC and OA than that reached when BSPS was used individually, as well as PPV, SPEC and OA in IAS. The findings indicate that the combination of these two scales is valid as the general screening instrument for SAD in maximizing the discriminative validity.

  8. El Naschie's ε (∞) space-time and scale relativity theory in the topological dimension D = 4

    International Nuclear Information System (INIS)

    Agop, M.; Murgulet, C.

    2007-01-01

    In the topological dimension D = 4 of the scale relativity theory, the self-structuring of a coherent quantum fluid implies the Golden mean renormalization group. Then, the transfinite set of El Naschie's ε (∞) space-time becomes the background of a new physics (the transfinite physics)

  9. Two micro-models of tourism capitalism and the (re)scaling of state-business relations

    NARCIS (Netherlands)

    Erkuş-Öztürk, H.; Terhorst, P.

    2011-01-01

    This paper aims to show that (i) there are two micro-models of tourism capitalism in Antalya (Turkey) and (ii) different trajectories of (re)scaling of state-business relations form an integral part of each model of tourism capitalism. The paper bridges two debates in the literature that generally

  10. A Cross-Cultural Validation of the Learning-Related Boredom Scale (LRBS) with Canadian and Chinese College Students

    Science.gov (United States)

    Tze, Virginia M. C.; Klassen, Robert M.; Daniels, Lia M.; Li, Johnson C.-H.; Zhang, Xiao

    2013-01-01

    This study evaluated the psychometric properties of the Learning-Related Boredom Scale (LRBS) from the Academic Emotions Questionnaire (AEQ; Pekrun, Goetz, & Perry, 2005; Pekrun, Goetz, Titz, & Perry, 2002) in a sample of 405 university students from Canada and China. Multigroup confirmatory factor analysis was used to test the factor…

  11. Performed and perceived walking ability in relation to the Expanded Disability Status Scale in persons with multiple sclerosis

    DEFF Research Database (Denmark)

    Langeskov-Christensen, D; Feys, P; Baert, I

    2017-01-01

    BACKGROUND: The severity of walking impairment in persons with multiple sclerosis (pwMS) at different levels on the expanded disability status scale (EDSS) is unclear. Furthermore, it is unclear if the EDSS is differently related to performed- and perceived walking capacity tests. AIMS: To quantify...

  12. Shale Gas Development and Brook Trout: Scaling Best Management Practices to Anticipate Cumulative Effects

    Science.gov (United States)

    Smith, David; Snyder, Craig D.; Hitt, Nathaniel P.; Young, John A.; Faulkner, Stephen P.

    2012-01-01

    Shale gas development may involve trade-offs between energy development and benefits provided by natural ecosystems. However, current best management practices (BMPs) focus on mitigating localized ecological degradation. We review evidence for cumulative effects of natural gas development on brook trout (Salvelinus fontinalis) and conclude that BMPs should account for potential watershed-scale effects in addition to localized influences. The challenge is to develop BMPs in the face of uncertainty in the predicted response of brook trout to landscape-scale disturbance caused by gas extraction. We propose a decision-analysis approach to formulating BMPs in the specific case of relatively undisturbed watersheds where there is consensus to maintain brook trout populations during gas development. The decision analysis was informed by existing empirical models that describe brook trout occupancy responses to landscape disturbance and set bounds on the uncertainty in the predicted responses to shale gas development. The decision analysis showed that a high efficiency of gas development (e.g., 1 well pad per square mile and 7 acres per pad) was critical to achieving a win-win solution characterized by maintaining brook trout and maximizing extraction of available gas. This finding was invariant to uncertainty in predicted response of brook trout to watershed-level disturbance. However, as the efficiency of gas development decreased, the optimal BMP depended on the predicted response, and there was considerable potential value in discriminating among predictive models through adaptive management or research. The proposed decision-analysis framework provides an opportunity to anticipate the cumulative effects of shale gas development, account for uncertainty, and inform management decisions at the appropriate spatial scales.

  13. The Spectroscopy and H-band Imaging of Virgo Cluster Galaxies (SHIVir) Survey: Scaling Relations and the Stellar-to-total Mass Relation

    Energy Technology Data Exchange (ETDEWEB)

    Ouellette, Nathalie N.-Q.; Courteau, Stéphane [Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, ON K7L 3N6 (Canada); Holtzman, Jon A. [Department of Physics and Astronomy, New Mexico State University, Las Cruces, NM, 88003-8001 (United States); Dutton, Aaron A. [Department of Physics, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Cappellari, Michele [Sub-department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Dalcanton, Julianne J. [Department of Astronomy, University of Washington, Seattle, WA, 98195 (United States); McDonald, Michael [MIT Kavli Institute for Astrophysics and Space Research, MIT, Cambridge, MA, 02139 (United States); Roediger, Joel C.; Côté, Patrick; Ferrarese, Laura [Herzberg Institute of Astrophysics, National Research Council, Victoria, BC, V9E 2E7 (Canada); Taylor, James E. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Tully, R. Brent [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822-1839 (United States); Peng, Eric W. [Department of Astronomy, Peking University, Beijing 100871 (China)

    2017-07-01

    We present parameter distributions and fundamental scaling relations for 190 Virgo cluster galaxies in the SHIVir survey. The distribution of galaxy velocities is bimodal about V {sub circ} ∼ 125 km s{sup −1}, hinting at the existence of dynamically unstable modes in the inner regions of galaxies. An analysis of the Tully-Fisher relation (TFR) of late-type galaxies (LTGs) and the fundamental plane (FP) of early-type galaxies (ETGs) is presented, yielding a compendium of galaxy scaling relations. The slope and zero-point of the Virgo TFR match those of field galaxies, while scatter differences likely reflect distinct evolutionary histories. The velocities minimizing scatter for the TFR and FP are measured at large apertures where the baryonic fraction becomes subdominant. While TFR residuals remain independent of any galaxy parameters, FP residuals (i.e., the FP “tilt”) correlate strongly with the dynamical-to-stellar mass ratio, yielding stringent galaxy formation constraints. We construct a stellar-to-total mass relation (STMR) for ETGs and LTGs and find linear but distinct trends over the range M {sub *} = 10{sup 8–11} M {sub ⊙}. Stellar-to-halo mass relations (SHMRs), which probe the extended dark matter halo, can be scaled down to masses estimated within the optical radius, showing a tight match with the Virgo STMR at low masses; possibly inadequate halo abundance matching prescriptions and broad radial scalings complicate this comparison at all masses. While ETGs appear to be more compact than LTGs of the same stellar mass in projected space, their mass-size relations in physical space are identical. The trends reported here may soon be validated through well-resolved numerical simulations.

  14. The effects of materials' composition and some external factors on measuring precision for nuclear conveyor belt scale

    International Nuclear Information System (INIS)

    Zhang Yongming; Hong Pingshun; Wang Min

    1997-01-01

    The effects of some external factors on the metrological precision of a nuclear conveyor belt scale were verified with a series of tests. It is shown that the precision is related not only with the moisture content and composition of the covered materials, but also with the belt's deviation and the evenness of the materials. Mild wind seems to have no effect on the precision

  15. Arctic energy budget in relation to sea ice variability on monthly-to-annual time scales

    NARCIS (Netherlands)

    Krikken, F.; Hazeleger, W.

    2015-01-01

    The large decrease in Arctic sea ice in recent years has triggered a strong interest in Arctic sea ice predictions on seasonal-to-decadal time scales. Hence, it is important to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. This study

  16. Large scale inference in the Infinite Relational Model: Gibbs sampling is not enough

    DEFF Research Database (Denmark)

    Albers, Kristoffer Jon; Moth, Andreas Leon Aagard; Mørup, Morten

    2013-01-01

    . We find that Gibbs sampling can be computationally scaled to handle millions of nodes and billions of links. Investigating the behavior of the Gibbs sampler for different sizes of networks we find that the mixing ability decreases drastically with the network size, clearly indicating a need...

  17. Theoretical and Numerical Properties of a Gyrokinetic Plasma: Issues Related to Transport Time Scale Simulation

    International Nuclear Information System (INIS)

    Lee, W.W.

    2003-01-01

    Particle simulation has played an important role for the recent investigations on turbulence in magnetically confined plasmas. In this paper, theoretical and numerical properties of a gyrokinetic plasma as well as its relationship with magnetohydrodynamics (MHD) are discussed with the ultimate aim of simulating microturbulence in transport time scale using massively parallel computers

  18. [Scale effect of Li-Xiang Railway construction impact on landscape pattern and its ecological risk].

    Science.gov (United States)

    Wang, De-zhi; Qiu, Peng-hua; Fang, Yuan-min

    2015-08-01

    As a large corridor project, plateau railway has multiple points and passes various sensitive environments along the railway. The determination of the scope of impact on ecological environment from railway construction is often controversial in ecological impact assessment work. Taking the Tangbu-Jiantang section of Li-Xiang Railway as study object, and using present land use map (1:10000) in 2012 and DEM as data sources, corridor cutting degree index ( CCI) and cumulative effect index of corridor (CCEI) were established by topology, buffer zone and landscape metrics methods. Besides, the ecological risk index used for railway construction was improved. By quantitative analysis of characteristics of the spatio-temporal change of landscape pattern and its evolution style at different spatial scales before and after railway construction, the most appropriate evaluation scale of the railway was obtained. Then the characteristics of the spatio-temporal variation of ecological risk within this scale before and after railway construction were analyzed. The results indicated that the cutting model and degree of railway corridor to various landscape types could be effectively reflected by CCI, and the exposure and harm relations between risk sources and risk receptors of railway can be measured by CCEI. After the railway construction, the railway corridor would cause a great deal of middle cutting effect on the landscape along the railroad, which would influence wood land and grassland landscape most greatly, while would cause less effect of edge cutting and internal cutting. Landscape indices within the 600 m buffer zone demonstrated the most obvious scale effect, therefore, the 600 m zone of the railway was set as the most suitable range of ecological impact assessment. Before railway construction, the low ecological risk level covered the biggest part of the 600 m assessment zone. However, after the railway construction, the ecological risk increased significantly, and

  19. Effective Theory of Dark Energy at Redshift Survey Scales

    CERN Document Server

    Gleyzes, Jérôme; Mancarella, Michele; Vernizzi, Filippo

    2016-01-01

    We explore the phenomenological consequences of general late-time modifications of gravity in the quasi-static approximation, in the case where cold dark matter is non-minimally coupled to the gravitational sector. Assuming spectroscopic and photometric surveys with configuration parameters similar to those of the Euclid mission, we derive constraints on our effective description from three observables: the galaxy power spectrum in redshift space, tomographic weak-lensing shear power spectrum and the correlation spectrum between the integrated Sachs-Wolfe effect and the galaxy distribution. In particular, with $\\Lambda$CDM as fiducial model and a specific choice for the time dependence of our effective functions, we perform a Fisher matrix analysis and find that the unmarginalized $68\\%$ CL errors on the parameters describing the modifications of gravity are of order $\\sigma\\sim10^{-2}$--$10^{-3}$. We also consider two other fiducial models. A nonminimal coupling of CDM enhances the effects of modified gravit...

  20. Collisional effects on diffusion scaling laws in electrostatic turbulence

    International Nuclear Information System (INIS)

    Vlad, M.; Spineanu, F.; Misguich, J.H.; Vlad, M.; Spineanu, F.; Balescu, R.

    1999-07-01

    The effect of particle collisions on the effective transport in an electrostatic plasma turbulence is analytically studied in the framework of test particle approach. We show that an amplification of the diffusion coefficient can be produced by the combined effect of collisions and trajectory trapping in the structure of the stochastic potential. The paper is organized as follows. The model and the system of equations are formulated in Sec. 2. A short description of the process of trajectory trapping around the extrema of the stochastic potential and of the de-correlation trajectory method is presented in Sec.3. The effect of particle collisions is treated in Sec. 4 where the running diffusion coefficient is determined. Sec. 5 contains the analyses of the results, and Sec. 6 a detailed study of the possible diffusion regimes. The conclusions are summarized in Sec. 7. (authors)

  1. Climate and chemistry effects of a regional scale nuclear conflict

    OpenAIRE

    Stenke A.; Hoyle C. R.; Luo B.; Rozanov E.; Groebner J.; Maag L.; Broennimann S.; Peter T.

    2013-01-01

    Previous studies have highlighted the severity of detrimental effects for life on Earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a...

  2. Sex-Free and Sex-Related Components of the Eysenck Personality Questionnaire (EPQ Neuroticism Scale among Finnish and Turkish Students

    Directory of Open Access Journals (Sweden)

    Timo Lajunen

    2018-03-01

    Full Text Available Previous studies have suggested that the Neuroticism scale (N of the Eysenck Personality Questionnaire (EPQ reflects two different dimensions, of which the first is sex-related (N-S and the second sex-free (N-A. The N-S component is characterized by social sensitivity and worry while N-A reflects moodiness, irritability and boredom. The purpose of this study was to investigate the internal structure of the N scale in samples of 320 Finnish and 230 Turkish students. The bi-dimensional structure suggested by Francis had an acceptable fit to data in the Finnish and Turkish samples. Higher N-S and N scores correlated with being a woman in the Turkish sample. Neither N nor N-S scores were related to sex in the Finnish sample. ANOVA results showed the main effect of sex on N and N-S scores and the main effect of culture (Finnish vs. Turkish on N and N-A. Turkish women scored higher in N and N-S scales than the other groups. The possible cultural and social reasons for the sex differences on the N scale score were discussed.

  3. Development and preliminary testing of a scale to assess pain-related fear in children and adolescents.

    Science.gov (United States)

    Huguet, Anna; McGrath, Patrick J; Pardos, Judit

    2011-08-01

    It is assumed that pain-related fear, a present response to an immediate danger or threat such as pain, plays a significant role in the experience of pediatric pain. However, there are no measures to adequately measure this construct in children and adolescents. The purpose of this study was to develop and test the psychometric properties of a scale to assess pain-related fear to be used with Catalan-speaking children and adolescents between 7- and 16-years-old. We initially developed a list of items that reflected the physiological, cognitive, and behavioral components of pain-related fear components. We also queried an international group of experts, and interviewed children and adolescents. After pilot testing the initial version with a sample of 10 children, we administered the questionnaire to a sample of schoolchildren (n = 273) and children from medical clinics (n = 164) through individual interviews. Additional information was also collected during the interview to study the psychometric properties of the scale. Ten days after the initial interview, participating schoolchildren were requested to answer the questionnaire again. Item analysis and exploratory factor analysis with data from the school sample produced 2 meaningful factors (namely, Fearful thoughts and Fearful physical feelings and behaviors). Findings also showed that the Pediatric Pain Fear Scale (total scale and the 2 subscales) was both reliable and valid. This scale could help researchers to gain a better understanding about the role of pain-related fear in children and adolescents and support clinical decision-making. This article presents a new measure of fear associated with pain in children and adolescents. This measure could potentially help researchers to gain a better understanding about the role of pain-related fear in children and adolescents and support clinical decision-making. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  4. Effects of an expressive writing intervention on cancer-related distress in Danish breast cancer survivors

    DEFF Research Database (Denmark)

    Jensen-Johansen, Mikael Birkelund; Christensen, Søren; Valdimarsdottir, Heiddis

    2013-01-01

    Objective: To examine the effects of an expressive writing intervention (EWI) on cancer-related distress, depressive symptoms, and mood in women treated for early stage breast cancer. Methods: A nationwide sample of 507 Danish women who had recently completed treatment for primary breast cancer...... were randomly assigned to three 20-min home-based writing exercises, one week apart, focusing on either emotional disclosure (EWI group) or a non-emotional topic (control group). Cancer-related distress [Impact of Event Scale (IES)], depressive symptoms (Beck Depression Inventory—Short Form......), and negative (37-item Profile of Moods State) and positive mood (Passive Positive Mood Scale) were assessed at baseline and at 3 and 9 months post-intervention. Choice of writing topic (cancer versus other), alexithymia (20-item Toronto Alexithymia Scale), and social constraints (Social Constraints Scale) were...

  5. Mid-term and scaling effects of forest residue mulching on post-fire runoff and soil erosion.

    Science.gov (United States)

    Prats, Sergio Alegre; Wagenbrenner, Joseph W; Martins, Martinho António Santos; Malvar, Maruxa Cortizo; Keizer, Jan Jacob

    2016-12-15

    Mulching is an effective post-fire soil erosion mitigation treatment. Experiments with forest residue mulch have demonstrated that it increased ground cover to 70% and reduced runoff and soil loss at small spatial scales and for short post-fire periods. However, no studies have systematically assessed the joint effects of scale, time since burning, and mulching on runoff, soil loss, and organic matter loss. The objective of this study was to evaluate the effects of scale and forest residue mulch using 0.25m 2 micro-plots and 100m 2 slope-scale plots in a burnt eucalypt plantation in central Portugal. We assessed the underlying processes involved in the post-fire hydrologic and erosive responses, particularly the effects of soil moisture and soil water repellency. Runoff amount in the micro-plots was more than ten-fold the runoff in the larger slope-scale plots in the first year and decreased to eight-fold in the third post-fire year. Soil losses in the micro-plots were initially about twice the values in the slope-scale plots and this ratio increased over time. The mulch greatly reduced the cumulative soil loss measured in the untreated slope-scale plots (616gm -2 ) by 91% during the five post-fire years. The implications are that applying forest residue mulch immediately after a wildfire can reduce soil losses at spatial scales of interest to land managers throughout the expected post-fire window of disturbance, and that mulching resulted in a substantial relative gain in soil organic matter. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Characterizing users of new psychoactive substances using psychometric scales for risk-related behavior

    NARCIS (Netherlands)

    Vreeker, Annabel; van der Burg, Babette G.; van Laar, Margriet; Brunt, Tibor M.

    2017-01-01

    Studies investigating risk-related behavior in relation to new psychoactive substance (NPS) use are sparse. The current study investigated characteristics of NPS users by comparing risk-related behavior of NPS users to that of illicit drugs (ID) users and licit substances users and non-users (NLC)

  7. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet: THEMIS and ground-based observations

    Science.gov (United States)

    Dmitriev, A. V.; Suvorova, A. V.

    2012-08-01

    Here, we present a case study of THEMIS and ground-based observations of the perturbed dayside magnetopause and the geomagnetic field in relation to the interaction of an interplanetary directional discontinuity (DD) with the magnetosphere on 16 June 2007. The interaction resulted in a large-scale local magnetopause distortion of an "expansion - compression - expansion" (ECE) sequence that lasted for ˜15 min. The compression was caused by a very dense, cold, and fast high-βmagnetosheath plasma flow, a so-called plasma jet, whose kinetic energy was approximately three times higher than the energy of the incident solar wind. The plasma jet resulted in the effective penetration of magnetosheath plasma inside the magnetosphere. A strong distortion of the Chapman-Ferraro current in the ECE sequence generated a tripolar magnetic pulse "decrease - peak- de