B-L mediated SUSY breaking with radiative B-L symmetry breaking
International Nuclear Information System (INIS)
Kikuchi, Tatsuru; Kubo, Takayuki
2008-01-01
We explore a mechanism of radiative B-L symmetry breaking in analogous to the radiative electroweak symmetry breaking. The breaking scale of B-L symmetry is related to the neutrino masses through the see-saw mechanism. Once we incorporate the U(1) B-L gauge symmetry in SUSY models, the U(1) B-L gaugino, Z-tilde B-L appears, and it can mediate the SUSY breaking (Z-prime mediated SUSY breaking) at around the scale of 10 6 GeV. Then we find a links between the neutrino mass (more precisly the see-saw or B-L scale of order 10 6 GeV) and the Z-prime mediated SUSY breaking scale. It is also very interesting that the gluino at the weak scale becomes relatively light, and almost compressed mass spectra for the gaugino sector can be realized in this scenario, which is very interesting in scope of the LHC.
Majorana dark matter with B+L gauge symmetry
Energy Technology Data Exchange (ETDEWEB)
Chao, Wei [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts-Amherst,Amherst, MA 01003 United States (United States); Center for Advanced Quantum Studies,Department of Physics, Beijing Normal University,Beijing, 100875 (China); Guo, Huai-Ke [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts-Amherst,Amherst, MA 01003 United States (United States); Zhang, Yongchao [Service de Physique Théorique, Université Libre de Bruxelles,Boulevard du Triomphe, CP225, 1050 Brussels (Belgium)
2017-04-07
We present a new model that extends the Standard Model (SM) with the local B+L symmetry, and point out that the lightest new fermion ζ, introduced to cancel anomalies and stabilized automatically by the B+L symmetry, can serve as the cold dark matter candidate. We study constraints on the model from Higgs measurements, electroweak precision measurements as well as the relic density and direct detections of the dark matter. Numerical results reveal that the pseudo-vector coupling of ζ with Z and the Yukawa coupling with the SM Higgs are highly constrained by the latest results of LUX, while there are viable parameter space that could satisfy all the constraints and give testable predictions.
Neutrino masses, dark matter and leptogenesis with U(1) B - L gauge symmetry
Geng, Chao-Qiang; Okada, Hiroshi
2018-06-01
We propose a model with an U(1) B - L gauge symmetry, in which small neutrino masses, dark matter and the matter-antimatter asymmetry in the Universe can be simultaneously explained. In particular, the neutrino masses are generated radiatively, while the matter-antimatter asymmetry is led by the leptogenesis mechanism, at TeV scale. We also explore allowed regions of the model parameters and discuss some phenomenological effects, including lepton flavor violating processes.
Leptogenesis constraints on B - L breaking Higgs boson in TeV scale seesaw models
Dev, P. S. Bhupal; Mohapatra, Rabindra N.; Zhang, Yongchao
2018-03-01
In the type-I seesaw mechanism for neutrino masses, there exists a B - L symmetry, whose breaking leads to the lepton number violating mass of the heavy Majorana neutrinos. This would imply the existence of a new neutral scalar associated with the B - L symmetry breaking, analogous to the Higgs boson of the Standard Model. If in such models, the heavy neutrino decays are also responsible for the observed baryon asymmetry of the universe via the leptogenesis mechanism, the new seesaw scalar interactions with the heavy neutrinos will induce additional dilution terms for the heavy neutrino and lepton number densities. We make a detailed study of this dilution effect on the lepton asymmetry in three generic classes of seesaw models with TeV-scale B - L symmetry breaking, namely, in an effective theory framework and in scenarios with global or local U(1) B- L symmetry. We find that requiring successful leptogenesis imposes stringent constraints on the mass and couplings of the new scalar in all three cases, especially when it is lighter than the heavy neutrinos. We also discuss the implications of these new constraints and prospects of testing leptogenesis in presence of seesaw scalars at colliders.
Nomura, Takaaki; Okada, Hiroshi
2018-03-01
We propose a Dirac type active neutrino with rank two mass matrix and a Majorana fermion dark matter candidate with an alternative local U(1)_{B-L} extension of neutrinophilic two Higgs doublet model. Our dark matter candidate can be stabilized due to charge assignment under the gauge symmetry without imposing extra discrete Z_2 symmetry and the relic density is obtained from an Z' boson exchanging process. Taking into account collider constraints on the Z' boson mass and coupling, we estimate the relic density.
Scale symmetry and virial theorem
International Nuclear Information System (INIS)
Westenholz, C. von
1978-01-01
Scale symmetry (or dilatation invariance) is discussed in terms of Noether's Theorem expressed in terms of a symmetry group action on phase space endowed with a symplectic structure. The conventional conceptual approach expressing invariance of some Hamiltonian under scale transformations is re-expressed in alternate form by infinitesimal automorphisms of the given symplectic structure. That is, the vector field representing scale transformations leaves the symplectic structure invariant. In this model, the conserved quantity or constant of motion related to scale symmetry is the virial. It is shown that the conventional virial theorem can be derived within this framework
ɛ '/ ɛ anomaly and neutron EDM in SU(2) L × SU(2) R × U(1) B- L model with charge symmetry
Haba, Naoyuki; Umeeda, Hiroyuki; Yamada, Toshifumi
2018-05-01
The Standard Model prediction for ɛ '/ ɛ based on recent lattice QCD results exhibits a tension with the experimental data. We solve this tension through W R + gauge boson exchange in the SU(2) L × SU(2) R × U(1) B- L model with `charge symmetry', whose theoretical motivation is to attribute the chiral structure of the Standard Model to the spontaneous breaking of SU(2) R × U(1) B- L gauge group and charge symmetry. We show that {M_W}{_R}study a correlation between ɛ ' /ɛ and the neutron EDM. We confirm that the model can solve the ɛ ' /ɛ anomaly without conflicting the current bound on the neutron EDM, and further reveal that almost all parameter regions in which the ɛ ' /ɛ anomaly is explained will be covered by future neutron EDM searches, which leads us to anticipate the discovery of the neutron EDM.
On the character of scale symmetry breaking in gauge theories
International Nuclear Information System (INIS)
Gusijnin, V.P.; Kushnir, V.A.; Miransky, V.A.
1988-01-01
The problem of scale symmetry breaking in gauge theories is discussed. It is shown that the phenomenon of spontaneous breaking of scale symmetry in gauge theories is incompatible with the PCAAC dynamics. 12 refs
Dynamics symmetries of Hamiltonian system on time scales
Energy Technology Data Exchange (ETDEWEB)
Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)
2014-04-15
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
Scale-chiral symmetry, ω meson, and dense baryonic matter
Ma, Yong-Liang; Rho, Mannque
2018-05-01
It is shown that explicitly broken scale symmetry is essential for dense skyrmion matter in hidden local symmetry theory. Consistency with the vector manifestation fixed point for the hidden local symmetry of the lowest-lying vector mesons and the dilaton limit fixed point for scale symmetry in dense matter is found to require that the anomalous dimension (|γG2| ) of the gluon field strength tensor squared (G2 ) that represents the quantum trace anomaly should be 1.0 ≲|γG2|≲3.5 . The magnitude of |γG2| estimated here will be useful for studying hadron and nuclear physics based on the scale-chiral effective theory. More significantly, that the dilaton limit fixed point can be arrived at with γG2≠0 at some high density signals that scale symmetry can arise in dense medium as an "emergent" symmetry.
The weak-scale hierarchy and discrete symmetries
International Nuclear Information System (INIS)
Haba, Naoyuki; Matsuoka, Takeo; Hattori, Chuichiro; Matsuda, Masahisa; Mochinaga, Daizo.
1996-01-01
In the underlying Planck scale theory, we introduce a certain type of discrete symmetry, which potentially brings the stability of the weak-scale hierarchy under control. Under the discrete symmetry the μ-problem and the tadpole problem can be solved simultaneously without relying on some fine-tuning of parameters. Instead, it is required that doublet Higgs and color-triplet Higgs fields reside in different irreducible representations of the gauge symmetry group at the Planck scale and that they have distinct charges of the discrete symmetry group. (author)
Scale gauge symmetry and the standard model
International Nuclear Information System (INIS)
Sola, J.
1990-01-01
This paper speculates on a version of the standard model of the electroweak and strong interactions coupled to gravity and equipped with a spontaneously broken, anomalous, conformal gauge symmetry. The scalar sector is virtually absent in the minimal model but in the general case it shows up in the form of a nonlinear harmonic map Lagrangian. A Euclidean approach to the phenological constant problem is also addressed in this framework
Mechanical similarity as a generalization of scale symmetry
International Nuclear Information System (INIS)
Gozzi, E; Mauro, D
2006-01-01
In this paper, we study the symmetry known (Landau and Lifshits 1976 Course of Theoretical Physics vol 1: Mechanics (Oxford: Pergamon)) as mechanical similarity (LMS) and present for any monomial potential. We analyse it in the framework of the Koopman-von Neumann formulation of classical mechanics and prove that in this framework the LMS can be given a canonical implementation. We also show that the LMS is a generalization of the scale symmetry which is present only for the inverse square and a few other potentials. Finally, we study the main obstructions which one encounters in implementing the LMS at the quantum-mechanical level
Quantum symmetry, the cosmological constant and Planck-scale phenomenology
International Nuclear Information System (INIS)
Amelino-Camelia, Giovanni; Smolin, Lee; Starodubtsev, Artem
2004-01-01
We present a simple algebraic mechanism for the emergence of deformations of Poincare symmetries in the low-energy limit of quantum theories of gravity. The deformations, called κ-Poincare algebras, are parametrized by a dimensional parameter proportional to the Planck mass, and imply modified energy-momentum relations of a type that may be observable in near future experiments. Our analysis assumes that the low energy limit of a quantum theory of gravity must also involve a limit in which the cosmological constant is taken very small with respect to the Planck scale, and makes use of the fact that in some quantum theories of gravity the cosmological constant results in the (anti)de Sitter symmetry algebra being quantum deformed. We show that deformed Poincare symmetries inevitably emerge in the small-cosmological-constant limit of quantum gravity in 2 + 1 dimensions, where geometry does not have local degrees of freedom. In 3 + 1 dimensions we observe that, besides the quantum deformation of the (anti)de Sitter symmetry algebra, one must also take into account that there are local degrees of freedom leading to a renormalization of the generators for energy and momentum of the excitations. At the present level of development of quantum gravity in 3 + 1 dimensions, it is not yet possible to derive this renormalization from first principles, but we establish the conditions needed for the emergence of a deformed low energy limit symmetry algebra also in the case of 3 + 1 dimensions
Scaling symmetry and scalar hairy Lifshitz black holes
Energy Technology Data Exchange (ETDEWEB)
Hyun, Seungjoon [Department of Physics, College of Science, Yonsei University, Seoul 120-749 (Korea, Republic of); Jeong, Jaehoon [Institute of Theoretical Physics, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece); Park, Sang-A; Yi, Sang-Heon [Department of Physics, College of Science, Yonsei University, Seoul 120-749 (Korea, Republic of)
2015-10-15
By utilizing the scaling symmetry of the reduced action for planar black holes, we obtain the corresponding conserved charge. We use the conserved charge to find the generalized Smarr relation of static hairy planar black holes in various dimensions. Our results not only reproduce the relation in the various known cases but also give the new relation in the Lifshitz planar black holes with the scalar hair.
Fragmentation under the Scaling Symmetry and Turbulent Cascade with Intermittency
Gorokhovski, M.
2003-01-01
Fragmentation plays an important role in a variety of physical, chemical, and geological processes. Examples include atomization in sprays, crushing of rocks, explosion and impact of solids, polymer degradation, etc. Although each individual action of fragmentation is a complex process, the number of these elementary actions is large. It is natural to abstract a simple 'effective' scenario of fragmentation and to represent its essential features. One of the models is the fragmentation under the scaling symmetry: each breakup action reduces the typical length of fragments, r (right arrow) alpha r, by an independent random multiplier alpha (0 Saveliev, the fragmentation under the scaling symmetry has been reviewed as a continuous evolution process with new features established. The objective of this paper is twofold. First, the paper synthesizes and completes theoretical part of Gorokhovski & Saveliev. Second, the paper shows a new application of the fragmentation theory under the scale invariance. This application concerns the turbulent cascade with intermittency. We formulate here a model describing the evolution of the velocity increment distribution along the progressively decreasing length scale. The model shows that when the turbulent length scale gets smaller, the velocity increment distribution has central growing peak and develops stretched tails. The intermittency in turbulence is manifested in the same way: large fluctuations of velocity provoke highest strain in narrow (dissipative) regions of flow.
Electroweak vacuum stability in classically conformal B - L extension of the standard model
Energy Technology Data Exchange (ETDEWEB)
Das, Arindam; Okada, Nobuchika; Papapietro, Nathan [University of Alabama, Department of Physics and Astronomy, Alabama (United States)
2017-02-15
We consider the minimal U(1){sub B-L} extension of the standard model (SM) with the classically conformal invariance, where an anomaly-free U(1){sub B-L} gauge symmetry is introduced along with three generations of right-handed neutrinos and a U(1){sub B-L} Higgs field. Because of the classically conformal symmetry, all dimensional parameters are forbidden. The B - L gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, generating the mass for the U(1){sub B-L} gauge boson (Z{sup '} boson) and the right-handed neutrinos. Through a small negative coupling between the SM Higgs doublet and the B - L Higgs field, the negative mass term for the SM Higgs doublet is generated and the electroweak symmetry is broken. In this model context, we investigate the electroweak vacuum instability problem in the SM. It is well known that in the classically conformal U(1){sub B-L} extension of the SM, the electroweak vacuum remains unstable in the renormalization group analysis at the one-loop level. In this paper, we extend the analysis to the two-loop level, and perform parameter scans. We identify a parameter region which not only solve the vacuum instability problem, but also satisfy the recent ATLAS and CMS bounds from search for Z{sup '} boson resonance at the LHC Run-2. Considering self-energy corrections to the SM Higgs doublet through the right-handed neutrinos and the Z{sup '} boson, we derive the naturalness bound on the model parameters to realize the electroweak scale without fine-tunings. (orig.)
Inertial Spontaneous Symmetry Breaking and Quantum Scale Invariance
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Pedro G. [Oxford U.; Hill, Christopher T. [Fermilab; Ross, Graham G. [Oxford U., Theor. Phys.
2018-01-23
Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of "inertial spontaneous symmetry breaking" that does not involve a potential. This is dictated by the structure of the Weyl current, $K_\\mu$, and a cosmological phase during which the universe expands and the Einstein-Hilbert effective action is formed. Maintaining exact Weyl invariance in the renormalised quantum theory is straightforward when renormalisation conditions are referred back to the VEV's of fields in the action of the theory, which implies a conserved Weyl current. We do not require scale invariant regulators. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential.
Scaling symmetries, conservation laws and action principles in one-dimensional gas dynamics
International Nuclear Information System (INIS)
Webb, G M; Zank, G P
2009-01-01
Scaling symmetries of the planar, one-dimensional gas dynamic equations with adiabatic index γ are used to obtain Lagrangian and Eulerian conservation laws associated with the symmetries. The known Eulerian symmetry operators for the scaling symmetries are converted to the Lagrangian form, in which the Eulerian spatial position of the fluid element is given in terms of the Lagrangian fluid labels. Conditions for a linear combination of the three scaling symmetries to be a divergence or variational symmetry of the action are established. The corresponding Lagrangian and Eulerian form of the conservation laws are determined by application of Noether's theorem. A nonlocal conservation law associated with the scaling symmetries is obtained by applying a nonlocal symmetry operator to the scaling symmetry-conserved vector. An action principle incorporating known conservation laws using Lagrangian constraints is developed. Noether's theorem for the constrained action principle gives the same formulas for the conserved vector as the classical Noether theorem, except that the Lie symmetry vector field now includes the effects of nonlocal potentials. Noether's theorem for the constrained action principle is used to obtain nonlocal conservation laws. The scaling symmetry conservation laws only apply for special forms of the entropy of the gas.
B-L violating supersymmetric couplings
International Nuclear Information System (INIS)
Ramond, P.
1983-01-01
We consider two problems: one is the possible effect of the breaking of Peccei-Quinn symmetry on the inflationary universe scenario; the other is the remark that even the minimal supersymmetric SU 5 theory contains B-L violating couplings which give rise to neutrino masses and family-diagonal proton decay. However the strength of these couplings is limited by the gauge hierarchy
The B-L phase transition. Implications for cosmology and neutrinos
International Nuclear Information System (INIS)
Schmitz, Kai
2012-07-01
We investigate the possibility that the hot thermal phase of the early universe is ignited in consequence of the B-L phase transition, which represents the cosmological realization of the spontaneous breaking of the Abelian gauge symmetry associated with B-L, the difference between baryon number B and lepton number L. Prior to the B-L phase transition, the universe experiences a stage of hybrid inflation. Towards the end of inflation, the false vacuum of unbroken B-L symmetry decays, which entails tachyonic preheating as well as the production of cosmic strings. Observational constraints on this scenario require the B-L phase transition to take place at the scale of grand unification. The dynamics of the B-L breaking Higgs field and the B-L gauge degrees of freedom, in combination with thermal processes, generate an abundance of heavy (s)neutrinos. These (s)neutrinos decay into radiation, thereby reheating the universe, generating the baryon asymmetry of the universe and setting the stage for the thermal production of gravitinos. The B-L phase transition along with the (s)neutrino-driven reheating process hence represents an intriguing and testable mechanism to generate the initial conditions of the hot early universe. We study the B-L phase transition in the full supersymmetric Abelian Higgs model, for which we derive and discuss the Lagrangian in arbitrary and unitary gauge. As for the subsequent reheating process, we formulate the complete set of Boltzmann equations, the solutions of which enable us to give a detailed and time-resolved description of the evolution of all particle abundances during reheating. Assuming the gravitino to be the lightest superparticle (LSP), the requirement of consistency between hybrid inflation, leptogenesis and gravitino dark matter implies relations between neutrino parameters and superparticle masses, in particular a lower bound on the gravitino mass of 10GeV. As an alternative to gravitino dark matter, we consider the case of
The B-L phase transition. Implications for cosmology and neutrinos
Energy Technology Data Exchange (ETDEWEB)
Schmitz, Kai
2012-07-15
We investigate the possibility that the hot thermal phase of the early universe is ignited in consequence of the B-L phase transition, which represents the cosmological realization of the spontaneous breaking of the Abelian gauge symmetry associated with B-L, the difference between baryon number B and lepton number L. Prior to the B-L phase transition, the universe experiences a stage of hybrid inflation. Towards the end of inflation, the false vacuum of unbroken B-L symmetry decays, which entails tachyonic preheating as well as the production of cosmic strings. Observational constraints on this scenario require the B-L phase transition to take place at the scale of grand unification. The dynamics of the B-L breaking Higgs field and the B-L gauge degrees of freedom, in combination with thermal processes, generate an abundance of heavy (s)neutrinos. These (s)neutrinos decay into radiation, thereby reheating the universe, generating the baryon asymmetry of the universe and setting the stage for the thermal production of gravitinos. The B-L phase transition along with the (s)neutrino-driven reheating process hence represents an intriguing and testable mechanism to generate the initial conditions of the hot early universe. We study the B-L phase transition in the full supersymmetric Abelian Higgs model, for which we derive and discuss the Lagrangian in arbitrary and unitary gauge. As for the subsequent reheating process, we formulate the complete set of Boltzmann equations, the solutions of which enable us to give a detailed and time-resolved description of the evolution of all particle abundances during reheating. Assuming the gravitino to be the lightest superparticle (LSP), the requirement of consistency between hybrid inflation, leptogenesis and gravitino dark matter implies relations between neutrino parameters and superparticle masses, in particular a lower bound on the gravitino mass of 10GeV. As an alternative to gravitino dark matter, we consider the case of
Probing the two-scale-factor universality hypothesis by exact rotation symmetry-breaking mechanism
Energy Technology Data Exchange (ETDEWEB)
Neto, J.F.S.; Lima, K.A.L.; Carvalho, P.R.S. [Universidade Federal do Piaui, Departamento de Fisica, Teresina, PI (Brazil); Sena-Junior, M.I. [Universidade de Pernambuco, Escola Politecnica de Pernambuco, Recife, PE (Brazil); Universidade Federal de Alagoas, Instituto de Fisica, Maceio, AL (Brazil)
2017-12-15
We probe the two-scale-factor universality hypothesis by evaluating, firstly explicitly and analytically at the one-loop order, the loop quantum corrections to the amplitude ratios for O(N)λφ{sup 4} scalar field theories with rotation symmetry breaking in three distinct and independent methods in which the rotation symmetry-breaking mechanism is treated exactly. We show that the rotation symmetry-breaking amplitude ratios turn out to be identical in the three methods and equal to their respective rotation symmetry-breaking ones, although the amplitudes themselves, in general, depend on the method employed and on the rotation symmetry-breaking parameter. At the end, we show that all these results can be generalized, through an inductive process based on a general theorem emerging from the exact calculation, to any loop level and physically interpreted based on symmetry ideas. (orig.)
Complex scaling and residual flavour symmetry in the neutrino mass ...
Indian Academy of Sciences (India)
Probir Roy
2017-10-09
Oct 9, 2017 ... Leptonic Dirac CP violation must be maximal while atmospheric neutrino mixing need not be exactly maximal. Each of the two Majorana phases, to be probed by the search for 0νββ decay, has to be zero or π and a normal neutrino mass hierarchy is allowed. Keywords. Neutrinos; residual flavour symmetry; ...
Symmetry-guided large-scale shell-model theory
Czech Academy of Sciences Publication Activity Database
Launey, K. D.; Dytrych, Tomáš; Draayer, J. P.
2016-01-01
Roč. 89, JUL (2016), s. 101-136 ISSN 0146-6410 R&D Projects: GA ČR GA16-16772S Institutional support: RVO:61389005 Keywords : Ab intio shell -model theory * Symplectic symmetry * Collectivity * Clusters * Hoyle state * Orderly patterns in nuclei from first principles Subject RIV: BE - Theoretical Physics Impact factor: 11.229, year: 2016
The B - L scotogenic models for Dirac neutrino masses
Energy Technology Data Exchange (ETDEWEB)
Wang, Weijian [North China Electric Power University, Department of Physics, Baoding (China); Wang, Ruihong [Hebei Agricultural University, College of Information Science and Technology, Baoding (China); Han, Zhi-Long [University of Jinan, School of Physics and Technology, Jinan, Shandong (China); Han, Jin-Zhong [Zhoukou Normal University, School of Physics and Telecommunications Engineering, Zhoukou, Henan (China)
2017-12-15
We construct the one-loop and two-loop scotogenic models for Dirac neutrino mass generation in the context of U(1){sub B-L} extensions of standard model. It is indicated that the total number of intermediate fermion singlets is uniquely fixed by the anomaly free condition and the new particles may have exotic B - L charges so that the direct SM Yukawa mass term anti ν{sub L}ν{sub R}φ{sup 0} and the Majorana mass term (m{sub N}/2)ν{sub R}{sup C}ν{sub R} are naturally forbidden. After the spontaneous breaking of the U(1){sub B-L} symmetry, the discrete Z{sub 2} or Z{sub 3} symmetry appears as the residual symmetry and gives rise to the stability of intermediate fields as DM candidates. Phenomenological aspects of lepton flavor violation, DM, leptogenesis and LHC signatures are discussed. (orig.)
The B-L scotogenic models for Dirac neutrino masses
Wang, Weijian; Wang, Ruihong; Han, Zhi-Long; Han, Jin-Zhong
2017-12-01
We construct the one-loop and two-loop scotogenic models for Dirac neutrino mass generation in the context of U(1)_{B-L} extensions of standard model. It is indicated that the total number of intermediate fermion singlets is uniquely fixed by the anomaly free condition and the new particles may have exotic B-L charges so that the direct SM Yukawa mass term \\bar{ν }_Lν _R\\overline{φ ^0} and the Majorana mass term (m_N/2)\\overline{ν _R^C}ν _R are naturally forbidden. After the spontaneous breaking of the U(1)_{B-L} symmetry, the discrete Z2 or Z3 symmetry appears as the residual symmetry and gives rise to the stability of intermediate fields as DM candidates. Phenomenological aspects of lepton flavor violation, DM, leptogenesis and LHC signatures are discussed.
Closing the SU(3)LxU(1)X symmetry at the electroweak scale
International Nuclear Information System (INIS)
Dias, Alex G.; Montero, J. C.; Pleitez, V.
2006-01-01
We show that some models with SU(3) C xSU(3) L xU(1) X gauge symmetry can be realized at the electroweak scale and that this is a consequence of an approximate global SU(2) L+R symmetry. This symmetry implies a condition among the vacuum expectation value of one of the neutral Higgs scalars, the U(1) X 's coupling constant, g X , the sine of the weak mixing angle sinθ W , and the mass of the W boson, M W . In the limit in which this symmetry is valid it avoids the tree level mixing of the Z boson of the standard model with the extra Z ' boson. We have verified that the oblique T parameter is within the allowed range indicating that the radiative corrections that induce such a mixing at the 1-loop level are small. We also show that a SU(3) L+R custodial symmetry implies that in some of the models we have to include sterile (singlets of the 3-3-1 symmetry) right-handed neutrinos with Majorana masses, since the seesaw mechanism is mandatory to obtain light active neutrinos. Moreover, the approximate SU(2) L+R subset of SU(3) L+R symmetry implies that the extra nonstandard particles of these 3-3-1 models can be considerably lighter than it had been thought before so that new physics can be really just around the corner
Bilateral symmetry detection on the basis of Scale Invariant Feature Transform.
Directory of Open Access Journals (Sweden)
Habib Akbar
Full Text Available The automatic detection of bilateral symmetry is a challenging task in computer vision and pattern recognition. This paper presents an approach for the detection of bilateral symmetry in digital single object images. Our method relies on the extraction of Scale Invariant Feature Transform (SIFT based feature points, which serves as the basis for the ascertainment of the centroid of the object; the latter being the origin under the Cartesian coordinate system to be converted to the polar coordinate system in order to facilitate the selection symmetric coordinate pairs. This is followed by comparing the gradient magnitude and orientation of the corresponding points to evaluate the amount of symmetry exhibited by each pair of points. The experimental results show that our approach draw the symmetry line accurately, provided that the observed centroid point is true.
Neutrino mass, leptogenesis and FIMP dark matter in a U(1){sub B-L} model
Energy Technology Data Exchange (ETDEWEB)
Biswas, Anirban; Khan, Sarif [Harish-Chandra Research Institute, Allahabad (India); Homi Bhabha National Institute, Training School Complex, Mumbai (India); Choubey, Sandhya [Harish-Chandra Research Institute, Allahabad (India); Homi Bhabha National Institute, Training School Complex, Mumbai (India); AlbaNova University Center, Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm (Sweden)
2017-12-15
The Standard Model (SM) is inadequate to explain the origin of tiny neutrino masses, the dark matter (DM) relic abundance and the baryon asymmetry of the Universe. In this work, to address all three puzzles, we extend the SM by a local U(1){sub B-L} gauge symmetry, three right-handed (RH) neutrinos for the cancellation of gauge anomalies and two complex scalars having non-zero U(1){sub B-L} charges. All the newly added particles become massive after the breaking of the U(1){sub B-L} symmetry by the vacuum expectation value (VEV) of one of the scalar fields φ{sub H}. The other scalar field, φ{sub DM}, which does not have any VEV, becomes automatically stable and can be a viable DM candidate. Neutrino masses are generated using the Type-I seesaw mechanism, while the required lepton asymmetry to reproduce the observed baryon asymmetry can be attained from the CP violating out of equilibrium decays of the RH neutrinos in TeV scale. More importantly within this framework, we study in detail the production of DM via the freeze-in mechanism considering all possible annihilation and decay processes. Finally, we find a situation when DM is dominantly produced from the annihilation of the RH neutrinos, which are at the same time also responsible for neutrino mass generation and leptogenesis. (orig.)
Neutrino mass, leptogenesis and FIMP dark matter in a U(1)_{B-L} model
Biswas, Anirban; Choubey, Sandhya; Khan, Sarif
2017-12-01
The Standard Model (SM) is inadequate to explain the origin of tiny neutrino masses, the dark matter (DM) relic abundance and the baryon asymmetry of the Universe. In this work, to address all three puzzles, we extend the SM by a local U(1)_{B-L} gauge symmetry, three right-handed (RH) neutrinos for the cancellation of gauge anomalies and two complex scalars having non-zero U(1)_{B-L} charges. All the newly added particles become massive after the breaking of the U(1)_{B-L} symmetry by the vacuum expectation value (VEV) of one of the scalar fields φ _H. The other scalar field, φ _DM, which does not have any VEV, becomes automatically stable and can be a viable DM candidate. Neutrino masses are generated using the Type-I seesaw mechanism, while the required lepton asymmetry to reproduce the observed baryon asymmetry can be attained from the CP violating out of equilibrium decays of the RH neutrinos in TeV scale. More importantly within this framework, we study in detail the production of DM via the freeze-in mechanism considering all possible annihilation and decay processes. Finally, we find a situation when DM is dominantly produced from the annihilation of the RH neutrinos, which are at the same time also responsible for neutrino mass generation and leptogenesis.
Hierarchy of symmetry-breaking scales in SO(10) grand unification and particle masses
International Nuclear Information System (INIS)
Asatryan, G.M.; Ioannisyan, A.N.
1987-01-01
An SO(10) grand unification model is proposed in which the introduction of an additional discrete symmetry solves the problem of the quark mass spectrum arising in SO(10) breaking schemes with intermediate SU(4) x SU(2)/sub L/ x SU(2)/sub R/ or SU(3)/sub C/ x U(1)/sub B//sub -//sub L/ x SU(2)/sub L/ x SU(2)/sub R/ symmetry. When the breaking of this discrete symmetry is taken into account the condition that there exist only a single light Higgs boson leads to a relation between the b- and t-quark masses which makes it possible to fix the ratio of the grand unification scale M/sub X/ and the quark--lepton symmetry-breaking scale M/sub C/. The specific values of M/sub X/ and M/sub C/ and also the scale of the SU(2)/sub R/ symmetry breaking M/sub R/ depend on the experimental value of the Weinberg angle and are in agreement with the experimental data on proton decay
Hausdorff dimensions for sets with broken scaling symmetry
International Nuclear Information System (INIS)
Umberger, D.K.; Mayer-Kress, G.; Jen, E.
1985-01-01
Based on Hausdorff's original approach to fractional dimensions, we study systems which are not sufficiently characterized by their ''fractal'' or scaling dimension. We construct informative examples of such sets and relate them to sets observed in the context of dynamical systems. 18 refs., 5 figs
Intrinsic symmetry of the scaling laws and generalized relations for critical indices
International Nuclear Information System (INIS)
Plechko, V.N.
1982-01-01
It is shown that the scating taws for criticat induces can be expressed as a consequence of a simple symmetry principle. Heuristic relations for critical induces of generalizing scaling laws for the case of arbitrary order parameters are presented, which manifestiy have a symmetric form and include the standard scalling laws as a particular case
Three-family left-right symmetry with low-scale seesaw mechanism
Energy Technology Data Exchange (ETDEWEB)
Reig, Mario; Valle, José W.F.; Vaquera-Araujo, C.A. [AHEP Group, Institut de Física Corpuscular - C.S.I.C., Universitat de València,Parc Científic de Paterna, C/ Catedrático José Beltrán, 2 E-46980 Paterna (Valencia) (Spain)
2017-05-18
We suggest a new left-right symmetric model implementing a low-scale seesaw mechanism in which quantum consistency requires three families of fermions. The symmetry breaking route to the Standard Model determines the profile of the “next” expected new physics, characterized either by the simplest left-right gauge symmetry or by the 3-3-1 scenario. The resulting Z{sup ′} gauge bosons can be probed at the LHC and provide a production portal for the right-handed neutrinos. On the other hand, its flavor changing interactions would affect the K, D and B neutral meson systems.
Why PeV scale left-right symmetry is a good thing
Yajnik, Urjit A.
2017-10-01
Left-right symmetric gauge theory presents a minimal paradigm to accommodate massive neutrinos with all the known conserved symmetries duly gauged. The work presented here is based on the argument that the see-saw mechanism does not force the new right-handed symmetry scale to be very high, and as such some of the species from the spectrum of the new gauge and Higgs bosons can have masses within a few orders of magnitude of the TeV scale. The scale of the left-right parity breaking in turn can be sequestered from the Planck scale by supersymmetry. We have studied several formulations of such just beyond Standard Model (JBSM) theories for their consistency with cosmology. Specifically, the need to eliminate phenomenologically undesirable domain walls gives many useful clues. The possibility that the exact left-right symmetry breaks in conjunction with supersymmetry has been explored in the context of gauge mediation, placing restrictions on the available parameter space. Finally, we have also studied a left-right symmetric model in the context of metastable supersymmetric vacua and obtained constraints on the mass scale of right-handed symmetry. In all the cases studied, the mass scale of the right-handed neutrino M_R remains bounded from above, and in some of the cases the scale 10^9 GeV favourable for supersymmetric thermal leptogenesis is disallowed. On the other hand, PeV scale remains a viable option, and the results warrant a more detailed study of such models for their observability in collider and astroparticle experiments.
Neutrino masses and a low breaking scale of left-right symmetry
International Nuclear Information System (INIS)
Khasanov, Oleg; Perez, Gilad
2002-01-01
In left-right symmetric models (LRSMs) the light neutrino masses arise from two sources: the seesaw mechanism and a vacuum expectation value of an SU(2) L triplet. If the left-right symmetry breaking v R is low, v R (less-or-similar sign)15 TeV, the contributions to the light neutrino masses from both the seesaw mechanism and the triplet Yukawa couplings are expected to be well above the experimental bounds. We present a minimal LRSM with an additional U(1) symmetry in which the masses induced by the two sources are below the eV scale and the twofold problem is solved. We further show that, if the U(1) symmetry is also responsible for the lepton flavor structure, the model yields a small mixing angle within the first two lepton generations
Approximate symmetries in atomic nuclei from a large-scale shell-model perspective
Launey, K. D.; Draayer, J. P.; Dytrych, T.; Sun, G.-H.; Dong, S.-H.
2015-05-01
In this paper, we review recent developments that aim to achieve further understanding of the structure of atomic nuclei, by capitalizing on exact symmetries as well as approximate symmetries found to dominate low-lying nuclear states. The findings confirm the essential role played by the Sp(3, ℝ) symplectic symmetry to inform the interaction and the relevant model spaces in nuclear modeling. The significance of the Sp(3, ℝ) symmetry for a description of a quantum system of strongly interacting particles naturally emerges from the physical relevance of its generators, which directly relate to particle momentum and position coordinates, and represent important observables, such as, the many-particle kinetic energy, the monopole operator, the quadrupole moment and the angular momentum. We show that it is imperative that shell-model spaces be expanded well beyond the current limits to accommodate particle excitations that appear critical to enhanced collectivity in heavier systems and to highly-deformed spatial structures, exemplified by the second 0+ state in 12C (the challenging Hoyle state) and 8Be. While such states are presently inaccessible by large-scale no-core shell models, symmetry-based considerations are found to be essential.
Spontaneous B-L breaking as the origin of the hot early universe
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, W.; Domcke, V.; Schmitz, K.
2012-03-15
The decay of a false vacuum of unbroken B-L symmetry is an intriguing and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase yields hybrid inflation, ending in tachyonic preheating. The dynamics of the B - L breaking Higgs field and thermal processes produce an abundance of heavy neutrinos whose decays generate entropy, baryon asymmetry and gravitino dark matter. We study the phase transition for the full supersymmetric Abelian Higgs model. For the subsequent reheating process we give a detailed time-resolved description of all particle abundances. The competition of cosmic expansion and entropy production leads to an intermediate period of constant 'reheating' temperature, during which baryon asymmetry and dark matter are produced. Consistency of hybrid inflation, leptogenesis and gravitino dark matter implies relations between neutrino parameters and superparticle masses, in particular a lower bound on the gravitino mass of 10 GeV.
The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry
International Nuclear Information System (INIS)
Hinterbichler, Kurt; Khoury, Justin
2012-01-01
We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential accelerated expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expectation values, and encompasses existing incarnations of this idea, specifically the U(1) model of Rubakov and the Galileon Genesis scenario. Its essential features depend only on the symmetry breaking pattern and not on the details of the underlying lagrangian. It makes generic observational predictions that make it potentially distinguishable from standard inflation, in particular significant non-gaussianities and the absence of primordial gravitational waves
Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale
International Nuclear Information System (INIS)
Gorbunov, Dmitry S.; Sibiryakov, Sergei M.
2005-01-01
We present an extension of the Randall-Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam-Veltman-Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances
Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale
Energy Technology Data Exchange (ETDEWEB)
Gorbunov, Dmitry S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect, 7a, 117312 Moscow (Russian Federation); Sibiryakov, Sergei M. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect, 7a, 117312 Moscow (Russian Federation)
2005-09-15
We present an extension of the Randall-Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam-Veltman-Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.
International Nuclear Information System (INIS)
Greenberger, D.M.
1978-01-01
We take two rather abstract concepts from elementary particle physics, and show that there actually exist analogs to both of them in undergraduate physics. In the case of spontaneous symmetry breaking, we provide an example where the most symmetrical state of a simple system suddenly becomes unstable, while a less symmetrical state develops lower energy and becomes stable. In the case of scale invariance, we consider an example with no natural scale determined, and show that a straightforward dimensional analysis of the problem leads to incorrect results, because of the occurrence of infinities, even though they would appear to be irrelevant infinities that might not be expected to affect the dimensions of the answer. We then show how a simple use of the scale invariance of the problem leads to the correct answer
Low-energy parity restoration and unification mass scale within maximal symmetries
Directory of Open Access Journals (Sweden)
Ajaya K. Mohanty
1984-01-01
Full Text Available We investigate the hierarchy of gauge boson masses in the maximal grand unified theory by studying the renormalization group equations for the running coupling constants associated with the symmetry breaking of SU(16viaSU(12 q×SU(4 l×U(1 |B|−|L| chain. Particular attention is given to the contribution of Higgs scalars to these equations. It is found that the intermediate mass scale ML, associated with right-handed gauge bosons could be as low as 10 3 GeV only for sin 2θ w(M L as high as 0.265 with α s(M L=0.13. In this chain of symmetry breaking, we have also examined the lowest unification mass that is allowed by the low-energy data for sin 2θ w(M L and the assumed gauge hierarchy. This has been done in two cases; first for the case where SU(3 c is vectorial, second, for the case where SU(3 c is axial. In both cases the lowest unification mass scales were found to be 10 13, 10 11, 10 8 and 10 7 GeV for sin 2θ w(M L = 0.22, 0.24, 0.26,and0.265 respectively with α s(M L = 0.13. The implication of these low unification masses on baryon non-conserving processes is also discussed.
Chiral symmetry breaking and nonperturbative scale anomaly in gauge field theories
International Nuclear Information System (INIS)
Miranskij, V.A.; Gusynin, V.P.
1987-01-01
The nonperturbative dynamics of chiral and scale symmetry breaking in asymtotically free and non-asymptotically free (with an ultraviolet stable fixed point) vector-like gauge theories is investigated. In the two-loop approximation analytical expressions for the chiral and gluon condensates are obtained. The hypothesis about a soft behaviour at small distances of composite operators in non-asymptotically free gauge theories with a fixed point is put forward and substantiated. It is shown that in these theories the form of the scale anomaly depends on the type of the phase in coupling constant to which it relates. A new dilaton effective lagrangian for glueball and chiral fields is suggested. The mass relation for the single scalar fermion-antifermion bound state is obtained. The important ingredient of this approach is a large (d≅ 2) dynamical dimension of composite chiral fields. The application of this approach to QCD and technicolour models is discussed
Chiral polarization scale of QCD vacuum and spontaneous chiral symmetry breaking
International Nuclear Information System (INIS)
Alexandru, Andrei; Horv, Ivan
2013-01-01
It has recently been found that dynamics of pure glue QCD supports the low energy band of Dirac modes with local chiral properties qualitatively different from that of a bulk: while bulk modes suppress chirality relative to statistical independence between left and right, the band modes enhance it. The width of such chirally polarized zone – chiral polarization scale bigwedge ch – has been shown to be finite in the continuum limit at fixed physical volume. Here we present evidence that bigwedge ch remains non-zero also in the infinite volume, and is therefore a dynamical scale in the theory. Our experiments in N f = 2+1 QCD support the proposition that the same holds in the massless limit, connecting bigwedge ch to spontaneous chiral symmetry breaking. In addition, our results suggest that thermal agitation in quenched QCD destroys both chiral polarization and condensation of Dirac modes at the same temperature T ch > T c .
Conformal Symmetry as a Template:Commensurate Scale Relations and Physical Renormalization Schemes
International Nuclear Information System (INIS)
Brodsky, Stanley J.
1999-01-01
Commensurate scale relations are perturbative QCD predictions which relate observable to observable at fixed relative scale, such as the ''generalized Crewther relation'', which connects the Bjorken and Gross-Llewellyn Smith deep inelastic scattering sum rules to measurements of the e + e - annihilation cross section. We show how conformal symmetry provides a template for such QCD predictions, providing relations between observables which are present even in theories which are not scale invariant. All non-conformal effects are absorbed by fixing the ratio of the respective momentum transfer and energy scales. In the case of fixed-point theories, commensurate scale relations relate both the ratio of couplings and the ratio of scales as the fixed point is approached. In the case of the α V scheme defined from heavy quark interactions, virtual corrections due to fermion pairs are analytically incorporated into the Gell-Mann Low function, thus avoiding the problem of explicitly computing and resuming quark mass corrections related to the running of the coupling. Applications to the decay width of the Z boson, the BFKL pomeron, and virtual photon scattering are discussed
International Nuclear Information System (INIS)
Bonanno, Luca; Drago, Alessandro
2009-01-01
We study matter at high density and temperature using a chiral Lagrangian in which the breaking of scale invariance is regulated by the value of a scalar field, called dilaton [E. K. Heide, S. Rudaz, and P. J. Ellis, Nucl. Phys. A571, 713 (1994); G. W. Carter, P. J. Ellis, and S. Rudaz, Nucl. Phys. A603, 367 (1996); G. W. Carter, P. J. Ellis, and S. Rudaz, Nucl. Phys. A618, 317 (1997); G. W. Carter and P. J. Ellis, Nucl. Phys. A628, 325 (1998)]. We provide a phase diagram describing the restoration of chiral and scale symmetries. We show that chiral symmetry is restored at large temperatures, but at low temperatures it remains broken at all densities. We also show that scale invariance is more easily restored at low rather than large baryon densities. The masses of vector-mesons scale with the value of the dilaton and their values initially slightly decrease with the density but then they increase again for densities larger than ∼3ρ 0 . The pion mass increases continuously with the density and at ρ 0 and T=0 its value is ∼30 MeV larger than in the vacuum. We show that the model is compatible with the bounds stemming from astrophysics, as, e.g., the one associated with the maximum mass of a neutron star. The most striking feature of the model is a very significant softening at large densities, which manifests also as a strong reduction of the adiabatic index. Although the softening has probably no consequence for supernova explosion via the direct mechanism, it could modify the signal in gravitational waves associated with the merging of two neutron stars.
Neutrino masses in the minimal gauged (B -L ) supersymmetry
Yan, Yu-Li; Feng, Tai-Fu; Yang, Jin-Lei; Zhang, Hai-Bin; Zhao, Shu-Min; Zhu, Rong-Fei
2018-03-01
We present the radiative corrections to neutrino masses in a minimal supersymmetric extension of the standard model with local U (1 )B -L symmetry. At tree level, three tiny active neutrinos and two nearly massless sterile neutrinos can be obtained through the seesaw mechanism. Considering the one-loop corrections to the neutrino masses, the numerical results indicate that two sterile neutrinos obtain KeV masses and the small active-sterile neutrino mixing angles. The lighter sterile neutrino is a very interesting dark matter candidate in cosmology. Meanwhile, the active neutrinos mixing angles and mass squared differences agree with present experimental data.
Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking
Directory of Open Access Journals (Sweden)
Katsuya Hashino
2016-01-01
Full Text Available Classical scale invariance (CSI may be one of the solutions for the hierarchy problem. Realistic models for electroweak symmetry breaking based on CSI require extended scalar sectors without mass terms, and the electroweak symmetry is broken dynamically at the quantum level by the Coleman–Weinberg mechanism. We discuss discriminative features of these models. First, using the experimental value of the mass of the discovered Higgs boson h(125, we obtain an upper bound on the mass of the lightest additional scalar boson (≃543 GeV, which does not depend on its isospin and hypercharge. Second, a discriminative prediction on the Higgs-photon–photon coupling is given as a function of the number of charged scalar bosons, by which we can narrow down possible models using current and future data for the di-photon decay of h(125. Finally, for the triple Higgs boson coupling a large deviation (∼+70% from the SM prediction is universally predicted, which is independent of masses, quantum numbers and even the number of additional scalars. These models based on CSI can be well tested at LHC Run II and at future lepton colliders.
SSB of Scale Symmetry, Fermion Families and Quintessence without the Long-Range Force Problem
Guendelman, E. I.; Kaganovich, A. B.
We study a scale-invariant two measures theory where a dilaton field φ has no explicit potentials. The scale transformations include the translation of a dilaton φ-->φ+ const. The theory demonstrates a new mechanism for generation of the exponential potential: in the conformal Einstein frame (CEF), after SSB of scale invariance, the theory develops the exponential potential and, in general, the nonlinear kinetic term is generated as well. The scale symmetry does not allow the appearance of terms breaking the exponential shape of the potential that solves the problem of the flatness of the scalar field potential in the context of quintessential scenarios. As examples, two different possibilities for the choice of the dimensionless parameters are presented where the theory permits to get interesting cosmological results. For the first choice, the theory has standard scaling solutions for φ usually used in the context of the quintessential scenario. For the second choice, the theory allows three different solutions, one of which is a scaling solution with equation of state pφ=wρφ where w is predicted to be restricted by -1
Local conformal symmetry in non-Riemannian geometry and the origin of physical scales
Energy Technology Data Exchange (ETDEWEB)
De Cesare, Marco [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Moffat, John W. [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Sakellariadou, Mairi [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)
2017-09-15
We introduce an extension of the Standard Model and General Relativity built upon the principle of local conformal invariance, which represents a generalization of a previous work by Bars, Steinhardt and Turok. This is naturally realized by adopting as a geometric framework a particular class of non-Riemannian geometries, first studied by Weyl. The gravitational sector is enriched by a scalar and a vector field. The latter has a geometric origin and represents the novel feature of our approach. We argue that physical scales could emerge from a theory with no dimensionful parameters, as a result of the spontaneous breakdown of conformal and electroweak symmetries. We study the dynamics of matter fields in this modified gravity theory and show that test particles follow geodesics of the Levi-Civita connection, thus resolving an old criticism raised by Einstein against Weyl's original proposal. (orig.)
International Nuclear Information System (INIS)
Zurek, W H
2013-01-01
I show that random distributions of vortex–antivortex pairs (rather than of individual vortices) lead to scaling of typical winding numbers W trapped inside a loop of circumference C with the square root of that circumference, W∼√C, when the expected winding numbers are large, |W| ≫ 1. Such scaling is consistent with the Kibble–Zurek mechanism (KZM), with 〈W 2 〉 inversely proportional to ξ-hat , the typical size of the domain that can break symmetry in unison. (The dependence of ξ-hat on quench rate is predicted by KZM from critical exponents of the phase transition.) Thus, according to KZM, the dispersion √ 2 > scales as √(C/ ξ-hat ) for large W. By contrast, a distribution of individual vortices with randomly assigned topological charges would result in the dispersion scaling with the square root of the area inside C (i.e., √ 2 > ∼ C). Scaling of the dispersion of W as well as of the probability of detection of non-zero W with C and ξ-hat can be also studied for loops so small that non-zero windings are rare. In this case I show that dispersion varies not as 1/√( ξ-hat ), but as 1/ ξ-hat , which results in a doubling of the scaling of dispersion with the quench rate when compared to the large |W| regime. Moreover, the probability of trapping of non-zero W becomes approximately equal to 〈W 2 〉, and scales as 1/ ξ-hat 2 . This quadruples—as compared with √ 2 > ≃ √C/ξ-circumflex valid for large W—the exponent in the power law dependence of the frequency of trapping of |W| = 1 on ξ-hat when the probability of |W| > 1 is negligible. This change of the power law exponent by a factor of four—from 1/√( ξ-hat ) for the dispersion of large W to 1/ ξ-hat 2 for the frequency of non-zero W when |W| > 1 is negligibly rare—is of paramount importance for experimental tests of KZM. (paper)
The gravitational wave spectrum from cosmological B-L breaking
International Nuclear Information System (INIS)
Buchmueller, W.; Domcke, V.; Kamada, K.; Schmitz, K.
2013-05-01
Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying Ω GW h 2 ∝10 -13 -10 -8 , much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.
The gravitational wave spectrum from cosmological B-L breaking
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU (WPI)
2013-05-15
Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying {Omega}{sub GW}h{sup 2}{proportional_to}10{sup -13}-10{sup -8}, much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.
International Nuclear Information System (INIS)
Gorokhovski, M A; Saveliev, V L
2008-01-01
This paper analyses statistical universalities that arise over time during constant frequency fragmentation under scaling symmetry. The explicit expression of particle-size distribution obtained from the evolution kinetic equation shows that, with increasing time, the initial distribution tends to the ultimate steady-state delta function through at least two intermediate universal asymptotics. The earlier asymptotic is the well-known log-normal distribution of Kolmogorov (1941 Dokl. Akad. Nauk. SSSR 31 99-101). This distribution is the first universality and has two parameters: the first and the second logarithmic moments of the fragmentation intensity spectrum. The later asymptotic is a power function (stronger universality) with a single parameter that is given by the ratio of the first two logarithmic moments. At large times, the first universality implies that the evolution equation can be reduced exactly to the Fokker-Planck equation instead of making the widely used but inconsistent assumption about the smallness of higher than second order moments. At even larger times, the second universality shows evolution towards a fractal state with dimension identified as a measure of the fracture resistance of the medium
Equation of state with scale-invariant hidden local symmetry and gravitational waves
Directory of Open Access Journals (Sweden)
Lee Hyun Kyu
2018-01-01
Full Text Available The equation of state (EoS for the effective theory proposed recently in the frame work of the scale-invariant hidden local symmetry is discussed briefly. The EoS is found to be relatively stiffer at lower density and but relatively softer at higher density. The particular features of EoS on the gravitational waves are discussed. A relatively stiffer EoS for the neutron stars with the lower density induces a larger deviation of the gravitational wave form from the point-particle-approximation. On the other hand, a relatively softer EoS for the merger remnant of the higher density inside might invoke a possibility of the immediate formation of a black hole for short gamma ray bursts or the appearance of the higher peak frequency for gravitational waves from remnant oscillations. It is anticipated that this particular features could be probed in detail by the detections of gravitational waves from the binary neutron star mergers.
Ma, Ernest; Restrepo, Diego; Zapata, Óscar
2018-01-01
The well-known leptonic U(1) symmetry of the Standard Model (SM) of quarks and leptons is extended to include a number of new fermions and scalars. The resulting theory has an invisible QCD axion (thereby solving the strong CP problem), a candidate for weak-scale dark matter (DM), as well as radiative neutrino masses. A possible key connection is a color-triplet scalar, which may be produced and detected at the Large Hadron Collider.
Why PeV scale left–right symmetry is a good thing
Indian Academy of Sciences (India)
2017-10-05
Oct 5, 2017 ... Specifically, the need to eliminate phenomenologically undesirable domainwalls gives many useful clues. The possibility that the exact left–right symmetry breaks in conjunction with supersymmetry has been explored in the context of gauge mediation, placing restrictions on the available parameter space.
Monthus, Cécile
2018-03-01
For the line of critical antiferromagnetic XXZ chains with coupling J > 0 and anisotropy 0<Δ ≤slant 1 , we describe how the block-spin renormalization procedure preserving the SU q (2) symmetry introduced by Martin-Delgado and Sierra (1996 Phys. Rev. Lett. 76 1146) can be reformulated as the translation-invariant scale-invariant tree-tensor-state of the smallest dimension that is compatible with the quantum symmetries of the model. The properties of this tree-tensor-state are studied in detail via the ground-state energy, the magnetizations and the staggered magnetizations, as well as the Shannon-Renyi entropies characterizing the multifractality of the components of the wave function.
Chaotic hybrid inflation with a gauged B -L
Carpenter, Linda M.; Raby, Stuart
2014-11-01
In this paper we present a novel formulation of chaotic hybrid inflation in supergravity. The model includes a waterfall field which spontaneously breaks a gauged U1 (B- L) at a GUT scale. This allows for the possibility of future model building which includes the standard formulation of baryogenesis via leptogenesis with the waterfall field decaying into right-handed neutrinos. We have not considered the following issues in this short paper, i.e. supersymmetry breaking, dark matter or the gravitino or moduli problems. Our focus is on showing the compatibility of the present model with Planck, WMAP and Bicep2 data.
Introduction to the workshop: Electroweak symmetry breaking at the TeV scale
International Nuclear Information System (INIS)
Gaillard, M.K.
1984-01-01
As viewed from today's perspective, electroweak symmetry breaking is both the central issue to be addressed by physics in the TeV region, and the most compelling argument for the need to explore that region. While the picture may change considerably over the next decade, it seems reasonable to focus theoretical attention on this issue which is in fact very broad in terms of its possible ramifications. Such a concerted effort can help to sharpen the scientific case for the SSC and provide fresh theoretical input to the ongoing series of workshops and studies aimed at forming a consensus on a choice of SSC design parameters. To set the mood of the workshop the author reviews briefly the physics to be explored prior to the SSC as well as the motivations for exploration of the TeV region for hard collisions. He follows with an example of a possible scenario for the first manifestation of electroweak symmetry breaking at the SSC
Baryon asymmetry from Planck-scale physics
International Nuclear Information System (INIS)
Gelmini, G.; Holman, R.; Carnegie-Mellon Univ., Pittsburgh, PA
1992-06-01
It has been noted recently that Planck scale physics may induce the explicit breaking of global symmetries. We point out that in Majoron models, these explicit breakings, combined with sphaleron induced violation of B + L can give rise to the baryon asymmetry of the Universe
Farzinnia, Arsham
2015-11-01
We examine the impact of the expected reach of the LHC and the XENON1T experiments on the parameter space of the minimal classically scale invariant extension of the standard model (SM), where all the mass scales are induced dynamically by means of the Coleman-Weinberg mechanism. In this framework, the SM content is enlarged by the addition of one complex gauge-singlet scalar with a scale invariant and C P -symmetric potential. The massive pseudoscalar component, protected by the C P symmetry, forms a viable dark matter candidate, and three flavors of the right-handed Majorana neutrinos are included to account for the nonzero masses of the SM neutrinos via the seesaw mechanism. The projected constraints on the parameter space arise by applying the ATLAS heavy Higgs discovery prospects, with an integrated luminosity of 300 and 3000 fb-1 at √{s }=14 TeV , to the pseudo-Nambu-Goldstone boson of the (approximate) scale symmetry, as well as by utilizing the expected reach of the XENON1T direct detection experiment for the discovery of the pseudoscalar dark matter candidate. A null-signal discovery by these future experiments implies that vast regions of the model's parameter space can be thoroughly explored; the combined projections are expected to confine a mixing between the SM and the singlet sector to very small values while probing the viability of the TeV scale pseudoscalar's thermal relic abundance as the dominant dark matter component in the Universe. Furthermore, the vacuum stability and triviality requirements of the framework up to the Planck scale are studied, and the viable region of the parameter space is identified. The results are summarized in extensive exclusion plots, incorporating additionally the prior theoretical and experimental bounds for comparison.
Symmetry and symmetry breaking
International Nuclear Information System (INIS)
Balian, R.; Lambert, D.; Brack, A.; Lachieze-Rey, M.; Emery, E.; Cohen-Tannoudji, G.; Sacquin, Y.
1999-01-01
The symmetry concept is a powerful tool for our understanding of the world. It allows a reduction of the volume of information needed to apprehend a subject thoroughly. Moreover this concept does not belong to a particular field, it is involved in the exact sciences but also in artistic matters. Living beings are characterized by a particular asymmetry: the chiral asymmetry. Although this asymmetry is visible in whole organisms, it seems it comes from some molecules that life always produce in one chirality. The weak interaction presents also the chiral asymmetry. The mass of particles comes from the breaking of a fundamental symmetry and the void could be defined as the medium showing as many symmetries as possible. The texts put together in this book show to a great extent how symmetry goes far beyond purely geometrical considerations. Different aspects of symmetry ideas are considered in the following fields: the states of matter, mathematics, biology, the laws of Nature, quantum physics, the universe, and the art of music. (A.C.)
Searching for hot new physics using ultracold neutrons: fundamental symmetries above the TeV scale.
CERN. Geneva
2015-01-01
As it stands now, the Standard Model surely requires an extension to explain dark matter, baryon number asymmetry and unification with gravity. While assured near the Planck scale, the lower energy limit of these extensions have not yet been discovered ...
International Nuclear Information System (INIS)
Kawabata, S.; Kashiwaya, S.; Tanaka, Y.; Golubov, A. A.; Asano, Y.
2011-01-01
Full text: A superconducting ring with a π-junction made from superconductor (S) / ferromagnetic- metal (FM) / superconductor (S) exhibits a spontaneous current without an external magnetic field and the corresponding magnetic flux is half a flux quantum in the ground state. Such a π-ring provides so-called 'quiet qubit' that can be efficiently decoupled from the fluctuation of the external field. However, the usage of FM gives rise to strong Ohmic dissipation. Therefore, the realization of π-junctions without FM is highly desired for qubit applications. We theoretically consider the possibility of the π-junction formation in the mesoscopic Josephson junctions with ferromagnetic insulators (FI) by taking into account the band structure of such materials explicitly. In the case of the fully polarized FIs, e.g., La 2 BaCuO 5 (LBCO) and K 2 CuF 4 , we found the formation of a π-junction and a novel atomic-scale 0-π transition induced by increasing the FI thickness LF. In this talk, I will discuss a thermal stability and material-parameter dependences of the atomic-scale 0-π transition as well as possibility of the odd-frequency pairing in such systems. (author)
Scaling symmetry, renormalization, and time series modeling: the case of financial assets dynamics.
Zamparo, Marco; Baldovin, Fulvio; Caraglio, Michele; Stella, Attilio L
2013-12-01
We present and discuss a stochastic model of financial assets dynamics based on the idea of an inverse renormalization group strategy. With this strategy we construct the multivariate distributions of elementary returns based on the scaling with time of the probability density of their aggregates. In its simplest version the model is the product of an endogenous autoregressive component and a random rescaling factor designed to embody also exogenous influences. Mathematical properties like increments' stationarity and ergodicity can be proven. Thanks to the relatively low number of parameters, model calibration can be conveniently based on a method of moments, as exemplified in the case of historical data of the S&P500 index. The calibrated model accounts very well for many stylized facts, like volatility clustering, power-law decay of the volatility autocorrelation function, and multiscaling with time of the aggregated return distribution. In agreement with empirical evidence in finance, the dynamics is not invariant under time reversal, and, with suitable generalizations, skewness of the return distribution and leverage effects can be included. The analytical tractability of the model opens interesting perspectives for applications, for instance, in terms of obtaining closed formulas for derivative pricing. Further important features are the possibility of making contact, in certain limits, with autoregressive models widely used in finance and the possibility of partially resolving the long- and short-memory components of the volatility, with consistent results when applied to historical series.
Scaling symmetry, renormalization, and time series modeling: The case of financial assets dynamics
Zamparo, Marco; Baldovin, Fulvio; Caraglio, Michele; Stella, Attilio L.
2013-12-01
We present and discuss a stochastic model of financial assets dynamics based on the idea of an inverse renormalization group strategy. With this strategy we construct the multivariate distributions of elementary returns based on the scaling with time of the probability density of their aggregates. In its simplest version the model is the product of an endogenous autoregressive component and a random rescaling factor designed to embody also exogenous influences. Mathematical properties like increments’ stationarity and ergodicity can be proven. Thanks to the relatively low number of parameters, model calibration can be conveniently based on a method of moments, as exemplified in the case of historical data of the S&P500 index. The calibrated model accounts very well for many stylized facts, like volatility clustering, power-law decay of the volatility autocorrelation function, and multiscaling with time of the aggregated return distribution. In agreement with empirical evidence in finance, the dynamics is not invariant under time reversal, and, with suitable generalizations, skewness of the return distribution and leverage effects can be included. The analytical tractability of the model opens interesting perspectives for applications, for instance, in terms of obtaining closed formulas for derivative pricing. Further important features are the possibility of making contact, in certain limits, with autoregressive models widely used in finance and the possibility of partially resolving the long- and short-memory components of the volatility, with consistent results when applied to historical series.
International Nuclear Information System (INIS)
Senjanovic, G.
1982-07-01
It is demonstrated that the spontaneous breakdown of CP invariance in grand unified theories requires the presence of intermediate mass scales. The simplest realization is provided by weakly broken left-right symmetry in the context of SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) model embedded in grand unified theories. (author)
Present and future K and B meson mixing constraints on TeV scale left-right symmetry
Bertolini, Stefano; Maiezza, Alessio; Nesti, Fabrizio
2014-05-01
We revisit the ΔF=2 transitions in the K and Bd ,s neutral meson systems in the context of the minimal left-right symmetric model. We take into account, in addition to up-to-date phenomenological data, the contributions related to the renormalization of the flavor-changing neutral Higgs tree-level amplitude. These contributions were neglected in recent discussions, albeit formally needed in order to obtain a gauge-independent result. Their impact on the minimal LR model is crucial and twofold. First, the effects are relevant in B meson oscillations, for both CP conserving and CP violating observables, so that for the first time these imply constraints on the LR scenario which compete with those of the K sector (plagued by long-distance uncertainties). Second, they sizably contribute to the indirect kaon CP violation parameter ɛ. We discuss the bounds from B and K mesons in both cases of LR symmetry: generalized parity (P) and charge conjugation (C). In the case of P, the interplay between the CP-violation parameters ɛ and ɛ' leads us to rule out the regime of very hierarchical bidoublet vacuum expectation values v2/v1handed currents, we find that a right-handed gauge boson WR as light as 3 TeV is allowed at the 95% C. L. This is well within the reach of direct detection at the next LHC run. If not discovered, within a decade the upgraded LHCb and Super B factories may reach an indirect sensitivity to a left-right scale of 8 TeV.
Energy Technology Data Exchange (ETDEWEB)
Fayet, Pierre [Laboratoire de Physique Theorique de l' Ecole Normale Superieure (CNRS UMR 8549, ENS, PSL Research University et UPMC, Sorbonne Universites), Paris Cedex 05 (France); Centre de Physique Theorique, Ecole polytechnique (CNRS UMR 7644, Universite Paris-Saclay), Palaiseau Cedex (France)
2017-01-15
A new light gauge boson U may have both vector and axial couplings. In a large class of theories, however, the new U(1) current J{sub F}{sup μ} naturally combines with the weak neutral current J{sup μ}{sub Z{sub s{sub m}}}, both parity-violating, into a vectorial current J{sub U}{sup μ}, combination of the B, L and electromagnetic currents with a possible dark-matter current. U{sup μ} may be expressed equivalently as cos ξC{sup μ} + sin ξ Z{sup μ}{sub sm} (''mixing with the Z'') or (1/cos χ) C{sup μ} + tan χ A{sup μ} (''mixing with the photon''), with C coupled to B, L and dark matter. The U boson may be viewed as a generalized dark photon, coupled to SM particles through Q{sub U} = Q+λ{sub B}B+λ{sub i}L{sub i}, with strength g''cos ξ cos{sup 2}θ = e tan χ. ''Kinetic-mixing'' terms, gauge invariant or not, simply correspond to a description in a non-orthogonal field basis (rather than to a new physical effect), with the dark photon in general also coupled to B and L. In a grand-unified theory Q{sub U}{sup gut} = Q - 2(B-L) at the GUT scale for SM particles, invariant under the SU(4) electrostrong symmetry group, with a non-vanishing ε = tan χ already present at the GUT scale, leading to Q{sub U} ≅ Q - 1.64 (B-L) at low energy. This also applies, for a very light or massless U boson, to a new long-range force, which could show up through apparent violations of the equivalence principle. (orig.)
International Nuclear Information System (INIS)
Tokarev, M.V.; Zborovsky, I.
2009-01-01
The hypothesis of self-similarity of hadron production in relativistic heavy ion collisions for search for phase transition in a nuclear matter is discussed. It is offered to use the established features of z-scaling for revealing signatures of new physics in cumulative region. It is noted that selection of events on centrality in cumulative region could help to localize a position of a critical point. Change of parameters of the theory (a specific heat and fractal dimensions) near to a critical point is considered as a signature of new physics. The relation of the power asymptotic of ψ(z) at high z, anisotropy of momentum space due to spontaneous symmetry breaking, and discrete (C, P, T) symmetries is emphasized
International Nuclear Information System (INIS)
Gañán-Calvo, A M; Rebollo-Muñoz, N; Montanero, J M
2013-01-01
We aim to establish the scaling laws for both the minimum rate of flow attainable in the steady cone–jet mode of electrospray, and the size of the resulting droplets in that limit. Use is made of a small body of literature on Taylor cone–jets reporting precise measurements of the transported electric current and droplet size as a function of the liquid properties and flow rate. The projection of the data onto an appropriate non-dimensional parameter space maps a region bounded by the minimum rate of flow attainable in the steady state. To explain these experimental results, we propose a theoretical model based on the generalized concept of physical symmetry, stemming from the system time invariance (steadiness). A group of symmetries rising at the cone-to-jet geometrical transition determines the scaling for the minimum flow rate and related variables. If the flow rate is decreased below that minimum value, those symmetries break down, which leads to dripping. We find that the system exhibits two instability mechanisms depending on the nature of the forces arising against the flow: one dominated by viscosity and the other by the liquid polarity. In the former case, full charge relaxation is guaranteed down to the minimum flow rate, while in the latter the instability condition becomes equivalent to the symmetry breakdown by charge relaxation or separation. When cone–jets are formed without artificially imposing a flow rate, a microjet is issued quasi-steadily. The flow rate naturally ejected this way coincides with the minimum flow rate studied here. This natural flow rate determines the minimum droplet size that can be steadily produced by any electrohydrodynamic means for a given set of liquid properties. (paper)
Gañán-Calvo, A. M.; Rebollo-Muñoz, N.; Montanero, J. M.
2013-03-01
We aim to establish the scaling laws for both the minimum rate of flow attainable in the steady cone-jet mode of electrospray, and the size of the resulting droplets in that limit. Use is made of a small body of literature on Taylor cone-jets reporting precise measurements of the transported electric current and droplet size as a function of the liquid properties and flow rate. The projection of the data onto an appropriate non-dimensional parameter space maps a region bounded by the minimum rate of flow attainable in the steady state. To explain these experimental results, we propose a theoretical model based on the generalized concept of physical symmetry, stemming from the system time invariance (steadiness). A group of symmetries rising at the cone-to-jet geometrical transition determines the scaling for the minimum flow rate and related variables. If the flow rate is decreased below that minimum value, those symmetries break down, which leads to dripping. We find that the system exhibits two instability mechanisms depending on the nature of the forces arising against the flow: one dominated by viscosity and the other by the liquid polarity. In the former case, full charge relaxation is guaranteed down to the minimum flow rate, while in the latter the instability condition becomes equivalent to the symmetry breakdown by charge relaxation or separation. When cone-jets are formed without artificially imposing a flow rate, a microjet is issued quasi-steadily. The flow rate naturally ejected this way coincides with the minimum flow rate studied here. This natural flow rate determines the minimum droplet size that can be steadily produced by any electrohydrodynamic means for a given set of liquid properties.
Aniello, Paolo; Chruściński, Dariusz
2017-07-01
A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner’s theorem, the set of pure states—the rank-one projections—is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the sets of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e. reasoning in terms of quantum states, the sets of ‘uniform’ density operators of corresponding fixed rank are symmetry witnesses too.
Can blueshifted Agn spectra explain B L Lac objects
International Nuclear Information System (INIS)
Basu, D.
2009-01-01
B L Lac spectra are almost completely devoid of any emission line, and absorption features are often present based on which redshifts are estimated. Several models have been proposed to explain the spectra, including the unification scheme currently most popular among astronomers. However, there appear to be ambiguities, uncertainties and contradictory results in this model, and many questions remain unanswered. Also, it involves the process of artificially enhancing the continuum to be concentrated to a high level, by the relativistically beaming jet action, in order to submerge the emission lines, partly or completely, to make them appear weak or invisible. Additionally, the sample based on which B L Lac objects have been included in the unification scheme is rather small to be statistically viable. In this context, we present an alternative and much simpler interpretation of the observed spectra of B L Lac objects, both emission and absorption, as blueshifted lines in Agn. Original spectra of fifty six objects available in the current literature are re-analyzed. Nine of these show only a single weak emission line and no absorption feature, while thirty five exhibit no emission feature but several absorption lines, and another twelve show more than one emission line and, in some cases, several absorption lines. It is demonstrated that emission lines in most B L Lac objects are blueshifted out of the visible region, and, hence, not seen at all. Emission lines, when seen, and absorption lines, are blueshifted and are identified with search lines of longer wavelengths that are naturally weak. Blue shifts, in emission and absorption features, are determined for all objects. Various considerations lead to the conclusion that the blue shift interpretation of B L Lac spectra is superior to and more important than the redshift interpretation. A possible explanation of observed blue shifts is presented in the scenario of the ejection process, a well-recognized mechanism
Left-right gauge symmetry breaking by radiative corrections in supergravity
International Nuclear Information System (INIS)
Moxhay, P.; Yamamoto, K.
1984-01-01
A supersymmetric SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) gauge theory coupled to N = 1 supergravity is investigated. The scale of left-right gauge symmetry breaking is determined as Msub(R) proportional Msub(P) esup(-1/α) by radiative corrections through the logarithmic evolution of soft supersymmetry breakings. SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) may be embedded in SO(10) grand unification. Cosmological implications intrinsic to the present model are also discussed, which may give a constraint Msub(R) approx.= 10 9-12 GeV. (orig.)
Voisin, Claire
1999-01-01
This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...
Asymmetric Gepner models III. B-L lifting
Energy Technology Data Exchange (ETDEWEB)
Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)
2011-06-21
In the same spirit as heterotic weight lifting, B-L lifting is a way of replacing the superfluous and ubiquitous U(1){sub B-L} with something else with the same modular properties, but different conformal weights and ground state dimensions. This method works in principle for all variants of (2,2) constructions, such as orbifolds, Calabi-Yau manifolds, free bosons and fermions and Gepner models, since it only modifies the universal SO(10)xE{sub 8} part of the CFT. However, it can only yield chiral spectra if the 'internal' sector of the theory provides a simple current of order 5. Here we apply this new method to Gepner models. Including exceptional invariants, 86 of them have the required order 5 simple current, and 69 of these yield chiral spectra. Three family spectra occur abundantly.
NLO+NLL collider bounds, Dirac fermion and scalar dark matter in the B-L model
Energy Technology Data Exchange (ETDEWEB)
Klasen, Michael [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Theoretische Physik, Muenster (Germany); Lyonnet, Florian [Southern Methodist University, Dallas, TX (United States); Queiroz, Farinaldo S. [Max-Planck-Institut fuer Kernphysik, Particle and Astroparticle Physics Division, Heidelberg (Germany)
2017-05-15
Baryon and lepton numbers being accidental global symmetries of the Standard Model (SM), it is natural to promote them to local symmetries. However, to preserve anomaly-freedom, only combinations of B-L are viable. In this spirit, we investigate possible dark matter realizations in the context of the U(1){sub B-L} model: (i) Dirac fermion with unbroken B-L; (ii) Dirac fermion with broken B-L; (iii) scalar dark matter; (iv) two-component dark matter. We compute the relic abundance, direct and indirect detection observables and confront them with recent results from Planck, LUX-2016, and Fermi-LAT and prospects from XENON1T. In addition to the well-known LEP bound M{sub Z}{sup {sub '}}/g{sub BL} >or similar 7 TeV, we include often ignored LHC bounds using 13 TeV dilepton (dimuon + dielectron) data at next-to-leading order plus next-to-leading logarithmic accuracy. We show that, for gauge couplings smaller than 0.4, the LHC gives rise to the strongest collider limit. In particular, we find M{sub Z}{sup {sub '}}/g{sub BL} > 8.7 TeV for g{sub BL} = 0.3. We conclude that the NLO+NLL corrections improve the dilepton bounds on the Z{sup '} mass and that both dark matter candidates are only viable in the Z{sup '} resonance region, with the parameter space for scalar dark matter being fully probed by XENON1T. Lastly, we show that one can successfully have a minimal two-component dark matter model. (orig.)
B+ L violation at colliders and new physics
Cerdeño, David G.; Reimitz, Peter; Sakurai, Kazuki; Tamarit, Carlos
2018-04-01
Chiral electroweak anomalies predict baryon ( B) and lepton ( L) violating fermion interactions, which can be dressed with large numbers of Higgs and gauge bosons. The estimation of the total B + L-violating rate from an initial two-particle state — potentially observable at colliders — has been the subject of an intense discussion, mainly centered on the resummation of boson emission, which is believed to contribute to the cross-section with an exponential function of the energy, yet with an exponent (the "holy-grail" function) which is not fully known in the energy range of interest. In this article we focus instead on the effect of fermions beyond the Standard-Model (SM) in the polynomial contributions to the rate. It is shown that B + L processes involving the new fermions have a polynomial contribution that can be several orders of magnitude greater than in the SM, for high centre-of-mass energies and light enough masses. We also present calculations that hint at a simple dependence of the holy grail function on the heavy fermion masses. Thus, if anomalous B + L violating interactions are ever detected at high-energy colliders, they could be associated with new physics.
Symmetry control using beam phasing in ∼0.2 NIF scale high temperature Hohlraum experiment on OMEGA
International Nuclear Information System (INIS)
Delamater, Norman D.; Wilson, Goug C.; Kyrala, George A.; Seifter, Achim; Hoffman, N.M.; Dodd, E.; Glebov, V.
2009-01-01
Results are shown from recent experiments at the Omega laser facility, using 40 Omega beams driving the hohlraum with 3 cones from each side and up to 19.5 kJ of laser energy. Beam phasing is achieved by decreasing the energy separately in each of the three cones, by 3 kJ, for a total drive energy of 16.5kJ. This results in a more asymmetric drive, which will vary the shape of the imploded symmetry capsule core from round to oblate or prolate in a systematic and controlled manner. These results would be the first demonstration of beam phasing for implosions in such 'high temperature' (275 eV) hohlraums at Omega. Dante measurements confirmed the predicted peak drive temperatures of 275 eV. Implosion core time dependent x-ray images were obtained from framing camera data which show the expected change in symmetry due to beam phasing and which also agree well with post processed hydro code calculations. Time resolved hard x-ray data has been obtained and it was found that the hard x-rays are correlated mainly with the low angle 21 o degree cone.
Energy Technology Data Exchange (ETDEWEB)
Herrero, O F, E-mail: o.f.herrero@hotmail.co [Conservatorio Superior de Musica ' Eduardo Martinez Torner' Corrada del Obispo s/n 33003 - Oviedo - Asturias (Spain)
2010-06-01
Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.
International Nuclear Information System (INIS)
Herrero, O F
2010-01-01
Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.
Webber, C J
2001-05-01
This article shows analytically that single-cell learning rules that give rise to oriented and localized receptive fields, when their synaptic weights are randomly and independently initialized according to a plausible assumption of zero prior information, will generate visual codes that are invariant under two-dimensional translations, rotations, and scale magnifications, provided that the statistics of their training images are sufficiently invariant under these transformations. Such codes span different image locations, orientations, and size scales with equal economy. Thus, single-cell rules could account for the spatial scaling property of the cortical simple-cell code. This prediction is tested computationally by training with natural scenes; it is demonstrated that a single-cell learning rule can give rise to simple-cell receptive fields spanning the full range of orientations, image locations, and spatial frequencies (except at the extreme high and low frequencies at which the scale invariance of the statistics of digitally sampled images must ultimately break down, because of the image boundary and the finite pixel resolution). Thus, no constraint on completeness, or any other coupling between cells, is necessary to induce the visual code to span wide ranges of locations, orientations, and size scales. This prediction is made using the theory of spontaneous symmetry breaking, which we have previously shown can also explain the data-driven self-organization of a wide variety of transformation invariances in neurons' responses, such as the translation invariance of complex cell response.
Symmetry, Symmetry Breaking and Topology
Directory of Open Access Journals (Sweden)
Siddhartha Sen
2010-07-01
Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.
International Nuclear Information System (INIS)
Souriau, J.M.
1984-01-01
The sky uniformity can be noticed in studying the repartition of objects far enough. The sky isotropy description uses space rotations. The group theory elements will allow to give a meaning at the same time precise and general to the word a ''symmetry''. Universe models are reviewed, which must have both of the following qualities: - conformity with the physic known laws; - rigorous symmetry following one of the permitted groups. Each of the models foresees that universe evolution obeys an evolution equation. Expansion and big-bang theory are recalled. Is universe an open or closed space. Universe is also electrically neutral. That leads to a work hypothesis: the existing matter is not given data of universe but it appeared by evolution from nothing. Problem of matter and antimatter is then raised up together with its place in universe [fr
Amelino-Camelia, G; Amelino-Camelia, Giovanni; Piran, Tsvi
2001-01-01
One of the most puzzling current experimental physics paradoxes is the arrival on Earth of Ultra High Energy Cosmic Rays with energies above the GZK threshold. The recent observation of 20TeV photons from Mk 501 is another somewhat similar paradox. Several models have been proposed for the UHECR paradox. No solution has yet been proposed for the TeV-$\\gamma$ paradox. Remarkably, the drastic assumption of a violation of ordinary Lorentz invariance would resolve both paradoxes. We present a formalism for the description of the type of Lorentz-invariance deformation (LID) that could be induced by non-trivial short-distance structure of space-time, and we show that this formalism is well suited for comparison of experimental data with LID predictions. We use the UHECR and TeV-$\\gamma$ data, as well as bounds on time-of-flight differences between photons of different energies, to constrain the LID parameter space. A model with only two parameters, an energy scale and a dimensionless parameter characterizing the fu...
Lorentz-Symmetry Test at Planck-Scale Suppression With a Spin-Polarized 133Cs Cold Atom Clock.
Pihan-Le Bars, H; Guerlin, C; Lasseri, R-D; Ebran, J-P; Bailey, Q G; Bize, S; Khan, E; Wolf, P
2018-06-01
We present the results of a local Lorentz invariance (LLI) test performed with the 133 Cs cold atom clock FO2, hosted at SYRTE. Such a test, relating the frequency shift between 133 Cs hyperfine Zeeman substates with the Lorentz violating coefficients of the standard model extension (SME), has already been realized by Wolf et al. and led to state-of-the-art constraints on several SME proton coefficients. In this second analysis, we used an improved model, based on a second-order Lorentz transformation and a self-consistent relativistic mean field nuclear model, which enables us to extend the scope of the analysis from purely proton to both proton and neutron coefficients. We have also become sensitive to the isotropic coefficient , another SME coefficient that was not constrained by Wolf et al. The resulting limits on SME coefficients improve by up to 13 orders of magnitude the present maximal sensitivities for laboratory tests and reach the generally expected suppression scales at which signatures of Lorentz violation could appear.
International Nuclear Information System (INIS)
Greene, L.H.; Hentges, P.J.; Aubin, H.; Aprili, M.; Badica, E.; Covington, M.; Pafford, M.M.; Westwood, G.; Klemperer, W.G.; Jian, Sha; Hinks, D.G.
2004-01-01
Quasiparticle planar tunneling spectroscopy is used to study unconventional superconductivity in YBa 2 Cu 3 O 7 (YBCO) thin films and Bi 2 Sr 2 CaCu 2 O 8 (BSCCO) single crystals. Tunneling conductances are obtained as a function of crystallographic orientation, applied magnetic field (magnitude and orientation), atomic substitution and surface damage. Our systematic studies confirm that the observed zero-bias conductance peak (ZBCP), a measure of the near-surface quasiparticle (QP) density of states (DoS), is comprised of Andreev bound states (ABS) resulting directly from the sign change of the d-wave order parameter (OP) at the Fermi surface. Our data, plus a literature search, reveals a consistency in the observation of the splitting of the ZBCP in optimally-doped materials. We note that the splitting of the ZBCP observed in applied field, and the spontaneous splitting observed at lower temperatures in zero field, occur concomitantly in a given junction, and that observation of this splitting is dependent upon two parameters: (1) the magnitude of the tunneling cone and (2) the degree of atomic-scale disorder at the interface
Strong Electroweak Symmetry Breaking
Grinstein, Benjamin
2011-01-01
Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...
International Nuclear Information System (INIS)
Henley, E.M.
1981-09-01
Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces
Chiral symmetry and chiral-symmetry breaking
International Nuclear Information System (INIS)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed
Energy Technology Data Exchange (ETDEWEB)
Hill, Christopher T.
2018-03-19
We review and expand upon recent work demonstrating that Weyl invariant theories can be broken "inertially," which does not depend upon a potential. This can be understood in a general way by the "current algebra" of these theories, independently of specific Lagrangians. Maintaining the exact Weyl invariance in a renormalized quantum theory can be accomplished by renormalization conditions that refer back to the VEV's of fields in the action. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential that breaks a U(1) symmetry together,with scale invariance.
International Nuclear Information System (INIS)
Henley, E.M.
1987-01-01
Nuclei are very useful for testing symmetries, and for studies of symmetry breaking. This thesis is illustrated for two improper space-time transformations, parity and time-reversal and for one internal symmetry: charge symmetry and independence. Recent progress and present interest is reviewed. 23 refs., 8 figs., 2 tabs
Dynamics of symmetry breaking in strongly coupled QED
International Nuclear Information System (INIS)
Bardeen, W.A.
1988-10-01
I review the dynamical structure of strong coupled QED in the quenched planar limit. The symmetry structure of this theory is examined with reference to the nature of both chiral and scale symmetry breaking. The renormalization structure of the strong coupled phase is analysed. The compatibility of spontaneous scale and chiral symmetry breaking is studied using effective lagrangian methods. 14 refs., 3 figs
Strong coupling electroweak symmetry breaking
International Nuclear Information System (INIS)
Barklow, T.L.; Burdman, G.; Chivukula, R.S.
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models
Strong coupling electroweak symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.
Reflections on symmetries at SPIN '94
International Nuclear Information System (INIS)
Page, S.A.
1995-01-01
In my view, the parallel sessions on ''Symmetries'' were amongst the most stimulating sessions of this conference. Speakers reported on experimental tests of Charge Symmetry, Parity, and Time Reversal violation and their theoretical interpretation, spanning a wide range of energy scales and experimental techniques. I hope that this brief summary will whet the reader's appetite to explore the many contributed papers which follow
Ermolenko, Alexander E; Perepada, Elena A
2007-01-01
The paper contains a description of basic regularities in the manifestation of symmetry of human structural organization and its ontogenetic and phylogenetic development. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant. The symmetry of the chromosome, of the embrio at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described. An hypothesis is postulated that the two-plane symmetry is formed by two mechanisms: a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and, b) genetic mechanisms of the development of chromosomes having two-plane symmetry.
2015-01-01
Material composition and topography of the cell-contacting material interface are important considerations in the design of biomaterials at the nano and micro scales. This study is one of the first to have assessed the osteoblastic response to micropatterned polymer–ceramic composite surfaces. In particular, the effect of topographic variations of composite poly(ε-caprolactone)/hydroxyapatite (PCL/HAp) films on viability, proliferation, migration and osteogenesis of fibroblastic and osteoblastic MC3T3-E1 cells was evaluated. To that end, three different micropatterned PCL/HAp films were compared: flat and textured, the latter of which included films comprising periodically arranged and randomly distributed oval topographic features 10 μm in diameter, 20 μm in separation and 10 μm in height, comparable to the dimensions of MC3T3-E1 cells. PCL/HAp films were fabricated by the combination of a bottom-up, soft chemical synthesis of the ceramic, nanoparticulate phase and a top-down, photolithographic technique for imprinting fine, microscale features on them. X-ray diffraction analysis indicated an isotropic orientation of both the polymeric chains and HAp crystallites in the composite samples. Biocompatibility tests indicated no significant decrease in their viability when grown on PCL/HAp films. Fibroblast proliferation and migration onto PCL/HAp films proceeded slower than on the control borosilicate glass, with the flat composite film fostering more cell migration activity than the films containing topographic features. The gene expression of seven analyzed osteogenic markers, including procollagen type I, osteocalcin, osteopontin, alkaline phosphatase, and the transcription factors Runx2 and TGFβ-1, was, however, consistently upregulated in cells grown on PCL/HAp films comprising periodically ordered topographic features, suggesting that the higher levels of symmetry of the topographic ordering impose a moderate mechanochemical stress on the adherent cells
Flavor physics without flavor symmetries
Buchmuller, Wilfried; Patel, Ketan M.
2018-04-01
We quantitatively analyze a quark-lepton flavor model derived from a six-dimensional supersymmetric theory with S O (10 )×U (1 ) gauge symmetry, compactified on an orbifold with magnetic flux. Two bulk 16 -plets charged under the U (1 ) provide the three quark-lepton generations whereas two uncharged 10 -plets yield two Higgs doublets. At the orbifold fixed points mass matrices are generated with rank one or two. Moreover, the zero modes mix with heavy vectorlike split multiplets. The model possesses no flavor symmetries. Nevertheless, there exist a number of relations between Yukawa couplings, remnants of the underlying grand unified theory symmetry and the wave function profiles of the zero modes, which lead to a prediction of the light neutrino mass scale, mν 1˜10-3 eV and heavy Majorana neutrino masses in the range from 1 012 to 1 014 GeV . The model successfully includes thermal leptogenesis.
Directory of Open Access Journals (Sweden)
Angel Garrido
2011-01-01
Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.
International Nuclear Information System (INIS)
Webb, G M; Zank, G P
2007-01-01
We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x 0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x 0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated
International Nuclear Information System (INIS)
Nilles, Hans Peter
2012-04-01
Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.
Energy Technology Data Exchange (ETDEWEB)
Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-04-15
Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.
Symmetry, asymmetry and dissymmetry
International Nuclear Information System (INIS)
Wackenheim, A.; Zollner, G.
1987-01-01
The authors discuss the concept of symmetry and defect of symmetry in radiological imaging and recall the definition of asymmetry (congenital or constitutional) and dissymmetry (acquired). They then describe a rule designed for the cognitive method of automatic evaluation of shape recognition data and propose the use of reversal symmetry [fr
International Nuclear Information System (INIS)
Fuentes Cobas, L.E.; Font Hernandez, R.
1993-01-01
An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs
Rehren, K. -H.
1996-01-01
Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.
International Nuclear Information System (INIS)
Weinberg, S.
1976-01-01
The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy
From high-scale leptogenesis to low-scale one-loop neutrino mass generation
Zhou, Hang; Gu, Pei-Hong
2018-02-01
We show that a high-scale leptogenesis can be consistent with a low-scale one-loop neutrino mass generation. Our models are based on the SU(3)c × SU(2)L × U(1)Y × U(1) B - L gauge groups. Except a complex singlet scalar for the U(1) B - L symmetry breaking, the other new scalars and fermions (one scalar doublet, two or more real scalar singlets/triplets and three right-handed neutrinos) are odd under an unbroken Z2 discrete symmetry. The real scalar decays can produce an asymmetry stored in the new scalar doublet which subsequently decays into the standard model lepton doublets and the right-handed neutrinos. The lepton asymmetry in the standard model leptons then can be partially converted to a baryon asymmetry by the sphaleron processes. By integrating out the heavy scalar singlets/triplets, we can realize an effective theory to radiatively generate the small neutrino masses at the TeV scale. Furthermore, the lightest right-handed neutrino can serve as a dark matter candidate.
International Nuclear Information System (INIS)
De Filippo, E; Cardella, G; Guidara, E La; Pagano, A; Papa, M; Amorini, F; Colonna, M; Gianì, S; Grassi, L; Han, J; Maiolino, C; Auditore, L; Minniti, T; Baran, V; Berceanu, I; Geraci, E; Grzeszczuk, A; Guazzoni, P; Lanzalone, G; Lombardo, I
2013-01-01
We show new data from the 64 Ni+ 124 Sn and 58 Ni+ 112 Sn reactions studied in direct kinematics with the CHIMERA detector at INFN-LNS and compared with the reverse kinematics reactions at the same incident beam energy (35 A MeV). Analyzing the data with the method of relative velocity correlations, fragments coming from statistical decay of an excited projectile-like (PLF) or target-like (TLF) fragments are discriminated from the ones coming from dynamical emission in the early stages of the reaction. By comparing data of the reverse kinematics experiment with a stochastic mean field (SMF) + GEMINI calculations our results show that observables from neck fragmentation mechanism add valuable constraints on the density dependence of symmetry energy. An indication is found for a moderately stiff symmetry energy potential term of EOS.
N=1 superstrings with spontaneously broken symmetries
International Nuclear Information System (INIS)
Ferrara, S.
1988-01-01
We construct N=1 chiral superstrings with spontaneously broken gauge symmetry in four space-time dimensions. These new string solutions are obtained by a generalized coordinate-dependent Z 2 orbifold compactification of some non-chiral five-dimensional N=1 and N=2 superstrings. The scale of symmetry breaking is arbitrary (at least classically) and it can be chosen hierarchically smaller than the string scale (α') -1/2 . (orig.)
Holography without translational symmetry
Vegh, David
2013-01-01
We propose massive gravity as a holographic framework for describing a class of strongly interacting quantum field theories with broken translational symmetry. Bulk gravitons are assumed to have a Lorentz-breaking mass term as a substitute for spatial inhomogeneities. This breaks momentum-conservation in the boundary field theory. At finite chemical potential, the gravity duals are charged black holes in asymptotically anti-de Sitter spacetime. The conductivity in these systems generally exhibits a Drude peak that approaches a delta function in the massless gravity limit. Furthermore, the optical conductivity shows an emergent scaling law: $|\\sigma(\\omega)| \\approx {A \\over \\omega^{\\alpha}} + B$. This result is consistent with that found earlier by Horowitz, Santos, and Tong who introduced an explicit inhomogeneous lattice into the system.
Raibert, M H
1986-03-14
Symmetry plays a key role in simplifying the control of legged robots and in giving them the ability to run and balance. The symmetries studied describe motion of the body and legs in terms of even and odd functions of time. A legged system running with these symmetries travels with a fixed forward speed and a stable upright posture. The symmetries used for controlling legged robots may help in elucidating the legged behavior of animals. Measurements of running in the cat and human show that the feet and body sometimes move as predicted by the even and odd symmetry functions.
Kemeth, Felix P.; Haugland, Sindre W.; Krischer, Katharina
2018-05-01
Symmetry broken states arise naturally in oscillatory networks. In this Letter, we investigate chaotic attractors in an ensemble of four mean-coupled Stuart-Landau oscillators with two oscillators being synchronized. We report that these states with partially broken symmetry, so-called chimera states, have different setwise symmetries in the incoherent oscillators, and in particular, some are and some are not invariant under a permutation symmetry on average. This allows for a classification of different chimera states in small networks. We conclude our report with a discussion of related states in spatially extended systems, which seem to inherit the symmetry properties of their counterparts in small networks.
Parastatistics and gauge symmetries
International Nuclear Information System (INIS)
Govorkov, A.B.
1982-01-01
A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed
International Nuclear Information System (INIS)
Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; Willett, Brian
2015-01-01
A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.
Symmetry and symmetry breaking in quantum mechanics
International Nuclear Information System (INIS)
Chomaz, Philippe
1998-01-01
In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation
International Nuclear Information System (INIS)
Mainzer, K.
1988-01-01
Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs
Energy Technology Data Exchange (ETDEWEB)
Mainzer, K
1988-05-01
Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs.
International Nuclear Information System (INIS)
Arima, A.
2003-01-01
(1) There are symmetries in nature, and the concept of symmetry has been used in art and architecture. The symmetry is evaluated high in the European culture. In China, the symmetry is broken in the paintings but it is valued in the architecture. In Japan, however, the symmetry has been broken everywhere. The serious and interesting question is why these differences happens? (2) In this lecture, I reviewed from the very beginning the importance of the rotational symmetry in quantum mechanics. I am sorry to be too fundamental for specialists of nuclear physics. But for people who do not use these theories, I think that you could understand the mathematical aspects of quantum mechanics and the relation between the angular momentum and the rotational symmetry. (3) To the specialists of nuclear physics, I talked about my idea as follows: dynamical treatment of collective motions in nuclei by IBM, especially the meaning of the degeneracy observed in the rotation bands top of γ vibration and β vibration, and the origin of pseudo-spin symmetry. Namely, if there is a symmetry, a degeneracy occurs. Conversely, if there is a degeneracy, there must be a symmetry. I discussed some details of the observed evidence and this correspondence is my strong belief in physics. (author)
Energy Technology Data Exchange (ETDEWEB)
Jacobsen, Alan J. [HRL Laboratories LLC, Sensors and Materials Laboratory, 3011 Malibu Canyon Road, Malibu, CA 90265-4797 (United States); Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA (United States)], E-mail: ajjacobsen@hrl.com; Barvosa-Carter, William [HRL Laboratories LLC, Sensors and Materials Laboratory, 3011 Malibu Canyon Road, Malibu, CA 90265-4797 (United States); Nutt, Steven [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA (United States)
2008-06-15
A process for interconnecting a three-dimensional pattern of self-propagating polymer waveguides was used to form micro-truss structures with two new unit cell architectures. The structures were formed using a two-dimensional mask with a hexagonal pattern of apertures. Distinct unit cell architectures were possible by exposing the mask to a different number of incident UV exposure beams, which are used to form the waveguides. One unit cell design featured three intersecting waveguides per node, resulting in a structure with three-fold symmetry. The second unit cell design had six-fold symmetry and was characterized by primary nodes with six intersecting waveguides and secondary nodes with two intersecting waveguides. Compression loading experiments were conducted on micro-truss samples with comparable relative density values ({rho}/{rho}{sub s} = 6.5%), but different unit cell architectures. The addition of secondary nodes in the structures based on the second design led to an increase in compressive modulus of up to 70% and an average increase in peak strength of 42%. The increase in compressive strength and modulus was attributed to a reduction in the truss-member slenderness ratio achieved through increased waveguide connectivity.
International Nuclear Information System (INIS)
Jacobsen, Alan J.; Barvosa-Carter, William; Nutt, Steven
2008-01-01
A process for interconnecting a three-dimensional pattern of self-propagating polymer waveguides was used to form micro-truss structures with two new unit cell architectures. The structures were formed using a two-dimensional mask with a hexagonal pattern of apertures. Distinct unit cell architectures were possible by exposing the mask to a different number of incident UV exposure beams, which are used to form the waveguides. One unit cell design featured three intersecting waveguides per node, resulting in a structure with three-fold symmetry. The second unit cell design had six-fold symmetry and was characterized by primary nodes with six intersecting waveguides and secondary nodes with two intersecting waveguides. Compression loading experiments were conducted on micro-truss samples with comparable relative density values (ρ/ρ s = 6.5%), but different unit cell architectures. The addition of secondary nodes in the structures based on the second design led to an increase in compressive modulus of up to 70% and an average increase in peak strength of 42%. The increase in compressive strength and modulus was attributed to a reduction in the truss-member slenderness ratio achieved through increased waveguide connectivity
International Nuclear Information System (INIS)
Choi, K.; Kaplan, D.B.; Nelson, A.E.
1993-01-01
Conventional solutions to the strong CP problem all require the existence of global symmetries. However, quantum gravity may destroy global symmetries, making it hard to understand why the electric dipole moment of the neutron (EDMN) is so small. We suggest here that CP is actually a discrete gauge symmetry, and is therefore not violated by quantum gravity. We show that four-dimensional CP can arise as a discrete gauge symmetry in theories with dimensional compactification, if the original number of Minkowski dimensions equals 8k+1, 8k+2 or 8k+3, and if there are certain restrictions on the gauge group; these conditions are met by superstrings. CP may then be broken spontaneously below 10 9 GeV, explaining the observed CP violation in the kaon system without inducing a large EDMN. We discuss the phenomenology of such models, as well as the peculiar properties of cosmic 'SP strings' which could be produced at the compactification scale. Such strings have the curious property that a particle carried around the string is turned into its CP conjugate. A single CP string renders four-dimensional space-time nonorientable. (orig.)
From physical symmetries to emergent gauge symmetries
International Nuclear Information System (INIS)
Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.
2016-01-01
Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.
Harris, A. Brooks
2006-01-01
This paper represents a detailed instruction manual for constructing the Landau expansion for magnetoelectric coupling in incommensurate ferroelectric magnets. The first step is to describe the magnetic ordering in terms of symmetry adapted coordinates which serve as complex valued magnetic order parameters whose transformation properties are displayed. In so doing we use the previously proposed technique to exploit inversion symmetry, since this symmetry had been universally overlooked. Havi...
Approximate and renormgroup symmetries
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling
2009-07-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximate and renormgroup symmetries
International Nuclear Information System (INIS)
Ibragimov, Nail H.; Kovalev, Vladimir F.
2009-01-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Dynamical Symmetry Breaking of Extended Gauge Symmetries
Appelquist, Thomas; Shrock, Robert
2003-01-01
We construct asymptotically free gauge theories exhibiting dynamical breaking of the left-right, strong-electroweak gauge group $G_{LR} = {\\rm SU}(3)_c \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R \\times {\\rm U}(1)_{B-L}$, and its extension to the Pati-Salam gauge group $G_{422}={\\rm SU}(4)_{PS} \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R$. The models incorporate technicolor for electroweak breaking, and extended technicolor for the breaking of $G_{LR}$ and $G_{422}$ and the generation of fermion ...
International Nuclear Information System (INIS)
Haxton, W.C.
1988-01-01
I discuss a number of the themes of the Symmetries and Spin session of the 8th International Symposium on High Energy Spin Physics: parity nonconservation, CP/T nonconservation, and tests of charge symmetry and charge independence. 28 refs., 1 fig
2016-01-01
The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.
Quantum symmetry for pedestrians
International Nuclear Information System (INIS)
Mack, G.; Schomerus, V.
1992-03-01
Symmetries more general than groups are possible in quantum therory. Quantum symmetries in the narrow sense are compatible with braid statistics. They are theoretically consistent much as supersymmetry is, and they could lead to degenerate multiplets of excitations with fractional spin in thin films. (orig.)
Wigner's Symmetry Representation Theorem
Indian Academy of Sciences (India)
IAS Admin
At the Heart of Quantum Field Theory! Aritra Kr. ... principle of symmetry was not held as something very fundamental ... principle of local symmetry: the laws of physics are invariant un- .... Next, we would show that different coefficients of a state ...
Charged fluids with symmetries
Indian Academy of Sciences (India)
It is possible to introduce many types of symmetries on the manifold which restrict the ... metric tensor field and generate constants of the motion along null geodesics .... In this analysis we have studied the role of symmetries for charged perfect ...
Marchis, Iuliana
2009-01-01
Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.
Dark matter and global symmetries
Directory of Open Access Journals (Sweden)
Yann Mambrini
2016-09-01
Full Text Available General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left–Right, Singlet Fermionic, Zee–Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i global symmetries are broken at the Planck scale, that (ii the non-renormalizable operators mediating dark matter decay have O(1 couplings, that (iii the dark matter is a singlet field, and that (iv the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV–TeV, including the WIMP regime.
Symmetry and symmetry breaking in modern physics
International Nuclear Information System (INIS)
Barone, M; Theophilou, A K
2008-01-01
In modern physics, the theory of symmetry, i.e. group theory, is a basic tool for understanding and formulating the fundamental principles of Physics, like Relativity, Quantum Mechanics and Particle Physics. In this work we focus on the relation between Mathematics, Physics and objective reality
Soft Terms from Broken Symmetries
Buican, Matthew
2010-01-01
In theories of phyiscs beyond the Standard Model (SM), visible sector fields often carry quantum numbers under additional gauge symmetries. One could then imagine a scenario in which these extra gauge symmetries play a role in transmitting supersymmetry breaking from a hidden sector to the Supersymmetric Standard Model (SSM). In this paper we present a general formalism for studying the resulting hidden sectors and calculating the corresponding gauge mediated soft parameters. We find that a large class of generic models features a leading universal contribution to the soft scalar masses that only depends on the scale of Higgsing, even if the model is strongly coupled. As a by-product of our analysis, we elucidate some IR aspects of the correlation functions in General Gauge Mediation. We also discuss possible phenomenological applications.
Discrete symmetries, strong CP problem and gravity
International Nuclear Information System (INIS)
Senjanovic, G.
1993-05-01
Spontaneous breaking of parity or time reversal invariance offers a solution to the strong CP problem, the stability of which under quantum gravitational effects provides an upper limit on the scale of symmetry breaking. Even more important, these Planck scale effects may provide a simple and natural way out of the resulting domain wall problem. (author). 22 refs
Dynamical generation of a composite quark-lepton symmetry
International Nuclear Information System (INIS)
Yasue, Masaki.
1981-05-01
We demonstrate the possibility that a basic [SU(2)]sup(N) symmetry of N subconstituents, which describes particle and antiparticle transitions, generates at most an ''effective'' SO(2N) symmetry and at least an ''effective'' SU(N) x U(1) symmetry of composite quarks and leptons whose states are specified by the N different kinds of subconstituents. The generators of the ''effective'' symmetry, are identified by the correct algebraic properties specific to SO(2N) of composite operators constructed from the [SU(2)]sup(N)-operators acting on the composite quark-lepton states. The composite quarks and leptons are found to respect SO(4) x SO(6) or SU(2)sub(L) x U(1)sub(R) x SU(3)sub(c) x U(1)sub(B-L) according to a new selection rule, which are generated by the bilinear products of the raising and lowering operators of [SU(2)] 5 . This construction of the SO(4) x SO(6) generators allows us to uniquely define the five quantum numbers of that symmetry even at the subconstituent level. The full SO(10) generators can be also constructed; however, one needs a newly arranged [SU(2)] 5 symmetry only defined at the composite level, the generators of which turn out to be at most N body operators of the original [SU(2)] 5 . (author)
International Nuclear Information System (INIS)
O'Raifeartaigh, L.
1979-01-01
This review describes the principles of hidden gauge symmetry and of its application to the fundamental interactions. The emphasis is on the structure of the theory rather than on the technical details and, in order to emphasise the structure, gauge symmetry and hidden symmetry are first treated as independent phenomena before being combined into a single (hidden gauge symmetric) theory. The main application of the theory is to the weak and electromagnetic interactions of the elementary particles, and although models are used for comparison with experiment and for illustration, emphasis is placed on those features of the application which are model-independent. (author)
Sequential flavor symmetry breaking
International Nuclear Information System (INIS)
Feldmann, Thorsten; Jung, Martin; Mannel, Thomas
2009-01-01
The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.
Sequential flavor symmetry breaking
Feldmann, Thorsten; Jung, Martin; Mannel, Thomas
2009-08-01
The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.
Schwichtenberg, Jakob
2015-01-01
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.
Infinite symmetry in the quantum Hall effect
Directory of Open Access Journals (Sweden)
Lütken C.A.
2014-04-01
Full Text Available The new states of matter and concomitant quantum critical phenomena revealed by the quantum Hall effect appear to be accompanied by an emergent modular symmetry. The extreme rigidity of this infinite symmetry makes it easy to falsify, but two decades of experiments have failed to do so, and the location of quantum critical points predicted by the symmetry is in increasingly accurate agreement with scaling experiments. The symmetry severely constrains the structure of the effective quantum field theory that encodes the low energy limit of quantum electrodynamics of 1010 charges in two dirty dimensions. If this is a non-linear σ-model the target space is a torus, rather than the more familiar sphere. One of the simplest toroidal models gives a critical (correlation length exponent that agrees with the value obtained from numerical simulations of the quantum Hall effect.
Gapless Symmetry-Protected Topological Order
Directory of Open Access Journals (Sweden)
Thomas Scaffidi
2017-11-01
Full Text Available We introduce exactly solvable gapless quantum systems in d dimensions that support symmetry-protected topological (SPT edge modes. Our construction leads to long-range entangled, critical points or phases that can be interpreted as critical condensates of domain walls “decorated” with dimension (d-1 SPT systems. Using a combination of field theory and exact lattice results, we argue that such gapless SPT systems have symmetry-protected topological edge modes that can be either gapless or symmetry broken, leading to unusual surface critical properties. Despite the absence of a bulk gap, these edge modes are robust against arbitrary symmetry-preserving local perturbations near the edges. In two dimensions, we construct wave functions that can also be interpreted as unusual quantum critical points with diffusive scaling in the bulk but ballistic edge dynamics.
Hohenstein, Edward G; Parrish, Robert M; Sherrill, C David; Turney, Justin M; Schaefer, Henry F
2011-11-07
Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.
International Nuclear Information System (INIS)
Dragon, N.
1979-01-01
The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Segmentation Using Symmetry Deviation
DEFF Research Database (Denmark)
Hollensen, Christian; Højgaard, L.; Specht, L.
2011-01-01
of the CT-scans into a single atlas. Afterwards the standard deviation of anatomical symmetry for the 20 normal patients was evaluated using non-rigid registration and registered onto the atlas to create an atlas for normal anatomical symmetry deviation. The same non-rigid registration was used on the 10...... hypopharyngeal cancer patients to find anatomical symmetry and evaluate it against the standard deviation of the normal patients to locate pathologic volumes. Combining the information with an absolute PET threshold of 3 Standard uptake value (SUV) a volume was automatically delineated. The overlap of automated....... The standard deviation of the anatomical symmetry, seen in figure for one patient along CT and PET, was extracted for normal patients and compared with the deviation from cancer patients giving a new way of determining cancer pathology location. Using the novel method an overlap concordance index...
Statistical symmetries in physics
International Nuclear Information System (INIS)
Green, H.S.; Adelaide Univ., SA
1994-01-01
Every law of physics is invariant under some group of transformations and is therefore the expression of some type of symmetry. Symmetries are classified as geometrical, dynamical or statistical. At the most fundamental level, statistical symmetries are expressed in the field theories of the elementary particles. This paper traces some of the developments from the discovery of Bose statistics, one of the two fundamental symmetries of physics. A series of generalizations of Bose statistics is described. A supersymmetric generalization accommodates fermions as well as bosons, and further generalizations, including parastatistics, modular statistics and graded statistics, accommodate particles with properties such as 'colour'. A factorization of elements of ggl(n b ,n f ) can be used to define truncated boson operators. A general construction is given for q-deformed boson operators, and explicit constructions of the same type are given for various 'deformed' algebras. A summary is given of some of the applications and potential applications. 39 refs., 2 figs
Wigner's Symmetry Representation Theorem
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...
Dynamical symmetries for fermions
International Nuclear Information System (INIS)
Guidry, M.
1989-01-01
An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs
Flavour from accidental symmetries
International Nuclear Information System (INIS)
Ferretti, Luca; King, Stephen F.; Romanino, Andrea
2006-01-01
We consider a new approach to fermion masses and mixings in which no special 'horizontal' dynamics is invoked to account for the hierarchical pattern of charged fermion masses and for the peculiar features of neutrino masses. The hierarchy follows from the vertical, family-independent structure of the model, in particular from the breaking pattern of the Pati-Salam group. The lightness of the first two fermion families can be related to two family symmetries emerging in this context as accidental symmetries
Higgs mass scales and matter-antimatter oscillations in grand unified theories
International Nuclear Information System (INIS)
Senjanovic, G.
1982-01-01
A general discussion of mass scales in grand unified theories is presented, with special emphasis on Higgs scalars which mediate neutron-antineutron (n-anti n) and hydrogen-antihydrogen (H-anti H) oscillations. It is shown that the analogue of survival hypothesis for fermions naturally makes such particles superheavy, thus leading to unobservable lifetimes. If this hypothesis is relaxed, an interesting possibility of potentially observable n-anti n and H-anti H transitions, mutually related arises in the context of SU(5) theory with spontaneously broken B-L symmetry
Energy Technology Data Exchange (ETDEWEB)
Blum, Alexander Simon
2009-06-10
This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)
International Nuclear Information System (INIS)
Blum, Alexander Simon
2009-01-01
This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)
Non-resonant leptogenesis in seesaw models with an almost conserved B - L
Energy Technology Data Exchange (ETDEWEB)
Racker, J., E-mail: racker@ific.uv.es [Universidad de Valencia-CSIC, Depto. de Fisica Teorica and IFIC (Spain)
2013-03-15
We review the motivations and some results on leptogenesis in seesaw models with an almost conserved lepton number. The paper is based on a talk given at the 5th International Symposium on Symmetries in Subatomic Physics, SSP2012.
Dynamical symmetry breakdown in SU(5) and SO(10)
International Nuclear Information System (INIS)
Shellard, R.C.
1983-09-01
Some restrictions imposed upon Grand Unified Theories by dynamical symmetry breakdown are examined. It is observed in particular, that theories with SU(5) as symmetry group, with 3 or more fermion families undergo dynamical symmetry breakdown, and some of the fermions will acquire mass at the Grand Unified scale. On the other hand, the SO(10) group, with 3 families is free from this problem. (Author) [pt
Perefirma lööb läbi ühise tahtega / Ave Paavo
Paavo, Ave
2005-01-01
Perefirma lööb läbi, kui on ühine tahe ja suhted korras. Vt. samas: Töö eesmärk on leivateenimine. OÜ Arenet Servis näitel; Toivo Kens. Investeerime tulevastesse põlvkondadesse. OÜ Viraito näitrel; Kalle Elster. Meie eelis on üksteise kiire mõistmine. AS-i Elstera näitel
Anomalous Abelian symmetry in the standard model
International Nuclear Information System (INIS)
Ramond, P.
1995-01-01
The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated by the Green-Schwarz mechanism. If we assume these two symmetries to be the same, we find the electroweak mixing angle to be sin 2 θ ω = 3/8 at the string scale, just by setting the ratio of the product of down quark to charged lepton masses equal to one at the string scale. This assumes no GUT structure. The generality of the result suggests a superstring origin for the standard model. We generalize our analysis to massive neutrinos, and mixings in the lepton sector
Quantum Space-Time Deformed Symmetries Versus Broken Symmetries
Amelino-Camelia, G
2002-01-01
Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...
Symmetry of priapulids (Priapulida). 2. Symmetry of larvae.
Adrianov, A V; Malakhov, V V
2001-02-01
Larvae of priapulids are characterized by radial symmetry evident from both external and internal characters of the introvert and lorica. The bilaterality appears as a result of a combination of several radial symmetries: pentaradial symmetry of the teeth, octaradial symmetry of the primary scalids, 25-radial symmetry of scalids, biradial symmetry of the neck, and biradial and decaradial symmetry of the trunk. Internal radiality is exhibited by musculature and the circumpharyngeal nerve ring. Internal bilaterality is evident from the position of the ventral nerve cord and excretory elements. Externally, the bilaterality is determined by the position of the anal tubulus and two shortened midventral rows of scalids bordering the ventral nerve cord. The lorical elements define the biradial symmetry that is missing in adult priapulids. The radial symmetry of larvae is a secondary appearance considered an evolutionary adaptation to a lifestyle within the three-dimensional environment of the benthic sediment. Copyright 2001 Wiley-Liss, Inc.
Emergent Electroweak Symmetry Breaking with Composite W, Z Bosons
Cui, Yanou; Wells, James D
2009-01-01
We present a model of electroweak symmetry breaking in a warped extra dimension where electroweak symmetry is broken at the UV (or Planck) scale. An underlying conformal symmetry is broken at the IR (or TeV) scale generating masses for the electroweak gauge bosons without invoking a Higgs mechanism. By the AdS/CFT correspondence the W,Z bosons are identified as composite states of a strongly-coupled gauge theory, suggesting that electroweak symmetry breaking is an emergent phenomenon at the IR scale. The model satisfies electroweak precision tests with reasonable fits to the S and T parameter. In particular the T parameter is sufficiently suppressed since the model naturally admits a custodial SU(2) symmetry. The composite nature of the W,Z-bosons provide a novel possibility of unitarizing WW scattering via form factor suppression. Constraints from LEP and the Tevatron as well as discovery opportunities at the LHC are discussed for these composite electroweak gauge bosons.
Weiss, Asia; Whiteley, Walter
2014-01-01
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...
Schwichtenberg, Jakob
2018-01-01
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations. .
Large hierarchies from approximate R symmetries
International Nuclear Information System (INIS)
Kappl, Rolf; Ratz, Michael; Vaudrevange, Patrick K.S.
2008-12-01
We show that hierarchically small vacuum expectation values of the superpotential in supersymmetric theories can be a consequence of an approximate R symmetry. We briefly discuss the role of such small constants in moduli stabilization and understanding the huge hierarchy between the Planck and electroweak scales. (orig.)
BOOK REVIEW: Symmetry Breaking
Ryder, L. H.
2005-11-01
One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would
Symmetry, structure, and spacetime
Rickles, Dean
2007-01-01
In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational
International Nuclear Information System (INIS)
Chimento, Luis P.
2002-01-01
We find the group of symmetry transformations under which the Einstein equations for the spatially flat Friedmann-Robertson-Walker universe are form invariant. They relate the energy density and the pressure of the fluid to the expansion rate. We show that inflation can be obtained from nonaccelerated scenarios by a symmetry transformation. We derive the transformation rule for the spectrum and spectral index of the curvature perturbations. Finally, the group is extended to investigate inflation in the anisotropic Bianchi type-I spacetime and the brane-world cosmology
Symmetries for SM Alignment in multi-Higgs Doublet Models
Pilaftsis, Apostolos
2016-01-01
We derive the complete set of maximal symmetries for Standard Model (SM) alignment that may occur in the tree-level scalar potential of multi-Higgs Doublet Models, with $n > 2$ Higgs doublets. Our results generalize the symmetries of SM alignment, without decoupling of large mass scales or fine-tuning, previously obtained in the context of two-Higgs Doublet Models.
Salam-Weinberg symmetry breaking with superheavy Higgs particles
International Nuclear Information System (INIS)
Misra, S.P.
1986-09-01
We discuss here the possibility of the breaking of the Salam-Weinberg symmetry by Higgs particles which are superheavy. The symmetry-breaking is associated with a nonzero vacuum expectation value of fermion condensates. This mechanism, if operative in nature, will imply the absence of Higgs particles at the weak scale. (author)
Leptogenesis with TeV Scale WR
Gu, Pei-Hong; Mohapatra, Rabindra N.
2018-04-01
Successful leptogenesis within the conventional TeV-scale left-right implementation of type-I seesaw has been shown to require that the mass of the right-handed WR± boson should have a lower bound much above the reach of the Large Hadron Collider. This bound arises from the necessity to suppress the washout of lepton asymmetry due to WR±-mediated Δ L ≠0 processes. We show that in an alternative quark seesaw realization of left-right symmetry, the above bound can be avoided. Lepton asymmetry in this model is generated not via the usual right-handed neutrino decay but rather via the decay of new heavy scalars producing an asymmetry in the B -L carrying Higgs triplets responsible for type-II seesaw, whose decay leads to the lepton asymmetry.
Symmetries and symmetry breaking beyond the electroweak theory
International Nuclear Information System (INIS)
Grojean, Ch.
1999-01-01
The Glashow-Salam-Weinberg theory describing electroweak interactions is one of the best successes of quantum field theory; it has passed all the experimental tests of particles physics with a high accuracy. However, this theory suffers from some deficiencies in the sense that some parameters, especially those involved in the generation of the mass of the elementary particles, are fixed to unnatural values. Moreover gravitation whose quantization cannot be achieved in ordinary quantum filed theory is hot taken into account. The aim of this PhD dissertation is to study some theories beyond the Standard Model and inspired by superstring theories. My endeavour has been to develop theoretical aspects of an effective dynamical description of one of the soltonic states of the strongly coupled strings. An important part of my results is also devoted to a more phenomenological analysis of the low energy effects of the symmetries that assure the coherence of the theories at high energy: these symmetries could explain the fermion mass hierarchy and could be directly observable in collider experiments. It is also shown how the geometrical properties of compactified spaces characterize the vacuum of string theory in a non-perturbative regime; such a vacuum can be used to construct a unified theory of gauge and gravitational interactions with a supersymmetry softy broken at a TcV scale. (author)
Cosmoparticle physics of family symmetry breaking
International Nuclear Information System (INIS)
Khlopov, M.Yu.
1993-07-01
The foundations of both particle theory and cosmology are hidden at super energy scale and can not be tested by direct laboratory means. Cosmoparticle physics is developed to probe these foundations by the proper combination of their indirect effects, thus providing definite conclusions on their reliability. Cosmological and astrophysical tests turn to be complementary to laboratory searches of rare processes, induced by new physics, as it can be seen in the case of gauge theory of broken symmetry of quark and lepton families, ascribing to the hierarchy of the horizontal symmetry breaking the observed hierarchy of masses and the mixing between quark and lepton families. 36 refs
Introduction to Chiral Symmetry
Energy Technology Data Exchange (ETDEWEB)
Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-05-09
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.
Jinzenji, Masao
2018-01-01
This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...
Approximate symmetries of Hamiltonians
Chubb, Christopher T.; Flammia, Steven T.
2017-08-01
We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.
Molecular symmetry and spectroscopy
Bunker, Philip; Jensen, Per
2006-01-01
The first edition, by P.R. Bunker, published in 1979, remains the sole textbook that explains the use of the molecular symmetry group in understanding high resolution molecular spectra. Since 1979 there has been considerable progress in the field and a second edition is required; the original author has been joined in its writing by Per Jensen. The Material of the first edition has been reorganized and much has been added. The molecular symmetry group is now introduced early on, and the explanation of how to determine nuclear spin statistical weights has been consolidated in one chapter, after groups, symmetry groups, character tables and the Hamiltonian have been introduced. A description of the symmetry in the three-dimensional rotation group K(spatial), irreducible spherical tensor operators, and vector coupling coefficients is now included. The chapters on energy levels and selection rules contain a great deal of material that was not in the first edition (much of it was undiscovered in 1979), concerning ...
Introduction to chiral symmetry
International Nuclear Information System (INIS)
Koch, V.
1996-01-01
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented
Pels, D.L.
While symmetry and impartiality have become ruling principles in S&TS, defining its core ideal of a 'value-free relativism', their philosophical anchorage has attracted much less discussion than the issue or:how far their jurisdiction can be extended or generalized. This paper seeks to argue that
Symmetries in fundamental physics
Sundermeyer, Kurt
2014-01-01
Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...
Symmetries in fundamental physics
Sundermeyer, Kurt
2014-01-01
Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. Groups and Symmetry: A Guide to Discovering Mathematics. Geetha Venkataraman. Book Review Volume 4 Issue 10 October 1999 pp 91-92. Fulltext. Click here to view fulltext PDF. Permanent link:
International Nuclear Information System (INIS)
Sezgin, E.
1991-08-01
We review the structure of W ∞ algebras, their super and topological extensions, and their contractions down to (super) w ∞ . Emphasis is put on the field theoretic realizations of these algebras. We also review the structure of w ∞ and W ∞ gravities and comment on various applications of W ∞ symmetry. (author). 42 refs
International Nuclear Information System (INIS)
Hojman, Sergio A.
1996-01-01
The purpose of these lectures is to present some of the ways in which non-Noetherian symmetries are used in contemporary mathematical physics. These include, among others, obtaining conservation laws for dynamical systems, solving non-linear problems, getting alternative Lagrangians for systems of differential equations and constructing symplectic structures and Hamiltonians for dynamical systems starting from scratch
Detection symmetry and asymmetry
du Buf, J.M.H.
1991-01-01
Experiments were performed on the detection symmetry and asymmetry of incremental and decremental disks, as a function of both disk diameter and duration. It was found that, for a background luminance of 300cd.m-2, thresholds of dynamic (briefly presented) foveal disks are symmetrical for all
International Nuclear Information System (INIS)
Stern, J.
2000-01-01
The problem of a uniform description of symmetries, their dynamic disturbing and the structure of the vacuum is discussed. The role which problems of this kind played in searching for and understanding the Standard Model of elementary particles from the 1960s till now is also highlighted. (Z.J.)
Fields, symmetries, and quarks
International Nuclear Information System (INIS)
Mosel, U.
1989-01-01
'Fields, symmetries, and quarks' covers elements of quantum field theory, symmetries, gauge field theories and phenomenological descriptions of hadrons, with special emphasis on topics relevant to nuclear physics. It is aimed at nuclear physicists in general and at scientists who need a working knowledge of field theory, symmetry principles of elementary particles and their interactions and the quark structure of hadrons. The book starts out with an elementary introduction into classical field theory and its quantization. As gauge field theories require a working knowledge of global symmetries in field theories this topic is then discussed in detail. The following part is concerned with the general structure of gauge field theories and contains a thorough discussion of the still less widely known features of Non-Abelian gauge field theories. Quantum Chromodynamics (QCD), which is important for the understanding of hadronic matter, is discussed in the next section together with the quark compositions of hadrons. The last two chapters give a detailed discussion of phenomenological bag-models. The MIT bag is discussed, so that all theoretical calculations can be followed step by step. Since in all other bag-models the calculational methods and steps are essentially identical, this chapter should enable the reader to actually perform such calculations unaided. A last chapter finally discusses the topological bag-models which have become quite popular over the last few years. (orig.)
Symmetry of priapulids (Priapulida). 1. Symmetry of adults.
Adrianov, A V; Malakhov, V V
2001-02-01
Priapulids possess a radial symmetry that is remarkably reflected in both external morphology and internal anatomy. It results in the appearance of 25-radial (a number divisible by five) symmetry summarized as a combination of nonaradial, octaradial, and octaradial (9+8+8) symmetries of scalids. The radial symmetry is a secondary appearance considered as an evolutionary adaptation to a lifestyle within the three-dimensional environment of bottom sediment. The eight anteriormost, or primary, scalids retain their particular position because of their innervation directly from the circumpharyngeal brain. As a result of a combination of the octaradial symmetry of primary scalids, pentaradial symmetry of teeth, and the 25-radial symmetry of scalids, the initial bilateral symmetry remains characterized by the single sagittal plane. Copyright 2001 Wiley-Liss, Inc.
International Nuclear Information System (INIS)
Xu, Jun; Ma, Hong-Ru; Chen, Lie-Wen; Li, Bao-An
2007-01-01
Within a self-consistent thermal model using an isospin and momentum dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, we investigate the temperature dependence of the symmetry energy E sym (ρ,T) and symmetry free energy F sym (ρ,T) for hot, isospin asymmetric nuclear matter. It is shown that the symmetry energy E sym (ρ,T) generally decreases with increasing temperature while the symmetry free energy F sym (ρ,T) exhibits opposite temperature dependence. The decrement of the symmetry energy with temperature is essentially due to the decrement of the potential energy part of the symmetry energy with temperature. The difference between the symmetry energy and symmetry free energy is found to be quite small around the saturation density of nuclear matter. While at very low densities, they differ significantly from each other. In comparison with the experimental data of temperature dependent symmetry energy extracted from the isotopic scaling analysis of intermediate mass fragments (IMF's) in heavy-ion collisions, the resulting density and temperature dependent symmetry energy E sym (ρ,T) is then used to estimate the average freeze-out density of the IMF's
Using local symmetry for landmark selection
Kootstra, Geert; de Jong, Sjoerd; Schomaker, Lambert R. B.
2009-01-01
Most visual Simultaneous Localization And Mapping (SLAM) methods use interest points as landmarks in their maps of the environment. Often the interest points are detected using contrast features, for instance those of the Scale Invariant Feature Transform (SIFT). The SIFT interest points, however, have problems with stability, and noise robustness. Taking our inspiration from human vision, we therefore propose the use of local symmetry to select interest points. Our method, the MUlti-scale Sy...
Flavor universal dynamical electroweak symmetry breaking
International Nuclear Information System (INIS)
Burdman, G.; Evans, N.
1999-01-01
The top condensate seesaw mechanism of Dobrescu and Hill allows electroweak symmetry to be broken while deferring the problem of flavor to an electroweak singlet, massive sector. We provide an extended version of the singlet sector that naturally accommodates realistic masses for all the standard model fermions, which play an equal role in breaking electroweak symmetry. The models result in a relatively light composite Higgs sector with masses typically in the range of (400 - 700) GeV. In more complete models the dynamics will presumably be driven by a broken gauged family or flavor symmetry group. As an example of the higher scale dynamics a fully dynamical model of the quark sector with a GIM mechanism is presented, based on an earlier top condensation model of King using broken family gauge symmetry interactions (that model was itself based on a technicolor model of Georgi). The crucial extra ingredient is a reinterpretation of the condensates that form when several gauge groups become strong close to the same scale. A related technicolor model of Randall which naturally includes the leptons too may also be adapted to this scenario. We discuss the low energy constraints on the massive gauge bosons and scalars of these models as well as their phenomenology at the TeV scale. copyright 1999 The American Physical Society
Flavor symmetries and fermion masses
International Nuclear Information System (INIS)
Rasin, A.
1994-04-01
We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V ub /V cb = √m u /m c and V td /V ts = √m d /m s , are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanΒ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model
Symmetry breaking and scalar bosons
International Nuclear Information System (INIS)
Gildener, E.; Weinberg, S.
1976-01-01
There are reasons to suspect that the spontaneous breakdown of the gauge symmetries of the observed weak and electromagnetic interactions may be produced by the vacuum expectation values of massless weakly coupled elementary scalar fields. A method is described for finding the broken-symmetry solutions of such theories even when they contain arbitrary numbers of scalar fields with unconstrained couplings. In any such theory, there should exist a number of heavy Higgs bosons, with masses comparable to the intermediate vector bosons, plus one light Higgs boson, or ''scalon'' with mass of order αG/sub F/sub 1/2/. The mass and couplings of the scalon are calculable in terms of other masses, even without knowing all the details of the theory. For an SU(2) direct-product U(1) model with arbitrary numbers of scalar isodoublets, the scalon mass is greater than 5.26 GeV; a likely value is 7--10 GeV. The production and decay of the scalon are briefly considered. Some comments are offered on the relation between the mass scales associated with the weak and strong interactions
Symmetries in physics and harmonics
International Nuclear Information System (INIS)
Kolk, D.
2006-01-01
In this book the symmetries of elementary particles are described in relation to the rules of harmonics in music. The selection rules are described in connections with harmonic intervals. Also symmetry breaking is considered in this framework. (HSI)
Unified Symmetry of Hamilton Systems
International Nuclear Information System (INIS)
Xu Xuejun; Qin Maochang; Mei Fengxiang
2005-01-01
The definition and the criterion of a unified symmetry for a Hamilton system are presented. The sufficient condition under which the Noether symmetry is a unified symmetry for the system is given. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, is obtained. An example is finally given to illustrate the application of the results.
Quantum symmetries in particle interactions
International Nuclear Information System (INIS)
Shirkov, D.V.
1983-01-01
The concept of a quantum symmetry is introduced as a symmetry in the formulation of which quantum representations and specific quantum notions are used essentially. Three quantum symmetry principles are discussed: the principle of renormalizability (possibly super-renormalizability), the principle of local gauge symmetry, and the principle of supersymmetry. It is shown that these principles play a deterministic role in the development of quantum field theory. Historically their use has led to ever stronger restrictions on the interaction mechanism of quantum fields
Symmetry and topology in evolution
International Nuclear Information System (INIS)
Lukacs, B.; Berczi, S.; Molnar, I.; Paal, G.
1991-10-01
This volume contains papers of an interdisciplinary symposium on evolution. The aim of this symposium, held in Budapest, Hungary, 28-29 May 1991, was to clear the role of symmetry and topology at different levels of the evolutionary processes. 21 papers were presented, their topics included evolution of the Universe, symmetry of elementary particles, asymmetry of the Earth, symmetry and asymmetry of biomolecules, symmetry and topology of lining objects, human asymmetry etc. (R.P.)
Matter, dark matter and gravitational waves from a GUT-scale U(1) phase transition
Energy Technology Data Exchange (ETDEWEB)
Domcke, Valerie
2013-09-15
The cosmological realization of the spontaneous breaking of B-L, the difference of baryon and lepton number, can generate the initial conditions for the hot early universe. In particular, we show that entropy, dark matter and a matter-antimatter asymmetry can be produced in accordance with current observations. If B-L is broken at the grand unification scale, F-term hybrid inflation can be realized in the false vacuum of unbroken B-L. The phase transition at the end of inflation, governed by tachyonic preheating, spontaneously breaks the U(1){sub B-L} symmetry and sets the initial conditions for the following perturbative reheating phase. We provide a detailed, time-resolved picture of the reheating process. The competition of cosmic expansion and entropy production leads to an intermediate plateau of constant temperature, which controls both the generated lepton asymmetry and the dark matter abundance. This enables us to establish relations between the neutrino and superparticle mass spectrum, rendering this mechanism testable. Moreover, we calculate the entire gravitational wave spectrum for this setup. This yields a promising possibility to probe cosmological B - L breaking with forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO. The largest contribution is obtained from cosmic strings which is, for typical parameter values, at least eight orders of magnitude higher then the contribution from inflation. Finally, we study the possibility of realizing hybrid inflation in a superconformal framework. We find that superconformal D-term inflation is an interesting possibility generically leading to a two-field inflation model, but in its simplest version disfavoured by the recently published Planck data.
Matter, dark matter and gravitational waves from a GUT-scale U(1) phase transition
International Nuclear Information System (INIS)
Domcke, Valerie
2013-09-01
The cosmological realization of the spontaneous breaking of B-L, the difference of baryon and lepton number, can generate the initial conditions for the hot early universe. In particular, we show that entropy, dark matter and a matter-antimatter asymmetry can be produced in accordance with current observations. If B-L is broken at the grand unification scale, F-term hybrid inflation can be realized in the false vacuum of unbroken B-L. The phase transition at the end of inflation, governed by tachyonic preheating, spontaneously breaks the U(1) B-L symmetry and sets the initial conditions for the following perturbative reheating phase. We provide a detailed, time-resolved picture of the reheating process. The competition of cosmic expansion and entropy production leads to an intermediate plateau of constant temperature, which controls both the generated lepton asymmetry and the dark matter abundance. This enables us to establish relations between the neutrino and superparticle mass spectrum, rendering this mechanism testable. Moreover, we calculate the entire gravitational wave spectrum for this setup. This yields a promising possibility to probe cosmological B - L breaking with forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO. The largest contribution is obtained from cosmic strings which is, for typical parameter values, at least eight orders of magnitude higher then the contribution from inflation. Finally, we study the possibility of realizing hybrid inflation in a superconformal framework. We find that superconformal D-term inflation is an interesting possibility generically leading to a two-field inflation model, but in its simplest version disfavoured by the recently published Planck data.
Charge independence and charge symmetry
Energy Technology Data Exchange (ETDEWEB)
Miller, G A [Washington Univ., Seattle, WA (United States). Dept. of Physics; van Oers, W T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)
1994-09-01
Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs.
Charge independence and charge symmetry
International Nuclear Information System (INIS)
Miller, G.A.
1994-09-01
Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs
Symmetry energy in nuclear surface
International Nuclear Information System (INIS)
Danielewicz, P.; Lee, Jenny
2009-01-01
Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry. (author)
Emergence of Symmetries from Entanglement
CERN. Geneva
2016-01-01
Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.
Group analysis and renormgroup symmetries
International Nuclear Information System (INIS)
Kovalev, V.F.; Pustovalov, V.V.; Shirkov, D.V.
1996-01-01
An original regular approach to constructing special type symmetries for boundary-value problems, namely renormgroup symmetries, is presented. Different methods of calculating these symmetries based on modern group analysis are described. An application of the approach to boundary value problems is demonstrated with the help of a simple mathematical model. 35 refs
Dual realizations of dynamical symmetry breaking
International Nuclear Information System (INIS)
Dudas, Emilian; Papineau, Chloe
2006-01-01
We show the infrared equivalence between a recently proposed model containing a six dimensional scalar field with a four-dimensional localized Higgs type potential and the four-dimensional Nambu-Jona-Lasinio (NJL) model. In the dual NJL description, the fermions are localized at the origin of a large two-dimensional compact space. Due to a classical running effect above the compactification scale, the four-fermion coupling of the NJL model increases from the cutoff scale down to the compactification scale, providing the large Fermi coupling needed for the dynamical symmetry breaking. We also present a string theory embedding of our field-theory construction. On more general grounds, our results suggest that 4d models with dynamical symmetry breaking can be given a higher dimensional description in terms of field theories with nontrivial boundary conditions in the internal space
Conformal symmetries of FRW accelerating cosmologies
International Nuclear Information System (INIS)
Kehagias, A.; Riotto, A.
2014-01-01
We show that any accelerating Friedmann–Robertson–Walker (FRW) cosmology with equation of state w<−1/3 (and therefore not only a de Sitter stage with w=−1) exhibits three-dimensional conformal symmetry on future constant-time hypersurfaces if the bulk theory is invariant under bulk conformal Killing vectors. We also offer an alternative derivation of this result in terms of conformal Killing vectors and show that long wavelength comoving curvature perturbations of the perturbed FRW metric are just conformal Killing motions of the FRW background. We then extend the boundary conformal symmetry to the bulk for accelerating cosmologies. Our findings indicate that one can easily generate perturbations of scalar fields which are not only scale invariant, but also fully conformally invariant on super-Hubble scales. Measuring a scale-invariant power spectrum for the cosmological perturbation does not automatically imply that the universe went through a de Sitter stage
Dark discrete gauge symmetries
International Nuclear Information System (INIS)
Batell, Brian
2011-01-01
We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.
Symmetries and microscopic physics
International Nuclear Information System (INIS)
Blaizot, J.P.
1997-01-01
This book is based on a course of lectures devoted to the applications of group theory to quantum physics. The purpose is to give students a precise idea of general principles involving the concept of symmetry and to present practical methods used to calculate physical properties derived from symmetries. The first chapter is an introduction to the main results of group theory, 2 chapters highlight principles and methods concerning geometrical transformations in the space of states, state degeneracy and perturbation theory. The last 4 chapters investigate the applications of these methods to atom physics, nuclear structure and elementary particles. A chapter is devoted to the atom of hydrogen and another to the isospin. Numerous exercises and problems, some with their corrections, are proposed. (A.C.)
Asymmetry, Symmetry and Beauty
Directory of Open Access Journals (Sweden)
Abbe R. Kopra
2010-07-01
Full Text Available Asymmetry and symmetry coexist in natural and human processes. The vital role of symmetry in art has been well demonstrated. This article highlights the complementary role of asymmetry. Further we show that the interaction of asymmetric action (recursion and symmetric opposition (sinusoidal waves are instrumental in generating creative features (relatively low entropy, temporal complexity, novelty (less recurrence in the data than in randomized copies and complex frequency composition. These features define Bios, a pattern found in musical compositions and in poetry, except for recurrence instead of novelty. Bios is a common pattern in many natural and human processes (quantum processes, the expansion of the universe, gravitational waves, cosmic microwave background radiation, DNA, physiological processes, animal and human populations, and economic time series. The reduction in entropy is significant, as it reveals creativity and contradicts the standard claim of unavoidable decay towards disorder. Artistic creations capture fundamental features of the world.
Symmetry rules. How science and nature are founded on symmetry
Energy Technology Data Exchange (ETDEWEB)
Rosen, J.
2008-07-01
When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences. (orig.)
Symmetry rules How science and nature are founded on symmetry
Rosen, Joe
2008-01-01
When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences.
A broken symmetry ontology: Quantum mechanics as a broken symmetry
International Nuclear Information System (INIS)
Buschmann, J.E.
1988-01-01
The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance
Symmetry and quantum mechanics
Corry, Scott
2016-01-01
This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.
Gravitation, Symmetry and Undergraduates
Jorgensen, Jamie
2001-04-01
This talk will discuss "Project Petrov" Which is designed to investigate gravitational fields with symmetry. Project Petrov represents a collaboration involving physicists, mathematicians as well as graduate and undergraduate math and physics students. An overview of Project Petrov will be given, with an emphasis on students' contributions, including software to classify and generate Lie algebras, to classify isometry groups, and to compute the isometry group of a given metric.
International Nuclear Information System (INIS)
Bunakov, V.E.; Ivanov, I.B.
1999-01-01
Connections between the symmetries of Hamiltonian systems in classical and quantum mechanics, on one hand, and their regularity or chaoticity, on the other hand, are considered. The quantum-chaoticity criterion that was proposed previously and which was borrowed from the theory of compound-nucleus resonances is used to analyze the quantum diamagnetic Kepler problem - that is, the motion of a spinless charged particle in a Coulomb and a uniform magnetic field
International Nuclear Information System (INIS)
French, J.B.
1974-01-01
The concepts of statistical behavior and symmetry are presented from the point of view of many body spectroscopy. Remarks are made on methods for the evaluation of moments, particularly widths, for the purpose of giving a feeling for the types of mathematical structures encountered. Applications involving ground state energies, spectra, and level densities are discussed. The extent to which Hamiltonian eigenstates belong to irreducible representations is mentioned. (4 figures, 1 table) (U.S.)
Lie symmetries and superintegrability
International Nuclear Information System (INIS)
Nucci, M C; Post, S
2012-01-01
We show that a known superintegrable system in two-dimensional real Euclidean space (Post and Winternitz 2011 J. Phys. A: Math. Theor. 44 162001) can be transformed into a linear third-order equation: consequently we construct many autonomous integrals—polynomials up to order 18—for the same system. The reduction method and the connection between Lie symmetries and Jacobi last multiplier are used.
Symmetry methods for option pricing
Davison, A. H.; Mamba, S.
2017-06-01
We obtain a solution of the Black-Scholes equation with a non-smooth boundary condition using symmetry methods. The Black-Scholes equation along with its boundary condition are first transformed into the one dimensional heat equation and an initial condition respectively. We then find an appropriate general symmetry generator of the heat equation using symmetries and the fundamental solution of the heat equation. The symmetry generator is chosen such that the boundary condition is left invariant; the symmetry can be used to solve the heat equation and hence the Black-Scholes equation.
Noether symmetry approach in the cosmological alpha-attractors
Kaewkhao, Narakorn; Kanesom, Thanyagamon; Channuie, Phongpichit
2018-06-01
In cosmological framework, Noether symmetry technique has revealed a useful tool in order to examine exact solutions. In this work, we first introduce the Jordan-frame Lagrangian and apply the conformal transformation in order to obtain the Lagrangian equivalent to Einstein-frame form. We then analyze the dynamics of the field in the cosmological alpha-attractors using the Noether symmetry approach by focusing on the single field scenario in the Einstein-frame form. We show that with a Noether symmetry the corresponding dynamical system can be completely integrated and the potential exhibited by the symmetry can be exactly obtained. With the proper choice of parameters, the behavior of the scale factor displays an exponential (de Sitter) behavior at the present epoch. Moreover, we discover that the Hubble parameters strongly depends on the initial values of parameters exhibited by the Noether symmetry. Interestingly, it can retardedly evolve and becomes a constant in the present epoch in all cases.
Greene, Brian R
1997-01-01
Mirror symmetry has undergone dramatic progress during the last five years. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics.
Leadership, power and symmetry
DEFF Research Database (Denmark)
Spaten, Ole Michael
2016-01-01
Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... regarding managers coaching their employees and it is asked; what contributes to coaching of high quality when one reflects on the power aspect as being immanent? Fourteen middle managers coached five of their employees, and all members of each party wrote down cues and experiences immediately after each...
Farmer, David W
1995-01-01
In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ
Yale, Paul B
2012-01-01
This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi
Spontaneous symmetry breaking in N=3 supergravity
International Nuclear Information System (INIS)
Zinov'ev, Yu.M.
1986-01-01
The possibility of the spontaneous symmetry breaking without a cosmological term in N=3 supergravity is investigated. A new, dual version of N=3 supergravity - U(3)-supergravity is constructed. Such a theory is shown to admit a spontaneous supersymmetry breaking without a cosmological term and with three arbitrary scales, including partial super-Higgs effect N=3 → N=2 and N=3 → N=1
Consequences of an Abelian family symmetry
International Nuclear Information System (INIS)
Ramond, P.
1996-01-01
The addition of an Abelian family symmetry to the Minimal Super-symmetric Standard Model reproduces the observed hierarchies of quark and lepton masses and quark mixing angles, only if it is anomalous. Green-Schwarz compensation of its anomalies requires the electroweak mixing angle to be sin 2 θ ω = 3/8 at the string scale, without any assumed GUT structure, suggesting a superstring origin for the standard model. The analysis is extended to neutrino masses and the lepton mixing matrix
Symmetry analysis for anisotropic field theories
International Nuclear Information System (INIS)
Parra, Lorena; Vergara, J. David
2012-01-01
The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.
Applications of chiral symmetry
International Nuclear Information System (INIS)
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates
Bootstrap Dynamical Symmetry Breaking
Directory of Open Access Journals (Sweden)
Wei-Shu Hou
2013-01-01
Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700 GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.
Wilczek, Frank
2004-01-01
Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).
Symmetry of crystals and molecules
Ladd, Mark
2014-01-01
This book successfully combines a thorough treatment of molecular and crystalline symmetry with a simple and informal writing style. By means of familiar examples the author helps to provide the reader with those conceptual tools necessary for the development of a clear understanding of what are often regarded as 'difficult' topics. Christopher Hammond, University of Leeds This book should tell you everything you need to know about crystal and molecular symmetry. Ladd adopts an integrated approach so that the relationships between crystal symmetry, molecular symmetry and features of chemical interest are maintained and reinforced. The theoretical aspects of bonding and symmetry are also well represented, as are symmetry-dependent physical properties and the applications of group theory. The comprehensive coverage will make this book a valuable resource for a broad range of readers.
Discrete R symmetries for the MSSM and its singlet extensions
Lee, Hyun Min; Ratz, Michael; Ross, Graham G; Schieren, Roland; Schmidt-Hoberg, Kai; Vaudrevange, Patrick K S
2011-01-01
We determine the anomaly free discrete R symmetries, consistent with the MSSM, that commute with SU(5) and suppress the $\\mu$ parameter and nucleon decay. We show that the order M of such $Z_M^R$ symmetries has to divide 24 and identify 5 viable symmetries. The simplest possibility is a $Z_4^R$ symmetry which commutes with SO(10). We present a string-derived model with this $Z_4^R$ symmetry and the exact MSSM spectrum below the GUT scale; in this model $Z_4^R$ originates from the Lorentz symmetry of compactified dimensions. We extend the discussion to include the singlet extensions of the MSSM and find $Z_4^R$ and $Z_8^R$ are the only possible symmetries capable of solving the $\\mu$ problem in the NMSSM. We also show that a singlet extension of the MSSM based on a $Z_{24}^R$ symmetry can provide a simultaneous solution to the $\\mu$ and strong CP problem with the axion coupling in the favoured window.
Trieste lectures on mirror symmetry
Energy Technology Data Exchange (ETDEWEB)
Hori, K [Department of Physics and Department of Mathematics, University of Toronto, Toronto, Ontario (Canada)
2003-08-15
These are pedagogical lectures on mirror symmetry given at the Spring School in ICTP, Trieste, March 2002. The focus is placed on worldsheet descriptions of the physics related to mirror symmetry. We start with the introduction to general aspects of (2,2) supersymmetric field theories in 1 + 1 dimensions. We next move on to the study and applications of linear sigma model. Finally, we provide a proof of mirror symmetry in a class of models. (author)
Quantum symmetry in quantum theory
International Nuclear Information System (INIS)
Schomerus, V.
1993-02-01
Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry
Neutrino masses and family symmetry
International Nuclear Information System (INIS)
Grinstein, B.; Preskill, J.; Wise, M.B.
1985-01-01
Neutrino masses in the 100 eV-1 MeV range are permitted if there is a spontaneously broken global family symmetry that allows the heavy neutrinos to decay by Goldstone boson emission with a cosmologically acceptable lifetime. The family symmetry may be either abelian or nonabelian; we present models illustrating both possibilities. If the family symmetry is nonabelian, then the decay tau -> μ + Goldstone boson or tau -> e + Goldstone may have an observable rate. (orig.)
An introduction to Yangian symmetries
International Nuclear Information System (INIS)
Bernard, D.
1992-01-01
Some aspects of the quantum Yangians as symmetry algebras of two-dimensional quantum field theories are reviewed. They include two main issues: the first is the classical Heisenberg model, covering non-Abelian symmetries, generators of the symmetries and the semi-classical Yangians, an alternative presentation of the semi-classical Yangians, digression on Poisson-Lie groups. The second is the quantum Heisenberg chain, covering non-Abelian symmetries and the quantum Yangians, the transfer matrix and an alternative presentation of the Yangians, digression on the double Yangians. (K.A.) 15 refs
Killing symmetries in neutron transport
International Nuclear Information System (INIS)
Lukacs, B.; Racz, A.
1992-10-01
Although inside the reactor zone there is no exact continuous spatial symmetry, in certain configurations neutron flux distribution is close to a symmetrical one. In such cases the symmetrical solution could provide a good starting point to determine the non-symmetrical power distribution. All possible symmetries are determined in the 3-dimensional Euclidean space, and the form of the transport equation is discussed in such a coordinate system which is adapted to the particular symmetry. Possible spontaneous symmetry breakings are pointed out. (author) 6 refs
The conservation of orbital symmetry
Woodward, R B
2013-01-01
The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope
Leptogenesis and residual CP symmetry
International Nuclear Information System (INIS)
Chen, Peng; Ding, Gui-Jun; King, Stephen F.
2016-01-01
We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.
Spontaneous Broken Local Conformal Symmetry and Dark Energy Candidate
International Nuclear Information System (INIS)
Liu, Lu-Xin
2013-01-01
The local conformal symmetry is spontaneously broken down to the Local Lorentz invariance symmetry through the approach of nonlinear realization. The resulting effective Lagrangian, in the unitary gauge, describes a cosmological vector field non-minimally coupling to the gravitational field. As a result of the Higgs mechanism, the vector field absorbs the dilaton and becomes massive, but with an independent energy scale. The Proca type vector field can be modelled as dark energy candidate. The possibility that it further triggers Lorentz symmetry violation is also pointed out
Renormalisation group improved leptogenesis in family symmetry models
International Nuclear Information System (INIS)
Cooper, Iain K.; King, Stephen F.; Luhn, Christoph
2012-01-01
We study renormalisation group (RG) corrections relevant for leptogenesis in the case of family symmetry models such as the Altarelli-Feruglio A 4 model of tri-bimaximal lepton mixing or its extension to tri-maximal mixing. Such corrections are particularly relevant since in large classes of family symmetry models, to leading order, the CP violating parameters of leptogenesis would be identically zero at the family symmetry breaking scale, due to the form dominance property. We find that RG corrections violate form dominance and enable such models to yield viable leptogenesis at the scale of right-handed neutrino masses. More generally, the results of this paper show that RG corrections to leptogenesis cannot be ignored for any family symmetry model involving sizeable neutrino and τ Yukawa couplings.
Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...
Constraints on GUTS with Coleman-Weinberg symmetry breaking
International Nuclear Information System (INIS)
Sher, M.A.
1981-01-01
A popular assumption introduced by Coleman and Weinberg is that the elementary Higgs scalars of a gauge theory are massless at the tree level; the symmetry breakdown is then entirely due to quantum radiative corrections. In grand unified theories (GUTS), this assumption becomes particularly attractive. Many GUTS have intermediate mass scales [scales of symmetry breaking between baryon number generation and SU(2) x U(1) breaking], and it is attractive to apply the Coleman-Weinberg assumption to all stages of symmetry breaking after baryon number generation. In this paper, it is shown that most such GUTS are phenomenologically unacceptable. The reason is that as the universe cools, at each scale of symmetry breaking there will be a phase transition; if the symmetry is broken a la Coleman-Weinberg, this transition is strongly first order and thus generates entropy, decreasing the previously generated baryon number to entropy ratio by a large, and perhaps unacceptable amount. The entropy generated in a general intermediate mass scale transition is calculated, and the severe constraints that any Coleman-Weinberg-type GUT with intermediate mass scales must satisfy (in order to avoid excessive entropy generation) are found. Turning to specific models, it is shown that all intermediate mass scale transitions associated with SO(10) do not satisfy these constraints; the Coleman-Weinberg form of these transitions is inconsistent with cosmological observations and is thus phenomenologically unacceptable. (orig.)
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
Symmetries of cluster configurations
International Nuclear Information System (INIS)
Kramer, P.
1975-01-01
A deeper understanding of clustering phenomena in nuclei must encompass at least two interrelated aspects of the subject: (A) Given a system of A nucleons with two-body interactions, what are the relevant and persistent modes of clustering involved. What is the nature of the correlated nucleon groups which form the clusters, and what is their mutual interaction. (B) Given the cluster modes and their interaction, what systematic patterns of nuclear structure and reactions emerge from it. Are there, for example, families of states which share the same ''cluster parents''. Which cluster modes are compatible or exclude each other. What quantum numbers could characterize cluster configurations. There is no doubt that we can learn a good deal from the experimentalists who have discovered many of the features relevant to aspect (B). Symmetries specific to cluster configurations which can throw some light on both aspects of clustering are discussed
From symmetry violation to dynamics: The charm window
International Nuclear Information System (INIS)
Appel, J.A.
1997-12-01
C.S. Wu observed parity violation in the low energy process of nuclear decay. She was the first to observe this symmetry violation at any energy. Yet, her work taught us about the form and strengths of the couplings of the massive weak boson. Today, we use the same approach. We look for very much higher mass-scale interactions through symmetry violations in the decays of charm quark systems. These charm decays provide a unique window to new physics
Symmetry chains and adaptation coefficients
International Nuclear Information System (INIS)
Fritzer, H.P.; Gruber, B.
1985-01-01
Given a symmetry chain of physical significance it becomes necessary to obtain states which transform properly with respect to the symmetries of the chain. In this article we describe a method which permits us to calculate symmetry-adapted quantum states with relative ease. The coefficients for the symmetry-adapted linear combinations are obtained, in numerical form, in terms of the original states of the system and can thus be represented in the form of numerical tables. In addition, one also obtains automatically the matrix elements for the operators of the symmetry groups which are involved, and thus for any physical operator which can be expressed either as an element of the algebra or of the enveloping algebra. The method is well suited for computers once the physically relevant symmetry chain, or chains, have been defined. While the method to be described is generally applicable to any physical system for which semisimple Lie algebras play a role we choose here a familiar example in order to illustrate the method and to illuminate its simplicity. We choose the nuclear shell model for the case of two nucleons with orbital angular momentum l = 1. While the states of the entire shell transform like the smallest spin representation of SO(25) we restrict our attention to its subgroup SU(6) x SU(2)/sub T/. We determine the symmetry chains which lead to total angular momentum SU(2)/sub J/ and obtain the symmetry-adapted states for these chains
Collective states and crossing symmetry
International Nuclear Information System (INIS)
Heiss, W.D.
1977-01-01
Collective states are usually described in simple terms but with the use of effective interactions which are supposed to contain more or less complicated contributions. The significance of crossing symmetry is discussed in this connection. Formal problems encountered in the attempts to implement crossing symmetry are pointed out
Singlets of fermionic gauge symmetries
Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.
1989-01-01
We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and Îº-symmetry and
''Natural'' left-right symmetry
International Nuclear Information System (INIS)
Mohapatra, R.N.; Pati, J.C.
1975-01-01
It is remarked that left-right symmetry of the starting gauge interactions is retained as a ''natural'' symmetry if it is broken in no way except possibly by mass terms in the Lagrangian. The implications of this result for the unification of coupling constants and for parity nonconservation at low and high energies are stressed
Symmetry guide to ferroaxial transitions
Czech Academy of Sciences Publication Activity Database
Hlinka, Jiří; Přívratská, J.; Ondrejkovič, Petr; Janovec, Václav
2016-01-01
Roč. 116, č. 17 (2016), 1-6, č. článku 177602. ISSN 0031-9007 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : symmetry * symmetry breaking * ferroaxial Transitions * property tensors * Aizu species Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016
Traces of chiral symmetry on light planes
International Nuclear Information System (INIS)
Sazdjian, Hagop.
1975-01-01
The possibility of a description of the hadronic world by field theories defined on light planes and formulated in terms of three interacting quark field variables has been investigated. The framework of models where the chiral symmetry breaking is produced by the only mechanical masses of quarks has been considered. The hypothesis that the light plane charges generate in the real world approximate symmetries of one particle states has also been emitted. The projection of the algebraic structure of the observables in the space of physical states have yielded various relations in terms of the masses and couplings of the low lying mesons. They seem to be in agreement with experimental data, and suggest the consistency of the adopted model to describe symmetry breaking phenomena. The quark mechanical masses m(u) approximately 30MeV and m(s) approximately 200MeV have also been estimated. The smallness of these masses in respect to those of hadrons seems to indicate that they do not constitute the only mass scale of the hadronic world, but that there should exist another scale parameter, independent of the quark mechanical masses, and symmetric of SU(3) [fr
Conformal Symmetry as a Template for QCD
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S
2004-08-04
Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero {beta} function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as {tau} decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized.
Conformal Symmetry as a Template for QCD
International Nuclear Information System (INIS)
Brodsky, S
2004-01-01
Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero β function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as τ decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized
Fifty years of symmetry operations
International Nuclear Information System (INIS)
Wigner, E.P.
1978-01-01
The author begins by discussing the application of symmetry principles in classical physics, which began 150 years ago. He then offers a few remarks on the essence of these principles and their role in the structure of physics; events, laws of nature, and invariance principles - kinematic and then dynamic - are treated. After this general discussion of the various types of symmetries, he considers the fundamental differences in their application in classical and quantum physics; the symmetry principles have greater effectiveness in quantum theory. After a few critical remarks of a general nature on the invariance principles, the author reviews the application of symmetry principles in various areas of quantum mechanics: atomic spectra, molecular physics, solid state physics, nuclear physics, and particle physics. He notes that the role of the different symmetries recognized to be approximate provide the most interesting conclusions
Symmetry inheritance of scalar fields
International Nuclear Information System (INIS)
Ivica Smolić
2015-01-01
Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair. (paper)
Shape analysis with subspace symmetries
Berner, Alexander
2011-04-01
We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
Discrete symmetries in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Schieren, Roland
2010-12-02
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)
Spontaneous emergence of gauge symmetry
International Nuclear Information System (INIS)
Nielsen, H.B.; Brene, N.
1987-05-01
Within the framework of the random dynamics project we have demonstrated several mechanisms for breakdown of a preexisting exact gauge symmetry. This note concerns and reviews a mechanism which works essentially in the opposite direction, leading from am accidental approximate symmetry to an exact formal gauge symmetry. It was shown that although this symmetry is a priori only strictly formal, it can under certain circumstances lead to a physical consequence: the corresponding gauge boson becomes massless. In the chaotic models typical for our random dynamics project there is, of course, a strong competition between this mechanism and mechanisms which temd to destroy the symmetry and give mass(es) to the gauge boson(s). (orig.)
Discrete symmetries in the MSSM
International Nuclear Information System (INIS)
Schieren, Roland
2010-01-01
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z R 4 symmetry is discovered which solves the μ-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z R 4 is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z R 4 symmetry and other desirable features. (orig.)
Axions from chiral family symmetry
International Nuclear Information System (INIS)
Chang, D.; Pal, P.B.; Maryland Univ., College Park; Senjanovic, G.
1985-01-01
We investigate the possibility that family symmetry, Gsub(F), is spontaneously broken chiral global symmetry. We classify the interesting cases when family symmetry can result in an automatic Peccei-Quinn symmetry U(1)sub(PQ) and thus provide a solution to the strong CP problem. The result disfavors having two or four families. For more than four families, U(1)sub(PQ) is in general automatic. In the case of three families, a unique Higgs sector allows U(1)sub(PQ) in the simplest case of Gsub(F)=[SU(3)] 3 . Cosmological consideration also puts strong constraint on the number of families. For Gsub(F)=[SU(N)] 3 cosmology singles out the three-family (N=3) case as a unique solution if there are three light neutrinos. Possible implication of decoupling theorem as applied to family symmetry breaking is also discussed. (orig.)
International Nuclear Information System (INIS)
Peskin, M.E.
1994-01-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics
Symmetry breaking by bifundamentals
Schellekens, A. N.
2018-03-01
We derive all possible symmetry breaking patterns for all possible Higgs fields that can occur in intersecting brane models: bifundamentals and rank-2 tensors. This is a field-theoretic problem that was already partially solved in 1973 by Ling-Fong Li [1]. In that paper the solution was given for rank-2 tensors of orthogonal and unitary group, and U (N )×U (M ) and O (N )×O (M ) bifundamentals. We extend this first of all to symplectic groups. When formulated correctly, this turns out to be straightforward generalization of the previous results from real and complex numbers to quaternions. The extension to mixed bifundamentals is more challenging and interesting. The scalar potential has up to six real parameters. Its minima or saddle points are described by block-diagonal matrices built out of K blocks of size p ×q . Here p =q =1 for the solutions of Ling-Fong Li, and the number of possibilities for p ×q is equal to the number of real parameters in the potential, minus 1. The maximum block size is p ×q =2 ×4 . Different blocks cannot be combined, and the true minimum occurs for one choice of basic block, and for either K =1 or K maximal, depending on the parameter values.
Gravitation and Gauge Symmetries
Stewart, J
2002-01-01
The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E. [Stanford Univ., CA (United States)
1994-12-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.
Symmetries in nuclear structure
Allaart, K; Dieperink, A
1983-01-01
The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...
Quark diquark symmetry breaking
International Nuclear Information System (INIS)
Souza, M.M. de
1980-01-01
Assuming the baryons are made of quark-diquark pairs, the wave functions for the 126 allowed ground states are written. The quark creation and annihilations operators are generalized to describe the quark-diquark structure in terms of a parameter σ. Assuming that all quark-quark interactions are mediated by gluons transforming like an octet of vector mesons, the effective Hamiltonian and the baryon masses as constraint equations for the elements of the mass matrix is written. The symmetry is the SU(6) sub(quark)x SU(21) sub(diquark) broken by quark-quark interactions respectively invariant under U(6), U(2) sub(spin), U(3) and also interactions transforming like the eighth and the third components of SU(3). In the limit of no quark-diquark structure (σ = 0), the ground state masses is titted to within 1% of the experimental data, except for the Δ(1232), where the error is almost 2%. Expanding the decuplet mass equations in terms of σ and keeping terms only up to the second order, this error is reduced to 67%. (Author) [pt
Symmetries of dynamically equivalent theories
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M.; Tyutin, I.V. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Lebedev Physics Institute, Moscow (Russian Federation)
2006-03-15
A natural and very important development of constrained system theory is a detail study of the relation between the constraint structure in the Hamiltonian formulation with specific features of the theory in the Lagrangian formulation, especially the relation between the constraint structure with the symmetries of the Lagrangian action. An important preliminary step in this direction is a strict demonstration, and this is the aim of the present article, that the symmetry structures of the Hamiltonian action and of the Lagrangian action are the same. This proved, it is sufficient to consider the symmetry structure of the Hamiltonian action. The latter problem is, in some sense, simpler because the Hamiltonian action is a first-order action. At the same time, the study of the symmetry of the Hamiltonian action naturally involves Hamiltonian constraints as basic objects. One can see that the Lagrangian and Hamiltonian actions are dynamically equivalent. This is why, in the present article, we consider from the very beginning a more general problem: how the symmetry structures of dynamically equivalent actions are related. First, we present some necessary notions and relations concerning infinitesimal symmetries in general, as well as a strict definition of dynamically equivalent actions. Finally, we demonstrate that there exists an isomorphism between classes of equivalent symmetries of dynamically equivalent actions. (author)
Astroparticle tests of Lorentz symmetry
Energy Technology Data Exchange (ETDEWEB)
Diaz, Jorge [Karlsruhe Institute of Technology, Karlsruhe (Germany)
2016-07-01
Lorentz symmetry is a cornerstone of modern physics. As the spacetime symmetry of special relativity, Lorentz invariance is a basic component of the standard model of particle physics and general relativity, which to date constitute our most successful descriptions of nature. Deviations from exact symmetry would radically change our view of the universe and current experiments allow us to test the validity of this assumption. In this talk, I describe effects of Lorentz violation in cosmic rays and gamma rays that can be studied in current observatories.
Symmetry of quantum molecular dynamics
International Nuclear Information System (INIS)
Burenin, A.V.
2002-01-01
The paper reviews the current state-of-art in describing quantum molecular dynamics based on symmetry principles alone. This qualitative approach is of particular interest as the only method currently available for a broad and topical class of problems in the internal dynamics of molecules. Besides, a molecule is a physical system whose collective internal motions are geometrically structured, and its perturbation theory description requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed [ru
Symmetry of quantum intramolecular dynamics
International Nuclear Information System (INIS)
Burenin, Alexander V
2002-01-01
The paper reviews the current progress in describing quantum intramolecular dynamics using merely symmetry principles as a basis. This closed qualitative approach is of particular interest because it is the only method currently available for a broad class of topical problems in the internal dynamics of molecules. Moreover, a molecule makes a physical system whose collective internal motions are geometrically structured, so that its description by perturbation methods requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed. In particular, the point group of a molecule is of this type. (methodological notes)
Geometrical spin symmetry and spin
International Nuclear Information System (INIS)
Pestov, I. B.
2011-01-01
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Supersymmetry and intermediate symmetry breaking in SO(10) superunification
International Nuclear Information System (INIS)
Asatryan, H.M.; Ioannisyan, A.N.
1985-01-01
A scheme of simultaneous breakdown of intermediate symmetry SO(10) → SU(3)sub(c) x U(1) x SU(2)sub(L) x SU(2)sub(R) and supersymmetry by means of a single scale parameter is suggested. This intermediate symmetry, which is preferable physically, owing to the broken supersymmetry has a minimum lying lower than SU(4) x SU(2)sub(L) x SU(2)sub(R). The intermediate symmetry is broken by the vacuum expectation value of the Higgs superfields. Owing to the quantum corrections the potential minimum turns out to correspond to breakdown of the intermediate symmetry up to the standard group SU(3)sub(c) x SU(2)sub(L) x U(1)sub(y). The value of the Weinberg angle is less than that in the supersymmetric SU(5) model and agrees with the experiment
Strings, Branes and Symmetries
International Nuclear Information System (INIS)
Westerberg, A.
1997-01-01
Recent dramatic progress in the understanding of the non-perturbative structure of superstring theory shows that extended objects of various kinds, collectively referred to as p-branes, are an integral part of the theory. In this thesis, comprising an introductory text and seven appended research papers, we study various aspects of p-branes with relevance for superstring theory. The first part of the introductory text is a brief review of string theory focussing on the role of p-branes. In particular, we consider the so-called D-branes which currently are attracting a considerable amount of attention. The purpose of this part is mainly to put into context the results of paper 4, 5 and 6 concerning action functionals describing the low-energy dynamics of D-branes. The discussion of perturbative string theory given in this part of the introduction is also intended to provide some background to paper 2 which contains an application of the Reggeon-sewing approach to the construction of string vertices. The second part covers a rather different subject, namely higher-dimensional loop algebras and their cohomology, with the aim of facilitating the reading of papers 1, 3 and 7. The relation to p-branes is to be found in paper 1 where we introduce a certain higher-dimensional generalization of the loop algebra and discuss its potential applicability as a symmetry algebra for p-branes. Papers 3 and 7 are mathematically oriented out-growths of this paper addressing the issue of realizing algebras of this kind, known in physics as current algebras, in terms of pseudo differential operators (PSDOs). The main result of paper 3 is a proof of the equivalence between certain Lie-algebra cocycles on the space of second-quantizable PSDOs
Symmetry aspects in emergent quantum mechanics
Elze, Hans-Thomas
2009-06-01
We discuss an explicit realization of the dissipative dynamics anticipated in the proof of 't Hooft's existence theorem, which states that 'For any quantum system there exists at least one deterministic model that reproduces all its dynamics after prequantization'. - There is an energy-parity symmetry hidden in the Liouville equation, which mimics the Kaplan-Sundrum protective symmetry for the cosmological constant. This symmetry may be broken by the coarse-graining inherent in physics at scales much larger than the Planck length. We correspondingly modify classical ensemble theory by incorporating dissipative fluctuations (information loss) - which are caused by discrete spacetime continually 'measuring' matter. In this way, aspects of quantum mechanics, such as the von Neumann equation, including a Lindblad term, arise dynamically and expectations of observables agree with the Born rule. However, the resulting quantum coherence is accompanied by an intrinsic decoherence and continuous localization mechanism. Our proposal leads towards a theory that is linear and local at the quantum mechanical level, but the relation to the underlying classical degrees of freedom is nonlocal.
Geometry of Majorana neutrino and new symmetries
Volkov, G G
2006-01-01
Experimental observation of Majorana fermion matter gives a new impetus to the understanding of the Lorentz symmetry and its extension, the geometrical properties of the ambient space-time structure, matter--antimatter symmetry and some new ways to understand the baryo-genesis problem in cosmology. Based on the primordial Majorana fermion matter assumption, we discuss a possibility to solve the baryo-genesis problem through the the Majorana-Diraco genesis in which we have a chance to understand creation of Q(em) charge and its conservation in our D=1+3 Universe after the Big Bang. In the Majorana-Diraco genesis approach there appears a possibility to check the proton and electron non-stability on the very low energy scale. In particle physics and in our space-time geometry, the Majorana nature of the neutrino can be related to new types of symmetries which are lying beyond the binary Cartan-Killing-Lie algebras/superalgebras. This can just support a conjecture about the non-completeness of the SM in terms of ...
Enhanced breaking of heavy quark spin symmetry
Energy Technology Data Exchange (ETDEWEB)
Guo, Feng-Kun, E-mail: fkguo@hiskp.uni-bonn.de [Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Meißner, Ulf-G., E-mail: meissner@hiskp.uni-bonn.de [Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Shen, Cheng-Ping, E-mail: shencp@ihep.ac.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)
2014-11-10
Heavy quark spin symmetry is useful to make predictions on ratios of decay or production rates of systems involving heavy quarks. The breaking of spin symmetry is generally of the order of O(Λ{sub QCD}/m{sub Q}), with Λ{sub QCD} the scale of QCD and m{sub Q} the heavy quark mass. In this paper, we will show that a small S- and D-wave mixing in the wave function of the heavy quarkonium could induce a large breaking in the ratios of partial decay widths. As an example, we consider the decays of the ϒ(10860) into the χ{sub bJ}ω(J=0,1,2), which were recently measured by the Belle Collaboration. These decays exhibit a huge breaking of the spin symmetry relation were the ϒ(10860) a pure 5S bottomonium state. We propose that this could be a consequence of a mixing of the S-wave and D-wave components in the ϒ(10860). Prediction on the ratio Γ(ϒ(10860)→χ{sub b0}ω)/Γ(ϒ(10860)→χ{sub b2}ω) is presented assuming that the decay of the D-wave component is dominated by the coupled-channel effects.
Stochastic mechanism of symmetry breaking
International Nuclear Information System (INIS)
Baseyan, H.Z.
1983-01-01
A new symmetry breaking mechanism conditioned by presence of random fields in vacuum is proposed. Massive Yang-Mills fields finally arise, that may be interpreted as ''macroscopic'' manifestation of the ''microscopic'' Yang-Mills massless theory
Shape analysis with subspace symmetries
Berner, Alexander; Wand, Michael D.; Mitra, Niloy J.; Mewes, Daniel; Seidel, Hans Peter
2011-01-01
We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more
Symmetries in the Lagrangean formalism
International Nuclear Information System (INIS)
Grigore, D.R.
1987-09-01
We generalize the analysis of Levy-Leblond for lagrangean systems with symmetry. We prove that this analysis goes through practically unchanged and after that we analyse in detail some examples.(author)
Renormgroup symmetry for solution functionals
International Nuclear Information System (INIS)
Shirkov, D.V.; Kovalev, V.F.
2004-01-01
The paper contains generalization of the renormgroup algorithm for boundary value problems of mathematical physics and related concept of the renormgroup symmetry, formulated earlier by the authors with reference to models based on differential equations. These algorithm and symmetry are formulated now for models with nonlocal (integral) equations. We discuss in detail and illustrate by examples the applications of the generalized algorithm to models with nonlocal terms which appear as linear functionals of the solution. (author)
Conformal symmetry in quantum finance
International Nuclear Information System (INIS)
Romero, Juan M; Lavana, Ulises; Miranda, Elio Martínez
2014-01-01
The quantum finance symmetries are studied. In order to do this, the one dimensional free non-relativistic particle and its symmetries are revisited and the particle mass is identified as the inverse of square of the volatility. Furthermore, using financial variables, a Schrödinger algebra representation is constructed. In addition, it is shown that the operators of this last representation are not hermitian and not conserved.
Quantum nuclear pasta and nuclear symmetry energy
Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.
2017-05-01
Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.
Radiative breaking scenario for the GUT gauge symmetry
International Nuclear Information System (INIS)
Fukuyama, T.; Kikuchi, T.
2006-01-01
The origin of the grand unified theory (GUT) scale from the top-down perspective is explored. The GUT gauge symmetry is broken by the renormalization group effects, which is an extension of the radiative electroweak symmetry breaking scenario to the GUT models. That is, in the same way as the origin of the electroweak scale, the GUT scale is generated from the Planck scale through the radiative corrections to the soft supersymmetry breaking mass parameters. This mechanism is applied to a perturbative SO(10) GUT model, recently proposed by us. In the SO(10) model, the relation between the GUT scale and the Planck scale can naturally be realized by using order-one coupling constants. (orig.)
The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model
de Adelhart Toorop, Reinier; Merlo, Luca
2010-01-01
Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry $S_4$ that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can r...
Symmetry breaking: The standard model and superstrings
International Nuclear Information System (INIS)
Gaillard, M.K.
1988-01-01
The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g 2 = (√2G/sub F/)/sup /minus/1/ ≅ 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10 3 )GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs
Vacuum solutions of a gravity model with vector-induced spontaneous Lorentz symmetry breaking
International Nuclear Information System (INIS)
Bertolami, O.; Paramos, J.
2005-01-01
We study the vacuum solutions of a gravity model where Lorentz symmetry is spontaneously broken once a vector field acquires a vacuum expectation value. Results are presented for the purely radial Lorentz symmetry breaking (LSB), radial/temporal LSB and axial/temporal LSB. The purely radial LSB result corresponds to new black hole solutions. When possible, parametrized post-Newtonian parameters are computed and observational boundaries used to constrain the Lorentz symmetry breaking scale
Symmetry and group theory in chemistry
Ladd, M
1998-01-01
A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries.Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetryCovers both point-group and space-group symmetriesIncludes tutorial solutions
Structural symmetry and protein function.
Goodsell, D S; Olson, A J
2000-01-01
The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of
Radiatively induced breaking of conformal symmetry in a superpotential
International Nuclear Information System (INIS)
Arbuzov, A.B.; Cirilo-Lombardo, D.J.
2016-01-01
Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman–Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.
Low-energy restoration of parity and maximal symmetry
International Nuclear Information System (INIS)
Raychaudhuri, A.; Sarkar, U.
1982-01-01
The maximal symmetry of fermions of one generation, SU(16), which includes the left-right-symmetric Pati-Salam group, SU(4)/sub c/ x SU(2) /sub L/ x SU(2)/sub R/, as a subgroup, allows the possibility of a low-energy (M/sub R/approx.100 GeV) breaking of the left-right symmetry. It is known that such a low-energy restoration of parity can be consistent with weak-interaction phenomenology. We examine different chains of descent of SU(16) that admit a low value of M/sub R/ and determine the other intermediate symmetry-breaking mass scales associated with each of these chains. These additional mass scales provide an alternative to the ''great desert'' expected in some grand unifying models. The contributions of the Higgs fields in the renormalization-group equations are retained and are found to be important
Reduced modular symmetries of threshold corrections and gauge coupling unification
Energy Technology Data Exchange (ETDEWEB)
Bailin, David; Love, Alex [Department of Physics & Astronomy, University of Sussex,Brighton, BN1 9QH (United Kingdom)
2015-04-01
We revisit the question of gauge coupling unification at the string scale in orbifold compactifications of the heterotic string for the supersymmetric Standard Model. In the presence of discrete Wilson lines threshold corrections with modular symmetry that is a subgroup of the full modular group arise. We find that reduced modular symmetries not previously reported are possible. We conjecture that the effects of such threshold corrections can be simulated using sums of terms built from Dedekind eta functions to obtain the appropriate modular symmetry. For the cases of the ℤ{sub 8}-I orbifold and the ℤ{sub 3}×ℤ{sub 6} orbifold it is easily possible to obtain gauge coupling unification at the “observed” scale with Kähler moduli T of approximately one.
Tansy, Michael
2009-01-01
The Emotional Disturbance Decision Tree (EDDT) is a teacher-completed norm-referenced rating scale published by Psychological Assessment Resources, Inc., in Lutz, Florida. The 156-item EDDT was developed for use as part of a broader assessment process to screen and assist in the identification of 5- to 18-year-old children for the special…
Prediction of Human Eye Fixations using Symmetry
Kootstra, Gert; Schomaker, Lambert R. B.
2009-01-01
Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of saliency. In this paper, we discuss local symmetry as a measure of saliency. We propose a number of symmetry models and perform an eye-tracking study with human participants viewing photographic i...
Miller, G A
2003-01-01
Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...
Anomaly-free gauged R-symmetry in local supersymmetry
International Nuclear Information System (INIS)
Chamseddine, A.H.; Dreiner, H.
1996-01-01
We discuss local R-symmetry as a potentially powerful new model building tool. We first review and clarify that a U(1) R-symmetry can only be gauged in local and not in global supersymmetry. We determine the anomaly-cancellation conditions for the gauged R-symmetry. For the standard superpotential these equations have no solution, independently of how many Standard Model singlets are added to the model. There is also no solution when we increase the number of families and the number of pairs of Higgs doublets. When the Green-Schwarz mechanism is employed to cancel the anomalies, solutions only exist for a large number of singlets. We find many anomaly-free family-independent models with an extra SU(3) c octet chiral superfield. We consider in detail the conditions for an anomaly-free family-dependent U(1) R and find solutions with one, two, three and four extra singlets. Only with three and four extra singlets do we naturally obtain sfermion masses of the order of the weak scale. For these solutions we consider the spontaneous breaking of supersymmetry and the R-symmetry in the context of local supersymmetry. In general the U(1) R gauge group is broken at or close to the Planck scale. We consider the effects of the R-symmetry on baryon- and lepton-number violation in supersymmetry. There is no logical connection between a conserved R-symmetry and a conserved R-parity. For conserved R-symmetry we have models for all possibilities of conserved or broken R-parity. Most models predict dominant effects which could be observed at HERA. (orig.)
Symmetry and Asymmetry Level Measures
Directory of Open Access Journals (Sweden)
Angel Garrido
2010-04-01
Full Text Available Usually, Symmetry and Asymmetry are considered as two opposite sides of a coin: an object is either totally symmetric, or totally asymmetric, relative to pattern objects. Intermediate situations of partial symmetry or partial asymmetry are not considered. But this dichotomy on the classification lacks of a necessary and realistic gradation. For this reason, it is convenient to introduce "shade regions", modulating the degree of Symmetry (a fuzzy concept. Here, we will analyze the Asymmetry problem by successive attempts of description and by the introduction of the Asymmetry Level Function, as a new Normal Fuzzy Measure. Our results (both Theorems and Corollaries suppose to be some new and original contributions to such very active and interesting field of research. Previously, we proceed to the analysis of the state of art.
Symmetry breaking patterns for inflation
Klein, Remko; Roest, Diederik; Stefanyszyn, David
2018-06-01
We study inflationary models where the kinetic sector of the theory has a non-linearly realised symmetry which is broken by the inflationary potential. We distinguish between kinetic symmetries which non-linearly realise an internal or space-time group, and which yield a flat or curved scalar manifold. This classification leads to well-known inflationary models such as monomial inflation and α-attractors, as well as a new model based on fixed couplings between a dilaton and many axions which non-linearly realises higher-dimensional conformal symmetries. In this model, inflation can be realised along the dilatonic direction, leading to a tensor-to-scalar ratio r ˜ 0 .01 and a spectral index n s ˜ 0 .975. We refer to the new model as ambient inflation since inflation proceeds along an isometry of an anti-de Sitter ambient space-time, which fully determines the kinetic sector.
Hidden Symmetries of Stochastic Models
Directory of Open Access Journals (Sweden)
Boyka Aneva
2007-05-01
Full Text Available In the matrix product states approach to $n$ species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a $SU_q(n$ quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the $SU_q(n$ symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.
Symmetry gauge theory for paraparticles
International Nuclear Information System (INIS)
Kursawe, U.
1986-01-01
In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de
Gauging the graded conformal group with unitary internal symmetries
International Nuclear Information System (INIS)
Ferrara, S.; Townsend, P.K.; Kaku, M.; Nieuwenhuizen Van, P.
1977-06-01
Gauge theories for extended SU(N) conformal supergravity are constructed which are invariant under local scale, chiral, proper conformal, supersymmetry and internal SU(N) transformations. The relation between intrinsic parity and symmetry properties of their generators of the internal vector mesons is established. These theories contain no cosmological constants, but technical problems inherent to higher derivative actions are pointed out
International Nuclear Information System (INIS)
Kastner, Ruth E.
2011-01-01
This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.
Kastner, Ruth E.
2011-11-01
This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.
Renormalizable models with broken symmetries
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-10-01
The results of the renormalized perturbation theory, in the absence of massless quanta, are summarized. The global symmetry breaking is studied and the associated currents are discussed in terms of the coupling with a classical Yang Mills field. Gauge theories are discussed; it is most likely that the natural set up should be the theory of fiber bundles and that making a choice of field coordinates makes the situation obscure. An attempt is made in view of clarifying the meaning of the Slavnov symmetry which characterizes gauge field theories [fr
Symmetry analysis of cellular automata
International Nuclear Information System (INIS)
García-Morales, V.
2013-01-01
By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.
Symmetry of intramolecular quantum dynamics
Burenin, Alexander V
2012-01-01
The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.
Symposium Symmetries in Science XIII
Gruber, Bruno J; Yoshinaga, Naotaka; Symmetries in Science XI
2005-01-01
This book is a collection of reviews and essays about the recent developments in the area of Symmetries and applications of Group Theory. Contributions have been written mostly at the graduate level but some are accessible to advanced undergraduates. The book is of interest to a wide audience and covers a broad range of topics with a strong degree of thematical unity. The book is part of a Series of books on Symmetries in Science and may be compared to the published Proceedings of the Colloquia on Group Theoretical Methods in Physics. Here, however, prevails a distinguished character for presenting extended reviews on present applications to Science, not restricted to Theoretical Physics.
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Cosmological Reflection of Particle Symmetry
Directory of Open Access Journals (Sweden)
Maxim Khlopov
2016-08-01
Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.
Optical metamaterials with quasicrystalline symmetry: symmetry-induced optical isotropy
International Nuclear Information System (INIS)
Kruk, S.S.; Decker, M.; Helgert, Ch.; Neshev, D.N.; Kivshar, Y.S.; Staude, I.; Powell, D.A.; Pertsch, Th.; Menzel, Ch.; Helgert, Ch.; Etrich, Ch.; Rockstuhl, C.; Menzel, Ch.
2013-01-01
Taking advantage of symmetry considerations, we have analyzed the potential of various metamaterials to affect the polarization state of light upon oblique illumination. We have shown that depending on the angle of illumination, metamaterials are able to support specific polarization states. The presented methodology that using ellipticity and circular dichroism, provides an unambiguous language for discussing the impact of the inherent symmetry of the metamaterial lattices on their far-field response. Our findings allow the quantification analysis of the impact of inter-element coupling and lattice symmetry on the optical properties of metamaterials, and to separate this contribution from the response associated with a single meta-atom. In addition, we have studied the concept of optical quasicrystalline metamaterials, revealing that the absence of translational symmetry (periodicity) of quasicrystalline metamaterials causes an isotropic optical response, while the long-range positional order preserves the resonance properties. Our findings constitute an important step towards the design of optically isotropic metamaterials and metasurfaces. (authors)
Symmetries in eleven dimensional supergravity compactified on a parallelized seven sphere
Englert, F; Spindel, P
1983-01-01
We analyse, in eleven-dimensional supergravity compactified on S7, the spontaneous symmetry breaking induced by a spontaneous parallelization of the sphere. The eight supersymmetries are broken at a common scale and the SO(8) gauge group is reduced to Spin (7). Such a large residual symmetry has a simple geometrical significance revealed through use of octonions; this is explained in elementary terms.
No-go for tree-level R-symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Liu, Feihu [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Liu, Muyang [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China); Sun, Zheng [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China); Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)
2017-11-15
We show that in gauge mediation models with tree-level R-symmetry breaking where supersymmetry and R-symmetries are broken by different fields, the gaugino mass either vanishes at one loop or finds a contribution from loop-level R-symmetry breaking. Thus tree-level R-symmetry breaking for phenomenology is either no-go or redundant in the simplest type of models. Including explicit messenger mass terms in the superpotential with a particular R-charge arrangement is helpful to bypass the no-go theorem, and the resulting gaugino mass is suppressed by the messenger mass scale. (orig.)
The master symmetry and time dependent symmetries of the differential–difference KP equation
International Nuclear Information System (INIS)
Khanizadeh, Farbod
2014-01-01
We first obtain the master symmetry of the differential–difference KP equation. Then we show how this master symmetry, through sl(2,C)-representation of the equation, can construct generators of time dependent symmetries. (paper)
International Nuclear Information System (INIS)
Kotel'nikov, G.A.
1994-01-01
An algorithm id proposed for research the symmetries of mathematical physics equation. The application of this algorithm to the Schroedinger equation permitted to establish, that in addition to the known symmetry the Schroedinger equation possesses also the relativistic symmetry
Neutron-antineutron oscillation and baryonic majoron: low scale spontaneous baryon violation
Energy Technology Data Exchange (ETDEWEB)
Berezhiani, Zurab [Universita dell' Aquila, Dipartimento delle Scienze Fisiche e Chimiche, L' Aquila (Italy); INFN, Laboratori Nazionali Gran Sasso, L' Aquila (Italy)
2016-12-15
We discuss the possibility that baryon number B is spontaneously broken at low scales, of the order of MeV or even smaller, inducing the neutron-antineutron oscillation at the experimentally accessible level. An associated Goldstone particle-baryonic majoron can have observable effects in neutron to antineutron transitions in nuclei or dense nuclear matter. By extending baryon number to an anomaly-free B - L symmetry, the baryo-majoron can be identified with the ordinary majoron associated with the spontaneous breaking of lepton number, and it can have interesting implications for neutrinoless 2β decay with the majoron emission. We also discuss the hypothesis that baryon number can be spontaneously broken by QCD itself via the six-quark condensates. (orig.)
Charge symmetry at the partonic level
Energy Technology Data Exchange (ETDEWEB)
Londergan, J. T.; Peng, J. C.; Thomas, A. W.
2010-07-01
This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.
A model of intrinsic symmetry breaking
International Nuclear Information System (INIS)
Ge, Li; Li, Sheng; George, Thomas F.; Sun, Xin
2013-01-01
Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry
Self-Similar Symmetry Model and Cosmic Microwave Background
Directory of Open Access Journals (Sweden)
Tomohide eSonoda
2016-05-01
Full Text Available In this paper, we present the self-similar symmetry (SSS model that describes the hierarchical structure of the universe. The model is based on the concept of self-similarity, which explains the symmetry of the cosmic microwave background (CMB. The approximate length and time scales of the six hierarchies of the universe---grand unification, electroweak unification, the atom, the pulsar, the solar system, and the galactic system---are derived from the SSS model. In addition, the model implies that the electron mass and gravitational constant could vary with the CMB radiation temperature.
Creation and development of the universe (symmetry approach)
International Nuclear Information System (INIS)
Zheludev, I.S.
1993-09-01
The model according to which space subreality and time subreality are created during Big Bang is introduced. The first one is centrosymmetrical, the second anticentrosymmetrical. One to another they are transformed by mutual ''replacement'' space and time. Such subrealities are not antisubrealities and their elementary particles (appeared through Big Bang) are not able to annihilate completely because of symmetry conditions. This leads to the appearance of condensed matter. The model of two subrealities gives the possibility to explain without ''parity violation'' any physical phenomena. Four macroscopic rules of symmetry [scale, corkscrew, gyroscope and right (left) hand] reflect four fundamental interactions of our reality. (author). 10 refs, 16 figs
Chiral symmetry breaking in a semilocalized magnetic field
Cao, Gaoqing
2018-03-01
In this work, we explore the pattern of chiral symmetry breaking and restoration in a solvable magnetic field configuration within the Nambu-Jona-Lasinio model. The special semilocalized static magnetic field can roughly mimic the realistic situation in peripheral heavy ion collisions; thus, the study is important for the dynamical evolution of quark matter. We find that the magnetic-field-dependent contribution from discrete spectra usually dominates over the contribution from continuum spectra and chiral symmetry breaking is locally catalyzed by both the magnitude and scale of the magnetic field. The study is finally extended to the case with finite temperature or chemical potential.
Radiative violation of CP-symmetry
International Nuclear Information System (INIS)
Galvan Herrera, J.B.
1990-01-01
The left-right quiral symmetry is not conserved by the Standard model. A subgroup of the standard gauge group (SU(2) L ) breaks this symmetry in a explicit way. Moreover, the standard model, if there are theree or more matter generations, violates the CP discrete symmetry. This prediction has been experimentally demonstrated correct in the Kaon anti Kaon system. In this work some possible explanations to the CP violation parameter magnitude are researched. We have studied the variation of the Kobayashi-Maskawa matrix with the energy scale. To realize this work we have developed a general method to calculate the renormalization group equations of the Kobayashi-Maskawa matrix parameters. From these equations we could also calculate the renormalization group equation of the J parameter that characterizes the CP violation. This calculus has been applied in a concrete example: a typical supersymmetric model from superstring theories. This model can be seen like a natural extension of the supersymmetric standard model. This kind of models have a gauge group bigger that the standard one more particles and new terms of the Lagrangian. We have verified that such model provides us of a correct low energy fenomenology and, moreover other results, some particle spectrums have been developed. In the elaboration of this model some conditions, that the model has to respected to be compatible with the actual fenomenology, have been studied. The most interesting results of this thesis are the develop of a general method to calculate the renormalization group equations of the Kobayashi-Maskawa matrix parameters and the develop of a new mechanism of the radiative violation. This mechanism is related with the new terms of the Lagrangian. (Author)
From symmetries to number theory
International Nuclear Information System (INIS)
Tempesta, P.
2009-01-01
It is shown that the finite-operator calculus provides a simple formalism useful for constructing symmetry-preserving discretizations of quantum-mechanical integrable models. A related algebraic approach can also be used to define a class of Appell polynomials and of L series.
Superdeformations and fermion dynamical symmetries
International Nuclear Information System (INIS)
Wu, Cheng-Li
1990-01-01
In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU 3 of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU 3 fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU 3 symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting γ-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs
Negative energy solutions and symmetries
International Nuclear Information System (INIS)
Sidharth, B.G.
2011-01-01
We revisit the negative energy solutions of the Dirac (and Klein–Gordon) equation, which become relevant at very high energies in the context of the Feshbach–Villars formulation, and study several symmetries which follow therefrom. Significant consequences are briefly examined. (author)
On four dimensional mirror symmetry
International Nuclear Information System (INIS)
Losev, A.; Nekrasov, N.; Shatashvili, S.
2000-01-01
A conjecture relating instanton calculus in four dimensional supersymmetric theories and the deformation theory of Lagrangian submanifolds in C 2r invariant under a (subgroup of) Sp(2r,Z) is formulated. This is a four dimensional counterpart of the mirror symmetry of topological strings (relating Gromov-Witten invariants and generalized variations of Hodge structure). (orig.)
Exploiting Symmetry on Parallel Architectures.
Stiller, Lewis Benjamin
1995-01-01
This thesis describes techniques for the design of parallel programs that solve well-structured problems with inherent symmetry. Part I demonstrates the reduction of such problems to generalized matrix multiplication by a group-equivariant matrix. Fast techniques for this multiplication are described, including factorization, orbit decomposition, and Fourier transforms over finite groups. Our algorithms entail interaction between two symmetry groups: one arising at the software level from the problem's symmetry and the other arising at the hardware level from the processors' communication network. Part II illustrates the applicability of our symmetry -exploitation techniques by presenting a series of case studies of the design and implementation of parallel programs. First, a parallel program that solves chess endgames by factorization of an associated dihedral group-equivariant matrix is described. This code runs faster than previous serial programs, and discovered it a number of results. Second, parallel algorithms for Fourier transforms for finite groups are developed, and preliminary parallel implementations for group transforms of dihedral and of symmetric groups are described. Applications in learning, vision, pattern recognition, and statistics are proposed. Third, parallel implementations solving several computational science problems are described, including the direct n-body problem, convolutions arising from molecular biology, and some communication primitives such as broadcast and reduce. Some of our implementations ran orders of magnitude faster than previous techniques, and were used in the investigation of various physical phenomena.
Symmetry breaking in string theory
International Nuclear Information System (INIS)
Potting, R.
1998-01-01
A mechanism for a spontaneous breakdown of CPT symmetry appears in string theory, with possible implications for particle models. A realistic string theory might exhibit CPT violation at levels detectable in current or future experiments. A possible new mechanism for baryogenesis in the early Universe is also discussed
Dark Energy and Spacetime Symmetry
Directory of Open Access Journals (Sweden)
Irina Dymnikova
2017-03-01
Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.
Instantons and chiral symmetry breaking
International Nuclear Information System (INIS)
Carneiro, C.E.I.; McDougall, N.A.
1984-01-01
A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation. (orig.)
Instantons and chiral symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Carneiro, C.E.I.; McDougall, N.A. (Oxford Univ. (UK). Dept. of Theoretical Physics)
1984-10-22
A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation.
Lie symmetries in differential equations
International Nuclear Information System (INIS)
Pleitez, V.
1979-01-01
A study of ordinary and Partial Differential equations using the symmetries of Lie groups is made. Following such a study, an application to the Helmholtz, Line-Gordon, Korleweg-de Vries, Burguer, Benjamin-Bona-Mahony and wave equations is carried out [pt
Chiral symmetry in perturbative QCD
International Nuclear Information System (INIS)
Trueman, T.L.
1979-04-01
The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant
'Oblique corrections' and symmetry breaking
International Nuclear Information System (INIS)
Ramirez, C.A.
1991-11-01
Low Energy Parameters (Peskin-Takeuchi) are computed for two Symmetry Braking Schemes (heavy Higgs and techni-ρ). The differences between them are found comparable to the experimental uncertainties (in agreement with previous calculations for the Technicolor Models). Some constraints are obtained for the techni-ρ case. (author). 22 refs, 11 figs
Experimental tests of fundamental symmetries
Jungmann, K. P.
2014-01-01
Ongoing experiments and projects to test our understanding of fundamental inter- actions and symmetries in nature have progressed significantly in the past few years. At high energies the long searched for Higgs boson has been found; tests of gravity for antimatter have come closer to reality;
Quantum group and quantum symmetry
International Nuclear Information System (INIS)
Chang Zhe.
1994-05-01
This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs
Radiative Symmetry Breaking in Brane Models
Antoniadis, Ignatios; Quirós, Mariano
2000-01-01
We propose a way to generate the electroweak symmetry breaking radiatively in non-supersymmetric type I models with string scale in the TeV region. By identifying the Higgs field with a tree-level massless open string state, we find that a negative squared mass term can be generated at one loop. It is finite, computable and typically a loop factor smaller than the string scale, that acts as an ultraviolet cutoff in the effective field theory. When the Higgs open string has both ends confined on our world brane, its mass is predicted to be around 120 GeV, i.e. that of the lightest Higgs in the minimal supersymmetric model for large $\\tan\\beta$ and $m_A$. Moreover, the string scale turns out to be one to two orders of magnitude higher than the weak scale. We also discuss possible effects of higher order string threshold corrections that might increase the string scale and the Higgs mass.
Is the standard model saved asymptotically by conformal symmetry?
Gorsky, A.; Mironov, A.; Morozov, A.; Tomaras, T. N.
2015-03-01
It is pointed out that the top-quark and Higgs masses and the Higgs VEV with great accuracy satisfy the relations 4 m {/H 2} = 2 m {/T 2} = v 2, which are very special and reminiscent of analogous ones at Argyres-Douglas points with enhanced conformal symmetry. Furthermore, the RG evolution of the corresponding Higgs self-interaction and Yukawa couplings λ(0) = 1/8 and y(0) = 1 leads to the free-field stable point in the pure scalar sector at the Planck scale, also suggesting enhanced conformal symmetry. Thus, it is conceivable that the Standard Model is the low-energy limit of a distinct special theory with (super?) conformal symmetry at the Planck scale. In the context of such a "scenario," one may further speculate that the Higgs particle is the Goldstone boson of (partly) spontaneously broken conformal symmetry. This would simultaneously resolve the hierarchy and Landau pole problems in the scalar sector and would provide a nearly flat potential with two almost degenerate minima at the electroweak and Planck scales.
Hountondji, Codjo; Créchet, Jean-Bernard; Le Caër, Jean-Pierre; Lancelot, Véronique; Cognet, Jean A H; Baouz, Soria
2017-12-01
In this report, we have used periodate-oxidized tRNA (tRNAox) as an affinity laleling reagent to demonstrate that: (i) the bL12 protein contacts the CCA-arm of P-site bound tRNA on the Escherichia coli 70S ribosomes; (ii) the stoichiometry of labelling is one molecule of tRNAox bound to one polypeptide chain of endogenous bL12; (iii) cross-linking in situ of bL12 with tRNAox on the ribosomes provokes the loss of activity; (iv) intact tRNA protects bL12 in the 70S ribosomes against cross-linking with tRNAox; (v) both tRNAox and pyridoxal 5'-phosphate (PLP) compete for the same or for proximal cross-linking site(s) on bL12 inside the ribosome; (vi) the stoichiometry of cross-linking of PLP to the recombinant E. coli bL12 protein is one molecule of PLP covalently bound per polypeptide chain; (vii) the amino acid residue of recombinant bL12 cross-linked with PLP is Lys-65; (viii) Lys-65 of E. coli bL12 corresponds to Lys-53 of eL42 which was previously shown to cross-link with P-site bound tRNAox on human 80S ribosomes in situ; (ix) finally, E. coli bL12 and human eL42 proteins display significant primary structure similarities, which argues for evolutionary conservation of these two proteins located at the tRNA-CCA binding site on eubacterial and eukaryal ribosomes. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Electroweak symmetry breaking in supersymmetric models with heavy scalar superpartners
International Nuclear Information System (INIS)
Chankowski, Piotr H.; Falkowski, Adam; Pokorski, Stefan; Wagner, Jakub
2004-01-01
We propose a novel mechanism of electroweak symmetry breaking in supersymmetric models, as the one recently discussed by Birkedal, Chacko and Gaillard, in which the Standard Model Higgs doublet is a pseudo-Goldstone boson of some global symmetry. The Higgs mass parameter is generated at one-loop level by two different, moderately fine-tuned sources of the global symmetry breaking. The mechanism works for scalar superpartner masses of order 10 TeV, but gauginos can be light. The scale at which supersymmetry breaking is mediated to the visible sector has to be low, of order 100 TeV. Fine-tuning in the scalar potential is at least two orders of magnitude smaller than in the MSSM with similar soft scalar masses. The physical Higgs boson mass is (for tanβ >> 1) in the range 120-135 GeV
Mu-tau reflection symmetry with a texture-zero
Energy Technology Data Exchange (ETDEWEB)
Nishi, C.C. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC - UFABC,Av. dos Estados, 5001, Santo André - SP, 09210-580 (Brazil); Sánchez-Vega, B.L. [Instituto de Física Teórica - Universidade Estadual Paulista,R. Dr. Bento Teobaldo Ferraz 271, Barra Funda São Paulo - SP, 01140-070 (Brazil)
2017-01-17
The μτ-reflection symmetry is a simple symmetry capable of predicting all the unknown CP phases of the lepton sector and the atmospheric angle but too simple to predict the absolute neutrino mass scale or the mass ordering. We show that by combining it with a discrete abelian symmetry in a nontrivial way we can additionally enforce a texture-zero and obtain a highly predictive scenario where the lightest neutrino mass is fixed to be in the few meV range for two normal ordering (NO) solutions or in the tens of meV in one inverted ordering (IO) solution. The rate for neutrinoless double beta decay is predicted to be negligible for NO or have effective mass m{sub ββ}≈14–29 meV for IO, right in the region to be probed in future experiments.
Hierarchies without symmetries from extra dimensions
International Nuclear Information System (INIS)
Arkani-Hamed, Nima; Schmaltz, Martin
2000-01-01
It is commonly thought that small couplings in a low-energy theory, such as those needed for the fermion mass hierarchy or proton stability, must originate from symmetries in a high-energy theory. We show that this expectation is violated in theories where the standard model fields are confined to a thick wall in extra dimensions, with the fermions ''stuck'' at different points in the wall. Couplings between them are then suppressed due to the exponentially small overlaps of their wave functions. This provides a framework for understanding both the fermion mass hierarchy and proton stability without imposing symmetries, but rather in terms of higher dimensional geography. A model independent prediction of this scenario is non-universal couplings of the standard model fermions to the ''Kaluza-Klein'' excitations of the gauge fields. This allows a measurement of the fermion locations in the extra dimensions at the CERN LHC or NLC if the wall thickness is close to the TeV scale. (c) 2000 The American Physical Society
Hierarchies Without Symmetries from Extra Dimensions
International Nuclear Information System (INIS)
Arkani-Hamed, Nima
1999-01-01
It is commonly thought that small couplings in a low-energy theory, such as those needed for the fermion mass hierarchy or proton stability, must originate from symmetries in a high-energy theory. We show that this expectation is violated in theories where the Standard Model fields are confined to a thick wall in extra dimensions, with the fermions ''stuck'' at different points in the wall. Couplings between them are then suppressed due to the exponentially small overlaps of their wave functions. This provides a framework for understanding both the fermion mass hierarchy and proton stability without imposing symmetries, but rather in terms of higher dimensional geography. A model independent prediction of this scenario is non-universal couplings of the Standard Model fermions to the ''Kaluza-Klein'' excitations of the gauge fields. This allows a measurement of the fermion locations in the extra dimensions at the LHC or NLC if the wall thickness is close to the TeV scale
QCD-instantons and conformal inversion symmetry
International Nuclear Information System (INIS)
Klammer, D.
2006-07-01
Instantons are an essential and non-perturbative part of Quantum Chromodynamics, the theory of strong interactions. One of the most relevant quantities in the instanton calculus is the instanton-size distribution, which can be described on the one hand within the framework of instanton perturbation theory and on the other hand investigated numerically by means of lattice computations. A rapid onset of a drastic discrepancy between these respective results indicates that the underlying physics is not yet well understood. In this work we investigate the appealing possibility of a symmetry under conformal inversion of space-time leading to this deviation. The motivation being that the lattice data seem to be invariant under an inversion of the instanton size. Since the instanton solution of a given size turns into an anti-instanton solution having an inverted size under conformal inversion of space-time, we ask in a first investigation, whether this property is transferred to the quantum level. In order to introduce a new scale, which is indicated by the lattice data and corresponds to the average instanton size as inversion radius, we project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via stereographic projection. The radius of this sphere is associated with the average instanton size. The result for the instanton size-distribution projected onto the sphere agrees surprisingly well with the lattice data at qualitative level. The resulting symmetry under an inversion of the instanton size is almost perfect. (orig.)
QCD-instantons and conformal inversion symmetry
Energy Technology Data Exchange (ETDEWEB)
Klammer, D.
2006-07-15
Instantons are an essential and non-perturbative part of Quantum Chromodynamics, the theory of strong interactions. One of the most relevant quantities in the instanton calculus is the instanton-size distribution, which can be described on the one hand within the framework of instanton perturbation theory and on the other hand investigated numerically by means of lattice computations. A rapid onset of a drastic discrepancy between these respective results indicates that the underlying physics is not yet well understood. In this work we investigate the appealing possibility of a symmetry under conformal inversion of space-time leading to this deviation. The motivation being that the lattice data seem to be invariant under an inversion of the instanton size. Since the instanton solution of a given size turns into an anti-instanton solution having an inverted size under conformal inversion of space-time, we ask in a first investigation, whether this property is transferred to the quantum level. In order to introduce a new scale, which is indicated by the lattice data and corresponds to the average instanton size as inversion radius, we project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via stereographic projection. The radius of this sphere is associated with the average instanton size. The result for the instanton size-distribution projected onto the sphere agrees surprisingly well with the lattice data at qualitative level. The resulting symmetry under an inversion of the instanton size is almost perfect. (orig.)
Flavor symmetry breaking and meson masses
International Nuclear Information System (INIS)
Bhagwat, Mandar S.; Roberts, Craig D.; Chang Lei; Liu Yuxin; Tandy, Peter C.
2007-01-01
The axial-vector Ward-Takahashi identity is used to derive mass formulas for neutral pseudoscalar mesons. Flavor symmetry breaking entails nonideal flavor content for these states. Adding that the η ' is not a Goldstone mode, exact chiral-limit relations are developed from the identity. They connect the dressed-quark propagator to the topological susceptibility. It is confirmed that in the chiral limit the η ' mass is proportional to the matrix element which connects this state to the vacuum via the topological susceptibility. The implications of the mass formulas are illustrated using an elementary dynamical model, which includes an Ansatz for that part of the Bethe-Salpeter kernel related to the non-Abelian anomaly. In addition to the current-quark masses, the model involves two parameters, one of which is a mass-scale. It is employed in an analysis of pseudoscalar- and vector-meson bound-states. While the effects of SU(N f =2) and SU(N f =3) flavor symmetry breaking are emphasized, the five-flavor spectra are described. Despite its simplicity, the model is elucidative and phenomenologically efficacious; e.g., it predicts η-η ' mixing angles of ∼-15 deg. and π 0 -η angles of ∼1 deg
Electroweak symmetry breaking: Higgs/whatever
International Nuclear Information System (INIS)
Chanowitz, M.S.
1990-01-01
In these two lectures the author discusses electroweak symmetry breaking from a general perspective, stressing properties that are model independent and follow just from the assumption that the electroweak interactions are described by a spontaneously broken gauge theory. This means he assumes the Higgs mechanism though not necessarily the existence of Higgs bosons. The first lecture presents the general framework of a spontaneously broken gauge theory: (1) the Higgs mechanism sui generis, with or without Higgs boson(s) and (2) the implications of symmetry and unitarity for the mass scale and interaction strength of the new physics that the Higgs mechanism requires. In addition he reviews a softer theoretical argument based on the naturalness problem which leads to a prejudice against Higgs bosons unless they are supersymmetric. This is a prejudice, not a theorem, and it could be overturned in the future by a clever new idea. In the second lecture he illustrates the general framework by reviewing some specific models: (1) the Weinberg-Salam model of the Higgs sector; (2) the minimal supersymmetric extension of the Weinberg-Salam model; and (3) technicolor as an example of the Higgs mechanism without Higgs bosons. He concludes the second lecture with a discussion of strong WW scattering that must occur if L SB lives above 1 TeV. In particular he describes some of the experimental signals and backgrounds at the SSC. 57 refs., 12 figs
Large Top-Quark Mass and Nonlinear Representation of Flavor Symmetry
International Nuclear Information System (INIS)
Feldmann, Thorsten; Mannel, Thomas
2008-01-01
We consider an effective theory (ET) approach to flavor-violating processes beyond the standard model, where the breaking of flavor symmetry is described by spurion fields whose low-energy vacuum expectation values are identified with the standard model Yukawa couplings. Insisting on canonical mass dimensions for the spurion fields, the large top-quark Yukawa coupling also implies a large expectation value for the associated spurion, which breaks part of the flavor symmetry already at the UV scale Λ of the ET. Below that scale, flavor symmetry in the ET is represented in a nonlinear way by introducing Goldstone modes for the partly broken flavor symmetry and spurion fields transforming under the residual symmetry. As a result, the dominance of certain flavor structures in rare quark decays can be understood in terms of the 1/Λ expansion in the ET
Gu, Pei-Hong
2017-10-01
We introduce a mirror copy of the ordinary fermions and Higgs scalars for embedding the SU(2) L × U(1) Y electroweak gauge symmetry into an SU(2) L × SU(2) R × U(1) B-L left-right gauge symmetry. We then show the spontaneous left-right symmetry breaking can automatically break the parity symmetry motivated by solving the strong CP problem. Through the SU(2) R gauge interactions, a mirror Majorana neutrino can decay into a mirror charged lepton and two mirror quarks. Consequently we can obtain a lepton asymmetry stored in the mirror charged leptons. The Yukawa couplings of the mirror and ordinary charged fermions to a dark matter scalar then can transfer the mirror lepton asymmetry to an ordinary lepton asymmetry which provides a solution to the cosmic baryon asymmetry in association with the SU(2) L sphaleron processes. In this scenario, the baryon asymmetry can be well described by the neutrino mass matrix up to an overall factor.
Symmetry and electromagnetism. Simetria y electromagnetismo
Energy Technology Data Exchange (ETDEWEB)
Fuentes Cobas, L.E.; Font Hernandez, R.
1993-01-01
An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs.
Symmetries, Integrals and Solutions of Ordinary Differential ...
Indian Academy of Sciences (India)
Second-and third-order scalar ordinary differential equations of maximal symmetry in the traditional sense of point, respectively contact, symmetry are examined for the mappings they produce in solutions and fundamental first integrals. The properties of the `exceptional symmetries', i.e. those not considered to be generic to ...
The symmetry of the Hubbard model
International Nuclear Information System (INIS)
Grosse, H.
1988-01-01
The spectrum of the Hubbard model shows permanent degeneracy of levels with different symmetry, if one considers only symmetry operators independent of the coupling constant. This suggests the existence of symmetry operators which depend on the coupling constant. We find these highly nontrivial operators and show that they explain the degeneracies in the energy spectrum. 5 refs. (Author)
Prediction of human eye fixations using symmetry
Kootstra, Gert; Schomaker, Lambert
2009-01-01
Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of
Dynamical symmetry breaking in barium isotopes
International Nuclear Information System (INIS)
Rawat, Bir Singh; Chattopadhyay, P.K.
1997-01-01
The isotopes of Xe with mass numbers 124, 126, 128, 130 and the isotopes of barium with mass numbers 128, 130, 132, 134 were shown to correspond to the O(6) dynamical symmetry of IBM. In the investigation of the dynamical symmetry breaking in this region, the barium isotopes for departures from O(6) symmetry have been studied
Physics of chiral symmetry breaking
International Nuclear Information System (INIS)
Shuryak, E.V.
1991-01-01
This subsection of the 'Modeling QCD' Workshop has included five talks. E. Shuryak spoke on 'Recent Progress in Understanding Chiral Symmetry Breaking'; below it is split into two parts: (i) a mini-review of the field and (ii) a brief presentation of the status of the theory of interacting instantons. The next sections correspond to the following talks: (iii) K. Goeke et al., 'Chiral Restoration and Medium Corrections to Nucleon in the NJL Model'; (iv) M. Takizawa and K. Kubodera, 'Study of Meson Properties and Quark Condensates in the NJL Model with Instanton Effects'; (v) G. Klein and A. G. Williams, 'Dynamical Chiral Symmetry Breaking in Dual QCD'; and (vi) R. D. Ball, 'Skyrmions and Baryons.' (orig.)
Mirror symmetry and loop operators
Energy Technology Data Exchange (ETDEWEB)
Assel, Benjamin [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada)
2015-11-09
Wilson loops in gauge theories pose a fundamental challenge for dualities. Wilson loops are labeled by a representation of the gauge group and should map under duality to loop operators labeled by the same data, yet generically, dual theories have completely different gauge groups. In this paper we resolve this conundrum for three dimensional mirror symmetry. We show that Wilson loops are exchanged under mirror symmetry with Vortex loop operators, whose microscopic definition in terms of a supersymmetric quantum mechanics coupled to the theory encode in a non-trivial way a representation of the original gauge group, despite that the gauge groups of mirror theories can be radically different. Our predictions for the mirror map, which we derive guided by branes in string theory, are confirmed by the computation of the exact expectation value of Wilson and Vortex loop operators on the three-sphere.
Symmetry realization of texture zeros
International Nuclear Information System (INIS)
Grimus, W.; Joshipura, A.S.; Lavoura, L.; Tanimoto, M.
2004-01-01
We show that it is possible to enforce texture zeros in arbitrary entries of the fermion mass matrices by means of Abelian symmetries; in this way, many popular mass-matrix textures find a symmetry justification. We propose two alternative methods which allow one to place zeros in any number of elements of the mass matrices that one wants. They are applicable simultaneously in the quark and lepton sectors. They are also applicable in grand unified theories. The number of scalar fields required by our methods may be large; still, in many interesting cases this number can be reduced considerably. The larger the desired number of texture zeros is, the simpler are the models which reproduce the texture. (orig.)
Steering particles by breaking symmetries
Bet, Bram; Samin, Sela; Georgiev, Rumen; Burak Eral, Huseyin; van Roij, René
2018-06-01
We derive general equations of motions for highly-confined particles that perform quasi-two-dimensional motion in Hele-Shaw channels, which we solve analytically, aiming to derive design principles for self-steering particles. Based on symmetry properties of a particle, its equations of motion can be simplified, where we retrieve an earlier-known equation of motion for the orientation of dimer particles consisting of disks (Uspal et al 2013 Nat. Commun. 4), but now in full generality. Subsequently, these solutions are compared with particle trajectories that are obtained numerically. For mirror-symmetric particles, excellent agreement between the analytical and numerical solutions is found. For particles lacking mirror symmetry, the analytic solutions provide means to classify the motion based on particle geometry, while we find that taking the side-wall interactions into account is important to accurately describe the trajectories.
Noncompact symmetries in string theory
International Nuclear Information System (INIS)
Maharana, J.; Schwarz, J.H.
1993-01-01
Noncompact groups, similar to those that appeared in various supergravity theories in the 1970's have been turning up in recent studies of string theory. First it was discovered that moduli spaces of toroidal compactification are given by noncompact groups modded out by their maximal compact subgroups and discrete duality groups. Then it was found that many other moduli spaces have analogous descriptions. More recently, noncompact group symmetries have turned up in effective actions used to study string cosmology and other classical configurations. This paper explores these noncompact groups in the case of toroidal compactification both from the viewpoint of low-energy effective field theory, using the method of dimensional reduction, and from the viewpoint of the string theory world-sheet. The conclusion is that all these symmetries are intimately related. In particular, we find that Chern-Simons terms in the three-form field strength H μνρ play a crucial role. (orig.)
Universality of modular symmetries in two-dimensional magnetotransport
Olsen, K. S.; Limseth, H. S.; Lütken, C. A.
2018-01-01
We analyze experimental quantum Hall data from a wide range of different materials, including semiconducting heterojunctions, thin films, surface layers, graphene, mercury telluride, bismuth antimonide, and black phosphorus. The fact that these materials have little in common, except that charge transport is effectively two-dimensional, shows how robust and universal the quantum Hall phenomenon is. The scaling and fixed point data we analyzed appear to show that magnetotransport in two dimensions is governed by a small number of universality classes that are classified by modular symmetries, which are infinite discrete symmetries not previously seen in nature. The Hall plateaux are (infrared) stable fixed points of the scaling-flow, and quantum critical points (where the wave function is delocalized) are unstable fixed points of scaling. Modular symmetries are so rigid that they in some cases fix the global geometry of the scaling flow, and therefore predict the exact location of quantum critical points, as well as the shape of flow lines anywhere in the phase diagram. We show that most available experimental quantum Hall scaling data are in good agreement with these predictions.
Models of electroweak symmetry breaking
Pomarol, Alex
2015-01-01
This chapter present models of electroweak symmetry breaking arising from strongly interacting sectors, including both Higgsless models and mechanisms involving a composite Higgs. These scenarios have also been investigated in the framework of five-dimensional warped models that, according to the AdS/CFT correspondence, have a four-dimensional holographic interpretation in terms of strongly coupled field theories. We explore the implications of these models at the LHC.
International Nuclear Information System (INIS)
Schrader, D.M.
2004-01-01
We work out the complete symmetry and spin problem for diatomic positronium Ps 2 for the ground and singly excited states of zero orbital angular momentum. The general form of the wave function for each state is given, with due regard to charge conjugation parity. Annihilation rates are discussed, and correlations to dissociation products are deduced. We indicate how the approach is extensible to larger aggregates: i.e., PsPs n , n>2
Symmetries of the dual metrics
International Nuclear Information System (INIS)
Baleanu, D.
1998-01-01
The geometric duality between the metric g μν and a Killing tensor K μν is studied. The conditions were found when the symmetries of the metric g μν and the dual metric K μν are the same. Dual spinning space was constructed without introduction of torsion. The general results are applied to the case of Kerr-Newmann metric
Symmetries of cosmological Cauchy horizons
International Nuclear Information System (INIS)
Moncrief, V.; Isenberg, J.
1983-01-01
We consider analytic vacuum and electrovacuum spacetimes which contain a compact null hypersurface ruled by closed null generators. We prove that each such spacetime has a non-trivial Killing symmetry. We distinguish two classes of null surfaces, degenerate and non-degenerate ones, characterized by the zero or non-zero value of a constant analogous to the ''surface gravity'' of stationary black holes. We show that the non-degenerate null surfaces are always Cauchy heizons across which the Killing fields change from spacelike (in the globally hyperbolic regions) to timelike (in the acausal, analytic extensions). For the special case of a null surface diffeomorphic to T 3 we characterize the degenerate vacuum solutions completely. These consists of an infinite dimensional family of ''plane wave'' spacetimes which are entirely foliated by compact null surfaces. Previous work by one of us has shown that, when one dimensional Killing symmetries are allowed, then infinite dimensional families of non-degenerate, vacuum solutions exist. We recall these results for the case of Cauchy horizons diffeomorphic to T 3 and prove the generality of the previously constructed non-degenerate solutions. We briefly discuss the possibility of removing the assumptions of closed generators and analyticity and proving an appropriate generalization of our main results. Such a generalization would provide strong support for the cosmic censorship conjecture by showing that causality violating, cosmological solutions of Einstein's equations are essentially an artefact of symmetry. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Miller, G.A. [Department of Physics, University of Washington, Seattle (United States); Kolck, U. van [Department of Physics, University of Arizona, Tucson (United States)
2003-06-01
Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of {sup i}sospin{sup ,} and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while the down quark has a negative charge of -1/3. If charge symmetry was exact, the proton and the neutron would have the same mass and they would both be electrically neutral. This is because the proton is made of two up quarks and a down quark, while the neutron comprises two downs and an up. Replacing up quarks with down quarks, and vice versa, therefore transforms a proton into a neutron. Charge-symmetry breaking causes the neutron to be about 0.1% heavier than the proton because the down quark is slightly heavier than the up quark. Physicists had already elucidated certain aspects of charge-symmetry breaking, but our spirits were raised greatly when we heard of the recent work of Allena Opper of Ohio University in the US and co-workers at the TRIUMF laboratory in British Columbia, Canada. Her team has been trying to observe a small charge-symmetry-breaking effect for several years, using neutron beams at the TRIUMF accelerator. The researchers studied the
Infinitesimal symmetries: a computational approach
International Nuclear Information System (INIS)
Kersten, P.H.M.
1985-01-01
This thesis is concerned with computational aspects in the determination of infinitesimal symmetries and Lie-Baecklund transformations of differential equations. Moreover some problems are calculated explicitly. A brief introduction to some concepts in the theory of symmetries and Lie-Baecklund transformations, relevant for this thesis, are given. The mathematical formalism is shortly reviewed. The jet bundle formulation is chosen, in which, by its algebraic nature, objects can be described very precisely. Consequently it is appropriate for implementation. A number of procedures are discussed, which enable to carry through computations with the help of a computer. These computations are very extensive in practice. The Lie algebras of infinitesimal symmetries of a number of differential equations in Mathematical Physics are established and some of their applications are discussed, i.e., Maxwell equations, nonlinear diffusion equation, nonlinear Schroedinger equation, nonlinear Dirac equations and self dual SU(2) Yang-Mills equations. Lie-Baecklund transformations of Burgers' equation, Classical Boussinesq equation and the Massive Thirring Model are determined. Furthermore, nonlocal Lie-Baecklund transformations of the last equation are derived. (orig.)
Neutrino masses and spontaneously broken flavor symmetries
International Nuclear Information System (INIS)
Staudt, Christian
2014-01-01
We study the phenomenology of supersymmetric flavor models. We show how the predictions of models based on spontaneously broken non-Abelian discrete flavor symmetries are altered when we include so-called Kaehler corrections. Furthermore, we discuss anomaly-free discrete R symmetries which are compatible with SU(5) unification. We find a set of symmetries compatible with suppressed Dirac neutrino masses and a unique symmetry consistent with the Weinberg operator. We also study a pseudo-anomalous U(1) R symmetry which explains the fermion mass hierarchies and, when amended with additional singlet fields, ameliorates the fine-tuning problem.
Symmetry, from Euclid to Pierre Curie
International Nuclear Information System (INIS)
Sivardiere, J.
1997-01-01
A historical review of the principles of symmetry is presented, starting with Egyptian pavements and Euclid regular polyhedrons, 2 and 3 dimensional paving studies with Kepler in the 17. century, modern crystallography with the constant angle law and the rational truncations law in the 18. century, the identification of the various crystal symmetries (19. century), the discovery of liquid crystals, the relations between the symmetry and the physical and optical properties of systems, molecules, etc.. Finally, P. Curie has determined the general principle of symmetry, linking symmetry and its effects
Dynamical study of symmetries: breaking and restauration
International Nuclear Information System (INIS)
Schuck, P.
1986-09-01
First symmetry breaking (spontaneous) is explained and the physical implication discussed for infinite systems. The relation with phase transitions is indicated. Then the specific aspects of symmetry breaking in finite systems is treated and illustrated in detail for the case of translational invariance with the help of an oversimplified but exactly solvable model. The method of projection (restauration of symmetry) is explained for the static case and also applied to the model. Symmetry breaking in the dynamical case and for instance the notion of a soft mode responsible for the symmetry breaking is discussed in the case of superfluidity and another exactly solvable model is introduced. The Goldstone mode is treated in detail. Some remarks on analogies with the breaking of chiral symmetry are made. Some recent developments in the theory of symmetry restauration are briefly outlined [fr
Occurrence of the structural enterocin A, P, B, L50B genes in enterococci of different origin.
Strompfová, Viola; Lauková, Andrea; Simonová, Monika; Marcináková, Miroslava
2008-12-10
Enterococci are well-known producers of antimicrobial peptides--bacteriocins (enterocins) and the number of characterized enterocins has been significantly increased. Recently, enterocins are of great interest for their potential as biopreservatives in food or feed while research on enterocins as alternative antimicrobials in humans and animals is only at the beginning. The present study provides a survey about the occurrence of enterocin structural genes A, P, B, L50B in a target of 427 strains of Enterococcus faecium (368) and Enterococcus faecalis (59) species from different sources (animal isolates, food and feed) performed by PCR method. Based on our results, 234 strains possessed one or more enterocin structural gene(s). The genes of enterocin P and enterocin A were the most frequently detected structural genes among the PCR positive strains (170 and 155 strains, respectively). Different frequency of the enterocin genes occurrence was detected in strains according to their origin; the strains from horses and silage showed the highest frequency of enterocin genes presence. All possible combinations of the tested genes occurred at least twice except the combination of the gene of enterocin B and L50B which possessed neither strain. The gene of enterocin A was exclusively detected among E. faecium strains, while the gene of enterocin P, B, L50B were detected in strains of both species E. faecium and E. faecalis. In conclusion, a high-frequency and variability of enterocin structural genes exists among enterococci of different origin what offers a big possibility to find effective bacteriocin-producing strains for their application in veterinary medicine.
No-scale μ-term hybrid inflation
Energy Technology Data Exchange (ETDEWEB)
Wu, Lina [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Beijing (China); Hu, Shan [Hubei University, Department of Physics, Faculty of Physics and Electronic Sciences, Wuhan (China); Li, Tianjun [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China)
2017-03-15
To solve the fine-tuning problem in μ-term hybrid inflation, we will realize the supersymmetry scenario with the TeV-scale supersymmetric particles and intermediate-scale gravitino from anomaly mediation, which can be consistent with the WMAP and Planck experiments. Moreover, we for the first time propose the μ-term hybrid inflation in no-scale supergravity. With four scenarios for the SU(3){sub C} x SU(2){sub L} x SU(2){sub R} x U(1){sub B-L} model, we show that the correct scalar spectral index n{sub s} can be obtained, while the tensor-to-scalar ratio r is predicted to be tiny, about 10{sup -10}-10{sup -8}. Also, the SU(2){sub R} x U(1){sub B-L} symmetry breaking scale is around 10{sup 14} GeV, and all the supersymmetric particles except gravitino are around the TeV scale, while the gravitino mass is around 10{sup 9}-10{sup 10} GeV. Considering the complete potential terms linear in S, we for the first time show that the tadpole term, which is the key for such kind of inflationary models to be consistent with the observed scalar spectral index, vanishes after inflation. Thus, to obtain the μ term, we need to generate the supersymmetry breaking soft term A{sup SΦΦ{sup '}{sub κ}} κS ΦΦ{sup '} due to A{sup SΦΦ{sup '}{sub κ}} = 0 in no-scale supergravity, where Φ and Φ{sup '} are vector-like Higgs fields at high energy. We show that the proper A{sup SΦΦ{sup '}{sub κ}} κS ΦΦ{sup '} term can be obtained in the M-theory inspired no-scale supergravity. We also point out that A{sup SΦΦ{sup '}{sub κ}} around 700 GeV can be generated via the renormalization group equation running from string scale. We briefly comment on the supersymmetry phenomenological consequences as well. (orig.)
Reflection symmetry-integrated image segmentation.
Sun, Yu; Bhanu, Bir
2012-09-01
This paper presents a new symmetry-integrated region-based image segmentation method. The method is developed to obtain improved image segmentation by exploiting image symmetry. It is realized by constructing a symmetry token that can be flexibly embedded into segmentation cues. Interesting points are initially extracted from an image by the SIFT operator and they are further refined for detecting the global bilateral symmetry. A symmetry affinity matrix is then computed using the symmetry axis and it is used explicitly as a constraint in a region growing algorithm in order to refine the symmetry of the segmented regions. A multi-objective genetic search finds the segmentation result with the highest performance for both segmentation and symmetry, which is close to the global optimum. The method has been investigated experimentally in challenging natural images and images containing man-made objects. It is shown that the proposed method outperforms current segmentation methods both with and without exploiting symmetry. A thorough experimental analysis indicates that symmetry plays an important role as a segmentation cue, in conjunction with other attributes like color and texture.
Crossing symmetry in Alpha space
CERN. Geneva
2017-01-01
The conformal bootstrap program aims to catalog all conformal field theories (second-order phase transitions) in D dimensions. Despite its ambitious scope much progress has been made over the past decade, e.g. in computing critical exponents for the 3D O(N) models to high precision. At this stage, analytic methods to explore the CFT landscape are not as well developed. In this talk I will describe a new mathematical framework for the bootstrap known as "alpha space", which reduces crossing symmetry to a set of integral equations. Based on arXiv:1702.08471 (with Balt van Rees) and arXiv:1703.08159.
Torus knots and mirror symmetry
Brini, Andrea; Marino, Marcos
2012-01-01
We propose a spectral curve describing torus knots and links in the B-model. In particular, the application of the topological recursion to this curve generates all their colored HOMFLY invariants. The curve is obtained by exploiting the full Sl(2, Z) symmetry of the spectral curve of the resolved conifold, and should be regarded as the mirror of the topological D-brane associated to torus knots in the large N Gopakumar-Vafa duality. Moreover, we derive the curve as the large N limit of the matrix model computing torus knot invariants.
Symmetries applied to reactor calculations
International Nuclear Information System (INIS)
Makai, M.
1982-03-01
Three problems of a reactor-calculational model are discussed with the help of symmetry considerations. 1/ A coarse mesh method applicable to any geometry is derived. It is shown that the coarse mesh solution can be constructed from a few standard boundary value problems. 2/ A second stage homogenization method is given based on the Bloch theorem. This ensures the continuity of the current and the flux at the boundary. 3/ The validity of the micro-macro separation is shown for heterogeneous lattices. A formula for the neutron density is derived for cell homogenization. (author)
Hexagonal response matrix using symmetries
International Nuclear Information System (INIS)
Gotoh, Y.
1991-01-01
A response matrix for use in core calculations for nuclear reactors with hexagonal fuel assemblies is presented. It is based on the incoming currents averaged over the half-surface of a hexagonal node by applying symmetry theory. The boundary conditions of the incoming currents on the half-surface of the node are expressed by a complete set of orthogonal vectors which are constructed from symmetrized functions. The expansion coefficients of the functions are determined by the boundary conditions of incoming currents. (author)
Symmetries and Dirac equation solutions
International Nuclear Information System (INIS)
Souza, Marcio Lima de.
1991-06-01
The purpose of this thesis is the extension to be relativistic case of a method that has proved useful for the solution of various potential problems in non relativistic situation. This method, the method of dynamical symmetries, is based on the Baker-Campbell-Hausdorf formulae and developed first for the particular example of the relativistic Coulomb problem. Here we generalize the method for a Hamiltonian that can be written as a linear combination of generators of the SO(2,1) group. As illustrative examples, we solve the problem of a charged particle in a constant magnetic field and the exponential magnetic field. (author). 21 refs
Symmetry generators in singular theories
International Nuclear Information System (INIS)
Lavrov, P.M.; Tyutin, I.V.
1989-01-01
It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)
History of electroweak symmetry breaking
International Nuclear Information System (INIS)
Kibble, T W B
2015-01-01
In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012. (paper)
Symmetry breaking in the double-well hermitian matrix models
Brower, R C; Jain, S; Tan, C I; Brower, Richard C.; Deo, Nevidita; Jain, Sanjay; Tan, Chung-I
1993-01-01
We study symmetry breaking in $Z_2$ symmetric large $N$ matrix models. In the planar approximation for both the symmetric double-well $\\phi^4$ model and the symmetric Penner model, we find there is an infinite family of broken symmetry solutions characterized by different sets of recursion coefficients $R_n$ and $S_n$ that all lead to identical free energies and eigenvalue densities. These solutions can be parameterized by an arbitrary angle $\\theta(x)$, for each value of $x = n/N < 1$. In the double scaling limit, this class reduces to a smaller family of solutions with distinct free energies already at the torus level. For the double-well $\\phi^4$ theory the double scaling string equations are parameterized by a conserved angular momentum parameter in the range $0 \\le l < \\infty$ and a single arbitrary $U(1)$ phase angle.
Strong Electroweak Symmetry Breaking and Spin-0 Resonances
International Nuclear Information System (INIS)
Evans, Jared; Luty, Markus A.
2009-01-01
We argue that theories of the strong electroweak symmetry breaking sector necessarily contain new spin 0 states at the TeV scale in the tt and tb/bt channels, even if the third generation quarks are not composite at the TeV scale. These states couple sufficiently strongly to third generation quarks to have significant production at LHC via gg→φ 0 or gb→tφ - . The existence of narrow resonances in QCD suggests that the strong electroweak breaking sector contains narrow resonances that decay to tt or tb/bt, with potentially significant branching fractions to 3 or more longitudinal W and Z bosons. These may give new 'smoking gun' signals of strong electroweak symmetry breaking.
Probing electroweak symmetry breaking at multi-TeV colliders
International Nuclear Information System (INIS)
Chanowitz, M.S.
1987-01-01
Low energy theorems are derived for scattering of longitudinally polarized W and Z's, providing the basis for an estimate of the observable signal if electroweak symmetry breaking is due to new physics at the TeV scale. A pp collider with L, √s = 40 TeV, 10 33 cm. -2 s -1 is just sufficient to observe the signal while pp colliders with 40, 10 32 or 20, 10 33 are not. A collider that is sensitive to the TeV-scale signal provides valuable information about symmetry breaking whether the masses of the associated new particles are below, within, or above the 1-2 TeV region. 6 refs., 6 figs., 2 tabs
Skyrmions with holography and hidden local symmetry
International Nuclear Information System (INIS)
Nawa, Kanabu; Hosaka, Atsushi; Suganuma, Hideo
2009-01-01
We study baryons as Skyrmions in holographic QCD with D4/D8/D8 multi-D brane system in type IIA superstring theory, and also in the nonlinear sigma model with hidden local symmetry. Comparing these two models, we find that the extra dimension and its nontrivial curvature can largely change the role of (axial) vector mesons for baryons in four-dimensional space-time. In the hidden local symmetry approach, the ρ-meson field as a massive Yang-Mills field has a singular configuration in Skyrmion, which gives a strong repulsion for the baryon as a stabilizer. When the a 1 meson is added in this approach, the stability of Skyrmion is lost by the cancellation of ρ and a 1 contributions. On the contrary, in holographic QCD, the ρ-meson field does not appear as a massive Yang-Mills field due to the extra dimension and its nontrivial curvature. We show that the ρ-meson field has a regular configuration in Skyrmion, which gives a weak attraction for the baryon in holographic QCD. We argue that Skyrmion with π, ρ, and a 1 mesons become stable due to the curved extra dimension and also the presence of the Skyrme term in holographic QCD. From this result, we also discuss the features of our truncated-resonance analysis on baryon properties with π and ρ mesons below the cutoff scale M KK ∼1 GeV in holographic QCD, which is compared with other 5D instanton analysis.
Model for extended Pati-Salam gauge symmetry
International Nuclear Information System (INIS)
Foot, R.; Lew, H.; Volkas, R.R.
1990-11-01
The possibility of constructing non-minimal models of the Pati-Salam type is investigated. The most interesting examples are found to have an SU(6) x SU(2) L x SU(2) R guage invariance. Two interesting symmetry breaking patterns are analysed: one leading to the theory of SU(5) colour at an intermediate scale, the other to the quark-lepton symmetric model. 15 refs
Modified Adler sum rule and violation of charge symmetry
International Nuclear Information System (INIS)
Dominguez, C.A.; Moreno, H.; Zepeda, A.
The consequences of a once subtracted dispersion relation in the derivation of the Adler sum rule are investigated. It is shown that one can expect a breakdown of charge symmetry, of the isotriplet current hypothesis, and of scaling of the structure functions. These breakdowns are related to the possible presence of a non-zero subtraction function at asymptotic energies and arbitrary q 2 . Second class currents and PCAC relations are also discussed
Spinor Structure and Internal Symmetries
Varlamov, V. V.
2015-10-01
Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.
Contact symmetries and Hamiltonian thermodynamics
International Nuclear Information System (INIS)
Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.
2015-01-01
It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production
Dual symmetry in gauge theories
International Nuclear Information System (INIS)
Koshkarov, A.L.
1997-01-01
Continuous dual symmetry in electrodynamics, Yang-Mills theory and gravitation is investigated. Dual invariant which leads to badly nonlinear motion equations is chosen as a Lagrangian of the pure classical dual nonlinear electrodynamics. In a natural manner some dual angle which is determined by the electromagnetic strengths at the point of the time-space appears in the model. Motion equations may well be interpreted as the equations of the standard Maxwell theory with source. Alternative interpretation is the quasi-Maxwell linear theory with magnetic charge. Analogous approach is possible in the Yang-Mills theory. In this case the dual-invariant non-Abelian theory motion equations possess the same instanton solutions as the conventional Yang-Mills equations have. An Abelian two-parameter dual group is found to exist in gravitation. Irreducible representations have been obtained: the curvature tensor was expanded into the sum of twice anti-self-dual and self-dual parts. Gravitational instantons are defined as (real )solutions to the usual duality equations. Central symmetry solutions to these equations are obtained. The twice anti-self-dual part of the curvature tensor may be used for introduction of new gravitational equations generalizing Einstein''s equations. However, the theory obtained reduces to the conformal-flat Nordstroem theory
International Nuclear Information System (INIS)
Hsu, J.P.
1976-01-01
A new picture of nature is proposed in which there are only two fundamental universal constants anti e (identical with e/c) and dirac constant (identical with dirac constant/c). The theory is developed within the framework of a new four-dimensional symmetry which is constructed on the basis of the Poincare--Einstein principle of relativity for the laws of physics and the Newtonian concept of time. One obtains a new space--light transformation law, a velocity-addition law, and so on. In this symmetry scheme, the speed of light is constant and is completely relative. The new theory is logically self-consistent, and it moreover is in agreement with all previously established experimental facts, such as the ''lifetime dilatation'' of unstable particles, the Michelson--Morley experiment, etc. There is a difference relative to the usual theory, though, in that our theory predicts a new law for the Doppler frequency shift, which can be tested experimentally by measuring the second-order frequency shift
Discrete symmetries with neutral mesons
Bernabéu, José
2018-01-01
Symmetries, and Symmetry Breakings, in the Laws of Physics play a crucial role in Fundamental Science. Parity and Charge Conjugation Violations prompted the consideration of Chiral Fields in the construction of the Standard Model, whereas CP-Violation needed at least three families of Quarks leading to Flavour Physics. In this Lecture I discuss the Conceptual Basis and the present experimental results for a Direct Evidence of Separate Reversal-in-Time T, CP and CPT Genuine Asymmetries in Decaying Particles like Neutral Meson Transitions, using Quantum Entanglement and the Decay as a Filtering Measurement. The eight transitions associated to the Flavour-CP eigenstate decay products of entangled neutral mesons have demonstrated with impressive significance a separate evidence of TRV and CPV in Bd-physics, whereas a CPTV asymmetry shows a 2σ effect interpreted as an upper limit. Novel CPTV observables are discussed for K physics at KLOE-2, including the difference between the semileptonic asymmetries from KL and KS, the ratios of double decay rate Intensities to Flavour-CP eigenstate decay products and the ω-effect. Their observation would lead to a change of paradigm beyond Quantum Field Theory, however there is nothing in Quantum Mechanics forbidding CPTV.
Symmetry between bosons and fermions
International Nuclear Information System (INIS)
Ohnuki, Y.; Kamefuchi, S.
1986-01-01
By definition Bosons and Fermions behave quite differently as regards statistics. It is equally true, however, that in some other respects they do behave similarly or even symmetrically. In the present paper they would like to show that such similarity or symmetry can be exhibited most fully when the theory is formulated in a specific manner, i.e. in terms of annihilation and creation operators a/sub j/ and a/sub j//sup dagger/ or what they term g-numbers. The difference between Bosons and Fermions can, of course, be traced back to the difference in the signatures (jj) = +,- attached to the brackets in the basic commutation relations: [a/sub j/,a/sub j//sup dagger/]-(jj) = 1, [a/sub j/,a/sub j/]-(jj) = 0. However, the substantial part of the theory can in fact be formulated without specifying the individual signatures (jj). This is why it is possible to treat Bosons and Fermions in a unified manner, and to thereby consider, among the two, super- or more general, g-symmetry transformations. 6 references, 1 table
Vertex algebras and mirror symmetry
International Nuclear Information System (INIS)
Borisov, L.A.
2001-01-01
Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)
Gauge symmetries, topology, and quantisation
International Nuclear Information System (INIS)
Balachandran, A.P.
1994-01-01
The following two loosely connected sets of topics are reviewed in these lecture notes: (1) Gauge invariance, its treatment in field theories and its implications for internal symmetries and edge states such as those in the quantum Hall effect. (2) Quantisation on multiply connected spaces and a topological proof the spin-statistics theorem which avoids quantum field theory and relativity. Under (1), after explaining the meaning of gauge invariance and the theory of constraints, we discuss boundary conditions on gauge transformations and the definition of internal symmetries in gauge field theories. We then show how the edge states in the quantum Hall effect can be derived from the Chern-Simons action using the preceding ideas. Under (2), after explaining the significance of fibre bundles for quantum physics, we review quantisation on multiply connected spaces in detail, explaining also mathematical ideas such as those of the universal covering space and the fundamental group. These ideas are then used to prove the aforementioned topological spin-statistics theorem
PREFACE: Symmetries and Integrability of Difference Equations
Doliwa, Adam; Korhonen, Risto; Lafortune, Stéphane
2007-10-01
M Sergeev on quantization of three-wave equations. Random matrix theory. This section contains a paper by A V Kitaev on the boundary conditions for scaled random matrix ensembles in the bulk of the spectrum. Symmetries and conservation laws. In this section we have five articles. H Gegen, X-B Hu, D Levi and S Tsujimoto consider a difference-analogue of Davey-Stewartson system giving its discrete Gram-type determinant solution and Lax pair. The paper by D Levi, M Petrera, and C Scimiterna is about the lattice Schwarzian KDV equation and its symmetries, while O G Rasin and P E Hydon study the conservation laws for integrable difference equations. S Saito and N Saitoh discuss recurrence equations associated with invariant varieties of periodic points, and P H van der Kamp presents closed-form expressions for integrals of MKDV and sine-Gordon maps. Ultra-discrete systems. This final category contains an article by C Ormerod on connection matrices for ultradiscrete linear problems. We would like to express our sincerest thanks to all contributors, and to everyone involved in compiling this special issue.
Local discrete symmetries from superstring derived models
International Nuclear Information System (INIS)
Faraggi, A.E.
1996-10-01
Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations
On the origin of neutrino flavour symmetry
International Nuclear Information System (INIS)
King, Stephen F.; Luhn, Christoph
2009-01-01
We study classes of models which are based on some discrete family symmetry which is completely broken such that the observed neutrino flavour symmetry emerges indirectly as an accidental symmetry. For such 'indirect' models we discuss the D-term flavon vacuum alignments which are required for such an accidental flavour symmetry consistent with tri-bimaximal lepton mixing to emerge. We identify large classes of suitable discrete family symmetries, namely the Δ(3n 2 ) and Δ(6n 2 ) groups, together with other examples such as Z 7 x Z 3 . In such indirect models the implementation of the type I see-saw mechanism is straightforward using constrained sequential dominance. However the accidental neutrino flavour symmetry may be easily violated, for example leading to a large reactor angle, while maintaining accurately the tri-bimaximal solar and atmospheric predictions.
Symmetry analysis in parametrisation of complex systems
International Nuclear Information System (INIS)
Sikora, W; Malinowski, J
2010-01-01
The symmetry analysis method based on the theory of group representations is used for description of complex systems and their behavior in this work. The first trial of using the symmetry analysis in modeling of behavior of complex social system is presented. The evacuation of large building scenarios are discussed as transition from chaotic to ordered states, described as movements of individuals according to fields of displacements, calculated correspondingly to given scenario. The symmetry of the evacuation space is taken into account in calculation of displacements field - the displacements related to every point of this space are presented in the coordinate frame in the best way adapted to given symmetry space group, which is the set of basic vectors of irreducible representation of given symmetry group. The results got with using the symmetry consideration are compared with corresponding results calculated under assumption of shortest way to exits (Voronoi assumption).
Symmetry analysis in parametrisation of complex systems
Energy Technology Data Exchange (ETDEWEB)
Sikora, W; Malinowski, J, E-mail: sikora@novell.ftj.agh.edu.p [Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland)
2010-03-01
The symmetry analysis method based on the theory of group representations is used for description of complex systems and their behavior in this work. The first trial of using the symmetry analysis in modeling of behavior of complex social system is presented. The evacuation of large building scenarios are discussed as transition from chaotic to ordered states, described as movements of individuals according to fields of displacements, calculated correspondingly to given scenario. The symmetry of the evacuation space is taken into account in calculation of displacements field - the displacements related to every point of this space are presented in the coordinate frame in the best way adapted to given symmetry space group, which is the set of basic vectors of irreducible representation of given symmetry group. The results got with using the symmetry consideration are compared with corresponding results calculated under assumption of shortest way to exits (Voronoi assumption).
Discrete symmetries in periodic-orbit theory
International Nuclear Information System (INIS)
Robbins, J.M.
1989-01-01
The application of periodic-orbit theory to systems which possess a discrete symmetry is considered. A semiclassical expression for the symmetry-projected Green's function is obtained; it involves a sum over classical periodic orbits on a symmetry-reduced phase space, weighted by characters of the symmetry group. These periodic orbits correspond to trajectories on the full phase space which are not necessarily periodic, but whose end points are related by symmetry. If the symmetry-projected Green's functions are summed, the contributions of the unperiodic orbits cancel, and one recovers the usual periodic-orbit sum for the full Green's function. Several examples are considered, including the stadium billiard, a particle in a periodic potential, the Sinai billiard, the quartic oscillator, and the rotational spectrum of SF 6
Symmetries of integrable hierarchies and matrix model constraints
International Nuclear Information System (INIS)
Vos, K. de
1992-01-01
The orbit construction associates a soliton hierarchy to every level-one vertex realization of a simply laced affine Kac-Moody algebra g. We show that the τ-function of such a hierarchy has the (truncated) Virasoro algebra as an algebra of infinitesimal symmetry transformations. To prove this we use an appropriate bilinear form of these hierarchies together with the coset construction of conformal field theory. For A 1 (1) the orbit construction gives either the Toda or the KdV hierarchy. These both occur in the one-matrix model of two-dimensional quantum gravity, before and after the double scaling limit respectively. The truncated Virasoro symmetry algebra is exactly the algebra of constraints of the one-matrix model. The partition function of the one-matrix model is therefore an invariant τ-function. We also consider the case of A 1 (1) with l>1. Surprisingly, the symmetry algebra in that case is not simply a truncated Casimir algebra. It appears that again only the Virasoro symmetry survives. We speculate on the relation with multi-matrix models. (orig.)
Electroweak symmetry breaking in supersymmetric gauge-Higgs unification models
International Nuclear Information System (INIS)
Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi; Haba, Naoyuki; Shimizu, Yasuhiro; Yamaguchi, Masahiro
2004-01-01
We examine the Higgs mass parameters and electroweak symmetry breaking in supersymmetric orbifold field theories in which the 4-dimensional Higgs fields originate from higher-dimensional gauge supermultiplets. It is noted that such gauge-Higgs unification leads to a specific boundary condition on the Higgs mass parameters at the compactification scale, which is independent of the details of supersymmetry breaking mechanism. With this boundary condition, phenomenologically viable parameter space of the model is severely constrained by the condition of electroweak symmetry breaking for supersymmetry breaking scenarios which can be realized naturally in orbifold field theories. For instance, if it is assumed that the 4-dimensional effective theory is the minimal supersymmetric standard model with supersymmetry breaking parameters induced by the Scherk-Schwarz mechanism, a correct electroweak symmetry breaking can not be achieved for reasonable range of parameters of the model, even when one includes additional contributions to the Higgs mass parameters from the auxiliary component of 4-dimensional conformal compensator. However if there exists a supersymmetry breaking mediated by brane superfields, sizable portion of the parameter space can give a correct electroweak symmetry breaking. (author)
Symmetry adaptation in two-photon spectroscopy
International Nuclear Information System (INIS)
Kibler, M.
1991-11-01
Symmetry adaptation techniques are applied to the determination of the intensity of two-photon transitions for transition ions in finite symmetry environments. The case of intra-configurational transitions are discussed with some details and some results on inter-configurational transitions are briefly reported. In particular, for intra-configurational transitions, a model is described which takes into account the following ingredients: (symmetry, second- plus third-order mechanisms, S-, L- and J-mixings). (author) 20 refs
Galileo symmetries in polymer particle representation
International Nuclear Information System (INIS)
Chiou, D-W
2007-01-01
To illustrate the conceptual problems for the low-energy symmetries in the continuum of spacetime emerging from the discrete quantum geometry, Galileo symmetries are investigated in the polymer particle representation of a non-relativistic particle as a simple toy model. The complete Galileo transformations (translation, rotation and Galileo boost) are naturally defined in the polymer particle Hilbert space and Galileo symmetries are recovered with highly suppressed deviations in the low-energy regime from the underlying polymer particle description
Additional symmetries of supersymmetric KP hierarchies
International Nuclear Information System (INIS)
Stanciu, S.
1994-01-01
We investigate the additional symmetries of several supersymmetric KP hierarchies: the SKP hierarchy of Manin and Radul, the SKP 2 hierarchy, and the Jacobian SKP hierarchy. In all three cases we find that the algebra of symmetries is isomorphic to the algebra of superdifferential operators, or equivalently SW 1+∞ . These results seem to suggest that despite their realization depending on the dynamics, the additional symmetries are kinematical in nature. (orig.)
Rotational Symmetry Breaking in Baby Skyrme Models
Karliner, Marek; Hen, Itay
We discuss one of the most interesting phenomena exhibited by baby skyrmions - breaking of rotational symmetry. The topics we will deal with here include the appearance of rotational symmetry breaking in the static solutions of baby Skyrme models, both in flat as well as in curved spaces, the zero-temperature crystalline structure of baby skyrmions, and finally, the appearance of spontaneous breaking of rotational symmetry in rotating baby skyrmions.
Spontaneously broken global symmetries and cosmology
International Nuclear Information System (INIS)
Shafi, Q.; Vilenkin, A.
1984-01-01
Phase transitions associated with spontaneously broken global symmetries, in case these occur in nature, can have important cosmological implications. This is illustrated through two examples. The first one shows how the spontaneous breaking of a global U(1) symmetry, present, for instance, in the minimal SU(5) model, can lead to an inflationary phase. The second example illustrates how topologically stable strings associated with the breaking of U(1) symmetry make an appearance at (or near) the end of the inflationary era
Symmetries in discrete-time mechanics
International Nuclear Information System (INIS)
Khorrami, M.
1996-01-01
Based on a general formulation for discrete-time quantum mechanics, introduced by M. Khorrami (Annals Phys. 224 (1995), 101), symmetries in discrete-time quantum mechanics are investigated. It is shown that any classical continuous symmetry leads to a conserved quantity in classical mechanics, as well as quantum mechanics. The transformed wave function, however, has the correct evolution if and only if the symmetry is nonanomalous. Copyright copyright 1996 Academic Press, Inc
Fermion dynamical symmetry and identical bands
International Nuclear Information System (INIS)
Guidry, M.
1994-01-01
Recent general attention has been directed to the phenomenon of identical bands in both normally deformed and superdeformed nuclei. This paper discusses the possibility that such behavior results from a dynamical symmetry of the nuclear many-body system. Phenomenology and the basic principles of Lie algebras are used to place conditions on the acceptable properties of a candidate symmetry. We find that quite general arguments require that such a symmetry have a minimum of 21 generators with a microscopic fermion interpretation
Discrete symmetries and coset space dimensional reduction
International Nuclear Information System (INIS)
Kapetanakis, D.; Zoupanos, G.
1989-01-01
We consider the discrete symmetries of all the six-dimensional coset spaces and we apply them in gauge theories defined in ten dimensions which are dimensionally reduced over these homogeneous spaces. Particular emphasis is given in the consequences of the discrete symmetries on the particle content as well as on the symmetry breaking a la Hosotani of the resulting four-dimensional theory. (orig.)
The near-symmetry of proteins.
Bonjack-Shterengartz, Maayan; Avnir, David
2015-04-01
The majority of protein oligomers form clusters which are nearly symmetric. Understanding of that imperfection, its origins, and perhaps also its advantages requires the conversion of the currently used vague qualitative descriptive language of the near-symmetry into an accurate quantitative measure that will allow to answer questions such as: "What is the degree of symmetry deviation of the protein?," "how do these deviations compare within a family of proteins?," and so on. We developed quantitative methods to answer this type of questions, which are capable of analyzing the whole protein, its backbone or selected portions of it, down to comparison of symmetry-related specific amino-acids, and which are capable of visualizing the various levels of symmetry deviations in the form of symmetry maps. We have applied these methods on an extensive list of homomers and heteromers and found that apparently all proteins never reach perfect symmetry. Strikingly, even homomeric protein clusters are never ideally symmetric. We also found that the main burden of symmetry distortion is on the amino-acids near the symmetry axis; that it is mainly the more hydrophilic amino-acids that take place in symmetry-distortive interactions; and more. The remarkable ability of heteromers to preserve near-symmetry, despite the different sequences, was also shown and analyzed. The comprehensive literature on the suggested advantages symmetric oligomerizations raises a yet-unsolved key question: If symmetry is so advantageous, why do proteins stop shy of perfect symmetry? Some tentative answers to be tested in further studies are suggested in a concluding outlook. © 2014 Wiley Periodicals, Inc.
Inverse semigroups the theory of partial symmetries
Lawson, Mark V
1998-01-01
Symmetry is one of the most important organising principles in the natural sciences. The mathematical theory of symmetry has long been associated with group theory, but it is a basic premise of this book that there are aspects of symmetry which are more faithfully represented by a generalization of groups called inverse semigroups. The theory of inverse semigroups is described from its origins in the foundations of differential geometry through to its most recent applications in combinatorial group theory, and the theory tilings.
Broken SU(4) symmetry and new resonance
International Nuclear Information System (INIS)
Ueda, Y.
1975-11-01
Weinberg's spectral function sum rules are modified to accommodate broken symmetry effects of SU(4). With a simple choice of the symmetry-breaking term, the spectral function sum rules yield the observed vector meson mass spectrum as well as sum rules for the e - e + decay rates of vector mesons. In particular, a new mass formula, which can be interpreted as the broken symmetry version of the Schwinger formula, is derived, the agreement with experiments is excellent. (Ueda, Y.)
Dark matter reflection of particle symmetry
Khlopov, Maxim Yu.
2017-05-01
In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.
Elliptic-symmetry vector optical fields.
Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian
2014-08-11
We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.
A κ-symmetry calculus for superparticles
International Nuclear Information System (INIS)
Gauntlett, J.P.
1991-01-01
We develop a κ-symmetry calculus for the d=2 and d=3, N=2 massive superparticles, which enables us to construct higher order κ-invariant actions. The method relies on a reformulation of these models as supersymmetric sigma models that are invariant under local worldline superconformal transformations. We show that the κ-symmetry is embedded in the superconformal symmetry so that a calculus for the κ-symmetry is equivalent to a tensor calculus for the latter. We develop such a calculus without the introduction of a wordline supergravity multiplet. (orig.)
Symmetry, Wigner functions and particle reactions
International Nuclear Information System (INIS)
Chavlejshvili, M.P.
1994-01-01
We consider the great principle of physics - symmetry - and some ideas, connected with it, suggested by a great physicist Eugene Wigner. We will discuss the concept of symmetry and spin, study the problem of separation of kinematics and dynamics in particle reactions. Using Wigner rotation functions (reflecting symmetry properties) in helicity amplitude decomposition and crossing-symmetry between helicity amplitudes (which contains the same Wigner functions) we get convenient general formalism for description of reactions between particles with any masses and spins. We also consider some applications of the formalism. 17 refs., 1 tab
Spontaneous symmetry breaking and its cosmological consequences
International Nuclear Information System (INIS)
Kobzarev, I.Yu.
1975-01-01
The concept of symmetry and of the spontaneous symmetry breaking are presented in popular form as applied to quantum physics. Though the presence of the spontaneous symmetry breaking is not proved directly for interactions of elementary particles, on considering the hypothesis of its presence as applied to the hot Universe theory a possibility of obtaining rather uncommon cosmological consequences is discussed. In particular, spontaneous symmetry breaking of vacuum and the rather hot Universe lead necessarily to the presence of the domain structure of the Universe with the surfase energy at the domain interface in the form of a real physical object
Consequences of the partial restoration of chiral symmetry in an AdS/QCD model
International Nuclear Information System (INIS)
Kim, Youngman; Lee, Hyun Kyu
2008-01-01
Chiral symmetry is an essential concept in understanding QCD at low energy. We treat the chiral condensate, which measures the spontaneous breaking of chiral symmetry, as a free parameter to investigate the effect of partially restored chiral symmetry on the physical quantities in the framework of an AdS/QCD model. We observe an interesting scaling behavior among the nucleon mass, pion decay constant, and chiral condensate. We propose a phenomenological way to introduce the temperature dependence of a physical quantity in the AdS/QCD model with the thermal AdS metric.
International Nuclear Information System (INIS)
Bertolami, Orfeu; Paramos, Jorge
2006-01-01
The vacuum solutions arising from a spontaneous breaking of Lorentz symmetry due to the acquisition of a vacuum expectation value by a vector field are derived. These include the purely radial Lorentz symmetry breaking (LSB), radial/temporal LSB and axial/temporal LSB scenarios. It is found that the purely radial LSB case gives rise to new black hole solutions. Whenever possible. Parametrized Post-Newtonian (PPN) parameters are computed and compared to observational bounds, in order to constrain the Lorentz symmetry breaking scale
Natural embedding of Peccei-Quinn symmetry in flavor grand unification
International Nuclear Information System (INIS)
Kim, J.E.
1981-08-01
Peccei and Quinn's global U(1)sub(A) symmetry can be embedded in grand unified schemes without an artificial requirement of imposing U(1)sub(A) symmetry, which results from the representation content of fermions and Higgs fields. Then, in some cases there results an ordinary axion with a mass approximately 100 keV. The axion mass is proportional to v -1 sub(A), where v -1 sub(A) is the scale of the actual U(1)sub(A) symmetry breakdown. (author)
International Nuclear Information System (INIS)
Veryaskin, A.V.; Lapchinskij, V.G.; Nekrasov, V.I.; Rubakov, V.A.
1981-01-01
Behaviour of vacuum symmetry in the model of self-acting scalar field in the open and closed isotropic cosmological spaces is investigated. Considered are the cases with the mass squared of the scalar field m 2 >0, m 2 =0 and m 2 2 2 =0 at exponentially large scale factors the study of the problem on the behaviour of the symmetry requires exceeding the limits of the perturbation theory. The final behaviour of the vacuum symmetry in the open model at small radii depends on combined effect of all the external factors [ru
Soft CP violation and the global matter-antimatter symmetry of the universe
Senjanovic, G.; Stecker, F. W.
1980-01-01
Scenarios for baryon production are considered within the context of SU(5) and SO(10) grand unified theories where CP violation arises spontaneously. The spontaneous CP symmetry breaking then results in a matter-antimatter domain structure in the universe. Two possible, distinct types of theories of soft CP violation are defined. In the first type the CP nonconservation originates only from the breaking of SU(2) sub L X U(1) symmetry, and in the second type, even at the unification temperature scale, CP violation can emerge as a result of symmetry breaking by the vacuum expectation values of the superheavy Higgs sector scalars.
Spontaneous symmetry breaking and fermion chirality in higher-dimensional gauge theory
International Nuclear Information System (INIS)
Wetterich, C.
1985-01-01
The number of chiral fermions may change in the course of spontaneous symmetry breaking. We discuss solutions of a six-dimensional Einstein-Yang-Mills theory based on SO(12). In the resulting effective four-dimensional theory they can be interpreted as spontaneous breaking of a gauge group SO(10) to H=SU(3)sub(C)xSU(2)sub(L)xU(1)sub(R)xU(1)sub(B-L). For all solutions, the fermions which are chiral with respect to H form standard generations. However, the number of generations for the solutions with broken SO(10) may be different compared to the symmetric solutions. All solutions considered here exhibit a local generation group SU(2)sub(G)xU(1)sub(G). For the solutions with broken SO(10) symmetry, the leptons and quarks within one generation transform differently with respect to SU(2)sub(G)xU(1)sub(G). Spontaneous symmetry breaking also modifies the SO(10) relations among Yukawa couplings. All this has important consequences for possible fermion mass relations obtained from higher-dimensional theories. (orig.)
Directory of Open Access Journals (Sweden)
Sergienko Alexander V.
2014-01-01
The potential for efficient identification of objects carrying elements of high-order symmetry using correlated orbital angular momentum (OAM states is demonstrated. The enhanced information capacity of this approach allows the recognition of specific spatial symmetry signatures present in objects with the use of fewer resources than in a conventional pixel-by-pixel imaging, representing the first demonstration of compressive sensing using OAM states. This approach demonstrates the capability to quickly evaluate multiple Fourier coefficients directly linked with the symmetry features of the object. The results suggest further application in small-scale biological contexts where symmetry and small numbers of noninvasive measurements are important.
DEFF Research Database (Denmark)
Coimbatore Balram, Ajit; Jain, Jainendra
2017-01-01
The particle-hole (PH) symmetry of {\\em electrons} is an exact symmetry of the electronic Hamiltonian confined to a specific Landau level, and its interplay with the formation of composite fermions has attracted much attention of late. This article investigates an emergent symmetry...... in the fractional quantum Hall effect, namely the PH symmetry of {\\em composite fermions}, which relates states at composite fermion filling factors $\
International Nuclear Information System (INIS)
Huang, C F; Chang, Y H; Cheng, H H; Yang, Z P; Yeh, H D; Hsu, C H; Liang, C-T; Hang, D R; Lin, H H
2007-01-01
Magnetic-field-induced phase transitions were studied with a two-dimensional electron AlGaAs/GaAs system. The temperature-driven flow diagram shows features of the Γ(2) modular symmetry, which includes distorted flowlines and a shifted critical point. The deviation of the critical conductivities is attributed to a small but resolved spin splitting, which reduces the symmetry in Landau quantization (Dolan 2000 Phys. Rev. B 62 10278). Universal scaling is found under the reduction of the modular symmetry. It is also shown that the Hall conductivity can still be governed by the scaling law when the semicircle law and the scaling on the longitudinal conductivity are invalid
Nuclear probes of fundamental symmetries
International Nuclear Information System (INIS)
Adelberger, E.G.
1983-01-01
Nuclear experiments which probe the parity (P) and time-reversal (T) symmetries and lepton-number conservation are reviewed. The P-violating NN interaction, studied in the NN system and in light nuclei, provides an unique window on ΔS=0 hadronic weak processes. Results are in accord with expectations. Sensitive searches for T-violation via detailed balance, T-odd correlations in γ and β-decay, and a possible neutron electric dipole moment (EDM) are discussed. No T-violation is observed. The EDM limit is almost good enough to eliminate one of the leading theoretical explanations for CP violation. Experimental studies of double β-decay are reviewed. Although ββ nu nu decay has been convincingly detected in geochemical experiments there is no evidence for the lepton number violating ββ decay mode
Pomeranchuk conjecture and symmetry schemes
Energy Technology Data Exchange (ETDEWEB)
Galindo, A.; Morales, A.; Ruegg, H. [Junta de Energia Nuclear, Madrid (Spain); European Organization for Nuclear Research, Geneva (Switzerland); University of Geneva, Geneva (Switzerland)
1963-01-15
Pomeranchuk has conjectured that the cross-sections for charge-exchange processes vanish asymptotically as the energy tends to infinity. (By ''charge'' it is meant any internal quantum number, like electric charge, hypercharge, .. . ). It has been stated by several people that this conjecture implies equalities among the total cross-sections whenever any symmetry scheme is invoked for the strong interactions. But to our knowledge no explicit general proof of this statement has been given so far. We want to give this proof for any compact Lie group. We also prove, under certain assumptions, that the equality of the total cross-sections implies that s{sup -l} times the charge-exchange forward scattering absorptive amplitudes tend to zero as s -> ∞.
Symmetry breaking in gauge glasses
International Nuclear Information System (INIS)
Hansen, K.
1988-09-01
In order to explain why nature selects the gauge groups of the Standard Model, Brene and Nielsen have proposed a way to break gauge symmetry which does not rely on the existence of a Higgs field. The observed gauge groups will in this scheme appear as the only surviving ones when this mechanism is applied to a random selection of gauge groups. The essential assumption is a discrete space-time with random couplings. Some working assumptions were made for computational reasons of which the most important is that quantum fluctuations were neclected. This work presents an example which under the same conditions show that a much wider class of groups than predicted by Brene and Nielsen will be broken. In particular no possible Standard Model Group survives unbroken. Numerical calculations support the analytical result. (orig.)
Neutrino properties and fundamental symmetries
International Nuclear Information System (INIS)
Bowles, T.J.
1996-01-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using 3 He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs
Spontaneous symmetry breaking as a basis of particle mass
International Nuclear Information System (INIS)
Quigg, Chris
2007-01-01
Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions-so different in their manifestations-to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the 'standard model' of particle physics was formulated in the 1960s by Higgs, by Brout and Englert and by Guralnik, Hagen, and Kibble: the agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W ± and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story-though an incomplete story-and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some 'big questions' that will guide our explorations
Spontaneous Symmetry Breaking as a Basis of Particle Mass
International Nuclear Information System (INIS)
Quigg, Chris
2007-01-01
Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions--so different in their manifestations--to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the ''standard model'' of particle physics was formulated in the 1960s by Higgs, by Brout and Englert, and by Guralnik, Hagen, and Kibble: The agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W ± and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story--though an incomplete story--and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some ''Big Questions'' that will guide our explorations
Spontaneous Symmetry Breaking as a Basis of Particle Mass
Energy Technology Data Exchange (ETDEWEB)
Quigg, Chris; /Fermilab /CERN
2007-04-01
Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions--so different in their manifestations--to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the ''standard model'' of particle physics was formulated in the 1960s by Higgs, by Brout & Englert, and by Guralnik, Hagen, & Kibble: The agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W{sup {+-}} and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story--though an incomplete story--and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some ''Big Questions'' that will guide our explorations.
QCD-instantons and conformal space-time inversion symmetry
International Nuclear Information System (INIS)
Klammer, D.
2008-04-01
In this paper, we explore the appealing possibility that the strong suppression of large-size QCD instantons - as evident from lattice data - is due to a surviving conformal space-time inversion symmetry. This symmetry is both suggested from the striking invariance of highquality lattice data for the instanton size distribution under inversion of the instanton size ρ→(left angle ρ right angle 2 )/(ρ) and from the known validity of space-time inversion symmetry in the classical instanton sector. We project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via conformal stereographic mapping, before investigating conformal inversion. This projection to a compact, curved geometry is both to avoid the occurence of divergences and to introduce the average instanton size left angle ρ right angle from the lattice data as a new length scale. The average instanton size is identified with the radius b of this 5d-sphere and acts as the conformal inversion radius. For b= left angle ρ right angle, our corresponding results are almost perfectly symmetric under space-time inversion and in good qualitative agreement with the lattice data. For (ρ)/(b)→0 we recover the familiar results of instanton perturbation theory in flat 4d-space. Moreover, we illustrate that a (weakly broken) conformal inversion symmetry would have significant consequences for QCD beyond instantons. As a further successful test for inversion symmetry, we present striking implications for another instanton dominated lattice observable, the chirality-flip ratio in the QCD vacuum. (orig.)
Implications of Anomalous U(1) Symmetry in Unified Models the Flipped SU(5) x U(1) Paradigm
Ellis, Jonathan Richard; Rizos, J; Ellis, John
2000-01-01
A generic feature of string-derived models is the appearance of an anomalousAbelian U(1)_A symmetry which, among other properties, constrains the Yukawacouplings and distinguishes the three families from each other. In this paper,we discuss in a model-independent way the general constraints imposed by such aU(1)_A symmetry on fermion masses, R-violating couplings and proton-decayoperators in a generic flipped SU(5) x U(1)' model. We construct all possibleviable fermion mass textures and give various examples of effective low-energymodels which are distinguished from each other by their different predictionsfor B-, L- and R-violating effects. We pay particular attention to predictionsfor neutrino masses, in the light of the recent Super-Kamiokande data.
SU(3) flavour symmetry breaking and charmed states
Energy Technology Data Exchange (ETDEWEB)
Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Hyogo (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, School of Chemistry and Physics; Collaboration: QCDSF-UKQCD Collaborations
2013-11-15
By extending the SU(3) flavour symmetry breaking expansion from up, down and strange sea quark masses to partially quenched valence quark masses we propose a method to determine charmed quark hadron masses including possible QCD isospin breaking effects. Initial results for some open charmed pseudoscalar meson states and singly and doubly charmed baryon states are encouraging and demonstrate the potential of the procedure. Essential for the method is the determination of the scale using singlet quantities, and to this end we also give here a preliminary estimation of the recently introduced Wilson flow scales.
Quantum critical spin-2 chain with emergent SU(3) symmetry.
Chen, Pochung; Xue, Zhi-Long; McCulloch, I P; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S-K
2015-04-10
We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU(3)_{1} Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.
Cohomology for Lagrangian systems and Noetherian symmetries
International Nuclear Information System (INIS)
Popp, O.T.
1989-06-01
Using the theory of sheaves we find some exact sequences describing the locally Lagrangian systems. Using cohomology theory of groups with coefficients in sheaves we obtain some exact sequences describing the Noetherian symmetries. It is shown how the results can be used to find all locally Lagrangian dynamics Noetherian invariant with respect to a given group of kinematical symmetries.(author)
Spontaneous symmetry breakdown in gauge theories
International Nuclear Information System (INIS)
Scadron, M.D.
1982-01-01
The dynamical theory of spontaneous breakdown correctly predicts the bound states and relates the order parameters of electron-photon superconductivity and quark-gluon chiral symmetry. A similar statement cannot be made for the standard electro-weak gauge symmetry. (author)
Effective lagrangian description on discrete gauge symmetries
International Nuclear Information System (INIS)
Banks, T.
1989-01-01
We exhibit a simple low-energy lagrangian which describes a system with a discrete remnant of a spontaneously broken continuous gauge symmetry. The lagrangian gives a simple description of the effects ascribed to such systems by Krauss and Wilczek: black holes carry discrete hair and interact with cosmic strings, and wormholes cannot lead to violation of discrete gauge symmetries. (orig.)
Pauli-Guersey symmetry in gauge theories
International Nuclear Information System (INIS)
Stern, J.
1983-05-01
Gauge theories with massless or massive fermions in a selfcontragredient representation exhibit global symmetries of Pauli-Guersey type. Some of them are broken spontaneously leading to a difermion Goldstone bosons. An example of a boson version of the Pauli-Guersey symmetry is provided by the Weinberg-Salam model in the limit THETAsub(w)→O
Early space symmetry restoration and neutrino experiments
International Nuclear Information System (INIS)
Volkov, G.G.; Liparteliani, A.G.; Monich, V.A.
1986-01-01
The problem of early space symmetry restoration on the left-right symmetry models and the models with the extended (due to mirror quarks and leptons) fermion sector is being discussed. The experiments in which the derivations from the standard model of electroweak interactions should be studied are presented
Charge-symmetry-breaking nucleon form factors
Energy Technology Data Exchange (ETDEWEB)
Kubis, Bastian, E-mail: kubis@hiskp.uni-bonn.de [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics (Germany)
2011-11-15
A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon's strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for {sup 4}He.
Charge-symmetry-breaking nucleon form factors
International Nuclear Information System (INIS)
Kubis, Bastian
2011-01-01
A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon’s strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for 4 He.
Broken color symmetry and weak currents
International Nuclear Information System (INIS)
Stech, B.
1976-01-01
Broken colour symmetry predicts a very rich spectrum of new particles. If broken colour is relevant at all, charged psi-particles should be found in particular at the 4 GeV region. For the weak hadronic currents no completely satisfactory suggestion exists. Broken colour symmetry describes qualitatively several of the new effects observed recently. (BJ) [de
Symmetries of Taub-NUT dual metrics
International Nuclear Information System (INIS)
Baleanu, D.; Codoban, S.
1998-01-01
Recently geometric duality was analyzed for a metric which admits Killing tensors. An interesting example arises when the manifold has Killing-Yano tensors. The symmetries of the dual metrics in the case of Taub-NUT metric are investigated. Generic and non-generic symmetries of dual Taub-NUT metric are analyzed
Space-time and Local Gauge Symmetries
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Symmetries of Particle Physics: Space-time and Local Gauge Symmetries. Sourendu Gupta. General Article Volume 6 Issue 2 February 2001 pp 29-38. Fulltext. Click here to view fulltext PDF. Permanent link:
Circular symmetry in topologically massive gravity
International Nuclear Information System (INIS)
Deser, S; Franklin, J
2010-01-01
We re-derive, compactly, a topologically massive gravity (TMG) decoupling theorem: source-free TMG separates into its Einstein and Cotton sectors for spaces with a hypersurface-orthogonal Killing vector, here concretely for circular symmetry. We then generalize the theorem to include matter; surprisingly, the single Killing symmetry also forces conformal invariance, requiring the sources to be null. (note)
NOTE: Circular symmetry in topologically massive gravity
Deser, S.; Franklin, J.
2010-05-01
We re-derive, compactly, a topologically massive gravity (TMG) decoupling theorem: source-free TMG separates into its Einstein and Cotton sectors for spaces with a hypersurface-orthogonal Killing vector, here concretely for circular symmetry. We then generalize the theorem to include matter; surprisingly, the single Killing symmetry also forces conformal invariance, requiring the sources to be null.
Circular symmetry in topologically massive gravity
Energy Technology Data Exchange (ETDEWEB)
Deser, S [Physics Department, Brandeis University, Waltham, MA 02454 (United States); Franklin, J, E-mail: deser@brandeis.ed, E-mail: jfrankli@reed.ed [Reed College, Portland, OR 97202 (United States)
2010-05-21
We re-derive, compactly, a topologically massive gravity (TMG) decoupling theorem: source-free TMG separates into its Einstein and Cotton sectors for spaces with a hypersurface-orthogonal Killing vector, here concretely for circular symmetry. We then generalize the theorem to include matter; surprisingly, the single Killing symmetry also forces conformal invariance, requiring the sources to be null. (note)
Lie symmetries for systems of evolution equations
Paliathanasis, Andronikos; Tsamparlis, Michael
2018-01-01
The Lie symmetries for a class of systems of evolution equations are studied. The evolution equations are defined in a bimetric space with two Riemannian metrics corresponding to the space of the independent and dependent variables of the differential equations. The exact relation of the Lie symmetries with the collineations of the bimetric space is determined.
Symmetry properties of fractional diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Gazizov, R K; Kasatkin, A A; Lukashchuk, S Yu [Ufa State Aviation Technical University, Karl Marx strausse 12, Ufa (Russian Federation)], E-mail: gazizov@mail.rb.ru, E-mail: alexei_kasatkin@mail.ru, E-mail: lsu@mail.rb.ru
2009-10-15
In this paper, nonlinear anomalous diffusion equations with time fractional derivatives (Riemann-Liouville and Caputo) of the order of 0-2 are considered. Lie point symmetries of these equations are investigated and compared. Examples of using the obtained symmetries for constructing exact solutions of the equations under consideration are presented.
Symmetry Properties of Potentiometric Titration Curves.
Macca, Carlo; Bombi, G. Giorgio
1983-01-01
Demonstrates how the symmetry properties of titration curves can be efficiently and rigorously treated by means of a simple method, assisted by the use of logarithmic diagrams. Discusses the symmetry properties of several typical titration curves, comparing the graphical approach and an explicit mathematical treatment. (Author/JM)
Order in the Universe: The Symmetry Principle.
Foundation for Integrative Education, Inc., New York, NY.
The first two papers in this booklet provide a review of the pervasiveness of symmetry in nature and art, discussing how symmetry can be traced through every domain open to our understanding, from all aspects of nature to the special provinces of man; the checks and balances of government, the concept of equal justice, and the aesthetic ordering…
Symmetry breaking and restoration in gauge theories
International Nuclear Information System (INIS)
Natale, A.A.
A review is made of the utilization of the Higgs mechanism in spontaneous symmetry breaking. It is shown that such as ideas came from an analogy with the superconductivity phenomenological theory based on a Ginzburg-Landau lagrangean. The symmetry restoration through the temperature influence is studied. (L.C.) [pt
Discrete symmetries and their stringy origin
International Nuclear Information System (INIS)
Mayorga Pena, Damian Kaloni
2014-05-01
Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.
Imprints of supersymmetry in the Lorentz-symmetry breaking of Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Belich, H [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil); Dias, G S; Leal, F J.L. [Instituto Federal de Educacao, Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil); Durand, L G; Helayel-Neto, Jose Abdalla; Spalenza, W [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes (GFT-JLL), Petropolis, RJ (Brazil)
2011-07-01
Full text: The breaking of Lorentz symmetry that may take place at very high energies opens up a venue for the discussion of the interplay between the violations of supersymmetry and relativistic symmetry. Recently, there have appeared in the literature models which propose a residual (non-relativistic) supersymmetry after Lorentz symmetry has been broken in a Horava gravity scenario. We here propose an N=1-supersymmetric Abelian gauge model which realises the breaking of Lorentz invariance by means of a CPT-even term. Our attempt assumes the point of view that supersymmetry and Lorentz symmetry are broken down at the same scale. If this is the case, the fermionic sector of the supermultiplets that accomplish the breaking of the symmetries into consideration may give rise to condensates that play an important role in the photon and photino dispersion relations. Contemporarily, they may also point to a more fundamental origin for the (bosonic) tensors usually associated to the backgrounds that parametrize Lorentz-symmetry breaking. We also highlight that, by studying the the violation of Lorentz symmetry in connection with supersymmetry, we find out that the Myers-Pospelov Electrodynamics, proposed on the basis of an analysis of the set of dimension-five operators, naturally appears in the bosonic sector of our model. Also, as a result of the interconnection between the supersymmetry and Lorentz-symmetry breakings, the photino-photino and photon-photino mixings that correspond to the supersymmetric completion of the Myers-Pospelov purely photonic terms come out. Finally, we present some comments on the possible modifications the supersymmetric fermions may introduce in the dispersion relations for particles at (high) energies close to the scale where supersymmetry and Lorentz symmetry are broken. (author)
Imprints of supersymmetry in the Lorentz-symmetry breaking of Gauge Theories
International Nuclear Information System (INIS)
Belich, H.; Dias, G.S.; Leal, F.J.L.; Durand, L.G.; Helayel-Neto, Jose Abdalla; Spalenza, W.
2011-01-01
Full text: The breaking of Lorentz symmetry that may take place at very high energies opens up a venue for the discussion of the interplay between the violations of supersymmetry and relativistic symmetry. Recently, there have appeared in the literature models which propose a residual (non-relativistic) supersymmetry after Lorentz symmetry has been broken in a Horava gravity scenario. We here propose an N=1-supersymmetric Abelian gauge model which realises the breaking of Lorentz invariance by means of a CPT-even term. Our attempt assumes the point of view that supersymmetry and Lorentz symmetry are broken down at the same scale. If this is the case, the fermionic sector of the supermultiplets that accomplish the breaking of the symmetries into consideration may give rise to condensates that play an important role in the photon and photino dispersion relations. Contemporarily, they may also point to a more fundamental origin for the (bosonic) tensors usually associated to the backgrounds that parametrize Lorentz-symmetry breaking. We also highlight that, by studying the the violation of Lorentz symmetry in connection with supersymmetry, we find out that the Myers-Pospelov Electrodynamics, proposed on the basis of an analysis of the set of dimension-five operators, naturally appears in the bosonic sector of our model. Also, as a result of the interconnection between the supersymmetry and Lorentz-symmetry breakings, the photino-photino and photon-photino mixings that correspond to the supersymmetric completion of the Myers-Pospelov purely photonic terms come out. Finally, we present some comments on the possible modifications the supersymmetric fermions may introduce in the dispersion relations for particles at (high) energies close to the scale where supersymmetry and Lorentz symmetry are broken. (author)
Some general constraints on identical band symmetries
International Nuclear Information System (INIS)
Guidry, M.W.; Strayer, M.R.; Wu, C.; Feng, D.H.
1993-01-01
We argue on general grounds that nearly identical bands observed for superdeformation and less frequently for normal deformation must be explicable in terms of a symmetry having a microscopic basis. We assume that the unknown symmetry is associated with a Lie algebra generated by terms bilinear in fermion creation and annihilation operators. Observed features of these bands and the general properties of Lie groups are then used to place constraints on acceptable algebras. Additional constraints are placed by assuming that the collective spectrum is associated with a dynamical symmetry, and examining the subgroup structure required by phenomenology. We observe that requisite symmetry cannot be unitary, and that the simplest known group structures consistent with these minimal criteria are associated with the Ginocchio algebras employed in the fermion dynamical symmetry model. However, our arguments are general in nature, and we propose that they imply model-independent constraints on any candidate explanation for identical bands
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.
2005-11-01
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Directory of Open Access Journals (Sweden)
P.G.L. Leach
2005-11-01
Full Text Available We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R. The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Braided quantum field theories and their symmetries
International Nuclear Information System (INIS)
Sasai, Yuya; Sasakura, Naoki
2007-01-01
Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)
Atomic Nuclei with Tetrahedral and Octahedral Symmetries
International Nuclear Information System (INIS)
Dudek, J.; Gozdz, A.; Schunck, N.
2003-01-01
We present possible manifestations of octahedral and tetrahedral symmetries in nuclei. These symmetries are associated with the O D h and T D d double point groups. Both of them have very characteristic finger-prints in terms of the nucleonic level properties - unique in the Fermionic universe. The tetrahedral symmetry leads to the four-fold degeneracies in the nucleonic spectra; it does not preserve the parity. The octahedral symmetry leads to the four-fold degeneracies in the nucleonic spectra as well but it does preserve the parity. Microscopic predictions have been obtained using mean-field theory based on the relativistic equations and confirmed by using ''traditional'' Schrodinger equation formalism. Calculations are performed in multidimensional deformation spaces using newly designed algorithms. We discuss some experimental fingerprints of the hypothetical new symmetries and possibilities of their verification through experiments. (author)
Symmetry boost of the fidelity of Shor factoring
Nam, Y. S.; Blümel, R.
2018-05-01
In Shor's algorithm quantum subroutines occur with the structure F U F-1 , where F is a unitary transform and U is performing a quantum computation. Examples are quantum adders and subunits of quantum modulo adders. In this paper we show, both analytically and numerically, that if, in analogy to spin echoes, F and F-1 can be implemented symmetrically when executing Shor's algorithm on actual, imperfect quantum hardware, such that F and F-1 have the same hardware errors, a symmetry boost in the fidelity of the combined F U F-1 quantum operation results when compared to the case in which the errors in F and F-1 are independently random. Running the complete gate-by-gate implemented Shor algorithm, we show that the symmetry-induced fidelity boost can be as large as a factor 4. While most of our analytical and numerical results concern the case of over- and under-rotation of controlled rotation gates, in the numerically accessible case of Shor's algorithm with a small number of qubits, we show explicitly that the symmetry boost is robust with respect to more general types of errors. While, expectedly, additional error types reduce the symmetry boost, we show explicitly, by implementing general off-diagonal SU (N ) errors (N =2 ,4 ,8 ), that the boost factor scales like a Lorentzian in δ /σ , where σ and δ are the error strengths of the diagonal over- and underrotation errors and the off-diagonal SU (N ) errors, respectively. The Lorentzian shape also shows that, while the boost factor may become small with increasing δ , it declines slowly (essentially like a power law) and is never completely erased. We also investigate the effect of diagonal nonunitary errors, which, in analogy to unitary errors, reduce but never erase the symmetry boost. Going beyond the case of small quantum processors, we present analytical scaling results that show that the symmetry boost persists in the practically interesting case of a large number of qubits. We illustrate this result
Spontaneous symmetry breaking in curved space-time
International Nuclear Information System (INIS)
Toms, D.J.
1982-01-01
An approach dealing with some of the complications which arise when studying spontaneous symmetry breaking beyond the tree-graph level in situations where the effective potential may not be used is discussed. These situations include quantum field theory on general curved backgrounds or in flat space-times with non-trivial topologies. Examples discussed are a twisted scalar field in S 1 xR 3 and instabilities in an expanding universe. From these it is seen that the topology and curvature of a space-time may affect the stability of the vacuum state. There can be critical length scales or times beyond which symmetries may be broken or restored in certain cases. These features are not present in Minkowski space-time and so would not show up in the usual types of early universe calculations. (U.K.)
Symmetry breaking in the double-well hermitian matrix models
International Nuclear Information System (INIS)
Brower, R.C.; Deo, N.; Jain, S.; Tan, C.I.
1993-01-01
We study symmetry breaking in Z 2 symmetric large N matrix models. In the planar approximation for both the symmetric double-well φ 4 model and the symmetric Penner model, we find there is an infinite family of broken symmetry solutions characterized by different sets of recursion coefficients R n and S n that all lead to identical free energies and eigenvalue densities. These solutions can be parameterized by an arbitrary angle θ(x), for each value of x=n/N 4 theory the double scaling string equations are parameterized by a conserved angular momentum parameter in the range 0≤l<∞ and a single arbitrary U(1) phase angle. (orig.)
Parallelization of MRCI based on hole-particle symmetry.
Suo, Bing; Zhai, Gaohong; Wang, Yubin; Wen, Zhenyi; Hu, Xiangqian; Li, Lemin
2005-01-15
The parallel implementation of multireference configuration interaction program based on the hole-particle symmetry is described. The platform to implement the parallelization is an Intel-Architectural cluster consisting of 12 nodes, each of which is equipped with two 2.4-G XEON processors, 3-GB memory, and 36-GB disk, and are connected by a Gigabit Ethernet Switch. The dependence of speedup on molecular symmetries and task granularities is discussed. Test calculations show that the scaling with the number of nodes is about 1.9 (for C1 and Cs), 1.65 (for C2v), and 1.55 (for D2h) when the number of nodes is doubled. The largest calculation performed on this cluster involves 5.6 x 10(8) CSFs.
Dynamical symmetries of semi-linear Schrodinger and diffusion equations
International Nuclear Information System (INIS)
Stoimenov, Stoimen; Henkel, Malte
2005-01-01
Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed
Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions
Directory of Open Access Journals (Sweden)
Malte Henkel
2015-11-01
Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.
Anomalous Symmetry Fractionalization and Surface Topological Order
Directory of Open Access Journals (Sweden)
Xie Chen
2015-10-01
Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.
Lie-algebra approach to symmetry breaking
International Nuclear Information System (INIS)
Anderson, J.T.
1981-01-01
A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator functions are shown to consist of terms of order g 2 , g, and g 0 in the color coupling constants and identified with strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The breaking operators include a boson helicity operator in addition to the familiar fermion helicity and ''spin-orbit'' terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum symmetry is chiral SU(3) x SU(3) and the axial-vector-current divergence gives a PCAC -like function of the Cartan matrix integers which reduces to PCAC for SU(2) x SU(2) breaking. For the mass spectra of the nonets J/sup P/ = 0 - ,1/2 + ,1 - the integer runs through the sequence 3,0,-1,-2, which indicates that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the second-order spin tensor sum of the completely reduced quartic Hamiltonian
Directory of Open Access Journals (Sweden)
Meng Cheng
2016-12-01
Full Text Available The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.
Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking
Directory of Open Access Journals (Sweden)
Christian Appold
2010-06-01
Full Text Available One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking.
Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking
Sunko, Veronika; Rosner, H.; Kushwaha, P.; Khim, S.; Mazzola, F.; Bawden, L.; Clark, O. J.; Riley, J. M.; Kasinathan, D.; Haverkort, M. W.; Kim, T. K.; Hoesch, M.; Fujii, J.; Vobornik, I.; MacKenzie, A. P.; King, P. D. C.
2017-09-01
Engineering and enhancing the breaking of inversion symmetry in solids—that is, allowing electrons to differentiate between ‘up’ and ‘down’—is a key goal in condensed-matter physics and materials science because it can be used to stabilize states that are of fundamental interest and also have potential practical applications. Examples include improved ferroelectrics for memory devices and materials that host Majorana zero modes for quantum computing. Although inversion symmetry is naturally broken in several crystalline environments, such as at surfaces and interfaces, maximizing the influence of this effect on the electronic states of interest remains a challenge. Here we present a mechanism for realizing a much larger coupling of inversion-symmetry breaking to itinerant surface electrons than is typically achieved. The key element is a pronounced asymmetry of surface hopping energies—that is, a kinetic-energy-coupled inversion-symmetry breaking, the energy scale of which is a substantial fraction of the bandwidth. Using spin- and angle-resolved photoemission spectroscopy, we demonstrate that such a strong inversion-symmetry breaking, when combined with spin-orbit interactions, can mediate Rashba-like spin splittings that are much larger than would typically be expected. The energy scale of the inversion-symmetry breaking that we achieve is so large that the spin splitting in the CoO2- and RhO2-derived surface states of delafossite oxides becomes controlled by the full atomic spin-orbit coupling of the 3d and 4d transition metals, resulting in some of the largest known Rashba-like spin splittings. The core structural building blocks that facilitate the bandwidth-scaled inversion-symmetry breaking are common to numerous materials. Our findings therefore provide opportunities for creating spin-textured states and suggest routes to interfacial control of inversion-symmetry breaking in designer heterostructures of oxides and other material classes.
Leptogenesis, $\\mu - \\tau$ Symmetry and $\\theta_{13}$
Mohapatra, Rabindra N; Yu, H; Yu, Haibo
2005-01-01
We show that in theories where neutrino masses arise from type I seesaw formula with three right handed neutrinos and where large atmospheric mixing angle owes its origin to an approximate leptonic $\\mu-\\tau$ interchange symmetry, the primordial lepton asymmetry of the Universe, $\\epsilon_l$ can be expressed in a simple form in terms of low energy neutrino oscillation parameters as $\\epsilon_l = (a \\Delta m^2_\\odot+ b \\Delta m^2_A \\theta^2_{13})$, where $a$ and $b$ are parameters characterizing high scale physics and are each of order $\\leq 10^{-2} $ eV$^{-2}$. We also find that for the case of two right handed neutrinos, $\\epsilon_l \\propto \\theta^2_{13}$ as a result of which, the observed value of baryon to photon ratio implies a lower limit on $\\theta_{13}$. For specific choices of the CP phase $\\delta$ we find $\\theta_{13}$ is predicted to be between $0.10-0.15$.
Protected Edge Modes without Symmetry
Directory of Open Access Journals (Sweden)
Michael Levin
2013-05-01
Full Text Available We discuss the question of when a gapped two-dimensional electron system without any symmetry has a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall conductance, K_{H}≠0, support such modes, here we show that robust modes can also occur when K_{H}=0—if the system has quasiparticles with fractional statistics. We show that some types of fractional statistics are compatible with a gapped edge, while others are fundamentally incompatible. More generally, we give a criterion for when an electron system with Abelian statistics and K_{H}=0 can support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of quasiparticle types M such that (1 all the quasiparticles in M have trivial mutual statistics, and (2 every quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We derive this criterion using three different approaches: a microscopic analysis of the edge, a general argument based on braiding statistics, and finally a conformal field theory approach that uses constraints from modular invariance. We also discuss the analogous result for two-dimensional boson systems.
Nuclear symmetries at low isospin
International Nuclear Information System (INIS)
Juillet, Olivier
1999-01-01
With the development of radioactive beams, an area of intense research in nuclear physics concerns the structure of exotic systems with roughly equal numbers of protons and neutrons. These nuclei might in fact develop a proton-neutron superfluidity whose importance compared to pairing correlations between like nucleons is currently investigated. The work presented in this thesis suggests to look at such a competition in an algebraic framework based on a Wigner SU(4) symmetry that combines the pseudo-spin and isospin degrees of freedom. After a detailed review of group theory in quantum mechanics, the validity of the pseudo-SU(4) classification is shown via a direct analysis of realistic shell model states. Its consequences on binding energies and β decay are also studied. Moreover, a simplified boson realisation with zero orbital angular momentum is used to find some physical features of N=Z nuclei such as the condensation of α-like structures or the destruction of isoscalar superfluid correlations by the spin-orbit potential. Finally, another bosonization scheme that includes quadrupole degrees of freedom (IBM-4 model) is tested for the first time by diagonalization of a full Hamiltonian deduced from a realistic shell model interaction. The quality of the results, especially for odd-odd nuclei, allows one to consider this boson approximation as an alternative to standard fermionic approaches for the collective structure of the exotic line N∼Z=28-50. (author) [fr
Higher spins and Yangian symmetries
Energy Technology Data Exchange (ETDEWEB)
Gaberdiel, Matthias R. [Institut für Theoretische Physik, ETH Zurich, CH-8093 Zurich (Switzerland); Gopakumar, Rajesh [International Centre for Theoretical Sciences-TIFR, Survey No. 151, Shivakote, Hesaraghatta Hobli, Bengaluru North 560 089 (India); Li, Wei [CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,100190 Beijing (China); Peng, Cheng [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States)
2017-04-26
The relation between the bosonic higher spin W{sub ∞}[λ] algebra, the affine Yangian of gl{sub 1}, and the SH{sup c} algebra is established in detail. For generic λ we find explicit expressions for the low-lying W{sub ∞}[λ] modes in terms of the affine Yangian generators, and deduce from this the precise identification between λ and the parameters of the affine Yangian. Furthermore, for the free field cases corresponding to λ=0 and λ=1 we give closed-form expressions for the affine Yangian generators in terms of the free fields. Interestingly, the relation between the W{sub ∞} modes and those of the affine Yangian is a non-local one, in general. We also establish the explicit dictionary between the affine Yangian and the SH{sup c} generators. Given that Yangian algebras are the hallmark of integrability, these identifications should pave the way towards uncovering the relation between the integrable and the higher spin symmetries.
PREFACE: Symmetries in Science XIV
Schuch, Dieter; Ramek, Michael
2010-04-01
Symmetries Logo This volume of the proceedings "Symmetries in Science XIV" is dedicated to the memory of our colleagues and dear friends Marcos Moshinsky and Yuriĭ Smirnov who regularly participated in these Symposia and were a great inspiration to many. We shall miss them. Dieter Schuch and Michael Ramek The international symposium "Symmetries in Science XIV" held at Collegium Mehrerau in Bregenz, Austria from July 19-24, 2009, attended by 32 scientists from 11 countries, was an experiment, performed by theoreticians. Aim of this experiment was to find out if the desire to revive or even continue this conference series was stronger than the very restricted pecuniary boundary conditions. It obviously was! After its establishment by Bruno Gruber in 1979, the biennial series settled in the very stimulating atmosphere of the monastery Mehrerau, which provided the ideal environment for a limited number of invited participants to exchange ideas, without parallel sessions, and pursue deeper discussions (at the latest in the evening at "Gasthof Lamm"). When the conference series terminated in 2003, former participants were quite disappointed. Meeting again at several (larger) conferences in subsequent years, there were repeated expressions of "the lack of a Bregenz-type meeting in our field nowadays" and the question of a possible "revitalization", even without external funding. After some hesitation, but also driven by our own desire to reinstate the series, we consulted Bruno who not only approved wholeheartedly but also offered his full support. It all finally led to the symposium in July 2009. The atmosphere was really like in the "good old days" and the interesting and thought-provoking presentations culminated in the publication of these Proceedings. We are grateful to Carl Bender for establishing contact with IOP making it possible for us to publish these Proceedings in the Journal of Physics Conference Series. A majority of the participants contributed to these
Group symmetries and information propagation
International Nuclear Information System (INIS)
Draayer, J.P.
1980-01-01
Spectroscopy concerns itself with the ways in which the Hamiltonian and other interesting operators defined in few-particle spaces are determined or determine properties of many-particle systems. But the action of the central limit theorem (CLT) filters the transmission of information between source and observed so whether propagating forward from a few-particle defining space, as is usual in theoretical studies, or projecting backward to it from measured things, each is only sensitive to averaged properties of the other. Our concern is with the propagation of spectroscopic information in the presence of good symmetries when filtering action of the CLT is effective. Specifically, we propose to address the question, What propagates and how. We begin with some examples, using both scalar and isospin geometries to illustrate simple propagation. Examples of matrix propagation are studied; contact with standard tensor algebra is established and an algorithm put forward for the expansion of any operator in terms of another set, complete or not; shell-model results for 20 Ne using a realistic interaction and two trace-equivalent forms are presented; and some further challenges are mentioned
PREFACE: Symmetries in Science XVI
2014-10-01
This volume of the proceedings ''Symmetries in Science XVI'' is dedicated to the memory of Miguel Lorente and Allan Solomon who both participated several times in these Symposia. We lost not only two great scientists and colleagues, but also two wonderful persons of high esteem whom we will always remember. Dieter Schuch, Michael Ramek There is a German saying ''all good things come in threes'' and ''Symmetries in Science XVI'', convened July 20-26, 2013 at the Mehrerau Monastery, was our third in the sequel of these symposia since taking it over from founder Bruno Gruber who instigated it in 1988 (then in Lochau). Not only the time seemed to have been perfect (one week of beautiful sunshine), but also the medley of participants could hardly have been better. This time, 34 scientists from 16 countries (more than half outside the European Union) came together to report and discuss their latest results in various fields of science, all related to symmetries. The now customary grouping of renowned experts and talented newcomers was very rewarding and stimulating for all. The informal, yet intense, discussions at ''Gasthof Lamm'' occurred (progressively later) each evening till well after midnight and finally till almost daybreak! However, prior to the opening ceremony and during the conference, respectively, we were informed that Miguel Lorente and Allan Solomon had recently passed away. Both attended the SIS Symposia several times and had many friends among present and former participants. Professor Peter Kramer, himself a long-standing participant and whose 80th birthday commemoration prevented him from attending SIS XVI, kindly agreed to write the obituary for Miguel Lorente. Professors Richard Kerner and Carol Penson (both also former attendees) penned, at very short notice, the tribute to Allan Solomon. The obituaries are included in these Proceedings and further tributes have been posted to our conference website. In 28 lectures and an evening poster
Conformal symmetry and string theories
International Nuclear Information System (INIS)
Kumar, A.
1987-01-01
This thesis is devoted to the study of various aspects of the 2-dimensional conformal field theory and its applications to strings. We make a short review of the conformal field theory and its supersymmetric extension, called superconformal field theory. We present an elegant superspace formulation of these theories and solve the condition for the closure of the superconformal algebra. The we go on to classify the superconformal field theories according to these solutions. We prove that N ≥ 5 superconformal algebra, with N being the number of supersymmetries, does not have central charge. We find the primary representations of all the interesting superconformal algebra. We study the quantization of the superconformal theories and derive the constraints on the central charge of the algebra that has to be satisfied for a consistent quantum theory. This quantization process also determines the ground state energy of the system and the spectrum of the model. We study the global aspects of the conformal symmetry and its role in the construction of consistent heterotic string theories. We prove the uniqueness of heterotic superstring theories in 10 dimensions in the fermionic constructions. We show how the vertex operators are closely associated with the primary field representation of the conformal algebra. We utilize these vertex operator constructions to obtain tree amplitudes in the 10-dimensional heterotic string theory. We show by explicit calculation at the 3-point level that the scattering amplitudes derived from the heterotic superstring are same as the ones obtained from 10-dimensional supergravity theories
Symmetries of Ginsparg-Wilson chiral fermions
International Nuclear Information System (INIS)
Mandula, Jeffrey E.
2009-01-01
The group structure of the variant chiral symmetry discovered by Luescher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter invariant subgroup, and the factor group, whose elements are its cosets, is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, noncommuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example, free overlap fermions, these noncanonical elements of lattice chiral symmetry are related to complex energy singularities that violate reflection positivity and impede continuation to Minkowski space.
Geometric phases and hidden local gauge symmetry
International Nuclear Information System (INIS)
Fujikawa, Kazuo
2005-01-01
The analysis of geometric phases associated with level crossing is reduced to the familiar diagonalization of the Hamiltonian in the second quantized formulation. A hidden local gauge symmetry, which is associated with the arbitrariness of the phase choice of a complete orthonormal basis set, becomes explicit in this formulation (in particular, in the adiabatic approximation) and specifies physical observables. The choice of a basis set which specifies the coordinate in the functional space is arbitrary in the second quantization, and a subclass of coordinate transformations, which keeps the form of the action invariant, is recognized as the gauge symmetry. We discuss the implications of this hidden local gauge symmetry in detail by analyzing geometric phases for cyclic and noncyclic evolutions. It is shown that the hidden local symmetry provides a basic concept alternative to the notion of holonomy to analyze geometric phases and that the analysis based on the hidden local gauge symmetry leads to results consistent with the general prescription of Pancharatnam. We however note an important difference between the geometric phases for cyclic and noncyclic evolutions. We also explain a basic difference between our hidden local gauge symmetry and a gauge symmetry (or equivalence class) used by Aharonov and Anandan in their definition of generalized geometric phases
Radiative gauge symmetry breaking in supersymmetric flipped SU(5)
Energy Technology Data Exchange (ETDEWEB)
Drees, M.
1988-05-19
The radiative breaking of the SU(5)xU(1) symmetry in the flipped SU(5) model recently proposed by Antoniadis et al. is studied using renormalization group techniques. It is shown that gaugino masses can only be the dominant source of supersymmetry breaking at the Planck scale if the U(1) gaugino mass M/sub 1/ is at least 10 times larger than the SU(5) gaugino mass M/sub 5/. If M/sub 1/ approx. = M/sub 5/ at the Planck scale, non-vanishing trilinear soft breaking terms ('A-terms') are needed already at the Planck scale. In both cases consequences for the sparticle spectrum at the weak scale are discussed.
Hairs of discrete symmetries and gravity
Energy Technology Data Exchange (ETDEWEB)
Choi, Kang Sin [Scranton Honors Program, Ewha Womans University, Seodaemun-Gu, Seoul 03760 (Korea, Republic of); Center for Fields, Gravity and Strings, CTPU, Institute for Basic Sciences, Yuseong-Gu, Daejeon 34047 (Korea, Republic of); Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, Daejeon 34141 (Korea, Republic of); Kyae, Bumseok [Department of Physics, Pusan National University, 2 Busandaehakro-63-Gil, Geumjeong-Gu, Busan 46241 (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of)
2017-06-10
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Hairs of discrete symmetries and gravity
Directory of Open Access Journals (Sweden)
Kang Sin Choi
2017-06-01
Full Text Available Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Fermion dynamical symmetry and identical bands
International Nuclear Information System (INIS)
Guidry, M.
1995-01-01
Recent general attention has been directed to the phenomenon of identical bands in both normally deformed and superdeformed nuclei. This paper discusses the possibility that such behavior results from a dynamical symmetry of the nuclear many-body system. Phenomenology and the basis principles of Lie algebras are used to place conditions on the acceptable properties of a candidate symmetry. We find that quite general arguments require that such a symmetry have a minimum of 21 generators with a microscopic fermion interpretation. (author). 9 refs., 11 figs., 1 tab
Appreciation of symmetry in natural product synthesis.
Bai, Wen-Ju; Wang, Xiqing
2017-12-13
Covering: 2012 to June 2017This review aims to show that complex natural product synthesis can be streamlined by taking advantage of molecular symmetry. Various strategies to construct molecules with either evident or hidden symmetry are illustrated. Insights regarding the origins and adjustments of these strategies as well as inspiring new methodological developments are deliberated. When a symmetric strategy fails, the corresponding reason is analysed and an alternative approach is briefly provided. Finally, the importance of exploiting molecular symmetry and future research directions are discussed.
Interdependence of different symmetry energy elements
Mondal, C.; Agrawal, B. K.; De, J. N.; Samaddar, S. K.; Centelles, M.; Viñas, X.
2017-08-01
Relations between the nuclear symmetry energy coefficient and its density derivatives are derived. The relations hold for a class of interactions with quadratic momentum dependence and a power-law density dependence. The structural connection between the different symmetry energy elements as obtained seems to be followed by almost all reasonable nuclear energy density functionals, both relativistic and nonrelativistic, suggesting a universality in the correlation structure. This, coupled with known values of some well-accepted constants related to nuclear matter, helps in constraining values of different density derivatives of the nuclear symmetry energy, shedding light on the isovector part of the nuclear interaction.
Exploring Symmetry to Assist Alzheimer's Disease Diagnosis
Illán, I. A.; Górriz, J. M.; Ramírez, J.; Salas-Gonzalez, D.; López, M.; Padilla, P.; Chaves, R.; Segovia, F.; Puntonet, C. G.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging as Single-Photon Emission Computed Tomography (SPECT) is commonly used to guide the clinician's diagnosis. The essential left-right symmetry of human brains is shown to play a key role in coding and recognition. In the present work we explore the implications of this symmetry in AD diagnosis, showing that recognition may be enhanced when considering this latent symmetry.
Symmetries of collective models in intrinsic frame
International Nuclear Information System (INIS)
Gozdz, A.; Pedrak, A.; Szulerecka, A.; Dobrowolski, A.; Dudek, J.
2013-01-01
In the paper a very general definition of intrinsic frame, by means of group theoretical methods, is introduced. It allows to analyze nuclear properties which are invariant in respect to the group which defines the intrinsic frame. For example, nuclear shape is a well determined feature in the intrinsic frame defined by the Euclidean group. It is shown that using of intrinsic frame gives an opportunity to consider intrinsic nuclear symmetries which are independent of symmetries observed in the laboratory frame. An importance of the notion of partial symmetries is emphasized. (author)
Symmetry and bifurcations of momentum mappings
International Nuclear Information System (INIS)
Arms, J.M.; Marsden, J.E.; Moncrief, V.
1981-01-01
The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface. (orig.)
Discrete symmetries and de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Cotăescu, Ion I., E-mail: gpascu@physics.uvt.ro; Pascu, Gabriel, E-mail: gpascu@physics.uvt.ro [West University of Timişoara, V. Pârvan Ave. 4, RO-300223 Timişoara (Romania)
2014-11-24
Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.
The zonal satellite problem. III Symmetries
Directory of Open Access Journals (Sweden)
Mioc V.
2002-01-01
Full Text Available The two-body problem associated with a force field described by a potential of the form U =Sum(k=1,n ak/rk (r = distance between particles, ak = real parameters is resumed from the only standpoint of symmetries. Such symmetries, expressed in Hamiltonian coordinates, or in standard polar coordinates, are recovered for McGehee-type coordinates of both collision-blow-up and infinity-blow-up kind. They form diffeomorphic commutative groups endowed with a Boolean structure. Expressed in Levi-Civita’s coordinates, the problem exhibits a larger group of symmetries, also commutative and presenting a Boolean structure.
Symmetry and bifurcations of momentum mappings
Arms, Judith M.; Marsden, Jerrold E.; Moncrief, Vincent
1981-01-01
The zero set of a momentum mapping is shown to have a singularity at each point with symmetry. The zero set is diffeomorphic to the product of a manifold and the zero set of a homogeneous quadratic function. The proof uses the Kuranishi theory of deformations. Among the applications, it is shown that the set of all solutions of the Yang-Mills equations on a Lorentz manifold has a singularity at any solution with symmetry, in the sense of a pure gauge symmetry. Similarly, the set of solutions of Einstein's equations has a singularity at any solution that has spacelike Killing fields, provided the spacetime has a compact Cauchy surface.
Additional symmetries of supersymmetric KP hierarchies
International Nuclear Information System (INIS)
Stanciu, S.
1993-09-01
We investigate the additional symmetries of several supersymmetric KP hierarchies: The SKP hierarchy of Manin and Radul, the SKP 2 hierarchy, and the Jacobian SKP hierarchy. The main technical tool is the supersymmetric generalisation of a map originally due to Radul between the Lie algebra of superdifferential operators and the Lie algebra of vector fields on the space of supersymmetric Lax operators. In the case of the Manin-Radul SKP hierarchy we identify additional symmetries which form an algebra isomorphic to a subalgebra of superdifferential operators; whereas in the case of the Jacobian SKP, the (additional) symmetries are identified with the algebra itself. (orig.)