WorldWideScience

Sample records for scale biomimetic arrays

  1. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro......-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 mu m. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  2. Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrays

    DEFF Research Database (Denmark)

    Perry, Mark; Hansen, Jesper Schmidt; Jensen, Karin Bagger Stibius

    2011-01-01

    with a high signal-to-noise (s/n) ratio. We demonstratesd this by reconstituting gA and α-hemolysin (α-HL) into BLM arrays. The improvement in membrane array lifetime and s/n ratio demonstrates that surface plasma polymerization of the supporting partition can be used to increase the stability of biomimetic......Black lipid membrane (BLM) formation across apertures in an ethylene tetra-fluoroethylene (ETFE) partition separating two aqueous compartments is an established technique for the creation of biomimetic membranes. Recently multi-aperture BLM arrays have attracted interest and in order to increase...... BLM array stability we studied the effect of covalently modifying the partition substrate using surface plasma polymerization with hydrophobic n-hexene, 1-decene and hexamethyldisiloxane (HMDSO) as modification groups. Average lifetimes across singlesided HMDSO modified partitions or using 1-decene...

  3. Developing the ultimate biomimetic flow-sensor array

    NARCIS (Netherlands)

    Bruinink, C.M.; Jaganatharaja, R.K.; de Boer, Meint J.; Berenschot, Johan W.; Kolster, M.L.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Krijnen, Gijsbertus J.M.

    2009-01-01

    This contribution reports on the major developments and achievements in our group on fabricating highly sensitive biomimetic flow-sensor arrays. The mechanoreceptive sensory hairs of crickets are taken as a model system for their ability to perceive flow signals at thermal noise levels and,

  4. Biomimetic Membrane Arrays on Cast Hydrogel Supports

    DEFF Research Database (Denmark)

    Roerdink-Lander, Monique; Ibragimova, Sania; Rein Hansen, Christian

    2011-01-01

    , provides mechanical support but at the cost of small molecule transport through the membrane−support sandwich. To stabilize biomimetic membranes while allowing transport through a membrane−support sandwich, we have investigated the feasibility of using an ethylene tetrafluoroethylene (ETFE......)/hydrogel sandwich as the support. The sandwich is realized as a perforated surface-treated ETFE film onto which a hydrogel composite support structure is cast. We report a simple method to prepare arrays of lipid bilayer membranes with low intrinsic electrical conductance on the highly permeable, self......-supporting ETFE/hydrogel sandwiches. We demonstrate how the ETFE/hydrogel sandwich support promotes rapid self-thinning of lipid bilayers suitable for hosting membrane-spanning proteins....

  5. Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins

    DEFF Research Database (Denmark)

    Gonzalez-Perez, A.; Jensen, Karin Bagger Stibius; Vissing, Thomas

    2009-01-01

    It is demonstrated that biomimetic stable triblock copolymer membrane arrays can be prepared using a scaffold containing 64 apertures of 300 μm diameter each. The membranes were made from a stock solution of block copolymers with decane as a solvent using a new deposition method. By using decane...

  6. Contact kinematics of biomimetic scales

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Ranajay; Ebrahimi, Hamid; Vaziri, Ashkan, E-mail: vaziri@coe.neu.edu [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-12-08

    Dermal scales, prevalent across biological groups, considerably boost survival by providing multifunctional advantages. Here, we investigate the nonlinear mechanical effects of biomimetic scale like attachments on the behavior of an elastic substrate brought about by the contact interaction of scales in pure bending using qualitative experiments, analytical models, and detailed finite element (FE) analysis. Our results reveal the existence of three distinct kinematic phases of operation spanning linear, nonlinear, and rigid behavior driven by kinematic interactions of scales. The response of the modified elastic beam strongly depends on the size and spatial overlap of rigid scales. The nonlinearity is perceptible even in relatively small strain regime and without invoking material level complexities of either the scales or the substrate.

  7. Directed Fluid Transport with Biomimetic ``Silia'' Arrays

    Science.gov (United States)

    Shields, A. R.; Evans, B. A.; Carstens, B. L.; Falvo, M. R.; Washburn, S.; Superfine, R.

    2008-10-01

    We present results on the long-range, directed fluid transport produced by the collective beating of arrays of biomimetic ``silia.'' Silia are arrays of free-standing nanorods roughly the size of biological cilia, which we fabricate from a polymer-magnetic nanoparticle composite material. With external permanent magnets we actuate our silia such that their motion mimics the beating of biological cilia. Biological cilia have evolved to produce microscale fluid transport and are increasingly being recognized as critical components in a wide range of biological systems. However, despite much effort cilia generated fluid flows remain an area of active study. In the last decade, cilia-driven fluid flow in the embryonic node of vertebrates has been implicated as the initial left-right symmetry breaking event in these embryos. With silia we generate directional fluid transport by mimicking the tilted conical beating of these nodal cilia and seek to answer open questions about the nature of particle advection in such a system. By seeding fluorescent microparticles into the fluid we have noted the existence of two distinct flow regimes. The fluid flow is directional and coherent above the tips of the silia, while between the silia tips and floor particle motion is complicated and suggestive of chaotic advection.

  8. Directed Fluid Transport and Mixing with Biomimetic Cilia Arrays

    Science.gov (United States)

    Shields, A. R.; Evans, B. A.; Carstens, B. L.; Falvo, M. R.; Washburn, S.; Superfine, R.

    2009-03-01

    We present results on the long-range, directed fluid transport and fluidic mixing produced by the collective beating of arrays of biomimetic cilia. These artificial cilia are arrays of free-standing nanorods roughly the size of biological cilia, which we fabricate from a polymer-magnetic nanoparticle composite material and actuate with permanent magnets to mimic biological cilia. Biological cilia have evolved to produce microscale fluid transport and are increasingly being recognized as critical components in a wide range of biological systems. However, despite much effort cilia generated fluid flows remain an area of active study. In the last decade, cilia-driven fluid flow in the embryonic node of vertebrates has been implicated as the initial left-right symmetry breaking event in these embryos. With silia we generate directional fluid transport by mimicking the tilted conical beating of these nodal cilia. By seeding fluorescent microparticles into the fluid we have noted the existence of two distinct flow regimes. The fluid flow is directional and coherent above the cilia tips, while between the cilia tips and the floor particle motion is complicated and suggestive of chaotic advection.

  9. Biomimetic micromechanical adaptive flow-sensor arrays

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Floris, J.; Dijkstra, Marcel; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2007-01-01

    We report current developments in biomimetic flow-sensors based on flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound with energy sensitivities

  10. Industrial-scale spray layer-by-layer assembly for production of biomimetic photonic systems.

    Science.gov (United States)

    Krogman, K C; Cohen, R E; Hammond, P T; Rubner, M F; Wang, B N

    2013-12-01

    Layer-by-layer assembly is a powerful and flexible thin film process that has successfully reproduced biomimetic photonic systems such as structural colour. While most of the seminal work has been carried out using slow and ultimately unscalable immersion assembly, recent developments using spray layer-by-layer assembly provide a platform for addressing challenges to scale-up and manufacturability. A series of manufacturing systems has been developed to increase production throughput by orders of magnitude, making commercialized structural colour possible. Inspired by biomimetic photonic structures we developed and demonstrated a heat management system that relies on constructive reflection of near infrared radiation to bring about dramatic reductions in heat content.

  11. Biomimetic vibrissal sensing for robots.

    Science.gov (United States)

    Pearson, Martin J; Mitchinson, Ben; Sullivan, J Charles; Pipe, Anthony G; Prescott, Tony J

    2011-11-12

    Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to build a physical platform on which to model, and therefore test, recent neuroethological hypotheses about vibrissal touch; second, to exploit the control strategies and morphology observed in the biological analogue to maximize the quality and quantity of tactile sensory information derived from the artificial whisker array. We describe the design of a new whiskered robot, Shrewbot, endowed with a biomimetic array of individually controlled whiskers and a neuroethologically inspired whisking pattern generation mechanism. We then present results showing how the morphology of the whisker array shapes the sensory surface surrounding the robot's head, and demonstrate the impact of active touch control on the sensory information that can be acquired by the robot. We show that adopting bio-inspired, low latency motor control of the rhythmic motion of the whiskers in response to contact-induced stimuli usefully constrains the sensory range, while also maximizing the number of whisker contacts. The robot experiments also demonstrate that the sensory consequences of active touch control can be usefully investigated in biomimetic robots.

  12. Biomimetic synthesis of hierarchical crystalline hydroxyapatite fibers in large-scale

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Chaogang; Ge, Suxiang; Huang, Baojun; Bo, Yingying [Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000 (China); Zhang, Di [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Zheng, Zhi, E-mail: zhengzhi9999@yahoo.com.cn [Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000 (China)

    2012-06-15

    Highlights: ► Crystalline hierarchical hydroxyapatite (HAp) fibers are synthesized. ► We employ a biomimetic route by using cotton cloth as a natural bio-template. ► We study the effects of pH, ultrasonic cleaning time, and calcination temperature. ► We obtain an optimized reaction condition. ► This is a low cost method for production of hierarchical HAp fibers. -- Abstract: Crystalline hierarchical hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity and morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.

  13. Biomimetic synthesis of hierarchical crystalline hydroxyapatite fibers in large-scale

    International Nuclear Information System (INIS)

    Xing, Chaogang; Ge, Suxiang; Huang, Baojun; Bo, Yingying; Zhang, Di; Zheng, Zhi

    2012-01-01

    Highlights: ► Crystalline hierarchical hydroxyapatite (HAp) fibers are synthesized. ► We employ a biomimetic route by using cotton cloth as a natural bio-template. ► We study the effects of pH, ultrasonic cleaning time, and calcination temperature. ► We obtain an optimized reaction condition. ► This is a low cost method for production of hierarchical HAp fibers. -- Abstract: Crystalline hierarchical hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 , HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity and morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.

  14. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    Science.gov (United States)

    Green, David W.; Lee, Jung-Seok; Jung, Han-Sung

    2016-01-01

    The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a “water-tight” barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell–cell connections, cell–matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis. PMID:26903872

  15. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    Directory of Open Access Journals (Sweden)

    David William Green

    2016-02-01

    Full Text Available The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a water-tight barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachement complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement.. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organising cell-cell connections, cell-matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis.

  16. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Biomimetic micromechanical adaptive flow-sensor arrays

    Science.gov (United States)

    Krijnen, Gijs; Floris, Arjan; Dijkstra, Marcel; Lammerink, Theo; Wiegerink, Remco

    2007-05-01

    We report current developments in biomimetic flow-sensors based on flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of sacrificial poly-silicon technology, to form silicon-nitride suspended membranes, and SU8 polymer processing for fabrication of hairs with diameters of about 50 μm and up to 1 mm length. The membranes have thin chromium electrodes on top forming variable capacitors with the substrate that allow for capacitive read-out. Previously these sensors have been shown to exhibit acoustic sensitivity. Like for the crickets, the MEMS hair-sensors are positioned on elongated structures, resembling the cercus of crickets. In this work we present optical measurements on acoustically and electrostatically excited hair-sensors. We present adaptive control of flow-sensitivity and resonance frequency by electrostatic spring stiffness softening. Experimental data and simple analytical models derived from transduction theory are shown to exhibit good correspondence, both confirming theory and the applicability of the presented approach towards adaptation.

  18. Nanometer-scale displacement measurement with high resolution using dual cavity Fabry-Pérot interferometer for biomimetic robots.

    Science.gov (United States)

    Lee, Jin-Hyuk; Kim, Dae-Hyun

    2014-10-01

    A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions.

  19. Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures

    Science.gov (United States)

    Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan

    2017-06-01

    A flexible fabrication method for the biomimetic compound eye (BCE) array is proposed. In this method, a triple-layer sandwich-like coating configuration was introduced, and the required hierarchic microstructures are formed with a simple single-scan exposure in maskless digital lithography. Taking advantage of the difference of glass transition point (Tg) between photoresists of each layer, the pre-formed hierarchic microstructures are in turn reflowed to the curved substrate and the BCE ommatidia in a two-step thermal reflow process. To avoid affecting the spherical substrate formed in the first thermal reflow, a non-contact strategy was proposed in the second reflow process. The measurement results were in good agreement with the designed BCE profiles. Results also showed that the fabricated BCE had good performances in optical test. The presented method is flexible, convenient, low-cost and can easily adapt to the fabrications of other optical elements with hierarchic microstructures.

  20. Preparation of biomimetic nano-structured films with multi-scale roughness

    Science.gov (United States)

    Shelemin, A.; Nikitin, D.; Choukourov, A.; Kylián, O.; Kousal, J.; Khalakhan, I.; Melnichuk, I.; Slavínská, D.; Biederman, H.

    2016-06-01

    Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45-240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery.

  1. Preparation of biomimetic nano-structured films with multi-scale roughness

    International Nuclear Information System (INIS)

    Shelemin, A; Nikitin, D; Choukourov, A; Kylián, O; Kousal, J; Khalakhan, I; Melnichuk, I; Slavínská, D; Biederman, H

    2016-01-01

    Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45–240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery. (paper)

  2. Biomimetic hydrogels for biosensor implant biocompatibility: electrochemical characterization using micro-disc electrode arrays (MDEAs).

    Science.gov (United States)

    Justin, Gusphyl; Finley, Stephen; Abdur Rahman, Abdur Rub; Guiseppi-Elie, Anthony

    2009-02-01

    Our interest is in the development of engineered microdevices for continuous remote monitoring of intramuscular lactate, glucose, pH and temperature during post-traumatic hemorrhaging. Two important design considerations in the development of such devices for in vivo diagnostics are discussed; the utility of micro-disc electrode arrays (MDEAs) for electrochemical biosensing and the application of biomimetic, bioactive poly(HEMA)-based hydrogel composites for implant biocompatibility. A poly(HEMA)-based hydrogel membrane containing polyethylene glycol (PEG) was UV cross-linked with tetraethyleneglycol diacrylate following application to MDEAs (50 mum discs) and to 250 mum diameter gold electrodes within 8-well culture ware. Cyclic voltammetry (CV) of the MDEAs revealed a reduction in the apparent diffusion coefficient of ferrocenemonocarboxylic acid (FcCO(2)H), from 6.68 x 10(-5) to 6.74 x 10(-6) cm(2)/s for the uncoated and 6 mum thick hydrogel coated devices, respectively. Single frequency (4 kHz) temporal impedance measurements of the hydrogels in the 8-well culture ware showed a reversible 5% change in the absolute impedance of the hydrogels when exposed to a pH change between 6.1 to 7.2 and a 20% drop between pH 6.1 and 8.8.

  3. Biomimetics in materials science self-healing, self-lubricating, and self-cleaning materials

    CERN Document Server

    Nosonovsky, Michael

    2012-01-01

    Biomimetics in Materials Science provides a comprehensive theoretical and practical review of biomimetic materials with self-healing, self-lubricating and self-cleaning properties. These three topics are closely related and constitute rapidly developing areas of study. The field of self-healing materials requires a new conceptual understanding of this biomimetic technology, which is in contrast to traditional  engineering processes such as wear and fatigue.  Biomimetics in Materials Science is the first monograph to be devoted to these materials. A new theoretical framework for these processes is presented based on the concept of multi-scale structure of entropy and non-equilibrium thermodynamics, together with a detailed review of the available technology. The latter includes experimental, modeling, and simulation results obtained on self-healing/lubricating/cleaning materials since their emergence in the past decade. Describes smart, biomimetic materials in the context of nanotechnology, biotechnology, an...

  4. Biomimetic High-Density Lipoproteins from a Gold Nanoparticle Template

    Science.gov (United States)

    Luthi, Andrea Jane

    For hundreds of years the field of chemistry has looked to nature for inspiration and insight to develop novel solutions for the treatment of human diseases. The ability of chemists to identify, mimic, and modifiy small molecules found in nature has led to the discovery and development of many important therapeutics. Chemistry on the nanoscale has made it possible to mimic natural, macromolecular structures that may also be useful for understanding and treating diseases. One example of such a structure is high-density lipoprotein (HDL). The goal of this work is to use a gold nanoparticle (Au NP) as a template to synthesize functional mimics of HDL and characterize their structure and function. Chapter 1 details the structure and function of natural HDL and how chemistry on the nanoscale provides new strategies for mimicking HDL. This Chapter also describes the first examples of using nanoparticles to mimic HDL. Chapter 2 reports the synthesis and characterization of biomimetic HDL using different sizes of Au NPs and different surface chemistries and how these variables can be used to tailor the properties of biomimetic HDL. From these studies the optimal strategy for synthesizing biomimetic HDL was determined. In Chapter 3, the optimization of the synthesis of biomimetic HDL is discussed as well as a full characterization of its structure. In addition, the work in this chapter shows that biomimetic HDL can be synthesized on a large scale without alterations to its structure or function. Chapter 4 focuses on understanding the pathways by which biomimetic HDL accepts cholesterol from macrophage cells. The results of these studies demonstrate that biomimetic HDL is able to accept cholesterol by both active and passive pathways of cholesterol efflux. In Chapter 5 the preliminary results of in vivo studies to characterize the pharmacokinetics and pharmacodynamics of biomimetic HDL are presented. These studies suggest that biomimetic HDL traffics through tissues prone to

  5. Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures.

    Science.gov (United States)

    Zan, Guangtao; Wu, Qingsheng

    2016-03-16

    In recent years, due to its unparalleled advantages, the biomimetic and bioinspired synthesis of nanomaterials/nanostructures has drawn increasing interest and attention. Generally, biomimetic synthesis can be conducted either by mimicking the functions of natural materials/structures or by mimicking the biological processes that organisms employ to produce substances or materials. Biomimetic synthesis is therefore divided here into "functional biomimetic synthesis" and "process biomimetic synthesis". Process biomimetic synthesis is the focus of this review. First, the above two terms are defined and their relationship is discussed. Next different levels of biological processes that can be used for process biomimetic synthesis are compiled. Then the current progress of process biomimetic synthesis is systematically summarized and reviewed from the following five perspectives: i) elementary biomimetic system via biomass templates, ii) high-level biomimetic system via soft/hard-combined films, iii) intelligent biomimetic systems via liquid membranes, iv) living-organism biomimetic systems, and v) macromolecular bioinspired systems. Moreover, for these five biomimetic systems, the synthesis procedures, basic principles, and relationships are discussed, and the challenges that are encountered and directions for further development are considered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Assessing the efficacy of vesicle fusion with planar membrane arrays using a mitochondrial porin as reporter

    International Nuclear Information System (INIS)

    Pszon-Bartosz, Kamila; Hansen, Jesper S.; Stibius, Karin B.; Groth, Jesper S.; Emneus, Jenny; Geschke, Oliver; Helix-Nielsen, Claus

    2011-01-01

    Research highlights: → We have established a vesicle fusion efficacy assay based on the major non-specific porin of Fusobacterium nucleatum (FomA). → Maximal fusion obtained was almost 150,000 porin insertions during 20 min. → Incorporation can be either first order or exponential kinetics which has implications for establishing protein delivery to biomimetic membranes. -- Abstract: Reconstitution of functionally active membrane protein into artificially made lipid bilayers is a challenge that must be overcome to create a membrane-based biomimetic sensor and separation device. In this study we address the efficacy of proteoliposome fusion with planar membrane arrays. We establish a protein incorporation efficacy assay using the major non-specific porin of Fusobacterium nucleatum (FomA) as reporter. We use electrical conductance measurements and fluorescence microscopy to characterize proteoliposome fusion with an array of planar membranes. We show that protein reconstitution in biomimetic membrane arrays may be quantified using the developed FomA assay. Specifically, we show that FomA vesicles are inherently fusigenic. Optimal FomA incorporation is obtained with a proteoliposome lipid-to-protein molar ratio (LPR) = 50 more than 10 5 FomA proteins could be incorporated in a bilayer array with a total membrane area of 2 mm 2 within 20 min. This novel assay for quantifying protein delivery into lipid bilayers may be a useful tool in developing biomimetic membrane applications.

  7. Biomimetic flow-sensor arrays based on the filiform hairs on the cerci of crickets

    NARCIS (Netherlands)

    Wiegerink, Remco J.; Floris, J.; Jaganatharaja, R.K.; Izadi, N.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2007-01-01

    In this paper we report on the latest developments in biomimetic flow-sensors based on the flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound

  8. Biomimetic Flow Sensors

    NARCIS (Netherlands)

    Casas, J.; Liu, Chang; Krijnen, Gijsbertus J.M.

    2012-01-01

    Biomimetic flow sensors are biologically inspired devices that measure the speed and direction of fluids. This survey starts by describing the role and functioning of airflow-sensing hairs in arthropods and in fishes, carries on with the biomimetic MEMS implementations, both for air and water flow

  9. Biomimetics in Tribology

    Science.gov (United States)

    Gebeshuber, I. C.; Majlis, B. Y.; Stachelberger, H.

    Science currently goes through a major change. Biology is evolving as new Leitwissenschaft, with more and more causation and natural laws being uncovered. The term `technoscience' denotes the field where science and technology are inseparably interconnected, the trend goes from papers to patents, and the scientific `search for truth' is increasingly replaced by search for applications with a potential economic value. Biomimetics, i.e. knowledge transfer from biology to technology, is a field that has the potential to drive major technical advances. The biomimetic approach might change the research landscape and the engineering culture dramatically, by the blending of disciplines. It might substantially support successful mastering of current tribological challenges: friction, adhesion, lubrication and wear in devices and systems from the meter to the nanometer scale. A highly successful method in biomimectics, the biomimicry innovation method, is applied in this chapter to identify nature's best practices regarding two key issues in tribology: maintenance of the physical integrity of a system, and permanent as well as temporary attachment. The best practices identified comprise highly diverse organisms and processes and are presented in a number of tables with detailed references.

  10. Case Study in Biomimetic Design: Handling and Assembly of Microparts

    DEFF Research Database (Denmark)

    Shu, Li; Hansen, Hans Nørgaard; Gegeckaite, Asta

    2006-01-01

    This paper describes the application of the biomimetic design process to the development of automated gripping devices for microparts. Handling and assembly of micromechanical parts is complicated by size effects that occur when part dimensions are scaled down. A common complication involves stic...... and the abscission process in plants inspired concepts of new automated handling devices for microobjects. The design, development and testing of a gripping device based on biological principles for the automated handling and assembly of a microscrew is presented.......This paper describes the application of the biomimetic design process to the development of automated gripping devices for microparts. Handling and assembly of micromechanical parts is complicated by size effects that occur when part dimensions are scaled down. A common complication involves...

  11. Biomimetics in drug delivery systems: A critical review.

    Science.gov (United States)

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Biomimetic devices functionalized by membrane channel proteins

    Science.gov (United States)

    Schmidt, Jacob

    2004-03-01

    We are developing a new family of active materials which derive their functional properties from membrane proteins. These materials have two primary components: the proteins and the membranes themselves. I will discuss our recent work directed toward development of a generic platform for a "plug-and-play" philosophy of membrane protein engineering. By creating a stable biomimetic polymer membrane a single molecular monolayer thick, we will enable the exploitation of the function of any membrane protein, from pores and pumps to sensors and energy transducers. Our initial work has centered on the creation, study, and characterization of the biomimetic membranes. We are attempting to make large areas of membrane monolayers using Langmuir-Blodgett film formation as well as through arrays of microfabricated black lipid membrane-type septa. A number of techniques allow the insertion of protein into the membranes. As a benchmark, we have been employing a model system of voltage-gated pore proteins, which have electrically controllable porosities. I will report on the progress of this work, the characterization of the membranes, protein insertion processes, and the yield and functionality of the composite.

  13. Biomimetic architectures by plasma processing fabrication and applications

    CERN Document Server

    Chattopadhyay, Surojit

    2014-01-01

    Photonic structures in the animal kingdom: valuable inspirations for bio-mimetic applications. Moth eye-type anti-reflecting nanostructures by an electron cyclotron resonance plasma. Plasma-processed biomimetic nano/microstructures. Wetting properties of natural and plasma processed biomimetic surfaces. Biomimetic superhydrophobic surface by plasma processing. Biomimetic interfaces of plasma modified titanium alloy.

  14. Compact wire array sources: power scaling and implosion physics.

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Jason Dimitri; Chuvatin, Alexander S. (Laboratoire du Centre National de la Recherche Scientifique Ecole Polytechnique, Palaiseau, France); Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V. (University of Nevada - Reno, Reno, NV); Esaulov, Andrey A. (University of Nevada - Reno, Reno, NV); Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich (University of Nevada - Reno, Reno, NV); Coverdale, Christine Anne; Rudakov, L. I. (Icarus Research, Bethesda, MD); Jones, Brent Manley; Safronova, Alla S. (University of Nevada - Reno, Reno, NV); Vigil, Marcelino Patricio

    2008-09-01

    A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we

  15. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  16. A Biomimetic Haptic Sensor

    Directory of Open Access Journals (Sweden)

    Ben Mitchinson

    2008-11-01

    Full Text Available The design and implementation of the periphery of an artificial whisker sensory system is presented. It has been developed by adopting a biomimetic approach to model the structure and function of rodent facial vibrissae. The artificial vibrissae have been formed using composite materials and have the ability to be actively moved or whisked. The sensory structures at the root of real vibrissae has been modelled and implemented using micro strain gauges and Digital Signal Processors. The primary afferents and vibrissal trigeminal ganglion have been modelled using empirical data taken from electrophysiological measurements, and implemented in real-time using a Field Programmable Gate Array. Pipelining techniques were employed to maximise the utility of the FPGA hardware. The system is to be integrated into a more complete whisker sensory model, including neural structures within the central nervous system, which can be used to orient a mobile robot.

  17. A Biomimetic Haptic Sensor

    Directory of Open Access Journals (Sweden)

    Martin J. Pearson

    2005-12-01

    Full Text Available The design and implementation of the periphery of an artificial whisker sensory system is presented. It has been developed by adopting a biomimetic approach to model the structure and function of rodent facial vibrissae. The artificial vibrissae have been formed using composite materials and have the ability to be actively moved or whisked. The sensory structures at the root of real vibrissae has been modelled and implemented using micro strain gauges and Digital Signal Processors. The primary afferents and vibrissal trigeminal ganglion have been modelled using empirical data taken from electrophysiological measurements, and implemented in real-time using a Field Programmable Gate Array. Pipelining techniques were employed to maximise the utility of the FPGA hardware. The system is to be integrated into a more complete whisker sensory model, including neural structures within the central nervous system, which can be used to orient a mobile robot.

  18. Learning from Crickets: Artificial Hair-Sensor Array Developments

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2010-01-01

    We have successfully developed biomimetic flowsensitive hair-sensor arrays taking inspiration from mechanosensory hairs of crickets. Our current generation of sensors achieves sub mm/s threshold air-flow sensitivity for single hairs operating in a bandwidth of a few hundred Hz and is the result of a

  19. IRIS Arrays: Observing Wavefields at Multiple Scales and Frequencies

    Science.gov (United States)

    Sumy, D. F.; Woodward, R.; Frassetto, A.

    2014-12-01

    The Incorporated Research Institutions for Seismology (IRIS) provides instruments for creating and operating seismic arrays at a wide range of scales. As an example, for over thirty years the IRIS PASSCAL program has provided instruments to individual Principal Investigators to deploy arrays of all shapes and sizes on every continent. These arrays have ranged from just a few sensors to hundreds or even thousands of sensors, covering areas with dimensions of meters to thousands of kilometers. IRIS also operates arrays directly, such as the USArray Transportable Array (TA) as part of the EarthScope program. Since 2004, the TA has rolled across North America, at any given time spanning a swath of approximately 800 km by 2,500 km, and thus far sampling 2% of the Earth's surface. This achievement includes all of the lower-48 U.S., southernmost Canada, and now parts of Alaska. IRIS has also facilitated specialized arrays in polar environments and on the seafloor. In all cases, the data from these arrays are freely available to the scientific community. As the community of scientists who use IRIS facilities and data look to the future they have identified a clear need for new array capabilities. In particular, as part of its Wavefields Initiative, IRIS is exploring new technologies that can enable large, dense array deployments to record unaliased wavefields at a wide range of frequencies. Large-scale arrays might utilize multiple sensor technologies to best achieve observing objectives and optimize equipment and logistical costs. Improvements in packaging and power systems can provide equipment with reduced size, weight, and power that will reduce logistical constraints for large experiments, and can make a critical difference for deployments in harsh environments or other situations where rapid deployment is required. We will review the range of existing IRIS array capabilities with an overview of previous and current deployments and examples of data and results. We

  20. Biomimetics

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    Biomimetics is the field of scientific endeavour, which attempts to design systems and syn- thesise materials through ... natural systems with a view to achieve analogous synthetic design and manufacture. On the ..... Industrial production.

  1. Proposed biomimetic molecular sensor array for astrobiology applications

    Science.gov (United States)

    Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.

    2001-08-01

    A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.

  2. Free-standing biomimetic polymer membrane imaged with atomic force microscopy

    DEFF Research Database (Denmark)

    Rein, Christian; Pszon-Bartosz, Kamila Justyna; Jensen, Karin Bagger Stibius

    2011-01-01

    Fluid polymeric biomimetic membranes are probed with atomic force microscopy (AFM) using probes with both normal tetrahedrally shaped tips and nanoneedle-shaped Ag2Ga rods. When using nanoneedle probes, the collected force volume data show three distinct membrane regions which match the expected...... membrane structure when spanning an aperture in a hydrophobic scaffold. The method used provides a general method for mapping attractive fluid surfaces. In particular, the nanoneedle probing allows for characterization of free-standing biomimetic membranes with thickness on the nanometer scale suspended...... over 300-μm-wide apertures, where the membranes are stable toward hundreds of nanoindentations without breakage. © 2010 American Chemical Society....

  3. Assessing the efficacy of vesicle fusion with planar membrane arrays using a mitochondrial porin as reporter

    DEFF Research Database (Denmark)

    Pszon-Bartosz, Kamila Justyna; Hansen, Jesper S.; Stibius, Karin B.

    2011-01-01

    Reconstitution of functionally active membrane protein into artificially made lipid bilayers is a challenge that must be overcome to create a membrane-based biomimetic sensor and separation device. In this study we address the efficacy of proteoliposome fusion with planar membrane arrays. We...... establish a protein incorporation efficacy assay using the major non-specific porin of Fusobacterium nucleatum (FomA) as reporter. We use electrical conductance measurements and fluorescence microscopy to characterize proteoliposome fusion with an array of planar membranes. We show that protein...... reconstitution in biomimetic membrane arrays may be quantified using the developed FomA assay. Specifically, we show that FomA vesicles are inherently fusigenic. Optimal FomA incorporation is obtained with a proteoliposome lipid-to-protein molar ratio (LPR)=50 more than 105 FomA proteins could be incorporated...

  4. Biomimetic nanoparticles for inflammation targeting

    Directory of Open Access Journals (Sweden)

    Kai Jin

    2018-01-01

    Full Text Available There have been many recent exciting developments in biomimetic nanoparticles for biomedical applications. Inflammation, a protective response involving immune cells, blood vessels, and molecular mediators directed against harmful stimuli, is closely associated with many human diseases. As a result, biomimetic nanoparticles mimicking immune cells can help achieve molecular imaging and precise drug delivery to these inflammatory sites. This review is focused on inflammation-targeting biomimetic nanoparticles and will provide an in-depth look at the design of these nanoparticles to maximize their benefits for disease diagnosis and treatment.

  5. Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion

    International Nuclear Information System (INIS)

    Wang Zhenlong; Hang Guanrong; Wang Yangwei; Li Jian; Du Wei

    2008-01-01

    An embedded shape memory alloy (SMA) wire actuated biomimetic fin is presented, and based on this module for biomimetic underwater propulsion, a micro robot fish (146 mm in length, 30 g in weight) and a robot squid (242 mm in length, 360 g in weight) were developed. Fish swim by undulating their body and/or fins. Squid and cuttlefish can also swim by undulating their fins. To simplify engineering modeling, the undulating swimming movement is assumed to be the integration of the movements of many flexible bending segments connected in parallel or in series. According to this idea, a biomimetic fin which can bend flexibly was developed. The musculature of a cuttlefish fin was investigated to aid the design of the biomimetic fin. SMA wires act as 'muscle fibers' to drive the biomimetic fin just like the transverse muscles of the cuttlefish fin. During the bending phase, elastic energy is stored in the elastic substrate and skin, and during the return phase, elastic energy is released to power the return movement. Theorem analysis of the bending angle was performed to estimate the bending performance of the biomimetic fin. Experiments were carried out on single-face fins with latex rubber skin and silicone skin (SF-L and SF-S) to compare the bending angle, return time, elastic energy storage and reliability. Silicone was found to be the better skin. A dual-face fin with silicone skin (DF-S) was tested in water to evaluate the actuating performance and to validate the reliability. Thermal analysis of the SMA temperature was performed to aid the control strategy. The micro robot fish and robot squid employ one and ten DF-S, respectively. Swimming experiments with different actuation frequencies were carried out. The speed and steering radius of the micro robot fish reached 112 mm s −1 and 136 mm, respectively, and the speed and rotary speed of the robot squid reached 40 mm s −1 and 22° s −1 , respectively

  6. Microfluidic devices for investigation of biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Pszon-Bartosz, Kamila Justyna

    to microfluidic designs involving protein delivery to biomimetic membranes developed for sensor and separation applications. Finally, an OMP functionality modulation with β-cyclodextrin (β-CD) was shown and revealed the protein potential application as a sensor. Moreover, the β-CD blocker may be used to prevent...... for industrial applications. Among them are the inherent fragility of lipid membranes, the challenge of up-scaling the effective membrane area and the quantification of the protein delivery to the lipid membrane which may determined the biomimetic membrane application. This PhD thesis addresses the above...

  7. Synthesis of ordered large-scale ZnO nanopore arrays

    International Nuclear Information System (INIS)

    Ding, G.Q.; Shen, W.Z.; Zheng, M.J.; Fan, D.H.

    2006-01-01

    An effective approach is demonstrated for growing ordered large-scale ZnO nanopore arrays through radio-frequency magnetron sputtering deposition on porous alumina membranes (PAMs). The realization of highly ordered hexagonal ZnO nanopore arrays benefits from the unique properties of ZnO (hexagonal structure, polar surfaces, and preferable growth directions) and PAMs (controllable hexagonal nanopores and localized negative charges). Further evidence has been shown through the effects of nanorod size and thermal treatment of PAMs on the yielded morphology of ZnO nanopore arrays. This approach opens the possibility of creating regular semiconducting nanopore arrays for the application of filters, sensors, and templates

  8. SPS-ALPHA: The First Practical Solar Power Satellite via Arbitrarily Large PHased Array

    Data.gov (United States)

    National Aeronautics and Space Administration — SPS-ALPHA (Solar Power Satellite via Arbitrarily Large Phased Array) is a novel, bio-mimetic approach to the challenge of space solar power. If successful, this...

  9. Penalized Estimation in Large-Scale Generalized Linear Array Models

    DEFF Research Database (Denmark)

    Lund, Adam; Vincent, Martin; Hansen, Niels Richard

    2017-01-01

    Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...

  10. Biomimetics: determining engineering opportunities from nature

    Science.gov (United States)

    Fish, Frank E.

    2009-08-01

    The biomimetic approach seeks to incorporate designs based on biological organisms into engineered technologies. Biomimetics can be used to engineer machines that emulate the performance of organisms, particularly in instances where the organism's performance exceeds current mechanical technology or provides new directions to solve existing problems. For biologists, an adaptationist program has allowed for the identification of novel features of organisms based on engineering principles; whereas for engineers, identification of such novel features is necessary to exploit them for biomimetic development. Adaptations (leading edge tubercles to passively modify flow and high efficiency oscillatory propulsive systems) from marine animals demonstrate potential utility in the development of biomimetic products. Nature retains a store of untouched knowledge, which would be beneficial in advancing technology.

  11. Plastic deformation in nano-scale multilayer materials — A biomimetic approach based on nacre

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Juergen M., E-mail: juergen.lackner@joanneum.at [JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf (Austria); Waldhauser, Wolfgang [JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf (Austria); Major, Boguslaw; Major, Lukasz [Polish Academy of Sciences, Institute of Metallurgy and Materials Sciences, IMIM-PAN, ul. Reymonta 25, PL-30059 Krakow (Poland); Kot, Marcin [University of Science and Technology, AGH, Aleja Adama Mickiewicza 30, 30-059 Krakow (Poland)

    2013-05-01

    The paper reports about a biomimetic based comparison of deformation in magnetron sputtered multilayer coatings based on titanium (Ti), titanium nitride (TiN) and diamond-like carbon (DLC) layers and the deformation mechanisms in nacre of mollusc shells. Nacre as highly mineralized tissue combines high stiffness and hardness with high toughness, enabling resistance to fracture and crack propagation during tensile loading. Such behaviour is based on a combination of load transmission by tensile stressed aragonite tablets and shearing in layers between the tablets. Shearing in these polysaccharide and protein interlayers demands hydrated conditions. Otherwise, nacre has similar brittle behaviour to aragonite. To prevent shear failure, shear hardening occurs by progressive tablet locking due to wavy dovetail-like surface geometry of the tablets. Similar effects by shearing and strain hardening mechanisms were found for Ti interlayers between TiN and DLC layers in high-resolution transmission electron microscopy studies, performed in deformed zones beneath spherical indentations. 7 nm thin Ti films are sufficient for strong toughening of the whole multi-layered coating structure, providing a barrier for propagation of cracks, starting from tensile-stressed, hard, brittle TiN or DLC layers. - Highlights: • Biomimetic approach to TiN-diamond-like carbon (DLC) multilayers by sputtering • Investigation of deformation in/around hardness indents by HR-TEM • Plastic deformation with shearing in 7-nm thick Ti interlayers in TiN–DLC multilayers • Biomimetically comparable to nacre deformation.

  12. Sensing in nature: using biomimetics for design of sensors

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Cheong, Hyunmin; Shu, Li

    2010-01-01

    The paper illustrates how biomimetics can be applied in sensor design. Biomimetics is an engineering discipline that uses nature as an inspiration source for generating ideas for how to solve engineering problems. Using biomimetics involves a search for relevant cases, a proper analysis...... of biomimetic studies of sense organs in animals....

  13. A novel biomimetic whisker technology based on fiber Bragg grating and its application

    Science.gov (United States)

    Zhao, Chenlu; Jiang, Qi; Li, Yibin

    2017-09-01

    The paper describes a novel, biomimetic whisker-based sensing technology following the basic design of the facial whiskers of animals such as rats and mice. The sensor consists of a 3× 2 whisker array on each side of a robot. In experiments with the artificial whiskers, the motor drives rotating whiskers, and the center wavelength of a fiber Bragg grating pasted on the whisker will shift when the whisker touches an obstacle. The distance will be obtained by processing the wavelength shift data with algorithms. Then the shape recognition can be realized by postprocessing the distance data. The experimental results prove that the whisker array is capable of accurately gathering the distance and shape information of an object.

  14. Biomimetic shark skin: design, fabrication and hydrodynamic function.

    Science.gov (United States)

    Wen, Li; Weaver, James C; Lauder, George V

    2014-05-15

    Although the functional properties of shark skin have been of considerable interest to both biologists and engineers because of the complex hydrodynamic effects of surface roughness, no study to date has successfully fabricated a flexible biomimetic shark skin that allows detailed study of hydrodynamic function. We present the first study of the design, fabrication and hydrodynamic testing of a synthetic, flexible, shark skin membrane. A three-dimensional (3D) model of shark skin denticles was constructed using micro-CT imaging of the skin of the shortfin mako (Isurus oxyrinchus). Using 3D printing, thousands of rigid synthetic shark denticles were placed on flexible membranes in a controlled, linear-arrayed pattern. This flexible 3D printed shark skin model was then tested in water using a robotic flapping device that allowed us to either hold the models in a stationary position or move them dynamically at their self-propelled swimming speed. Compared with a smooth control model without denticles, the 3D printed shark skin showed increased swimming speed with reduced energy consumption under certain motion programs. For example, at a heave frequency of 1.5 Hz and an amplitude of ± 1 cm, swimming speed increased by 6.6% and the energy cost-of-transport was reduced by 5.9%. In addition, a leading-edge vortex with greater vorticity than the smooth control was generated by the 3D printed shark skin, which may explain the increased swimming speeds. The ability to fabricate synthetic biomimetic shark skin opens up a wide array of possible manipulations of surface roughness parameters, and the ability to examine the hydrodynamic consequences of diverse skin denticle shapes present in different shark species. © 2014. Published by The Company of Biologists Ltd.

  15. Foundation of the Outstanding Toughness in Biomimetic and Natural Spider Silk.

    Science.gov (United States)

    Anton, Arthur Markus; Heidebrecht, Aniela; Mahmood, Nasir; Beiner, Mario; Scheibel, Thomas; Kremer, Friedrich

    2017-12-11

    Spider dragline silk is distinguished through the highest toughness of all natural as well as artificial fiber materials. To unravel the toughness's molecular foundation and to enable manufacturing biomimetic analogues, we investigated the morphological and functional structure of recombinant fibers, which exhibit toughness similar to that of the natural template, on the molecular scale by means of vibrational spectroscopy and on the mesoscale by X-ray scattering. Whereas the former was used to identify protein secondary structures and their alignment in the natural as well as artificial silks, the latter revealed nanometer-sized crystallites on the higher structural level. Furthermore, a spectral red shift of a crystal-specific absorption band demonstrated that macroscopically applied stress is directly transferred to the molecular scale, where it is finally dissipated. Concerning this feature, both the natural as well as the biomimetic fibers are almost indistinguishable, giving rise to the toughness of both fiber materials.

  16. Bio-mimetic Flow Control

    Science.gov (United States)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  17. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    Science.gov (United States)

    Liu, Ying; Liu, Xiaoheng; Wang, Xin

    2011-12-01

    Herein, the generation of gold, silver, and silver-gold (Ag-Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV-visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device.

  18. Biomimetics

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    Abstract. The well-organised multifunctional structures, systems and biogenic materials found in nature have attracted the interest of scientists working in many disciplines. The efforts have resulted in the development of a new and rapidly growing field of scientific effort called biomimetics. In this article we present a.

  19. Progress on bioinspired, biomimetic, and bioreplication routes to harvest solar energy

    Science.gov (United States)

    Martín-Palma, Raúl J.; Lakhtakia, Akhlesh

    2017-06-01

    Although humans have long been imitating biological structures to serve their particular purposes, only a few decades ago engineered biomimicry began to be considered a technoscientific discipline with a great problem-solving potential. The three methodologies of engineered biomimicry-viz., bioinspiration, biomimetic, and bioreplication-employ and impact numerous technoscientific fields. For producing fuels and electricity by artificial photosynthesis, both processes and porous surfaces inspired by plants and certain marine animals are under active investigation. Biomimetically textured surfaces on the subwavelength scale have been shown to reduce the reflectance of photovoltaic solar cells over the visible and the near-infrared regimes. Lenticular compound lenses bioreplicated from insect eyes by an industrially scalable technique offer a similar promise.

  20. BIOMIMETIC STRATEGIES IN ORGANIC SYNTHESIS. TERPENES

    Directory of Open Access Journals (Sweden)

    V. Kulcitki

    2012-12-01

    Full Text Available The current paper represents an outline of the selected contributions to the biomimetic procedures and approaches for the synthesis of terpenes with complex structure and diverse functionalisation pattern. These include homologation strategies, cyclisations, rearrangements, as well as biomimetic remote functionalisations.

  1. Interfacing of differential-capacitive biomimetic hair flow-sensors for optimal sensitivity

    International Nuclear Information System (INIS)

    + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Dagamseh, A M K; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Bruinink, C M; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Wiegerink, R J; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Lammerink, T S J; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Droogendijk, H; + Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" data-affiliation=" (Transducers Science and Technology Group, MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands))" >Krijnen, G J M

    2013-01-01

    Biologically inspired sensor-designs are investigated as a possible path to surpass the performance of more traditionally engineered designs. Inspired by crickets, artificial hair sensors have shown the ability to detect minute flow signals. This paper addresses developments in the design, fabrication, interfacing and characterization of biomimetic hair flow-sensors towards sensitive high-density arrays. Improvement of the electrode design of the hair sensors has resulted in a reduction of the smallest hair movements that can be measured. In comparison to the arrayed hairs-sensor design, the detection-limit was arguably improved at least twelve-fold, down to 1 mm s –1 airflow amplitude at 250 Hz as measured in a bandwidth of 3 kHz. The directivity pattern closely resembles a figure-of-eight. These sensitive hair-sensors open possibilities for high-resolution spatio-temporal flow pattern observations. (paper)

  2. Scaling laws for a compliant biomimetic swimmer

    Science.gov (United States)

    Gibouin, Florence; Raufaste, Christophe; Bouret, Yann; Argentina, Mederic

    2017-11-01

    Motivated by the seminal work of Lord Lighthill in the sixties, we study the motion of inertial aquatic swimmers that propels with undulatory gaits. In 2014, Gazzola et al. have uncovered the law linking the swimming velocity to the kinematics of the swimmer and the fluid properties. At high Reynolds numbers, the velocity appears to be equal to 0.4 Af /(2 π) , where A and f are respectively the amplitude and the frequency of the oscillating fin. We have constructed a compliant biomimetic swimmer, whose muscles have been modeled through a torque distribution thanks to a servomotor. A soft polymeric material mimics the flesh and provides the flexibility. By immersing our robot into a water tunnel, we find and characterize the operating point for which the propulsive force balances the drag. We bring the first experimental proof of the former law and probe large amplitude undulations which exhibits nonlinear effects. All data collapse perfectly onto a single master curve. We investigate the role of the fin flexibility by varying its length and its thickness and we figured out the existence of an efficient swimming regime. We thank the support of CNRS and Université Côte d'Azur.

  3. Evolving application of biomimetic nanostructured hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Norberto Roveri

    2010-11-01

    Full Text Available Norberto Roveri, Michele IafiscoLaboratory of Environmental and Biological Structural Chemistry (LEBSC, Dipartimento di Chimica ‘G. Ciamician’, Alma Mater Studiorum, Università di Bologna, Bologna, ItalyAbstract: By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical–physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical–physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical–physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications.Keywords: hydroxyapatite, nanocrystals, biomimetism, biomaterials, drug delivery, remineralization

  4. Biomimetic Hair Sensor Arrays: From Inspiration To Implementation

    NARCIS (Netherlands)

    Jaganatharaja, R.K.; Bruinink, C.M.; Kolster, M.L.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Krijnen, Gijsbertus J.M.

    2010-01-01

    In this work, we report on the successful implementation of highly sensitive artificial hair-based flow-sensor arrays for sensing low-frequency air flows. Artificial hair sensors are bio-inspired from crickets’ cercal filiform hairs, one of nature’s best in sensing small air flows. The presented

  5. Artificial cilia of magnetically tagged polymer nanowires for biomimetic mechanosensing

    International Nuclear Information System (INIS)

    Schroeder, P; Schotter, J; Shoshi, A; Eggeling, M; Brückl, H; Bethge, O; Hütten, A

    2011-01-01

    Polymeric nanowires of polypyrrole have been implemented as artificial cilia on giant-magneto-resistive multilayer sensors for a biomimetic sensing approach. The arrays were tagged with a magnetic material, the stray field of which changes relative to the underlying sensor as a consequence of mechanical stimuli which are delivered by a piezoactuator. The principle resembles balance sensing in mammals. Measurements of the sensor output voltage suggest a proof of concept at frequencies of around 190 kHz and a tag thickness of ∼300 nm. Characterization was performed by scanning electron microscopy and magnetic force microscopy. Micromagnetic and finite-element simulations were conducted to assess basic sensing aspects.

  6. Biomimetics: forecasting the future of science, engineering, and medicine.

    Science.gov (United States)

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark's skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations.

  7. Biomimetics: forecasting the future of science, engineering, and medicine

    Science.gov (United States)

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark’s skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. PMID:26388692

  8. Biomimetics applied to centering in micro-assembly

    DEFF Research Database (Denmark)

    Shu, L.H.; Lenau, Torben Anker; Hansen, Hans Nørgaard

    2003-01-01

    This paper describes the application of a biomimetic search method to develop ideas for centering objects in micro-assembly. Biomimetics involves the imitation of biological phenomena to solve problems. An obstacle to the use of biomimetics in engineering is knowledge of biological phenomena...... that is relevant to the problem at hand. The method described here starts with an engineering problem, and then systematically searches for analogous biological phenomena using functional keywords. This method is illustrated by finding and using analogies for the problem of positioning and centering objects during...

  9. Hydrogels for in situ encapsulation of biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Ibragimova, Sania; Jensen, Karin Bagger Stibius; Szewczykowski, Piotr Przemyslaw

    2012-01-01

    to chemically initiated hydrogels; however, for all hydrogels the permeability was several-fold higher than the water permeability of conventional reverse osmosis (RO) membranes. Lifetimes of freestanding BLM arrays in gel precursor solutions were short compared to arrays formed in buffer. However, polymerizing......Hydrogels are hydrophilic, porous polymer networks that can absorb up to thousands of times their own weight in water. They have many potential applications, one of which is the encapsulation of freestanding black lipid membranes (BLMs) for novel separation technologies or biosensor applications....... We investigated gels for in situ encapsulation of multiple BLMs formed across apertures in a hydrophobic ethylene tetrafluoroethylene (ETFE) support. The encapsulation gels consisted of networks of poly(ethylene glycol)-dimethacrylate or poly(ethylene glycol)-diacrylate polymerized using either...

  10. Biomimetic design method for innovation and sustainability

    CERN Document Server

    Helfman Cohen, Yael

    2017-01-01

    Presenting a novel biomimetic design method for transferring design solutions from nature to technology, this book focuses on structure-function patterns in nature and advanced modeling tools derived from TRIZ, the theory of inventive problem-solving. The book includes an extensive literature review on biomimicry as an engine of both innovation and sustainability, and discusses in detail the biomimetic design process, current biomimetic design methods and tools. The structural biomimetic design method for innovation and sustainability put forward in this text encompasses (1) the research method and rationale used to develop and validate this new design method; (2) the suggested design algorithm and tools including the Findstructure database, structure-function patterns and ideality patterns; and (3) analyses of four case studies describing how to use the proposed method. This book offers an essential resource for designers who wish to use nature as a source of inspiration and knowledge, innovators and sustain...

  11. Artificial lateral line with biomimetic neuromasts to emulate fish sensing

    International Nuclear Information System (INIS)

    Yang Yingchen; Chen Nannan; Tucker, Craig; Hu Huan; Liu Chang; Nguyen, Nam; Lockwood, Michael; Jones, Douglas L; Bleckmann, Horst

    2010-01-01

    Hydrodynamic imaging using the lateral line plays a critical role in fish behavior. To engineer such a biologically inspired sensing system, we developed an artificial lateral line using MEMS (microelectromechanical system) technology and explored its localization capability. Arrays of biomimetic neuromasts constituted an artificial lateral line wrapped around a cylinder. A beamforming algorithm further enabled the artificial lateral line to image real-world hydrodynamic events in a 3D domain. We demonstrate that the artificial lateral line system can accurately localize an artificial dipole source and a natural tail-flicking crayfish under various conditions. The artificial lateral line provides a new sense to man-made underwater vehicles and marine robots so that they can sense like fish.

  12. Biomimetic membranes for sensor and separation applications

    CERN Document Server

    2012-01-01

    This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. It covers recent advances in developing biomimetic membranes for technological applications with a focus on the use of integral membrane protein mediated transport. It describes the fundamentals of biosensing as well as separation and shows how the two processes work together in biological systems. The book provides an overview of the current state of the art, points to areas that need further investigation and anticipates future directions in the field. Biomimetics is a truly cross-disciplinary approach and this is exemplified by the challenges in mimicking osmotic processes as they occur in nature using aquaporin protein water channels as central building blocks. In the development of a biomimetic sensor/separation technology, both channel and carrier proteins are important and examples of how these may be reconstituted and controlled in biomimetic membranes are ...

  13. Design of a Large-scale Three-dimensional Flexible Arrayed Tactile Sensor

    Directory of Open Access Journals (Sweden)

    Junxiang Ding

    2011-01-01

    Full Text Available This paper proposes a new type of large-scale three-dimensional flexible arrayed tactile sensor based on conductive rubber. It can be used to detect three-dimensional force information on the continuous surface of the sensor, which realizes a true skin type tactile sensor. The widely used method of liquid rubber injection molding (LIMS method is used for "the overall injection molding" sample preparation. The structure details of staggered nodes and a new decoupling algorithm of force analysis are given. Simulation results show that the sensor based on this structure can achieve flexible measurement of large-scale 3-D tactile sensor arrays.

  14. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.

    Science.gov (United States)

    Kim, Hwan D; Amirthalingam, Sivashanmugam; Kim, Seunghyun L; Lee, Seunghun S; Rangasamy, Jayakumar; Hwang, Nathaniel S

    2017-12-01

    Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Toward a New Generation of Smart Biomimetic Actuators for Architecture.

    Science.gov (United States)

    Poppinga, Simon; Zollfrank, Cordt; Prucker, Oswald; Rühe, Jürgen; Menges, Achim; Cheng, Tiffany; Speck, Thomas

    2017-10-24

    Motile plant structures (e.g., leaves, petals, cone scales, and capsules) are functionally highly robust and resilient concept generators for the development of biomimetic actuators for architecture. Here, a concise review of the state-of-the-art of plant movement principles and derived biomimetic devices is provided. Achieving complex and higher-dimensional shape changes and passive-hydraulic actuation at a considerable time scale, as well as mechanical robustness of the motile technical structures, is challenging. For example, almost all currently available bioinspired hydraulic actuators show similar limitations due to the poroelastic time scale. Therefore, a major challenge is increasing the system size to the meter range, with actuation times of minutes or below. This means that response speed and flow rate need significant improvement for the systems, and the long-term performance degradation issue of hygroscopic materials needs to be addressed. A theoretical concept for "escaping" the poroelastic regime is proposed, and the possibilities for enhancing the mechanical properties of passive-hydraulic bilayer actuators are discussed. Furthermore, the promising aspects for further studies to implement tropistic movement behavior are presented, i.e., movement that depends on the direction of the triggering stimulus, which can finally lead to "smart building skins" that autonomously and self-sufficiently react to changing environmental stimuli in a direction-dependent manner. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Reverse Engineering Nature to Design Biomimetic Total Knee Implants.

    Science.gov (United States)

    Varadarajan, Kartik Mangudi; Zumbrunn, Thomas; Rubash, Harry E; Malchau, Henrik; Muratoglu, Orhun K; Li, Guoan

    2015-10-01

    While contemporary total knee arthroplasty (TKA) provides tremendous clinical benefits, the normal feel and function of the knee is not fully restored. To address this, a novel design process was developed to reverse engineer "biomimetic" articular surfaces that are compatible with normal soft-tissue envelope and kinematics of the knee. The biomimetic articular surface is created by moving the TKA femoral component along in vivo kinematics of normal knees and carving out the tibial articular surface from a rectangular tibial block. Here, we describe the biomimetic design process. In addition, we utilize geometric comparisons and kinematic simulations to show that; (1) tibial articular surfaces of conventional implants are fundamentally incompatible with normal knee motion, and (2) the anatomic geometry of the biomimetic surface contributes directly to restoration of normal knee kinematics. Such biomimetic implants may enable us to achieve the long sought after goal of a "normal" knee post-TKA surgery. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. A coherent polarimeter array for the Large Scale Polarization Explorer balloon experiment

    OpenAIRE

    Bersanelli, M.; Mennella, A.; Morgante, G.; Zannoni, M.; Addamo, G.; Baschirotto, A.; Battaglia, P.; Baù, A.; Cappellini, B.; Cavaliere, F.; Cuttaia, F.; Del Torto, F.; Donzelli, S.; Farooqui, Z.; Frailis, M.

    2012-01-01

    We discuss the design and expected performance of STRIP (STRatospheric Italian Polarimeter), an array of coherent receivers designed to fly on board the LSPE (Large Scale Polarization Explorer) balloon experiment. The STRIP focal plane array comprises 49 elements in Q band and 7 elements in W-band using cryogenic HEMT low noise amplifiers and high performance waveguide components. In operation, the array will be cooled to 20 K and placed in the focal plane of a $\\sim 0.6$ meter telescope prov...

  18. Biomimetic mineral coatings in dental and orthopaedic implantology

    NARCIS (Netherlands)

    Liu, Y.; de Groot, K.; Hunziker, E.B.

    2009-01-01

    Biomimetic techniques are used to deposit coatings of calcium phosphate upon medical devices. The procedure is conducted under near-physiological, or "biomimetic", conditions of temperature and pH primarily to improve their biocompatibility and biodegradability of the materials. The inorganic layers

  19. Biomimetic superwettable materials with structural colours.

    Science.gov (United States)

    Wang, Zelinlan; Guo, Zhiguang

    2017-12-05

    Structural colours and superwettability are of great interest due to their unique characteristics. However, the application of materials with either structural colours or superwettability is limited. Moreover, materials possessing both structural colours and superwettability are crucial for many practical applications. The combination of structural colours and superwettability can result in materials for use various applications, such as in sensors, detectors, bioassays, anti-counterfeiting, and liquid actuators, by controlling surfaces to repel or absorb liquids. Regarding superwettability and structural colours, surface texture and chemical composition are two factors for the construction of materials with superwettable structural colours. This review aims at offering a comprehensive elaboration of the mechanism, recent biomimetic research, and applications of biomimetic superwettable materials with structural colours. Furthermore, this review provides significant insight into the design, fabrication, and application of biomimetic superwettable materials with structural colours.

  20. Challenges in biomimetic design and innovation

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Barfoed, Michael; Shu, Li

    Biomimetic design copies desired principles found in nature and implement them into artificial applications. Applications could be products we use in our daily life but it can also be used to inspire material innovation. However there are significant challenges in performing biomimetic design. One....... This is a key issue in design and innovation work where problem identification and systematic search for suitable solution principle are major activities. One way to deal with this challenge is to use a biology search method. The use of such a method is illustrated with a case story describing the design...... including the terminology and knowledge organisation. It is often easy to recognise the splendour of a biological solution, but it can be much more difficult to understand the underlying mechanisms. Another challenge in biomimetic design is the search and identification of relevant solutions in nature...

  1. Biomimetic Structural Materials: Inspiration from Design and Assembly.

    Science.gov (United States)

    Yaraghi, Nicholas A; Kisailus, David

    2018-04-20

    Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.

  2. Biomimetic Structural Materials: Inspiration from Design and Assembly

    Science.gov (United States)

    Yaraghi, Nicholas A.; Kisailus, David

    2018-04-01

    Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.

  3. Hierarchical Nanogaps within Bioscaffold Arrays as a High-Performance SERS Substrate for Animal Virus Biosensing

    NARCIS (Netherlands)

    Shao, Feng; Lu, Zhicheng; Liu, Chen; Han, Heyou; Chen, Kun; Li, Wentao; He, Qigai; Peng, Hui; Chen, Juanni

    2014-01-01

    A three-dimensional (3D) biomimetic SERS substrate with hierarchical nanogaps was formed on the bioscaffold arrays of cicada wings by one-step and reagents-free ion-sputtering techniques. This approach requires a minimal fabrication effort and cost and offers Ag nanoislands and Ag nanoflowers with

  4. Biomimetic dentistry

    OpenAIRE

    Suchetana Goswami

    2018-01-01

    “Biomimetics” is the field of science that uses the natural system of synthesizing materials through biomimicry. This method can be widely used in dentistry for regeneration of dental structures and replacement of lost dental tissues. This is a review paper that states its scope, history, different fields of biomimetic dentistry, and its future conditions in India.

  5. Sustainability assessment of a lightweight biomimetic ceiling structure

    International Nuclear Information System (INIS)

    Antony, Florian; Speck, Thomas; Speck, Olga; Grießhammer, Rainer

    2014-01-01

    An intensive and continuous debate centres on the question of whether biomimetics has a specific potential to contribute to sustainability. In the context of a case study, the objective of this paper is to contribute to this debate by presenting the first systematic approach to assess the sustainability of a complex biomimetic product. The object of inquiry is a lecture hall's ribbed slab. Based on criteria suggested by the Association of German Engineers (VDI), it has been verified that the slab has been correctly defined as biomimetic. Moreover, a systematic comparative product sustainability assessment has been carefully carried out. For purposes of comparison, estimated static calculations have been performed for conceivable current state-of-the-art lightweight ceiling structures. Alternative options are a hollow article slab and a pre-stressed flat slab. Besides a detailed benefit analysis and a discussion of social effects, their costs have also been compared. A particularly detailed life cycle assessment on the respective environmental impacts has also been performed. Results show that the biomimetic ribbed slab built in the 1960s is able to keep up with the current state-of-the-art lightweight solutions in terms of sustainability. These promising results encourage a systematic search for a broad range of sustainable biomimetic solutions. (paper)

  6. Biomimetic membranes and methods of making biomimetic membranes

    Science.gov (United States)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  7. Biomimetics: The early years | Michael | Annals of Ibadan ...

    African Journals Online (AJOL)

    Biomimetics is a relatively new term and an evolving discipline with the potentials for transforming every aspect of medicine. Biomimetics or biomimicry is the imitation of the models, systems, and elements of nature for the purpose of solving complex biological puzzles. Insights into biological processes have already resulted ...

  8. Biomimetics: nature based innovation

    National Research Council Canada - National Science Library

    Bar-Cohen, Yoseph

    2012-01-01

    "Based on the concept that nature offers numerous sources of inspiration for inventions related to mechanisms, materials, processes, and algorithms, this book covers the topic of biomimetics and the inspired innovation...

  9. Biomimetic dentistry

    Directory of Open Access Journals (Sweden)

    Suchetana Goswami

    2018-01-01

    Full Text Available “Biomimetics” is the field of science that uses the natural system of synthesizing materials through biomimicry. This method can be widely used in dentistry for regeneration of dental structures and replacement of lost dental tissues. This is a review paper that states its scope, history, different fields of biomimetic dentistry, and its future conditions in India.

  10. Assembly, characterization, and operation of large-scale TES detector arrays for ACTPol

    Science.gov (United States)

    Pappas, Christine Goodwin

    2016-01-01

    The Polarization-sensitive Receiver for the Atacama Cosmology Telescope (ACTPol) is designed to measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies on small angular scales. Measurements of the CMB temperature and polarization anisotropies have produced arguably the most important cosmological data to date, establishing the LambdaCDM model and providing the best constraints on most of its parameters. To detect the very small fluctuations in the CMB signal across the sky, ACTPol uses feedhorn-coupled Transition-Edge Sensor (TES) detectors. A TES is a superconducting thin film operated in the transition region between the superconducting and normal states, where it functions as a highly sensitive resistive thermometer. In this thesis, aspects of the assembly, characterization, and in-field operation of the ACTPol TES detector arrays are discussed. First, a novel microfabrication process for producing high-density superconducting aluminum/polyimide flexible circuitry (flex) designed to connect large-scale detector arrays to the first stage of readout is presented. The flex is used in parts of the third ACTPol array and is currently being produced for use in the AdvACT detector arrays, which will begin to replace the ACTPol arrays in 2016. Next, we describe methods and results for the in-lab and on-telescope characterization of the detectors in the third ACTPol array. Finally, we describe the ACTPol TES R(T,I) transition shapes and how they affect the detector calibration and operation. Methods for measuring the exact detector calibration and re-biasing functions, taking into account the R(T,I) transition shape, are presented.

  11. Laser technology in biomimetics basics and applications

    CERN Document Server

    Belegratis, Maria

    2013-01-01

    Lasers are progressively more used as versatile tools for fabrication purposes. The wide range of available powers, wavelengths, operation modes, repetition rates etc. facilitate the processing of a large spectrum of materials at exceptional precision and quality. Hence, manifold methods were established in the past and novel methods are continuously under development. Biomimetics, the translation from nature-inspired principles to technical applications, is strongly multidisciplinary. This field offers intrinsically a wide scope of applications for laser based methods regarding structuring and modification of materials. This book is dedicated to laser fabrication methods in biomimetics. It introduces both, a laser technology as well as an application focused approach.  The book covers the most important laser lithographic methods and various biomimetics application scenarios ranging from coatings and biotechnology to construction, medical applications and photonics.

  12. Biomimetics: forecasting the future of science, engineering, and medicine

    Directory of Open Access Journals (Sweden)

    Hwang J

    2015-09-01

    Full Text Available Jangsun Hwang,1 Yoon Jeong,1,2 Jeong Min Park,3 Kwan Hong Lee,1,2,4 Jong Wook Hong,1,2 Jonghoon Choi1,2 1Department of Bionano Technology, Graduate School, Hanyang University, Seoul, 2Department of Bionano Engineering, Hanyang University ERICA, Ansan, Korea; 3Department of Biomedical Engineering, Boston University, 4OpenView Venture Partners, Boston, MA, USA Abstract: Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark’s skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. Keywords: biomimicry, tissue engineering, biomaterials, nature, nanotechnology, nanomedicine

  13. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-04-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.

  14. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    International Nuclear Information System (INIS)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-01-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO 2 ) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g −1  at the scan rate of 5 mV s −1 . This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices. (paper)

  15. Amelogenin and Enamel Biomimetics

    Science.gov (United States)

    Ruan, Qichao; Moradian-Oldak, Janet

    2015-01-01

    Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel. PMID:26251723

  16. Biomimetics materials, structures and processes : examples, ideas and case studies

    CERN Document Server

    Bruckner, Dietmar; Hellmich, Christian; Schmiedmayer, Heinz-Bodo; Stachelberger, Herbert; Gebeshuber, Ille

    2011-01-01

    The book presents an outline of current activities in the field of biomimetics and integrates a variety of applications comprising biophysics, surface sciences, architecture and medicine. Biomimetics as innovation method is characterised by interdisciplinary information transfer from the life sciences to technical application fields aiming at increased performance, functionality and energy efficiency. The contributions of the book relate to the research areas: - Materials and structures in nanotechnology and biomaterials - Biomimetic approaches to develop new forms, construction principles and design methods in architecture - Information and dynamics in automation, neuroinformatics and biomechanics Readers will be informed about the latest research approaches and results in biomimetics with examples ranging from bionic nano-membranes to function-targeted design of tribological surfaces and the translation of natural auditory coding strategies.

  17. Hierarchically organized architecture of potassium hydrogen phthalate and poly(acrylic acid): toward a general strategy for biomimetic crystal design.

    Science.gov (United States)

    Oaki, Yuya; Imai, Hiroaki

    2005-12-28

    A hierarchically organized architecture in multiple scales was generated from potassium hydrogen phthalate crystals and poly(acrylic acid) based on our novel biomimetic approach with an exquisite association of polymers on crystallization.

  18. Theory of wire number scaling in wire-array Z pinches

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Marder, B.M.

    1999-01-01

    Pulsed-power-driven Z pinches, produced by imploding cylindrical arrays of many wires, have generated very high x-ray radiation powers (>200 TW) and energies (2 MJ). Experiments have revealed a steady improvement in Z-pinch performance with increasing wire number at fixed total mass and array radius. The dominant mechanism acting to limit the performance of these devices is believed to be the Rayleigh-Taylor instability which broadens the radially imploding plasma sheath and consequently reduces the peak radiation power. A model is presented which describes an amplification over the two-dimensional Rayleigh-Taylor growth rate brought about by kink-like forces on the individual wires. This amplification factor goes to zero as the number of wires approaches infinity. This model gives results which are in good agreement with the experimental data and provides a scaling for wire-array Z pinches. copyright 1999 American Institute of Physics

  19. Biomimetic chemical sensors using bioengineered olfactory and taste cells.

    Science.gov (United States)

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well.

  20. Biomimetic Materials for Pathogen Neutralization

    National Research Council Canada - National Science Library

    Ingber, Donald

    1997-01-01

    ...) and polymer chemistry fabrication technologies for the production of synthetic 'biomimetic' materials that exhibit the mechanical responsiveness and biochemical processing capabilities of living cells and tissues...

  1. Biomimetics as a design methodology – possibilities and challenges

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2009-01-01

    Biomimetics – or bionik as it is called in parts of Europe – offer a number of promising opportunities and challenges for the designer. The paper investigates how biomimetics as a design methodology is used in engineering design by looking at examples of biological searches and highlight...

  2. Effects of Mass Ablation on the Scaling of X-Ray Power with Current in Wire-Array Z Pinches

    International Nuclear Information System (INIS)

    Lemke, R. W.; Sinars, D. B.; Waisman, E. M.; Cuneo, M. E.; Yu, E. P.; Haill, T. A.; Hanshaw, H. L.; Brunner, T. A.; Jennings, C. A.; Stygar, W. A.; Desjarlais, M. P.; Mehlhorn, T. A.; Porter, J. L.

    2009-01-01

    X-ray production by imploding wire-array Z pinches is studied using radiation magnetohydrodynamics simulation. It is found that the density distribution created by ablating wire material influences both x-ray power production, and how the peak power scales with applied current. For a given array there is an optimum ablation rate that maximizes the peak x-ray power, and produces the strongest scaling of peak power with peak current. This work is consistent with trends in wire-array Z pinch x-ray power scaling experiments on the Z accelerator

  3. Ultrathin Ceramic Membranes as Scaffolds for Functional Cell Coculture Models on a Biomimetic Scale

    Science.gov (United States)

    Jud, Corinne; Ahmed, Sher; Müller, Loretta; Kinnear, Calum; Vanhecke, Dimitri; Umehara, Yuki; Frey, Sabine; Liley, Martha; Angeloni, Silvia; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2015-01-01

    Abstract Epithelial tissue serves as an interface between biological compartments. Many in vitro epithelial cell models have been developed as an alternative to animal experiments to answer a range of research questions. These in vitro models are grown on permeable two-chamber systems; however, commercially available, polymer-based cell culture inserts are around 10 μm thick. Since the basement membrane found in biological systems is usually less than 1 μm thick, the 10-fold thickness of cell culture inserts is a major limitation in the establishment of realistic models. In this work, an alternative insert, accommodating an ultrathin ceramic membrane with a thickness of only 500 nm (i.e., the Silicon nitride Microporous Permeable Insert [SIMPLI]-well), was produced and used to refine an established human alveolar barrier coculture model by both replacing the conventional inserts with the SIMPLI-well and completing it with endothelial cells. The structural–functional relationship of the model was evaluated, including the translocation of gold nanoparticles across the barrier, revealing a higher translocation if compared to corresponding polyethylene terephthalate (PET) membranes. This study demonstrates the power of the SIMPLI-well system as a scaffold for epithelial tissue cell models on a truly biomimetic scale, allowing construction of more functionally accurate models of human biological barriers. PMID:26713225

  4. Biomimetics and the case of the remarkable ragworms

    Science.gov (United States)

    Hesselberg, Thomas

    2007-08-01

    Biomimetics is a rapidly growing field both as an academic and as an applied discipline. This paper gives a short introduction to the current status of the discipline before it describes three approaches to biomimetics: the mechanism-driven, which is based on the study of a specific mechanism; the focused organism-driven, which is based on the study of one function in a model organism; and the integrative organism-driven approach, where multiple functions of a model organism provide inspiration. The first two are established approaches and include many modern studies and the famous biomimetic discoveries of Velcro and the Lotus-Effect, whereas the last approach is not yet well recognized. The advantages of the integrative organism-driven approach are discussed using the ragworms as a case study. A morphological and locomotory study of these marine polychaetes reveals their biomimetic potential, which includes using their ability to move in slippery substrates as inspiration for novel endoscopes, using their compound setae as models for passive friction structures and using their three gaits, slow crawling, fast crawling, and swimming as well as their rapid burrowing technique to provide inspiration for the design of displacement pumps and multifunctional robots.

  5. Biomimetic microsensors inspired by marine life

    CERN Document Server

    Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael S

    2017-01-01

    This book narrates the development of various biomimetic microelectromechanical systems (MEMS) sensors, such as pressure, flow, acceleration, chemical, and tactile sensors, that are inspired by sensing phenomenon that exist in marine life. The research described in this book is multi-faceted and combines the expertise and understanding from diverse fields, including biomimetics, microfabrication, sensor engineering, MEMS design, nanotechnology, and material science. A series of chapters examine the design and fabrication of MEMS sensors that function on piezoresistive, piezoelectric, strain gauge, and chemical sensing principles. By translating nature-based engineering solutions to artificial manmade technology, we could find innovative solutions to critical problems.

  6. Evaporation-induced assembly of biomimetic polypeptides

    International Nuclear Information System (INIS)

    Keyes, Joseph; Junkin, Michael; Cappello, Joseph; Wu Xiaoyi; Wong, Pak Kin

    2008-01-01

    We report an evaporation assisted plasma lithography (EAPL) process for guided self-assembly of a biomimetic silk-elastinlike protein (SELP). We demonstrate the formation of SELP structures from millimeter to submicrometer range on plasma-treatment surface templates during an evaporation-induced self-assembly process. The self-assembly processes at different humidities and droplet volumes were investigated. The process occurs efficiently in a window of optimized operating conditions found to be at 70% relative humidity and 8 μl volume of SELP solution. The EAPL approach provides a useful technique for the realization of functional devices and systems using these biomimetic materials

  7. Array-scale performance of TES X-ray Calorimeters Suitable for Constellation-X

    Science.gov (United States)

    Kilbourne, C. A.; Bandler, S. R.; Brown, A. D.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Smith, S. J.; hide

    2008-01-01

    Having developed a transition-edge-sensor (TES) calorimeter design that enables high spectral resolution in high fill-factor arrays, we now present array-scale results from 32-pixel arrays of identical closely packed TES pixels. Each pixel in such an array contains a Mo/Au bilayer with a transition temperature of 0.1 K and an electroplated Au or Au/Bi xray absorber. The pixels in an array have highly uniform physical characteristics and performance. The arrays are easy to operate due to the range of bias voltages and heatsink temperatures over which solution better than 3 eV at 6 keV can be obtained. Resolution better than 3 eV has also been obtained with 2x8 time-division SQUID multiplexing. We will present the detector characteristics and show spectra acquired through the read-out chain from the multiplexer electronics through the demultiplexer software to real-time signal processing. We are working towards demonstrating this performance over the range of count rates expected in the observing program of the Constellation-X observatory. We mill discuss the impact of increased counting rate on spectral resolution, including the effects of crosstalk and optimal-filtering dead time.

  8. Biomimetic modelling.

    OpenAIRE

    Vincent, Julian F V

    2003-01-01

    Biomimetics is seen as a path from biology to engineering. The only path from engineering to biology in current use is the application of engineering concepts and models to biological systems. However, there is another pathway: the verification of biological mechanisms by manufacture, leading to an iterative process between biology and engineering in which the new understanding that the engineering implementation of a biological system can bring is fed back into biology, allowing a more compl...

  9. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Directory of Open Access Journals (Sweden)

    Catia Algieri

    2014-07-01

    Full Text Available An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.

  10. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Science.gov (United States)

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  11. Biomimetic magnetic nanoparticles

    OpenAIRE

    Klem, Michael T.; Young, Mark; Douglas, Trevor

    2005-01-01

    Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches...

  12. Tissue bionics: examples in biomimetic tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W [Bone and Joint Research Group, Developmental Origins of Health and Disease, General Hospital, University of Southampton, SO16 6YD (United Kingdom)], E-mail: Hindoostuart@googlemail.com

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  13. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Green, David W

    2008-01-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  14. Do Biomimetic Students Think Outside the Box?

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2017-01-01

    analysed. The empirical material comprises 111 students working on 28 different functional design problems. On average teams identify 9.0 relevant biological phenomena and manage to produce a physical proof-of-principle for the selected biological analogy. 39% of the analogies can be characterised as well...... phenomena? If they concentrate on animals and plants, which they beforehand have knowledge about, it could be expected that solutions will remind of what they would have found without using biomimetics. To investigate this question, the empirical results from a university course in biomimetics have been...

  15. Biomimetics of human movement: functional or aesthetic?

    International Nuclear Information System (INIS)

    Harris, Christopher M

    2009-01-01

    How should robotic or prosthetic arms be programmed to move? Copying human smooth movements is popular in synthetic systems, but what does this really achieve? We cannot address these biomimetic issues without a deep understanding of why natural movements are so stereotyped. In this article, we distinguish between 'functional' and 'aesthetic' biomimetics. Functional biomimetics requires insight into the problem that nature has solved and recognition that a similar problem exists in the synthetic system. In aesthetic biomimetics, nature is copied for its own sake and no insight is needed. We examine the popular minimum jerk (MJ) model that has often been used to generate smooth human-like point-to-point movements in synthetic arms. The MJ model was originally justified as maximizing 'smoothness'; however, it is also the limiting optimal trajectory for a wide range of cost functions for brief movements, including the minimum variance (MV) model, where smoothness is a by-product of optimizing the speed-accuracy trade-off imposed by proportional noise (PN: signal-dependent noise with the standard deviation proportional to mean). PN is unlikely to be dominant in synthetic systems, and the control objectives of natural movements (speed and accuracy) would not be optimized in synthetic systems by human-like movements. Thus, employing MJ or MV controllers in robotic arms is just aesthetic biomimetics. For prosthetic arms, the goal is aesthetic by definition, but it is still crucial to recognize that MV trajectories and PN are deeply embedded in the human motor system. Thus, PN arises at the neural level, as a recruitment strategy of motor units and probably optimizes motor neuron noise. Human reaching is under continuous adaptive control. For prosthetic devices that do not have this natural architecture, natural plasticity would drive the system towards unnatural movements. We propose that a truly neuromorphic system with parallel force generators (muscle fibres) and noisy

  16. New Hybrid Route to Biomimetic Synthesis

    National Research Council Canada - National Science Library

    Morse, Daniel

    2003-01-01

    To develop economical low-temperature routes to biomimetic synthesis of high-performance composite materials, with control of composition and structure based on the molecular mechanisms controlling...

  17. A biomimetic jellyfish robot based on ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    Yeom, Sung-Weon; Oh, Il-Kwon

    2009-01-01

    A biomimetic jellyfish robot based on ionic polymer metal composite actuators was fabricated and activated to mimic real locomotive behavior with pulse and recovery processes. To imitate the curved shape of the jellyfish, a thermal treatment was applied to obtain a permanent initial deformation of a hemispherical form. The bio-inspired input signal was generated for mimicking real locomotion of the jellyfish. The vertical floating displacement and the thrust force of the biomimetic jellyfish robot under various input signals were measured and compared. The present results show that the bio-inspired electrical input signal with pulse-recovery process generates much higher floating velocity of the biomimetic jellyfish robot in comparison with pure sinusoidal excitations. The curved shape of the IPMC actuator through thermal treatments can be successfully applied to mimic the real biomimetic robots with smooth curves

  18. Modelling clustering of vertically aligned carbon nanotube arrays.

    Science.gov (United States)

    Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N

    2015-08-06

    Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.

  19. Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays

    KAUST Repository

    Wei, Yaguang

    2010-09-08

    This article presents an effective approach for patterned growth of vertically aligned ZnO nanowire (NW) arrays with high throughput and low cost at wafer scale without using cleanroom technology. Periodic hole patterns are generated using laser interference lithography on substrates coated with the photoresist SU-8. ZnO NWs are selectively grown through the holes via a low-temperature hydrothermal method without using a catalyst and with a superior control over orientation, location/density, and as-synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass. This combined approach demonstrates a novel method of manufacturing large-scale patterned one-dimensional nanostructures on various substrates for applications in energy harvesting, sensing, optoelectronics, and electronic devices. © 2010 American Chemical Society.

  20. Self-leveling 2D DPN probe arrays

    Science.gov (United States)

    Haaheim, Jason R.; Val, Vadim; Solheim, Ed; Bussan, John; Fragala, J.; Nelson, Mike

    2010-02-01

    Dip Pen Nanolithography® (DPN®) is a direct write scanning probe-based technique which operates under ambient conditions, making it suitable to deposit a wide range of biological and inorganic materials. Precision nanoscale deposition is a fundamental requirement to advance nanoscale technology in commercial applications, and tailoring chemical composition and surface structure on the sub-100 nm scale benefits researchers in areas ranging from cell adhesion to cell-signaling and biomimetic membranes. These capabilities naturally suggest a "Desktop Nanofab" concept - a turnkey system that allows a non-expert user to rapidly create high resolution, scalable nanostructures drawing upon well-characterized ink and substrate pairings. In turn, this system is fundamentally supported by a portfolio of MEMS devices tailored for microfluidic ink delivery, directed placement of nanoscale materials, and cm2 tip arrays for high-throughput nanofabrication. Massively parallel two-dimensional nanopatterning is now commercially available via NanoInk's 2D nano PrintArray™, making DPN a high-throughput (>3×107 μm2 per hour), flexible and versatile method for precision nanoscale pattern formation. However, cm2 arrays of nanoscopic tips introduce the nontrivial problem of getting them all evenly touching the surface to ensure homogeneous deposition; this requires extremely precise leveling of the array. Herein, we describe how we have made the process simple by way of a selfleveling gimbal attachment, coupled with semi-automated software leveling routines which bring the cm^2 chip to within 0.002 degrees of co-planarity. This excellent co-planarity yields highly homogeneous features across a square centimeter, with <6% feature size standard deviation. We have engineered the devices to be easy to use, wire-free, and fully integrated with both of our patterning tools: the DPN 5000, and the NLP 2000.

  1. Acceleration of biomimetic mineralization to apply in bone regeneration

    International Nuclear Information System (INIS)

    Jayasuriya, A Champa; Shah, Chiragkumar; Ebraheim, Nabil A; Jayatissa, Ahalapitiya H

    2008-01-01

    The delivery of growth factors and therapeutic drugs into bone defects is a major clinical challenge. Biomimetically prepared bone-like mineral (BLM) containing a carbonated apatite layer can be used to deliver growth factors and drugs in a controlled manner. In the conventional biomimetic process, BLM can be deposited on the biodegradable polymer surfaces by soaking them in simulated body fluid (SBF) for 16 days or more. The aim of this study was to accelerate the biomimetic process of depositing BML in the polymer surfaces. We accelerated the deposition of mineral on 3D poly(lactic-co-glycolic acid) (PLGA) porous scaffolds to 36-48 h by modifying the biomimetic process parameters and applying surface treatments to PLGA scaffolds. The BLM was coated on scaffolds after surface treatments followed by incubation at 37 0 C in 15 ml of 5x SBF. We characterized the BLM created using the accelerated biomineralization process with wide angle x-ray diffraction (XRD), Fourier transform infrared (FTIR) microscopy, and scanning electron microscopy (SEM). The FTIR and XRD analyses of mineralized scaffolds show similarities between biomimetically prepared BLM, and bone bioapatite and carbonated apatite. We also found that the BLM layer on the surface of scaffolds was stable even after 21 days immersed in Tris buffered saline and cell culture media. This study suggests that BLM was stable for at least 3 weeks in both media, and therefore, BLM has a potential for use as a carrier for biological molecules for localized release applications as well as bone tissue engineering applications

  2. Biological and Biomimetic Comb Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Aristeidis Papagiannopoulos

    2010-05-01

    Full Text Available Some new phenomena involved in the physical properties of comb polyelectrolyte solutions are reviewed. Special emphasis is given to synthetic biomimetic materials, and the structures formed by these molecules are compared with those of naturally occurring glycoprotein and proteoglycan solutions. Developments in the determination of the structure and dynamics (viscoelasticity of comb polymers in solution are also covered. Specifically the appearance of multi-globular structures, helical instabilities, liquid crystalline phases, and the self-assembly of the materials to produce hierarchical comb morphologies is examined. Comb polyelectrolytes are surface active and a short review is made of some recent experiments in this area that relate to their morphology when suspended in solution. We hope to emphasize the wide variety of phenomena demonstrated by the vast range of naturally occurring comb polyelectrolytes and the challenges presented to synthetic chemists designing biomimetic materials.

  3. Biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2009-01-01

    preventing the passage of others, a property critical for the overall conservation of the cells internal pH and salt concentration. Both ion and water channels are highly efficient membrane pore proteins capable of transporting solutes at very high rates, up to 109 molecules per second. Carrier proteins...... and biomimetic support matrix. Also the stability of the incorporated protein must be addressed and the protein-biomimetic matrix must be encapsulated in order to protect it and make it sufficiently stable in a final application. Here I will review and discuss these challenges and how they are met in some...

  4. Biomimetic electroactive polyimide with rose petal-like surface structure for anticorrosive coating application

    Directory of Open Access Journals (Sweden)

    W. F. Ji

    2017-08-01

    Full Text Available In this work, an electroactive polyimide (EPI coating with biomimetic surface structure of rose petal used in anticorrosion application was first presented. First of all, amino-capped aniline trimer (ACAT was synthesized by oxidative coupling reaction, followed by characterized through Fourier transform infrared spectroscooy (FTIR, liquid chromatography – mass spcerometry (LC-MS and proton nuclear magnetic resonance (1H-NMR spectroscopy. Subsequently, as-prepared ACAT was reacted with isopropylidenediphenoxy-bis(phthalic anhydride (BPADA to give electroactive poly(amic acid (EPAA. Moreover, poly(dimethylsiloxane (PDMS was used to be the soft negative template for pattern transfer from the surface of rose petal to the surface of polymer coating. The EPI coating with biomimetic structure was obtained by programmed heating the EPAA slurry casting onto the negative PDMS template. The anticorrosive performance of as-prepared biomimetic EPI coating was demonstrated by performing a series of electrochemical measurements (Tafel, Nyquist, and Bode plots upon cold-rolled steel (CRS electrode in a NaCl aqueous solution. It should be noted that the biomimetic EPI coating with rose petal-like structure was found to exhibit better anticorrosion than that of EPI without biomimetic structure. Moreover, the surface contact angle of water droplets for biomimetic EPI coating was found to be ~150°, which is significantly higher than that of EPI coating with smooth structure (~87°, indicating that the EPI coating with biomimetic structure reveals better hydrophobicity. The apparent mechanism for improved anticorrosive properties is twofold: (1 the biomimetic structure of EPI coating can repel water droplets. (2 electroactivity of EPI coating promotes the formation of densely passive layer of metal oxide on metallic surface.

  5. A future of living machines?: International trends and prospects in biomimetic and biohybrid systems

    Science.gov (United States)

    Prescott, Tony J.; Lepora, Nathan; Vershure, Paul F. M. J.

    2014-03-01

    Research in the fields of biomimetic and biohybrid systems is developing at an accelerating rate. Biomimetics can be understood as the development of new technologies using principles abstracted from the study of biological systems, however, biomimetics can also be viewed from an alternate perspective as an important methodology for improving our understanding of the world we live in and of ourselves as biological organisms. A biohybrid entity comprises at least one artificial (engineered) component combined with a biological one. With technologies such as microscale mobile computing, prosthetics and implants, humankind is moving towards a more biohybrid future in which biomimetics helps us to engineer biocompatible technologies. This paper reviews recent progress in the development of biomimetic and biohybrid systems focusing particularly on technologies that emulate living organisms—living machines. Based on our recent bibliographic analysis [1] we examine how biomimetics is already creating life-like robots and identify some key unresolved challenges that constitute bottlenecks for the field. Drawing on our recent research in biomimetic mammalian robots, including humanoids, we review the future prospects for such machines and consider some of their likely impacts on society, including the existential risk of creating artifacts with significant autonomy that could come to match or exceed humankind in intelligence. We conclude that living machines are more likely to be a benefit than a threat but that we should also ensure that progress in biomimetics and biohybrid systems is made with broad societal consent.

  6. Acoustic beam control in biomimetic projector via velocity gradient

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaowei; Dong, Erqian; Song, Zhongchang [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen 361005 (China); Zhang, Yu, E-mail: yuzhang@xmu.edu.cn, E-mail: dzk@psu.edu; Tang, Liguo [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Cao, Wenwu, E-mail: yuzhang@xmu.edu.cn, E-mail: dzk@psu.edu [Department of Mathematics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Li, Songhai [Sanya Key Laboratory of Marin Mammal and Marine Bioacoustics, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya 57200 (China); Zhang, Sai [Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2016-07-04

    A biomimetic projector (BioP) based on computerized tomography of pygmy sperm whale's biosonar system has been designed using gradient-index (GRIN) material. The directivity of this BioP device was investigated as function of frequency and the velocity gradient of the GRIN material. A strong beam control over a broad bandwidth at the subwavelength scale has been achieved. Compared with a bare subwavelength source, the main lobe pressure of the BioP is about five times as high and the angular resolution is one order of magnitude better. Our results indicate that this BioP has excellent application potential in miniaturized underwater sonars.

  7. Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy.

    Science.gov (United States)

    Jia, Yali; Sheng, Zonghai; Hu, Dehong; Yan, Fei; Zhu, Mingting; Gao, Guanhui; Wang, Pan; Liu, Xin; Wang, Xiaobing; Zheng, Hairong

    2018-04-25

    Liposome nanomedicine has been successfully applied for cancer chemotherapy in patients. However, in general, the therapeutic efficacy is confined by its limited accumulation and penetration in solid tumors. Here, we established a biomimetic strategy for the preparation of highly penetrative liposome nanomedicine for enhanced chemotherapeutic efficacy. By applying this unique type of nanomedicine, membrane proteins on the cancer cells are used as highly penetrative targeting ligands. Biomimetic liposomes are highly stable, exhibiting a superior in vitro homologous targeting ability, and a 2.25-fold deeper penetration in 3D tumor spheroids when compared to conventional liposome nanomedicine. The fluorescence/photoacoustic dual-modal imaging approach demonstrated enhanced tumor accumulation and improved tumor penetration of the biomimetic liposome in C6 glioma tumor-bearing nude mice. Following the intravenous administration of biomimetic liposome nanomedicine, the tumor inhibition rate reached up to 93.3%, which was significantly higher when compared to that of conventional liposome nanomedicine (69.3%). Moreover, histopathological analyses demonstrated that biomimetic liposome nanomedicine has limited side effects. Therefore, these results suggested that a cancer cell membrane-based biomimetic strategy may provide a breakthrough approach for enhancing drug penetration and improving treatment efficacy, holding a great promise for further clinical studies.

  8. Biofouling and Design of a Biomimetic Hull-Grooming Tool

    Science.gov (United States)

    2007-09-14

    have barred the use of organotin compounds such as tributyltin ( TBT ) and copper-based paints, which are currently used by the Navy and have become...copper into the water, killing the fouling organisms. There is new research in biomimetic polymers that deter fouling, but are non- toxic . These polymers...is new research in biomimetic polymers that deter fouling, but are non- toxic . These polymers are rigidly attached to the hull surface extending

  9. Small Molecule and Polymer Effects on Bio-mimetic Sensors

    OpenAIRE

    Garcia, Ignacio J.; Branan, Nicole; Wells, Todd A.

    2005-01-01

    Formation of biomimetic membranes for the purpose of producing a protein based infrared biosensor has proven to be a difficult obstacle. Several methods have been employed and reproducibility is becoming more frequent. The use of polystyrene as an adhesion layer between the biomimetic and diamond surfaces is the most reliable form of reproducibility yet encountered. Unique properties of acetylcholine esterase based biosensors include infrared absorption bands that are not present in either th...

  10. Biomimetic hydrogel materials

    Science.gov (United States)

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  11. Photoexcited iron porphyrin as biomimetic catalysts

    International Nuclear Information System (INIS)

    Bartocci, C.; Maldotti, A.; Varani, G.; Consiglio Nazionale delle Ricerche, Ferrara

    1996-01-01

    Photoexcited iron porphyrins can be of some interest in both fine and industrial chemistry in view of the preparation of new efficient biomimetic catalysts, working with high selectivity under mild temperature and pressure

  12. Biomimetic fabrication and tunable wetting properties of three-dimensional hierarchical ZnO structures by combining soft lithography templated with lotus leaf and hydrothermal treatments

    OpenAIRE

    Dai, Shuxi; Zhang, Dianbo; Shi, Qing; Han, Xiao; Wang, Shujie; Du, Zuliang

    2013-01-01

    Three-dimensional hierarchical ZnO films with lotus-leaf-like micro/nano structures were successfully fabricated via a biomimetic route combining sol-gel technique, soft lithography and hydrothermal treatments. PDMS mold replicated from a fresh lotus leaf was used to imprint microscale pillar structures directly into a ZnO sol film. Hierarchical ZnO micro/nano structures were subsequently fabricated by a low-temperature hydrothermal growth of secondary ZnO nanorod arrays on the micro-structur...

  13. Structure, biomimetics, and fluid dynamics of fish skin surfaces*

    Science.gov (United States)

    Lauder, George V.; Wainwright, Dylan K.; Domel, August G.; Weaver, James C.; Wen, Li; Bertoldi, Katia

    2016-10-01

    The interface between the fluid environment and the surface of the body in swimming fishes is critical for both physiological and hydrodynamic functions. The skin surface in most species of fishes is covered with bony scales or toothlike denticles (in sharks). Despite the apparent importance of fish surfaces for understanding aquatic locomotion and near-surface boundary layer flows, relatively little attention has been paid to either the nature of surface textures in fishes or possible hydrodynamic effects of variation in roughness around the body surface within an individual and among species. Fish surfaces are remarkably diverse and in many bony fishes scales can have an intricate surface texture with projections, ridges, and comblike extensions. Shark denticles (or scales) are toothlike and project out of the skin to form a complexly textured surface that interacts with free-stream flow. Manufacturing biomimetic foils with fishlike surfaces allows hydrodynamic testing and we emphasize here the importance of dynamic test conditions where the effect of surface textures is assessed under conditions of self-propulsion. We show that simple two-dimensional foils with patterned cuts do not perform as well as a smooth control surface, but that biomimetic shark skin foils can swim at higher self-propelled speeds than smooth controls. When the arrangement of denticles on the foil surface is altered, we find that a staggered-overlapped pattern outperforms other arrangements. Flexible foils made of real shark skin outperform sanded controls when foils are moved with a biologically realistic motion program. We suggest that focus on the mechanisms of drag reduction by fish surfaces has been too limiting and an additional role of fish surface textures may be to alter leading edge vortices and flow patterns on moving surfaces in a way that enhances thrust. Analysis of water flow over an artificial shark skin foil under both static and dynamic conditions shows that a shear layer

  14. Energy-based and biomimetic robotics

    NARCIS (Netherlands)

    Folkertsma, Gerrit Adriaan

    2017-01-01

    All physical systems interact by exchanging power, or energy. This energy can be explicitly taken into account when designing robotic systems, in dynamic models of systems and controllers, leading to more insight in energy-related effects. In this thesis, a biomimetic cheetah robot is developed, by

  15. Phospholipid-sepiolite biomimetic interfaces for the immobilization of enzymes.

    Science.gov (United States)

    Wicklein, Bernd; Darder, Margarita; Aranda, Pilar; Ruiz-Hitzky, Eduardo

    2011-11-01

    Biomimetic interfaces based on phosphatidylcholine (PC) assembled to the natural silicate sepiolite were prepared for the stable immobilization of the urease and cholesterol oxidase enzymes. This is an important issue in practical advanced applications such as biocatalysis or biosensing. The supported lipid bilayer (BL-PC), prepared from PC adsorption, was used for immobilization of enzymes and the resulting biomimetic systems were compared to several other supported layers including a lipid monolayer (ML-PC), a mixed phosphatidylcholine/octyl-galactoside layer (PC-OGal), a cetyltrimethylammonium monolayer (CTA), and also to the bare sepiolite surface. Interfacial characteristics of these layers were investigated with a focus on layer packing density, hydrophilicity/hydrophobicity, and surface charge, which are being considered as key points for enzyme immobilization and stabilization of their biological activity. Cytoplasmic urease and membrane-bound cholesterol oxidase, which served as model enzymes, were immobilized on the different PC-based hybrid materials to probe their biomimetic character. Enzymatic activity was assessed by cyclic voltammetry and UV-vis spectrophotometry. The resulting enzyme/bio-organoclay hybrids were applied as active phase of a voltammetric urea biosensor and cholesterol bioreactor, respectively. Urease supported on sepiolite/BL-PC proved to maintain its enzymatic activity over several months while immobilized cholesterol oxidase demonstrated high reusability as biocatalyst. The results emphasize the good preservation of bioactivity due to the accommodation of the enzymatic system within the biomimetic lipid interface on sepiolite.

  16. Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays

    KAUST Repository

    Wei, Yaguang; Wu, Wenzhuo; Guo, Rui; Yuan, Dajun; Das, Suman; Wang, Zhong Lin

    2010-01-01

    -synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass

  17. Cosmeceutical product consisting of biomimetic peptides: antiaging effects in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Gazitaeva ZI

    2017-01-01

    Full Text Available Zarema I Gazitaeva,1 Anna O Drobintseva,2 Yongji Chung,3 Victoria O Polyakova,2 Igor M Kvetnoy2 1Institute of Beauty Fijie, Moscow, 2Department of Pathomorphology, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg, Russian Federation; 3Caregen Co., Ltd. Research Center, Seoul, South Korea Background: Biomimetic peptides are synthetic compounds that are identical to amino acid sequence synthesized by an organism and can interact with growth factor receptors and provide antiaging clinical effects.Purpose: The purpose of this study was to investigate the effects of biomimetic peptides on the repair processes in the dermis using a model of cell cultures and in vivo.Patients and methods: Five female volunteers were subjected to the injection of biomimetic peptides 1 month prior to the abdominoplasty procedure. Cell culture, immunocytochemistry, and confocal microscopy methods were used in this study.Results: Biomimetic peptides regulate the synthesis of proteins Ki-67, type I procollagen, AP-1, and SIRT6 in cell cultures of human fibroblasts. They contribute to the activation of regeneration processes and initiation of mechanisms that prevent aging. Intradermal administration of complex of biomimetic peptides produces a more dense arrangement of collagen fibers in the dermis and increased size of the fibers after 2 weeks. The complex of biomimetic peptides was effective in the in vivo experiments, where an increase in the proliferative and synthetic activities of fibroblasts was observed.Conclusion: This investigation showed that the studied peptides have biological effects, testifying the stimulation of reparative processes in the skin under their control. Keywords: biomimetic peptides, skin aging, collagen, reparation processes, mesotherapy

  18. A review of underwater bio-mimetic propulsion: cruise and fast-start

    Science.gov (United States)

    Chao, Li-Ming; Cao, Yong-Hui; Pan, Guang

    2017-08-01

    This paper reviews recent developments in the understanding of underwater bio-mimetic propulsion. Two impressive models of underwater propulsion are considered: cruise and fast-start. First, we introduce the progression of bio-mimetic propulsion, especially underwater propulsion, where some primary conceptions are touched upon. Second, the understanding of flapping foils, considered as one of the most efficient cruise styles of aquatic animals, is introduced, where the effect of kinematics and the shape and flexibility of foils on generating thrust are elucidated respectively. Fast-start propulsion is always exhibited when predator behaviour occurs, and we provide an explicit introduction of corresponding zoological experiments and numerical simulations. We also provide some predictions about underwater bio-mimetic propulsion.

  19. A review of underwater bio-mimetic propulsion: cruise and fast-start

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Li-Ming; Cao, Yong-Hui; Pan, Guang, E-mail: PanGuang_010@163.com [School of Marine Science and Technology, Northwestern Polytechnical University, Xian 710072 (China)

    2017-08-15

    This paper reviews recent developments in the understanding of underwater bio-mimetic propulsion. Two impressive models of underwater propulsion are considered: cruise and fast-start. First, we introduce the progression of bio-mimetic propulsion, especially underwater propulsion, where some primary conceptions are touched upon. Second, the understanding of flapping foils, considered as one of the most efficient cruise styles of aquatic animals, is introduced, where the effect of kinematics and the shape and flexibility of foils on generating thrust are elucidated respectively. Fast-start propulsion is always exhibited when predator behaviour occurs, and we provide an explicit introduction of corresponding zoological experiments and numerical simulations. We also provide some predictions about underwater bio-mimetic propulsion. (review)

  20. Particle sorting by Paramecium cilia arrays.

    Science.gov (United States)

    Mayne, Richard; Whiting, James G H; Wheway, Gabrielle; Melhuish, Chris; Adamatzky, Andrew

    Motile cilia are cell-surface organelles whose purposes, in ciliated protists and certain ciliated metazoan epithelia, include generating fluid flow, sensing and substance uptake. Certain properties of cilia arrays, such as beating synchronisation and manipulation of external proximate particulate matter, are considered emergent, but remain incompletely characterised despite these phenomena having being the subject of extensive modelling. This study constitutes a laboratory experimental characterisation of one of the emergent properties of motile cilia: manipulation of adjacent particulates. The work demonstrates through automated videomicrographic particle tracking that interactions between microparticles and somatic cilia arrays of the ciliated model organism Paramecium caudatum constitute a form of rudimentary 'sorting'. Small particles are drawn into the organism's proximity by cilia-induced fluid currents at all times, whereas larger particles may be held immobile at a distance from the cell margin when the cell generates characteristic feeding currents in the surrounding media. These findings can contribute to the design and fabrication of biomimetic cilia, with potential applications to the study of ciliopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Comparison of Computational and Experimental Microphone Array Results for an 18%-Scale Aircraft Model

    Science.gov (United States)

    Lockard, David P.; Humphreys, William M.; Khorrami, Mehdi R.; Fares, Ehab; Casalino, Damiano; Ravetta, Patricio A.

    2015-01-01

    An 18%-scale, semi-span model is used as a platform for examining the efficacy of microphone array processing using synthetic data from numerical simulations. Two hybrid RANS/LES codes coupled with Ffowcs Williams-Hawkings solvers are used to calculate 97 microphone signals at the locations of an array employed in the NASA LaRC 14x22 tunnel. Conventional, DAMAS, and CLEAN-SC array processing is applied in an identical fashion to the experimental and computational results for three different configurations involving deploying and retracting the main landing gear and a part span flap. Despite the short time records of the numerical signals, the beamform maps are able to isolate the noise sources, and the appearance of the DAMAS synthetic array maps is generally better than those from the experimental data. The experimental CLEAN-SC maps are similar in quality to those from the simulations indicating that CLEAN-SC may have less sensitivity to background noise. The spectrum obtained from DAMAS processing of synthetic array data is nearly identical to the spectrum of the center microphone of the array, indicating that for this problem array processing of synthetic data does not improve spectral comparisons with experiment. However, the beamform maps do provide an additional means of comparison that can reveal differences that cannot be ascertained from spectra alone.

  2. An efficient biomimetic coating methodology for a prosthetic alloy

    International Nuclear Information System (INIS)

    Adawy, Alaa; Abdel-Fattah, Wafa I.

    2013-01-01

    The combination of the load-bearing metallic implants with the bioactive materials in the design of synthetic implants is an important aspect in the biomaterials research. Biomimetic coating of bioinert alloys with calcium phosphate phases provides a good alternative to the prerequisite for the continual replacement of implants because of the failure of bone-implant integration. We attempted to accelerate the biomimetic coating process of stainless steel alloy (316L) with biomimetic apatite. In addition, we investigated the incorporation of functioning minerals such as strontianite and smithsonite into the deposited layer. In order to develop a highly mature apatite coating, our method requires soaking of the pre-treated alloy in highly concentrated synthetic body fluid for only few hours. Surface characterizations were performed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Also, the deposited apatitic layers were analysed by powder diffraction X-ray analysis (XRD). 316L surface showed the growth of highly crystalline, low carbonated hydroxyapatite, after only 6 h of the whole soaking process. Highlights: ► The manuscript describes a fast and efficient biomimetic coating methodology. ► This methodology can be used for metallic implants. ► 316L was coated with crystalline hydroxyapatite. ► Addition of strontium and zinc lead to the deposition of brushite. ► Coating of all synthetic solutions is highly crystalline

  3. Development of solid supports for electrochemical study of biomimetic membrane systems

    DEFF Research Database (Denmark)

    Mech-Dorosz, Agnieszka

    cushion directly on a gold electrode microchip and on a polyethersulfone (PES) support grafted by in situ polymerized hydrogel. Both strategies proved to be suitable for immobilization of functional bRh loaded lipo-polymersomes. Amperometric monitoring showed that the PES membrane support facilitated......Biomimetic membranes are model membrane systems used as an experimental tool to study fundamental cellular membrane physics and functionality of reconstituted membrane proteins. By exploiting the properties of biomimetic membranes resembling the functions of biological membranes, it is possible...... to construct biosensors for high-throughput screening of potential drug candidates. Among a variety of membrane model systems used for biomimetic approach, lipid bilayers in the form of black lipid membranes (BLMs) and lipo-polymersomes (vesicle structures composed of lipids and polymers), both...

  4. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    Zhou, Changchun; Ye, Xingjiang; Fan, Yujiang; Tan, Yanfei; Qing, Fangzu; Zhang, Xingdong; Ma, Liang

    2014-01-01

    A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds. (papers)

  5. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    Directory of Open Access Journals (Sweden)

    Nocerino N

    2014-03-01

    Full Text Available Nunzia Nocerino,1 Andrea Fulgione,1 Marco Iannaccone,1 Laura Tomasetta,1 Flora Ianniello,1 Francesca Martora,1 Marco Lelli,2 Norberto Roveri,2 Federico Capuano,3 Rosanna Capparelli1 1Department of Agriculture Special Biotechnology Center Federico II, CeBIOTEC Biotechnology, University of Naples Federico II, Naples, 2Department of Chemistry, G Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, 3Department of Food Inspection IZS ME, Naples, Italy Abstract: The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA. We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. Keywords: lactoferrin, hydroxyapatite nanocrystals, biomimetism, biological activity, drug delivery

  6. ArrayBridge: Interweaving declarative array processing with high-performance computing

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Haoyuan [The Ohio State Univ., Columbus, OH (United States); Floratos, Sofoklis [The Ohio State Univ., Columbus, OH (United States); Blanas, Spyros [The Ohio State Univ., Columbus, OH (United States); Byna, Suren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prabhat, Prabhat [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Kesheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Paul [Paradigm4, Inc., Waltham, MA (United States)

    2017-05-04

    Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aims to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.

  7. Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Visan, A. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Grossin, D. [CIRIMAT – Carnot Institute, University of Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4 (France); Stefan, N.; Duta, L.; Miroiu, F.M. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Stan, G.E. [National Institute of Materials Physics, RO-077125, Magurele-Ilfov (Romania); Sopronyi, M.; Luculescu, C. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Freche, M.; Marsan, O.; Charvilat, C. [CIRIMAT – Carnot Institute, University of Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4 (France); Ciuca, S. [Politehnica University of Bucharest, Faculty of Materials Science and Engineering, Bucharest (Romania); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania)

    2014-02-15

    Highlights: • We report the deposition by MAPLE of biomimetic apatite coatings on Ti substrates. • This is the first report of MAPLE deposition of hydrated biomimetic apatite films. • Biomimetic apatite powder was synthesized by double decomposition process. • Non-apatitic environments, of high surface reactivity, are preserved post-deposition. • We got the MAPLE complete transfer as thin film of a hydrated, delicate material. -- Abstract: We report the deposition by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique of biomimetic nanocrystalline apatite coatings on titanium substrates, with potential application in tissue engineering. The targets were prepared from metastable, nanometric, poorly crystalline apatite powders, analogous to mineral bone, synthesized through a biomimetic approach by double decomposition process. For the deposition of thin films, a KrF* excimer laser source was used (λ = 248 nm, τ{sub FWHM} ≤ 25 ns). The analyses revealed the existence, in synthesized powders, of labile non-apatitic mineral ions, associated with the formation of a hydrated layer at the surface of the nanocrystals. The thin film analyses showed that the structural and chemical nature of the nanocrystalline apatite was prevalently preserved. The perpetuation of the non-apatitic environments was also observed. The study indicated that MAPLE is a suitable technique for the congruent transfer of a delicate material, such as the biomimetic hydrated nanohydroxyapatite.

  8. Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications

    International Nuclear Information System (INIS)

    Visan, A.; Grossin, D.; Stefan, N.; Duta, L.; Miroiu, F.M.; Stan, G.E.; Sopronyi, M.; Luculescu, C.; Freche, M.; Marsan, O.; Charvilat, C.; Ciuca, S.; Mihailescu, I.N.

    2014-01-01

    Highlights: • We report the deposition by MAPLE of biomimetic apatite coatings on Ti substrates. • This is the first report of MAPLE deposition of hydrated biomimetic apatite films. • Biomimetic apatite powder was synthesized by double decomposition process. • Non-apatitic environments, of high surface reactivity, are preserved post-deposition. • We got the MAPLE complete transfer as thin film of a hydrated, delicate material. -- Abstract: We report the deposition by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique of biomimetic nanocrystalline apatite coatings on titanium substrates, with potential application in tissue engineering. The targets were prepared from metastable, nanometric, poorly crystalline apatite powders, analogous to mineral bone, synthesized through a biomimetic approach by double decomposition process. For the deposition of thin films, a KrF* excimer laser source was used (λ = 248 nm, τ FWHM ≤ 25 ns). The analyses revealed the existence, in synthesized powders, of labile non-apatitic mineral ions, associated with the formation of a hydrated layer at the surface of the nanocrystals. The thin film analyses showed that the structural and chemical nature of the nanocrystalline apatite was prevalently preserved. The perpetuation of the non-apatitic environments was also observed. The study indicated that MAPLE is a suitable technique for the congruent transfer of a delicate material, such as the biomimetic hydrated nanohydroxyapatite

  9. From a meso- to micro-scale connectome: Array Tomography and mGRASP

    Directory of Open Access Journals (Sweden)

    Jinhyun eKim

    2015-06-01

    Full Text Available Mapping mammalian synaptic connectivity has long been an important goal of neuroscience because knowing how neurons and brain areas are connected underpins an understanding of brain function. Meeting this goal requires advanced techniques with single synapse resolution and large-scale capacity, especially at multiple scales tethering the meso- and micro-scale connectome. Among several advanced LM-based connectome technologies, Array Tomography (AT and mammalian GFP-Reconstitution Across Synaptic Partners (mGRASP can provide relatively high-throughput mapping synaptic connectivity at multiple scales. AT- and mGRASP-assisted circuit mapping (ATing and mGRASPing, combined with techniques such as retrograde virus, brain clearing techniques, and activity indicators will help unlock the secrets of complex neural circuits. Here, we discuss these useful new tools to enable mapping of brain circuits at multiple scales, some functional implications of spatial synaptic distribution, and future challenges and directions of these endeavors.

  10. Challenges in Commercializing Biomimetic Membranes.

    Science.gov (United States)

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine; Braekevelt, Sylvie; Lauritzen, Karsten; Hélix-Nielsen, Claus

    2015-11-05

    The discovery of selective water channel proteins-aquaporins-has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market-in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes.

  11. Major Intrinsic Proteins in Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2010-01-01

    or as sensor devices based on e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix....../separation technology, a unique class of membrane transport proteins is especially interesting the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells...... internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 109 molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other...

  12. Biomimetic nanoparticles: preparation, characterization and biomedical applications

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2010-04-01

    Full Text Available Ana Maria Carmona-RibeiroBiocolloids Lab, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, BrazilAbstract: Mimicking nature is a powerful approach for developing novel lipid-based devices for drug and vaccine delivery. In this review, biomimetic assemblies based on natural or synthetic lipids by themselves or associated to silica, latex or drug particles will be discussed. In water, self-assembly of lipid molecules into supramolecular structures is fairly well understood. However, their self-assembly on a solid surface or at an interface remains poorly understood. In certain cases, hydrophobic drug granules can be dispersed in aqueous solution via lipid adsorption surrounding the drug particles as nanocapsules. In other instances, hydrophobic drug molecules attach as monomers to borders of lipid bilayer fragments providing drug formulations that are effective in vivo at low drug-to-lipid-molar ratio. Cationic biomimetic particles offer suitable interfacial environment for adsorption, presentation and targeting of biomolecules in vivo. Thereby antigens can effectively be presented by tailored biomimetic particles for development of vaccines over a range of defined and controllable particle sizes. Biomolecular recognition between receptor and ligand can be reconstituted by means of receptor immobilization into supported lipidic bilayers allowing isolation and characterization of signal transduction steps.Keywords: cationic lipid, phospholipids, bilayer fragments, vesicles, silica, polymeric particles, antigens, novel cationic immunoadjuvants, drugs

  13. Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization

    DEFF Research Database (Denmark)

    Zhao, Yang; Qiu, Changquan; Li, Xuesong

    2012-01-01

    -free ABMs that can be easily scaled up. In the current study, a thin film composite (TFC) ABM was prepared by the interfacial polymerization method, where AquaporinZ-containing proteoliposomes were added to the m-phenylene-diamine aqueous solution. Control membranes, either without aquaporins......Aquaporins are water channel proteins with excellent water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... or with inactive (mutant) aquaporins, were also similarly prepared. The separation performance of these membranes was evaluated by cross-flow reverse osmosis (RO) tests. Compared to the controls, the active ABM achieved significantly higher water permeability (∼4L/m2hbar) with comparable NaCl rejection (∼97...

  14. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns

    Science.gov (United States)

    Tikhomirov, Grigory; Petersen, Philip; Qian, Lulu

    2017-12-01

    Self-assembled DNA nanostructures enable nanometre-precise patterning that can be used to create programmable molecular machines and arrays of functional materials. DNA origami is particularly versatile in this context because each DNA strand in the origami nanostructure occupies a unique position and can serve as a uniquely addressable pixel. However, the scale of such structures has been limited to about 0.05 square micrometres, hindering applications that demand a larger layout and integration with more conventional patterning methods. Hierarchical multistage assembly of simple sets of tiles can in principle overcome this limitation, but so far has not been sufficiently robust to enable successful implementation of larger structures using DNA origami tiles. Here we show that by using simple local assembly rules that are modified and applied recursively throughout a hierarchical, multistage assembly process, a small and constant set of unique DNA strands can be used to create DNA origami arrays of increasing size and with arbitrary patterns. We illustrate this method, which we term ‘fractal assembly’, by producing DNA origami arrays with sizes of up to 0.5 square micrometres and with up to 8,704 pixels, allowing us to render images such as the Mona Lisa and a rooster. We find that self-assembly of the tiles into arrays is unaffected by changes in surface patterns on the tiles, and that the yield of the fractal assembly process corresponds to about 0.95m - 1 for arrays containing m tiles. When used in conjunction with a software tool that we developed that converts an arbitrary pattern into DNA sequences and experimental protocols, our assembly method is readily accessible and will facilitate the construction of sophisticated materials and devices with sizes similar to that of a bacterium using DNA nanostructures.

  15. Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available The combination of nanotechnology, biology, and bioengineering greatly improved the developments of nanomaterials with unique functions and properties. Biomolecules as the nanoscale building blocks play very important roles for the final formation of functional nanostructures. Many kinds of novel nanostructures have been created by using the bioinspired self-assembly and subsequent binding with various nanoparticles. In this review, we summarized the studies on the fabrications and sensor applications of biomimetic nanostructures. The strategies for creating different bottom-up nanostructures by using biomolecules like DNA, protein, peptide, and virus, as well as microorganisms like bacteria and plant leaf are introduced. In addition, the potential applications of the synthesized biomimetic nanostructures for colorimetry, fluorescence, surface plasmon resonance, surface-enhanced Raman scattering, electrical resistance, electrochemistry, and quartz crystal microbalance sensors are presented. This review will promote the understanding of relationships between biomolecules/microorganisms and functional nanomaterials in one way, and in another way it will guide the design and synthesis of biomimetic nanomaterials with unique properties in the future.

  16. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.

    Science.gov (United States)

    Marras, Stefano; Porfiri, Maurizio

    2012-08-07

    The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its 'engineered' member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a 'dummy'. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot-animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour.

  17. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading

    Science.gov (United States)

    Hu, Qiao; Wu, Han; Sun, Jia; Yan, Donghang; Gao, Yongli; Yang, Junliang

    2016-02-01

    Organic-inorganic hybrid halide perovskite nanowires (PNWs) show great potential applications in electronic and optoelectronic devices such as solar cells, field-effect transistors and photodetectors. It is very meaningful to fabricate ordered, large-area PNW arrays and greatly accelerate their applications and commercialization in electronic and optoelectronic devices. Herein, highly oriented and ultra-long methylammonium lead iodide (CH3NH3PbI3) PNW array thin films were fabricated by large-scale roll-to-roll (R2R) micro-gravure printing and doctor blading in ambient environments (humility ~45%, temperature ~28 °C), which produced PNW lengths as long as 15 mm. Furthermore, photodetectors based on these PNWs were successfully fabricated on both silicon oxide (SiO2) and flexible polyethylene terephthalate (PET) substrates and showed moderate performance. This study provides low-cost, large-scale techniques to fabricate large-area PNW arrays with great potential applications in flexible electronic and optoelectronic devices.Organic-inorganic hybrid halide perovskite nanowires (PNWs) show great potential applications in electronic and optoelectronic devices such as solar cells, field-effect transistors and photodetectors. It is very meaningful to fabricate ordered, large-area PNW arrays and greatly accelerate their applications and commercialization in electronic and optoelectronic devices. Herein, highly oriented and ultra-long methylammonium lead iodide (CH3NH3PbI3) PNW array thin films were fabricated by large-scale roll-to-roll (R2R) micro-gravure printing and doctor blading in ambient environments (humility ~45%, temperature ~28 °C), which produced PNW lengths as long as 15 mm. Furthermore, photodetectors based on these PNWs were successfully fabricated on both silicon oxide (SiO2) and flexible polyethylene terephthalate (PET) substrates and showed moderate performance. This study provides low-cost, large-scale techniques to fabricate large-area PNW arrays

  18. Desalination by biomimetic aquaporin membranes: Review of status and prospects

    DEFF Research Database (Denmark)

    Tang, C.Y.; Zhao, Y.; Wang, R.

    2013-01-01

    Based on their unique combination of offering high water permeability and high solute rejection aquaporin proteins have attracted considerable interest over the last years as functional building blocks of biomimetic membranes for water desalination and reuse. The purpose of this review is to prov......Based on their unique combination of offering high water permeability and high solute rejection aquaporin proteins have attracted considerable interest over the last years as functional building blocks of biomimetic membranes for water desalination and reuse. The purpose of this review...... is to provide an overview of the properties of aquaporins, their preparation and characterization. We discuss the challenges in exploiting the remarkable properties of aquaporin proteins for membrane separation processes and we present various attempts to construct aquaporin in membranes for desalination......; including an overview of our own recent developments in aquaporin-based membranes. Finally we outline future prospects of aquaporin based biomimetic membrane for desalination and water reuse....

  19. Biomimetic self-assembly of a functional asymmetrical electronic device.

    Science.gov (United States)

    Boncheva, Mila; Gracias, David H; Jacobs, Heiko O; Whitesides, George M

    2002-04-16

    This paper introduces a biomimetic strategy for the fabrication of asymmetrical, three-dimensional electronic devices modeled on the folding of a chain of polypeptide structural motifs into a globular protein. Millimeter-size polyhedra-patterned with logic devices, wires, and solder dots-were connected in a linear string by using flexible wire. On self-assembly, the string folded spontaneously into two domains: one functioned as a ring oscillator, and the other one as a shift register. This example demonstrates that biomimetic principles of design and self-organization can be applied to generate multifunctional electronic systems of complex, three-dimensional architecture.

  20. Phased Array Noise Source Localization Measurements of an F404 Nozzle Plume at Both Full and Model Scale

    Science.gov (United States)

    Podboy, Gary G.; Bridges, James E.; Henderson, Brenda S.

    2010-01-01

    A 48-microphone planar phased array system was used to acquire jet noise source localization data on both a full-scale F404-GE-F400 engine and on a 1/4th scale model of a F400 series nozzle. The full-scale engine test data show the location of the dominant noise sources in the jet plume as a function of frequency for the engine in both baseline (no chevron) and chevron configurations. Data are presented for the engine operating both with and without afterburners. Based on lessons learned during this test, a set of recommendations are provided regarding how the phased array measurement system could be modified in order to obtain more useful acoustic source localization data on high-performance military engines in the future. The data obtained on the 1/4th scale F400 series nozzle provide useful insights regarding the full-scale engine jet noise source mechanisms, and document some of the differences associated with testing at model-scale versus fullscale.

  1. Molecular motor assembly of a biomimetic system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Active biological molecules and functional structures can be fabricated into a bio-mimetic system by using molecular assembly method. Such materials can be used for the drug delivery, disease diagnosis and therapy, and new nanodevice construction.

  2. AlpArray - technical strategies for large-scale European co-operation in broadband seismology

    Science.gov (United States)

    Brisbourne, A.; Clinton, J.; Hetenyi, G.; Pequegnat, C.; Wilde-Piorko, M.; Villasenor, A.; Comelli, P.; AlpArray Working Group

    2012-04-01

    AlpArray is a new initiative to study the greater Alpine area with a large-scale broadband seismological network. The interested parties (currently 32 institutes in 12 countries) plan to combine their existing infrastructures into an all-out transnational effort that includes data acquisition, processing, imaging and interpretation. The experiment will encompass the greater Alpine area, from the Black Forest in the north to the Northern Apennines in the south and from the Pannonian Basin in the east to the French Massif Central in the west. We aim to cover this region with high-quality broadband seismometers by combining the ~400 existing permanent stations with an additional 400+ instruments from mobile pools. In this way, we plan to achieve homogeneous and high resolution coverage while also deploying densely spaced stations along swaths across key parts of the Alpine chain. These efforts on land will be combined with deployments of ocean bottom seismometers in the Mediterranean Sea. Significant progress has already been made in outlining the scientific goals and funding strategy. A brief overview of these aspects of the initiative will be presented here. However, we will concentrate on the technical aspects: How efficient large-scale integration of existing infrastructures can be achieved. Existing permanent station coverage within the greater Alpine area has been collated and assessed for data availability, allowing strategies to be developed for network densification to ensure a robust backbone network: An anticipated deployment strategy has been drawn up to optimise array coverage and data quality. The augmented backbone network will be supplemented by more densely spaced temporary arrays targeting more specific scientific questions. For these temporary arrays, a strategy document has been produced to outline standards for station installation, data acquisition, processing, archival and dissemination. All these operations are of course vital. However, data

  3. Biomimetic Designs Inspired by Seashells-Seashells Helping ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 6. Biomimetic Designs Inspired by Seashells - Seashells Helping Engineers Design Better Ceramics. Kiran Akella. General Article Volume 17 Issue 6 June 2012 pp 573-591 ...

  4. Biomimetic engineering of colloidal nanoarchitectures with "in vitro" and "in vivo" functionality

    OpenAIRE

    Einfalt, Tomaž

    2017-01-01

    Biomimetic engineering opens unprecedented possibilities of combining biomolecules (i.e. proteins, DNA, polysaccharides) with synthetic materials (i.e. synthetic polymers). This combination results in unique hybrid systems with functionalities that mimic processes in living organisms. While the translational value of functional biomimetically engineered structures is of exceptional importance in fields such as technology, engineering, chemistry, biology and medicine, due to the properties the...

  5. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    Science.gov (United States)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; hide

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  6. The cosmology large angular scale surveyor (CLASS): 38-GHz detector array of bolometric polarimeters

    Science.gov (United States)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennet, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F.; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakula, John; Kogut, Alan J.; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D.; Miller, Nathan; Moseley, Samuel H.; Novak, Giles; Reintsema, Carl; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2014-07-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  7. A Biomimetic Haptic Sensor

    OpenAIRE

    Ben Mitchinson; Ian Gilhespy; Chris Melhuish; Mokhtar Nibouche; Tony J. Prescott; Anthony G. Pipe; Martin J. Pearson

    2008-01-01

    The design and implementation of the periphery of an artificial whisker sensory system is presented. It has been developed by adopting a biomimetic approach to model the structure and function of rodent facial vibrissae. The artificial vibrissae have been formed using composite materials and have the ability to be actively moved or whisked. The sensory structures at the root of real vibrissae has been modelled and implemented using micro strain gauges and Digital Signal Processors. The primar...

  8. Wear Behavior of Medium Carbon Steel with Biomimetic Surface Under Starved Lubricated Conditions

    Science.gov (United States)

    Zhang, Zhihui; Shao, Feixian; Liang, Yunhong; Lin, Pengyu; Tong, Xin; Ren, Luquan

    2017-07-01

    Friction and wear under starved lubrication condition are both key life-related factors for mechanical performance of many structural parts. In this paper, different surface morphologies on medium carbon steel were fabricated using laser, inspired by the surface coupling effect of biological system. The friction and sliding wear behaviors of biomimetic specimens (characterized by convex and concave units on the specimen surface) were studied under starved lubrication condition. The stress distribution on different sliding surfaces under sliding friction was studied using finite element method. The results showed that the tribological performance of studied surfaces under starved lubrication condition depended not only on the surface morphology but also on the structure of biomimetic units below surface (subsurface structure). The friction coefficient of biomimetic surface was effectively reduced by the concave unit depth, while the refined microstructure with higher hardness led to the much better wear resistance. In addition to lubricant reserving and wear debris trapping effect derived from the surface concave morphology, it was believed that the well-formed subsurface structure of biomimetic units could carry much heavy loads against tribopair, which enhanced the function of surface topography and resulted in complementary lubrication in the wear contact area. The uniform stress distribution on the entire biomimetic surface also played an important role in stabilizing the friction coefficient and reducing the wear cracks.

  9. Numerical Simulations and Experimental Measurements of Scale-Model Horizontal Axis Hydrokinetic Turbines (HAHT) Arrays

    Science.gov (United States)

    Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto

    2014-11-01

    The performance, turbulent wake evolution and interaction of multiple Horizontal Axis Hydrokinetic Turbines (HAHT) is analyzed in a 45:1 scale model setup. We combine experimental measurements with different RANS-based computational simulations that model the turbines with sliding-mesh, rotating reference frame and blame element theory strategies. The influence of array spacing and Tip Speed Ratio on performance and wake velocity structure is investigated in three different array configurations: Two coaxial turbines at different downstream spacing (5d to 14d), Three coaxial turbines with 5d and 7d downstream spacing, and Three turbines with lateral offset (0.5d) and downstream spacing (5d & 7d). Comparison with experimental measurements provides insights into the dynamics of HAHT arrays, and by extension to closely packed HAWT arrays. The experimental validation process also highlights the influence of the closure model used (k- ω SST and k- ɛ) and the flow Reynolds number (Re=40,000 to 100,000) on the computational predictions of devices' performance and characteristics of the flow field inside the above-mentioned arrays, establishing the strengths and limitations of existing numerical models for use in industrially-relevant settings (computational cost and time). Supported by DOE through the National Northwest Marine Renewable Energy Center (NNMREC).

  10. Green Tribology Biomimetics, Energy Conservation and Sustainability

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    Tribology is the study of friction, wear and lubrication. Recently, the concept of “green tribology” as “the science and technology of the tribological aspects of ecological balance and of environmental and biological impacts” was introduced. The field of green tribology includes tribological technology that mimics living nature (biomimetic surfaces) and thus is expected to be environmentally friendly, the control of friction and wear that is of importance for energy conservation and conversion, environmental aspects of lubrication and surface modification techniques, and tribological aspects of green applications such as wind-power turbines or solar panels. This book is the first comprehensive volume on green tribology. The chapters are prepared by leading experts in their fields and cover such topics as biomimetics, environmentally friendly lubrication, tribology of wind turbines and renewable sources of energy, and ecological impact of new technologies of surface treatment.

  11. Biomimetics in the design of a robotic exoskeleton for upper limb therapy

    Science.gov (United States)

    Baniqued, Paul Dominick E.; Dungao, Jade R.; Manguerra, Michael V.; Baldovino, Renann G.; Abad, Alexander C.; Bugtai, Nilo T.

    2018-02-01

    Current methodologies in designing robotic exoskeletons for upper limb therapy simplify the complex requirements of the human anatomy. As a result, such devices tend to compromise safety and biocompatibility with the intended user. However, a new design methodology uses biological analogues as inspiration to address these technical issues. This approach follows that of biomimetics, a design principle that uses the extraction and transfer of useful information from natural morphologies and processes to solve technical design issues. In this study, a biomimetic approach in the design of a 5-degree-of-freedom robotic exoskeleton for upper limb therapy was performed. A review of biomimetics was first discussed along with its current contribution to the design of rehabilitation robots. With a proposed methodological framework, the design for an upper limb robotic exoskeleton was generated using CATIA software. The design was inspired by the morphology of the bones and the muscle force transmission of the upper limbs. Finally, a full design assembly presented had integrated features extracted from the biological analogue. The successful execution of a biomimetic design methodology made a case in providing safer and more biocompatible robots for rehabilitation.

  12. Challenges in Commercializing Biomimetic Membranes

    Directory of Open Access Journals (Sweden)

    Mark Perry

    2015-11-01

    Full Text Available The discovery of selective water channel proteins—aquaporins—has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market—in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes.

  13. Design of Self-Oscillating Gels and Application to Biomimetic Actuators

    Directory of Open Access Journals (Sweden)

    Ryo Yoshida

    2010-03-01

    Full Text Available As a novel biomimetic polymer, we have developed polymer gels with an autonomous self-oscillating function. This was achieved by utilizing oscillating chemical reactions, called the Belousov-Zhabotinsky (BZ reaction, which is recognized as a chemical model for understanding several autonomous phenomena in biological systems. Under the coexistence of the reactants, the polymer gel undergoes spontaneous swelling-deswelling changes without any on-off switching by external stimuli. In this review, our recent studies on the self-oscillating polymer gels and application to biomimetic actuators are summarized.

  14. Fabrication of highly porous biodegradable biomimetic nanocomposite as advanced bone tissue scaffold

    OpenAIRE

    Abdalla Abdal-hay; Khalil Abdelrazek Khalil; Abdel Salam Hamdy; Fawzi F. Al-Jassir

    2017-01-01

    Development of bioinspired or biomimetic materials is currently a challenge in the field of tissue regeneration. In-situ 3D biomimetic microporous nanocomposite scaffold has been developed using a simple lyophilization post hydrothermal reaction for bone healing applications. The fabricated 3D porous scaffold possesses advantages of good bonelike apatite particles distribution, thermal properties and high porous interconnected network structure. High dispersion bonelike apatite nanoparticles ...

  15. Online Monitoring of Electrochemical Degradation of Paracetamol through a Biomimetic Sensor

    OpenAIRE

    Mariana Calora Quintino de Oliveira; Marcos Roberto de Vasconcelos Lanza; José Luis Paz Jara; Maria Del Pilar Taboada Sotomayor

    2011-01-01

    This paper reports, for the first time, the online monitoring to the electrochemical degradation of the paracetamol using a biomimetic sensor coupled to a Flow Injection Analysis (FIA) system. The electrochemical degradation of the drug was carried out in aqueous medium using a flow-by reactor with a DSA anode. The process efficiency was monitored at real time by the biomimetic sensor constructed by modifying a glassy carbon electrode with a Nafion membrane doped with iron tetrapyridinoporphy...

  16. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds

    Science.gov (United States)

    Castro, Nathan J.; O'Brien, Joseph; Zhang, Lijie Grace

    2015-08-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  17. Biomimetic actuators using electroactive polymers (EAP) as artificial muscles

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2006-01-01

    Evolution has resolved many of nature's challenges leading to lasting solutions with maximal performance and effective use of resources. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems and many other benefits. The field of mimicking nature is known as Biomimetics and one of its topics includes electroactive polymers that gain the moniker artificial muscles. Integrating EAP with embedded sensors, self-repair and many other capabilities that are used in composite materials can add greatly to the capability of smart biomimetic systems. Such development would enable fascinating possibilities potentially turning science fiction ideas into engineering reality.

  18. A Parallel Modular Biomimetic Cilia Sorting Platform

    Directory of Open Access Journals (Sweden)

    James G. H. Whiting

    2018-03-01

    Full Text Available The aquatic unicellular organism Paramecium caudatum uses cilia to swim around its environment and to graze on food particles and bacteria. Paramecia use waves of ciliary beating for locomotion, intake of food particles and sensing. There is some evidence that Paramecia pre-sort food particles by discarding larger particles, but intake the particles matching their mouth cavity. Most prior attempts to mimic cilia-based manipulation merely mimicked the overall action rather than the beating of cilia. The majority of massive-parallel actuators are controlled by a central computer; however, a distributed control would be far more true-to-life. We propose and test a distributed parallel cilia platform where each actuating unit is autonomous, yet exchanging information with its closest neighboring units. The units are arranged in a hexagonal array. Each unit is a tileable circuit board, with a microprocessor, color-based object sensor and servo-actuated biomimetic cilia actuator. Localized synchronous communication between cilia allowed for the emergence of coordinated action, moving different colored objects together. The coordinated beating action was capable of moving objects up to 4 cm/s at its highest beating frequency; however, objects were moved at a speed proportional to the beat frequency. Using the local communication, we were able to detect the shape of objects and rotating an object using edge detection was performed; however, lateral manipulation using shape information was unsuccessful.

  19. Limits on Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    Science.gov (United States)

    Holzapfel, W. L.; Carlstrom, J. E.; Grego, L.; Holder, G. P.; Joy, M. K.; Reese, E. D.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have used the Berkeley-Illinois-Maryland-Association (BIMA) millimeter array outfitted with sensitive cm-wave receivers to search for Cosmic Microwave Background (CMB) anisotropies on arcminute scales. The interferometer was placed in a compact configuration which produces high brightness sensitivity, while providing discrimination against point sources. Operating at a frequency of 28.5 GHz, the FWHM primary beam of the instrument is 6.6 arcminutes. We have made sensitive images of seven fields, five of which where chosen specifically to have low IR dust contrast and be free of bright radio sources. Additional observations with the Owens Valley Radio Observatory (OVRO) millimeter array were used to assist in the location and removal of radio point sources. Applying a Bayesian analysis to the raw visibility data, we place limits on CMB anisotropy flat-band power Q_flat = 5.6 (+3.0, -5.6) uK and Q_flat < 14.1 uK at 68% and 95% confidence. The sensitivity of this experiment to flat band power peaks at a multipole of l = 5470, which corresponds to an angular scale of approximately 2 arcminutes The most likely value of Q_flat is similar to the level of the expected secondary anisotropies.

  20. Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection

    Directory of Open Access Journals (Sweden)

    Di Di

    2014-01-01

    Full Text Available A simple, fast, and cost-effective method was developed in this paper for the high-throughput fabrication of nanohole arrays on silicon (Si, which is utilized for antireflection. Wafer-scale polystyrene (PS monolayer colloidal crystal was developed as templates by spin-coating method. Metallic shadow mask was prepared by lifting off the oxygen etched PS beads from the deposited chromium film. Nanohole arrays were fabricated by Si dry etching. A series of nanohole arrays were fabricated with the similar diameter but with different depth. It is found that the maximum depth of the Si-hole was determined by the diameter of the Cr-mask. The antireflection ability of these Si-hole arrays was investigated. The results show that the reflection decreases with the depth of the Si-hole. The deepest Si-hole arrays show the best antireflection ability (reflection 600 nm, which was about 28 percent of the nonpatterned silicon wafer’s reflection. The proposed method has the potential for high-throughput fabrication of patterned Si wafer, and the low reflectivity allows the application of these wafers in crystalline silicon solar cells.

  1. Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays

    International Nuclear Information System (INIS)

    Chekini, M.; Bierwagen, J.; Cunningham, A.; Bürgi, T.; Filter, R.; Rockstuhl, C.

    2015-01-01

    Localized surface plasmon resonances excited in metallic nanoparticles confine and enhance electromagnetic fields at the nanoscale. This is particularly pronounced in dimers made from two closely spaced nanoparticles. When quantum emitters, such as dyes, are placed in the gap of those dimers, their absorption and emission characteristics can be modified. Both processes have to be considered when aiming to enhance the fluorescence from the quantum emitters. This is particularly challenging for dimers, since the electromagnetic properties and the enhanced fluorescence sensitively depend on the distance between the nanoparticles. Here, we use a layer-by-layer method to precisely control the distances in such systems. We consider a dye layer deposited on top of an array of gold nanoparticles or integrated into a central position of a double array of gold nanoparticles. We study the effect of the spatial arrangement and the average distance on the plasmon-enhanced fluorescence. We found a maximum of a 99-fold increase in the fluorescence intensity of the dye layer sandwiched between two gold nanoparticle arrays. The interaction of the dye layer with the plasmonic system also causes a spectral shift in the emission wavelengths and a shortening of the fluorescence life times. Our work paves the way for large-scale, high throughput, and low-cost self-assembled functionalized plasmonic systems that can be used as efficient light sources

  2. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.

    2013-01-01

    on top of a support membrane. Control membranes, either without aquaporins or with the inactive AqpZ R189A mutant aquaporin served as controls. The separation performance of the membranes was evaluated by cross-flow forward osmosis (FO) and reverse osmosis (RO) tests. In RO the ABM achieved a water......Aquaporins are water channel proteins with high water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... permeability of ~ 4 L/(m2 h bar) with a NaCl rejection > 97% at an applied hydraulic pressure of 5 bar. The water permeability was ~40% higher compared to a commercial brackish water RO membrane (BW30) and an order of magnitude higher compared to a seawater RO membrane (SW30HR). In FO, the ABMs had > 90...

  3. Wafer-scale fabrication of uniform Si nanowire arrays using the Si wafer with UV/Ozone pretreatment

    International Nuclear Information System (INIS)

    Bai, Fan; Li, Meicheng; Huang, Rui; Yu, Yue; Gu, Tiansheng; Chen, Zhao; Fan, Huiyang; Jiang, Bing

    2013-01-01

    The electroless etching technique combined with the process of UV/Ozone pretreatment is presented for wafer-scale fabrication of the silicon nanowire (SiNW) arrays. The high-level uniformity of the SiNW arrays is estimated by the value below 0.2 of the relative standard deviation of the reflection spectra on the 4-in. wafer. Influence of the UV/Ozone pretreatment on the formation of SiNW arrays is investigated. It is seen that a very thin SiO 2 produced by the UV/Ozone pretreatment improves the uniform nucleation of Ag nanoparticles (NPs) on the Si surface because of the effective surface passivation. Meanwhile, the SiO 2 located among the adjacent Ag NPs can obstruct the assimilation growth of Ag NPs, facilitating the deposition of the uniform and dense Ag NPs catalysts, which induces the formation of the SiNW arrays with good uniformity and high filling ratio. Furthermore, the remarkable antireflective and hydrophobic properties are observed for the SiNW arrays which display great potential in self-cleaning antireflection applications

  4. Effect of medium on friction and wear properties of compacted graphite cast iron processed by biomimetic coupling laser remelting process

    International Nuclear Information System (INIS)

    Guo Qingchun; Zhou Hong; Wang Chengtao; Zhang Wei; Lin Pengyu; Sun Na; Ren Luquan

    2009-01-01

    Stimulated by the cuticles of soil animals, an attempt to improve the wear resistance of compact graphite cast iron (CGI) with biomimetic units on the surface was made by using a biomimetic coupled laser remelting process in air and various thicknesses water film, respectively. The microstructures of biomimetic units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases in the melted zone. Microhardness was measured and the wear behaviors of biomimetic specimens as functions of different mediums as well as various water film thicknesses were investigated under dry sliding condition, respectively. The results indicated that the microstructure zones in the biomimetic specimens processed with water film are refined compared with that processed in air and had better wear resistance increased by 60%, the microhardness of biomimetic units has been improved significantly. The application of water film provided finer microstructures and much more regular grain shape in biomimetic units, which played a key role in improving the friction properties and wear resistance of CGI.

  5. Effect of medium on friction and wear properties of compacted graphite cast iron processed by biomimetic coupling laser remelting process

    Science.gov (United States)

    Guo, Qing-chun; Zhou, Hong; Wang, Cheng-tao; Zhang, Wei; Lin, Peng-yu; Sun, Na; Ren, Luquan

    2009-04-01

    Stimulated by the cuticles of soil animals, an attempt to improve the wear resistance of compact graphite cast iron (CGI) with biomimetic units on the surface was made by using a biomimetic coupled laser remelting process in air and various thicknesses water film, respectively. The microstructures of biomimetic units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases in the melted zone. Microhardness was measured and the wear behaviors of biomimetic specimens as functions of different mediums as well as various water film thicknesses were investigated under dry sliding condition, respectively. The results indicated that the microstructure zones in the biomimetic specimens processed with water film are refined compared with that processed in air and had better wear resistance increased by 60%, the microhardness of biomimetic units has been improved significantly. The application of water film provided finer microstructures and much more regular grain shape in biomimetic units, which played a key role in improving the friction properties and wear resistance of CGI.

  6. Biomimetic synthesis and characterization of semiconducting hybrid

    Indian Academy of Sciences (India)

    Triple hybrid materials based on polyaniline-polyethylene glycol and cadmium sulphide have been prepared by the duffusion–limited biomimetic route and characterized by a number of spectroscopic, XRD, SEM, thermal and electrical measurements. These hybrid materials have been prepared by controlled precipitation of ...

  7. Cupula-Inspired Hyaluronic Acid-Based Hydrogel Encapsulation to Form Biomimetic MEMS Flow Sensors.

    Science.gov (United States)

    Kottapalli, Ajay Giri Prakash; Bora, Meghali; Kanhere, Elgar; Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael S

    2017-07-28

    Blind cavefishes are known to detect objects through hydrodynamic vision enabled by arrays of biological flow sensors called neuromasts. This work demonstrates the development of a MEMS artificial neuromast sensor that features a 3D polymer hair cell that extends into the ambient flow. The hair cell is monolithically fabricated at the center of a 2 μm thick silicon membrane that is photo-patterned with a full-bridge bias circuit. Ambient flow variations exert a drag force on the hair cell, which causes a displacement of the sensing membrane. This in turn leads to the resistance imbalance in the bridge circuit generating a voltage output. Inspired by the biological neuromast, a biomimetic synthetic hydrogel cupula is incorporated on the hair cell. The morphology, swelling behavior, porosity and mechanical properties of the hyaluronic acid hydrogel are characterized through rheology and nanoindentation techniques. The sensitivity enhancement in the sensor output due to the material and mechanical contributions of the micro-porous hydrogel cupula is investigated through experiments.

  8. Immediate and delayed recall of a small-scale spatial array.

    Science.gov (United States)

    Tlauka, Michael; Donaldson, Phillip; Bonnar, Daniel

    2015-01-01

    The study examined people's spatial memory of a small-scale array of objects. Earlier work has primarily relied on short-retention intervals, and to date it is not known whether performance is affected by longer intervals between learning and recall. In the present investigation, university students studied seven target objects. Recall was tested immediately after learning and after an interval of seven days. Performance was found to be similar in the immediate and delayed conditions, and the results suggested that recall was facilitated by egocentric and intrinsic cues. The findings are discussed with reference to recent investigations that have shown task parameters can influence spatial recall.

  9. A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives

    International Nuclear Information System (INIS)

    Sameoto, D; Menon, C

    2009-01-01

    We present a low-cost, large-scale method of fabricating biomimetic dry adhesives. This process is useful because it uses all photosensitive polymers with minimum fabrication costs or complexity to produce molds for silicone-based dry adhesives. A thick-film lift-off process is used to define molds using AZ 9260 photoresist, with a slow acting, deep UV sensitive material, PMGI, used as both an adhesion promoter for the AZ 9260 photoresist and as an undercutting material to produce mushroom-shaped fibers. The benefits to this process are ease of fabrication, wide range of potential layer thicknesses, no special surface treatment requirements to demold silicone adhesives and easy stripping of the full mold if process failure does occur. Sylgard® 184 silicone is used to cast full sheets of biomimetic dry adhesives off 4'' diameter wafers, and different fiber geometries are tested for normal adhesion properties. Additionally, failure modes of the adhesive during fabrication are noted and strategies for avoiding these failures are discussed. We use this fabrication method to produce different fiber geometries with varying cap diameters and test them for normal adhesion strengths. The results indicate that the cap diameters relative to post diameters for mushroom-shaped fibers dominate the adhesion properties

  10. Electrical testing of the full-scale model of the NSTX HHFW antenna array

    International Nuclear Information System (INIS)

    Ryan, P. M.; Swain, D. W.; Wilgen, J. B.; Fadnek, A.; Sparks, D. O.

    1999-01-01

    The 30 MHz high harmonic fast wave (HHFW) antenna array for NSTX consists of 12 current straps, evenly spaced in the toroidal direction. Each pair of straps is connected as a half-wave resonant loop and will be driven by one transmitter, allowing rapid phase shift between transmitters. A decoupling network using shunt stub tuners has been designed to compensate for the mutual inductive coupling between adjacent current straps, effectively isolating the six transmitters from one another. One half of the array, consisting of six full-scale current strap modules, three shunt stub decouplers, and powered by three phase-adjustable rf amplifiers had been built for electrical testing at ORNL. Low power testing includes electrical characterization of the straps, operation and performance of the decoupler system, and mapping of the rf fields in three dimensions

  11. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    Science.gov (United States)

    To, Janet; Torres, Jaume

    2015-08-10

    In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

  12. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    Directory of Open Access Journals (Sweden)

    Janet To

    2015-08-01

    Full Text Available In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

  13. The state of the art in biomimetics

    International Nuclear Information System (INIS)

    Lepora, Nathan F; Prescott, Tony J; Verschure, Paul

    2013-01-01

    Biomimetics is a research field that is achieving particular prominence through an explosion of new discoveries in biology and engineering. The field concerns novel technologies developed through the transfer of function from biological systems. To analyze the impact of this field within engineering and related sciences, we compiled an extensive database of publications for study with network-based information analysis techniques. Criteria included publications by year and journal or conference, and subject areas judged by popular and common terms in titles. Our results reveal that this research area has expanded rapidly from less than 100 papers per year in the 1990s to several thousand papers per year in the first decade of this century. Moreover, this research is having impact across a variety of research themes, spanning robotics, computer science and bioengineering. In consequence, biomimetics is becoming a leading paradigm for the development of new technologies that will potentially lead to significant scientific, societal and economic impact in the near future. (perspective)

  14. The state of the art in biomimetics.

    Science.gov (United States)

    Lepora, Nathan F; Verschure, Paul; Prescott, Tony J

    2013-03-01

    Biomimetics is a research field that is achieving particular prominence through an explosion of new discoveries in biology and engineering. The field concerns novel technologies developed through the transfer of function from biological systems. To analyze the impact of this field within engineering and related sciences, we compiled an extensive database of publications for study with network-based information analysis techniques. Criteria included publications by year and journal or conference, and subject areas judged by popular and common terms in titles. Our results reveal that this research area has expanded rapidly from less than 100 papers per year in the 1990s to several thousand papers per year in the first decade of this century. Moreover, this research is having impact across a variety of research themes, spanning robotics, computer science and bioengineering. In consequence, biomimetics is becoming a leading paradigm for the development of new technologies that will potentially lead to significant scientific, societal and economic impact in the near future.

  15. Couple of biomimetic surfaces with different morphologies for remanufacturing nonuniform wear rail surface

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Yang, Lin; Zhang, Haifeng; Feng, Li; Zhang, Peng

    2018-02-01

    In this work, biomimetic laser treatment was performed on repairing and remanufacturing the nonuniform worn rail surface. The wearing depth distribution of three work regions of a failure rail surface was discussed, and different thickness hardening layers with different microstructure, microhardness and wear resistances were detected from the worm surfaces. Varying wear resistances of the surfaces with different biomimetic morphologies were obtained by biomimetic laser treatments, and the corresponding effect on the lubrication sliding wear of treated and untreated surfaces were studied for comparative study. In addition, the relationship between wear resistance and the spacing of units was also provided, which can lay the important theoretical foundation for avoiding the wear resistance of the serious worn surface is less than that of the slight worn surface in the future practical applications.

  16. Diode temperature sensor array for measuring and controlling micro scale surface temperature

    International Nuclear Information System (INIS)

    Han, Il Young; Kim, Sung Jin

    2004-01-01

    The needs of micro scale thermal detecting technique are increasing in biology and chemical industry. For example, thermal finger print, Micro PCR(Polymer Chain Reaction), TAS and so on. To satisfy these needs, we developed a DTSA(Diode Temperature Sensor Array) for detecting and controlling the temperature on small surface. The DTSA is fabricated by using VLSI technique. It consists of 32 array of diodes(1,024 diodes) for temperature detection and 8 heaters for temperature control on a 8mm surface area. The working principle of temperature detection is that the forward voltage drop across a silicon diode is approximately proportional to the inverse of the absolute temperature of diode. And eight heaters (1K) made of poly-silicon are added onto a silicon wafer and controlled individually to maintain a uniform temperature distribution across the DTSA. Flip chip packaging used for easy connection of the DTSA. The circuitry for scanning and controlling DTSA are also developed

  17. A review paper on biomimetic calcium phosphate coatings

    NARCIS (Netherlands)

    Lin, X.; de Groot, K.; Wang, D.; Hu, Q.; Wismeijer, D.; Liu, Y.

    2015-01-01

    Biomimetic calcium phosphate coatings have been developed for bone regeneration and repair because of their biocompatibility, osteoconductivity, and easy preparation. They can be rendered osteoinductive by incorporating an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2), into the

  18. Biomimetic synthesis of noble metal nanocrystals

    Science.gov (United States)

    Chiu, Chin-Yi

    At the nanometer scale, the physical and chemical properties of materials heavily depend on their sizes and shapes. This fact has triggered considerable efforts in developing controllable nanomaterial synthesis. The controlled growth of colloidal nanocrystal is a kinetic process, in which high-energy facets grow faster and then vanish, leading to a nanocrystal enclosed by low-energy facets. Identifying a surfactant that can selectively bind to a particular crystal facet and thus lower its surface energy, is critical and challenging in shape controlled synthesis of nanocrystals. Biomolecules exhibiting exquisite molecular recognition properties can be exploited to precisely engineer nanostructured materials. In the first part of my thesis, we employed the phage display technique to select a specific multifunctional peptide sequence which can bind on Pd surface and mediate Pd crystal nucleation and growth, achieving size controlled synthesis of Pd nanocrystals in aqueous solution. We further demonstrated a rational biomimetic approach to the predictable synthesis of nanocrystals enclosed by a particular facet in the case of Pt. Specifically, Pt {100} and Pt {111} facet-specific peptides were identified and used to synthesize Pt nanocubes and Pt nano-tetrahedrons, respectively. The mechanistic studies of Pt {111} facet-specific peptide had led us to study the facet-selective adsorption of aromatic molecules on noble metal surfaces. The discoveries had achieved the development of design strategies to select facet-selective molecules which can synthesize nanocrystals with expected shapes in both Pt and Pd system. At last, we exploited Pt facet-specific peptides and controlled the molecular interaction to produce one- and three- dimensional nanostructures composed of anisotropic nanoparticles in synthetic conditions without supramolecular pre-organization, demonstrating the full potential of biomolecules in mediating material formation process. My research on biomimetic

  19. Biomimetic calcium phosphate coatings: : Physicochemistry and biological activity

    NARCIS (Netherlands)

    Barrère, F.

    2002-01-01

    Plasma-sprayed hydroxylapatite coatings on metallic prosthesis significantly increased the success rate of hip arthroplasty, namely from about 90% after 10 years for cemented hip stems to 98% for HA coated ones. Nowadays, the biomimetic approach has received increased interest because of the

  20. Biomimetic propulsion under random heaving conditions, using active pitch control

    Science.gov (United States)

    Politis, Gerasimos; Politis, Konstantinos

    2014-05-01

    Marine mammals travel long distances by utilizing and transforming wave energy to thrust through proper control of their caudal fin. On the other hand, manmade ships traveling in a wavy sea store large amounts of wave energy in the form of kinetic energy for heaving, pitching, rolling and other ship motions. A natural way to extract this energy and transform it to useful propulsive thrust is by using a biomimetic wing. The aim of this paper is to show how an actively pitched biomimetic wing could achieve this goal when it performs a random heaving motion. More specifically, we consider a biomimetic wing traveling with a given translational velocity in an infinitely extended fluid and performing a random heaving motion with a given energy spectrum which corresponds to a given sea state. A formula is invented by which the instantaneous pitch angle of the wing is determined using the heaving data of the current and past time steps. Simulations are then performed for a biomimetic wing at different heave energy spectra, using an indirect Source-Doublet 3-D-BEM, together with a time stepping algorithm capable to track the random motion of the wing. A nonlinear pressure type Kutta condition is applied at the trailing edge of the wing. With a mollifier-based filtering technique, the 3-D unsteady rollup pattern created by the random motion of the wing is calculated without any simplifying assumptions regarding its geometry. Calculated unsteady forces, moments and useful power, show that the proposed active pitch control always results in thrust producing motions, with significant propulsive power production and considerable beneficial stabilizing action to ship motions. Calculation of the power required to set the pitch angle prove it to be a very small percentage of the useful power and thus making the practical application of the device very tractable.

  1. A Statistical Model and Computer program for Preliminary Calculations Related to the Scaling of Sensor Arrays; TOPICAL

    International Nuclear Information System (INIS)

    Max Morris

    2001-01-01

    Recent advances in sensor technology and engineering have made it possible to assemble many related sensors in a common array, often of small physical size. Sensor arrays may report an entire vector of measured values in each data collection cycle, typically one value per sensor per sampling time. The larger quantities of data provided by larger arrays certainly contain more information, however in some cases experience suggests that dramatic increases in array size do not always lead to corresponding improvements in the practical value of the data. The work leading to this report was motivated by the need to develop computational planning tools to approximate the relative effectiveness of arrays of different size (or scale) in a wide variety of contexts. The basis of the work is a statistical model of a generic sensor array. It includes features representing measurement error, both common to all sensors and independent from sensor to sensor, and the stochastic relationships between the quantities to be measured by the sensors. The model can be used to assess the effectiveness of hypothetical arrays in classifying objects or events from two classes. A computer program is presented for evaluating the misclassification rates which can be expected when arrays are calibrated using a given number of training samples, or the number of training samples required to attain a given level of classification accuracy. The program is also available via email from the first author for a limited time

  2. Biomimetic Composite Scaffold for Breast Reconstruction Following Tumor Resection

    National Research Council Canada - National Science Library

    Patrick, Jr, Charles W

    2005-01-01

    ... of life and outcomes are markedly improved. We hypothesized that a novel composite material consisting of silk fibroin and chitosan will act as a biomimetic scaffold amenable to in vivo adipogenesis. The specific aims (SAs...

  3. Electronic transport mechanisms in scaled gate-all-around silicon nanowire transistor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Clément, N., E-mail: nicolas.clement@iemn.univ-lille1.fr, E-mail: guilhem.larrieu@laas.fr; Han, X. L. [Institute of Electronics, Microelectronics and Nanotechnology, CNRS, Avenue Poincaré, 59652 Villeneuve d' Ascq (France); Larrieu, G., E-mail: nicolas.clement@iemn.univ-lille1.fr, E-mail: guilhem.larrieu@laas.fr [Laboratory for Analysis and Architecture of Systems (LAAS), CNRS, Universite de Toulouse, 7 Avenue Colonel Roche, 31077 Toulouse (France)

    2013-12-23

    Low-frequency noise is used to study the electronic transport in arrays of 14 nm gate length vertical silicon nanowire devices. We demonstrate that, even at such scaling, the electrostatic control of the gate-all-around is sufficient in the sub-threshold voltage region to confine charges in the heart of the wire, and the extremely low noise level is comparable to that of high quality epitaxial layers. Although contact noise can already be a source of poor transistor operation above threshold voltage for few nanowires, nanowire parallelization drastically reduces its impact.

  4. Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Science.gov (United States)

    Salami, E.; Montazer, E.; Ward, T. A.; Ganesan, P. B.

    2017-06-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. The main objectives of this study are to design a BMAV wing (inspired from the dragonfly) and analyse its nano-mechanical properties. In order to gain insights into the flight mechanics of dragonfly, reverse engineering methods were used to establish three-dimensional geometrical models of the dragonfly wings, so we can make a comparative analysis. Then mechanical test of the real dragonfly wings was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. The mechanical properties of wings were measured by nanoindentre. Finally, a simplified model was designed and the dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. Then mechanical test of the BMAV wings was performed to analyse and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of BMAV wings.

  5. Plasmonic nanoparticle lithography: Fast resist-free laser technique for large-scale sub-50 nm hole array fabrication

    Science.gov (United States)

    Pan, Zhenying; Yu, Ye Feng; Valuckas, Vytautas; Yap, Sherry L. K.; Vienne, Guillaume G.; Kuznetsov, Arseniy I.

    2018-05-01

    Cheap large-scale fabrication of ordered nanostructures is important for multiple applications in photonics and biomedicine including optical filters, solar cells, plasmonic biosensors, and DNA sequencing. Existing methods are either expensive or have strict limitations on the feature size and fabrication complexity. Here, we present a laser-based technique, plasmonic nanoparticle lithography, which is capable of rapid fabrication of large-scale arrays of sub-50 nm holes on various substrates. It is based on near-field enhancement and melting induced under ordered arrays of plasmonic nanoparticles, which are brought into contact or in close proximity to a desired material and acting as optical near-field lenses. The nanoparticles are arranged in ordered patterns on a flexible substrate and can be attached and removed from the patterned sample surface. At optimized laser fluence, the nanohole patterning process does not create any observable changes to the nanoparticles and they have been applied multiple times as reusable near-field masks. This resist-free nanolithography technique provides a simple and cheap solution for large-scale nanofabrication.

  6. Planar wire array dynamics and radiation scaling at multi-MA levels on the Saturn pulsed power generator

    International Nuclear Information System (INIS)

    Chuvatin, Alexander S.; Vesey, Roger Alan; Waisman, Eduardo Mario; Esaulov, Andrey A.; Ampleford, David J.; Kantsyrev, Victor Leonidovich; Cuneo, Michael Edward; Rudakov, Leonid I.; Coverdale, Christine Anne; Jones, Brent Manley; Safronova, Alla S.; Jones, Michael C.

    2008-01-01

    Planar wire arrays are studied at 3-6 MA on the Saturn pulsed power generator as potential drivers of compact hohlraums for inertial confinement fusion studies. Comparison with zero-dimensional modeling suggests that there is significant trailing mass. The modeled energy coupled from the generator cannot generally explain the energy in the main x-ray pulse. Preliminary comparison at 1-6 MA indicates sub-quadratic scaling of x-ray power in a manner similar to compact cylindrical wire arrays. Time-resolved pinhole images are used to study the implosion dynamics

  7. Effect of distribution of striated laser hardening tracks on dry sliding wear resistance of biomimetic surface

    Science.gov (United States)

    Su, Wei; Zhou, Ti; Zhang, Peng; Zhou, Hong; Li, Hui

    2018-01-01

    Some biological surfaces were proved to have excellent anti-wear performance. Being inspired, Nd:YAG pulsed laser was used to create striated biomimetic laser hardening tracks on medium carbon steel samples. Dry sliding wear tests biomimetic samples were performed to investigate specific influence of distribution of laser hardening tracks on sliding wear resistance of biomimetic samples. After comparing wear weight loss of biomimetic samples, quenched sample and untreated sample, it can be suggested that the sample covered with dense laser tracks (3.5 mm spacing) has lower wear weight loss than the one covered with sparse laser tracks (4.5 mm spacing); samples distributed with only dense laser tracks or sparse laser tracks (even distribution) were proved to have better wear resistance than samples distributed with both dense and sparse tracks (uneven distribution). Wear mechanisms indicate that laser track and exposed substrate of biomimetic sample can be regarded as hard zone and soft zone respectively. Inconsecutive striated hard regions, on the one hand, can disperse load into small branches, on the other hand, will hinder sliding abrasives during wear. Soft regions with small range are beneficial in consuming mechanical energy and storing lubricative oxides, however, soft zone with large width (>0.5 mm) will be harmful to abrasion resistance of biomimetic sample because damages and material loss are more obvious on surface of soft phase. As for the reason why samples with even distributed bionic laser tracks have better wear resistance, it can be explained by the fact that even distributed laser hardening tracks can inhibit severe worn of local regions, thus sliding process can be more stable and wear extent can be alleviated as well.

  8. Biomimetic synthesis of hybrid nanocomposite scaffolds by freeze

    Indian Academy of Sciences (India)

    The aim of this study is to biomimetically synthesize hydroxyapatite–hydrophilic polymer scaffolds for biomedical applications. This organic–inorganic hybrid has been structurally characterized and reveals a good microstructural control as seen by the SEM analysis and the nanosize of the particulates is confirmed by AFM ...

  9. Biomimetic calcium phosphate coating of additively manufactured porous CoCr implants

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, Carl [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Engineering Sciences, Ångstrom Laboratory, Uppsala University, Uppsala (Sweden); Xia, Wei, E-mail: wei.xia@angstrom.uu.se [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Engineering Sciences, Ångstrom Laboratory, Uppsala University, Uppsala (Sweden); Engqvist, Håkan [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Engineering Sciences, Ångstrom Laboratory, Uppsala University, Uppsala (Sweden); Snis, Anders [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Arcam AB, Krokslätts Fabriker 27 A, SE-431 37 Mölndal (Sweden); Lausmaa, Jukka [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås (Sweden); Palmquist, Anders [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Biomaterials, Sahlgrenska Academy at the University of Gothenburg, Gothenburg (Sweden)

    2015-10-30

    Highlights: • A route for coating complex shaped electron beam melted implants is presented. • Biomimetic HA coatings were deposited on CoCr alloys using a solution method. • Deposited biomimetic coating was partially crystalline, slightly calcium deficient. • Coating morphology was plate-like with crystallites forming roundish flowers. • Present coating procedure could be useful for porous implants made by EBM. - Abstract: The aim of this work was to study the feasibility to use a biomimetic method to prepare biomimetic hydroxyapatite (HA) coatings on CoCr substrates with short soaking times and to characterize the properties of such coatings. A second objective was to investigate if the coatings could be applied to porous CoCr implants manufactured by electron beam melting (EBM). The coating was prepared by immersing the pretreated CoCr substrates and EBM implants into the phosphate-buffered solution with Ca{sup 2+} in sealed plastic bottles, kept at 60 °C for 3 days. The formed coating was partially crystalline, slightly calcium deficient and composed of plate-like crystallites forming roundish flowers in the size range of 300–500 nm. Cross-section imaging showed a thickness of 300–500 nm. In addition, dissolution tests in Tris–HCl up to 28 days showed that a substantial amount of the coating had dissolved, however, undergoing only minor morphological changes. A uniform coating was formed within the porous network of the additive manufactured implants having similar thickness and morphology as for the flat samples. In conclusion, the present coating procedure allows coatings to be formed on CoCr and could be used for complex shaped, porous implants made by additive manufacturing.

  10. Biomimetic calcium phosphate coating of additively manufactured porous CoCr implants

    International Nuclear Information System (INIS)

    Lindahl, Carl; Xia, Wei; Engqvist, Håkan; Snis, Anders; Lausmaa, Jukka; Palmquist, Anders

    2015-01-01

    Highlights: • A route for coating complex shaped electron beam melted implants is presented. • Biomimetic HA coatings were deposited on CoCr alloys using a solution method. • Deposited biomimetic coating was partially crystalline, slightly calcium deficient. • Coating morphology was plate-like with crystallites forming roundish flowers. • Present coating procedure could be useful for porous implants made by EBM. - Abstract: The aim of this work was to study the feasibility to use a biomimetic method to prepare biomimetic hydroxyapatite (HA) coatings on CoCr substrates with short soaking times and to characterize the properties of such coatings. A second objective was to investigate if the coatings could be applied to porous CoCr implants manufactured by electron beam melting (EBM). The coating was prepared by immersing the pretreated CoCr substrates and EBM implants into the phosphate-buffered solution with Ca"2"+ in sealed plastic bottles, kept at 60 °C for 3 days. The formed coating was partially crystalline, slightly calcium deficient and composed of plate-like crystallites forming roundish flowers in the size range of 300–500 nm. Cross-section imaging showed a thickness of 300–500 nm. In addition, dissolution tests in Tris–HCl up to 28 days showed that a substantial amount of the coating had dissolved, however, undergoing only minor morphological changes. A uniform coating was formed within the porous network of the additive manufactured implants having similar thickness and morphology as for the flat samples. In conclusion, the present coating procedure allows coatings to be formed on CoCr and could be used for complex shaped, porous implants made by additive manufacturing.

  11. Biomimetically Reinforced Polyvinyl Alcohol-Based Hybrid Scaffolds for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hwan D. Kim

    2017-11-01

    Full Text Available Articular cartilage has a very limited regeneration capacity. Therefore, injury or degeneration of articular cartilage results in an inferior mechanical stability, load-bearing capacity, and lubrication capability. Here, we developed a biomimetic scaffold consisting of macroporous polyvinyl alcohol (PVA sponges as a platform material for the incorporation of cell-embedded photocrosslinkable poly(ethylene glycol diacrylate (PEGDA, PEGDA-methacrylated chondroitin sulfate (PEGDA-MeCS; PCS, or PEGDA-methacrylated hyaluronic acid (PEGDA-MeHA; PHA within its pores to improve in vitro chondrocyte functions and subsequent in vivo ectopic cartilage tissue formation. Our findings demonstrated that chondrocytes encapsulated in PCS or PHA and loaded into macroporous PVA hybrid scaffolds maintained their physiological phenotypes during in vitro culture, as shown by the upregulation of various chondrogenic genes. Further, the cell-secreted extracellular matrix (ECM improved the mechanical properties of the PVA-PCS and PVA-PHA hybrid scaffolds by 83.30% and 73.76%, respectively, compared to their acellular counterparts. After subcutaneous transplantation in vivo, chondrocytes on both PVA-PCS and PVA-PHA hybrid scaffolds significantly promoted ectopic cartilage tissue formation, which was confirmed by detecting cells positively stained with Safranin-O and for type II collagen. Consequently, the mechanical properties of the hybrid scaffolds were biomimetically reinforced by 80.53% and 210.74%, respectively, compared to their acellular counterparts. By enabling the recapitulation of biomimetically relevant structural and functional properties of articular cartilage and the regulation of in vivo mechanical reinforcement mediated by cell–matrix interactions, this biomimetic material offers an opportunity to control the desired mechanical properties of cell-laden scaffolds for cartilage tissue regeneration.

  12. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto; Hansen, Michael; Kynde, Søren

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...... thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.......In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...... for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional...

  13. Methane hydroxylation: a biomimetic approach

    International Nuclear Information System (INIS)

    Shilov, Aleksandr E; Shteinman, Al'bert A

    2012-01-01

    The review addresses direct methane oxidation — an important fundamental problem, which has attracted much attention of researchers in recent years. Analysis of the available results on biomimetic and bio-inspired methane oxygenation has demonstrated that assimilating of the experience of Nature on oxidation of methane and other alkanes significantly enriches the arsenal of chemistry and can radically change the character of the entire chemical production, as well as enables the solution of many material, energetic and environmental problems. The bibliography includes 310 references.

  14. Biomimetic conformation-specific assembly of proteins at artificial binding sites nano-patterned on silicon

    Science.gov (United States)

    de la Rica, Roberto; Matsui, Hiroshi

    2009-01-01

    Biomolecules such as enzymes and antibodies possess binding sites where the molecular architecture and the physicochemical properties are optimum for their interaction with a particular target, in some cases even differentiating between stereoisomers. Here, we mimic this exquisite specificity via the creation of a suitable chemical environment by fabricating artificial binding sites for the protein calmodulin (CaM). By downscaling well-known surface chemical modification methodologies to the nanometer scale via silicon nanopatterning, the Ca2+-CaM conformer was found to selectively bind the biomimetic binding sites. The methodology could be adapted to mimic other protein-receptor interactions for sensing and catalysis. PMID:19757782

  15. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    Science.gov (United States)

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.

  16. Forward osmosis biomimetic membranes in industrial and environmental applications

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen; Bajraktari, Niada

    Membrane processes have in recent years found increasing uses in several sectors where separation of one or more components from a solvent, typically water, is required. The most widespread types of membranes are polymeric and pressure driven, but the high pressures that are required results...... consumption and lead to much more stable operations, but is currently limited by the availability of suitable membranes. However, by introducing aquaporin protein channels into a polymeric membrane to make a biomimetic membrane, the vision of both high flux and separation efficiency may be achieved......) a single use filtration module containing a sample reservoir and a biomimetic aquaporin based forward osmosis membrane. 2) a multi-use desktop forward osmosis system containing draw solution mixing, and monitoring devices. The sample is placed in the single use module and the module is then mounted...

  17. Sensing in nature: using biomimetics for design of sensors

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Cheong, Hyunmin; Shu, Li

    2008-01-01

    limitations/implications – Biomimetics can be a challenge to engineers due to the terminology from another scientific discipline. Practical implications – Using a formalised search method is a way of solving the problem of finding the relevant biological analogies. Originality/value – The paper is of value...... of sense organs in animals and illustrates how a formal search method developed at University of Toronto can be applied to sensor design. Design/methodology/approach – Using biomimetics involves a search for relevant cases, a proper analysis of the biological solutions, identification of design principles...... and design of the desired artefact. The present search method is based on formulation of relevant keywords and search for occurrences in a standard university biology textbook. Most often a simple formulation of keywords and a following search is not enough to generate a sufficient amount of useful ideas...

  18. Forward osmosis biomimetic membranes in industrial and environmental applications

    DEFF Research Database (Denmark)

    Bajraktari, Niada; Madsen, Henrik Tækker; Nielsen, K. H.

    consumption and lead to much more stable operations, but is currently limited by the availability of suitable membranes. However, by introducing aquaporin protein channels into a polymeric membrane to make a biomimetic membrane, the vision of both high flux and separation efficiency may be achieved......) a single use filtration module containing a sample reservoir and a biomimetic aquaporin based forward osmosis membrane. 2) a multi-use desktop forward osmosis system containing draw solution mixing, and monitoring devices. The sample is placed in the single use module and the module is then mounted...... a simple unit operation based on osmotic extraction of water from dilute peptide samples with no – or very little loss of sample material. A big challenge in modern water treatment is the handling of micropollutants. One example of these is the pollution of ground-/drinking water with pesticides, which...

  19. Models and prototypes of biomimetic devices to architectural purposes

    Directory of Open Access Journals (Sweden)

    Silvia Titotto

    2014-12-01

    Full Text Available This paper presents some results of an ongoing interdisciplinary research about models and prototypes of biomimetic devices via installations and the focus of this paper is to outline this research role in architectural purposes as it perpasses the cultural and heritage contexts by being a way of understanding and living in the world as well as taking place in the world as devices or environments that pass on to future generations to use, learn from and be inspired by. Both the theoretical and the experimental work done so far point out that installations built with association of laser cutting and rapid prototyping techniques might be on the best feasible ways for developing and testing new technologies involved in biomimetic devices to architectural purposes that put both tectonics and nature as their central theme. 

  20. Design and preliminary testing of a MEMS microphone phased array for aeroacoustic testing of a small-scale wind turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Bale, A.; Orlando, S.; Johnson, D. [Waterloo Univ., ON (Canada). Wind Energy Group

    2010-07-01

    One of the barriers preventing the widespread utilization of wind turbines is the audible sound that they produce. Developing quieter wind turbines will increase the amount of available land onto which wind farms can be built. Noise emissions from wind turbines can be attributed to the aerodynamic effects between the turbine blades and the air surrounding them. A dominant source of these aeroacoustic emissions from wind turbines is known to originate at the trailing edges of the airfoils. This study investigated the flow physics of noise generation in an effort to reduce noise from small-scale wind turbine airfoils. The trailing edge noise was studied on scale-models in wind tunnels and applied to full scale conditions. Microphone phased arrays are popular research tools in wind tunnel aeroacoustic studies because they can measure and locate noise sources. However, large arrays of microphones can be prohibitively expensive. This paper presented preliminary testing of micro-electrical mechanical system (MEMS) microphones in phased arrays for aeroacoustic testing on a small wind turbine airfoil. Preliminary results showed that MEMS microphones are an acceptable low-cost alternative to costly condenser microphones. 19 refs., 1 tab., 11 figs.

  1. High-Performance Carbon Dioxide Electrocatalytic Reduction by Easily Fabricated Large-Scale Silver Nanowire Arrays.

    Science.gov (United States)

    Luan, Chuhao; Shao, Yang; Lu, Qi; Gao, Shenghan; Huang, Kai; Wu, Hui; Yao, Kefu

    2018-05-17

    An efficient and selective catalyst is in urgent need for carbon dioxide electroreduction and silver is one of the promising candidates with affordable costs. Here we fabricated large-scale vertically standing Ag nanowire arrays with high crystallinity and electrical conductivity as carbon dioxide electroreduction catalysts by a simple nanomolding method that was usually considered not feasible for metallic crystalline materials. A great enhancement of current densities and selectivity for CO at moderate potentials was achieved. The current density for CO ( j co ) of Ag nanowire array with 200 nm in diameter was more than 2500 times larger than that of Ag foil at an overpotential of 0.49 V with an efficiency over 90%. The origin of enhanced performances are attributed to greatly increased electrochemically active surface area (ECSA) and higher intrinsic activity compared to those of polycrystalline Ag foil. More low-coordinated sites on the nanowires which can stabilize the CO 2 intermediate better are responsible for the high intrinsic activity. In addition, the impact of surface morphology that induces limited mass transportation on reaction selectivity and efficiency of nanowire arrays with different diameters was also discussed.

  2. Experimental parametric study of a biomimetic fish robot actuated by piezoelectric actuators

    Science.gov (United States)

    Wiguna, T.; Park, Hoon C.; Heo, S.; Goo, Nam S.

    2007-04-01

    This paper presents an experiment and parametric study of a biomimetic fish robot actuated by the Lightweight Piezocomposite Actuator (LIPCA). The biomimetic aspects in this work are the oscillating tail beat motion and shape of caudal fin. Caudal fins that resemble fins of BCF (Body and Caudal Fin) mode fish were made in order to perform parametric study concerning the effect of caudal fin characteristics on thrust production at an operating frequency range. The observed caudal fin characteristics are the shape, stiffness, area, and aspect ratio. It is found that a high aspect ratio caudal fin contributes to high swimming speed. The robotic fish propelled by artificial caudal fins shaped after thunniform-fish and mackerel caudal fins, which have relatively high aspect ratio, produced swimming speed as high as 2.364 cm/s and 2.519 cm/s, respectively, for a 300 V p-p input voltage excited at 0.9 Hz. Thrust performance of the biomimetic fish robot is examined by calculating Strouhal number, Froude number, Reynolds number, and power consumption.

  3. Biomimetic supercontainers for size-selective electrochemical sensing of molecular ions

    Science.gov (United States)

    Netzer, Nathan L.; Must, Indrek; Qiao, Yupu; Zhang, Shi-Li; Wang, Zhenqiang; Zhang, Zhen

    2017-04-01

    New ionophores are essential for advancing the art of selective ion sensing. Metal-organic supercontainers (MOSCs), a new family of biomimetic coordination capsules designed using sulfonylcalix[4]arenes as container precursors, are known for their tunable molecular recognition capabilities towards an array of guests. Herein, we demonstrate the use of MOSCs as a new class of size-selective ionophores dedicated to electrochemical sensing of molecular ions. Specifically, a MOSC molecule with its cavities matching the size of methylene blue (MB+), a versatile organic molecule used for bio-recognition, was incorporated into a polymeric mixed-matrix membrane and used as an ion-selective electrode. This MOSC-incorporated electrode showed a near-Nernstian potentiometric response to MB+ in the nano- to micro-molar range. The exceptional size-selectivity was also evident through contrast studies. To demonstrate the practical utility of our approach, a simulated wastewater experiment was conducted using water from the Fyris River (Sweden). It not only showed a near-Nernstian response to MB+ but also revealed a possible method for potentiometric titration of the redox indicator. Our study thus represents a new paradigm for the rational design of ionophores that can rapidly and precisely monitor molecular ions relevant to environmental, biomedical, and other related areas.

  4. Lactoferrin Adsorbed onto Biomimetic Hydroxyapatite Nanocrystals Controlling - In Vivo - the Helicobacter pylori Infection

    Science.gov (United States)

    Fulgione, Andrea; Nocerino, Nunzia; Iannaccone, Marco; Roperto, Sante; Capuano, Federico; Roveri, Norberto; Lelli, Marco; Crasto, Antonio; Calogero, Armando; Pilloni, Argenia Paola; Capparelli, Rosanna

    2016-01-01

    Background The resistance of Helicobacter pylori to the antibiotic therapy poses the problem to discover new therapeutic approaches. Recently it has been stated that antibacterial, immunomodulatory, and antioxidant properties of lactoferrin are increased when this protein is surface-linked to biomimetic hydroxyapatite nanocrystals. Objective Based on these knowledge, the aim of the study was to investigate the efficacy of lactoferrin delivered by biomimetic hydroxyapatite nanoparticles with cell free supernatant from probiotic Lactobacillus paracasei as an alternative therapy against Helicobacter pylori infection. Methods Antibacterial and antinflammatory properties, humoral antibody induction, histopathological analysis and absence of side effects were evaluated in both in vitro and in vivo studies. Results The tests carried out have been demonstrated better performance of lactoferrin delivered by biomimetic hydroxyapatite nanoparticles combined with cell free supernatant from probiotic Lactobacillus paracasei compared to both lactoferrin and probiotic alone or pooled. Conclusion These findings indicate the effectiveness and safety of our proposed therapy as alternative treatment for Helicobacter pylori infection. PMID:27384186

  5. Growth of aragonite calcium carbonate nanorods in the biomimetic anodic aluminum oxide template

    Science.gov (United States)

    Lee, Inho; Han, Haksoo; Lee, Sang-Yup

    2010-04-01

    In this study, a biomimetic template was prepared and applied for growing calcium carbonate (CaCO 3) nanorods whose shape and polymorphism were controlled. A biomimetic template was prepared by adsorbing catalytic dipeptides into the pores of an anodic aluminum oxide (AAO) membrane. Using this peptide-adsorbed template, mineralization and aggregation of CaCO 3 was carried out to form large nanorods in the pores. The nanorods were aragonite and had a structure similar to nanoneedle assembly. This aragonite nanorod formation was driven by both the AAO template and catalytic function of dipeptides. The AAO membrane pores promoted generation of aragonite polymorph and guided nanorod formation by guiding the nanorod growth. The catalytic dipeptides promoted the aggregation and further dehydration of calcium species to form large nanorods. Functions of the AAO template and catalytic dipeptides were verified through several control experiments. This biomimetic approach makes possible the production of functional inorganic materials with controlled shapes and crystalline structures.

  6. Biomimetic syntheses of phenols from polyketones.

    Science.gov (United States)

    Evans, G E; Garson, M J; Griffin, D A; Leeper, F J; Stauton, J

    1978-01-01

    As a result of speculation that many enzymes control polyketone cyclization in vivo by converting a key carbonyl group to a cis-enol ether derivative, we describe two novel biomimetic cyclizations. The first involves condensation of two C6 units derived from triacetic lactone to form an arylpyrone related to aloenin. In the second a naphthapyrone of the rubrofusarin type is formed by condensation of an orsellinic acid derivative with the ether of triacetic lactone.

  7. Time-Dependent Liquid Transport on a Biomimetic Topological Surface.

    Science.gov (United States)

    Yu, Cunlong; Li, Chuxin; Gao, Can; Dong, Zhichao; Wu, Lei; Jiang, Lei

    2018-05-02

    Liquid drops impacting on a solid surface is a familiar phenomenon. On rainy days, it is quite important for leaves to drain off impacting raindrops. Water can bounce off or flow down a water-repellent leaf easily, but with difficulty on a hydrophilic leaf. Here, we show an interesting phenomenon in which impacting drops on the hydrophilic pitcher rim of Nepenthes alata can spread outward to prohibit water filling the pitcher tank. We mimic the peristome surface through a designed 3D printing and replicating way and report a time-dependently switchable liquid transport based on biomimetic topological structures, where surface curvature can work synergistically with the surface microtextures to manipulate the switchable spreading performance. Motived by this strange behavior, we construct a large-scaled peristome-mimetic surface in a 3D profile, demonstrating the ability to reduce the need to mop or to squeegee drops that form during the drop impacting process on pipes or other curved surfaces in food processing, moisture transfer, heat management, etc.

  8. A Biomimetic Structural Form: Developing a Paradigm to Attain Vital Sustainability in Tall Architecture

    OpenAIRE

    Osama Al-Sehail

    2017-01-01

    This paper argues for sustainability as a necessity in the evolution of tall architecture. It provides a different mode for dealing with sustainability in tall architecture, taking into consideration the speciality of its typology. To this end, the article develops a Biomimetic Structural Form as a paradigm to attain Vital Sustainability. A Biomimetic Structural Form, which is derived from the amalgamation of biomimicry as an approach for sustainability defining nature as source of knowledge ...

  9. Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors.

    Science.gov (United States)

    Scognamiglio, Viviana; Antonacci, Amina; Lambreva, Maya D; Litescu, Simona C; Rea, Giuseppina

    2015-12-15

    Biosensors are powerful tunable systems able to switch between an ON/OFF status in response to an external stimulus. This extraordinary property could be engineered by adopting synthetic biology or biomimetic chemistry to obtain tailor-made biosensors having the desired requirements of robustness, sensitivity and detection range. Recent advances in both disciplines, in fact, allow to re-design the configuration of the sensing elements - either by modifying toggle switches and gene networks, or by producing synthetic entities mimicking key properties of natural molecules. The present review considered the role of synthetic biology in sustaining biosensor technology, reporting examples from the literature and reflecting on the features that make it a useful tool for designing and constructing engineered biological systems for sensing application. Besides, a section dedicated to bioinspired synthetic molecules as powerful tools to enhance biosensor potential is reported, and treated as an extension of the concept of biomimetic chemistry, where organic synthesis is used to generate artificial molecules that mimic natural molecules. Thus, the design of synthetic molecules, such as aptamers, biomimetics, molecular imprinting polymers, peptide nucleic acids, and ribozymes were encompassed as "products" of biomimetic chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Hydroxyapatite coating by biomimetic method on titanium alloy ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 6. Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF. S Bharati M K Sinha ... Optical microscopic and SEM observations revealed the deposition of Ca–P layer on the titanium alloy by both the methods. Thickness of coating ...

  11. Color-producing mechanism of morpho butterfly wings and biomimetics; Cho no hasshoku kiko to biomimetics

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, H. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1999-07-01

    Although the synthetic dyes and pigments originating in the 19th century are now at the height of their prosperity, there is an earnest hope for technology for realizing `supercolor.` If it is presumed that the features of such supercolor are to be found in outstanding clearness and high resistance to fading in the presence of ultraviolet rays, etc., the supercolor will be quite tough to deal with. When attention is steered toward the living world, however, there are cases of easily producing such by morphogenesis at the level of several tens of nanometers. In this paper, the development of a novel material is presented from the viewpoint of biomimetic engineering that the author et al. are engaged in. The coloring on the wings of a butterfly Morpho Sulkowskyi of South American origin is the product of interaction between light and the physical, microscopic structure of scales, and the coloring is extremely clear and remains free of fading except in case the microstructure is destroyed. This mechanism is applied for the development of a supercolor fiber. As the result, a structurally coloring fiber is created by stretching a molten composite string. In this effort, reformed polyester and polyamide different in refraction factor are used in place of substance layers and air layers on the butterfly wings. (NEDO)

  12. Mercury-Supported Biomimetic Membranes for the Investigation of Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Lucia Becucci

    2014-01-01

    Full Text Available Tethered bilayer lipid membranes (tBLMs consist of a lipid bilayer interposed between an aqueous solution and a hydrophilic “spacer” anchored to a gold or mercury electrode. There is great potential for application of these biomimetic membranes for the elucidation of structure-function relationships of membrane peptides and proteins. A drawback in the use of mercury-supported tBLMs with respect to gold-supported ones is represented by the difficulty in applying surface sensitive, spectroscopic and scanning probe microscopic techniques to gather information on the architecture of these biomimetic membranes. Nonetheless, mercury-supported tBLMs are definitely superior to gold-supported biomimetic membranes for the investigation of the function of membrane peptides and proteins, thanks to a fluidity and lipid lateral mobility comparable with those of bilayer lipid membranes interposed between two aqueous phases (BLMs, but with a much higher robustness and resistance to electric fields. The different features of mercury-supported tBLMs reconstituted with functionally active membrane proteins and peptides of bacteriological or pharmacological interest may be disclosed by a judicious choice of the most appropriate electrochemical techniques. We will describe the way in which electrochemical impedance spectroscopy, potential-step chronocoulometry, cyclic voltammetry and phase-sensitive AC voltammetry are conveniently employed to investigate the structure of mercury-supported tBLMs and the mode of interaction of antimicrobial peptides reconstituted into them.

  13. Aloe vera Induced Biomimetic Assemblage of Nucleobase into Nanosized Particles

    Science.gov (United States)

    Chauhan, Arun; Zubair, Swaleha; Sherwani, Asif; Owais, Mohammad

    2012-01-01

    Aim Biomimetic nano-assembly formation offers a convenient and bio friendly approach to fabricate complex structures from simple components with sub-nanometer precision. Recently, biomimetic (employing microorganism/plants) synthesis of metal and inorganic materials nano-particles has emerged as a simple and viable strategy. In the present study, we have extended biological synthesis of nano-particles to organic molecules, namely the anticancer agent 5-fluorouracil (5-FU), using Aloe vera leaf extract. Methodology The 5-FU nano- particles synthesized by using Aloe vera leaf extract were characterized by UV, FT-IR and fluorescence spectroscopic techniques. The size and shape of the synthesized nanoparticles were determined by TEM, while crystalline nature of 5-FU particles was established by X-ray diffraction study. The cytotoxic effects of 5-FU nanoparticles were assessed against HT-29 and Caco-2 (human adenocarcinoma colorectal) cell lines. Results Transmission electron microscopy and atomic force microscopic techniques confirmed nano-size of the synthesized particles. Importantly, the nano-assembled 5-FU retained its anticancer action against various cancerous cell lines. Conclusion In the present study, we have explored the potential of biomimetic synthesis of nanoparticles employing organic molecules with the hope that such developments will be helpful to introduce novel nano-particle formulations that will not only be more effective but would also be devoid of nano-particle associated putative toxicity constraints. PMID:22403622

  14. A biomimetic accelerometer inspired by the cricket's clavate hair

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2014-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model

  15. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    Science.gov (United States)

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-03-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  16. Effects of PEGylation on biomimetic synthesis of magnetoferritin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Caiyun, E-mail: ycy@mail.iggcas.ac.cn; Cao, Changqian, E-mail: changqiancao@mail.iggcas.ac.cn; Cai, Yao, E-mail: caiyao@mail.iggcas.ac.cn; Xu, Huangtao, E-mail: xuhuangtao@mail.iggcas.ac.cn; Zhang, Tongwei, E-mail: ztw@mail.iggcas.ac.cn; Pan, Yongxin, E-mail: yxpan@mail.iggcas.ac.cn [Institute of Geology and Geophysics, Chinese Academy of Sciences, Key Laboratory of Earth and Planetary Physics (China)

    2017-03-15

    Recent studies have demonstrated that ferrimagnetic magnetoferritin nanoparticles are a promising novel magnetic nanomaterial in biomedical applications, including biocatalysis, imaging, diagnostics, and tumor therapy. Here we investigated the PEGylation of human H-ferritin (HFn) proteins and the possible influence on biomimetic synthesis of magnetoferritin nanoparticles. The outer surface of HFn proteins was chemically modified with different PEG molecular weights (PEG10K and PEG20K) and different modification ratios (HFn subunit:PEG20K = 1:1, 1:2, 1:4). The PEGylated HFn proteins were used for biomimetic synthesis of ferrimagnetic magnetoferritin nanoparticles. We found that, compared with magnetoferritin using non-PEGylated HFn protein templates, the synthesized magnetoferritin using the PEGylated HFn protein templates possessed larger magnetite cores, higher magnetization and relaxivity values, and improved thermal stability. These results suggest that the PEGylation of H-ferritin may improve the biomineralization of magnetoferritin nanoparticles and enhance their biomedical applications.

  17. Biomimetics Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    This book presents an overview of the general field of biomimetics - lessons from nature. It presents various examples of biomimetics, including roughness-induced superomniphobic surfaces which provide functionality of commercial interest. The major focus in the book is on lotus effect, rose petal effect, shark skin effect, and gecko adhesion.  For each example, the book first presents characterization of an object to understand how a natural object provides functionality, followed by modeling and then fabrication of structures in the lab using nature’s route to verify one’s understanding of nature and provide guidance for development of optimum structures. Once it is understood how nature does it, examples of fabrication of optimum structures using smart materials and fabrication techniques, are presented. Examples of nature inspired objects are also presented throughout.

  18. Preparation of a Superhydrophobic and Peroxidase-like Activity Array Chip for H2O2 Sensing by Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Yu, Zhi; Park, Yeonju; Chen, Lei; Zhao, Bing; Jung, Young Mee; Cong, Qian

    2015-10-28

    In this paper, we propose a novel and simple method for preparing a dual-biomimetic functional array possessing both superhydrophobic and peroxidase-like activity that can be used for hydrogen peroxide (H2O2) sensing. The proposed method is an integration innovation that combines the above two properties and surface-enhanced Raman scattering (SERS). We integrated a series of well-ordered arrays of Au points (d = 1 mm) onto a superhydrophobic copper (Cu)/silver (Ag) surface by replicating an arrayed molybdenum template. Instead of using photoresists and the traditional lithography method, we utilized a chemical etching method (a substitution reaction between Cu and HAuCl4) with a Cu/Ag superhydrophobic surface as the barrier layer, which has the benefit of water repellency. The as-prepared Au points were observed to possess peroxidase-like activity, allowing for catalytic oxidation of the chromogenic molecule o-phenylenediamine dihydrochloride (OPD). Oxidation was evidenced by a color change in the presence of H2O2, which allows the array chip to act as an H2O2 sensor. In this study, the water repellency of the superhydrophobic surface was used to fabricate the array chip and increase the local reactant concentration during the catalytic reaction. As a result, the catalytic reaction occurred when only 2 μL of an aqueous sample (OPD/H2O2) was placed onto the Au point, and the enzymatic product, 2,3-diaminophenazine, showed a SERS signal distinguishable from that of OPD after mixing with 2 μL of colloidal Au. Using the dual-biomimetic functional array chip, quantitative analysis of H2O2 was performed by observing the change in the SERS spectra, which showed a concentration-dependent behavior for H2O2. This method allows for the detection of H2O2 at concentrations as low as 3 pmol per 2 μL of sample, which is a considerable advantage in H2O2 analysis. The as-prepared substrate was convenient for H2O2 detection because only a small amount of sample was required in

  19. Full-Color Biomimetic Photonic Materials with Iridescent and Non-Iridescent Structural Colors.

    Science.gov (United States)

    Kawamura, Ayaka; Kohri, Michinari; Morimoto, Gen; Nannichi, Yuri; Taniguchi, Tatsuo; Kishikawa, Keiki

    2016-09-23

    The beautiful structural colors in bird feathers are some of the brightest colors in nature, and some of these colors are created by arrays of melanin granules that act as both structural colors and scattering absorbers. Inspired by the color of bird feathers, high-visibility structural colors have been created by altering four variables: size, blackness, refractive index, and arrangement of the nano-elements. To control these four variables, we developed a facile method for the preparation of biomimetic core-shell particles with melanin-like polydopamine (PDA) shell layers. The size of the core-shell particles was controlled by adjusting the core polystyrene (PSt) particles' diameter and the PDA shell thicknesses. The blackness and refractive index of the colloidal particles could be adjusted by controlling the thickness of the PDA shell. The arrangement of the particles was controlled by adjusting the surface roughness of the core-shell particles. This method enabled the production of both iridescent and non-iridescent structural colors from only one component. This simple and novel process of using core-shell particles containing PDA shell layers can be used in basic research on structural colors in nature and their practical applications.

  20. The importance of the biomimetic composites components for recreating the optical properties and molecular composition of intact dental tissues.

    Science.gov (United States)

    Seredin, P. V.; Goloshchapov, D. L.; Gushchin, M. S.; Ippolitov, Y. A.; Prutskij, T.

    2017-11-01

    The objective of this paper was to investigate whether it is possible to obtain biomimetic materials recreating the luminescent properties and molecular composition of intact dental tissues. Biomimetic materials were produced and their properties compared with native dental tissues. In addition, the overall contribution of the organic and non-organic components in the photoluminescence band was investigated. The results showed that it is possible to develop biomimetic materials with similar molecular composition and optical properties to native dental tissues for the early identification of dental caries.

  1. Biomimetic Receptors for Bioanalyte Detection by Quartz Crystal Microbalances — From Molecules to Cells

    Directory of Open Access Journals (Sweden)

    Usman Latif

    2014-12-01

    Full Text Available A universal label-free detection of bioanalytes can be performed with biomimetic quartz crystal microbalance (QCM coatings prepared by imprinting strategies. Bulk imprinting was used to detect the endocrine disrupting chemicals (EDCs known as estradiols. The estrogen 17β-estradiol is one of the most potent EDCs, even at very low concentrations. A highly sensitive, selective and robust QCM sensor was fabricated for real time monitoring of 17β-estradiol in water samples by using molecular imprinted polyurethane. Optimization of porogen (pyrene and cross-linker (phloroglucinol levels leads to improved sensitivity, selectivity and response time of the estradiol sensor. Surface imprinting of polyurethane as sensor coating also allowed us to generate interaction sites for the selective recognition of bacteria, even in a very complex mixture of interfering compounds, while they were growing from their spores in nutrient solution. A double molecular imprinting approach was followed to transfer the geometrical features of natural bacteria onto the synthetic polymer to generate biomimetic bacteria. The use of biomimetic bacteria as template makes it possible to prepare multiple sensor coatings with similar sensitivity and selectivity. Thus, cell typing, e.g., differentiation of bacteria strains, bacteria growth profile and extent of their nutrition, can be monitored by biomimetic mass sensors. Obviously, this leads to controlled cell growth in bioreactors.

  2. Synthesis and Investigation of Millimeter-Scale Vertically Aligned Boron Nitride Nanotube Arrays

    Science.gov (United States)

    Tay, Roland; Li, Hongling; Tsang, Siu Hon; Jing, Lin; Tan, Dunlin; Teo, Edwin Hang Tong

    Boron nitride nanotubes (BNNTs) have shown potential in a wide range of applications due to their superior properties such as exceptionally high mechanical strength, excellent chemical and thermal stabilities. However, previously reported methods to date only produced BNNTs with limited length/density and insufficient yield at high temperatures. Here we present a facile and effective two-step synthesis route involving template-assisted chemical vapor deposition at a relatively low temperature of 900 degree C and subsequent annealing process to fabricate vertically aligned (VA) BN coated carbon nanotube (VA-BN/CNT) and VA-BNNT arrays. By using this method, we achieve the longest VA-BN/CNTs and VA-BNNTs to date with lengths of over millimeters (exceeding two orders of magnitude longer than the previously reported length of VA-BNNTs). In addition, the morphology, chemical composition and microstructure of the resulting products, as well as the mechanism of coating process are systematically investigated. This versatile BN coating technique and the synthesis of millimeter-scale BN/CNT and BNNT arrays pave a way for new applications especially where the aligned geometry of the NTs is essential such as for field-emission, interconnects and thermal management.

  3. Hydroxyapatite coating by biomimetic method on titanium alloy ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. This article reports a biomimetic approach for coating hydroxyapatite on titanium alloy at ambient temperature. In the present study, coating was obtained by soaking the substrate in a 5 times concentrated simulated body fluid (5XSBF) solution for different periods of time with and without the use of CaO–SiO2.

  4. Helicoidal microstructure of Scarabaei cuticle and biomimetic research

    International Nuclear Information System (INIS)

    Chen, B.; Peng, X.; Cai, C.; Niu, H.; Wu, X.

    2006-01-01

    Insect cuticles as a natural biocomposite include many favorable microstructures which have been refined over centuries and endow the cuticles excellent mechanical and physical properties, such as light weight, high strength and toughness, etc. The various microstructures of a Scarabaei cuticle are investigated with a scanning electronic microscope and reported in this paper. It is found that the cuticle is a kind of fiber-reinforced biocomposite composed of chitin-fiber layers and sclerous protein matrixes. Different chitin-fiber layers have different orientations, composed of crossed and helicoidal structures at different location. In the helicoidal structure, each fiber layer rotates with an almost fixed angle against its neighboring layer. The maximum pullout energy of the helicoidal structure is analyzed based on the representative model of the structure. The result shows that the pullout energy of the helicoidal structure is markedly larger than that of the conventional 0 o -structure. A biomimetic composite with the observed helicoidal structure is designed and fabricated. A comparative test shows that the fracture toughness of the biomimetic composite is markedly larger than that of the 0 o -layer composite

  5. 9-Fluorenylmethyl (Fm) Disulfides: Biomimetic Precursors for Persulfides

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chung-Min; Johnson, Brett A.; Duan, Jicheng; Park, Jeong-Jin; Day, Jacob J.; Gang, David; Qian, Wei-Jun; Xian, Ming

    2016-03-04

    Protein S-sulfhydration has been recognized as an important post-translational modification that regulates H2S signals. However, the reactivity and biological implications of the products of S-sulfhydration, i.e. persulfides, are still unclear. This is mainly due to the instability of persulfides and difficulty to access these molecules. Under physiological conditions persulfides mainly exist in anionic forms because of their low pKa values. However, current methods do not allow for the direct generation of persulfide anions under biomimetic and non-H2S conditions. Herein we report the development of a functional disulfide, FmSSPy-A (Fm =9-fluorenylmethyl; Py = pyridinyl). This reagent can effectively convert both small molecule and protein thiols (-SH) to form –S-SFm adducts under mild conditions. It allows for a H2S-free and biomimetic protocol to generate highly reactive persulfides (in their anionic forms). We also demonstrated the high nucleophilicity of persulfides toward a number of thiol-blocking reagents. This method holds promise for further understanding the chemical biology of persulfides and S-sulfhydration.

  6. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    International Nuclear Information System (INIS)

    Song, Junho; Hynynen, Kullervo

    2009-01-01

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm 3 with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  7. 3D Printing of Lotus Root-Like Biomimetic Materials for Cell Delivery and Tissue Regeneration.

    Science.gov (United States)

    Feng, Chun; Zhang, Wenjie; Deng, Cuijun; Li, Guanglong; Chang, Jiang; Zhang, Zhiyuan; Jiang, Xinquan; Wu, Chengtie

    2017-12-01

    Biomimetic materials have drawn more and more attention in recent years. Regeneration of large bone defects is still a major clinical challenge. In addition, vascularization plays an important role in the process of large bone regeneration and microchannel structure can induce endothelial cells to form rudimentary vasculature. In recent years, 3D printing scaffolds are major materials for large bone defect repair. However, these traditional 3D scaffolds have low porosity and nonchannel structure, which impede angiogenesis and osteogenesis. In this study, inspired by the microstructure of natural plant lotus root, biomimetic materials with lotus root-like structures are successfully prepared via a modified 3D printing strategy. Compared with traditional 3D materials, these biomimetic materials can significantly improve in vitro cell attachment and proliferation as well as promote in vivo osteogenesis, indicating potential application for cell delivery and bone regeneration.

  8. Biomimetic approaches for green tribology: from the lotus effect to blood flow control

    International Nuclear Information System (INIS)

    Maani, Nazanin; Rayz, Vitaliy S; Nosonovsky, Michael

    2015-01-01

    The research in Green tribology combines several areas including biomimetic tribomaterials and surfaces for controlled adhesion. Biomimetic surfaces mimic living nature and thus they are eco-friendly. The most famous biomimetic surface effect is the Lotus effect (reduction of water adhesion to a solid surface due to micro/nanostructuring of the solid surface). Several extensions of the Lotus effect have been discussed in the literature including the oleophobicity (repelling organic liquids such as oils), underwater oleophobicity to reduce fouling, and the shark skin effect (flow drag reduction due to specially oriented micro-riblets). Here we suggest a potentially important application of micro/nanostructured surfaces in the biomedical area: the micro/nanostructure controlled adhesion in blood flow. Blood is a suspension, and its adhesion properties are different from those of water and oil. For many cardiovascular applications, it is desirable to reduce stagnation and clotting of blood. Therefore, both the underwater oleophobicuity and shark-skin effect can be used. We discuss how computational fluid dynamics models can be used to investigate the structure–property relationships of surface pattern-controlled blood flow adhesion. (paper)

  9. Material versatility using replica molding for large-scale fabrication of high aspect-ratio, high density arrays of nano-pillars

    International Nuclear Information System (INIS)

    Li, Y; Menon, C; Ng, H W; Gates, B D

    2014-01-01

    Arrays of high aspect-ratio (AR) nano-pillars have attracted a lot of interest for various applications, such as for use in solar cells, surface acoustic sensors, tissue engineering, bio-inspired adhesives and anti-reflective surfaces. Each application may require a different structural material, which can vary in the required chemical composition and mechanical properties. In this paper, a low cost fabrication procedure is proposed for large scale, high AR and high density arrays of nano-pillars. The proposed method enables the replication of a master with high fidelity, using the subsequent replica molds multiple times, and preparing arrays of nano-pillars in a variety of different materials. As an example applied to bio-inspired dry adhesion, polymeric arrays of nano-pillars are prepared in this work. Thermoset and thermoplastic nano-pillar arrays are examined using an atomic force microscope to assess their adhesion strength and its uniformity. Results indicate the proposed method is robust and can be used to reliably prepare nano-structures with a high AR. (paper)

  10. Induction of Chondrogenic Differentiation of Human Mesenchymal Stem Cells by Biomimetic Gold Nanoparticles with Tunable RGD Density.

    Science.gov (United States)

    Li, Jingchao; Li, Xiaomeng; Zhang, Jing; Kawazoe, Naoki; Chen, Guoping

    2017-07-01

    Nanostructured materials have drawn a broad attention for their applications in biomedical fields. Ligand-modified nanomaterials can well mimic the dynamic extracellular matrix (ECM) microenvironments to regulate cell functions and fates. Herein, ECM mimetic gold nanoparticles (Au NPs) with tunable surface arginine-glycine-aspartate (RGD) density are designed and synthesized to induce the chondrogenic differentiation of human mesenchymal stem cells (hMSCs). The biomimetic Au NPs with an average size of 40 nm shows good biocompatibility without affecting the cell proliferation in the studied concentration range. The RGD motifs on Au NPs surface facilitate cellular uptake of NPs into monolayer hMSCs through integrin-mediated endocytosis. The biomimetic NPs have a promotive effect on cartilaginous matrix production and marker gene expression in cell pellet culture, especially for the biomimetic Au NPs with high surface RGD density. This study provides a novel strategy for fabricating biomimetic NPs to regulate cell differentiation, which holds great potentials in tissue engineering and biomedical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    Science.gov (United States)

    Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk

    2014-06-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.

  12. Tuning biomimetic membrane barrier properties by hydrocarbon, cholesterol and polymeric additives

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Skovgaard, Nils; Hansen, Jesper Søndergaard

    2017-01-01

    The barrier properties of cellular membranes are increasingly attracting attention as a source of inspiration for designing biomimetic membranes. The broad range of potential technological applications makes the use of lipid and lately also polymeric materials a popular choice for constructing...... biomimetic membranes, where the barrier properties can be controlled by the composition of the membrane constituent elements. Here we investigate the membrane properties reported by the light-induced proton pumping activity of bacteriorhodopsin (bR) reconstituted in three vesicle systems of different...... membrane composition. Specifically we quantify how the resulting proton influx and efflux rates are influenced by the membrane composition using a variety of membrane modulators. We demonstrate that by adding hydrocarbons to vesicles with reconstituted bR formed from asolectin lipids the resulting...

  13. Online Monitoring of Electrochemical Degradation of Paracetamol through a Biomimetic Sensor

    Directory of Open Access Journals (Sweden)

    Mariana Calora Quintino de Oliveira

    2011-01-01

    Full Text Available This paper reports, for the first time, the online monitoring to the electrochemical degradation of the paracetamol using a biomimetic sensor coupled to a Flow Injection Analysis (FIA system. The electrochemical degradation of the drug was carried out in aqueous medium using a flow-by reactor with a DSA anode. The process efficiency was monitored at real time by the biomimetic sensor constructed by modifying a glassy carbon electrode with a Nafion membrane doped with iron tetrapyridinoporphyrazine (FeTPyPz. Simultaneously, we carried out off-line analysis by liquid chromatography (HPLC during the experiments in order to validate the proposed system. In addition, to investigate the degradation products of the paracetamol electrolysis, we used the techniques of UPLC/MS and GC/MS.

  14. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Nguyen, Canh Toan; Phung, Hoa; Nguyen, Tien Dat; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Choi, Hyouk Ryeol; Nam, Jae-do

    2014-01-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators. (paper)

  15. Biomimetic design processes in architecture: morphogenetic and evolutionary computational design

    International Nuclear Information System (INIS)

    Menges, Achim

    2012-01-01

    Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The paper first explains the fundamental difference between computer-aided and computational design in architecture, as the understanding of this distinction is of critical importance for the research presented. Thereafter, the conceptual relation and possible transfer of principles from natural morphogenesis to design computation are introduced and the related developments of generative, feature-based, constraint-based, process-based and feedback-based computational design methods are presented. This morphogenetic design research is then related to exploratory evolutionary computation, followed by the presentation of two case studies focusing on the exemplary development of spatial envelope morphologies and urban block morphologies. (paper)

  16. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    Science.gov (United States)

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-01-01

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L), interval (S), and height (H) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure. PMID:28772613

  17. Induction of bone formation by smart biphasic hydroxyapatite tricalcium phosphate biomimetic matrices in the non-human primate Papio ursinus

    CSIR Research Space (South Africa)

    Ripamonti, U

    2008-01-01

    Full Text Available Long-term studies in the non-human primate Chacma baboon Papio ursinus were set to investigate the induction of bone formation by biphasic hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) biomimetic matrices. HA/β-TCP biomimetic matrices in a pre...

  18. An efficient and novel computation method for simulating diffraction patterns from large-scale coded apertures on large-scale focal plane arrays

    Science.gov (United States)

    Shrekenhamer, Abraham; Gottesman, Stephen R.

    2012-10-01

    A novel and memory efficient method for computing diffraction patterns produced on large-scale focal planes by largescale Coded Apertures at wavelengths where diffraction effects are significant has been developed and tested. The scheme, readily implementable on portable computers, overcomes the memory limitations of present state-of-the-art simulation codes such as Zemax. The method consists of first calculating a set of reference complex field (amplitude and phase) patterns on the focal plane produced by a single (reference) central hole, extending to twice the focal plane array size, with one such pattern for each Line-of-Sight (LOS) direction and wavelength in the scene, and with the pattern amplitude corresponding to the square-root of the spectral irradiance from each such LOS direction in the scene at selected wavelengths. Next the set of reference patterns is transformed to generate pattern sets for other holes. The transformation consists of a translational pattern shift corresponding to each hole's position offset and an electrical phase shift corresponding to each hole's position offset and incoming radiance's direction and wavelength. The set of complex patterns for each direction and wavelength is then summed coherently and squared for each detector to yield a set of power patterns unique for each direction and wavelength. Finally the set of power patterns is summed to produce the full waveband diffraction pattern from the scene. With this tool researchers can now efficiently simulate diffraction patterns produced from scenes by large-scale Coded Apertures onto large-scale focal plane arrays to support the development and optimization of coded aperture masks and image reconstruction algorithms.

  19. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate

    Directory of Open Access Journals (Sweden)

    Dandan Men

    2018-02-01

    Full Text Available Two-dimensional (2D periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO2 nanopillar arrays decorated with Ag nanoparticles (NPs with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE, depositing Ag layer and annealing. For the prepared SiO2 nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO2 nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP and rhodamine 6G (R6G due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO2 nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density “hotspots” derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.

  20. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate.

    Science.gov (United States)

    Men, Dandan; Wu, Yingyi; Wang, Chu; Xiang, Junhuai; Yang, Ganlan; Wan, Changjun; Zhang, Honghua

    2018-02-04

    Two-dimensional (2D) periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO₂ nanopillar arrays decorated with Ag nanoparticles (NPs) with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE), depositing Ag layer and annealing. For the prepared SiO₂ nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO₂ nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO₂ nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density "hotspots" derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.

  1. 3D Printing of Lotus Root‐Like Biomimetic Materials for Cell Delivery and Tissue Regeneration

    Science.gov (United States)

    Feng, Chun; Zhang, Wenjie; Deng, Cuijun; Li, Guanglong; Chang, Jiang; Zhang, Zhiyuan

    2017-01-01

    Abstract Biomimetic materials have drawn more and more attention in recent years. Regeneration of large bone defects is still a major clinical challenge. In addition, vascularization plays an important role in the process of large bone regeneration and microchannel structure can induce endothelial cells to form rudimentary vasculature. In recent years, 3D printing scaffolds are major materials for large bone defect repair. However, these traditional 3D scaffolds have low porosity and nonchannel structure, which impede angiogenesis and osteogenesis. In this study, inspired by the microstructure of natural plant lotus root, biomimetic materials with lotus root‐like structures are successfully prepared via a modified 3D printing strategy. Compared with traditional 3D materials, these biomimetic materials can significantly improve in vitro cell attachment and proliferation as well as promote in vivo osteogenesis, indicating potential application for cell delivery and bone regeneration. PMID:29270348

  2. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

    Directory of Open Access Journals (Sweden)

    Saita M

    2016-01-01

    Full Text Available Makiko Saita,1 Takayuki Ikeda,1,2 Masahiro Yamada,1,3 Katsuhiko Kimoto,4 Masaichi Chang-Il Lee,5 Takahiro Ogawa1 1Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA; 2Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Yokosuka, Japan; 3Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan; 4Department of Prosthodontics and Oral Rehabilitation, 5Yokosuka-Shonan Disaster Health Emergency Research Center and ESR Laboratories, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan Background: Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability.Methods and results: Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light were immersed in simulated body fluid (SBF for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition

  3. Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm

    OpenAIRE

    Dura-Bernal, Salvador; Chadderdon, George L; Neymotin, Samuel A; Francis, Joseph T; Lytton, William W

    2014-01-01

    Brain-machine interfaces can greatly improve the performance of prosthetics. Utilizing biomimetic neuronal modeling in brain machine interfaces (BMI) offers the possibility of providing naturalistic motor-control algorithms for control of a robotic limb. This will allow finer control of a robot, while also giving us new tools to better understand the brain’s use of electrical signals. However, the biomimetic approach presents challenges in integrating technologies across multiple hardware and...

  4. A review of selected pumping systems in nature and engineering--potential biomimetic concepts for improving displacement pumps and pulsation damping.

    Science.gov (United States)

    Bach, D; Schmich, F; Masselter, T; Speck, T

    2015-09-03

    The active transport of fluids by pumps plays an essential role in engineering and biology. Due to increasing energy costs and environmental issues, topics like noise reduction, increase of efficiency and enhanced robustness are of high importance in the development of pumps in engineering. The study compares pumps in biology and engineering and assesses biomimetic potentials for improving man-made pumping systems. To this aim, examples of common challenges, applications and current biomimetic research for state-of-the art pumps are presented. The biomimetic research is helped by the similar configuration of many positive displacement pumping systems in biology and engineering. In contrast, the configuration and underlying pumping principles for fluid dynamic pumps (FDPs) differ to a greater extent in biology and engineering. However, progress has been made for positive displacement as well as for FDPs by developing biomimetic devices with artificial muscles and cilia that improve energetic efficiency and fail-safe operation or reduce noise. The circulatory system of vertebrates holds a high biomimetic potential for the damping of pressure pulsations, a common challenge in engineering. Damping of blood pressure pulsation results from a nonlinear viscoelastic behavior of the artery walls which represent a complex composite material. The transfer of the underlying functional principle could lead to an improvement of existing technical solutions and be used to develop novel biomimetic damping solutions. To enhance efficiency or thrust of man-made fluid transportation systems, research on jet propulsion in biology has shown that a pulsed jet can be tuned to either maximize thrust or efficiency. The underlying principle has already been transferred into biomimetic applications in open channel water systems. Overall there is a high potential to learn from nature in order to improve pumping systems for challenges like the reduction of pressure pulsations, increase of jet

  5. Biocompatible and Biomimetic Self-Assembly of Functional Nanostructures

    Science.gov (United States)

    2017-03-15

    cells, biomolecularinterfaces and bio-mimetic processes to direct the formation of new classes of complex, symbiotic, hierarchical materials with life...like structure and functionality. This aim is predicated on two principal goals: 1) use of living/fixed cells to direct the formation of new classes...self-sensing, repair and replication; simultaneously hard , tough, and strong protection systems. Natural materials exhibit well optimized property

  6. Contextual Compression of Large-Scale Wind Turbine Array Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Potter, Kristin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clyne, John [National Center for Atmospheric Research (NCAR)

    2017-12-04

    Data sizes are becoming a critical issue particularly for HPC applications. We have developed a user-driven lossy wavelet-based storage model to facilitate the analysis and visualization of large-scale wind turbine array simulations. The model stores data as heterogeneous blocks of wavelet coefficients, providing high-fidelity access to user-defined data regions believed the most salient, while providing lower-fidelity access to less salient regions on a block-by-block basis. In practice, by retaining the wavelet coefficients as a function of feature saliency, we have seen data reductions in excess of 94 percent, while retaining lossless information in the turbine-wake regions most critical to analysis and providing enough (low-fidelity) contextual information in the upper atmosphere to track incoming coherent turbulent structures. Our contextual wavelet compression approach has allowed us to deliver interative visual analysis while providing the user control over where data loss, and thus reduction in accuracy, in the analysis occurs. We argue this reduced but contextualized representation is a valid approach and encourages contextual data management.

  7. Layer-by-Layer Assembled Nanotubes as Biomimetic Nanoreactors for Calcium Carbonate Deposition.

    Science.gov (United States)

    He, Qiang; Möhwald, Helmuth; Li, Junbai

    2009-09-17

    Enzyme-loaded magnetic polyelectrolyte multilayer nanotubes prepared by layer-by-layer assembly combined with the porous template could be used as biomimetic nanoreactors. It is demonstrated that calcium carbonate can be biomimetically synthesized inside the cavities of the polyelectrolyte nanotubes by the catalysis of urease, and the size of the calcium carbonate precipitates was controlled by the cavity dimensions. The metastable structure of the calcium carbonate precipitates inside the nanotubes was protected by the outer shell of the polyelectrolyte multilayers. These features may allow polyelectrolyte nanotubes to be applied in the fields of nanomaterials synthesis, controlled release, and drug delivery. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    National Research Council Canada - National Science Library

    Yang, Kyoung

    2005-01-01

    This final report summarizes the progress during the Phase I SBIR project entitled "Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays...

  9. Measurement of Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    Science.gov (United States)

    Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.; Miller, A.; Nagai, D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We report the results of our continued study of arcminute scale anisotropy in the Cosmic Microwave Background (CMB) with the Berkeley-Illinois-Maryland Association (BIMA) array. The survey consists of ten independent fields selected for low infrared dust emission and lack of bright radio point sources. With observations from the VLA (Very Large Array) at 4.8 GHz, we have identified point sources which could act as contaminants in estimates of the CMB power spectrum and removed them in the analysis. Modeling the observed power spectrum with a single. flat band power with average multipole of l(sub eff) = 6864, we find Delta T = 14.2((sup +4.8)(sub -6.0)) micro K at 68% confidence. The signal in the visibility data exceeds the expected contribution from instrumental noise with 96.5% confidence. We have also divided the data into two bins corresponding to different spatial resolutions in the power spectrum. We find Delta T(sub 1) = 16.6((sup +5.3)(sub -5.9)) micro K at 68% confidence for CMB flat band power described by an average multipole of l(sub eff) = 5237 and Delta T(sub 2) is less than 26.5 micro K at 95% confidence for l(sub eff) = 8748.

  10. Actuation control of a PiezoMEMS biomimetic robotic jellyfish

    Science.gov (United States)

    Alejandre, Alvaro; Olszewski, Oskar; Jackson, Nathan

    2017-06-01

    Biomimetic micro-robots try to mimic the motion of a living system in the form of a synthetically developed microfabricated device. Dynamic motion of living systems have evolved through the years, but trying to mimic these motions is challenging. Micro-robotics are particular challenging as the fabrication of devices and controlling the motion in 3 dimensions is difficult. However, micro-scale robotics have potential to be used in a wide range of applications. MEMS based robots that can move and function in a liquid environment is of particular interest. This paper describes the development of a piezoMEMS based device that mimics the movement of a jellyfish. The paper focuses on the development of a finite element model that investigates a method of controlling the individual piezoelectric beams in order to create a jet propulsion motion, consisting of a quick excitation pulse followed by a slow recovery pulse in order to maximize thrust and velocity. By controlling the individual beams or legs of the jellyfish robot the authors can control the robot to move precisely in 3 dimensions.

  11. Synthetic Hydroxyapatite as a Biomimetic Oral Care Agent.

    Science.gov (United States)

    Enax, Joachim; Epple, Matthias

    Human tooth enamel consists mostly of minerals, primarily hydroxyapatite, Ca10(PO4)6(OH)2, and thus synthetic hydroxyapatite can be used as a biomimetic oral care agent. This review describes the synthesis and characterization of hydroxyapatite from a chemist's perspective and provides an overview of its current use in oral care, with a focus on dentin hypersensitivity, caries, biofilm management, erosion, and enamel lesions. Reviews and original research papers published in English and German were included. The efficiency of synthetic hydroxyapatite in occluding open dentin tubules, resulting in a protection for sensitive teeth, has been well documented in a number of clinical studies. The first corresponding studies on caries, biofilm management and erosion have provided evidence for a positive effect of hydroxyapatite either as a main or synergistic agent in oral care products. However, more in situ and in vivo studies are needed due to the complexity of the oral milieu and to further clarify existing results. Due to its biocompatibility and similarity to biologically formed hydroxyapatite in natural tooth enamel, synthetic hydroxyapatite is a promising biomimetic oral care ingredient that may extend the scope of preventive dentistry.

  12. Formation of Biomimetic Hydroxyapatite Coating on Titanium Plates

    Directory of Open Access Journals (Sweden)

    Ievgen Volodymyrovych PYLYPCHUK

    2014-09-01

    Full Text Available Hydroxyapatite (HA has long been used as a coating material in the implant industry for orthopedic implant applications. HA is the natural inorganic constituent of bone and teeth. By coating titanium (base material of implant engineering because of its lightness and durability with hydroxyapatite, we can provide higher biocompatibility of titanium implants, according to HA ability to form a direct biochemical bond with living tissues. This article reports a biomimetic approach for coating hydroxyapatite with titanium A method of modifying the surface of titanium by organic modifiers (for creating functional groups on the surface, followed by formation "self-assembled" layer of biomimetic hydroxyapatite in simulated body fluid (SBF. FTIR and XPS confirmed the formation of hydroxyapatite coatings on titanium surface. Comparative study of the formation of HA on the surface of titanium plates modified by different functional groups: Ti(≡OH, Ti/(≡Si-OH and Ti/(≡COOH is conducted. It was found that the closest to natural stoichiometric hydroxyapatite Ca/P ratio was obtained on Ti/(≡COOH samples. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4974

  13. Biomimetic mineralization of calcium carbonate/carboxymethylcellulose microspheres for lysozyme immobilization

    International Nuclear Information System (INIS)

    Lu Zheng; Zhang Juan; Ma Yunzi; Song Siyue; Gu Wei

    2012-01-01

    Porous calcium carbonate/carboxymethylcellulose (CaCO 3 /CMC) microspheres were prepared by the biomimetic mineralization method for lysozyme immobilization via adsorption. The size and morphology of CaCO 3 /CMC microspheres were characterized by transmitted electron microscopy (TEM) and zeta potential measurement. The lysozyme immobilization was verified by Fourier transform infrared (FTIR) spectroscopy. The effects of pHs and temperatures on lysozyme adsorption were investigated as well. It was revealed that CaCO 3 /CMC microspheres could immobilize lysozyme efficiently via electrostatic interactions and a maximum adsorption capacity of 450 mg/g was achieved at pH 9.2 and 25 °C. Moreover, it was found that the adsorption process fitted well with the Langmuir isothermal model. In addition, UV, fluorescence, and circular dichroism (CD) spectroscopic studies showed that lysozyme maintained its original secondary structure during the adsorption/desorption process. Our study therefore demonstrated that CaCO 3 /CMC microsphere can be used as a cost-effective and efficient support for lysozyme immobilization. - Graphical abstract: CaCO 3 /CMC microsphere was prepared by a facile biomimetic mineralization method and can be used as an efficient and cost-effective support for lysozyme immobilization. Highlights: ► CaCO 3 /CMC microspheres were prepared by the biomimetic mineralization method. ► Lysozyme was efficiently immobilized to CaCO 3 /CMC microspheres via adsorption. ► A maximum adsorption capacity of 450 mg/g was obtained at pH 9.2 and 25 °C. ► The original secondary structure of lysozyme was maintained upon immobilization.

  14. Insights on synergy of materials and structures in biomimetic platelet-matrix composites

    Science.gov (United States)

    Sakhavand, Navid; Shahsavari, Rouzbeh

    2018-01-01

    Hybrid materials such as biomimetic platelet-matrix composites are in high demand to confer low weight and multifunctional mechanical properties. This letter reports interfacial-bond regulated assembly of polymers on cement-an archetype model with significant infrastructure applications. We demonstrate a series of 20+ molecular dynamics studies on decoding and optimizing the complex interfacial interactions including the role and types of various heterogeneous, competing interfacial bonds that are key to adhesion and interfacial strength. Our results show an existence of an optimum overlap length scale (˜15 nm) between polymers and cement crystals, exhibiting the best balance of strength, toughness, stiffness, and ductility for the composite. This finding, combined with the fundamental insights into the nature of interfacial bonds, provides key hypotheses for selection and processing of constituents to deliberate the best synergy in the structure and materials of platelet-matrix composites.

  15. Multiscale fabrication of biomimetic scaffolds for tympanic membrane tissue engineering

    International Nuclear Information System (INIS)

    Mota, Carlos; Danti, Serena; D’Alessandro, Delfo; Trombi, Luisa; Ricci, Claudio; Berrettini, Stefano; Puppi, Dario; Dinucci, Dinuccio; Chiellini, Federica; Milazzo, Mario; Stefanini, Cesare; Moroni, Lorenzo

    2015-01-01

    The tympanic membrane (TM) is a thin tissue able to efficiently collect and transmit sound vibrations across the middle ear thanks to the particular orientation of its collagen fibers, radiate on one side and circular on the opposite side. Through the combination of advanced scaffolds and autologous cells, tissue engineering (TE) could offer valuable alternatives to autografting in major TM lesions. In this study, a multiscale approach based on electrospinning (ES) and additive manufacturing (AM) was investigated to fabricate scaffolds, based on FDA approved copolymers, resembling the anatomic features and collagen fiber arrangement of the human TM. A single scale TM scaffold was manufactured using a custom-made collector designed to confer a radial macro-arrangement to poly(lactic-co-glycolic acid) electrospun fibers during their deposition. Dual and triple scale scaffolds were fabricated combining conventional ES with AM to produce poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer scaffolds with anatomic-like architecture. The processing parameters were optimized for each manufacturing method and copolymer. TM scaffolds were cultured in vitro with human mesenchymal stromal cells, which were viable, metabolically active and organized following the anisotropic character of the scaffolds. The highest viability, cell density and protein content were detected in dual and triple scale scaffolds. Our findings showed that these biomimetic micro-patterned substrates enabled cell disposal along architectural directions, thus appearing as promising substrates for developing functional TM replacements via TE. (paper)

  16. Biomimetic Culture Reactor for Whole-Lung Engineering.

    Science.gov (United States)

    Raredon, Micha Sam Brickman; Rocco, Kevin A; Gheorghe, Ciprian P; Sivarapatna, Amogh; Ghaedi, Mahboobe; Balestrini, Jenna L; Raredon, Thomas L; Calle, Elizabeth A; Niklason, Laura E

    2016-01-01

    Decellularized organs are now established as promising scaffolds for whole-organ regeneration. For this work to reach therapeutic practice, techniques and apparatus are necessary for doing human-scale clinically applicable organ cultures. We have designed and constructed a bioreactor system capable of accommodating whole human or porcine lungs, and we describe in this study relevant technical details, means of assembly and operation, and validation. The reactor has an artificial diaphragm that mimics the conditions found in the chest cavity in vivo, driving hydraulically regulated negative pressure ventilation and custom-built pulsatile perfusion apparatus capable of driving pressure-regulated or volume-regulated vascular flow. Both forms of mechanical actuation can be tuned to match specific physiologic profiles. The organ is sealed in an elastic artificial pleura that mounts to a support architecture. This pleura reduces the fluid volume required for organ culture, maintains the organ's position during mechanical conditioning, and creates a sterile barrier allowing disassembly and maintenance outside of a biosafety cabinet. The combination of fluid suspension, negative-pressure ventilation, and physiologic perfusion allows the described system to provide a biomimetic mechanical environment not found in existing technologies and especially suited to whole-organ regeneration. In this study, we explain the design and operation of this apparatus and present data validating intended functions.

  17. Stabilization of Phenylalanine Ammonia Lyase from Rhodotorula glutinis by Encapsulation in Polyethyleneimine-Mediated Biomimetic Silica.

    Science.gov (United States)

    Cui, Jiandong; Liang, Longhao; Han, Cong; Lin Liu, Rong

    2015-06-01

    Phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis was encapsulated within polyethyleneimine-mediated biomimetic silica. The main factors in the preparation of biomimetic silica were optimized by response surface methodology (RSM). Compared to free PAL (about 2 U), the encapsulated PAL retained more than 43 % of their initial activity after 1 h of incubation time at 60 °C, whereas free PAL lost most of activity in the same conditions. It was clearly indicated that the thermal stability of PAL was improved by encapsulation. Moreover, the encapsulated PAL exhibited the excellent stability of the enzyme against denaturants and storage stability, and pH stability was improved by encapsulation. Operational stability of 7 reaction cycles showed that the encapsulated PAL was stable. Nevertheless, the K m value of encapsulated PAL in biomimetic silica was higher than that of the free PAL due to lower total surface area and increased mass transfer resistance.

  18. Adipose Stem Cell Coating of Biomimetic β-TCP Macrospheres by Use of Laboratory Centrifuge.

    Science.gov (United States)

    Chou, Joshua; Green, David W; Singh, Krishneel; Hao, Jia; Ben-Nissan, Besim; Milthorpe, Bruce

    2013-02-01

    Biomimetic materials such as coral exoskeletons possess unique architectural structures with a uniform and interconnected porous network that can be beneficial as a scaffold material. In addition, these marine structures can be hydrothermally converted to calcium phosphates, while retaining the original structural properties. The ability of biomaterials to stimulate the local microenvironment is one of the main focuses in tissue engineering, and directly coating the scaffold with stem cells facilitates future potential applications in therapeutics and regenerative medicine. In this article we describe a new and simple method that uses a laboratory centrifuge to coat hydrothermally derived beta-tricalcium phosphate macrospheres from coral exoskeleton with stem cells. In this research the optimal seeding duration and speed were determined to be 1 min and 700 g. Scanning electron micrographs showed complete surface coverage by stem cells within 7 days of seeding. This study constitutes an important step toward achieving functional tissue-engineered implants by increasing our understanding of the influence of dynamic parameters on the efficiency and distribution of stem cell attachment to biomimetic materials and how stem cells interact with biomimetic materials.

  19. A biomimetic approach toward artificial bone-like materials

    OpenAIRE

    Bertozzi, Carolyn R.

    2001-01-01

    Bone consists of microcrystalline hydroxyapatite and collagen, an elastic protein matrix that is decorated with mineral-nucleating phosphoproteins. Our rational design of artificial bone-like material uses natural bone as a guide. Hydrogel and self-assembling polymers that possess anionic groups suitably positioned for nucleating biominerals, and therefore mimic the natural function of the collagen-phosphoprotein matrix in bone, were designed to direct template-driven biomimetic mineralizatio...

  20. Biomimetic chromatographic analysis of selenium species: Application for the estimation of their pharmacokinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Tsopelas, Fotios [National Technical University of Athens, Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, Athens (Greece); University of Athens, Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Athens (Greece); Tsantili-Kakoulidou, Anna [University of Athens, Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Athens (Greece); Ochsenkuehn-Petropoulou, Maria [National Technical University of Athens, Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, Athens (Greece)

    2010-07-15

    The retention behavior of selenites, selenates, seleno-dl-methionine, selenocystine, selenocystamine, selenourea, dimethyl selenide, and dimethyl diselenide was investigated by means of biomimetic liquid chromatography. For this purpose, two immobilized artificial membrane (IAM) columns, namely, IAM.PC.DD2 and IAM.PC.MG, and two immobilized plasma protein columns, human serum albumin (HSA) and {alpha}{sub 1}-acid glycoprotein (AGP) columns, were employed using different mobile phase conditions in respect to pH and buffer composition. In general, satisfactory interrelations between retention factors obtained with the two IAM stationary phases and HSA/AGP columns were obtained. Large differences were observed between biomimetic retention factors and octanol-water logD values, since the latter fail to describe electrostatic interactions. In contrast, despite the column diversity, the net retention outcome on all four biomimetic columns was quite similar, especially in the presence of phosphate-buffered saline, which by its effective shielding alleviates the differences between the stationary phases. Of the two IAM columns, IAM.PC.DD2 showed better performance when compared with HSA and AGP columns as well as to octanol-water partitioning. Biomimetic chromatographic indices were further used to estimate the percentage of human oral absorption and plasma protein binding of the eight selenium species investigated, according to equations previously reported in the literature. The estimated values of human oral absorption imply moderate absorption only for dimethyl diselenide, which also may exhibit considerable plasma protein binding. Moderate affinity for plasma proteins should also be expected for dimethyl selenide and selenocystamine. (orig.)

  1. Upper Limb-Hand 3D Display System for Biomimetic Myoelectric Hand Simulator

    National Research Council Canada - National Science Library

    Jimenez, Gonzalo

    2001-01-01

    A graphics system displaying both upper limb posture and opening-closing of a prosthetic hand was developed for realtime operation of our biomimetic myoelectric hand simulator, Posture of the upper...

  2. A water-forming NADH oxidase from Lactobacillus pentosus and its potential application in the regeneration of synthetic biomimetic cofactors

    Directory of Open Access Journals (Sweden)

    Claudia eNowak

    2015-09-01

    Full Text Available The cell-free biocatalytic production of fine chemicals by oxidoreductases has continuously grown over the past years. Since especially dehydrogenases depend on the stoichiometric use of nicotinamide pyridine cofactors, an integrated efficient recycling system is crucial to allow process operation under economic conditions. Lately, the variety of cofactors for biocatalysis was broadened by the utilization of totally synthetic and cheap biomimetics. Though, to date the regeneration has been limited to chemical or electrochemical methods. Here, we report an enzymatic recycling by the flavoprotein NADH-oxidase from Lactobacillus pentosus (LpNox. Since this enzyme has not been described before, we first characterized it in regard to its optimal reaction parameters. We found that the heterologously overexpressed enzyme only contained 13 % FAD. In vitro loading of the enzyme with FAD, resulted in a higher specific activity towards its natural cofactor NADH as well as different nicotinamide derived biomimetics. Apart from the enzymatic recycling, which gives water as a by-product by transferring four electrons onto oxygen, unbound FAD can also catalyse the oxidation of biomimetic cofactors. Here a two electron process takes place yielding H2O2 instead. The enzymatic and chemical recycling was compared in regard to reaction kinetics for the natural and biomimetic cofactors. With LpNox and FAD, two recycling strategies for biomimetic cofactors are described with either water or hydrogen peroxide as a by-product.

  3. High aspect ratio 10-nm-scale nanoaperture arrays with template-guided metal dewetting.

    Science.gov (United States)

    Wang, Ying Min; Lu, Liangxing; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Zhang, Yong Wei; Yang, Joel K W

    2015-04-10

    We introduce an approach to fabricate ordered arrays of 10-nm-scale silica-filled apertures in a metal film without etching or liftoff. Using low temperature (dewetting of metal films guided by nano-patterned templates, apertures with aspect ratios up to 5:1 are demonstrated. Apertures form spontaneously during the thermal process without need for further processing. Although the phenomenon of dewetting has been well studied, this is the first demonstration of its use in the fabrication of nanoapertures in a spatially controllable manner. In particular, the achievement of 10-nm length-scale patterning at high aspect ratio with thermal dewetting is unprecedented. By varying the nanotemplate design, we show its strong influence over the positions and sizes of the nanoapertures. In addition, we construct a three-dimensional phase field model of metal dewetting on nano-patterned substrates. The simulation data obtained closely corroborates our experimental results and reveals new insights to template dewetting at the nanoscale. Taken together, this fabrication method and simulation model form a complete toolbox for 10-nm-scale patterning using template-guided dewetting that could be extended to a wide range of material systems and geometries.

  4. Proliferation and differentiation of osteoblast-like MC3T3-E1 cells ons biomimetically and electrolytically deposited calcium phosphate coatings

    NARCIS (Netherlands)

    Wang, J.; de Boer, Jan; de Groot, K.

    2009-01-01

    Biomimetic and electrolytic deposition are versatile methods to prepare calcium phosphate coatings. In this article, we compared the effects of biomimetically deposited octacalcium phosphate and carbonate apatite coatings as well as electrolytically deposited carbonate apatite coating on the

  5. Biomimetic synthesis of cellular SiC based ceramics from plant ...

    Indian Academy of Sciences (India)

    Unknown

    SiC based materials so derived can be used in structural applications and in designing high temperature filters and catalyst supports. Keywords. Biomimetic synthesis; carbonaceous biopreform; biomorphic Si–SiC ceramic composites; porous cellular SiC ceramics. 1. Introduction. In recent years, there has been tremendous ...

  6. Biomimetic plasmonic color generated by the single-layer coaxial honeycomb nanostructure arrays

    Science.gov (United States)

    Zhao, Jiancun; Gao, Bo; Li, Haoyong; Yu, Xiaochang; Yang, Xiaoming; Yu, Yiting

    2017-07-01

    We proposed a periodic coaxial honeycomb nanostructure array patterned in a silver film to realize the plasmonic structural color, which was inspired from natural honeybee hives. The spectral characteristics of the structure with variant geometrical parameters are investigated by employing a finite-difference time-domain method, and the corresponding colors are thus derived by calculating XYZ tristimulus values corresponding with the transmission spectra. The study demonstrates that the suggested structure with only a single layer has high transmission, narrow full-width at half-maximum, and wide color tunability by changing geometrical parameters. Therefore, the plasmonic colors realized possess a high color brightness, saturation, as well as a wide color gamut. In addition, the strong polarization independence makes it more attractive for practical applications. These results indicate that the recommended color-generating plasmonic structure has various potential applications in highly integrated optoelectronic devices, such as color filters and high-definition displays.

  7. Diffraction from relief gratings on a biomimetic elastomer cast

    International Nuclear Information System (INIS)

    Guerrero, Raphael A.; Aranas, Erika B.

    2010-01-01

    Biomimetic optical elements combine the optimized designs of nature with the versatility of materials engineering. We employ a beetle carapace as the template for fabricating relief gratings on an elastomer substrate. Biological surface features are successfully replicated by a direct casting procedure. Far-field diffraction effects are discussed in terms of the Fraunhofer approximation in Fourier space.

  8. Patterns of Growth—Biomimetics and Architectural Design

    OpenAIRE

    Petra Gruber; Barbara Imhof

    2017-01-01

    This paper discusses the approach of biomimetic design in architecture applied to the theme of growth in biology by taking two exemplary research projects at the intersection of arts and sciences. The first project, ‘Biornametics’, dealt with patterns from nature; the second project ‘Growing as Building (GrAB)’ took on biological growth as a specific theme for the transfer to architecture and the arts. Within a timeframe of five years (2011–2015), the research was conducted under the Program ...

  9. An Investigation into the Effects of Interface Stress and Interfacial Arrangement on Temperature Dependent Thermal Properties of a Biological and a Biomimetic Material

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2015-01-12

    A significant effort in the biomimetic materials research is on developing materials that can mimic and function in the same way as biological tissues, on bio-inspired electronic circuits, on bio-inspired flight structures, on bio-mimetic materials processing, and on structural biomimetic materials, etc. Most structural biological and biomimetic material properties are affected by two primary factors: (1) interfacial interactions between an organic and an inorganic phase usually in the form of interactions between an inorganic mineral phase and organic protein network; and (2) structural arrangement of the constituents. Examples are exoskeleton structures such as spicule, nacre, and crustacean exoskeletons. A significant effort is being directed towards making synthetic biomimetic materials based on a manipulation of the above two primary factors. The proposed research is based on a hypothesis that in synthetic materials with biomimetic morphology thermal conductivity, k, (how fast heat is carried away) and thermal diffusivity, D, (how fast a material’s temperature rises: proportional to the ratio of k and heat capacity) can be engineered to be either significantly low or significantly high based on a combination of chosen interface orientation and interfacial arrangement in comparison to conventional material microstructures with the same phases and phase volume fractions. METHOD DEVELOPMENT 1. We have established a combined Raman spectroscopy and nanomechanical loading based experimental framework to perform environment (liquid vs. air vs. vacuum) dependent and temperature dependent (~1000 degree-C) in-situ thermal diffusivity measurements in biomaterials at nanoscale to micron scale along with the corresponding analytical theoretic calculations. (Zhang and Tomar, 2013) 2. We have also established a new classical molecular simulation based framework to measure thermal diffusivity in biomolecular interfaces. We are writing a publication currently (Qu and Tomar

  10. Biomimetic routes to nanoscale-toughened oxide ceramics

    Science.gov (United States)

    Deschaume, Olivier

    In this work, a novel anion exchange technique has been developed and optimised in order to prepare extra-pure, hydroxide-free solutions of aluminium polyoxocations (A113 and A130) as well as for the preparation of nanosized, highly monodisperse aluminium hydroxide particles in the particle size range 20-200nm. In order for the evolution and composition of the resulting systems to be monitored, an array of characterisation techniques including 27A1 NMR, dynamic light scattering, po-tentiometry, conductometry and UV-Vis spectroscopy, have been implemented and complemented with successful data treatment strategies. The quantitative data obtained indicates that the static anion exchange method is a soft, environmentally friendly, low-cost, energy-saving and convenient procedure for the preparation of Al- containing model systems. The A1 species obtained can be used for high-precision model studies on A1 speciation, and serve as nanosize precursors to a variety of Al-containing materials. The use of these pure A1 precursors has a clear advantage in materials synthesis arising from an improved understanding and better control of A1 speciation. In a second development of the project, the model systems have been used in a nanotectonic approach to biomimetic materials synthesis, with possible applications to the optimisation of Al-containing materials such as ceramics or composite films. Bearing this aim in mind, the interactions of the prepared aluminium species with the model protein BSA and a bioelastomer, elastin, were monitored and the resulting composite materials characterised. The methodology developed for the synthesis and characterisation of pure A1 species and A1 species/biomolecule systems is a robust base for further studies spanning research fields such as Chemistry, Biology or Environmental sciences, and possess a large potential for application to industrial products and processes.

  11. Biotechnologies and biomimetics for civil engineering

    CERN Document Server

    Labrincha, J; Diamanti, M; Yu, C-P; Lee, H

    2015-01-01

    Putting forward an innovative approach to solving current technological problems faced by human society, this book encompasses a holistic way of perceiving the potential of natural systems. Nature has developed several materials and processes which both maintain an optimal performance and are also totally biodegradable, properties which can be used in civil engineering. Delivering the latest research findings to building industry professionals and other practitioners, as well as containing information useful to the public, ‘Biotechnologies and Biomimetics for Civil Engineering’ serves as an important tool to tackle the challenges of a more sustainable construction industry and the future of buildings.

  12. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    KAUST Repository

    Li, Zhenyu

    2017-07-27

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after cleaning with NaOCl and Alconox. Changes in the membrane structure and increased hydrophilicity in the surrounding areas of the aquaporin may be accountable for the increase in water permeability. The membrane shows stable salt rejection up to 99% after all cleaning agents were tested. A 15-day experiment with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane exhibits chemical resistance for most agents used in membrane cleaning procedures, maintaining a stable flux and high salt rejection.

  13. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    KAUST Repository

    Li, Zhenyu; Valladares Linares, Rodrigo; Bucs, Szilard; Fortunato, Luca; Hé lix-Nielsen, Claus; Vrouwenvelder, Johannes S.; Ghaffour, NorEddine; Leiknes, TorOve; Amy, Gary

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after cleaning with NaOCl and Alconox. Changes in the membrane structure and increased hydrophilicity in the surrounding areas of the aquaporin may be accountable for the increase in water permeability. The membrane shows stable salt rejection up to 99% after all cleaning agents were tested. A 15-day experiment with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane exhibits chemical resistance for most agents used in membrane cleaning procedures, maintaining a stable flux and high salt rejection.

  14. Large-scale synthesis of hierarchical-structured weissite (Cu2−xTe) flake arrays and their catalytic properties

    International Nuclear Information System (INIS)

    Cao, Xinjiang; Yan, Shancheng; Ortiz, Lazarus Santiago; Liang, Gaofeng; Sun, Bo; Huang, Ningping; Xiao, Zhongdang

    2014-01-01

    Graphical abstract: - Highlights: • Large-scale Cu 2−x Te flake arrays grown on copper foam were synthesized. • They possess superior catalytic efficiency on methylene blue with the assistance of H 2 O 2 . • The effects of preparing conditions on the growth of Cu 2−x Te flake arrays were investigated. - Abstract: Large-scale weissite (Cu 2−x Te) flake arrays with three-dimensional (3D) hierarchical structure have been successfully fabricated via a facile one-step solution-phase strategy through the reaction of tellurium powder and copper foam. At the end of the reaction Cu 2−x Te flakes were distributed evenly on the surface of a porous solid copper substrate. Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis showed the abundance of flakes grown on the 3D porous copper architecture, while X-ray diffraction (XRD) and energy-dispersive X-ray spectra (EDS) were used to determine the crystal structure and phase composition of these products. A series of experiments discovered that the size and morphology of the products could be affected by some reactive parameters including the reaction time, synthesis temperature and volume ratio of absolute ethanol/deionized water. Catalysis experiments using the in situ synthesized of Cu 2−x Te flakes to catalyze the degradation of methylene blue (MB) demonstrated the strong catalytic ability of these flakes

  15. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    Science.gov (United States)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen

    2018-04-01

    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  16. Characterization of a biomimetic coating on dense and porous titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.N. da; Pereira, L.C. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEMM/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Ribeiro, A.A.; Oliveira, M.V. de, E-mail: marize.varella@int.gov.b [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil); Andrade, M.C. de [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2010-07-01

    Bioactive materials have been studied as coatings on bioinert subtracts. Thus, it is possible to combine the bioactivity of materials such as calcium phosphate with the excellent mechanical properties of metals. Titanium (Ti) implants can be bioactivated by a biomimetic precipitation method. This study introduces a biomimetic method under a simplified solution (SS) with calcium and phosphorus ions. As substrates, commercially pure Ti sheet and micro-porous Ti samples produced by powder metallurgy were used. The substrates were submitted to chemical and heat treating and then immersed in the SS for 7, 14, 21 days. Surface roughness was evaluated by confocal scanning optical microscopy. Coating characterization was performed by scanning electron microscopy and high resolution X-ray diffraction (XRD). The results showed calcium phosphate crystal morphologies observed in all samples, which was confirmed by XRD phase identifications. These results reveal the solution potential for coating Ti substrates. (author)

  17. Characterization of a biomimetic coating on dense and porous titanium substrates

    International Nuclear Information System (INIS)

    Rocha, M.N. da; Pereira, L.C.; Andrade, M.C. de

    2010-01-01

    Bioactive materials have been studied as coatings on bioinert subtracts. Thus, it is possible to combine the bioactivity of materials such as calcium phosphate with the excellent mechanical properties of metals. Titanium (Ti) implants can be bioactivated by a biomimetic precipitation method. This study introduces a biomimetic method under a simplified solution (SS) with calcium and phosphorus ions. As substrates, commercially pure Ti sheet and micro-porous Ti samples produced by powder metallurgy were used. The substrates were submitted to chemical and heat treating and then immersed in the SS for 7, 14, 21 days. Surface roughness was evaluated by confocal scanning optical microscopy. Coating characterization was performed by scanning electron microscopy and high resolution X-ray diffraction (XRD). The results showed calcium phosphate crystal morphologies observed in all samples, which was confirmed by XRD phase identifications. These results reveal the solution potential for coating Ti substrates. (author)

  18. Nuclear resonant scattering measurements on (57)Fe by multichannel scaling with a 64-pixel silicon avalanche photodiode linear-array detector.

    Science.gov (United States)

    Kishimoto, S; Mitsui, T; Haruki, R; Yoda, Y; Taniguchi, T; Shimazaki, S; Ikeno, M; Saito, M; Tanaka, M

    2014-11-01

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm(2)) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10(7) cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on (57)Fe.

  19. Controlling the Biomimetic Implant Interface: Modulating Antimicrobial Activity by Spacer Design

    Science.gov (United States)

    Wisdom, Cate; Vanoosten, Sarah Kay; Boone, Kyle W.; Khvostenko, Dmytro; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2016-08-01

    Surgical site infection is a common cause of post-operative morbidity, often leading to implant loosening, ultimately requiring revision surgery, increased costs and worse surgical outcomes. Since implant failure starts at the implant surface, creating and controlling the bio-material interface will play a critical role in reducing infection while improving host cell-to-implant interaction. Here, we engineered a biomimetic interface based upon a chimeric peptide that incorporates a titanium binding peptide (TiBP) with an antimicrobial peptide (AMP) into a single molecule to direct binding to the implant surface and deliver an antimicrobial activity against S. mutans and S. epidermidis, two bacteria which are linked with clinical implant infections. To optimize antimicrobial activity, we investigated the design of the spacer domain separating the two functional domains of the chimeric peptide. Lengthening and changing the amino acid composition of the spacer resulted in an improvement of minimum inhibitory concentration by a three-fold against S. mutans. Surfaces coated with the chimeric peptide reduced dramatically the number of bacteria, with up to a nine-fold reduction for S. mutans and a 48-fold reduction for S. epidermidis. Ab initio predictions of antimicrobial activity based on structural features were confirmed. Host cell attachment and viability at the biomimetic interface were also improved compared to the untreated implant surface. Biomimetic interfaces formed with this chimeric peptide offer interminable potential by coupling antimicrobial and improved host cell responses to implantable titanium materials, and this peptide based approach can be extended to various biomaterials surfaces.

  20. Surface-roughness-assisted formation of large-scale vertically aligned CdS nanorod arrays via solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Minmin [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yan, Shancheng, E-mail: yansc@njupt.edu.cn [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Shi, Yi, E-mail: yshi@nju.edu.cn [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yang, Meng; Sun, Huabin; Wang, Jianyu; Yin, Yao; Gao, Fan [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2013-05-15

    Large-scale cadmium sulfide (CdS) nanorod arrays were successfully synthesized on several different substrates through solvothermal reaction. During the growth experiments, we observed that the adhesion strength of the CdS nanorod arrays to different substrates differed dramatically, causing some of the CdS coating being easily flushed away by deionized water (DI water). With doubts and suspicions, we seriously investigate the original morphology of all the substrates by using atomic force microscopy (AFM). The phase, morphology, crystal structure and photoelectric property of all the products were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and current–voltage (I–V) probe station. The growth mechanism of solvothermal reaction was proposed on the basis of all the characterizations. Our approach presents a universal method of liquid phase epitaxy of 1D material on a wide range of substrates of any shape.

  1. Biomimetic Sonar for Electrical Activation of the Auditory Pathway

    Directory of Open Access Journals (Sweden)

    D. Menniti

    2017-01-01

    Full Text Available Relying on the mechanism of bat’s echolocation system, a bioinspired electronic device has been developed to investigate the cortical activity of mammals in response to auditory sensorial stimuli. By means of implanted electrodes, acoustical information about the external environment generated by a biomimetic system and converted in electrical signals was delivered to anatomically selected structures of the auditory pathway. Electrocorticographic recordings showed that cerebral activity response is highly dependent on the information carried out by ultrasounds and is frequency-locked with the signal repetition rate. Frequency analysis reveals that delta and beta rhythm content increases, suggesting that sensorial information is successfully transferred and integrated. In addition, principal component analysis highlights how all the stimuli generate patterns of neural activity which can be clearly classified. The results show that brain response is modulated by echo signal features suggesting that spatial information sent by biomimetic sonar is efficiently interpreted and encoded by the auditory system. Consequently, these results give new perspective in artificial environmental perception, which could be used for developing new techniques useful in treating pathological conditions or influencing our perception of the surroundings.

  2. Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials

    Science.gov (United States)

    De Nicola, Francesco; Hines, Peter; De Crescenzi, Maurizio; Motta, Nunzio

    2017-07-01

    Ultrablack metamaterials are artificial materials able to harvest all the incident light regardless of wavelength, angle, or polarization. Here, we show the ultrablack properties of randomly aligned hierarchical carbon nanotube arrays with thicknesses below 200 nm. The thin coatings are realized by solution processing and dry-transfer deposition on different substrates. The hierarchical surface morphology of the coatings is biomimetic and provides a large effective area that improves the film optical absorption. Also, such a morphology is responsible for the moth-eye effect, which leads to the omnidirectional and polarization-independent suppression of optical reflection. The films exhibit an emissivity up to 99.36% typical of an ideal black body, resulting in the thinnest ultrablack metamaterial ever reported. Such a material may be exploited for thermal, optical, and optoelectronic devices such as heat sinks, optical shields, solar cells, light and thermal sensors, and light-emitting diodes.

  3. Contextual Compression of Large-Scale Wind Turbine Array Simulations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Potter, Kristin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clyne, John [National Center for Atmospheric Research

    2017-11-03

    Data sizes are becoming a critical issue particularly for HPC applications. We have developed a user-driven lossy wavelet-based storage model to facilitate the analysis and visualization of large-scale wind turbine array simulations. The model stores data as heterogeneous blocks of wavelet coefficients, providing high-fidelity access to user-defined data regions believed the most salient, while providing lower-fidelity access to less salient regions on a block-by-block basis. In practice, by retaining the wavelet coefficients as a function of feature saliency, we have seen data reductions in excess of 94 percent, while retaining lossless information in the turbine-wake regions most critical to analysis and providing enough (low-fidelity) contextual information in the upper atmosphere to track incoming coherent turbulent structures. Our contextual wavelet compression approach has allowed us to deliver interactive visual analysis while providing the user control over where data loss, and thus reduction in accuracy, in the analysis occurs. We argue this reduced but contexualized representation is a valid approach and encourages contextual data management.

  4. Biomimetic Spider Leg Joints: A Review from Biomechanical Research to Compliant Robotic Actuators

    Directory of Open Access Journals (Sweden)

    Stefan Landkammer

    2016-07-01

    Full Text Available Due to their inherent compliance, soft actuated joints are becoming increasingly important for robotic applications, especially when human-robot-interactions are expected. Several of these flexible actuators are inspired by biological models. One perfect showpiece for biomimetic robots is the spider leg, because it combines lightweight design and graceful movements with powerful and dynamic actuation. Building on this motivation, the review article focuses on compliant robotic joints inspired by the function principle of the spider leg. The mechanism is introduced by an overview of existing biological and biomechanical research. Thereupon a classification of robots that are bio-inspired by spider joints is presented. Based on this, the biomimetic robot applications referring to the spider principle are identified and discussed.

  5. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.

    Science.gov (United States)

    Barthlott, W; Mail, M; Neinhuis, C

    2016-08-06

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  6. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications

    Science.gov (United States)

    Mail, M.; Neinhuis, C.

    2016-01-01

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354736

  7. Tunable hydrodynamic characteristics in microchannels with biomimetic superhydrophobic (lotus leaf replica) walls.

    Science.gov (United States)

    Dey, Ranabir; Raj M, Kiran; Bhandaru, Nandini; Mukherjee, Rabibrata; Chakraborty, Suman

    2014-05-21

    The present work comprehensively addresses the hydrodynamic characteristics through microchannels with lotus leaf replica (exhibiting low adhesion and superhydrophobic properties) walls. The lotus leaf replica is fabricated following an efficient, two-step, soft-molding process and is then integrated with rectangular microchannels. The inherent biomimetic, superhydrophobic surface-liquid interfacial hydrodynamics, and the consequential bulk flow characteristics, are critically analyzed by the micro-particle image velocimetry technique. It is observed that the lotus leaf replica mediated microscale hydrodynamics comprise of two distinct flow regimes even within the low Reynolds number paradigm, unlike the commonly perceived solely apparent slip-stick dominated flows over superhydrophobic surfaces. While the first flow regime is characterized by an apparent slip-stick flow culminating in an enhanced bulk throughput rate, the second flow regime exhibits a complete breakdown of the aforementioned laminar and uni-axial flow model, leading to a predominantly no-slip flow. Interestingly, the critical flow condition dictating the transition between the two hydrodynamic regimes is intrinsically dependent on the micro-confinement effect. In this regard, an energetically consistent theoretical model is also proposed to predict the alterations in the critical flow condition with varying microchannel configurations, by addressing the underlying biomimetic surface-liquid interfacial conditions. Hence, the present research endeavour provides a new design-guiding paradigm for developing multi-functional microfluidic devices involving biomimetic, superhydrophobic surfaces, by judicious exploitation of the tunable hydrodynamic characteristics in the two regimes.

  8. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez

    2013-01-01

    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by using...... other kind of nonbiological amphiphilic molecules. An interesting possibility could be the use of self-assembled proteins in a lipid-free membrane mimicking the capside of some viruses. The membrane proteins that have been more actively used in combination with block copolymer membranes are gramicidin...

  9. A Novel Soft Biomimetic Microrobot with Two Motion Attitudes

    Directory of Open Access Journals (Sweden)

    Liwei Shi

    2012-12-01

    Full Text Available  A variety of microrobots have commonly been used in the fields of biomedical engineering and underwater operations during the last few years. Thanks to their compact structure, low driving power, and simple control systems, microrobots can complete a variety of underwater tasks, even in limited spaces. To accomplish our objectives, we previously designed several bio-inspired underwater microrobots with compact structure, flexibility, and multi-functionality, using ionic polymer metal composite (IPMC actuators. To implement high-position precision for IPMC legs, in the present research, we proposed an electromechanical model of an IPMC actuator and analysed the deformation and actuating force of an equivalent IPMC cantilever beam, which could be used to design biomimetic legs, fingers, or fins for an underwater microrobot. We then evaluated the tip displacement of an IPMC actuator experimentally. The experimental deflections fit the theoretical values very well when the driving frequency was larger than 1 Hz. To realise the necessary multi-functionality for adapting to complex underwater environments, we introduced a walking biomimetic microrobot with two kinds of motion attitudes: a lying state and a standing state. The microrobot uses eleven IPMC actuators to move and two shape memory alloy (SMA actuators to change its motion attitude. In the lying state, the microrobot implements stick-insect-inspired walking/rotating motion, fish-like swimming motion, horizontal grasping motion, and floating motion. In the standing state, it implements inchworm-inspired crawling motion in two horizontal directions and grasping motion in the vertical direction. We constructed a prototype of this biomimetic microrobot and evaluated its walking, rotating, and floating speeds experimentally. The experimental results indicated that the robot could attain a maximum walking speed of 3.6 mm/s, a maximum rotational speed of 9°/s, and a maximum floating speed of 7

  10. Deployment Methods for an Origami-Inspired Rigid-Foldable Array

    Science.gov (United States)

    Zirbel, Shannon A.; Trease, Brian P.; Magleby, Spencer P.; Howell, Larry L.

    2014-01-01

    The purpose of this work is to evaluate several deployment methods for an origami-inspired solar array at two size scales: 25-meter array and CubeSat array. The array enables rigid panel deployment and introduces new concepts for actuating CubeSat deployables. The design for the array was inspired by the origami flasher model (Lang, 1997; Shafer, 2001). Figure 1 shows the array prototyped from Garolite and Kapton film at the CubeSat scale. Prior work demonstrated that rigid panels like solar cells could successfully be folded into the final stowed configuration without requiring the panels to flex (Zirbel, Lang, Thomson, & al., 2013). The design of the array is novel and enables efficient use of space. The array can be wrapped around the central bus of the spacecraft in the case of the large array, or can accommodate storage of a small instrument payload in the case of the CubeSat array. The radial symmetry of this array around the spacecraft is ideally suited for spacecraft that need to spin. This work focuses on several actuation methods for a one-time deployment of the array. The array is launched in its stowed configuration and it will be deployed when it is in space. Concepts for both passive and active actuation were considered.

  11. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways.

    Science.gov (United States)

    Walther, Andreas; Bjurhager, Ingela; Malho, Jani-Markus; Pere, Jaakko; Ruokolainen, Janne; Berglund, Lars A; Ikkala, Olli

    2010-08-11

    Although remarkable success has been achieved to mimic the mechanically excellent structure of nacre in laboratory-scale models, it remains difficult to foresee mainstream applications due to time-consuming sequential depositions or energy-intensive processes. Here, we introduce a surprisingly simple and rapid methodology for large-area, lightweight, and thick nacre-mimetic films and laminates with superior material properties. Nanoclay sheets with soft polymer coatings are used as ideal building blocks with intrinsic hard/soft character. They are forced to rapidly self-assemble into aligned nacre-mimetic films via paper-making, doctor-blading or simple painting, giving rise to strong and thick films with tensile modulus of 45 GPa and strength of 250 MPa, that is, partly exceeding nacre. The concepts are environmentally friendly, energy-efficient, and economic and are ready for scale-up via continuous roll-to-roll processes. Excellent gas barrier properties, optical translucency, and extraordinary shape-persistent fire-resistance are demonstrated. We foresee advanced large-scale biomimetic materials, relevant for lightweight sustainable construction and energy-efficient transportation.

  12. Biomimetic magnetic nanocomposite for smart skins

    KAUST Repository

    Alfadhel, Ahmed; Kosel, Jü rgen

    2015-01-01

    We report a biomimetic tactile sensor consisting of magnetic nanocomposite artificial cilia and magnetic sensors. The nanocomposite is fashioned from polydimethylsiloxane and iron nanowires and exhibits a permanent magnetic behavior. This enables remote operation without an additional magnetic field to magnetize the nanowires, which simplifies device integration. Moreover, the highly elastic and easy patternable nanocomposite is corrosion resistant and thermally stable. The highly sensitive and power efficient tactile sensors can detect vertical and shear forces from interactions with objects. The sensors can operate in dry and wet environment with the ability to measure different properties such as the texture and the movement or stability of objects, with easily adjustable performance.

  13. Biomimetic magnetic nanocomposite for smart skins

    KAUST Repository

    Alfadhel, Ahmed

    2015-11-01

    We report a biomimetic tactile sensor consisting of magnetic nanocomposite artificial cilia and magnetic sensors. The nanocomposite is fashioned from polydimethylsiloxane and iron nanowires and exhibits a permanent magnetic behavior. This enables remote operation without an additional magnetic field to magnetize the nanowires, which simplifies device integration. Moreover, the highly elastic and easy patternable nanocomposite is corrosion resistant and thermally stable. The highly sensitive and power efficient tactile sensors can detect vertical and shear forces from interactions with objects. The sensors can operate in dry and wet environment with the ability to measure different properties such as the texture and the movement or stability of objects, with easily adjustable performance.

  14. A crude protective film on historic stones and its artificial preparation through biomimetic synthesis

    Science.gov (United States)

    Liu, Qiang; Zhang, Bingjian; Shen, Zhongyue; Lu, Huanming

    2006-12-01

    A biomimetic film has been found on the surface of the historic stone buildings and monuments. The stone inscriptions under the film are preserved so well that has not been damaged for more than 1000 years. Samples of the crude film have been analyzed by XRD, FTIR, PLM, EDA, SEM and TEM. The results show that it consists mainly of calcium oxalate monohydrate. On the basis of the existence of the organism debris, it is concluded that the film should be a product of biomineralization. According to this hypothesis, a similar film has been prepared on the stone surface through biomimetic synthesis in our laboratory. The preliminary analysis shows that the artificial protective film functions well.

  15. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy

    NARCIS (Netherlands)

    Liu, Yuelian; Layrolle, Pierre; de Bruijn, Joost Dick; van Blitterswijk, Clemens; de Groot, K.

    2001-01-01

    Titanium alloy implants were precoated biomimetically with a thin and dense layer of calcium phosphate and then incubated either in a supersaturated solution of calcium phosphate or in phosphate-buffered saline, each containing bovine serum albumin (BSA) at various concentrations, under

  16. Enzymatic pH control for biomimetic depostion of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, te J.; Habibovic, P.; Birgani, Z.T.; Li, Y.B.; Bomans, P.H.H.; Jansen, J.A.; Sommerdijk, N.A.J.M.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phospate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  17. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, J. te; Habibovic, P.; Tahmasebi Birgani, Z.; Li, Y.; Bomans, P.H.; Jansen, J.A.; Sommerdijk, N.A.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phosphate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  18. Large-scale synthesis of hierarchical-structured weissite (Cu{sub 2−x}Te) flake arrays and their catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinjiang [State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096 (China); Yan, Shancheng [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Ortiz, Lazarus Santiago; Liang, Gaofeng; Sun, Bo; Huang, Ningping [State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096 (China); Xiao, Zhongdang, E-mail: zdxiao@seu.edu.cn [State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096 (China)

    2014-03-01

    Graphical abstract: - Highlights: • Large-scale Cu{sub 2−x}Te flake arrays grown on copper foam were synthesized. • They possess superior catalytic efficiency on methylene blue with the assistance of H{sub 2}O{sub 2}. • The effects of preparing conditions on the growth of Cu{sub 2−x}Te flake arrays were investigated. - Abstract: Large-scale weissite (Cu{sub 2−x}Te) flake arrays with three-dimensional (3D) hierarchical structure have been successfully fabricated via a facile one-step solution-phase strategy through the reaction of tellurium powder and copper foam. At the end of the reaction Cu{sub 2−x}Te flakes were distributed evenly on the surface of a porous solid copper substrate. Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis showed the abundance of flakes grown on the 3D porous copper architecture, while X-ray diffraction (XRD) and energy-dispersive X-ray spectra (EDS) were used to determine the crystal structure and phase composition of these products. A series of experiments discovered that the size and morphology of the products could be affected by some reactive parameters including the reaction time, synthesis temperature and volume ratio of absolute ethanol/deionized water. Catalysis experiments using the in situ synthesized of Cu{sub 2−x}Te flakes to catalyze the degradation of methylene blue (MB) demonstrated the strong catalytic ability of these flakes.

  19. Pore-Confined Carriers and Biomolecules in Mesoporous Silica for Biomimetic Separation and Targeting

    Science.gov (United States)

    Zhou, Shanshan

    Selectively permeable biological membranes composed of lipophilic barriers inspire the design of biomimetic carrier-mediated membranes for aqueous solute separation. This work imparts selective permeability to lipid-filled pores of silica thin film composite membranes using carrier molecules that reside in the lipophilic self-assemblies. The lipids confined inside the pores of silica are proven to be a more effective barrier than bilayers formed on the porous surface through vesicle fusion, which is critical for quantifying the function of an immobilized carrier. The ability of a lipophilic carrier embedded in the lipid bilayer to reversibly bind the target solute and transport it through the membrane is demonstrated. Through the functionalization of the silica surface with enzymes, enzymatic catalysis and biomimetic separations can be combined on this nanostructured composite platform. The successful development of biomimetic nanocomposite membrane can provide for efficient dilute aqueous solute upgrading or separations using engineered carrier/catalyst/support systems. While the carrier-mediated biomimetic membranes hold great potential, fully understanding of the transport processes in composite synthetic membranes is essential for improve the membrane performance. Electrochemical impedance spectroscopy (EIS) technique is demonstrated to be a useful tool for characterizing the thin film pore accessibility. Furthermore, the effect of lipid bilayer preparation methods on the silica thin film (in the form of pore enveloping, pore filling) on ion transport is explored, as a lipid bilayer with high electrically insulation is essential for detecting activity of proteins or biomimetic carriers in the bilayer. This study provides insights for making better barriers on mesoporous support for carrier-mediated membrane separation process. Porous silica nanoparticles (pSNPs) with pore sizes appropriate for biomolecule loading are potential for encapsulating dsRNA within the

  20. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    Science.gov (United States)

    Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo

    2013-02-05

    In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.

  1. Enzymatic pH Control for Biomimetic Deposition of Calcium Phosphate Coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.; Reza Nejadnik, M.; Nudelman, F.; Walboomers, X.F.; te Riet, J.; Habibovic, Pamela; Tahmasebi Birgani, Zeinab; Yubao, L.; Bomans, P.H.H.; Jansen, J.A.; Sommerdijk, N.A.J.M.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study has focused on enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of Calcium Phospate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  2. Challenges in commercializing biomimetic membranes

    DEFF Research Database (Denmark)

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine Elkjær

    2015-01-01

    category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market—in particular if both...... the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some...... of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments...

  3. Biomimetic artificial sphincter muscles: status and challenges

    Science.gov (United States)

    Leung, Vanessa; Fattorini, Elisa; Karapetkova, Maria; Osmani, Bekim; Töpper, Tino; Weiss, Florian; Müller, Bert

    2016-04-01

    Fecal incontinence is the involuntary loss of bowel content and affects more than 12% of the adult population, including 45% of retirement home residents. Severe fecal incontinence is often treated by implanting an artificial sphincter. Currently available implants, however, have long-term reoperation rates of 95% and definitive explantation rates of 40%. These statistics show that the implants fail to reproduce the capabilities of the natural sphincter and that the development of an adaptive, biologically inspired implant is required. Dielectric elastomer actuators (DEA) are being developed as artificial muscles for a biomimetic sphincter, due to their suitable response time, reaction forces, and energy consumption. However, at present the operation voltage of DEAs is too high for artificial muscles implanted in the human body. To reduce the operating voltage to tens of volts, we are using microfabrication to reduce the thickness of the elastomer layer to the nanometer level. Two microfabrication methods are being investigated: molecular beam deposition and electrospray deposition. This communication covers the current status and a perspective on the way forward, including the long-term prospects of constructing a smart sphincter from low-voltage sensors and actuators based on nanometer-thin dielectric elastomer films. As DEA can also provide sensory feedback, a biomimetic sphincter can be designed in accordance with the geometrical and mechanical parameters of its natural counterpart. The availability of such technology will enable fast pressure adaption comparable to the natural feedback mechanism, so that tissue atrophy and erosion can be avoided while maintaining continence du ring daily activities.

  4. Analyzing CMOS/SOS fabrication for LSI arrays

    Science.gov (United States)

    Ipri, A. C.

    1978-01-01

    Report discusses set of design rules that have been developed as result of work with test arrays. Set of optimum dimensions is given that would maximize process output and would correspondingly minimize costs in fabrication of large-scale integration (LSI) arrays.

  5. Determination of catechin in green tea using a catechol oxidase biomimetic sensor

    International Nuclear Information System (INIS)

    Fernandes, Suellen C.; Osorio, Renata El-Hage M. de Barros; Anjos, Ademir dos; Neves, Ademir; Micke, Gustavo Amadeu; Vieira, Iolanda C.

    2008-01-01

    A catechol oxidase biomimetic sensor, based on a novel copper(II) complex, was developed for the determination of catechin in green tea and the results were compared with those obtained by capillary electrophoresis. The dinuclear copper(II) complex, [Cu 2 (HL)(μ-CH 3 COO)](ClO 4 ), containing the ligand N,N-[bis-(2-pyridylmethyl)]-N',N'-[(2-hydroxybenzyl)(2-hydroxy-3,5-di-tert - butylbenzyl)]-1,3-propanediamine-2-ol (H 3 L), was synthesized and characterized by IR, 1 H NMR and elemental analysis. The best conditions for the optimization of the biomimetic sensor were established by square wave voltammetry. The best performance for this sensor was obtained in 75:15:10% (m/m/m) of the graphite powder:nujol:copper(II) complex, 0.05 mol L -1 phosphate buffer solution (pH 7.5) and frequency, pulse amplitude, scan increment at 30 Hz, 80 mV, 3.3 mV, respectively. The analytical curve was linear in the concentration range 4.95 x 10 -6 to 3.27 x 10 -5 mol L -1 (r = 0.9993) with a detection limit of 2.8 x 10 -7 mol L -1 . This biomimetic sensor demonstrated long-term stability (9 months; 800 determinations) and reproducibility with a relative standard deviation of 3.5%. The recovery of catechin from green tea samples ranged from 93.8 to 106.9% and the determination, compared with that obtained using capillary electrophoresis, was found to be acceptable at the 95% confidence level. (author)

  6. Radius scaling of titanium wire arrays on the Z accelerator

    International Nuclear Information System (INIS)

    Coverdale, C.A.; Denney, C.; Spielman, R.B.

    1999-01-01

    The 20 MA Z accelerator has made possible the generation of substantial radiation (> 100 kJ) at higher photon energies (4.8 keV) through the use of titanium wire arrays. In this paper, the results of experiments designed to study the effects of initial load radius variations of nickel-clad titanium wire arrays will be presented. The load radius was varied from 17.5 mm to 25 mm and titanium K-shell (4.8 keV) yields of greater than 100 kJ were measured. The inclusion of the nickel cladding on the titanium wires allows for higher wire number loads and increases the spectral broadness of the source; kilovolt emissions (nickel plus titanium L-shell) of 400 kJ were measured in these experiments. Comparisons of the data to calculations will be made to estimate pinched plasma parameters such as temperature and participating mass fraction. These results will also be compared with previous pure titanium wire array results

  7. Design and fabrication of a biomimetic gyroscope inspired by the fly's haltere

    NARCIS (Netherlands)

    Droogendijk, H.; Brookhuis, Robert Anton; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2012-01-01

    We report on the design and fabrication of a MEMS-based gyroscopic system inspired by the fly's haltere system. Two types of so-called biomimetic gyroscopes have been designed, fabricated and their drive mode has been characterized. First measurements indicate excitable gyropscopes with natural

  8. Annular array technology for nondestructive turbine inspection. Final report

    International Nuclear Information System (INIS)

    Light, G.M.

    1986-05-01

    The Electric Power Research Institute (EPRI) funded Southwest Research Institute (SwRI) to fabricate and functionally test phased array transducers and an electronic control system with the intent of evaluating the phased array technology for use in the inspection of turbine disks. During this program a 13-element annular array and associated phased array electronics were fabricated and tested and the results of the tests compared to those predicted by theory. The prototype system performed well within the expected limits, and EPRI funded further work to fabricate and test a production unit. The production system consisted of a 25-element annular array and a 25-channel electronics system that had both pulser and receiver delay circuitry. In addition, during the program it was determined that miniaturized hybrid pulser/preamps would be needed to allow the phased array to work over distances exceeding 9.1 meters (30 feet) from the electronics. A circuit developed by SwRI was utilized and found to produce good pulsing capability that did not suffer from impedance mismatch. EPRI also funded (under a separate contract) the fabrication of a small scale static turbine test bed and a full scale dynamic test bed that contained full scale turbine geometries. These test beds were fabricated to enable the production phased array system to be evaluated on turbine disk surfaces. 26 figs

  9. Framing biomimetics in a strategic orientation perspective (biopreneuring)

    DEFF Research Database (Denmark)

    Ulhøi, John Parm

    2015-01-01

    somewhat overlooked. This paper fills some of that void. Business orientation literature is applied to identify some of the key strategic aspects associated with commercial translations. In closing, this paper briefly sketches out some key implications for business research and for affected decision-makers.......This paper discusses how design originally rooted in biology can be translated into applications outside its original domain (biomimetics), and thus become strategically important for commercial organisations. This paper will also discuss how concepts from organisation and management theory can...

  10. Interplay of static and dynamic features in biomimetic smart ears.

    Science.gov (United States)

    Pannala, Mittu; Meymand, Sajjad Zeinoddini; Müller, Rolf

    2013-06-01

    Horseshoe bats (family Rhinolophidae) have sophisticated biosonar systems with outer ears (pinnae) that are characterized by static local shape features as well as dynamic non-rigid changes to their overall shapes. Here, biomimetic prototypes fabricated from elastic rubber sheets have been used to study the impact of these static and dynamic features on the acoustic device characteristics. The basic shape of the prototypes was an obliquely truncated horn augmented with three static local shape features: vertical ridge, pinna-rim incision and frontal flap (antitragus). The prototype shape was deformed dynamically using a one-point actuation mechanism to produce a biomimetic bending of the prototype's tip. In isolation, the local shape features had little impact on the device beampattern. However, strong interactions were observed between these features and the overall deformation. The further the prototype tip was bent down, the stronger the beampatterns associated with combinations of multiple features differed from the upright configuration in the prominence of sidelobes. This behavior was qualitatively similar to numerical predictions for horseshoe bats. Hence, the interplay between static and dynamic features could be a bioinspired principle for affecting large changes through the dynamic manipulations of interactions that are sensitive to small geometrical changes.

  11. Characterization of biomimetically synthesized Hap-Gel nanocomposites as bone substitute

    International Nuclear Information System (INIS)

    Bera, Tanmay; Vivek, A N; Saraf, S K; Ramachandrarao, P

    2008-01-01

    There is an increasing demand for an affordable and easy-to-fabricate material to help patients having a long bone gap. In this paper, we describe the biomimetic synthesis of Hap-Gel in situ nanocomposite powders with varied proportions. Their biocompatibility and bone regeneration abilities were assessed on a rabbit model. The use of Hap crystals and Gel molecule, the soluble form of bone protein, makes the nanocomposites comparable to natural bone in constituents. The application of biomimetic principles improves crystal morphology and the interaction of Hap crystals with the Gel molecules as seen through in vitro characterizations. Out of the various compositions studied, one with 80:20 proportions of Hap to Gel proved to be closest to the characteristics of natural bone. The immunological response to this composite, assessed through intradermal inoculation, did not reveal any reaction. The in vivo implantation studies in the femoral condyle of the animals, as assessed by serial post-operative follow-up radiography and the histological evaluation, revealed a good biocompatibility and bone-regeneration ability of the material. Thus, nanocomposites of Hap-Gel have a great potential for serving as an effective and affordable biomaterial for bone grafting applications

  12. A Preliminary Detection of Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array

    Science.gov (United States)

    Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.; Reese, E. D.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We have used the Berkeley-Illinois-Maryland-Association (BIMA) array outfitted with sensitive cm-wave receivers to expand our search for minute scale anisotropy of the Cosmic Microwave Background (CMB). The interferometer was placed in a compact configuration to obtain high brightness sensitivity on arcminute scales over its 6.6' FWHM field of view. The sensitivity of this experiment to flat band power peaks at a multipole of 1 = 5530 which corresponds to an angular scale of -2'. We present the analysis of a total of 470 hours of on-source integration time on eleven independent fields which were selected based on their low IR contrast and lack of bright radio sources. Applying a Bayesian analysis to the visibility data, we find CMB anisotropy flat band power Q_flat = 6.1(+2.8/-4.8) microKelvin at 68% confidence. The confidence of a nonzero signal is 76% and we find an upper limit of Q_flat < 12.4 microKelvin at 95% confidence. We have supplemented our BIMA observations with concurrent observations at 4.8 GHz with the VLA to search for and remove point sources. We find the point sources make an insignificant contribution to the observed anisotropy.

  13. VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Deng, Meng; Lv, Qing; Jiang, Tao; Khan, Yusuf M; Nair, Lakshmi S; Laurencin, Cato T

    2012-11-01

    Regenerative engineering approaches utilizing biomimetic synthetic scaffolds provide alternative strategies to repair and restore damaged bone. The efficacy of the scaffolds for functional bone regeneration critically depends on their ability to induce and support vascular infiltration. In the present study, three-dimensional (3D) biomimetic poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds were developed by sintering together PLAGA microspheres followed by nucleation of minerals in a simulated body fluid. Further, the angiogenic potential of vascular endothelial growth factor (VEGF)-incorporated mineralized PLAGA scaffolds were examined by monitoring the growth and phenotypic expression of endothelial cells on scaffolds. Scanning electron microscopy micrographs confirmed the growth of bone-like mineral layers on the surface of microspheres. The mineralized PLAGA scaffolds possessed interconnectivity and a compressive modulus of 402 ± 61 MPa and compressive strength of 14.6 ± 2.9 MPa. Mineralized scaffolds supported the attachment and growth and normal phenotypic expression of endothelial cells. Further, precipitation of apatite layer on PLAGA scaffolds resulted in an enhanced VEGF adsorption and prolonged release compared to nonmineralized PLAGA and, thus, a significant increase in endothelial cell proliferation. Together, these results demonstrated the potential of VEGF-incorporated biomimetic PLAGA sintered microsphere scaffolds for bone tissue engineering as they possess the combined effects of osteointegrativity and angiogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  14. Changes in 3D Midfacial Parameters after Biomimetic Oral Appliance Therapy in Adults

    Directory of Open Access Journals (Sweden)

    G Dave Singh

    2014-01-01

    Conclusion: These data support the notion that maxillary bone width and volume can be changed in nongrowing adults. Furthermore, midfacial redevelopment may provide a potentially-useful method of managing adults diagnosed with obstructive sleep apnea, using biomimetic, oral appliances.

  15. Influence of the Chemical Design on the Coherent Photoisomerization of Biomimetic Molecular Switches

    Directory of Open Access Journals (Sweden)

    Olivucci Massimo

    2013-03-01

    Full Text Available Ultrafast transient absorption spectroscopy reveals the effect of chemical substitutions on the photoreaction kinetics of biomimetic photoswitches displaying coherent dynamics. Ground state vibrational coherences are no longer observed when the excited state lifetime exceeds 300fs.

  16. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Jordi; Xu, Ren; Mori, Hidetoshi; Nelson, Celeste M.; Mroue, Rana; Spencer, Virginia A.; Brownfield, Doug; Radisky, Derek C.; Bustamante, Carlos; Bissell, Mina J.

    2008-10-20

    In the mammary gland, epithelial cells are embedded in a 'soft' environment and become functionally differentiated in culture when exposed to a laminin-rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for {beta}-casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of {beta}-casein expression required both laminin signalling and a 'soft' extracellular matrix, as is the case in normal tissues in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of {beta}-casein expression and non-biomimetic intracellular elasticity. Our data indicate that tissue-specific gene expression is controlled by both the tissues unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis.

  17. Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants

    International Nuclear Information System (INIS)

    Dicker, M P M; Bond, I P; Weaver, P M; Rossiter, J M

    2014-01-01

    Although the actuation mechanisms that drive plant movement have been investigated from a biomimetic perspective, few studies have looked at the wider sensing and control systems that regulate this motion. This paper examines photo-actuation—actuation induced by, and controlled with light—through a review of the sun-tracking functions of the Cornish Mallow. The sun-tracking movement of the Cornish Mallow leaf results from an extraordinarily complex—yet extremely elegant—process of signal perception, generation, filtering and control. Inspired by this process, a concept for a simplified biomimetic analogue of this leaf is proposed: a multifunctional structure employing chemical sensing, signal transmission, and control of composite hydrogel actuators. We present this multifunctional structure, and show that the success of the concept will require improved selection of materials and structural design. This device has application in the solar-tracking of photovoltaic panels for increased energy yield. More broadly it is envisaged that the concept of chemical sensing and control can be expanded beyond photo-actuation to many other stimuli, resulting in new classes of robust solid-state devices. (paper)

  18. Jacobsen Catalyst as a Cytochrome P450 Biomimetic Model for the Metabolism of Monensin A

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rocha

    2014-01-01

    Full Text Available Monensin A is a commercially important natural product isolated from Streptomyces cinnamonensins that is primarily employed to treat coccidiosis. Monensin A selectively complexes and transports sodium cations across lipid membranes and displays a variety of biological properties. In this study, we evaluated the Jacobsen catalyst as a cytochrome P450 biomimetic model to investigate the oxidation of monensin A. Mass spectrometry analysis of the products from these model systems revealed the formation of two products: 3-O-demethyl monensin A and 12-hydroxy monensin A, which are the same ones found in in vivo models. Monensin A and products obtained in biomimetic model were tested in a mitochondrial toxicity model assessment and an antimicrobial bioassay against Staphylococcus aureus, S. aureus methicillin-resistant, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Our results demonstrated the toxicological effects of monensin A in isolated rat liver mitochondria but not its products, showing that the metabolism of monensin A is a detoxification metabolism. In addition, the antimicrobial bioassay showed that monensin A and its products possessed activity against Gram-positive microorganisms but not for Gram-negative microorganisms. The results revealed the potential of application of this biomimetic chemical model in the synthesis of drug metabolites, providing metabolites for biological tests and other purposes.

  19. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.

    Science.gov (United States)

    Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan

    2015-12-22

    In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications.

  20. Biomimetic hierarchical growth and self-assembly of hydroxyapatite/titania nanocomposite coatings and their biomedical applications

    International Nuclear Information System (INIS)

    Nathanael, A. Joseph; Im, Young Min; Oh, Tae Hwan; Yuvakkumar, R.; Mangalaraj, D.

    2015-01-01

    Graphical abstract: - Highlights: • Novel ‘bowtie’ like biomimetic HA/TiO 2 nanocomposite coatings were prepared. • Simple sol–gel method was used to achieve this novel structure. • Details analysis confirms the formation of bowtie like structure in many ways. • Their functional analysis showed their enhanced activity for biomedical application. - Abstract: This article describes a systematic study of the biomimetic hierarchical growth of hydroxyapatite (HA)/titania (TiO 2 ) nanocomposite layered coatings applied by a simple sol–gel dip coating method. Highly stable HA and TiO 2 sols were prepared prior to inducing biomimetic hierarchical growth. Initially, the samples formed a small leaf like structure; however, increasing the dipping cycle resulted in formation of an elongated seed-like structure. Increasing the number of dipping cycles further resulted in a ‘bowtie’ or straw-bale like nanowire structure with a length of 500 nm and a width of 100 nm. Each nanowire like structure had a width of very few nanometers. The crystalline structures, micro/nano structures and surface properties of the coatings were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy respectively. In vitro cellular assays revealed that the growth of the cells in the ‘bowtie’ like structure improved over other samples

  1. Biomimetic hierarchical growth and self-assembly of hydroxyapatite/titania nanocomposite coatings and their biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Nathanael, A. Joseph, E-mail: ajosephnc@yahoo.com [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan (Korea, Republic of); Im, Young Min [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan (Korea, Republic of); Oh, Tae Hwan, E-mail: taehwanoh@ynu.ac.kr [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan (Korea, Republic of); Yuvakkumar, R. [Department of Nanomaterials Engineering, Chungnam National University, Daejeon (Korea, Republic of); Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore (India)

    2015-03-30

    Graphical abstract: - Highlights: • Novel ‘bowtie’ like biomimetic HA/TiO{sub 2} nanocomposite coatings were prepared. • Simple sol–gel method was used to achieve this novel structure. • Details analysis confirms the formation of bowtie like structure in many ways. • Their functional analysis showed their enhanced activity for biomedical application. - Abstract: This article describes a systematic study of the biomimetic hierarchical growth of hydroxyapatite (HA)/titania (TiO{sub 2}) nanocomposite layered coatings applied by a simple sol–gel dip coating method. Highly stable HA and TiO{sub 2} sols were prepared prior to inducing biomimetic hierarchical growth. Initially, the samples formed a small leaf like structure; however, increasing the dipping cycle resulted in formation of an elongated seed-like structure. Increasing the number of dipping cycles further resulted in a ‘bowtie’ or straw-bale like nanowire structure with a length of 500 nm and a width of 100 nm. Each nanowire like structure had a width of very few nanometers. The crystalline structures, micro/nano structures and surface properties of the coatings were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy respectively. In vitro cellular assays revealed that the growth of the cells in the ‘bowtie’ like structure improved over other samples.

  2. Large Scale Plasmonic nanoCones array For Spectroscopy Detection

    KAUST Repository

    Das, Gobind

    2015-09-24

    Advanced optical materials or interfaces are gaining attention for diagnostic applications. However, the achievement of large device interface as well as facile surface functionalization largely impairs their wide use. The present work is aimed to address different innovative aspects related to the fabrication of large area 3D plasmonic arrays, their direct and easy functionalization with capture elements and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques. In detail we have investigated the effect of Au-based nanoCones array, fabricated by means of direct nanoimprint technique over large area (mm2), on protein capturing and on the enhancement in optical signal. A selective functionalization of gold surfaces was proposed by using a peptide (AuPi3) previously selected by phage display. In this regard, two different sequences, labeled with fluorescein and biotin, were chemisorbed on metallic surfaces. The presence of Au nanoCones array consents an enhancement in electric field on the apex of cone, enabling the detection of molecules. We have witnessed around 12-fold increase in fluorescence intensity and SERS enhancement factor around 1.75 ×105 with respect to the flat gold surface. Furthermore, a sharp decrease in fluorescence lifetime over nanoCones confirms the increase in radiative emission (i.e. an increase in photonics density at the apex of cones).

  3. Large Scale Plasmonic nanoCones array For Spectroscopy Detection

    KAUST Repository

    Das, Gobind; Battista, Edmondo; Manzo, Gianluigi; Causa, Filippo; Netti, Paolo; Di Fabrizio, Enzo M.

    2015-01-01

    Advanced optical materials or interfaces are gaining attention for diagnostic applications. However, the achievement of large device interface as well as facile surface functionalization largely impairs their wide use. The present work is aimed to address different innovative aspects related to the fabrication of large area 3D plasmonic arrays, their direct and easy functionalization with capture elements and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques. In detail we have investigated the effect of Au-based nanoCones array, fabricated by means of direct nanoimprint technique over large area (mm2), on protein capturing and on the enhancement in optical signal. A selective functionalization of gold surfaces was proposed by using a peptide (AuPi3) previously selected by phage display. In this regard, two different sequences, labeled with fluorescein and biotin, were chemisorbed on metallic surfaces. The presence of Au nanoCones array consents an enhancement in electric field on the apex of cone, enabling the detection of molecules. We have witnessed around 12-fold increase in fluorescence intensity and SERS enhancement factor around 1.75 ×105 with respect to the flat gold surface. Furthermore, a sharp decrease in fluorescence lifetime over nanoCones confirms the increase in radiative emission (i.e. an increase in photonics density at the apex of cones).

  4. Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

    DEFF Research Database (Denmark)

    Lopez-Heredia, Marco A.; Łapa, Agata; Mendes, Ana Carina Loureiro

    2017-01-01

    Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetically...... of osteoblast-like cells....

  5. The preosteoblast response of electrospinning PLGA/PCL nanofibers: effects of biomimetic architecture and collagen I

    Directory of Open Access Journals (Sweden)

    Qian YZ

    2016-08-01

    Full Text Available Yunzhu Qian,1,2 Hanbang Chen,1 Yang Xu,1 Jianxin Yang,2 Xuefeng Zhou,3 Feimin Zhang,1 Ning Gu3 1Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 2Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, 3School of Biological Science and Medical Engineering, Southeast University, Nanjing, People’s Republic of China Abstract: Constructing biomimetic structure and incorporating bioactive molecules is an effective strategy to achieve a more favorable cell response. To explore the effect of electrospinning (ES nanofibrous architecture and collagen I (COL I-incorporated modification on tuning osteoblast response, a resorbable membrane composed of poly(lactic-co-glycolic acid/poly(caprolactone (PLGA/PCL; 7:3 w/w was developed via ES. COL I was blended into PLGA/PCL solution to prepare composite ES membrane. Notably, relatively better cell response was delivered by the bioactive ES-based membrane which was fabricated by modification of 3,4-dihydroxyphenylalanine and COL I. After investigation by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle measurement, and mechanical test, polyporous three-dimensional nanofibrous structure with low tensile force and the successful integration of COL I was obtained by the ES method. Compared with traditional PLGA/PCL membrane, the surface hydrophilicity of collagen-incorporated membranes was largely enhanced. The behavior of mouse preosteoblast MC3T3-E1 cell infiltration and proliferation on membranes was studied at 24 and 48 hours. The negative control was fabricated by solvent casting. Evaluation of cell adhesion and morphology demonstrated that all the ES membranes were more favorable for promoting the cell adhesion and spreading than the casting membrane. Cell Counting Kit-8 assays revealed that biomimetic architecture, surface topography, and bioactive properties of membranes were favorable for cell

  6. First light from a kilometer-baseline Scintillation Auroral GPS Array.

    Science.gov (United States)

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-05-28

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.

  7. Large-scale image-based profiling of single-cell phenotypes in arrayed CRISPR-Cas9 gene perturbation screens.

    Science.gov (United States)

    de Groot, Reinoud; Lüthi, Joel; Lindsay, Helen; Holtackers, René; Pelkmans, Lucas

    2018-01-23

    High-content imaging using automated microscopy and computer vision allows multivariate profiling of single-cell phenotypes. Here, we present methods for the application of the CISPR-Cas9 system in large-scale, image-based, gene perturbation experiments. We show that CRISPR-Cas9-mediated gene perturbation can be achieved in human tissue culture cells in a timeframe that is compatible with image-based phenotyping. We developed a pipeline to construct a large-scale arrayed library of 2,281 sequence-verified CRISPR-Cas9 targeting plasmids and profiled this library for genes affecting cellular morphology and the subcellular localization of components of the nuclear pore complex (NPC). We conceived a machine-learning method that harnesses genetic heterogeneity to score gene perturbations and identify phenotypically perturbed cells for in-depth characterization of gene perturbation effects. This approach enables genome-scale image-based multivariate gene perturbation profiling using CRISPR-Cas9. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Biomimetic Growth of Hydroxyapatite on Kenaf Fibers

    Directory of Open Access Journals (Sweden)

    Saiful Izwan Abd Razak

    2016-01-01

    Full Text Available Biomimetic hydroxyapatite (HA growth on mercerized kenaf fiber (KF was achieved by immersion in a simulated body fluid (SBF solution with the addition of a chelating agent. An electron micrograph revealed uniform HA layers on the KF within 14 days of immersion with significant vibrational peaks of HA components. The tensile tests showed no significant drops in the unit break of the modified fibers. This new bone-like apatite coating on KF can be useful in the field of bone tissue engineering. The key motivation for this new approach was that it utilizes the abundantly available kenaf plant resource as the biobased template.

  9. Biomimetic engineering: towards a self-assembled nanotechnology

    International Nuclear Information System (INIS)

    Braach-Maksvytis, V.

    2002-01-01

    Full text: The Nanoscience and Systems program was set up within CSIRO Telecommunications and Industrial Physics three years ago with an emphasis on biomimetic engineering, with the aim of developing new cross-disciplinary research in traditional physics areas. By combining expertise in experimental and theoretical physics with biology and chemistry, new approaches towards understanding and using nanoscale systems and devices are being explored. Research in the program ranges from using self-assembled lipid membranes for surface passivation of GaAs transistors to the electrical properties of nanoparticle films and devices. An overview of the research will be given, highlighting the diversity of nanotechnology applications

  10. Biomimetic synthesis and antiproliferative properties of racemic natural(-) and unnnatural(+) glyceollin I

    Science.gov (United States)

    A 14-step biomimetic synthetic route to glyceollin I in ca. 1.5% overall yield has been developed. In addition to being useful for the elaboration of analogs that can contribute to SAR, this route provides practical access to analytical standards that may be used for quality control purposes when gl...

  11. Current scaling of radiated power for 40-mm diameter single wire arrays on Z

    Science.gov (United States)

    Nash, T. J.; Cuneo, M. E.; Spielman, R. B.; Chandler, G. A.; Leeper, R. J.; Seaman, J. F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Nielsen, D.; Hawn, R.; Bailey, J. E.; Lake, P.; Carlson, A. L.; Seamen, H.; Moore, T.; Smelser, R.; Pyle, J.; Wagoner, T. C.; LePell, P. D.; Deeney, C.; Douglas, M. R.; McDaniel, D.; Struve, K.; Mazarakis, M.; Stygar, W. A.

    2004-11-01

    In order to estimate the radiated power that can be expected from the next-generation Z-pinch driver such as ZR at 28 MA, current-scaling experiments have been conducted on the 20 MA driver Z. We report on the current scaling of single 40 mm diameter tungsten 240 wire arrays with a fixed 110 ns implosion time. The wire diameter is decreased in proportion to the load current. Reducing the charge voltage on the Marx banks reduces the load current. On one shot, firing only three of the four levels of the Z machine further reduced the load current. The radiated energy scaled as the current squared as expected but the radiated power scaled as the current to the 3.52±0.42 power due to increased x-ray pulse width at lower current. As the current is reduced, the rise time of the x-ray pulse increases and at the lowest current value of 10.4 MA, a shoulder appears on the leading edge of the x-ray pulse. In order to determine the nature of the plasma producing the leading edge of the x-ray pulse at low currents further shots were taken with an on-axis aperture to view on-axis precursor plasma. This aperture appeared to perturb the pinch in a favorable manner such that with the aperture in place there was no leading edge to the x-ray pulses at lower currents and the radiated power scaled as the current squared ±0.75. For a full-current shot we will present x-ray images that show precursor plasma emitting on-axis 77 ns before the main x-ray burst.

  12. Optimization of a biomimetic bone cement: role of DCPD.

    Science.gov (United States)

    Panzavolta, Silvia; Bracci, Barbara; Rubini, Katia; Bigi, Adriana

    2011-08-01

    We previously proposed a biomimetic α-tricalcium phosphate (α-TCP) bone cement where gelatin controls the transformation of α-TCP into calcium deficient hydroxyapatite (CDHA), leading to improved mechanical properties. In this study we investigated the setting and hardening processes of biomimetic cements containing increasing amounts of CaHPO(4)·2H2O (DCPD) (0, 2.5, 5, 10, 15 wt.%), with the aim to optimize composition. Both initial and final setting times increased significantly when DCPD content accounts for 10 wt.%, whereas cements containing 15 wt.% DCPD did not set at all. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetry (TG) and scanning electron microscopy (SEM) investigations were performed on samples maintained in physiological solution for different times. DCPD dissolution starts soon after cement preparation, but the rate of transformation decreases on increasing DCPD initial content in the samples. The rate of α-TCP to CDHA conversion during hardening decreases on increasing DCPD initial content. Moreover, the presence of DCPD prevents gelatin release during hardening. The combined effects of gelatin and DCPD on the rate of CDHA formation and porosity lead to significantly improved mechanical properties, with the best composition displaying a compressive strength of 35 MPa and a Young modulus of 1600 MPa. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Biomimetic molecular design tools that learn, evolve, and adapt

    Science.gov (United States)

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine. PMID:28694872

  14. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2011-02-01

    Full Text Available The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.

  15. Biomimetic molecular design tools that learn, evolve, and adapt

    Directory of Open Access Journals (Sweden)

    David A Winkler

    2017-06-01

    Full Text Available A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.

  16. Triangular prism-shaped β-peptoid helices as unique biomimetic scaffolds

    DEFF Research Database (Denmark)

    Laursen, Jonas Striegler; Harris, Pernille; Fristrup, Peter

    2015-01-01

    β-Peptoids are peptidomimetics based on N-alkylated β-aminopropionic acid residues (or N-alkyl-β-alanines). This type of peptide mimic has previously been incorporated in biologically active ligands and has been hypothesized to be able to exhibit foldamer properties. Here we show, for the first t...... of novel biomimetics that display functional groups with high accuracy in three dimensions, which has potential for development of new functional materials....

  17. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    Directory of Open Access Journals (Sweden)

    Settles Matthew L

    2009-05-01

    Full Text Available Abstract Background Natural antisense transcripts (NATs are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded or a different locus (trans-encoded. They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation. NATs give rise to sense-antisense transcript pairs and the number of these identified has escalated greatly with the availability of DNA sequencing resources and public databases. Traditionally, NATs were identified by the alignment of full-length cDNAs or expressed sequence tags to genome sequences, but an alternative method for large-scale detection of sense-antisense transcript pairs involves the use of microarrays. In this study we developed a novel protocol to assay sense- and antisense-strand transcription on the 55 K Affymetrix GeneChip Wheat Genome Array, which is a 3' in vitro transcription (3'IVT expression array. We selected five different tissue types for assay to enable maximum discovery, and used the 'Chinese Spring' wheat genotype because most of the wheat GeneChip probe sequences were based on its genomic sequence. This study is the first report of using a 3'IVT expression array to discover the expression of natural sense-antisense transcript pairs, and may be considered as proof-of-concept. Results By using alternative target preparation schemes, both the sense- and antisense-strand derived transcripts were labeled and hybridized to the Wheat GeneChip. Quality assurance verified that successful hybridization did occur in the antisense-strand assay. A stringent threshold for positive hybridization was applied, which resulted in the identification of 110 sense-antisense transcript pairs, as well as 80 potentially antisense-specific transcripts. Strand-specific RT-PCR validated the microarray observations, and showed that antisense transcription is likely to be tissue specific. For the annotated sense

  18. Reductive debromination of polybrominated diphenyl ethers in anaerobic sediment and a biomimetic system.

    Science.gov (United States)

    Tokarz, John A; Ahn, Mi-Youn; Leng, June; Filley, Timothy R; Nies, Loring

    2008-02-15

    Because of the bioaccumulation of penta- and tetrapolybrominated diphenyl ether (PBDE) flame retardants in biota,the environmental biotransformation of decabromodiphenyl ether (BDE-209) is of interest. BDE-209 accounts for more than 80% by mass of PBDE production and is the dominant PBDE in sediments. Most sediments are anaerobic and reports of microbial reductive dehalogenation of hydrophobic persistent organohalogen pollutants are numerous. Reductive debromination of BDE-209 in the environment could provide a significant source of lesser-brominated PBDEs to biota. Moreover, a recent study showed that BDE-209 debrominates in sewage sludge, and another demonstrated that some halorespiring bacteria will debrominate BDE-209. To determine whether reductive debromination of BDE-209 occurs in sediments, parallel experiments were conducted using anaerobic sediment microcosms and a cosolvent-enhanced biomimetic system. In the biomimetic system, reductive debromination occurred at rates corresponding to bromine substitution levels with a BDE-209 half-life of only 18 s compared with a halflife of almost 60 days for 2,2',4,4'-tetrabromodiphenyl ether. In sediment, the measured debromination half-life of BDE-209 was well over a decade and was in good agreement with the predicted value obtained from the biomimetic experiment. Product congeners were predominantly double para-substituted. BDE-209 debrominated in sediment with a corresponding increase in nona-, octa-, hepta-, and hexa-PBDEs. Nine new PBDE congeners appeared in sediment from reductive debromination. Given the very large BDE-209 burden already in sediments globally, it is important to determine whether this transformation is a significant source of lesser-brominated PBDEs to the environment.

  19. Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs

    International Nuclear Information System (INIS)

    Peng Hongju; Feng Bei; Yuan Huihua; Zhang Yanzhong; Yin Zi; Liu Huanhuan; Chen Xiao; Ouyang Hongwei; Su Bo

    2012-01-01

    Engaging functional biomaterial scaffolds to regulate stem cell differentiation has drawn a great deal of attention in the tissue engineering and regenerative medicine community. In this study, biomimetic composite nanofibrous scaffolds of hydroxyapatite/chitosan (HAp/CTS) were prepared to investigate their capacity for inducing murine mesenchymal stem cells (mMSCs) to differentiate into the osteogenic lineage, in the absence and presence of an osteogenic supplementation (i.e., ascorbic acid, β-glycerol phosphate, and dexamethasone), respectively. Using electrospun chitosan (CTS) nanofibrous scaffolds as the control, cell morphology, growth, specific osteogenic genes expression, and quantified proteins secretion on the HAp/CTS scaffolds were sequentially examined and assessed. It appeared that the HAp/CTS scaffolds supported better attachment and proliferation of the mMSCs. Most noteworthy was that in the absence of the osteogenic supplementation, expression of osteogenic genes including collagen I (Col I), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OCN) were significantly upregulated in mMSCs cultured on the HAp/CTS nanofibrous scaffolds. Also increased secretion of the osteogenesis protein markers of alkaline phosphatase and collagen confirmed that the HAp/CTS nanofibrous scaffold markedly promoted the osteogenic commitment in the mMSCs. Moreover, the presence of osteogenic supplementation proved an enhanced efficacy of mMSC osteogenesis on the HAp/CTS nanofibrous scaffolds. Collectively, this study demonstrated that the biomimetic nanofibrous HAp/CTS scaffolds could support and enhance the adhesion, proliferation, and particularly osteogenic differentiation of the mMSCs. It also substantiated the potential of using biomimetic nanofibrous scaffolds of HAp/CTS for functional bone repair and regeneration applications. (paper)

  20. Large-scale aligned silicon carbonitride nanotube arrays: Synthesis, characterization, and field emission property

    International Nuclear Information System (INIS)

    Liao, L.; Xu, Z.; Liu, K. H.; Wang, W. L.; Liu, S.; Bai, X. D.; Wang, E. G.; Li, J. C.; Liu, C.

    2007-01-01

    Large-scale aligned silicon carbonitride (SiCN) nanotube arrays have been synthesized by microwave-plasma-assisted chemical vapor deposition using SiH 4 , CH 4 , and N 2 as precursors. The three elements of Si, C, and N are chemically bonded with each other and the nanotube composition can be adjusted by varying the SiH 4 concentration, as revealed by electron energy loss spectroscopy and x-ray photoelectron spectroscopy. The evolution of microstructure of the SiCN nanotubes with different Si concentrations was characterized by high-resolution transmission electron microscopy and Raman spectroscopy. The dependence of field emission characteristics of the SiCN nanotubes on the composition has been investigated. With the increasing Si concentration, the SiCN nanotube exhibits more favorable oxidation resistance, which suggests that SiCN nanotube is a promising candidate as stable field emitter

  1. Regional climate consequences of large-scale cool roof and photovoltaic array deployment

    International Nuclear Information System (INIS)

    Millstein, Dev; Menon, Surabi

    2011-01-01

    Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and photovoltaic arrays (low reflection) have the potential to change radiative forcing, surface temperatures, and regional weather patterns. In this work we investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately, photovoltaic arrays across the United States. We use a fully coupled regional climate model, the Weather Research and Forecasting (WRF) model, to investigate feedbacks between surface albedo changes, surface temperature, precipitation and average cloud cover. With the adoption of cool roofs and pavements, domain-wide annual average outgoing radiation increased by 0.16 ± 0.03 W m -2 (mean ± 95% C.I.) and afternoon summertime temperature in urban locations was reduced by 0.11-0.53 deg. C, although some urban areas showed no statistically significant temperature changes. In response to increased urban albedo, some rural locations showed summer afternoon temperature increases of up to + 0.27 deg. C and these regions were correlated with less cloud cover and lower precipitation. The emissions offset obtained by this increase in outgoing radiation is calculated to be 3.3 ± 0.5 Gt CO 2 (mean ± 95% C.I.). The hypothetical solar arrays were designed to be able to produce one terawatt of peak energy and were located in the Mojave Desert of California. To simulate the arrays, the desert surface albedo was darkened, causing local afternoon temperature increases of up to + 0.4 deg. C. Due to the solar arrays, local and regional wind patterns within a 300 km radius were affected. Statistically significant but lower magnitude changes to temperature and radiation could be seen across the domain due to the introduction of the solar arrays. The addition of photovoltaic arrays caused no significant change to summertime outgoing radiation when averaged

  2. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    DEFF Research Database (Denmark)

    Li, Zhenyu; Linares, Rodrigo Valladares; Bucs, Szilard

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused, by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin...

  3. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    DEFF Research Database (Denmark)

    Li, Zhenyu; Linares, Rodrigo Valladares; Bucs, Szilard

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused, by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquapor...

  4. Design and fabrication of a biomimetic gyroscope inspired by the fly’s haltere

    NARCIS (Netherlands)

    Droogendijk, H.; Brookhuis, Robert Anton; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2013-01-01

    We report on the design and fabrication of a MEMS-based gyroscopic system inspired by the fly’s haltere system. Two types of so-called biomimetic gyroscopes have been designed, fabricated and partially characterized. First measurements indicate excitable gyropscopes with natural frequencies in the

  5. The Design and Implementation of a Biomimetic Robot Fish

    OpenAIRE

    Chao Zhou; Min Tan; Nong Gu; Zhiqiang Cao; Shuo Wang; Long Wang

    2008-01-01

    In this paper, a novel design of a biomimetic robot fish is presented. Based on the propulsion and maneuvering mechanisms of real fishes, a tail mechanical structure with cams and connecting rods for fitting carangiform fish body wave is designed, which provides the main propulsion. Two pectoral fins are mounted, and each pectoral fin can flap separately and rotate freely. Coordinating the movements of the tail and pectoral fins, the robot fish can simulate the movements of fishes in water. I...

  6. Biomimetic "Cactus Spine" with Hierarchical Groove Structure for Efficient Fog Collection.

    Science.gov (United States)

    Bai, Fan; Wu, Juntao; Gong, Guangming; Guo, Lin

    2015-07-01

    A biomimetic "cactus spine" with hierarchical groove structure is designed and fabricated using simple electrospinning. This novel artificial cactus spine possesses excellent fog collection and water transportation ability. A model cactus equipped with artificial spines also shows a great water storage capacity. The results can be helpful in the development of water collectors and may make a contribution to the world water crisis.

  7. “Click & seed” approach to the biomimetic modification of material surfaces

    Czech Academy of Sciences Publication Activity Database

    Proks, Vladimír; Jaroš, J.; Pop-Georgievski, Ognen; Kučka, Jan; Popelka, Štěpán; Dvořák, P.; Hampl, A.; Rypáček, František

    2012-01-01

    Roč. 12, č. 9 (2012), s. 1232-1242 ISSN 1616-5187 R&D Projects: GA AV ČR KJB400500904; GA ČR GAP108/11/1857; GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z40500505 Keywords : biomimetic modifications * click chemistry * peptide radiolabeling Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.742, year: 2012

  8. Adhesion of mesenchymal stem cells to biomimetic polymers: A review

    Energy Technology Data Exchange (ETDEWEB)

    Shotorbani, Behnaz Banimohamad [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz (Iran, Islamic Republic of); Alizadeh, Effat, E-mail: Alizadehe@tbzmed.ac.ir [Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Drug Applied Research Center and Faculty of advanced Medical Science, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Salehi, Roya [Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Drug Applied Research Center and Faculty of advanced Medical Science, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Barzegar, Abolfazl [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz (Iran, Islamic Republic of); Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of)

    2017-02-01

    The mesenchymal stem cells (MSCs) are promising candidates for cell therapy due to the self-renewal, multi-potency, ethically approved state and suitability for autologous transplantation. However, key issue for isolation and manipulation of MSCs is adhesion in ex-vivo culture systems. Biomaterials engineered for mimicking natural extracellular matrix (ECM) conditions which support stem cell adhesion, proliferation and differentiation represent a main area of research in tissue engineering. Some of them successfully enhanced cells adhesion and proliferation because of their biocompatibility, biomimetic texture, and chemistry. However, it is still in its infancy, therefore intensification and optimization of in vitro, in vivo, and preclinical studies is needed to clarify efficacies as well as applicability of those bioengineered constructs. The aim of this review is to discuss mechanisms related to the in-vitro adhesion of MSCs, surfaces biochemical, biophysical, and other factors (of cell's natural and artificial micro-environment) which could affect it and a review of previous research attempting for its bio-chemo-optimization. - Highlights: • The main materials utilized for fabrication of biomimetic polymers are presented. • MSCs cell-material adhesion mechanism and involved molecules are reviewed. • Surface modifications of polymers in terms of MSC adhesion improving are discussed.

  9. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-12-01

    The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements-including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth-were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light-tissue interactions and characterizing biophotonic system performance.

  10. Adhesion of mesenchymal stem cells to biomimetic polymers: A review

    International Nuclear Information System (INIS)

    Shotorbani, Behnaz Banimohamad; Alizadeh, Effat; Salehi, Roya; Barzegar, Abolfazl

    2017-01-01

    The mesenchymal stem cells (MSCs) are promising candidates for cell therapy due to the self-renewal, multi-potency, ethically approved state and suitability for autologous transplantation. However, key issue for isolation and manipulation of MSCs is adhesion in ex-vivo culture systems. Biomaterials engineered for mimicking natural extracellular matrix (ECM) conditions which support stem cell adhesion, proliferation and differentiation represent a main area of research in tissue engineering. Some of them successfully enhanced cells adhesion and proliferation because of their biocompatibility, biomimetic texture, and chemistry. However, it is still in its infancy, therefore intensification and optimization of in vitro, in vivo, and preclinical studies is needed to clarify efficacies as well as applicability of those bioengineered constructs. The aim of this review is to discuss mechanisms related to the in-vitro adhesion of MSCs, surfaces biochemical, biophysical, and other factors (of cell's natural and artificial micro-environment) which could affect it and a review of previous research attempting for its bio-chemo-optimization. - Highlights: • The main materials utilized for fabrication of biomimetic polymers are presented. • MSCs cell-material adhesion mechanism and involved molecules are reviewed. • Surface modifications of polymers in terms of MSC adhesion improving are discussed.

  11. Fracture strength of biomimetic composites: scaling views on nacre

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Ko [Department of Physics, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan)

    2005-08-10

    Nacre, layered structure on the nanoscale, found inside certain seashells, shows remarkable strength due to the tiny amount of soft glues between hard sheets. In this paper, we develop an anisotropic elastic theory and fracture mechanics for the laminar structure at the level of scaling laws to reproduce the essence of the previous results in a much simpler way.

  12. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    Science.gov (United States)

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  13. Detection, recognition, identification, and tracking of military vehicles using biomimetic intelligence

    Science.gov (United States)

    Pace, Paul W.; Sutherland, John

    2001-10-01

    This project is aimed at analyzing EO/IR images to provide automatic target detection/recognition/identification (ATR/D/I) of militarily relevant land targets. An increase in performance was accomplished using a biomimetic intelligence system functioning on low-cost, commercially available processing chips. Biomimetic intelligence has demonstrated advanced capabilities in the areas of hand- printed character recognition, real-time detection/identification of multiple faces in full 3D perspectives in cluttered environments, advanced capabilities in classification of ground-based military vehicles from SAR, and real-time ATR/D/I of ground-based military vehicles from EO/IR/HRR data in cluttered environments. The investigation applied these tools to real data sets and examined the parameters such as the minimum resolution for target recognition, the effect of target size, rotation, line-of-sight changes, contrast, partial obscuring, background clutter etc. The results demonstrated a real-time ATR/D/I capability against a subset of militarily relevant land targets operating in a realistic scenario. Typical results on the initial EO/IR data indicate probabilities of correct classification of resolved targets to be greater than 95 percent.

  14. Design, preparation and preliminary use of a novel biomimetic agent rFN/CAD

    Directory of Open Access Journals (Sweden)

    Hong KUANG

    2012-12-01

    Full Text Available Objective  To prepare a novel biomimetic agent with adhesive and osteoinduction capabilities, and provide a new approach for improving seeding cell adhesion and osteoblastic differentiation on a scaffold surface. Methods  A novel bifunctional recombinant protein was engineered and prepared by bioinformatics, standard molecular cloning, protein expression and purification techniques. A centrifugal cell adhesive assay and an osteoinduction assay were employed to determine the biofunction ex vivo. Results  A 1954bp long DNA chimera of FN Ⅲ7-10/CAD11 EC1-2 and recombinant FN Ⅲ7-10/CAD11 EC1-2 of 641 amino acids were obtained. Polystyrene surface coated with this protein significantly increased the adhesive property and osteodifferentiation of human bone marrow mesenchymal stem cells. Conclusion  rFN/CAD possesses dual biofunctions of osteoblastic adhesion and differentiation, which can be further applied as an ideal biomimetic molecule for surface modification.

  15. Design, fabrication and characterisation of a biomimetic accelerometer inspired by the cricket's clavate hair

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2013-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. First measurements indicate

  16. A Biomimetic Approach for Designing a Full External Breast Prosthesis: Post-Mastectomy

    Directory of Open Access Journals (Sweden)

    Pedro Cruz

    2018-03-01

    Full Text Available This work presents the design of a new breast prosthesis using the biomimetic technique for cases of complete mastectomy to address the problem of the increasing number of women diagnosed with breast cancer in Mexico who are candidates for a mastectomy. The designed prosthesis considers the morphology of a real breast regarding its internal structure to obtain authentic mobility and feel. In order to accomplish this, a model was obtained in 3D CAD using a coordinate measuring machine (CMM that can be scalable without losing its qualities, and which can be used in any type of patient; afterwards, a finite element model was developed and a static analysis performed with suggested load cases to evaluate the sensitivity and naturalness of the prosthesis; and finally, a modal analysis was conducted. The results obtained in displacements and in distribution of stress for the load cases assessed are consistent with those of a real breast: there were smooth contours and there was natural mobility in the prosthesis designed by means of the biomimetic technique.

  17. In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system

    Science.gov (United States)

    Han, Min; Li, Quan-Li; Cao, Ying; Fang, Hui; Xia, Rong; Zhang, Zhi-Hong

    2017-02-01

    A novel agarose hydrogel biomimetic mineralization system loaded with calcium and phosphate was used to remineralize dentin and induce the oriented densely parallel packed HA layer on defective dentin surface in vivo in a rabbit model. Firstly, the enamel of the labial surface of rabbits’ incisor was removed and the dentin was exposed to oral environment. Secondly, the hydrogel biomimetic mineralization system was applied to the exposed dentin surface by using a custom tray. Finally, the teeth were extracted and evaluated by scanning electron microscopy, X-ray diffraction, and nanoindentation test after a certain time of mineralization intervals. The regenerated tissue on the dentin surface was composed of highly organised HA crystals. Densely packed along the c axis, these newly precipitated HA crystals were perpendicular to the underlying dental surface with a tight bond. The demineralized dentin was remineralized and dentinal tubules were occluded by the grown HA crystals. The nanohardness and elastic modulus of the regenerated tissue were similar to natural dentin. The results indicated a potential clinical use for repairing dentin-exposed related diseases, such as erosion, wear, and dentin hypersensitivity.

  18. Biomimetic oral mucin from polymer micelle networks

    Science.gov (United States)

    Authimoolam, Sundar Prasanth

    Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated using affinity-based interactions on synthetic and biological surfaces. Unlike conventional polyelectrolyte-based LBL methods, pre-assembled biotin-functionalized filamentous (worm-like) micelles was utilized as the network building block, which from complementary additions of streptavidin generated synthetic networks of desired thickness. The biomimetic nature in those synthetic networks are studied by evaluating its structural and bio-functional properties. Structurally, synthetic networks formed a nanoporous mesh. The networks demonstrated excellent surface hydration property and were able capable of microbial capture. Those functional properties are akin to that of natural mucin networks. Further, the role of synthetic mucin as a drug delivery vehicle, capable of providing localized and tunable release was demonstrated. By incorporating antibacterial curcumin drug loading within synthetic networks, bacterial growth inhibition was also demonstrated. Thus, such bioactive interfaces can serve as a model for independently characterizing mucin network properties and through its role as a drug carrier vehicle it presents exciting future opportunities for localized drug delivery, in regenerative applications and as bio

  19. Next-Generation Microshutter Arrays for Large-Format Imaging and Spectroscopy

    Science.gov (United States)

    Moseley, Samuel; Kutyrev, Alexander; Brown, Ari; Li, Mary

    2012-01-01

    A next-generation microshutter array, LArge Microshutter Array (LAMA), was developed as a multi-object field selector. LAMA consists of small-scaled microshutter arrays that can be combined to form large-scale microshutter array mosaics. Microshutter actuation is accomplished via electrostatic attraction between the shutter and a counter electrode, and 2D addressing can be accomplished by applying an electrostatic potential between a row of shutters and a column, orthogonal to the row, of counter electrodes. Microelectromechanical system (MEMS) technology is used to fabricate the microshutter arrays. The main feature of the microshutter device is to use a set of standard surface micromachining processes for device fabrication. Electrostatic actuation is used to eliminate the need for macromechanical magnet actuating components. A simplified electrostatic actuation with no macro components (e.g. moving magnets) required for actuation and latching of the shutters will make the microshutter arrays robust and less prone to mechanical failure. Smaller-size individual arrays will help to increase the yield and thus reduce the cost and improve robustness of the fabrication process. Reducing the size of the individual shutter array to about one square inch and building the large-scale mosaics by tiling these smaller-size arrays would further help to reduce the cost of the device due to the higher yield of smaller devices. The LAMA development is based on prior experience acquired while developing microshutter arrays for the James Webb Space Telescope (JWST), but it will have different features. The LAMA modular design permits large-format mosaicking to cover a field of view at least 50 times larger than JWST MSA. The LAMA electrostatic, instead of magnetic, actuation enables operation cycles at least 100 times faster and a mass significantly smaller compared to JWST MSA. Also, standard surface micromachining technology will simplify the fabrication process, increasing

  20. Biomimetic and microbial approaches to solar fuel generation.

    Science.gov (United States)

    Magnuson, Ann; Anderlund, Magnus; Johansson, Olof; Lindblad, Peter; Lomoth, Reiner; Polivka, Tomas; Ott, Sascha; Stensjö, Karin; Styring, Stenbjörn; Sundström, Villy; Hammarström, Leif

    2009-12-21

    Photosynthesis is performed by a multitude of organisms, but in nearly all cases, it is variations on a common theme: absorption of light followed by energy transfer to a reaction center where charge separation takes place. This initial form of chemical energy is stabilized by the biosynthesis of carbohydrates. To produce these energy-rich products, a substrate is needed that feeds in reductive equivalents. When photosynthetic microorganisms learned to use water as a substrate some 2 billion years ago, a fundamental barrier against unlimited use of solar energy was overcome. The possibility of solar energy use has inspired researchers to construct artificial photosynthetic systems that show analogy to parts of the intricate molecular machinery of photosynthesis. Recent years have seen a reorientation of efforts toward creating integrated light-to-fuel systems that can use solar energy for direct synthesis of energy-rich compounds, so-called solar fuels. Sustainable production of solar fuels is a long awaited development that promises extensive solar energy use combined with long-term storage. The stoichiometry of water splitting into molecular oxygen, protons, and electrons is deceptively simple; achieving it by chemical catalysis has proven remarkably difficult. The reaction center Photosystem II couples light-induced charge separation to an efficient molecular water-splitting catalyst, a Mn(4)Ca complex, and is thus an important template for biomimetic chemistry. In our aims to design biomimetic manganese complexes for light-driven water oxidation, we link photosensitizers and charge-separation motifs to potential catalysts in supramolecular assemblies. In photosynthesis, production of carbohydrates demands the delivery of multiple reducing equivalents to CO(2). In contrast, the two-electron reduction of protons to molecular hydrogen is much less demanding. Virtually all microorganisms have enzymes called hydrogenases that convert protons to hydrogen, many of

  1. Biomimetic polymeric membranes for water treatment

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto

    This project is about the interplay of the three major components of aquaporin based biomimetic polymeric membranes (ABPMs): Aquaporins (AQPs), amphiphilic block copolymers, serving as a vesicular matrix for the hydrophobic AQP exterior (proteopolymersomes) and a polymeric membrane as embedment....... The interplay of proteopolymersomes and polymeric mesh support (in this case polyethersulfone, PES) was examined via integration of proteopolymersomes in an active layer (AL) formed by interfacial polymerisation between a linker molecule in aqueous phase and another in organic phase on top of the PES....... The resulting thin-film composite (TFC) membrane was analyzed via cross-flow forward osmosis (FO), scanning electron microscopy (SEM), fourier-transformed infrared spectroscopy (FTIR), as well as in the non-supported form over FTIR and a specialized microfluidic visualization approach. Where no clear dierences...

  2. Cricket inspired flow-sensor arrays

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Casas, J.

    2007-01-01

    We report current developments in biomimetic flow-sensors based on mechanoreceptive sensory hairs of crickets. These filiform hairs are highly perceptive to lowfrequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of

  3. 24-71 GHz PCB Array for 5G ISM

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Millimeter-wave 5G mobile architectures need to consolidate disparate frequency bands into a single, multifunctional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter wave array to operate across six 5G and ISM bands spanning 24-71 GHz. Importantly, the array is realized using low-cost PCB. The paper presents the design and optimized layout, and discusses fabrication and measurements.

  4. Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants

    International Nuclear Information System (INIS)

    Rigo, E.C.S.; Boschi, A.O.; Yoshimoto, M.; Allegrini, S.; Konig, B.; Carbonari, M.J.

    2004-01-01

    Among several materials used as dental implants, metals present relatively high tensile strengths. Although metals are biotolerable, they do not adhere to bone tissues. On the other hand, bioactive ceramics are known to chemically bind to bone tissues, but they are not enough mechanically resistant to tension stresses. To overcome this drawback, biotolerable metals can be coated with bioactive ceramics. Various methods can be employed for coating ceramic layers on metal substrates, among them ion sputtering, plasma spray, sol-gel, electrodeposition and a biomimetic process [E.C.S. Rigo, L.C. Oliveira, L.A. Santos, A.O. Boschi, R.G. Carrodeguas. Implantes metalicos recobertos com hidroxiapatita. Revista de Engenharia Biomedica, vol. 15 (1999), numeros 1-2, 21-29. Rio de Janeiro]. The aim of this work was to study the effect of the substitution of G glass, employed in the conventional biomimetic method during the nucleation stage, by a solution of sodium silicate (SS) on the chemical and morphological characteristics, and the adhesion of biomimetic coatings deposited on Ti implants. The obtained coatings were analyzed by diffuse reflectance FTIR spectroscopy (DRIFT) and scanning electron microscopy (SEM). Titanium implants were immersed in synthetic body fluid (SBF) and SS. All implants were left inside an incubator at 37 deg. C for 7 days, followed by immersion in 1.5 SBF and taken back to the incubator for additional 6 days at 37 deg. C. The 1.5 SBF were refreshed every 2 days. At the end of the treatment, the implants were washed in distilled and deionized water and dried at room temperature. To check the osseointegration, titanium implants coated with biomimetic method were inserted in rabbit's tibia, remaining there for 8 weeks. During the healing period, polyfluorochrome sequential labeling was inoculated in the rabbits to determine the period of bone remodeling. Results from DRIFT and SEM showed that, for all processing variants employed, a HA coating was

  5. Bio-mimetic mineralization potential of collagen hydrolysate obtained from chromium tanned leather waste

    International Nuclear Information System (INIS)

    Banerjee, Pradipta; Madhu, S.; Chandra Babu, N.K.; Shanthi, C.

    2015-01-01

    Hydroxyapatite (HA) ceramics serve as an alternative to autogenous-free bone grafting by virtue of their excellent biocompatibility. However, chemically synthesized HA lacks the strong load-bearing capacity as required by bone. The bio-mimetic growth of HA crystals on collagen surface provides a feasible solution for synthesizing bone substitutes with the desired properties. This study deals with the utilization of the collagen hydrolysate recovered from leather waste as a substrate for promoting HA crystal growth. Bio-mimetic growth of HA was induced by subjecting the hydrolysate to various mineralization conditions. Parameters that would have a direct effect on crystal growth were varied to determine the optimal conditions necessary. Maximum mineralization was achieved with a combination of 10 mM of CaCl 2 , 5 mM of Na 2 HPO 4 , 100 mM of NaCl and 0.575% glutaraldehyde at a pH of 7.4. The metal–protein interactions leading to formation of HA were identified through Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) studies. The crystal dimensions were determined to be in the nanoscale range by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The size and crystallinity of bio-mimetically grown HA indicate that hydrolysate from leather waste can be used as an ideal alternative substrate for bone growth. - Highlights: • Collagen hydrolysate, extracted from leather industry waste is subjected to biomineralization. • Optimal conditions required for HA growth are identified. • FTIR studies reveal higher Ca−COO − and low C−N stretch with higher HA formation. • AFM and SEM studies reveal nanometer ranged HA crystals

  6. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications

    Science.gov (United States)

    Yu, Anthony C.; Chen, Haoxuan; Chan, Doreen; Agmon, Gillie; Stapleton, Lyndsay M.; Sevit, Alex M.; Tibbitt, Mark W.; Acosta, Jesse D.; Zhang, Tony; Franzia, Paul W.; Langer, Robert; Appel, Eric A.

    2016-12-01

    Hydrogels are a class of soft material that is exploited in many, often completely disparate, industrial applications, on account of their unique and tunable properties. Advances in soft material design are yielding next-generation moldable hydrogels that address engineering criteria in several industrial settings such as complex viscosity modifiers, hydraulic or injection fluids, and sprayable carriers. Industrial implementation of these viscoelastic materials requires extreme volumes of material, upwards of several hundred million gallons per year. Here, we demonstrate a paradigm for the scalable fabrication of self-assembled moldable hydrogels using rationally engineered, biomimetic polymer-nanoparticle interactions. Cellulose derivatives are linked together by selective adsorption to silica nanoparticles via dynamic and multivalent interactions. We show that the self-assembly process for gel formation is easily scaled in a linear fashion from 0.5 mL to over 15 L without alteration of the mechanical properties of the resultant materials. The facile and scalable preparation of these materials leveraging self-assembly of inexpensive, renewable, and environmentally benign starting materials, coupled with the tunability of their properties, make them amenable to a range of industrial applications. In particular, we demonstrate their utility as injectable materials for pipeline maintenance and product recovery in industrial food manufacturing as well as their use as sprayable carriers for robust application of fire retardants in preventing wildland fires.

  7. Antibody repertoire profiling with mimotope arrays

    OpenAIRE

    Pashova, Shina; Schneider, Christoph; von Gunten, Stephan; Pashov, Anastas

    2016-01-01

    Large-scale profiling and monitoring of antibody repertoires is possible through next generation sequencing (NGS), phage display libraries and microarrays. These methods can be combined in a pipeline, which ultimately maps the antibody reactivities onto defined arrays of structures - peptides or carbohydrates. The arrays can help analyze the individual specificities or can be used as complex patterns. In any case, the targets recognized should formally be considered mimotopes unless they are ...

  8. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O2 multiphase composites

    International Nuclear Information System (INIS)

    Wysokowski, Marcin; Motylenko, Mykhaylo; Rafaja, David; Koltsov, Iwona; Stöcker, Hartmut; Szalaty, Tadeusz J.; Bazhenov, Vasilii V.; Stelling, Allison L.; Beyer, Jan; Heitmann, Johannes; Jesionowski, Teofil; Petovic, Slavica; Đurović, Mirko; Ehrlich, Hermann

    2017-01-01

    This work presents an extreme biomimetics route for the modification of the surface of fibre-based scaffolds of poriferan origin by the creation of novel nanostructured multiphase biocomposites. The exceptional thermal stability of the nanostructured sponge chitin allowed for the formation of a novel nanocrystalline chitin-(Ti,Zr)O 2 composite with a well-defined nanoscale structure under hydrothermal conditions (160 °C). Using a combination of experimental techniques, including X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, EDX mapping and near-edge electron loss spectroscopy (ELNES) in TEM and thermogravimetry/differential scanning calorimetry coupled with mass spectrometry; we showed that this bioorganic scaffold facilitates selective crystallization of TiO 2 , predominantly in form of anatase, over the monoclinic zirconium dioxide (baddeleyite). The control of the crystal morphology through the chitin templates is also demonstrated. Obtained samples were characterized in terms of their photoluminescent properties and photocatalytic performance. These data confirm the high potential of the extreme biomimetics approach for developing a new generation of multiphase biopolymer-based nanostructured materials. - Highlights: • Extreme biomimetically prepared chitin-(Ti,Zr)O 2 and (Ti,Zr)O 2 composites. • Chitin-(Ti,Zr)O 2 composite contains anatase as the most inorganic component. • The mean crystallite size is (31.7 ± 0.3) nm for chitin-(Ti,Zr)O 2 composite. • The mean crystallite size is (2.4 ± 0.5) nm for (Ti,Zr)O 2 composite. • (Ti,Zr)O 2 composite is 2 times more effective photocatalyst than chitin-(Ti,Zr)O 2 .

  9. Development of supported biomimetic membranes for insertion of aquaporin protein water channels for novel water filtration applications

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard

    ). This constitutes a new methodology to correctly and functionally reconstitute membrane proteins in controllable amounts into giant vesicles. The method for formation of giant protein vesicles subsequently led to the first functional prototype of an aquaporin-membrane water filtration device.......Aquaporins represent a class of membrane protein channels found in all living organisms that selectively transport water molecules across biological membranes. The work presented in this thesis was motivated by the conceptual idea of incorporating aquaporin water channels into biomimetic membranes...... to develop novel water separation technologies. To accomplish this, it is necessary to construct an efficient platform to handle biomimetic membranes. Moreover, general methods are required to reliable and controllable reconstitute membrane proteins into artificially made model membranes...

  10. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    Science.gov (United States)

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

  11. Enhancing Osteoconduction of PLLA-Based Nanocomposite Scaffolds for Bone Regeneration Using Different Biomimetic Signals to MSCs

    Directory of Open Access Journals (Sweden)

    Nicola Baldini

    2012-02-01

    Full Text Available In bone engineering, the adhesion, proliferation and differentiation of mesenchymal stromal cells rely on signaling from chemico-physical structure of the substrate, therefore prompting the design of mimetic “extracellular matrix”-like scaffolds. In this study, three-dimensional porous poly-L-lactic acid (PLLA-based scaffolds have been mixed with different components, including single walled carbon nanotubes (CNT, micro-hydroxyapatite particles (HA, and BMP2, and treated with plasma (PT, to obtain four different nanocomposites: PLLA + CNT, PLLA + CNTHA, PLLA + CNT + HA + BMP2 and PLLA + CNT + HA + PT. Adult bone marrow mesenchymal stromal cells (MSCs were derived from the femur of orthopaedic patients, seeded on the scaffolds and cultured under osteogenic induction up to differentiation and mineralization. The release of specific metabolites and temporal gene expression profiles of marrow-derived osteoprogenitors were analyzed at definite time points, relevant to in vitro culture as well as in vivo differentiation. As a result, the role of the different biomimetic components added to the PLLA matrix was deciphered, with BMP2-added scaffolds showing the highest biomimetic activity on cells differentiating to mature osteoblasts. The modification of a polymeric scaffold with reinforcing components which also work as biomimetic cues for cells can effectively direct osteoprogenitor cells differentiation, so as to shorten the time required for mineralization.

  12. Thermal gelation and tissue adhesion of biomimetic hydrogels

    International Nuclear Information System (INIS)

    Burke, Sean A; Ritter-Jones, Marsha; Lee, Bruce P; Messersmith, Phillip B

    2007-01-01

    Marine and freshwater mussels are notorious foulers of natural and manmade surfaces, secreting specialized protein adhesives for rapid and durable attachment to wet substrates. Given the strong and water-resistant nature of mussel adhesive proteins, significant potential exists for mimicking their adhesive characteristics in bioinspired synthetic polymer materials. An important component of these proteins is L-3,4-dihydroxylphenylalanine (DOPA), an amino acid believed to contribute to mussel glue solidification through oxidation and crosslinking reactions. Synthetic polymers containing DOPA residues have previously been shown to crosslink into hydrogels upon the introduction of oxidizing reagents. Here we introduce a strategy for stimuli responsive gel formation of mussel adhesive protein mimetic polymers. Lipid vesicles with a bilayer melting transition of 37 0 C were designed from a mixture of dipalmitoyl and dimyristoyl phosphatidylcholines and exploited for the release of a sequestered oxidizing reagent upon heating from ambient to physiologic temperature. Colorimetric studies indicated that sodium-periodate-loaded liposomes released their cargo at the phase transition temperature, and when used in conjunction with a DOPA-functionalized poly(ethylene glycol) polymer gave rise to rapid solidification of a crosslinked polymer hydrogel. The tissue adhesive properties of this biomimetic system were determined by in situ thermal gelation of liposome/polymer hydrogel between two porcine dermal tissue surfaces. Bond strength measurements showed that the bond formed by the adhesive hydrogel (mean = 35.1 kPa, SD = 12.5 kPa, n = 11) was several times stronger than a fibrin glue control tested under the same conditions. The results suggest a possible use of this biomimetic strategy for repair of soft tissues

  13. Process-morphology scaling relations quantify self-organization in capillary densified nanofiber arrays.

    Science.gov (United States)

    Kaiser, Ashley L; Stein, Itai Y; Cui, Kehang; Wardle, Brian L

    2018-02-07

    Capillary-mediated densification is an inexpensive and versatile approach to tune the application-specific properties and packing morphology of bulk nanofiber (NF) arrays, such as aligned carbon nanotubes. While NF length governs elasto-capillary self-assembly, the geometry of cellular patterns formed by capillary densified NFs cannot be precisely predicted by existing theories. This originates from the recently quantified orders of magnitude lower than expected NF array effective axial elastic modulus (E), and here we show via parametric experimentation and modeling that E determines the width, area, and wall thickness of the resulting cellular pattern. Both experiments and models show that further tuning of the cellular pattern is possible by altering the NF-substrate adhesion strength, which could enable the broad use of this facile approach to predictably pattern NF arrays for high value applications.

  14. Recent advances on gradient hydrogels in biomimetic cartilage tissue engineering [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Ivana Gadjanski

    2017-12-01

    Full Text Available Articular cartilage (AC is a seemingly simple tissue that has only one type of constituting cell and no blood vessels and nerves. In the early days of tissue engineering, cartilage appeared to be an easy and promising target for reconstruction and this was especially motivating because of widespread AC pathologies such as osteoarthritis and frequent sports-induced injuries. However, AC has proven to be anything but simple. Recreating the varying properties of its zonal structure is a challenge that has not yet been fully answered. This caused the shift in tissue engineering strategies toward bioinspired or biomimetic approaches that attempt to mimic and simulate as much as possible the structure and function of the native tissues. Hydrogels, particularly gradient hydrogels, have shown great potential as components of the biomimetic engineering of the cartilaginous tissue.

  15. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-01-01

    Abstract. The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance. PMID:26662064

  16. bicep2/KECK ARRAY. IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA (United Kingdom); Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Filippini, J. P.; Golwala, S. R.; Hildebrandt, S. R.; Hui, H. [Department of Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Barkats, D. [Joint ALMA Observatory, ESO, Santiago (Chile); Benton, S. J. [Department of Physics, University of Toronto, Toronto, ON (Canada); Bischoff, C. A.; Bradford, K. J.; Buder, I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 42, Cambridge, MA 02138 (United States); Bullock, E. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Dowell, C. D. [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Duband, L. [Université Grenoble Alpes, CEA INAC-SBT, F-38000 Grenoble (France); Fliescher, S. [Department of Physics, University of Minnesota, Minneapolis, MN 55455 (United States); Halpern, M.; Hasselfield, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC (Canada); Hilton, G. C., E-mail: avieregg@kicp.uchicago.edu [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Collaboration: bicep2 and Keck Array Collaborations; and others

    2015-06-20

    bicep2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array share a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.

  17. Silver Nanowire Arrays : Fabrication and Applications

    OpenAIRE

    Feng, Yuyi

    2016-01-01

    Nanowire arrays have increasingly received attention for their use in a variety of applications such as surface-enhanced Raman scattering (SERS), plasmonic sensing, and electrodes for photoelectric devices. However, until now, large scale fabrication of device-suitable metallic nanowire arrays on supporting substrates has seen very limited success. This thesis describes my work rst on the development of a novel successful processing route for the fabrication of uniform noble metallic (e.g. A...

  18. Biomimetic electrospun nanofibers for tissue regeneration

    International Nuclear Information System (INIS)

    Liao, Susan; Li Bojun; Ma Zuwei; Wei He; Chan Casey; Ramakrishna, Seeram

    2006-01-01

    Nanofibers exist widely in human tissue with different patterns. Electrospinning nanotechnology has recently gained a new impetus due to the introduction of the concept of biomimetic nanofibers for tissue regeneration. The advanced electrospinning technique is a promising method to fabricate a controllable continuous nanofiber scaffold similar to the natural extracellular matrix. Thus, the biomedical field has become a significant possible application field of electrospun fibers. Although electrospinning has developed rapidly over the past few years, electrospun nanofibers are still at a premature research stage. Further comprehensive and deep studies on electrospun nanofibers are essential for promoting their biomedical applications. Current electrospun fiber materials include natural polymers, synthetic polymers and inorganic substances. This review briefly describes several typically electrospun nanofiber materials or composites that have great potential for tissue regeneration, and describes their fabrication, advantages, drawbacks and future prospects. (topical review)

  19. Influence of different temperatures on the thermal fatigue behavior and thermal stability of hot-work tool steel processed by a biomimetic couple laser technique

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Zhou, Ying; Gao, Ming; Tong, Xin; Cong, Dalong; Wang, Chuanwei; Chang, Fang; Ren, Luquan

    2014-04-01

    Three kinds of biomimetic non-smooth shapes (spot-shape, striation-shape and reticulation-shape) were fabricated on the surface of H13 hot-work tool steel by laser. We investigated the thermal fatigue behavior of biomimetic non-smooth samples with three kinds of shapes at different thermal cycle temperature. Moreover, the evolution of microstructure, as well as the variations of hardness of laser affected area and matrix were studied and compared. The results showed that biomimetic non-smooth samples had better thermal fatigue behavior compared to the untreated samples at different thermal cycle temperatures. For a given maximal temperature, the biomimetic non-smooth sample with reticulation-shape had the optimum thermal fatigue behavior, than with striation-shape which was better than that with the spot-shape. The microstructure observations indicated that at different thermal cycle temperatures the coarsening degrees of microstructures of laser affected area were different and the microstructures of laser affected area were still finer than that of the untreated samples. Although the resistance to thermal cycling softening of laser affected area was lower than that of the untreated sample, laser affected area had higher microhardness than the untreated sample at different thermal cycle temperature.

  20. Universal composition-structure-property maps for natural and biomimetic platelet-matrix composites and stacked heterostructures.

    Science.gov (United States)

    Sakhavand, Navid; Shahsavari, Rouzbeh

    2015-03-16

    Many natural and biomimetic platelet-matrix composites--such as nacre, silk, and clay-polymer-exhibit a remarkable balance of strength, toughness and/or stiffness, which call for a universal measure to quantify this outstanding feature given the structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures. Here we report the development of a unified framework to construct universal composition-structure-property diagrams that decode the interplay between various geometries and inherent material features in both platelet-matrix composites and stacked heterostructures. We study the effects of elastic and elastic-perfectly plastic matrices, overlap offset ratio and the competing mechanisms of platelet versus matrix failures. Validated by several 3D-printed specimens and a wide range of natural and synthetic materials across scales, the proposed universally valid diagrams have important implications for science-based engineering of numerous platelet-matrix composites and stacked heterostructures.

  1. Effects of Laser Energies on Wear and Tensile Properties of Biomimetic 7075 Aluminum Alloy

    Science.gov (United States)

    Yuan, Yuhuan; Zhang, Peng; Zhao, Guoping; Gao, Yang; Tao, Lixi; Chen, Heng; Zhang, Jianlong; Zhou, Hong

    2018-03-01

    Inspired by the non-smooth surface of certain animals, a biomimetic coupling unit with various sizes, microstructure, and hardness was prepared on the surface of 7075 aluminum alloy. Following experimental studies were conducted to investigate the wear and tensile properties with various laser energy inputs. The results demonstrated that the non-smooth surface with biomimetic coupling units had a positive effect on both the wear resistance and tensile property of 7075 aluminum alloy. In addition, the sample with the unit fabricated by the laser energy of 420.1 J/cm2 exhibited the most significant improvement on the wear and tensile properties owing to the minimum grain size and the highest microhardness. Also, the weight loss of the sample was one-third of the untreated one's, and the yield strength, the ultimate tensile strength, and the elongation improved by 20, 20, and 34% respectively. Moreover, the mechanisms of wear and tensile properties improvement were also analyzed.

  2. Dense and porous titanium substrates with a biomimetic calcium phosphate coating

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.A., E-mail: aantunesr@yahoo.com.br [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil); Balestra, R.M. [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil); Rocha, M.N. [Metallurgical and Materials Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Peripolli, S.B. [Materials Metrology Division, National Institute of Metrology, Normalization and Quality, No. 50 Nossa Senhora das Gracas Street, Building 3, 25250-020 Duque de Caxias, RJ (Brazil); Andrade, M.C. [Polytechnic Institute of Rio de Janeiro, Rio de Janeiro State University, s/n, Alberto Rangel Street, 28630-050 Nova Friburgo, RJ (Brazil); Pereira, L.C. [Metallurgical and Materials Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Oliveira, M.V. [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer A biomimetic coating method with simplified solution is proposed. Black-Right-Pointing-Pointer Titanium substrates are submitted to chemical and heat treatments. Black-Right-Pointing-Pointer Titanium substrates are coated with biocompatible calcium phosphate phases. Black-Right-Pointing-Pointer The simplified solution shows potential to be applied as a coating technique. - Abstract: The present work studied a biomimetic method using a simplified solution (SS) with calcium and phosphorus ions for coating titanium substrates, in order to improve their bioactivity. Commercially pure titanium dense sheet, microporous and macroporous titanium samples, both produced by powder metallurgy, were treated in NaOH solution followed by heat-treating and immersed in SS for 7, 14 or 21 days. The samples characterization was performed by quantitative metallographic analysis, confocal scanning optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and low angle X-ray diffraction. The results showed coatings with calcium phosphate precipitation in all samples, with globular or plate-like morphology, typical of hydroxyapatite and octacalcium phosphate, respectively, indicating that the solution (SS) has potential for coating titanium substrates. In addition, the different surfaces of substrates had an effect on the formed calcium phosphate phase and thickness of coatings, depending on the substrate type and imersion time in the simplified solution.

  3. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives

    International Nuclear Information System (INIS)

    Sameoto, D; Menon, C

    2010-01-01

    We present a novel fabrication method for the production of biomimetic dry adhesives that allows enormous variation in fiber shapes and sizes. The technology is based on deep-UV patterning of commercial acrylic with semi-collimated light available from germicidal lamps, and combined careful processing conditions, material selection and novel developer choices to produce relatively high-aspect-ratio fibers with overhanging caps on large areas. These acrylic fibers are used as a master mold for subsequent silicone rubber negative mold casting. Because the bulk acrylic demonstrates little inherent adhesion to silicone rubbers, the master molds created in this process do not require any surface treatments to achieve high-yield demolding of interlocked structures. Multiple polymers can be cast from silicone rubber negative molds and this process could be used to structure smart materials on areas over multiple square feet. Using direct photopatterning of acrylic allows many of the desired structures for biomimetic dry adhesives to be produced with relative ease compared to silicon-based molding processes, including angled fibers and hierarchical structures. Optimized fiber shapes for a variety of polymers can be produced using this process, and adhesion measurements on a well-characterized polyurethane, ST-1060, are used to determine the effect of fiber geometry on adhesion performance

  4. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Xu, Lu, E-mail: xl2013109@163.com; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming, E-mail: li_sanming2013@163.com

    2015-10-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures.

  5. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    International Nuclear Information System (INIS)

    Li, Jing; Xu, Lu; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-01-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures

  6. Cantilever arrays with self-aligned nanotips of uniform height

    International Nuclear Information System (INIS)

    Koelmans, W W; Peters, T; Berenschot, E; De Boer, M J; Siekman, M H; Abelmann, L

    2012-01-01

    Cantilever arrays are employed to increase the throughput of imaging and manipulation at the nanoscale. We present a fabrication process to construct cantilever arrays with nanotips that show a uniform tip–sample distance. Such uniformity is crucial, because in many applications the cantilevers do not feature individual tip–sample spacing control. Uniform cantilever arrays lead to very similar tip–sample interaction within an array, enable non-contact modes for arrays and give better control over the load force in contact modes. The developed process flow uses a single mask to define both tips and cantilevers. An additional mask is required for the back side etch. The tips are self-aligned in the convex corner at the free end of each cantilever. Although we use standard optical contact lithography, we show that the convex corner can be sharpened to a nanometre scale radius by an isotropic underetch step. The process is robust and wafer-scale. The resonance frequencies of the cantilevers within an array are shown to be highly uniform with a relative standard error of 0.26% or lower. The tip–sample distance within an array of up to ten cantilevers is measured to have a standard error around 10 nm. An imaging demonstration using the AFM shows that all cantilevers in the array have a sharp tip with a radius below 10 nm. The process flow for the cantilever arrays finds application in probe-based nanolithography, probe-based data storage, nanomanufacturing and parallel scanning probe microscopy. (paper)

  7. Si Wire-Array Solar Cells

    Science.gov (United States)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  8. Methods and Experimental Protocols to Design a Simulated Bio-Mimetic Quadruped Robot

    Directory of Open Access Journals (Sweden)

    Hadi El Daou

    2013-05-01

    Full Text Available Abstract This paper presents a bio-mimetic approach to design and simulate a tortoise-like virtual robot. This study takes a multidisciplinary approach: from in vivo and in vitro experiments on animals, data are collected and used to design, control and simulate a bio-mimetic virtual robot using MD ADAMS platform. From the in vitro experiments, the geometrical and inertial properties of body limbs are measured, and a model of tortoise kinematics is derived. From the in vivo experiments the contact forces between each limb and the ground are measured. The contributions of hind and forelimbs in the generation of propelling and braking forces are studied. The motion of the joints between limb segments are recorded and used to solve the inverse kinematics problem. A virtual model of a tortoise-like robot is built; it is a linkage of 15 rigid bodies articulated by 22 degrees of freedom. This model is referred to as TATOR II. It has the inertial and geometrical properties measured during the in vitro experiments. TATOR II motion is achieved using a Proportional-Derivative controller copying the joint angle trajectories calculated from the in vivo experiments.

  9. Computational modelling of oxygenation processes in enzymes and biomimetic model complexes

    OpenAIRE

    de Visser, Sam P.; Quesne, Matthew G.; Martin, Bodo; Comba, Peter; Ryde, Ulf

    2014-01-01

    With computational resources becoming more efficient and more powerful and at the same time cheaper, computational methods have become more and more popular for studies on biochemical and biomimetic systems. Although large efforts from the scientific community have gone into exploring the possibilities of computational methods on large biochemical systems, such studies are not without pitfalls and often cannot be routinely done but require expert execution. In this review we summarize and hig...

  10. A human endogenous protein exerts multi-role biomimetic chemistry in synthesis of paramagnetic gold nanostructures for tumor bimodal imaging.

    Science.gov (United States)

    Yang, Weitao; Wu, Xiaoli; Dou, Yan; Chang, Jin; Xiang, Chenyang; Yu, Jiani; Wang, Jun; Wang, Xiuli; Zhang, Bingbo

    2018-04-01

    Protein-mediated biomimetic nanoparticles because of simplicity of their synthesis, subdued nonspecific adsorption, improved pharmacokinetics, and biocompatibility have been receiving increasing attention recently. Nevertheless, only a handful of proteins have been developed for biomimetic synthesis. Worse still, most of them are constrained on single-function usages in chemistry. Exploring new functional proteins, especially those with multi-dentate moieties for multi-role biomimetic chemistry, still remains a substantial challenge. Here, we report on a human endogenous protein, glutathione S-transferase (GST), with favorable amino acid motifs, that has innate talents in incubating high quality gold nanoparticles without adding reducing agents at physiological temperature, and particularly can further anchor gadolinium ions without adding extra chelators. The resultant paramagnetic AuNPs@GST Gd exhibits highly crystallization and uniform size of ca. 10 nm. Compared with clinical contrast agents (Iopamidol, Magnevist), AuNPs@GST Gd shows better imaging performance (e.g. enhanced relaxivity and larger X-ray attenuation efficiency) with clear evidence from Monte Carlo simulation and in vitro experimental results. Further in vivo imaging demonstrates good tumor targeting and clearance of AuNPs@GST Gd without obvious systemic toxicity. Particularly, low immunogenicity of AuNPs@GST Gd is certified by immunological status evaluation of T cells after stimulated with them. This study for the first time demonstrates the manipulation of a human protein for multi-role biomimetic chemistry depending on its unique amino acid motifs and its incorporation into a synthetic agent for potentially addressing some critical issues in cancer nanotheranostics such as synthetic methodology, biocompatibility, function integration, targeting, and immunogenicity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    Science.gov (United States)

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  12. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    Science.gov (United States)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  13. Effects of striated laser tracks on thermal fatigue resistance of cast iron samples with biomimetic non-smooth surface

    International Nuclear Information System (INIS)

    Tong, Xin; Zhou, Hong; Liu, Min; Dai, Ming-jiang

    2011-01-01

    In order to enhance the thermal fatigue resistance of cast iron materials, the samples with biomimetic non-smooth surface were processed by Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser. With self-controlled thermal fatigue test method, the thermal fatigue resistance of smooth and non-smooth samples was investigated. The effects of striated laser tracks on thermal fatigue resistance were also studied. The results indicated that biomimetic non-smooth surface was benefit for improving thermal fatigue resistance of cast iron sample. The striated non-smooth units formed by laser tracks which were vertical with thermal cracks had the best propagation resistance. The mechanisms behind these influences were discussed, and some schematic drawings were introduced to describe them.

  14. Terabyte IDE RAID-5 Disk Arrays

    Energy Technology Data Exchange (ETDEWEB)

    David A. Sanders et al.

    2003-09-30

    High energy physics experiments are currently recording large amounts of data and in a few years will be recording prodigious quantities of data. New methods must be developed to handle this data and make analysis at universities possible. We examine some techniques that exploit recent developments in commodity hardware. We report on tests of redundant arrays of integrated drive electronics (IDE) disk drives for use in offline high energy physics data analysis. IDE redundant array of inexpensive disks (RAID) prices now are less than the cost per terabyte of million-dollar tape robots! The arrays can be scaled to sizes affordable to institutions without robots and used when fast random access at low cost is important.

  15. Biomimetic 'Green' Synthesis of Nanomaterials Using Antioxidants-Vitamins, Glutathione and Polyphenols from Tea and Wine

    Science.gov (United States)

    The presentation summarizes our recent activity in chemical synthesis of nanomaterials via benign biomimetic ‘greener’ alternatives,1 such as the use antioxidants present in a variety of natural products, and ubiquitous glutathione in aqueous media.2 Vitamins B1, B2, C, and tea ...

  16. Limits of Nature and Advances of Technology: What Does Biomimetics Have to Offer to Aquatic Robots?

    Directory of Open Access Journals (Sweden)

    F. E. Fish

    2006-01-01

    Full Text Available In recent years, the biomimetic approach has been utilized as a mechanism for technological advancement in the field of robotics. However, there has not been a full appreciation of the success and limitations of biomimetics. Similarities between natural and engineered systems are exhibited by convergences, which define environmental factors, which impinge upon design, and direct copying that produces innovation through integration of natural and artificial technologies. Limitations of this integration depend on the structural and mechanical differences of the two technologies and on the process by which each technology arises. The diversity of organisms that arose through evolutionary descent does not necessarily provide all possible solutions of optimal functions. However, in instances where organisms exhibit superior performance to engineered systems, features of the organism can be targeted for technology transfer. In this regard, cooperation between biologists and engineers is paramount.

  17. Surface microstructure and cell biocompatibility of silicon-substituted hydroxyapatite coating on titanium substrate prepared by a biomimetic process

    International Nuclear Information System (INIS)

    Zhang Erlin; Zou Chunming; Yu Guoning

    2009-01-01

    Silicon-substituted hydroxyapatite (Si-HA) coatings with 0.14 to 1.14 at.% Si on pure titanium were prepared by a biomimetic process. The microstructure characterization and the cell compatibility of the Si-HA coatings were studied in comparison with that of hydroxyapatite (HA) coating prepared in the same way. The prepared Si-HA coatings and HA coating were only partially crystallized or in nano-scaled crystals. The introduction of Si element in HA significantly reduced P and Ca content, but densified the coating. The atom ratio of Ca to (P + Si) in the Si-HA coatings was in a range of 1.61-1.73, increasing slightly with an increase in the Si content. FTIR results displayed that Si entered HA in a form of SiO 4 unit by substituting for PO 4 unit. The cell attachment test showed that the HA and Si-HA coatings exhibited better cell response than the uncoated titanium, but no difference was observed in the cell response between the HA coating and the Si-HA coatings. Both the HA coating and the Si-HA coatings demonstrated a significantly higher cell growth rate than the uncoated pure titanium (p < 0.05) in all incubation periods while the Si-HA coating exhibited a significantly higher cell growth rate than the HA coating (p < 0.05). Si-HA with 0.42 at.% Si presented the best cell biocompatibility in all of the incubation periods. It was suggested that the synthesis mode of HA and Si-HA coatings in a simulated body environment in the biomimetic process contribute significantly to good cell biocompatibility

  18. Electrochemical characterization of hydrogels for biomimetic applications

    DEFF Research Database (Denmark)

    Peláez, L.; Romero, V.; Escalera, S.

    2011-01-01

    ) or a photoinitiator (P) to encapsulate and stabilize biomimetic membranes for novel separation technologies or biosensor applications. In this paper, we have investigated the electrochemical properties of the hydrogels used for membrane encapsulation. Specifically, we studied the crosslinked hydrogels by using...... electrochemical impedance spectroscopy (EIS), and we demonstrated that chemically crosslinked hydrogels had lower values for the effective electrical resistance and higher values for the electrical capacitance compared with hydrogels with photoinitiated crosslinking. Transport numbers were obtained using......〉 and 〈Pw〉 values than PEG‐1000‐DMA‐P and PEG‐400‐DA‐P hydrogels. In conclusion, our results show that hydrogel electrochemical properties can be controlled by the choice of polymer and type of crosslinking used and that their water and salt permeability properties are congruent with the use of hydrogels...

  19. Biomimetically grown apatite spheres from aggregated bioglass nanoparticles with ultrahigh porosity and surface area imply potential drug delivery and cell engineering applications.

    Science.gov (United States)

    El-Fiqi, Ahmed; Buitrago, Jennifer O; Yang, Sung Hee; Kim, Hae-Won

    2017-09-15

    Here we communicate the generation of biomimetically grown apatite spheres from aggregated bioglass nanoparticles and the potential properties applicable for drug delivery and cell/tissue engineering. Ion releasing nanoparticulates of bioglass (85%SiO 2 -15%CaO) in a mineralizing medium show an intriguing dynamic phenomenon - aggregation, mineralization to apatite, integration and growth into micron-sized (1.5-3μm) spheres. During the progressive ionic dissolution/precipitation reactions, nano-to-micro-morphology, glass-to-crystal composition, and the physico-chemical properties (porosity, surface area, and charge) change dynamically. With increasing reaction period, the apatite becomes more crystallized with increased crystallinity and crystal size, and gets a composition closer to the stoichiometry. The developed microspheres exhibit hierarchical surface nanostructure, negative charge (ς-potential of -20mV), and ultrahigh mesoporosity (mesopore size of 6.1nm, and the resultant surface area of 63.7m 2 /g and pore volume of 0.153cm 3 /g) at 14days of mineralization, which are even higher than those of its precursor bioglass nanoparticles. Thanks to these properties, the biomimetic mineral microspheres take up biological molecules effectively, i.e., loading capacity of positive-charged protein is over 10%. Of note, the release is highly sustainable at a constant rate, i.e., profiling almost 'zero-order' kinetics for 4weeks, suggesting the potential usefulness as protein delivery systems. The biomimetic mineral microspheres hold some remnant Si in the core region, and release calcium, phosphate, and silicate ions over the test period, implying the long-term ionic-related therapeutic functions. The mesenchymal stem cells favour the biomimetic spheres with an excellent viability. Due to the merit of sizes (a few micrometers), the spheres can be intercalated into cells, mediating cellular interactions in 3D cell-spheroid engineering, and also can stimulate osteogenic

  20. Biomimetic Nanoarchitectures for the Study of T Cell Activation with Single-Molecule Control

    Science.gov (United States)

    Cai, Haogang

    Physical factors in the environment of a cell affect its function and behavior in a variety of ways. There is increasing evidence that, among these factors, the geometric arrangement of receptor ligands plays an important role in setting the conditions for critical cellular processes. The goal of this thesis is to develop new techniques for probing the role of extracellular ligand geometry, with a focus on T cell activation. In this work, top-down molecular-scale nanofabrication and bottom-up selective self-assembly were combined in order to present functional nanomaterials (primarily biomolecules) on a surface with precise spatial control and single-molecule resolution. Such biomolecule nanoarrays are becoming an increasingly important tool in surface-based in vitro assays for biosensing, molecular and cellular studies. The nanoarrays consist of metallic nanodots patterned on glass coverslips using electron beam and nanoimprint lithography, combined with self-aligned pattern transfer. The nanodots were then used as anchors for the immobilization of biological ligands, and backfilled with a protein-repellent passivation layer of polyethylene glycol. The passivation efficiency was improved to minimize nonspecific adsorption. In order to ensure true single-molecule control, we developed an on-chip protocol to measure the molecular occupancy of nanodot arrays based on fluorescence photobleaching, while accounting for quenching effects by plasmonic absorption. We found that the molecular occupancy can be interpreted as a packing problem, with the solution depending on the nanodot size and the concentration of self-assembly reagents, where the latter can be easily adjusted to control the molecular occupancy according to the dot size. The optimized nanoarrays were used as biomimetic architectures for the study of T cell activation with single-molecule control. T cell activation involves an elaborate arrangement of signaling, adhesion, and costimulatory molecules

  1. Isolation and biomimetic synthesis of (±)-guajadial B, a novel meroterpenoid from Psidium guajava.

    Science.gov (United States)

    Gao, Yuan; Wang, Gang-Qiang; Wei, Kun; Hai, Ping; Wang, Fei; Liu, Ji-Kai

    2012-12-07

    (±)-Guajadial B (1), an unusual humulene-based meroterpenoid, was isolated as a racemate from the leaves of Psidium guajava, collected from Vietnam. The structure of this novel secondary metabolite was established on the basis of extensive analysis of NMR spectra and confirmed by biomimetic synthesis in a domino three-component coupling reaction.

  2. 3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis

    OpenAIRE

    Irina Alexandra Paun; Roxana Cristina Popescu; Bogdan Stefanita Calin; Cosmin Catalin Mustaciosu; Maria Dinescu; Catalin Romeo Luculescu

    2018-01-01

    We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experime...

  3. Airborne electronically steerable phased array

    Science.gov (United States)

    1972-01-01

    The results are presented of the second stage of a program for the design and development of a phased array capable of simultaneous and separate transmission and reception of radio frequency signals at S-band frequencies. The design goals of this stage were the development of three major areas of interest required for the final prototype model. These areas are the construction and testing of the low-weight, full-scale 128-element array of antenna elements, the development of the RF manifold feed system, and the construction and testing of a working module containing diplexer and transmit and receive circuits.

  4. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors

    Science.gov (United States)

    Helmuth, Brian; Choi, Francis; Matzelle, Allison; Torossian, Jessica L.; Morello, Scott L.; Mislan, K.A.S.; Yamane, Lauren; Strickland, Denise; Szathmary, P. Lauren; Gilman, Sarah E.; Tockstein, Alyson; Hilbish, Thomas J.; Burrows, Michael T.; Power, Anne Marie; Gosling, Elizabeth; Mieszkowska, Nova; Harley, Christopher D.G.; Nishizaki, Michael; Carrington, Emily; Menge, Bruce; Petes, Laura; Foley, Melissa M.; Johnson, Angela; Poole, Megan; Noble, Mae M.; Richmond, Erin L.; Robart, Matt; Robinson, Jonathan; Sapp, Jerod; Sones, Jackie; Broitman, Bernardo R.; Denny, Mark W.; Mach, Katharine J.; Miller, Luke P.; O’Donnell, Michael; Ross, Philip; Hofmann, Gretchen E.; Zippay, Mackenzie; Blanchette, Carol; Macfarlan, J.A.; Carpizo-Ituarte, Eugenio; Ruttenberg, Benjamin; Peña Mejía, Carlos E.; McQuaid, Christopher D.; Lathlean, Justin; Monaco, Cristián J.; Nicastro, Katy R.; Zardi, Gerardo

    2016-01-01

    At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10–30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0–2.5 °C, during daily fluctuations that often exceeded 15°–20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature. PMID:27727238

  5. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    International Nuclear Information System (INIS)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B.; Peterson, D.L.; Mosher, D.; Roderick, N.F.

    1998-01-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh - Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ∼40 TW and energy of ∼325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ∼8 TW and energy of ∼70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh - Taylor instability observed in small-wire-number imploding loads. copyright 1998 American Institute of Physics

  6. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    Science.gov (United States)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Peterson, D. L.; Mosher, D.; Roderick, N. F.

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh-Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ˜40 TW and energy of ˜325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ˜8 TW and energy of ˜70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh-Taylor instability observed in small-wire-number imploding loads.

  7. Biomimetics: From Bioinformatics to Rational Design of Dendrimers as Gene Carriers

    Science.gov (United States)

    Araya-Durán, Ingrid; Varas-Concha, Ignacio; Almonacid, Daniel Eduardo; González-Nilo, Fernando Danilo

    2015-01-01

    Biomimetics, or the use of principles of Nature for developing new materials, is a paradigm that could help Nanomedicine tremendously. One of the current challenges in Nanomedicine is the rational design of new efficient and safer gene carriers. Poly(amidoamine) (PAMAM) dendrimers are a well-known class of nanoparticles, extensively used as non-viral nucleic acid carriers, due to their positively charged end-groups. Yet, there are still several aspects that can be improved for their successful application in in vitro and in vivo systems, including their affinity for nucleic acids as well as lowering their cytotoxicity. In the search of new functional groups that could be used as new dendrimer-reactive groups, we followed a biomimetic approach to determine the amino acids with highest prevalence in protein-DNA interactions. Then we introduced them individually as terminal groups of dendrimers, generating a new class of nanoparticles. Molecular dynamics studies of two systems: PAMAM-Arg and PAMAM-Lys were also performed in order to describe the formation of complexes with DNA. Results confirmed that the introduction of amino acids as terminal groups in a dendrimer increases their affinity for DNA and the interactions in the complexes were characterized at atomic level. We end up by briefly discussing additional modifications that can be made to PAMAM dendrimers to turned them into promising new gene carriers. PMID:26382062

  8. Interactions between structural and chemical biomimetism in synthetic stem cell niches

    International Nuclear Information System (INIS)

    Nava, Michele M; Raimondi, Manuela T; Credi, Caterina; De Marco, Carmela; Turri, Stefano; Cerullo, Giulio; Osellame, Roberto

    2015-01-01

    Advancements in understanding stem cell functions and differentiation are of key importance for the clinical success of stem-cell-based therapies. 3D structural niches fabricated by two-photon polymerization are a powerful platform for controlling stem cell growth and differentiation. In this paper, we investigate the possibility of further controlling stem cell fate by tuning the mechanical properties of such niches through coating with thin layers of biomimetic hyaluronan-based and gelatin-based hydrogels. We first assess the biocompatibility of chemical coatings and then study the interactions between structural and chemical biomimetism on the response of MSCs in terms of proliferation and differentiation. We observed a clear effect of the hydrogel coating on otherwise identical 3D scaffolds. In particular, in gelatin-coated niches we observed a stronger metabolic activity and commitment toward the osteo-chondral lineage with respect to hyaluronan-coated niches. Conversely, a reduction in the homing effect was observed in all the coated niches, especially in gelatin-coated niches. This study demonstrates the feasibility of controlling independently different mechanical cues, in bioengineered stem cell niches, i.e. the 3D scaffold geometry and the surface stiffness. This will allow, on the one hand, understanding their specific role in stem cell proliferation and differentiation and, on the other hand, finely tuning their synergistic effect. (paper)

  9. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Bihua; Luo, Xueshi; Li, Zhiwen [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Zhuang, Caiping [Department of Anesthesiology, Huizhou Central People' s Hospital, Huizhou 516001 (China); Li, Lihua, E-mail: tlihuali@jnu.edu.cn [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Lu, Lu; Ding, Shan; Tian, Jinhuan [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China)

    2016-11-01

    Collagen biomineralization is regulated by complicated interactions between the collagen matrix and non-collagenous extracellular proteins. Here, the use of sodium tripolyphosphate to simulate the templating functional motif of the C-terminal fragment of non-collagenous proteins is reported, and a low molecular weight polyacrylic acid served as a sequestration agent to stabilize amorphous calcium phosphate into nanoprecursors. Self-assembled collagen fibrils served as a fixed template for achieving rapid biomimetic mineralization in vitro. Results demonstrated that, during the mineralization process, intrafibrillar and extrafibrillar hydroxyapatite mineral with collagen fibrils formed and did so via bottom-up nanoparticle assembly based on the non-classical crystallization approach in the presence of these dual biomimetic functional analogues. In vitro human umbilical cord mesenchymal stem cell (hUCMSC) culture found that the mineralized scaffolds have a better cytocompatibility in terms of cell viability, adhesion, proliferation, and differentiation into osteoblasts. A rabbit femoral condyle defect model was established to confirm the ability of the n-HA/collagen scaffolds to facilitate bone regeneration and repair. The images of gross anatomy, MRI, CT and histomorphology taken 6 and 12 weeks after surgery showed that the biomimetic mineralized collagen scaffolds with hUCMSCs can promote the healing speed of bone defects in vivo, and both of the scaffolds groups performing better than the bone defect control group. As new bone tissue formed, the scaffolds degraded and were gradually absorbed. All these results demonstrated that both of the scaffolds and cells have better histocompatibility. - Highlights: • A rapid and facile biomimetic mineralization approach is proposed. • Intrafibrillar and extrafibrillar mineralization of collagen fibrils was achieved. • HA/COL scaffolds promote hUCMSCs adhesion, proliferation, and differentiation. • Feasibility of h

  10. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing

    International Nuclear Information System (INIS)

    Ye, Bihua; Luo, Xueshi; Li, Zhiwen; Zhuang, Caiping; Li, Lihua; Lu, Lu; Ding, Shan; Tian, Jinhuan; Zhou, Changren

    2016-01-01

    Collagen biomineralization is regulated by complicated interactions between the collagen matrix and non-collagenous extracellular proteins. Here, the use of sodium tripolyphosphate to simulate the templating functional motif of the C-terminal fragment of non-collagenous proteins is reported, and a low molecular weight polyacrylic acid served as a sequestration agent to stabilize amorphous calcium phosphate into nanoprecursors. Self-assembled collagen fibrils served as a fixed template for achieving rapid biomimetic mineralization in vitro. Results demonstrated that, during the mineralization process, intrafibrillar and extrafibrillar hydroxyapatite mineral with collagen fibrils formed and did so via bottom-up nanoparticle assembly based on the non-classical crystallization approach in the presence of these dual biomimetic functional analogues. In vitro human umbilical cord mesenchymal stem cell (hUCMSC) culture found that the mineralized scaffolds have a better cytocompatibility in terms of cell viability, adhesion, proliferation, and differentiation into osteoblasts. A rabbit femoral condyle defect model was established to confirm the ability of the n-HA/collagen scaffolds to facilitate bone regeneration and repair. The images of gross anatomy, MRI, CT and histomorphology taken 6 and 12 weeks after surgery showed that the biomimetic mineralized collagen scaffolds with hUCMSCs can promote the healing speed of bone defects in vivo, and both of the scaffolds groups performing better than the bone defect control group. As new bone tissue formed, the scaffolds degraded and were gradually absorbed. All these results demonstrated that both of the scaffolds and cells have better histocompatibility. - Highlights: • A rapid and facile biomimetic mineralization approach is proposed. • Intrafibrillar and extrafibrillar mineralization of collagen fibrils was achieved. • HA/COL scaffolds promote hUCMSCs adhesion, proliferation, and differentiation. • Feasibility of h

  11. Novel biomimetic composite material for potentiometric screening of acetylcholine, a neurotransmitter in Alzheimer's disease.

    Science.gov (United States)

    Sacramento, Ana S; Moreira, Felismina T C; Guerreiro, Joana L; Tavares, Ana P; Sales, M Goreti F

    2017-10-01

    This work describes a novel approach to produce an antibody-like biomimetic material. It includes preparing composite imprinted material never presented before, with highly conductive support nanostructures and assembling a high conductivity polymeric layer at low temperature. Overall, such highly conductive material may enhance the final features of electrically-based devices. Acetylcholine (ACh) was selected as target analyte, a neurotransmitter of importance in Alzheimer's disease. Potentiometric transduction was preferred, allowing quick responses and future adaptation to point-of-care requirements. The biomimetic material was obtained by bulk polymerization, where ACh was placed in a composite matrix of multiwalled carbon nanotubes (MWCNTs) and aniline (ANI). Subsequent polymerization, initiated by radical species, yielded a polymeric structure of polyaniline (PANI) acting as physical support of the composite. A non-imprinted material (NIM) having only PANI/MWCNT (without ACh) has been prepared for comparison of the biomimetic-imprinted material (BIM). RAMAN and Fourier Transform Infrared spectroscopy (FTIR), Transmission Electron microscopy (TEM), and Scanning Electron microscope (SEM) analysis characterized the structures of the materials. The ability of this biomaterial to rebind ACh was confirmed by including it as electroactive compound in a PVC/plasticizer mixture. The membranes with imprinted material and anionic additive presented the best analytical characteristics, with a sensitivity of 83.86mV decade -1 and limit of detection (LOD) of 3.45×10 -5 mol/L in HEPES buffer pH4.0. Good selectivity was observed against creatinine, creatine, glucose, cysteine and urea. The electrodes were also applied on synthetic serum samples and seemed a reliable tool for screening ACh in synthetic serum samples. The overall performance showed fast response, reusability, simplicity and low price. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The ASTRI mini-array within the future Cherenkov Telescope Array

    Directory of Open Access Journals (Sweden)

    Vercellone Stefano

    2016-01-01

    Full Text Available The Cherenkov Telescope Array (CTA is a large collaborative effort aimed at the design and operation of an observatory dedicated to very high-energy gamma-ray astrophysics in the energy range from a few tens of GeV to above 100 TeV, which will yield about an order of magnitude improvement in sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS. Within this framework, the Italian National Institute for Astrophysics is leading the ASTRI project, whose main goals are the design and installation on Mt. Etna (Sicily of an end-to-end dual-mirror prototype of the CTA small size telescope (SST and the installation at the CTA Southern site of a dual-mirror SST mini-array composed of nine units with a relative distance of about 300 m. The innovative dual-mirror Schwarzschild-Couder optical solution adopted for the ASTRI Project allows us to substantially reduce the telescope plate-scale and, therefore, to adopt silicon photo-multipliers as light detectors. The ASTRI mini-array is a wider international effort. The mini-array, sensitive in the energy range 1–100 TeV and beyond with an angular resolution of a few arcmin and an energy resolution of about 10–15%, is well suited to study relatively bright sources (a few × 10−12 erg cm−2 s−1 at 10 TeV at very high energy. Prominent sources such as extreme blazars, nearby well-known BL Lac objects, Galactic pulsar wind nebulae, supernovae remnants, micro-quasars, and the Galactic Center can be observed in a previously unexplored energy range. The ASTRI mini-array will extend the current IACTs sensitivity well above a few tens of TeV and, at the same time, will allow us to compare our results on a few selected targets with those of current (HAWC and future high-altitude extensive air-shower detectors.

  13. Micron-scale lens array having diffracting structures

    Science.gov (United States)

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  14. Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment

    Directory of Open Access Journals (Sweden)

    Zhang Z

    2017-02-01

    Full Text Available Zhen Zhang,1 Hanqing Qian,2 Mi Yang,2 Rutian Li,2 Jing Hu,1 Li Li,1 Lixia Yu,2 Baorui Liu,1,2 Xiaoping Qian1,2 1Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, 2Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute, Nanjing University, Nanjing, China Abstract: Gambogic acid (GA is expected to be a potential new antitumor drug, but its poor aqueous solubility and inevitable side effects limit its clinical application. Despite these inhe­rent defects, various nanocarriers can be used to promote the solubility and tumor targeting of GA, improving antitumor efficiency. In addition, a cell membrane-coated nanoparticle platform that was reported recently, unites the customizability and flexibility of a synthetic copolymer, as well as the functionality and complexity of natural membrane, and is a new synthetic biomimetic nanocarrier with improved stability and biocompatibility. Here, we combined poly(lactic-co-glycolic acid (PLGA with red blood-cell membrane (RBCm, and evaluated whether GA-loaded RBCm nanoparticles can retain and improve the antitumor efficacy of GA with relatively lower toxicity in colorectal cancer treatment compared with free GA. We also confirmed the stability, biocompatibility, passive targeting, and few side effects of RBCm-GA/PLGA nanoparticles. We expect to provide a new drug carrier in the treatment of colorectal cancer, which has strong clinical application prospects. In addition, the potential antitumor drug GA and other similar drugs could achieve broader clinical applications via this biomimetic nanocarrier. Keywords: gambogic acid, nanocarriers, RBCm-GA/PLGA nanoparticles, colorectal cancer

  15. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guan, E-mail: huangg66@126.com; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-30

    Graphical abstract: A biomimetic catalyst of iron-tetrakis(4-sulfonatophenyl)porphyrin immobilized on powdered chitosan achieves efficient cyclohexane oxidation with high ketone and alcohol yields. - Highlights: • Fe (TPPS)/pd-CTS is an excellent catalyst for cyclohexane oxidation. • Amino ligation alters the electron cloud density around the iron cation. • Amino coordination likely reduces the activation energy of Fe (TPPS). • The catalyst achieved 22.9 mol% yields of cyclohexanone and cyclohexanol. - Abstract: This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O{sub 2}. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  16. Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk

    Science.gov (United States)

    Xie, Lan; Xu, Huan; Li, Liang-Bin; Hsiao, Benjamin S.; Zhong, Gan-Ji; Li, Zhong-Ming

    2016-10-01

    Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders’ spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100 nm and the “rigid-soft” system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight.

  17. Biomimetic synthesis and morphological control of metal carbonates at the air/solution interface

    International Nuclear Information System (INIS)

    Lee, Shichoon; Cho, Kilwon; Son, Younggon

    2012-01-01

    Biomimetic approaches can provide a means of fabricating nanostructured materials under environmentally benign conditions. In this paper, we synthesized metal carbonate films, such as calcite, strontianite, malachite, and hydrozincite films, at the air-solution interface of solutions containing corresponding metal ions by using inflowing CO 2 from the atmosphere. The addition of acidic polymers, fulfilling the role of an acidic protein in biomineralization, provided CaCO 3 nanofibers, SrCO 3 nanofibers oriented in a specific direction, and copper carbonate and zinc carbonate hydroxide thin films. The metal carbonates prepared in this study were used as precursors for the formation of metal oxide nanocrystals via pyrolysis. This work showed that various metal carbonates and metal oxides with nanostructures can be prepared by using atmospheric CO 2 . - Highlights: ► Biomimetic synthesis of metal carbonate nanofilms at the air/solution interface. ► The reaction between metal ions and carbonate ions derived from CO 2 in the air. ► Calcium, strontium, copper and zinc carbonates were formed. ► The morphologies of the nanofilms were controlled by adding the acidic polymer. ► Nanostructured metal oxides were prepared by pyrolysis of the metal carbonates.

  18. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O{sub 2} multiphase composites

    Energy Technology Data Exchange (ETDEWEB)

    Wysokowski, Marcin, E-mail: Marcin.Wysokowski@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Motylenko, Mykhaylo; Rafaja, David [TU Bergakademie Freiberg, Institute of Materials Science, Gustav-Zeuner-Str. 5, 09596, Freiberg (Germany); Koltsov, Iwona [Laboratory of Nanostructures, Institute of High Pressure Physics of The Polish Academy of Sciences, Sokołowska 29/37, 01-142, Warsaw (Poland); Stöcker, Hartmut [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany); Szalaty, Tadeusz J. [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Bazhenov, Vasilii V., E-mail: vasily.bazhenov@gmail.com [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany); Stelling, Allison L. [Duke University, Department of Biochemistry, Durham, NC, 27708 (United States); Beyer, Jan; Heitmann, Johannes [TU Bergakademie Freiberg, Institute of Applied Physics, Leipziger str. 23, 09596, Freiberg (Germany); Jesionowski, Teofil [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Petovic, Slavica; Đurović, Mirko [Institute of Marine Biology, Dobrota, 85330, Kotor (Montenegro); Ehrlich, Hermann [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany)

    2017-02-15

    This work presents an extreme biomimetics route for the modification of the surface of fibre-based scaffolds of poriferan origin by the creation of novel nanostructured multiphase biocomposites. The exceptional thermal stability of the nanostructured sponge chitin allowed for the formation of a novel nanocrystalline chitin-(Ti,Zr)O{sub 2} composite with a well-defined nanoscale structure under hydrothermal conditions (160 °C). Using a combination of experimental techniques, including X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, EDX mapping and near-edge electron loss spectroscopy (ELNES) in TEM and thermogravimetry/differential scanning calorimetry coupled with mass spectrometry; we showed that this bioorganic scaffold facilitates selective crystallization of TiO{sub 2}, predominantly in form of anatase, over the monoclinic zirconium dioxide (baddeleyite). The control of the crystal morphology through the chitin templates is also demonstrated. Obtained samples were characterized in terms of their photoluminescent properties and photocatalytic performance. These data confirm the high potential of the extreme biomimetics approach for developing a new generation of multiphase biopolymer-based nanostructured materials. - Highlights: • Extreme biomimetically prepared chitin-(Ti,Zr)O{sub 2} and (Ti,Zr)O{sub 2} composites. • Chitin-(Ti,Zr)O{sub 2} composite contains anatase as the most inorganic component. • The mean crystallite size is (31.7 ± 0.3) nm for chitin-(Ti,Zr)O{sub 2} composite. • The mean crystallite size is (2.4 ± 0.5) nm for (Ti,Zr)O{sub 2} composite. • (Ti,Zr)O{sub 2} composite is 2 times more effective photocatalyst than chitin-(Ti,Zr)O{sub 2}.

  19. The oxidized porous silicon field emission array

    International Nuclear Information System (INIS)

    Smith, D.D.; Demroff, H.P.; Elliott, T.S.; Kasprowicz, T.B.; Lee, B.; Mazumdar, T.K.; McIntyre, P.M.; Pang, Y.; Trost, H.J.

    1993-01-01

    The goal of developing a highly efficient microwave power source has led the authors to investigate new methods of electron field emission. One method presently under consideration involves the use of oxidized porous silicon thin films. The authors have used this technology to fabricate the first working field emission arrays from this substance. This approach reduces the diameter of an individual emitter to the nanometer scale. Tests of the first samples are encouraging, with extracted electron currents to nearly 1 mA resulting from less than 20 V of pulsed DC gate voltage. Modulated emission at 5 MHz was also observed. Developments of a full-scale emission array capable of delivering an electron beam at 18 GHz of minimum density 100 A/cm 2 is in progress

  20. Engineering biomimetic hair bundle sensors for underwater sensing applications

    Science.gov (United States)

    Kottapalli, Ajay Giri Prakash; Asadnia, Mohsen; Karavitaki, K. Domenica; Warkiani, Majid Ebrahimi; Miao, Jianmin; Corey, David P.; Triantafyllou, Michael

    2018-05-01

    We present the fabrication of an artificial MEMS hair bundle sensor designed to approximate the structural and functional principles of the flow-sensing bundles found in fish neuromast hair cells. The sensor consists of micro-pillars of graded height connected with piezoelectric nanofiber "tip-links" and encapsulated by a hydrogel cupula-like structure. Fluid drag force actuates the hydrogel cupula and deflects the micro-pillar bundle, stretching the nanofibers and generating electric charges. These biomimetic sensors achieve an ultrahigh sensitivity of 0.286 mV/(mm/s) and an extremely low threshold detection limit of 8.24 µm/s. A complete version of this paper has been published [1].

  1. Array capabilities and future arrays

    International Nuclear Information System (INIS)

    Radford, D.

    1993-01-01

    Early results from the new third-generation instruments GAMMASPHERE and EUROGAM are confirming the expectation that such arrays will have a revolutionary effect on the field of high-spin nuclear structure. When completed, GAMMASHPERE will have a resolving power am order of magnitude greater that of the best second-generation arrays. When combined with other instruments such as particle-detector arrays and fragment mass analysers, the capabilites of the arrays for the study of more exotic nuclei will be further enhanced. In order to better understand the limitations of these instruments, and to design improved future detector systems, it is important to have some intelligible and reliable calculation for the relative resolving power of different instrument designs. The derivation of such a figure of merit will be briefly presented, and the relative sensitivities of arrays currently proposed or under construction presented. The design of TRIGAM, a new third-generation array proposed for Chalk River, will also be discussed. It is instructive to consider how far arrays of Compton-suppressed Ge detectors could be taken. For example, it will be shown that an idealised open-quote perfectclose quotes third-generation array of 1000 detectors has a sensitivity an order of magnitude higher again than that of GAMMASPHERE. Less conventional options for new arrays will also be explored

  2. Ultrathin NbN film superconducting single-photon detector array

    International Nuclear Information System (INIS)

    Smirnov, K; Korneev, A; Minaeva, O; Divochiy, A; Tarkhov, M; Ryabchun, S; Seleznev, V; Kaurova, N; Voronov, B; Gol'tsman, G; Polonsky, S

    2007-01-01

    We report on the fabrication process of the 2 x 2 superconducting single-photon detector (SSPD) array. The SSPD array is made from ultrathin NbN film and is operated at liquid helium temperatures. Each detector is a nanowire-based structure patterned by electron beam lithography process. The advances in fabrication technology allowed us to produce highly uniform strips and preserve superconducting properties of the unpatterned film. SSPD exhibit up to 30% quantum efficiency in near infrared and up to 1% at 5-μm wavelength. Due to 120 MHz counting rate and 18 ps jitter, the time-domain multiplexing read-out is proposed for large scale SSPD arrays. Single-pixel SSPD has already found a practical application in non-invasive testing of semiconductor very-large scale integrated circuits. The SSPD significantly outperformed traditional single-photon counting avalanche diodes

  3. COST Action CM1201 "Biomimetic Radical Chemistry": free radical chemistry successfully meets many disciplines

    Czech Academy of Sciences Publication Activity Database

    Ferreri, C.; Golding, B. T.; Jahn, Ullrich; Ravanat, J. L.

    2016-01-01

    Roč. 50, Suppl 1 (2016), S112-S128 ISSN 1071-5762 Institutional support: RVO:61388963 Keywords : radical enzyme * membrane stress * phospholipid remodeling * DNA damage and repair * biomimetic models * bio-inspired synthetic methodologies Subject RIV: CC - Organic Chemistry Impact factor: 3.188, year: 2016 http://www.tandfonline.com/doi/full/10.1080/10715762.2016.1248961

  4. Towards a Scalable, Biomimetic, Antibacterial Coating

    Science.gov (United States)

    Dickson, Mary Nora

    Corneal afflictions are the second leading cause of blindness worldwide. When a corneal transplant is unavailable or contraindicated, an artificial cornea device is the only chance to save sight. Bacterial or fungal biofilm build up on artificial cornea devices can lead to serious complications including the need for systemic antibiotic treatment and even explantation. As a result, much emphasis has been placed on anti-adhesion chemical coatings and antibiotic leeching coatings. These methods are not long-lasting, and microorganisms can eventually circumvent these measures. Thus, I have developed a surface topographical antimicrobial coating. Various surface structures including rough surfaces, superhydrophobic surfaces, and the natural surfaces of insects' wings and sharks' skin are promising anti-biofilm candidates, however none meet the criteria necessary for implementation on the surface of an artificial cornea device. In this thesis I: 1) developed scalable fabrication protocols for a library of biomimetic nanostructure polymer surfaces 2) assessed the potential these for poly(methyl methacrylate) nanopillars to kill or prevent formation of biofilm by E. coli bacteria and species of Pseudomonas and Staphylococcus bacteria and improved upon a proposed mechanism for the rupture of Gram-negative bacterial cell walls 3) developed a scalable, commercially viable method for producing antibacterial nanopillars on a curved, PMMA artificial cornea device and 4) developed scalable fabrication protocols for implantation of antibacterial nanopatterned surfaces on the surfaces of thermoplastic polyurethane materials, commonly used in catheter tubings. This project constitutes a first step towards fabrication of the first entirely PMMA artificial cornea device. The major finding of this work is that by precisely controlling the topography of a polymer surface at the nano-scale, we can kill adherent bacteria and prevent biofilm formation of certain pathogenic bacteria

  5. a Study of Ultrasonic Wave Propagation Through Parallel Arrays of Immersed Tubes

    Science.gov (United States)

    Cocker, R. P.; Challis, R. E.

    1996-06-01

    Tubular array structures are a very common component in industrial heat exchanging plant and the non-destructive testing of these arrays is essential. Acoustic methods using microphones or ultrasound are attractive but require a thorough understanding of the acoustic properties of tube arrays. This paper details the development and testing of a small-scale physical model of a tube array to verify the predictions of a theoretical model for acoustic propagation through tube arrays developed by Heckl, Mulholland, and Huang [1-5] as a basis for the consideration of small-scale physical models in the development of non-destructive testing procedures for tube arrays. Their model predicts transmission spectra for plane waves incident on an array of tubes arranged in straight rows. Relative transmission is frequency dependent with bands of high and low attenuation caused by resonances within individual tubes and between tubes in the array. As the number of rows in the array increases the relative transmission spectrum becomes more complex, with increasingly well-defined bands of high and low attenuation. Diffraction of acoustic waves with wavelengths less than the tube spacing is predicted and appears as step reductions in the transmission spectrum at frequencies corresponding to integer multiples of the tube spacing. Experiments with the physical model confirm the principle features of the theoretical treatment.

  6. A small-scale, rolled-membrane microfluidic artificial lung designed towards future large area manufacturing.

    Science.gov (United States)

    Thompson, A J; Marks, L H; Goudie, M J; Rojas-Pena, A; Handa, H; Potkay, J A

    2017-03-01

    Artificial lungs have been used in the clinic for multiple decades to supplement patient pulmonary function. Recently, small-scale microfluidic artificial lungs (μAL) have been demonstrated with large surface area to blood volume ratios, biomimetic blood flow paths, and pressure drops compatible with pumpless operation. Initial small-scale microfluidic devices with blood flow rates in the μ l/min to ml/min range have exhibited excellent gas transfer efficiencies; however, current manufacturing techniques may not be suitable for scaling up to human applications. Here, we present a new manufacturing technology for a microfluidic artificial lung in which the structure is assembled via a continuous "rolling" and bonding procedure from a single, patterned layer of polydimethyl siloxane (PDMS). This method is demonstrated in a small-scale four-layer device, but is expected to easily scale to larger area devices. The presented devices have a biomimetic branching blood flow network, 10  μ m tall artificial capillaries, and a 66  μ m thick gas transfer membrane. Gas transfer efficiency in blood was evaluated over a range of blood flow rates (0.1-1.25 ml/min) for two different sweep gases (pure O 2 , atmospheric air). The achieved gas transfer data closely follow predicted theoretical values for oxygenation and CO 2 removal, while pressure drop is marginally higher than predicted. This work is the first step in developing a scalable method for creating large area microfluidic artificial lungs. Although designed for microfluidic artificial lungs, the presented technique is expected to result in the first manufacturing method capable of simply and easily creating large area microfluidic devices from PDMS.

  7. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); Peterson, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0010 (United States); Mosher, D. [Naval Research Laboratory, Pulsed Power Physics Branch, Washington, DC 20375 (United States); Roderick, N.F. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. {bold 77}, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh{endash}Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of {approximately}40 TW and energy of {approximately}325 kJ show little change outside of a {plus_minus}15{percent} shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak {ital K}-shell (lines plus continuum) power of {approximately}8 TW and energy of {approximately}70 kJ show little change with radius. The minimal change in {ital K}-shell yield is in agreement with simple {ital K}-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh{endash}Taylor instability observed in small-wire-number imploding loads. {copyright} {ital 1998 American Institute of Physics.}

  8. Evaluation of a biomimetic 3D substrate based on the Human Elastin-like Polypeptides (HELPs) model system for elastolytic activity detection.

    Science.gov (United States)

    Corich, Lucia; Busetti, Marina; Petix, Vincenzo; Passamonti, Sabina; Bandiera, Antonella

    2017-08-10

    Elastin is a fibrous protein that confers elasticity to tissues such as skin, arteries and lung. It is extensively cross-linked, highly hydrophobic and insoluble. Nevertheless, elastin can be hydrolysed by bacterial proteases in infectious diseases, resulting in more or less severe tissue damage. Thus, development of substrates able to reliably and specifically detect pathogen-secreted elastolytic activity is needed to improve the in vitro evaluation of the injury that bacterial proteases may provoke. In this work, two human biomimetic elastin polypeptides, HELP and HELP1, as well as the matrices derived from HELP, have been probed as substrates for elastolytic activity detection. Thirty strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients were analyzed in parallel with standard substrates, to detect proteolytic and elastolytic activity. Results point to the HELP-based 3D matrix as an interesting biomimetic model of elastin to assess bacterial elastolytic activity in vitro. Moreover, this model substrate enables to further elucidate the mechanism underlying elastin degradation at molecular level, as well as to develop biomimetic material-based devices responsive to external stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Collective mechanical behavior of multilayer colloidal arrays of hollow nanoparticles.

    Science.gov (United States)

    Yin, Jie; Retsch, Markus; Thomas, Edwin L; Boyce, Mary C

    2012-04-03

    The collective mechanical behavior of multilayer colloidal arrays of hollow silica nanoparticles (HSNP) is explored under spherical nanoindentation through a combination of experimental, numerical, and theoretical approaches. The effective indentation modulus E(ind) is found to decrease with an increasing number of layers in a nonlinear manner. The indentation force versus penetration depth behavior for multilayer hollow particle arrays is predicted by an approximate analytical model based on the spring stiffness of the individual particles and the multipoint, multiparticle interactions as well as force transmission between the layers. The model is in good agreement with experiments and with detailed finite element simulations. The ability to tune the effective indentation modulus, E(ind), of the multilayer arrays by manipulating particle geometry and layering is revealed through the model, where E(ind) = (0.725m(-3/2) + 0.275)E(mon) and E(mon) is the monolayer modulus and m is number of layers. E(ind) is seen to plateau with increasing m to E(ind_plateau) = 0.275E(mon) and E(mon) scales with (t/R)(2), t being the particle shell thickness and R being the particle radius. The scaling law governing the nonlinear decrease in indentation modulus with an increase in layer number (E(ind) scaling with m(-3/2)) is found to be similar to that governing the indentation modulus of thin solid films E(ind_solid) on a stiff substrate (where E(ind_solid) scales with h(-1.4) and also decreases until reaching a plateau value) which also decreases with an increase in film thickness h. However, the mechanisms underlying this trend for the colloidal array are clearly different, where discrete particle-to-particle interactions govern the colloidal array behavior in contrast to the substrate constraint on deformation, which governs the thickness dependence of the continuous thin film indentation modulus.

  10. Feasibility of bovine submaxillary mucin (BSM) films as biomimetic coating for polymeric biomaterials

    DEFF Research Database (Denmark)

    Lee, Seunghwan; Madsen, Jan Busk; Pakkanen, Kirsi I.

    2013-01-01

    Feasibility of bovine submaxillary mucin (BSM) films generated via spontaneous adsorption from aqueous solutions onto polydimethylsiloxane (PDMS) and polystyrene (PS) surfaces have been investigated as biomimetic coatings for polymeric biomaterials. Two attributes as biomedical coatings, namely a......-on-disk tribometry, employing compliant PDMS as tribopairs, has shown that BSM coatings generated on PDMS surface via spontaneous adsorption from aqueous solution has effective lubricating properties, but for very limited duration only....

  11. Tubular inverse opal scaffolds for biomimetic vessels

    Science.gov (United States)

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-01

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially

  12. Biomimetic electrochemistry from conducting polymers. A review

    International Nuclear Information System (INIS)

    Otero, T.F.; Martinez, J.G.; Arias-Pardilla, J.

    2012-01-01

    Highlights: ► Composition and properties of conducting polymers change during reactions. ► These properties are being exploited to develop biomimetic reactive and soft devices. ► The state of the art for artificial muscles sensing working conditions was reviewed. ► Smart membranes, drug delivery devices and nervous interfaces were also reviewed. - Abstract: Films of conducting polymers in the presence of electrolytes can be oxidized or reduced by the flow of anodic or cathodic currents. Ions and solvent are exchanged during a reaction for charge and osmotic pressure balance. A reactive conducting polymer contains ions and solvent. Such variation of composition during a reaction is reminiscent of the biological processes in cells. Along changes to the composition of the material during a reaction, there are also changes to other properties, including: volume (electrochemomechanical), colour (electrochromic), stored charge (electrical storage), porosity or permselectivity (electroporosity), stored chemicals, wettability and so on. Most of those properties mimic similar property changes in organs during their functioning. These properties are being exploited to develop biomimetic reactive and soft devices: artificial muscles and polymeric actuators; supercapacitors and all organic batteries; smart membranes; electron-ion transducers; nervous interfaces and artificial synapses, or drug delivery devices. In this review we focus on the state of the art for artificial muscles, smart membranes and electron-ion transducers. The reactive nature of those devices provide them with a unique advantage related to the present days technologies: any changes in the surrounding physical or chemical variable acting on the electrochemical reaction rate will be sensed by the device while working. Working under constant current (driving signal), the evolution of the device potential or the evolution of the consumed electrical energy (sensing signals) senses and quantifies the

  13. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid–phosphorylcholine–chitosan conjugate

    International Nuclear Information System (INIS)

    Wu, Minming; Guo, Kai; Dong, Hongwei; Zeng, Rong; Tu, Mei; Zhao, Jianhao

    2014-01-01

    Novel biomimetic amphiphilic chitosan derivative, deoxycholic acid–phosphorylcholine–chitosan conjugate (DCA–PCCs) was synthesized based on the combination of Atherton–Todd reaction for coupling phosphorylcholine (PC) and carbodiimide coupling reaction for linking deoxycholic acid (DCA) to chitosan. The chemical structure of DCA–PCCs was characterized by 1 H and 31 P nuclear magnetic resonance (NMR). The self-assembly of DCA–PCCs in water was analyzed by fluorescence measurements, dynamic laser light-scattering (DLS), zeta potential and transmission electron microscopy (TEM) technologies. The results confirmed that the amphiphilic DCA–PCCs can self-assemble to form nanosized spherical micelles with biomimetic PC shell. In vitro biological evaluation revealed that DCA–PCCs micelles had low toxicity against NIH/3T3 mouse embryonic fibroblasts as well as good hemocompatibility. Using quercetin as a hydrophobic model drug, drug loading and release study suggested that biomimetic DCA–PCCs micelles could be used as a promising nanocarrier avoiding unfavorable biological response for hydrophobic drug delivery applications. - Highlights: • DCA–PCCs with phosphorylcholine and deoxycholic acid was synthesized. • DCA–PCCs can self-assemble to form spherical micelles in aqueous system. • DCA–PCCs micelles had excellent cytocompatibility and hemocompatibility. • DCA–PCCs micelles loaded with quercetin exhibited a sustained drug release behavior

  14. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid–phosphorylcholine–chitosan conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Minming; Guo, Kai; Dong, Hongwei; Zeng, Rong, E-mail: tzengronga@jnu.edu.cn; Tu, Mei; Zhao, Jianhao

    2014-12-01

    Novel biomimetic amphiphilic chitosan derivative, deoxycholic acid–phosphorylcholine–chitosan conjugate (DCA–PCCs) was synthesized based on the combination of Atherton–Todd reaction for coupling phosphorylcholine (PC) and carbodiimide coupling reaction for linking deoxycholic acid (DCA) to chitosan. The chemical structure of DCA–PCCs was characterized by {sup 1}H and {sup 31}P nuclear magnetic resonance (NMR). The self-assembly of DCA–PCCs in water was analyzed by fluorescence measurements, dynamic laser light-scattering (DLS), zeta potential and transmission electron microscopy (TEM) technologies. The results confirmed that the amphiphilic DCA–PCCs can self-assemble to form nanosized spherical micelles with biomimetic PC shell. In vitro biological evaluation revealed that DCA–PCCs micelles had low toxicity against NIH/3T3 mouse embryonic fibroblasts as well as good hemocompatibility. Using quercetin as a hydrophobic model drug, drug loading and release study suggested that biomimetic DCA–PCCs micelles could be used as a promising nanocarrier avoiding unfavorable biological response for hydrophobic drug delivery applications. - Highlights: • DCA–PCCs with phosphorylcholine and deoxycholic acid was synthesized. • DCA–PCCs can self-assemble to form spherical micelles in aqueous system. • DCA–PCCs micelles had excellent cytocompatibility and hemocompatibility. • DCA–PCCs micelles loaded with quercetin exhibited a sustained drug release behavior.

  15. Microwave irradiation enhances kinetics of the biomimetic process of hydroxyapatite nanocomposites

    International Nuclear Information System (INIS)

    Guha, Avijit; Nayar, Suprabha; Thatoi, H N

    2010-01-01

    In situ synthesized hydroxyapatite-poly(vinyl) alcohol nanocomposite was subjected to microwave irradiation, post synthesis. Interestingly, the aging time of 1 week required for the normal biomimetic process was reduced to 1 h post microwave irradiation, as characterized by x-ray powder diffraction and transmission electron microscopy. The surface topography shows the tendency of tubules to cross-link with the help of microwave energy. The microwave energy seems to provide a directional pull to the polymer chains which could have led to an enhancement of the kinetics of phase formation. (communication)

  16. The Design and Implementation of a Biomimetic Robot Fish

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    2008-11-01

    Full Text Available In this paper, a novel design of a biomimetic robot fish is presented. Based on the propulsion and maneuvering mechanisms of real fishes, a tail mechanical structure with cams and connecting rods for fitting carangiform fish body wave is designed, which provides the main propulsion. Two pectoral fins are mounted, and each pectoral fin can flap separately and rotate freely. Coordinating the movements of the tail and pectoral fins, the robot fish can simulate the movements of fishes in water. In order to obtain the necessary environmental information, several kinds of sensors (video, infrared, temperature, pressure and PH value sensors were mounted. Finally, the realization of the robot fish is presented.

  17. The Design and Implementation of a Biomimetic Robot Fish

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    2008-06-01

    Full Text Available In this paper, a novel design of a biomimetic robot fish is presented. Based on the propulsion and maneuvering mechanisms of real fishes, a tail mechanical structure with cams and connecting rods for fitting carangiform fish body wave is designed, which provides the main propulsion. Two pectoral fins are mounted, and each pectoral fin can flap separately and rotate freely. Coordinating the movements of the tail and pectoral fins, the robot fish can simulate the movements of fishes in water. In order to obtain the necessary environmental information, several kinds of sensors (video, infrared, temperature, pressure and PH value sensors were mounted. Finally, the realization of the robot fish is presented.

  18. Enhanced Neural Cell Adhesion and Neurite Outgrowth on Graphene-Based Biomimetic Substrates

    Directory of Open Access Journals (Sweden)

    Suck Won Hong

    2014-01-01

    Full Text Available Neural cell adhesion and neurite outgrowth were examined on graphene-based biomimetic substrates. The biocompatibility of carbon nanomaterials such as graphene and carbon nanotubes (CNTs, that is, single-walled and multiwalled CNTs, against pheochromocytoma-derived PC-12 neural cells was also evaluated by quantifying metabolic activity (with WST-8 assay, intracellular oxidative stress (with ROS assay, and membrane integrity (with LDH assay. Graphene films were grown by using chemical vapor deposition and were then coated onto glass coverslips by using the scooping method. Graphene sheets were patterned on SiO2/Si substrates by using photolithography and were then covered with serum for a neural cell culture. Both types of CNTs induced significant dose-dependent decreases in the viability of PC-12 cells, whereas graphene exerted adverse effects on the neural cells just at over 62.5 ppm. This result implies that graphene and CNTs, even though they were the same carbon-based nanomaterials, show differential influences on neural cells. Furthermore, graphene-coated or graphene-patterned substrates were shown to substantially enhance the adhesion and neurite outgrowth of PC-12 cells. These results suggest that graphene-based substrates as biomimetic cues have good biocompatibility as well as a unique surface property that can enhance the neural cells, which would open up enormous opportunities in neural regeneration and nanomedicine.

  19. Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model.

    Science.gov (United States)

    Zhang, Wei; Chen, Jialin; Backman, Ludvig J; Malm, Adam D; Danielson, Patrik

    2017-03-01

    The optimal functionality of the native corneal stroma is mainly dependent on the well-ordered arrangement of extracellular matrix (ECM) and the pressurized structure. In order to develop an in vitro corneal model, it is crucial to mimic the in vivo microenvironment of the cornea. In this study, the influence of surface topography and mechanical strain on keratocyte phenotype and ECM formation within a biomimetic 3D corneal model is studied. By modifying the surface topography of materials, it is found that patterned silk fibroin film with 600 grooves mm -1 optimally supports cell alignment and ECM arrangement. Furthermore, treatment with 3% dome-shaped mechanical strain, which resembles the shape and mechanics of native cornea, significantly enhances the expression of keratocyte markers as compared to flat-shaped strain. Accordingly, a biomimetic 3D corneal model, in the form of a collagen-modified, silk fibroin-patterned construct subjected to 3% dome-shaped strain, is created. Compared to traditional 2D cultures, it supports a significantly higher expression of keratocyte and ECM markers, and in conclusion better maintains keratocyte phenotype, alignment, and fusiform cell shape. Therefore, the novel biomimetic 3D corneal model developed in this study serves as a useful in vitro 3D culture model to improve current 2D cultures for corneal studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Influence of the modulated two-step synthesis of biogenic hydroxyapatite on biomimetic products' surface

    Science.gov (United States)

    Miculescu, Florin; Mocanu, Aura Cătălina; Stan, George E.; Miculescu, Marian; Maidaniuc, Andreea; Cîmpean, Anisoara; Mitran, Valentina; Voicu, Stefan Ioan; Machedon-Pisu, Teodor; Ciocan, Lucian Toma

    2018-04-01

    Processing calcium-rich natural resources, such as marble and mussel seashells, into biomimetic products could constitute an environmentally-friendly and economically sustainable alternative given their geographical widespread. Hitherto, their value for biomedicine was demonstrated only for seashells, with the technological exploitation approaches still facing challenges with respect to the identification of generic synthesis parameters capable to allow the reproducible and designed synthesis of calcium phosphate at an industrial-ready level. In this study was targeted the optimization of Rathje synthesis method for the fabrication of biogenic calcium phosphates, by conveniently adjusting the chemical composition of employed reagents. It was shown that post-synthesis heat-treatment of compacted powders is the key step for inducing structural transformations suitable to attain biomimetic products for reconstructive orthopedic applications. The sintered materials have been multi-parametricallyevaluated from morpho-compositional, structural, wettability, mechanical and cytocompatibility points of view and the results have been cross-examined and discussed. Convenient and efficient preparation routes to produce biogenic hydroxyapatite have been identified. The functional performances of the as-prepared biogenic ceramics endorse their use as a solid and inexpensive alternative source material for the fabrication of various bone regenerative products and implant coatings.

  1. Fabrication of biomimetic resorption lacunae-like structure on titanium surface and its osteoblast responses

    Science.gov (United States)

    Huo, Fangjun; Guo, Weihua; Wu, Hao; Wang, Yueting; He, Gang; Xie, Li; Tian, Weidong

    2018-04-01

    Biomimetic specific surface structure could improve biological behaviors of specific cells and eventual tissue integration. Featuring titanium surface with structures resembling bone resorption lacunae (RL) can be a promising approach to improve the osteoblast responses and osseointegration of implants. As a most common used dental implant surface, sandblasting and acid etching (SLA) surface has micro-sized structures with dimensions similar to RL, but great differences exist when it comes to shape and contour. In this work, by anodizing titanium substrate in a novel HCOONa/CH3COONa electrolyte, RL-like crater structures were fabricated with highly similar size, shape and contour. Compared with SLA, it was much more similar to RL structure in shape and contour. Furthermore, through subsequent alkali-heat treatment, nano-sized structures that overlaid the whole surface were obtained, which further mimic undercuts features inside the RL. The as-prepared surface was consisted of crystalline titania and exhibited super-hydrophilicity with good stability. In vitro evaluation results showed that the surface could significantly improve adhesion, proliferation and differentiation of MG63 cells in comparison with SLA. This new method may be a promising candidate for biomimetic modification of titanium implant to promote osseointegration.

  2. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    Science.gov (United States)

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  3. Synthesis of Ag{sub 2}S nanorods by biomimetic method in the lysozyme matrix

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dezhi, E-mail: dezhiqin@163.com; Zhang, Li; He, Guoxu; Zhang, Qiuxia

    2013-09-01

    Graphical abstract: - Highlights: • Firstly, Ag{sub 2}S nanorods were synthesized by biomimetic method in the lysozyme solutions. • The study of the interaction between Ag{sup +} and the lysozyme. • Discussion of possible formation mechanism of Ag{sub 2}S nanorods. • The synthesis process of lyso-conjugated Ag{sub 2}S nanocrystals is facile, effective and environment friendly. - Abstract: Ag{sub 2}S nanorods were successfully synthesized by biomimetic route in the lysozyme solution at physiological temperature and atmospheric pressure. The transmission electron microscopy (TEM) images revealed that the prepared nanorods are uniform and monodisperse with homogeneous size about 50 nm in diameter and 150 nm in length. The optical property of Ag{sub 2}S nanocrystals was studied by the ultraviolet–visible (UV–vis) and photoluminescence (PL) spectroscopy, the results show that the products exhibit well-defined emission at 471 nm and 496 nm excited by 292 nm. The interaction of Ag{sup +}/Ag{sub 2}S with the lysozyme was investigated through Fourier transform infrared (FT-IR) spectroscopy, which shows that the cooperation effect of the lysozyme and Ag{sup +} could be responsible for the formation of as obtained Ag{sub 2}S nanorods.

  4. Characterization of a Biomimetic Mesophase Composed of Nonionic Surfactants and an Aqueous Solvent.

    Science.gov (United States)

    Adrien, V; Rayan, G; Reffay, M; Porcar, L; Maldonado, A; Ducruix, A; Urbach, W; Taulier, N

    2016-10-11

    We have investigated the physical and biomimetic properties of a sponge (L 3 ) phase composed of pentaethylene glycol monododecyl ether (C 12 E 5 ), a nonionic surfactant, an aqueous solvent, and a cosurfactant. The following cosurfactants, commonly used for solubilizing membrane proteins, were incorporated: n-octyl-β-d-glucopyranoside (β-OG), n-dodecyl-β-d-maltopyranoside (DDM), 4-cyclohexyl-1-butyl-β-d-maltoside (CYMAL-4), and 5-cyclohexyl-1-pentyl-β-d-maltoside (CYMAL-5). Partial phase diagrams of these systems were created. The L 3 phase was characterized using crossed polarizers, diffusion of a fluorescent probe by fluorescence recovery after pattern photobleaching (FRAPP), and freeze fracture electron microscopy (FFEM). By varying the hydration of the phase, we were able to tune the distance between adjacent bilayers. The characteristic distance (d b ) of the phase was obtained from small angle scattering (SAXS/SANS) as well as from FFEM, which yielded complementary d b values. These d b values were neither affected by the nature of the cosurfactant nor by the addition of membrane proteins. These findings illustrate that a biomimetic surfactant sponge phase can be created in the presence of several common membrane protein-solubilizing detergents, thus making it a versatile medium for membrane protein studies.

  5. Ionic Colloidal Molding as a Biomimetic Scaffolding Strategy for Uniform Bone Tissue Regeneration.

    Science.gov (United States)

    Zhang, Jian; Jia, Jinpeng; Kim, Jimin P; Shen, Hong; Yang, Fei; Zhang, Qiang; Xu, Meng; Bi, Wenzhi; Wang, Xing; Yang, Jian; Wu, Decheng

    2017-05-01

    Inspired by the highly ordered nanostructure of bone, nanodopant composite biomaterials are gaining special attention for their ability to guide bone tissue regeneration through structural and biological cues. However, bone malformation in orthopedic surgery is a lingering issue, partly due to the high surface energy of traditional nanoparticles contributing to aggregation and inhomogeneity. Recently, carboxyl-functionalized synthetic polymers have been shown to mimic the carboxyl-rich surface motifs of non-collagenous proteins in stabilizing hydroxyapatite and directing intrafibrillar mineralization in-vitro. Based on this biomimetic approach, it is herein demonstrated that carboxyl functionalization of poly(lactic-co-glycolic acid) can achieve great material homogeneity in nanocomposites. This ionic colloidal molding method stabilizes hydroxyapatite precursors to confer even nanodopant packing, improving therapeutic outcomes in bone repair by remarkably improving mechanical properties of nanocomposites and optimizing controlled drug release, resulting in better cell in-growth and osteogenic differentiation. Lastly, better controlled biomaterial degradation significantly improved osteointegration, translating to highly regular bone formation with minimal fibrous tissue and increased bone density in rabbit radial defect models. Ionic colloidal molding is a simple yet effective approach of achieving materials homogeneity and modulating crystal nucleation, serving as an excellent biomimetic scaffolding strategy to rebuild natural bone integrity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Alternate dipping preparation of biomimetic apatite layers in the presence of carbonate ions

    International Nuclear Information System (INIS)

    Chatelain, Grégory; Bourgeois, Damien; Meyer, Daniel; Ravaux, Johann; Averseng, Olivier; Vidaud, Claude

    2014-01-01

    The classical simulated body fluids method cannot be employed to prepare biomimetic apatites encompassing metallic ions that lead to very stable phosphates. This is the case for heavy metals such as uranium, whose presence in bone mineral after contamination deserves toxicological study. We have demonstrated that existing methods, based on alternate dipping into calcium and phosphate ions solutions, can be adapted to achieve this aim. We have also especially studied the impact of the presence of carbonate ions in the medium as these are necessary to avoid hydrolysis of the contaminating metallic cations. Both the apatite–collagen complex method and a standard chemical (STD) method employing only mineral solutions lead to biomimetic apatites when calcium and carbonate ions are introduced simultaneously. The obtained materials were fully characterized and we established that the STD method tolerates the presence of carbonate ions much better, and this leads to homogeneous samples. Emphasis was set on the repeatability of the method to ensure the relevancy of further work performed on series of samples. Finally, osteoblasts cultured on these samples also proved a similar yield and standard-deviation in their adenosine triphosphate content when compared to commercially available substrates designed to study of such cell cultures. (paper)

  7. Tests Of Array Of Flush Pressure Sensors

    Science.gov (United States)

    Larson, Larry J.; Moes, Timothy R.; Siemers, Paul M., III

    1992-01-01

    Report describes tests of array of pressure sensors connected to small orifices flush with surface of 1/7-scale model of F-14 airplane in wind tunnel. Part of effort to determine whether pressure parameters consisting of various sums, differences, and ratios of measured pressures used to compute accurately free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and mach number. Such arrays of sensors and associated processing circuitry integrated into advanced aircraft as parts of flight-monitoring and -controlling systems.

  8. The Carbonation of Wollastonite: A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Fulvio Di Lorenzo

    2018-05-01

    Full Text Available One of the most promising strategies for the safe and permanent disposal of anthropogenic CO2 is its conversion into carbonate minerals via the carbonation of calcium and magnesium silicates. However, the mechanism of such a reaction is not well constrained, and its slow kinetics is a handicap for the implementation of silicate mineral carbonation as an effective method for CO2 capture and storage (CCS. Here, we studied the different steps of wollastonite (CaSiO3 carbonation (silicate dissolution → carbonate precipitation as a model CCS system for the screening of natural and biomimetic catalysts for this reaction. Tested catalysts included carbonic anhydrase (CA, a natural enzyme that catalyzes the reversible hydration of CO2(aq, and biomimetic metal-organic frameworks (MOFs. Our results show that dissolution is the rate-limiting step for wollastonite carbonation. The overall reaction progresses anisotropically along different [hkl] directions via a pseudomorphic interface-coupled dissolution–precipitation mechanism, leading to partial passivation via secondary surface precipitation of amorphous silica and calcite, which in both cases is anisotropic (i.e., (hkl-specific. CA accelerates the final carbonate precipitation step but hinders the overall carbonation of wollastonite. Remarkably, one of the tested Zr-based MOFs accelerates the dissolution of the silicate. The use of MOFs for enhanced silicate dissolution alone or in combination with other natural or biomimetic catalysts for accelerated carbonation could represent a potentially effective strategy for enhanced mineral CCS.

  9. Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays

    Science.gov (United States)

    Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank

    2013-09-01

    Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.

  10. Quasi-optical antenna-mixer-array design for terahertz frequencies

    Science.gov (United States)

    Guo, Yong; Potter, Kent A.; Rutledge, David B.

    1992-01-01

    A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.

  11. Inkjet printing for direct micropatterning of a superhydrophobic surface: Toward biomimetic fog harvesting surfaces

    KAUST Repository

    Zhang, Lianbin

    2015-01-01

    The preparation of biomimetic superhydrophobic surfaces with hydrophilic micro-sized patterns is highly desirable, but a one-step, mask-free method to produce such surfaces has not previously been reported. We have developed a direct method to produce superhydrophilic micropatterns on superhydrophobic surfaces based on inkjet printing technology. This work was inspired by the efficient fog-harvesting behavior of Stenocara beetles in the Namib Desert. A mussel-inspired ink consisting of an optimized solution of dopamine was applied directly by inkjet printing to superhydrophobic surfaces. Stable Wenzel\\'s microdroplets of the dopamine solution with well-defined micropatterns were obtained on these surfaces. Superhydrophilic micropatterns with well-controlled dimensions were then readily achieved on the superhydrophobic surfaces by the formation of polydopamine via in situ polymerization. The micropatterned superhydrophobic surfaces prepared by this inkjet printing method showed enhanced water collection efficiency compared with uniform superhydrophilic and superhydrophobic surfaces. This method can be used for the facile large-scale patterning of superhydrophobic surfaces with high precision and superior pattern stability and is therefore a key step toward patterning superhydrophobic surfaces for practical applications. This journal is

  12. Tuning 3D topography on biomimetic surface for efficient self-cleaning and microfluidic manipulation

    International Nuclear Information System (INIS)

    Guan, Wei-Sheng; Huang, Han-Xiong; Chen, An-Fu

    2015-01-01

    Currently, micro-/nanotopography on polymeric replica is generally limited to 2D when a mechanical demolding approach is applied. In this work, one-step replication of bio-inspired 3D topography is achieved using microinjection compression molding with novel dual-layer molds. Using a proposed flexible template, the replica topography and wettability are highly tunable during molding. Moreover, dual-scale topography on the mold is developed by coating the micropatterned insert with submicron silica particles. Contact angle and roll-off angle measurements indicate the lotus leaf, rose petal and rice leaf effects on biomimetic surfaces. Among the three kinds of surfaces, the petal-inspired surface possesses the superior performance in self-cleaning submicron contaminants and mechanical robustness, which is highly correlated to the low roughness-induced adhesive superhydrophobicity and the absence of fragile submicron-/nanostructure, respectively. Furthermore, a multi-layer mold structure is proposed for fabricating the open microfluidic devices. The embedment of the hydrophilic and hydrophobic silica particles in the microstructured open channel and the hydrophobic silica particles in the background area during replication renders the wettability contrast sharp, realizing the self-driven flow of microfluid confined within the open microchannel. (paper)

  13. Tuning 3D topography on biomimetic surface for efficient self-cleaning and microfluidic manipulation

    Science.gov (United States)

    Guan, Wei-Sheng; Huang, Han-Xiong; Chen, An-Fu

    2015-03-01

    Currently, micro-/nanotopography on polymeric replica is generally limited to 2D when a mechanical demolding approach is applied. In this work, one-step replication of bio-inspired 3D topography is achieved using microinjection compression molding with novel dual-layer molds. Using a proposed flexible template, the replica topography and wettability are highly tunable during molding. Moreover, dual-scale topography on the mold is developed by coating the micropatterned insert with submicron silica particles. Contact angle and roll-off angle measurements indicate the lotus leaf, rose petal and rice leaf effects on biomimetic surfaces. Among the three kinds of surfaces, the petal-inspired surface possesses the superior performance in self-cleaning submicron contaminants and mechanical robustness, which is highly correlated to the low roughness-induced adhesive superhydrophobicity and the absence of fragile submicron-/nanostructure, respectively. Furthermore, a multi-layer mold structure is proposed for fabricating the open microfluidic devices. The embedment of the hydrophilic and hydrophobic silica particles in the microstructured open channel and the hydrophobic silica particles in the background area during replication renders the wettability contrast sharp, realizing the self-driven flow of microfluid confined within the open microchannel.

  14. Theoretical models of Kapton heating in solar array geometries

    Science.gov (United States)

    Morton, Thomas L.

    1992-01-01

    In an effort to understand pyrolysis of Kapton in solar arrays, a computational heat transfer program was developed. This model allows for the different materials and widely divergent length scales of the problem. The present status of the calculation indicates that thin copper traces surrounded by Kapton and carrying large currents can show large temperature increases, but the other configurations seen on solar arrays have adequate heat sinks to prevent substantial heating of the Kapton. Electron currents from the ambient plasma can also contribute to heating of thin traces. Since Kapton is stable at temperatures as high as 600 C, this indicates that it should be suitable for solar array applications. There are indications that the adhesive sued in solar arrays may be a strong contributor to the pyrolysis problem seen in solar array vacuum chamber tests.

  15. Flat dielectric metasurface lens array for three dimensional integral imaging

    Science.gov (United States)

    Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong

    2018-05-01

    In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.

  16. UHE Cosmic Ray Observations Using the Cygnus Water - Array

    Science.gov (United States)

    Dion, Cynthia L.

    1995-01-01

    The CYGNUS water-Cerenkov array, consisting of five surface water-Cerenkov detectors, was built in the CYGNUS extensive air shower array at Los Alamos, New Mexico (latitude 36^circ N, longitude 107^circ W, altitude 2310 meters) to search for point sources of ultra-high energy particles (>1014 eV per particle) with the CYGNUS extensive air shower array. The water-Cerenkov detectors are used to improve the angular resolution of the extensive air shower array. This experiment searches for point sources of UHE gamma-radiation that may be of galactic or extra-galactic origin. The data set from December 1991 to January 1994 consists of data from both the water-Cerenkov array and the CYGNUS extensive air shower array. These data are combined, and the angular resolution of this combined data set is measured to be 0.34^circ+0.03 ^circ-0.04^circ. The measurement is made by observing the cosmic-ray shadowing of the Sun and the Moon. Using a subset of these data, three potential sources of UHE emission are studied: the Crab Pulsar, and the active galactic nuclei Markarian 421 and Markarian 501. A search is conducted for continuous emission from these three sources, and emission over shorter time scales. This experiment is particularly sensitive to emission over these shorter time scales. There is no evidence of UHE emission from these three sources over any time scales studied, and upper bounds to the flux of gamma radiation are determined. The flux upper limit for continuous emission from the Crab Pulsar is found to be 1.2times10^ {-13}/rm cm^2/s above 70 TeV. The flux upper limit for continuous emission from Markarian 421 is found to be 1.3times10^ {-13}/rm cm^2/s above 50 TeV. The flux upper limit for continuous emission from Markarian 501 is found to be 3.8times10^ {-13}/rm cm^2/s above 50 TeV.

  17. Facile one-pot synthesis of porphyrin based porous polymer networks (PPNs) as biomimetic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zou, LF; Feng, DW; Liu, TF; Chen, YP; Fordham, S; Yuan, S; Tian, J; Zhou, HC

    2015-01-01

    Stable porphyrin based porous polymer networks, PPN-23 and PPN-24, have been synthesized through a facile one-pot approach by the aromatic substitution reactions of pyrrole and aldehydes. PPN-24(Fe) shows high catalytic efficiency as a biomimetic catalyst in the oxidation reaction of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in the presence of H2O2.

  18. The Advanced Gamma-ray Imaging System (AGIS): A Nanosecond Time Scale Stereoscopic Array Trigger System.

    Science.gov (United States)

    Krennrich, Frank; Buckley, J.; Byrum, K.; Dawson, J.; Drake, G.; Horan, D.; Krawzcynski, H.; Schroedter, M.

    2008-04-01

    Imaging atmospheric Cherenkov telescope arrays (VERITAS, HESS) have shown unprecedented background suppression capabilities for reducing cosmic-ray induced air showers, muons and night sky background fluctuations. Next-generation arrays with on the order of 100 telescopes offer larger collection areas, provide the possibility to see the air shower from more view points on the ground, have the potential to improve the sensitivity and give additional background suppression. Here we discuss the design of a fast array trigger system that has the potential to perform a real time image analysis allowing substantially improved background rate suppression at the trigger level.

  19. Vrancea seismic source analysis using a small-aperture array

    International Nuclear Information System (INIS)

    Popescu, E.; Popa, M.; Radulian, M.; Placinta, A.O.

    2005-01-01

    A small-aperture seismic array (BURAR) was installed in 1999 in the northern part of the Romanian territory (Bucovina area). Since then, the array has been in operation under a joint cooperation programme between Romania and USA. The array consists of 10 stations installed in boreholes (nine short period instruments and one broadband instrument) with enough high sensitivity to properly detect earthquakes generated in Vrancea subcrustal domain (at about 250 km epicentral distance) with magnitude M w below 3. Our main purpose is to investigate and calibrate the source parameters of the Vrancea intermediate-depth earthquakes using specific techniques provided by the BURAR array data. Forty earthquakes with magnitudes between 2.9 and 6.0 were selected, including the recent events of September 27, 2004 (45.70 angle N, 26.45 angle E, h = 166 km, M w = 4.7), October 27, 2004 (45.84 angle N, 26.63 angle E, h = 105 km, M w = 6.0) and May 14, 2005 (45.66 angle N, 26.52 angle E, h = 146 km, M w = 5.1), which are the best ever recorded earthquakes on the Romanian territory: Empirical Green's function deconvolution and spectral ratio methods are applied for pairs of collocated events with similar focal mechanism. Stability tests are performed for the retrieved source time function using the array elements. Empirical scaling and calibration relationships are also determined. Our study shows the capability of the BURAR array to determine the source parameters of the Vrancea intermediate-depth earthquakes as a stand alone station and proves that the recordings of this array alone provides reliable and useful tools to efficiently constrain the source parameters and consequently source scaling properties. (authors)

  20. Renewable Molecular Flasks with NADH Models: Combination of Light-Driven Proton Reduction and Biomimetic Hydrogenation of Benzoxazinones.

    Science.gov (United States)

    Zhao, Liang; Wei, Jianwei; Lu, Junhua; He, Cheng; Duan, Chunying

    2017-07-17

    Using small molecules with defined pockets to catalyze chemical transformations resulted in attractive catalytic syntheses that echo the remarkable properties of enzymes. By modulating the active site of a nicotinamide adenine dinucleotide (NADH) model in a redox-active molecular flask, we combined biomimetic hydrogenation with in situ regeneration of the active site in a one-pot transformation using light as a clean energy source. This molecular flask facilitates the encapsulation of benzoxazinones for biomimetic hydrogenation of the substrates within the inner space of the flask using the active sites of the NADH models. The redox-active metal centers provide an active hydrogen source by light-driven proton reduction outside the pocket, allowing the in situ regeneration of the NADH models under irradiation. This new synthetic platform, which offers control over the location of the redox events, provides a regenerating system that exhibits high selectivity and efficiency and is extendable to benzoxazinone and quinoxalinone systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Multi-Scale Modelling of Deformation and Fracture in a Biomimetic Apatite-Protein Composite: Molecular-Scale Processes Lead to Resilience at the μm-Scale.

    Directory of Open Access Journals (Sweden)

    Dirk Zahn

    Full Text Available Fracture mechanisms of an enamel-like hydroxyapatite-collagen composite model are elaborated by means of molecular and coarse-grained dynamics simulation. Using fully atomistic models, we uncover molecular-scale plastic deformation and fracture processes initiated at the organic-inorganic interface. Furthermore, coarse-grained models are developed to investigate fracture patterns at the μm-scale. At the meso-scale, micro-fractures are shown to reduce local stress and thus prevent material failure after loading beyond the elastic limit. On the basis of our multi-scale simulation approach, we provide a molecular scale rationalization of this phenomenon, which seems key to the resilience of hierarchical biominerals, including teeth and bone.

  2. Biomimetic materials for controlling bone cell responses.

    Science.gov (United States)

    Drevelle, Olivier; Faucheux, Nathalie

    2013-01-01

    Bone defects that cannot "heal spontaneously during life" will become an ever greater health problem as populations age. Harvesting autografts has several drawbacks, such as pain and morbidity at both donor and acceptor sites, the limited quantity of material available, and frequently its inappropriate shape. Researchers have therefore developed alternative strategies that involve biomaterials to fill bone defects. These biomaterials must be biocompatible and interact with the surrounding bone tissue to allow their colonization by bone cells and blood vessels. The latest generation biomaterials are not inert; they control cell responses like adhesion, proliferation and differentiation. These biomaterials are called biomimetic materials. This review focuses on the development of third generation materials. We first briefly describe the bone tissue with its cells and matrix, and then how bone cells interact with the extracellular matrix. The next section covers the materials currently used to repair bone defects. Finally, we describe the strategies employed to modify the surface of materials, such as coating with hydroxyapatite and grafting biomolecules.

  3. Biomimetics for architecture & design nature, analogies, technology

    CERN Document Server

    Pohl, Göran

    2015-01-01

    This book provides the readers with a timely guide to the application of biomimetic principles in architecture and engineering design. As a result of a combined effort by two internationally recognized authorities, the biologist Werner Nachtigall and the architect Göran Pohl, the book describes the principles which can be used to compare nature and technology, and at the same time it presents detailed explanations and examples showing how biology can be used as a source of inspiration and “translated” in building and architectural solutions (biomimicry). Even though nature cannot be directly copied, the living world can provide architects and engineers with a wealth of analogues and inspirations for their own creative designs. But how can analysis of natural entities give rise to advanced and sustainable design? By reporting on the latest bionic design methods and using extensive artwork, the book guides readers through the field of nature-inspired architecture, offering an extraordinary resource for pro...

  4. bicep2/ KECK ARRAY . IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ade, P.A.R.; Aikin, R.W.; Barkats, D.; Benton, S.J.; Bischoff, C.A.; Bock, J.J.; Bradford, K.J.; Brevik, J.A.; Buder, I.; Bullock, E.; Dowell, C.D.; Duband, L.; Filippini, J.P.; Fliescher, S.; Golwala, S.R.; Halpern, M.; Hasselfield, M.; Hildebrandt, S.R.; Hilton, G.C.; Hui, H.; Irwin, K.D.

    2015-06-18

    bicep2/KECK ARRAY. IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS P. A. R. Ade1, R. W. Aikin2, D. Barkats3, S. J. Benton4, C. A. Bischoff5, J. J. Bock2,6, K. J. Bradford5, J. A. Brevik2, I. Buder5, E. Bullock7Show full author list Published 2015 June 18 • © 2015. The American Astronomical Society. All rights reserved. The Astrophysical Journal, Volume 806, Number 2 Article PDF Figures Tables References Citations 273 Total downloads Cited by 6 articles Turn on MathJax Share this article Get permission to re-use this article Article information Abstract bicep2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array share a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.

  5. Controllable dielectric and electrical performance of polymer composites with novel core/shell-structured conductive particles through biomimetic method

    International Nuclear Information System (INIS)

    Yang, Dan; Tian, Ming; Wang, Wencai; Li, Dongdong; Li, Runyuan; Liu, Haoliang; Zhang, Liqun

    2013-01-01

    Highlights: ► Conductive core/shell-structured particles were synthesized by biomimetic method. ► These particles with silica/poly(dopamine)/silver core and poly(dopamine) shell. ► Dielectric composites were prepared with resulted particles and silicone elastomer. ► The dielectric properties of the composites can be controlled by shell thickness. ► This biomimetic method is simple, nontoxic, efficient and easy to control. - Abstract: Novel silica/poly(dopamine)/silver (from inner to outer) (denoted as SiO 2 /PDA/Ag) conductive micro-particles were first synthesized by biomimetic poly(dopamine) coating. These micro-particles were then coated with a poly(dopamine) layer to form core/shell-structured particles, with silica/poly(dopamine)/silver core and poly(dopamine) shell (denoted as SiO 2 /PDA/Ag/PDA). This multilayer core/shell micro-particles were confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscope. Polymer composites were then prepared by mechanical blending of poly(dimethyl siloxane) and the core/shell-structured particles. It was found that the silver layer and the poly(dopamine) shell had good adhesion with substrate and they kept intact even under violent shearing stress during mechanical mixing. The effect of the thickness of outermost poly(dopamine) shell as well as the loading amount of this filler on the dielectric and electrical properties of the composites was further studied. The results showed that the dielectric constant, dielectric loss, and conductivity of the composites decreased with increasing shell thickness (10–53 nm) at the same loading level. And the maximal dielectric constant of composites was achieved in the composites filled with SiO 2 /PDA/Ag/PDA (with 10–15 nm PDA shell) particles, which was much larger than that of the composite filled with SiO 2 /PDA/Ag particles without insulative PDA shell. At the same time, the composites can change

  6. Hydrogen Epoch of Reinozation Array (HERA) Calibrated FFT Correlator Simulation

    Science.gov (United States)

    Salazar, Jeffrey David; Parsons, Aaron

    2018-01-01

    The Hydrogen Epoch of Reionization Array (HERA) project is an astronomical radio interferometer array with a redundant baseline configuration. Interferometer arrays are being used widely in radio astronomy because they have a variety of advantages over single antenna systems. For example, they produce images (visibilities) closely matching that of a large antenna (such as the Arecibo observatory), while both the hardware and maintenance costs are significantly lower. However, this method has some complications; one being the computational cost of correlating data from all of the antennas. A correlator is an electronic device that cross-correlates the data between the individual antennas; these are what radio astronomers call visibilities. HERA, being in its early stages, utilizes a traditional correlator system. The correlator cost scales as N2, where N is the number of antennas in the array. The purpose of a redundant baseline configuration array setup is for the use of a more efficient Fast Fourier Transform (FFT) correlator. FFT correlators scale as Nlog2N. The data acquired from this sort of setup, however, inherits geometric delay and uncalibrated antenna gains. This particular project simulates the process of calibrating signals from astronomical sources. Each signal “received” by an antenna in the simulation is given random antenna gain and geometric delay. The “linsolve” Python module was used to solve for the unknown variables in the simulation (complex gains and delays), which then gave a value for the true visibilities. This first version of the simulation only mimics a one dimensional redundant telescope array detecting a small amount of sources located in the volume above the antenna plane. Future versions, using GPUs, will handle a two dimensional redundant array of telescopes detecting a large amount of sources in the volume above the array.

  7. Obtaining hydroxyapatite coatings on titanium by the biomimetic method

    International Nuclear Information System (INIS)

    Paz, A.; Martin, Y.; Pazos, L. M.; Parodi, M. B.; Ybarra, G. O.; Gonzalez, J. E.

    2011-01-01

    In this work, a study about the deposition of hydroxyapatite on a titanium substrate employing the biomimetic method is presented. A solution with high content of calcium and phosphorus (SCS) was used. In addition, activation of titanium with hydrogen peroxide and hydrochloric acid and a subsequent heat treatment was performed. The characterization of materials used and the coating obtained was carried out by Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). As a result of the activation processes a hydrated titanium oxide was formed. On the active surface, a coating of hydroxyapatite was obtained after a period of 24 h, which has a thickness of about 2-4 μm. (Author) 21 refs.

  8. Micromotor-Based Biomimetic Carbon Dioxide Sequestration: Towards Mobile Microscrubbers.

    Science.gov (United States)

    Uygun, Murat; Singh, Virendra V; Kaufmann, Kevin; Uygun, Deniz A; de Oliveira, Severina D S; Wang, Joseph

    2015-10-26

    We describe a mobile CO2 scrubbing platform that offers a greatly accelerated biomimetic sequestration based on a self-propelled carbonic anhydrase (CA) functionalized micromotor. The CO2 hydration capability of CA is coupled with the rapid movement of catalytic micromotors, and along with the corresponding fluid dynamics, results in a highly efficient mobile CO2 scrubbing microsystem. The continuous movement of CA and enhanced mass transport of the CO2 substrate lead to significant improvements in the sequestration efficiency and speed over stationary immobilized or free CA platforms. This system is a promising approach to rapid and enhanced CO2 sequestration platforms for addressing growing concerns over the buildup of greenhouse gas. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fault Analysis in Solar Photovoltaic Arrays

    Science.gov (United States)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  10. Hydroxyapatite coating on stainless steel by biomimetic method

    International Nuclear Information System (INIS)

    Dias, V.M.; Maia Filho, A.L.M.; Silva, G.; Sousa, E. de; Cardoso, K.R.

    2010-01-01

    Austenitic stainless steels are widely used in implants due to their high mechanical strength and corrosion, however, are not able to connect to bone tissue and were classified as bioinert. The calcium phosphate ceramics such as hydroxyapatite (HA) are bioactive materials and create strong chemical bonds with bone tissue, but its brittleness and low fracture toughness render its use in conditions of high mechanical stress. The coating of steel with the bioactive ceramics such as HA, combines the properties of interest of both materials, accelerating bone formation around the implant. In this study, austenitic stainless steel samples were coated with apatite using the biomimetic method. The effect of three different surface conditions of steel and the immersion time in the SBF solution on the coating was evaluated. The samples were characterized by SEM, EDS and X-ray diffraction. (author)

  11. Biomimetic Nanosponges for Treating Antibody-Mediated Autoimmune Diseases.

    Science.gov (United States)

    Jiang, Yao; Fang, Ronnie H; Zhang, Liangfang

    2018-04-18

    Autoimmune diseases are characterized by overactive immunity, where the body's defense system launches an attack against itself. If left unchecked, this can result in the destruction of healthy tissue and significantly affect patient well-being. In the case of type II autoimmune hypersensitivities, autoreactive antibodies attack the host's own cells or extracellular matrix. Current clinical treatment modalities for managing this class of disease are generally nonspecific and face considerable limitations. In this Topical Review, we cover emerging therapeutic strategies, with an emphasis on novel nanomedicine platforms. Specifically, the use of biomimetic cell membrane-coated nanosponges that are capable of specifically binding and neutralizing pathological antibodies will be explored. There is significant untapped potential in the application of nanotechnology for the treatment of autoimmune diseases, and continued development along this line may help to eventually change the clinical landscape.

  12. Transport of Carbon Dioxide through a Biomimetic Membrane

    Directory of Open Access Journals (Sweden)

    Efstathios Matsaridis

    2011-01-01

    Full Text Available Biomimetic membranes (BMM based on polymer filters impregnated with lipids or their analogues are widely applied in numerous areas of physics, biology, and medicine. In this paper we report the design and testing of an electrochemical system, which allows the investigation of CO2 transport through natural membranes such as alveoli barrier membrane system and also can be applied for solid-state measurements. The experimental setup comprises a specially designed two-compartment cell with BMM connected with an electrochemical workstation placed in a Faraday cage, two PH meters, and a nondispersive infrared gas analyzer. We prove, experimentally, that the CO2 transport through the natural membranes under different conditions depends on pH and displays a similar behavior as natural membranes. The influence of different drugs on the CO2 transport process through such membranes is discussed.

  13. Precision Measurements of Wind Turbine Noise using a Large Aperture Microphone Array

    DEFF Research Database (Denmark)

    Bradley, Stuart; Mikkelsen, Torben Krogh; Hünerbein, Sabine Von

    2016-01-01

    Experiments are described with a large microphone array (40 m scale) recording wind turbine noise. The array comprised 42 purpose-designed low-noise microphones simultaneously sampled at 20 kHz. Very high quality, fast, meteorological profile data was available from nearby 80 m masts and from the...

  14. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Gabriela, E-mail: gciobanu03@yahoo.co.uk [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Prof. dr. docent Dimitrie Mangeron Rd., no. 63, zip: 700050, Iasi (Romania); Ciobanu, Octavian [“Grigore T. Popa” University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Universitatii Str., no. 16, zip: 700115, Iasi (Romania)

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D{sub 3}, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. - Highlights: ► Hydroxyapatite was grown on Ti using a modified supersaturated calcification solution (M-SCS). ► Vitamins (A and D3) and collagen in M-SCS have a significant effect on apatite precipitation. ► M-SCS stimulates a biomimetic apatite deposition with 0.5–1 μm thickness in a short time. ► Hydroxyapatite crystallites have thin plate morphologies and size below 1 μm.

  15. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces

    International Nuclear Information System (INIS)

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-01-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D 3 , and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. - Highlights: ► Hydroxyapatite was grown on Ti using a modified supersaturated calcification solution (M-SCS). ► Vitamins (A and D3) and collagen in M-SCS have a significant effect on apatite precipitation. ► M-SCS stimulates a biomimetic apatite deposition with 0.5–1 μm thickness in a short time. ► Hydroxyapatite crystallites have thin plate morphologies and size below 1 μm

  16. Deuterohemin-Peptide Enzyme Mimic-Embedded Metal-Organic Frameworks through Biomimetic Mineralization with Efficient ATRP Catalytic Activity.

    Science.gov (United States)

    Jiang, Wei; Wang, Xinghuo; Chen, Jiawen; Liu, Ying; Han, Haobo; Ding, Yi; Li, Quanshun; Tang, Jun

    2017-08-16

    An enzyme mimic harboring iron porphyrin (DhHP-6) embedded in zeolite imidazolate framework-8 (ZIF-8) was constructed through a biomimetic mineralization approach to obtain composite DhHP-6@ZIF-8. The composite was then used as a catalyst in the atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA 500 ) in which poly(PEGMA 500 ) could be synthesized with monomer conversion of 76.1% and M n of 45 900 g/mol, stronger than that obtained when using free DhHP-6 as a catalyst. More importantly, it could efficiently overcome the drawbacks of free DhHP-6 and achieve the easy separation of DhHP-6 from the catalytic system and the elimination of iron residues in the synthesized polymer. In addition, it exhibited an enhanced recyclability with monomer conversion of 75.7% after five cycles and favorable stability during the ATRP reaction with mimic-ZIF-8 composite developed through biomimetic mineralization can be potentially used as an effective catalyst for preparing well-defined polymers with biomedical applications.

  17. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates.

    Science.gov (United States)

    Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang

    2016-12-01

    To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Biomimetic collagen/elastin meshes for ventral hernia repair in a rat model.

    Science.gov (United States)

    Minardi, Silvia; Taraballi, Francesca; Wang, Xin; Cabrera, Fernando J; Van Eps, Jeffrey L; Robbins, Andrew B; Sandri, Monica; Moreno, Michael R; Weiner, Bradley K; Tasciotti, Ennio

    2017-03-01

    Ventral hernia repair remains a major clinical need. Herein, we formulated a type I collagen/elastin crosslinked blend (CollE) for the fabrication of biomimetic meshes for ventral hernia repair. To evaluate the effect of architecture on the performance of the implants, CollE was formulated both as flat sheets (CollE Sheets) and porous scaffolds (CollE Scaffolds). The morphology, hydrophylicity and in vitro degradation were assessed by SEM, water contact angle and differential scanning calorimetry, respectively. The stiffness of the meshes was determined using a constant stretch rate uniaxial tensile test, and compared to that of native tissue. CollE Sheets and Scaffolds were tested in vitro with human bone marrow-derived mesenchymal stem cells (h-BM-MSC), and finally implanted in a rat ventral hernia model. Neovascularization and tissue regeneration within the implants was evaluated at 6weeks, by histology, immunofluorescence, and q-PCR. It was found that CollE Sheets and Scaffolds were not only biomechanically sturdy enough to provide immediate repair of the hernia defect, but also promoted tissue restoration in only 6weeks. In fact, the presence of elastin enhanced the neovascularization in both sheets and scaffolds. Overall, CollE Scaffolds displayed mechanical properties more closely resembling those of native tissue, and induced higher gene expression of the entire marker genes tested, associated with de novo matrix deposition, angiogenesis, adipogenesis and skeletal muscles, compared to CollE Sheets. Altogether, this data suggests that the improved mechanical properties and bioactivity of CollE Sheets and Scaffolds make them valuable candidates for applications of ventral hernia repair. Due to the elevated annual number of ventral hernia repair in the US, the lack of successful grafts, the design of innovative biomimetic meshes has become a prime focus in tissue engineering, to promote the repair of the abdominal wall, avoid recurrence. Our meshes (Coll

  19. How capping protein enhances actin filament growth and nucleation on biomimetic beads.

    Science.gov (United States)

    Wang, Ruizhe; Carlsson, Anders E

    2015-11-25

    Capping protein (CP), which caps the growing ends of actin filaments, accelerates actin-based motility. Recent experiments on biomimetic beads have shown that CP also enhances the rate of actin filament nucleation. Proposed explanations for these phenomena include (i) the actin funneling hypothesis (AFH), in which the presence of CP increases the free-actin concentration, and (ii) the monomer gating model, in which CP binding to actin filament barbed ends makes more monomers available for filament nucleation. To establish how CP increases the rates of filament elongation and nucleation on biomimetic beads, we perform a quantitative modeling analysis of actin polymerization, using rate equations that include actin filament nucleation, polymerization and capping, as modified by monomer depletion near the surface of the bead. With one adjustable parameter, our simulation results match previously measured time courses of polymerized actin and filament number. The results support a version of the AFH where CP increases the local actin monomer concentration at the bead surface, but leaves the global free-actin concentration nearly constant. Because the rate of filament nucleation increases with the monomer concentration, the increased local monomer concentration enhances actin filament nucleation. We derive a closed-form formula for the characteristic CP concentration where the local free-actin concentration reaches half the bulk value, and find it to be comparable to the global Arp2/3 complex concentration. We also propose an experimental protocol for distinguishing branching nucleation of filaments from spontaneous nucleation.

  20. Heparan Sulfate: A Potential Candidate for the Development of Biomimetic Immunomodulatory Membranes

    Directory of Open Access Journals (Sweden)

    Bruna Corradetti

    2017-09-01

    Full Text Available Clinical trials have demonstrated that heparan sulfate (HS could be used as a therapeutic agent for the treatment of inflammatory diseases. Its anti-inflammatory effect makes it suitable for the development of biomimetic innovative strategies aiming at modulating stem cells behavior toward a pro-regenerative phenotype in case of injury or inflammation. Here, we propose collagen type I meshes fabricated by solvent casting and further crosslinked with HS (HS-Col to create a biomimetic environment resembling the extracellular matrix of soft tissue. HS-Col meshes were tested for their capability to provide physical support to stem cells’ growth, maintain their phenotypes and immunosuppressive potential following inflammation. HS-Col effect on stem cells was investigated in standard conditions as well as in an inflammatory environment recapitulated in vitro through a mix of pro-inflammatory cytokines (tumor necrosis factor-α and interferon-gamma; 20 ng/ml. A significant increase in the production of molecules associated with immunosuppression was demonstrated in response to the material and when cells were grown in presence of pro-inflammatory stimuli, compared to bare collagen membranes (Col, leading to a greater inhibitory potential when mesenchymal stem cells were exposed to stimulated peripheral blood mononuclear cells. Our data suggest that the presence of HS is able to activate the molecular machinery responsible for the release of anti-inflammatory cytokines, potentially leading to a faster resolution of inflammation.