WorldWideScience

Sample records for scalar-field dark energy

  1. The continuous tower of scalar fields as a system of interacting dark matter–dark energy

    International Nuclear Information System (INIS)

    Santos, Paulo

    2015-01-01

    This paper aims to introduce a new parameterisation for the coupling Q in interacting dark matter and dark energy models by connecting said models with the Continuous Tower of Scalar Fields model. Based upon the existence of a dark matter and a dark energy sectors in the Continuous Tower of Scalar Fields, a simplification is considered for the evolution of a single scalar field from the tower, validated in this paper. This allows for the results obtained with the Continuous Tower of Scalar Fields model to match those of an interacting dark matter–dark energy system, considering that the energy transferred from one fluid to the other is given by the energy of the scalar fields that start oscillating at a given time, rather than considering that the energy transference depends on properties of the whole fluids that are interacting.

  2. A Note on Equivalence Among Various Scalar Field Models of Dark Energies

    Science.gov (United States)

    Mandal, Jyotirmay Das; Debnath, Ujjal

    2017-08-01

    In this work, we have tried to find out similarities between various available models of scalar field dark energies (e.g., quintessence, k-essence, tachyon, phantom, quintom, dilatonic dark energy, etc). We have defined an equivalence relation from elementary set theory between scalar field models of dark energies and used fundamental ideas from linear algebra to set up our model. Consequently, we have obtained mutually disjoint subsets of scalar field dark energies with similar properties and discussed our observation.

  3. Holographic dark energy in Brans-Dicke cosmology with chameleon scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R., E-mail: rezakord@ipm.i [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: mjamil@camp.edu.p [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, Rawalpindi 46000 (Pakistan)

    2010-06-07

    We study a cosmological implication of holographic dark energy in the Brans-Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter {alpha} (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans-Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans-Dicke cosmology framework.

  4. Holographic dark energy in Brans-Dicke cosmology with chameleon scalar field

    International Nuclear Information System (INIS)

    Setare, M.R.; Jamil, Mubasher

    2010-01-01

    We study a cosmological implication of holographic dark energy in the Brans-Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter α (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans-Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans-Dicke cosmology framework.

  5. Supplying Dark Energy from Scalar Field Dark Matter

    OpenAIRE

    Gogberashvili, Merab; Sakharov, Alexander S.

    2017-01-01

    We consider the hypothesis that dark matter and dark energy consists of ultra-light self-interacting scalar particles. It is found that the Klein-Gordon equation with only two free parameters (mass and self-coupling) on a Schwarzschild background, at the galactic length-scales has the solution which corresponds to Bose-Einstein condensate, behaving as dark matter, while the constant solution at supra-galactic scales can explain dark energy.

  6. Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy

    International Nuclear Information System (INIS)

    Karami, K; Fahimi, K

    2013-01-01

    We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar field models. (paper)

  7. Dark fluid: A complex scalar field to unify dark energy and dark matter

    International Nuclear Information System (INIS)

    Arbey, Alexandre

    2006-01-01

    In this article, we examine a model which proposes a common explanation for the presence of additional attractive gravitational effects - generally considered to be due to dark matter - in galaxies and in clusters, and for the presence of a repulsive effect at cosmological scales - generally taken as an indication of the presence of dark energy. We therefore consider the behavior of a so-called dark fluid based on a complex scalar field with a conserved U(1)-charge and associated to a specific potential, and show that it can at the same time account for dark matter in galaxies and in clusters, and agree with the cosmological observations and constraints on dark energy and dark matter

  8. Interacting diffusive unified dark energy and dark matter from scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Benisty, David; Guendelman, E.I. [Ben Gurion University of the Negev, Department of Physics, Beersheba (Israel)

    2017-06-15

    Here we generalize ideas of unified dark matter-dark energy in the context of two measure theories and of dynamical space time theories. In two measure theories one uses metric independent volume elements and this allows one to construct unified dark matter-dark energy, where the cosmological constant appears as an integration constant associated with the equation of motion of the measure fields. The dynamical space-time theories generalize the two measure theories by introducing a vector field whose equation of motion guarantees the conservation of a certain Energy Momentum tensor, which may be related, but in general is not the same as the gravitational Energy Momentum tensor. We propose two formulations of this idea: (I) by demanding that this vector field be the gradient of a scalar, (II) by considering the dynamical space field appearing in another part of the action. Then the dynamical space time theory becomes a theory of Diffusive Unified dark energy and dark matter. These generalizations produce non-conserved energy momentum tensors instead of conserved energy momentum tensors which leads at the end to a formulation of interacting DE-DM dust models in the form of a diffusive type interacting Unified dark energy and dark matter scenario. We solved analytically the theories for perturbative solution and asymptotic solution, and we show that the ΛCDM is a fixed point of these theories at large times. Also a preliminary argument as regards the good behavior of the theory at the quantum level is proposed for both theories. (orig.)

  9. arXiv Supplying Dark Energy from Scalar Field Dark Matter

    CERN Document Server

    Gogberashvili, Merab

    We consider the hypothesis that dark matter and dark energy consists of ultra-light self-interacting scalar particles. It is found that the Klein-Gordon equation with only two free parameters (mass and self-coupling) on a Schwarzschild background, at the galactic length-scales has the solution which corresponds to Bose-Einstein condensate, behaving as dark matter, while the constant solution at supra-galactic scales can explain dark energy.

  10. Evolution of perturbations in distinct classes of canonical scalar field models of dark energy

    International Nuclear Information System (INIS)

    Jassal, H. K.

    2010-01-01

    Dark energy must cluster in order to be consistent with the equivalence principle. The background evolution can be effectively modeled by either a scalar field or by a barotropic fluid. The fluid model can be used to emulate perturbations in a scalar field model of dark energy, though this model breaks down at large scales. In this paper we study evolution of dark energy perturbations in canonical scalar field models: the classes of thawing and freezing models. The dark energy equation of state evolves differently in these classes. In freezing models, the equation of state deviates from that of a cosmological constant at early times. For thawing models, the dark energy equation of state remains near that of the cosmological constant at early times and begins to deviate from it only at late times. Since the dark energy equation of state evolves differently in these classes, the dark energy perturbations too evolve differently. In freezing models, since the equation of state deviates from that of a cosmological constant at early times, there is a significant difference in evolution of matter perturbations from those in the cosmological constant model. In comparison, matter perturbations in thawing models differ from the cosmological constant only at late times. This difference provides an additional handle to distinguish between these classes of models and this difference should manifest itself in the integrated Sachs-Wolfe effect.

  11. A sensitive search for dark energy through chameleon scalar fields using neutron interferometry

    International Nuclear Information System (INIS)

    Snow, W M; Li, K; Skavysh, V; Arif, M; Huber, M; Heacock, B; Young, A R; Pushin, D

    2015-01-01

    The physical origin of the dark energy, which is postulated to cause the accelerated expansion rate of the universe, is one of the major open questions of cosmology. A large subset of theories postulate the existence of a scalar field with a nonlinear coupling to matter chosen so that the effective range and/or strength of the field is greatly suppressed unless the source is placed in vacuum. We describe a measurement using neutron interferometry which can place a stringent upper bound on chameleon fields proposed as a solution to the problem of the origin of dark energy of the universe in the regime with a strongly-nolinear coupling term. In combination with other experiments searching for exotic short-range forces and laser-based measurements, slow neutron experiments are capable of eliminating this and many similar types of scalar-field-based dark energy models by laboratory experiments

  12. Dark sector impact on gravitational collapse of an electrically charged scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences,Doświadczalna 4, 20-290 Lublin (Poland); Rogatko, Marek [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warszawa (Poland)

    2015-11-04

    Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.

  13. Scalar field dark matter: behavior around black holes

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Osorio, Alejandro; Guzmán, F. Siddhartha; Lora-Clavijo, Fabio D., E-mail: alejandro@ifm.umich.mx, E-mail: guzman@ifm.umich.mx, E-mail: fadulora@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán (Mexico)

    2011-06-01

    We present the numerical evolution of a massive test scalar fields around a Schwarzschild space-time. We proceed by using hyperboloidal slices that approach future null infinity, which is the boundary of scalar fields, and also demand the slices to penetrate the event horizon of the black hole. This approach allows the scalar field to be accreted by the black hole and to escape toward future null infinity. We track the evolution of the energy density of the scalar field, which determines the rate at which the scalar field is being diluted. We find polynomial decay of the energy density of the scalar field, and use it to estimate the rate of dilution of the field in time. Our findings imply that the energy density of the scalar field decreases even five orders of magnitude in time scales smaller than a year. This implies that if a supermassive black hole is the Schwarzschild solution, then scalar field dark matter would be diluted extremely fast.

  14. Scalar field dark matter: behavior around black holes

    International Nuclear Information System (INIS)

    Cruz-Osorio, Alejandro; Guzmán, F. Siddhartha; Lora-Clavijo, Fabio D.

    2011-01-01

    We present the numerical evolution of a massive test scalar fields around a Schwarzschild space-time. We proceed by using hyperboloidal slices that approach future null infinity, which is the boundary of scalar fields, and also demand the slices to penetrate the event horizon of the black hole. This approach allows the scalar field to be accreted by the black hole and to escape toward future null infinity. We track the evolution of the energy density of the scalar field, which determines the rate at which the scalar field is being diluted. We find polynomial decay of the energy density of the scalar field, and use it to estimate the rate of dilution of the field in time. Our findings imply that the energy density of the scalar field decreases even five orders of magnitude in time scales smaller than a year. This implies that if a supermassive black hole is the Schwarzschild solution, then scalar field dark matter would be diluted extremely fast

  15. Dark energy in scalar-tensor theories

    International Nuclear Information System (INIS)

    Moeller, J.

    2007-12-01

    We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of σ-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)

  16. Dark energy in scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, J.

    2007-12-15

    We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of {sigma}-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)

  17. Weakly dynamic dark energy via metric-scalar couplings with torsion

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Sourav; Bhatia, Arshdeep Singh, E-mail: sourav.sur@gmail.com, E-mail: arshdeepsb@gmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi, 110 007 (India)

    2017-07-01

    We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the torsion pseudo-trace provides a mass term for the scalar field in the effective action. In the equivalent scalar-tensor framework, we find explicit cosmological solutions representing dark energy in both Einstein and Jordan frames. We demand the dynamical evolution of the dark energy to be weak enough, so that the present-day values of the cosmological parameters could be estimated keeping them within the confidence limits set for the standard LCDM model from recent observations. For such estimates, we examine the variations of the effective matter density and the dark energy equation of state parameters over different redshift ranges. In spite of being weakly dynamic, the dark energy component differs significantly from the cosmological constant, both in characteristics and features, for e.g. it interacts with the cosmological (dust) fluid in the Einstein frame, and crosses the phantom barrier in the Jordan frame. We also obtain the upper bounds on the torsion mode parameters and the lower bound on the effective Brans-Dicke parameter. The latter turns out to be fairly large, and in agreement with the local gravity constraints, which therefore come in support of our analysis.

  18. Cosmological effects of scalar-photon couplings: dark energy and varying-α Models

    Energy Technology Data Exchange (ETDEWEB)

    Avgoustidis, A. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Vielzeuf, P.E. [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Luzzi, G., E-mail: tavgoust@gmail.com, E-mail: Carlos.Martins@astro.up.pt, E-mail: mmonteiro@fc.up.pt, E-mail: up110370652@alunos.fc.up.pt, E-mail: gluzzi@lal.in2p3.fr [Laboratoire de l' Accélérateur Linéaire, Université de Paris-Sud, CNRS/IN2P3, Bâtiment 200, BP 34, 91898 Orsay Cedex (France)

    2014-06-01

    We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.

  19. Can dark matter be a scalar field?

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, J.F.; Malatrasi, J.L.G. [Universidade Estadual Paulista ' Júlio de Mesquita Filho' , Campus Experimental de Itapeva—R. Geraldo Alckmin, 519, Itapeva, SP (Brazil); Pereira, S.H. [Universidade Estadual Paulista ' Júlio de Mesquita Filho' , Departamento de Física e Química, Campus de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, 12516-410—Guaratinguetá, SP (Brazil); Andrade-Oliveira, F., E-mail: jfjesus@itapeva.unesp.br, E-mail: shpereira@gmail.com, E-mail: malatrasi440@gmail.com, E-mail: felipe.oliveira@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, PO1 3FX, Portsmouth (United Kingdom)

    2016-08-01

    In this paper we study a real scalar field as a possible candidate to explain the dark matter in the universe. In the context of a free scalar field with quadratic potential, we have used Union 2.1 SN Ia observational data jointly with a Planck prior over the dark matter density parameter to set a lower limit on the dark matter mass as m ≥0.12 H {sub 0}{sup -1} eV ( c = h-bar =1). For the recent value of the Hubble constant indicated by the Hubble Space Telescope, namely H {sub 0}=73±1.8 km s{sup -1}Mpc{sup -1}, this leads to m ≥1.56×10{sup -33} eV at 99.7% c.l. Such value is much smaller than m ∼ 10{sup -22} eV previously estimated for some models. Nevertheless, it is still in agreement with them once we have not found evidences for a upper limit on the scalar field dark matter mass from SN Ia analysis. In practice, it confirms free real scalar field as a viable candidate for dark matter in agreement with previous studies in the context of density perturbations, which include scalar field self interaction.

  20. New holographic scalar field models of dark energy in non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Fehri, J. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-02-08

    Motivated by the work of Granda and Oliveros [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199], we generalize their work to the non-flat case. We study the correspondence between the quintessence, tachyon, K-essence and dilaton scalar field models with the new holographic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe. In the limiting case of a flat universe, i.e. k=0, all results given in [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199] are obtained.

  1. New holographic scalar field models of dark energy in non-flat universe

    International Nuclear Information System (INIS)

    Karami, K.; Fehri, J.

    2010-01-01

    Motivated by the work of Granda and Oliveros [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199], we generalize their work to the non-flat case. We study the correspondence between the quintessence, tachyon, K-essence and dilaton scalar field models with the new holographic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe. In the limiting case of a flat universe, i.e. k=0, all results given in [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199] are obtained.

  2. Scalar field dark matter and the Higgs field

    Directory of Open Access Journals (Sweden)

    O. Bertolami

    2016-08-01

    Full Text Available We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10−6–10−4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall–Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.

  3. The dark sector from interacting canonical and non-canonical scalar fields

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2010-01-01

    In this work general models with interactions between two canonical scalar fields and between one non-canonical (tachyon type) and one canonical scalar field are investigated. The potentials and couplings to the gravity are selected through the Noether symmetry approach. These general models are employed to describe interactions between dark energy and dark matter, with the fields being constrained by the astronomical data. The cosmological solutions of some cases are compared with the observed evolution of the late Universe.

  4. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Khaledian, M.S.; Felegary, F.; Azarmi, Z. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-03-29

    We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.

  5. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe

    International Nuclear Information System (INIS)

    Karami, K.; Khaledian, M.S.; Felegary, F.; Azarmi, Z.

    2010-01-01

    We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.

  6. Combined cosmological tests of a bivalent tachyonic dark energy scalar field model

    International Nuclear Information System (INIS)

    Keresztes, Zoltán; Gergely, László Á.

    2014-01-01

    A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (Ω b h 2  = 0.022161, where the Hubble constant is fixed as h = 0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates into a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1σ confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for Ω CDM  = 0.22. The fit is as good as for the ΛCDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model

  7. Scalar field dark matter in hybrid approach

    NARCIS (Netherlands)

    Friedrich, Pavel; Prokopec, Tomislav

    2017-01-01

    We develop a hybrid formalism suitable for modeling scalar field dark matter, in which the phase-space distribution associated to the real scalar field is modeled by statistical equal-time two-point functions and gravity is treated by two stochastic gravitational fields in the longitudinal gauge (in

  8. Constraining scalar fields with stellar kinematics and collisional dark matter

    International Nuclear Information System (INIS)

    Amaro-Seoane, Pau; Barranco, Juan; Bernal, Argelia; Rezzolla, Luciano

    2010-01-01

    The existence and detection of scalar fields could provide solutions to long-standing puzzles about the nature of dark matter, the dark compact objects at the centre of most galaxies, and other phenomena. Yet, self-interacting scalar fields are very poorly constrained by astronomical observations, leading to great uncertainties in estimates of the mass m φ and the self-interacting coupling constant λ of these fields. To counter this, we have systematically employed available astronomical observations to develop new constraints, considerably restricting this parameter space. In particular, by exploiting precise observations of stellar dynamics at the centre of our Galaxy and assuming that these dynamics can be explained by a single boson star, we determine an upper limit for the boson star compactness and impose significant limits on the values of the properties of possible scalar fields. Requiring the scalar field particle to follow a collisional dark matter model further narrows these constraints. Most importantly, we find that if a scalar dark matter particle does exist, then it cannot account for both the dark-matter halos and the existence of dark compact objects in galactic nuclei

  9. Is Sextans dwarf galaxy in a scalar field dark matter halo?

    International Nuclear Information System (INIS)

    Lora, V.; Magaña, Juan

    2014-01-01

    The Bose-Einstein condensate/scalar field dark matter model, considers that the dark matter is composed by spinless-ultra-light particles which can be described by a scalar field. This model is an alternative model to the Λ-cold dark matter paradigm, and therefore should be studied at galactic and cosmological scales. Dwarf spheroidal galaxies have been very useful when studying any dark matter theory, because the dark matter dominates their dynamics. In this paper we study the Sextans dwarf spheroidal galaxy, embedded in a scalar field dark matter halo. We explore how the dissolution time-scale of the stellar substructures in Sextans, constrain the mass, and the self-interacting parameter of the scalar field dark matter boson. We find that for masses in the range (0.12< m φ <8) ×10 -22 eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the stellar substructures in Sextans, and small enough mass to be compatible with dynamical limits. If the self-interacting parameter is distinct to zero, then the mass of the boson could be as high as m φ ≈2×10 -21 eV, but it would correspond to an unrealistic low mass for the Sextans dark matter halo . Therefore, the Sextans dwarf galaxy could be embedded in a scalar field/BEC dark matter halo with a preferred self-interacting parameter equal to zero

  10. Reconstructing interacting entropy-corrected holographic scalar field models of dark energy in the non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K; Khaledian, M S [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: KKarami@uok.ac.ir, E-mail: MS.Khaledian@uok.ac.ir, E-mail: mjamil@camp.nust.edu.pk [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), Islamabad (Pakistan)

    2011-02-15

    Here we consider the entropy-corrected version of the holographic dark energy (DE) model in the non-flat universe. We obtain the equation of state parameter in the presence of interaction between DE and dark matter. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic DE model.

  11. Field Flows of Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, Robert N.; de Putter, Roland; Linder, Eric V.

    2008-07-08

    Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.

  12. Non-minimal derivative coupling scalar field and bulk viscous dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Mostaghel, Behrang [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Moshafi, Hossein [Institute for Advanced Studies in Basic Sciences, Department of Physics, Zanjan (Iran, Islamic Republic of); Movahed, S.M.S. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-08-15

    Inspired by thermodynamical dissipative phenomena, we consider bulk viscosity for dark fluid in a spatially flat two-component Universe. Our viscous dark energy model represents phantom-crossing which avoids big-rip singularity. We propose a non-minimal derivative coupling scalar field with zero potential leading to accelerated expansion of the Universe in the framework of bulk viscous dark energy model. In this approach, the coupling constant, κ, is related to viscosity coefficient, γ, and the present dark energy density, Ω{sub DE}{sup 0}. This coupling is bounded as κ element of [-1/9H{sub 0}{sup 2}(1 - Ω{sub DE}{sup 0}), 0]. We implement recent observational data sets including a joint light-curve analysis (JLA) for SNIa, gamma ray bursts (GRBs) for most luminous astrophysical objects at high redshifts, baryon acoustic oscillations (BAO) from different surveys, Hubble parameter from HST project, Planck CMB power spectrum and lensing to constrain model free parameters. The joint analysis of JLA + GRBs + BAO + HST shows that Ω{sub DE}{sup 0} = 0.696 ± 0.010, γ = 0.1404 ± 0.0014 and H{sub 0} = 68.1 ± 1.3. Planck TT observation provides γ = 0.32{sup +0.31}{sub -0.26} in the 68% confidence limit for the viscosity coefficient. The cosmographic distance ratio indicates that current observed data prefer to increase bulk viscosity. The competition between phantom and quintessence behavior of the viscous dark energy model can accommodate cosmological old objects reported as a sign of age crisis in the ΛCDM model. Finally, tension in the Hubble parameter is alleviated in this model. (orig.)

  13. Holographic Dark Energy in Brans-Dicke Theory with Logarithmic Form of Scalar Field

    Science.gov (United States)

    Singh, C. P.; Kumar, Pankaj

    2017-10-01

    In this paper, an interacting holographic dark energy model with Hubble horizon as an infra-red cut-off is considered in the framework of Brans-Dicke theory. We assume the Brans-Dicke scalar field as a logarithmic form ϕ = ϕ 0 l n( α + β a), where a is the scale factor, α and β are arbitrary constants, to interpret the physical phenomena of the Universe. The equation of state parameter w h and deceleration parameter q are obtained to discuss the dynamics of the evolution of the Universe. We present a unified model of holographic dark energy which explains the early time acceleration (inflation), medieval time deceleration and late time acceleration. It is also observed that w h may cross the phantom divide line in the late time evolution. We also discuss the cosmic coincidence problem. We obtain a time-varying density ratio of holographic dark energy to dark matter which is a constant of order one (r˜ O(1)) during early and late time evolution, and may evolve sufficiently slow at present time. Thus, the model successfully resolves the cosmic coincidence problem.

  14. Unified Dark Matter scalar field models with fast transition

    Energy Technology Data Exchange (ETDEWEB)

    Bertacca, Daniele [Dipartimento di Fisica Galileo Galilei, Università di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Bruni, Marco [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Piattella, Oliver F. [Department of Physics, Universidade Federal do Espírito Santo, avenida Ferrari 514, 29075-910, Vitória, ES (Brazil); Pietrobon, Davide, E-mail: daniele.bertacca@pd.infn.it, E-mail: marco.bruni@port.ac.uk, E-mail: oliver.piattella@gmail.com, E-mail: davide.pietrobon@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 91109 Pasadena CA U.S.A. (United States)

    2011-02-01

    We investigate the general properties of Unified Dark Matter (UDM) scalar field models with Lagrangians with a non-canonical kinetic term, looking specifically for models that can produce a fast transition between an early Einstein-de Sitter CDM-like era and a later Dark Energy like phase, similarly to the barotropic fluid UDM models in JCAP01(2010)014. However, while the background evolution can be very similar in the two cases, the perturbations are naturally adiabatic in fluid models, while in the scalar field case they are necessarily non-adiabatic. The new approach to building UDM Lagrangians proposed here allows to escape the common problem of the fine-tuning of the parameters which plague many UDM models. We analyse the properties of perturbations in our model, focusing on the the evolution of the effective speed of sound and that of the Jeans length. With this insight, we can set theoretical constraints on the parameters of the model, predicting sufficient conditions for the model to be viable. An interesting feature of our models is that what can be interpreted as w{sub DE} can be < −1 without violating the null energy conditions.

  15. Unifying Dark Matter and Dark Energy with non-Canonical Scalars

    OpenAIRE

    Mishra, Swagat S.; Sahni, Varun

    2018-01-01

    Non-canonical scalar fields with the Lagrangian ${\\cal L} = X^\\alpha - V(\\phi)$, possess the attractive property that the speed of sound, $c_s^{2} = (2\\,\\alpha - 1)^{-1}$, can be exceedingly small for large values of $\\alpha$. This allows a non-canonical field to cluster and behave like warm/cold dark matter on small scales. We demonstrate that simple potentials such as $V = V_0\\coth^2{\\phi}$ and the Starobinsky-type potential $V(\\phi) = V_0 \\left ( 1 - e^{-{\\phi}}\\right )^{2}$ can unify dark...

  16. Search for Chameleon Scalar Fields with the Axion Dark Matter Experiment

    International Nuclear Information System (INIS)

    Rybka, G.; Hotz, M.; Rosenberg, L. J; Asztalos, S. J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hoskins, J.; Martin, C.; Sikivie, P.; Tanner, D. B.; Bradley, R.; Clarke, J.

    2010-01-01

    Scalar fields with a 'chameleon' property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the afterglow effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling β γ excluding values between 2x10 9 and 5x10 14 for effective chameleon masses between 1.9510 and 1.9525 μeV.

  17. Unified dark energy-dark matter model with inverse quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Ansoldi, Stefano [ICRA — International Center for Relativistic Astrophysics, INFN — Istituto Nazionale di Fisica Nucleare, and Dipartimento di Matematica e Informatica, Università degli Studi di Udine, via delle Scienze 206, I-33100 Udine (UD) (Italy); Guendelman, Eduardo I., E-mail: ansoldi@fulbrightmail.org, E-mail: guendel@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negeev, Beer-Sheva 84105 (Israel)

    2013-05-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.

  18. Unified dark energy-dark matter model with inverse quintessence

    International Nuclear Information System (INIS)

    Ansoldi, Stefano; Guendelman, Eduardo I.

    2013-01-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future

  19. Observational constraints on scalar field models of dark energy with barotropic equation of state

    International Nuclear Information System (INIS)

    Sergijenko, Olga; Novosyadlyj, Bohdan; Durrer, Ruth

    2011-01-01

    We constrain the parameters of dynamical dark energy in the form of a classical or tachyonic scalar field with barotropic equation of state jointly with other cosmological parameters using the following datasets: the CMB power spectra from WMAP7, the baryon acoustic oscillations in the space distribution of galaxies from SDSS DR7, the power spectrum of luminous red galaxies from SDSS DR7 and the light curves of SN Ia from 2 different compilations: Union2 (SALT2 light curve fitting) and SDSS (SALT2 and MLCS2k2 light curve fittings). It has been found that the initial value of dark energy equation of state parameter is constrained very weakly by most of the data while the other cosmological parameters are well constrained: their likelihoods and posteriors are similar, their forms are close to Gaussian (or half-Gaussian) and the confidence ranges are narrow. The most reliable determinations of the best-fit value and 1σ confidence range for the initial value of the dark energy equation of state parameter are obtained from the combined datasets including SN Ia data from the full SDSS compilation with MLCS2k2 light curve fitting. In all such cases the best-fit value of this parameter is lower than the value of corresponding parameter for current epoch. Such dark energy loses its repulsive properties and in future the expansion of the Universe changes into contraction. We also perform a forecast for the Planck mock data and show that they narrow significantly the confidence ranges of cosmological parameters values, moreover, their combination with SN SDSS compilation with MLCS2k2 light curve fitting may exclude the fields with initial equation of state parameter > −0.1 at 2σ confidence level

  20. Roles of dark energy perturbations in dynamical dark energy models: can we ignore them?

    Science.gov (United States)

    Park, Chan-Gyung; Hwang, Jai-chan; Lee, Jae-heon; Noh, Hyerim

    2009-10-09

    We show the importance of properly including the perturbations of the dark energy component in the dynamical dark energy models based on a scalar field and modified gravity theories in order to meet with present and future observational precisions. Based on a simple scaling scalar field dark energy model, we show that observationally distinguishable substantial differences appear by ignoring the dark energy perturbation. By ignoring it the perturbed system of equations becomes inconsistent and deviations in (gauge-invariant) power spectra depend on the gauge choice.

  1. Dark Energy vs. Dark Matter: Towards a Unifying Scalar Field?

    OpenAIRE

    Arbey, A.

    2008-01-01

    The standard model of cosmology suggests the existence of two components, "dark matter" and "dark energy", which determine the fate of the Universe. Their nature is still under investigation, and no direct proof of their existences has emerged yet. There exist alternative models which reinterpret the cosmological observations, for example by replacing the dark energy/dark matter hypothesis by the existence of a unique dark component, the dark fluid, which is able to mimic the behaviour of bot...

  2. Hessence: a new view of quintom dark energy

    International Nuclear Information System (INIS)

    Wei Hao; Cai Ronggen; Zeng Dingfang

    2005-01-01

    Recently a lot of attention has been given to building a dark energy model in which the equation-of-state parameter w can cross the phantom divide w = -1. One of the models to realize crossing the phantom divide is called the quintom model, in which two real scalar fields appear, one is a normal scalar field and the other is a phantom-type scalar field. In this paper we propose a non-canonical complex scalar field as the dark energy, which we dub 'hessence', to implement crossing the phantom divide, in a similar sense as the quintom dark energy model. In the hessence model, the dark energy is described by a single field with an internal degree of freedom rather than two independent real scalar fields. However, the hessence is different from an ordinary complex scalar field, we show that the hessence can avoid the difficulty of the Q-ball formation which gives trouble to the spintessence model (an ordinary complex scalar field acts as the dark energy). Furthermore, we find that, by choosing a proper potential, the hessence could correspond to a Chaplygin gas at late times

  3. Are black holes a serious threat to scalar field dark matter models?

    International Nuclear Information System (INIS)

    Barranco, Juan; Degollado, Juan Carlos; Bernal, Argelia; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Nunez, Dario; Sarbach, Olivier

    2011-01-01

    Classical scalar fields have been proposed as possible candidates for the dark matter component of the universe. Given the fact that supermassive black holes seem to exist at the center of most galaxies, in order to be a viable candidate for the dark matter halo a scalar field configuration should be stable in the presence of a central black hole, or at least be able to survive for cosmological time scales. In the present work we consider a scalar field as a test field on a Schwarzschild background, and study under which conditions one can obtain long-lived configurations. We present a detailed study of the Klein-Gordon equation in the Schwarzschild space-time, both from an analytical and numerical point of view, and show that indeed there exist quasistationary solutions that can remain surrounding a black hole for large time scales.

  4. Cosmic inflation constrains scalar dark matter

    Directory of Open Access Journals (Sweden)

    Tommi Tenkanen

    2015-12-01

    Full Text Available In a theory containing scalar fields, a generic consequence is a formation of scalar condensates during cosmic inflation. The displacement of scalar fields out from their vacuum values sets specific initial conditions for post-inflationary dynamics and may lead to significant observational ramifications. In this work, we investigate how these initial conditions affect the generation of dark matter in the class of portal scenarios where the standard model fields feel new physics only through Higgs-mediated couplings. As a representative example, we will consider a $ Z_2 $ symmetric scalar singlet $ s $ coupled to Higgs via $ \\lambda \\Phi ^\\dagger \\Phi s^2 $. This simple extension has interesting consequences as the singlet constitutes a dark matter candidate originating from non-thermal production of singlet particles out from a singlet condensate, leading to a novel interplay between inflationary dynamics and dark matter properties.

  5. New holographic reconstruction of scalar-field dark-energy models in the framework of chameleon Brans-Dicke cosmology

    International Nuclear Information System (INIS)

    Chattopadhyay, Surajit; Pasqua, Antonio; Khurshudyan, Martiros

    2014-01-01

    Motivated by the work of Yang et al. (Mod. Phys. Lett. A 26:191, 2011), we report on a study of the new holographic dark energy (NHDE) model with energy density given by ρ D = (3φ 2 )/(4ω)(μH 2 + νH) in the framework of chameleon Brans-Dicke cosmology. We have studied the correspondence between the quintessence, the DBI-essence, and the tachyon scalar-field models with the NHDE model in the framework of chameleon Brans-Dicke cosmology. Deriving an expression of the Hubble parameter H and, accordingly, ρ D in the context of chameleon Brans-Dicke chameleon cosmology, we have reconstructed the potentials and dynamics for these scalar-field models. Furthermore, we have examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields, and we have seen that the quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. It has also been noted that the potential increases as the matter. chameleon coupling gets stronger with the evolution of the universe. (orig.)

  6. New holographic reconstruction of scalar-field dark-energy models in the framework of chameleon Brans-Dicke cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Surajit [Pailan College of Management and Technology, Kolkata (India); Pasqua, Antonio [University of Trieste, Department of Physics, Trieste (Italy); Khurshudyan, Martiros [Yerevan State University, Department of Theoretical Physics, Yerevan (Armenia); Potsdam-Golm Science Park, Max Planck Institute of Colloids and Interfaces, Potsdam (Germany)

    2014-09-15

    Motivated by the work of Yang et al. (Mod. Phys. Lett. A 26:191, 2011), we report on a study of the new holographic dark energy (NHDE) model with energy density given by ρ{sub D} = (3φ{sup 2})/(4ω)(μH{sup 2} + νH) in the framework of chameleon Brans-Dicke cosmology. We have studied the correspondence between the quintessence, the DBI-essence, and the tachyon scalar-field models with the NHDE model in the framework of chameleon Brans-Dicke cosmology. Deriving an expression of the Hubble parameter H and, accordingly, ρ{sub D} in the context of chameleon Brans-Dicke chameleon cosmology, we have reconstructed the potentials and dynamics for these scalar-field models. Furthermore, we have examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields, and we have seen that the quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. It has also been noted that the potential increases as the matter. chameleon coupling gets stronger with the evolution of the universe. (orig.)

  7. Scalar field dark matter with spontaneous symmetry breaking and the 3.5 keV line

    Science.gov (United States)

    Cosme, Catarina; Rosa, João G.; Bertolami, O.

    2018-06-01

    We show that the present dark matter abundance can be accounted for by an oscillating scalar field that acquires both mass and a non-zero expectation value from interactions with the Higgs field. The dark matter scalar field can be sufficiently heavy during inflation, due to a non-minimal coupling to gravity, so as to avoid the generation of large isocurvature modes in the CMB anisotropies spectrum. The field begins oscillating after reheating, behaving as radiation until the electroweak phase transition and afterwards as non-relativistic matter. The scalar field becomes unstable, although sufficiently long-lived to account for dark matter, due to mass mixing with the Higgs boson, decaying mainly into photon pairs for masses below the MeV scale. In particular, for a mass of ∼7 keV, which is effectively the only free parameter, the model predicts a dark matter lifetime compatible with the recent galactic and extragalactic observations of a 3.5 keV X-ray line.

  8. Consistent scalar and tensor perturbation power spectra in single fluid matter bounce with dark energy era

    Science.gov (United States)

    Bacalhau, Anna Paula; Pinto-Neto, Nelson; Vitenti, Sandro Dias Pinto

    2018-04-01

    We investigate cosmological scenarios containing one canonical scalar field with an exponential potential in the context of bouncing models, in which the bounce happens due to quantum cosmological effects. The only possible bouncing solutions in this scenario (discarding an infinitely fine-tuned exception) must have one and only one dark energy phase, occurring either in the contracting era or in the expanding era. Hence, these bounce solutions are necessarily asymmetric. Naturally, the more convenient solution is the one in which the dark energy phase happens in the expanding era, in order to be a possible explanation for the current accelerated expansion indicated by cosmological observations. In this case, one has the picture of a Universe undergoing a classical dust contraction from very large scales, the initial repeller of the model, moving to a classical stiff-matter contraction near the singularity, which is avoided due to the quantum bounce. The Universe is then launched to a dark energy era, after passing through radiation- and dust-dominated phases, finally returning to the dust expanding phase, the final attractor of the model. We calculate the spectral indices and amplitudes of scalar and tensor perturbations numerically, considering the whole history of the model, including the bounce phase itself, without making any approximation nor using any matching condition on the perturbations. As the background model is necessarily dust dominated in the far past, the usual adiabatic vacuum initial conditions can be easily imposed in this era. Hence, this is a cosmological model in which the presence of dark energy behavior in the Universe does not turn the usual vacuum initial conditions prescription for cosmological perturbation in bouncing models problematic. Scalar and tensor perturbations end up being almost scale invariant, as expected. The background parameters can be adjusted, without fine-tunings, to yield the observed amplitude for scalar

  9. Interacting viscous entropy-corrected holographic scalar field models of dark energy with time-varying G in modified FRW cosmology

    International Nuclear Information System (INIS)

    Adabi, Farzin; Karami, Kayoomars; Felegary, Fereshte; Azarmi, Zohre

    2012-01-01

    We study the entropy-corrected version of the holographic dark energy (HDE) model in the framework of modified Friedmann-Robertson-Walker cosmology. We consider a non-flat universe filled with an interacting viscous entropy-corrected HDE (ECHDE) with dark matter. Also included in our model is the case of the variable gravitational constant G. We obtain the equation of state and the deceleration parameters of the interacting viscous ECHDE. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting viscous ECHDE model with time-varying G. (research papers)

  10. Cosmic expansion and growth histories in Galileon scalar-tensor models of dark energy

    International Nuclear Information System (INIS)

    Kobayashi, Tsutomu

    2010-01-01

    We study models of late-time cosmic acceleration in terms of scalar-tensor theories generalized to include a certain class of nonlinear derivative interaction of the scalar field. The nonlinear effect suppresses the scalar-mediated force at short distances to pass solar-system tests of gravity. It is found that the expansion history until today is almost indistinguishable from that of the ΛCDM model or some (phantom) dark energy models, but the fate of the universe depends clearly on the model parameter. The growth index of matter density perturbations is computed to show that its past asymptotic value is given by 9/16, while the value today is as small as 0.4.

  11. Pulsar timing signal from ultralight scalar dark matter

    International Nuclear Information System (INIS)

    Khmelnitsky, Andrei; Rubakov, Valery

    2014-01-01

    An ultralight free scalar field with mass around 10 −23 −10 −22 eV is a viable dark mater candidate, which can help to resolve some of the issues of the cold dark matter on sub-galactic scales. We consider the gravitational field of the galactic halo composed out of such dark matter. The scalar field has oscillating in time pressure, which induces oscillations of gravitational potential with amplitude of the order of 10 −15 and frequency in the nanohertz range. This frequency is in the range of pulsar timing array observations. We estimate the magnitude of the pulse arrival time residuals induced by the oscillating gravitational potential. We find that for a range of dark matter masses, the scalar field dark matter signal is comparable to the stochastic gravitational wave signal and can be detected by the planned SKA pulsar timing array experiment

  12. Agegraphic dark energy as a quintessence

    International Nuclear Information System (INIS)

    Zhang, Jingfei; Liu, Hongya; Zhang, Xin

    2008-01-01

    Recently, a dark energy model characterized by the age of the universe, dubbed ''agegraphic dark energy'', was proposed by Cai. In this paper, a connection between the quintessence scalar-field and the agegraphic dark energy is established, and accordingly, the potential of the agegraphic quintessence field is constructed. (orig.)

  13. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  14. Higgs particles interacting via a scalar Dark Matter field

    Directory of Open Access Journals (Sweden)

    Bhattacharya Yajnavalkya

    2016-01-01

    Full Text Available We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.

  15. Dark energy and dark matter from hidden symmetry of gravity model with a non-Riemannian volume form

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, Eduardo [Ben-Gurion University of the Negev, Department of Physics, Beersheba (Israel); Nissimov, Emil; Pacheva, Svetlana [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2015-10-15

    We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by √(-g) (square root of the determinant of the pertinent Riemannian metric) and another non-Riemannian volume form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless ''dust'' fluid which we can identify with the dark matter completely decoupled from the dark energy. The form of both the dark energy and dark matter that results from the above class of models is insensitive to the specific form of the scalar field Lagrangian. By adding an appropriate perturbation, which breaks the above hidden symmetry and along with this couples dark matter and dark energy, we also suggest a way to obtain growing dark energy in the present universe's epoch without evolution pathologies. (orig.)

  16. Bouncing Cosmologies with Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Yi-Fu Cai

    2016-12-01

    Full Text Available We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence, could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.

  17. Interacting Dark Matter and q-Deformed Dark Energy Nonminimally Coupled to Gravity

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2016-01-01

    Full Text Available In this paper, we propose a new approach to study the dark sector of the universe by considering the dark energy as an emerging q-deformed bosonic scalar field which is not only interacting with the dark matter, but also nonminimally coupled to gravity, in the framework of standard Einsteinian gravity. In order to analyze the dynamic of the system, we first give the quantum field theoretical description of the q-deformed scalar field dark energy and then construct the action and the dynamical structure of this interacting and nonminimally coupled dark sector. As a second issue, we perform the phase-space analysis of the model to check the reliability of our proposal by searching the stable attractor solutions implying the late-time accelerating expansion phase of the universe.

  18. Coupling q-Deformed Dark Energy to Dark Matter

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2016-01-01

    Full Text Available We propose a novel coupled dark energy model which is assumed to occur as a q-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider the q-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupled q-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.

  19. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    Schrempp, L.

    2008-02-01

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  20. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  1. Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons

    OpenAIRE

    Hees, A.; Guéna, J.; Abgrall, M.; Bize, S.; Wolf, P.

    2016-01-01

    We use six years of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but pr...

  2. Dark energy and dark matter

    International Nuclear Information System (INIS)

    Comelli, D.; Pietroni, M.; Riotto, A.

    2003-01-01

    It is a puzzle why the densities of dark matter and dark energy are nearly equal today when they scale so differently during the expansion of the universe. This conundrum may be solved if there is a coupling between the two dark sectors. In this Letter we assume that dark matter is made of cold relics with masses depending exponentially on the scalar field associated to dark energy. Since the dynamics of the system is dominated by an attractor solution, the dark matter particle mass is forced to change with time as to ensure that the ratio between the energy densities of dark matter and dark energy become a constant at late times and one readily realizes that the present-day dark matter abundance is not very sensitive to its value when dark matter particles decouple from the thermal bath. We show that the dependence of the present abundance of cold dark matter on the parameters of the model differs drastically from the familiar results where no connection between dark energy and dark matter is present. In particular, we analyze the case in which the cold dark matter particle is the lightest supersymmetric particle

  3. Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons.

    Science.gov (United States)

    Hees, A; Guéna, J; Abgrall, M; Bize, S; Wolf, P

    2016-08-05

    We use 6 yrs of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions, and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but provide improved constraints on the coupling of the putative scalar field to standard matter. Our limits are complementary to previous results that were only sensitive to the fine structure constant and improve them by more than an order of magnitude when only a coupling to electromagnetism is assumed.

  4. Correspondence of f(R,∇R) Modified Gravity with Scalar Field Models

    International Nuclear Information System (INIS)

    Jawad, Abdul; Debnath, Ujjal

    2014-01-01

    This paper is devoted to study the scalar field dark energy models by taking its different aspects in the framework of f(R,∇R) gravity. We consider flat FRW universe to construct the equation of state parameter governed by f(R,∇R) gravity. The stability of the model is discussed with the help of squared speed of sound parameter. It is found that models show quintessence behavior of the universe in stable as well as unstable modes. We also develop the correspondence of f(R,∇R) model with some scalar field dark energy models like quintessence, tachyonic field, k-essence, dilaton, hessence, and DBI-essence. The nature of scalar fields and corresponding scalar potentials is being analyzed in f(R,∇R) gravity graphically which show consistency with the present day observations about accelerated phenomenon

  5. Static Universe model existing due to the matter-dark energy coupling

    International Nuclear Information System (INIS)

    Cabo Bizet, A.; Cabo Montes de Oca, A.

    2007-08-01

    The work investigates a static, isotropic and almost homogeneous Universe containing a real scalar field modeling the Dark-Energy (quintaessence) interacting with pressureless matter. It is argued that the interaction between matter and the Dark Energy, is essential for the very existence of the considered solution. Assuming the possibility that Dark-Energy can be furnished by the Dilaton (a scalar field reflecting the condensation of string states with zero angular momentum) we fix the value of scalar field at the origin to the Planck scale. It became possible to fix the ratio of the amount of Dark Energy to matter energy, in the currently estimated value (0.7)/0.3 and also the observed magnitude of the Hubble constant. The small value of the mass for the scalar field chosen for fixing the above ratio and Hubble effect strength, results to be of the order of 10 -29 cm -1 , a small value which seems to be compatible with the zero mass of the Dilaton in the lowest approximations. (author)

  6. Inflation and dark energy arising from geometrical tachyons

    International Nuclear Information System (INIS)

    Panda, Sudhakar; Sami, M.; Tsujikawa, Shinji

    2006-01-01

    We study the motion of a Bogomol'nyi-Prasad-Sommerfield D3-brane in the NS5-brane ring background. The radion field becomes tachyonic in this geometrical setup. We investigate the potential of this geometrical tachyon in the cosmological scenario for inflation as well as dark energy. We evaluate the spectra of scalar and tensor perturbations generated during tachyon inflation and show that this model is compatible with recent observations of cosmic microwave background due to an extra freedom of the number of NS5-branes. It is not possible to explain the origin of both inflation and dark energy by using a single tachyon field, since the energy density at the potential minimum is not negligibly small because of the amplitude of scalar perturbations set by cosmic microwave background anisotropies. However, the geometrical tachyon can account for dark energy when the number of NS5-branes is large, provided that inflation is realized by another scalar field

  7. Dark energy and dark matter in galaxy halos

    International Nuclear Information System (INIS)

    Tetradis, N.

    2006-01-01

    We consider the possibility that the dark matter is coupled through its mass to a scalar field associated with the dark energy of the Universe. In order for such a field to play a role at the present cosmological distances, it must be effectively massless at galactic length scales. We discuss the effect of the field on the distribution of dark matter in galaxy halos. We show that the profile of the distribution outside the galaxy core remains largely unaffected and the approximately flat rotation curves persist. The dispersion of the dark matter velocity is enhanced by a potentially large factor relative to the case of zero coupling between dark energy and dark matter. The counting rates in terrestrial dark matter detectors are similarly enhanced. Existing bounds on the properties of dark matter candidates can be extended to the coupled case, by taking into account the enhancement factor

  8. Ultraviolet complete dark energy model

    Science.gov (United States)

    Narain, Gaurav; Li, Tianjun

    2018-04-01

    We consider a local phenomenological model to explain a nonlocal gravity scenario which has been proposed to address dark energy issues. This nonlocal gravity action has been seen to fit the data as well as Λ -CDM and therefore demands a more fundamental local treatment. The induced gravity model coupled with higher-derivative gravity is exploited for this proposal, as this perturbatively renormalizable model has a well-defined ultraviolet (UV) description where ghosts are evaded. We consider a generalized version of this model where we consider two coupled scalar fields and their nonminimal coupling with gravity. In this simple model, one of the scalar field acquires a vacuum expectation value (VEV), thereby inducing a mass for one of the scalar fields and generating Newton's constant. The induced mass however is seen to be always above the running energy scale thereby leading to its decoupling. The residual theory after decoupling becomes a platform for driving the accelerated expansion under certain conditions. Integrating out the residual scalar generates a nonlocal gravity action. The leading term of which is the nonlocal gravity action used to fit the data of dark energy.

  9. Update on scalar singlet dark matter

    NARCIS (Netherlands)

    Cline, J.M.; Scott, P.; Kainulainen, K.; Weniger, C.

    2013-01-01

    One of the simplest models of dark matter is where a scalar singlet field S comprises some or all of the dark matter and interacts with the standard model through an vertical bar H vertical bar S-2(2) coupling to the Higgs boson. We update the present limits on the model from LHC searches for

  10. A Unified Model of Phantom Energy and Dark Matter

    Directory of Open Access Journals (Sweden)

    Douglas Singleton

    2008-01-01

    Full Text Available To explain the acceleration of the cosmological expansion researchers have considered an unusual form of mass-energy generically called dark energy. Dark energy has a ratio of pressure over mass density which obeys $w=p/ ho <-1/3$. This form of mass-energy leads to accelerated expansion. An extreme form of dark energy, called phantom energy, has been proposed which has $w=p/ ho <-1$. This possibility is favored by the observational data. The simplest model for phantom energy involves the introduction of a scalar field with a negative kinetic energy term. Here we show that theories based on graded Lie algebras naturally have such a negative kinetic energy and thus give a model for phantom energy in a less ad hoc manner. We find that the model also contains ordinary scalar fields and anti-commuting (Grassmann vector fields which act as a form of two component dark matter. Thus from a gauge theory based on a graded algebra we naturally obtained both phantom energy and dark matter.

  11. Dark energy with a gradient coupling to the dark matter fluid: cosmological dynamics and structure formation

    Science.gov (United States)

    Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola

    2018-01-01

    We consider scalar field models of dark energy interacting with dark matter through a coupling proportional to the contraction of the four-derivative of the scalar field with the four-velocity of the dark matter fluid. The coupling is realized at the Lagrangian level employing the formalism of Scalar-Fluid theories, which use a consistent Lagrangian approach for relativistic fluid to describe dark matter. This framework produces fully covariant field equations, from which we can derive unequivocal cosmological equations at both background and linear perturbations levels. The background evolution is analyzed in detail applying dynamical systems techniques, which allow us to find the complete asymptotic behavior of the universe given any set of model parameters and initial conditions. Furthermore we study linear cosmological perturbations investigating the growth of cosmic structures within the quasi-static approximation. We find that these interacting dark energy models give rise to interesting phenomenological dynamics, including late-time transitions from dark matter to dark energy domination, matter and accelerated scaling solutions and dynamical crossing of the phantom barrier. Moreover we obtain possible deviations from standard ΛCDM behavior at the linear perturbations level, which have an impact on the dynamics of structure formation and might provide characteristic observational signatures.

  12. Dark group: dark energy and dark matter

    International Nuclear Information System (INIS)

    Macorra, A. de la

    2004-01-01

    We study the possibility that a dark group, a gauge group with particles interacting with the standard model particles only via gravity, is responsible for containing the dark energy and dark matter required by present day observations. We show that it is indeed possible and we determine the constrains for the dark group. The non-perturbative effects generated by a strong gauge coupling constant can de determined and a inverse power law scalar potential IPL for the dark meson fields is generated parameterizing the dark energy. On the other hand it is the massive particles, e.g., dark baryons, of the dark gauge group that give the corresponding dark matter. The mass of the dark particles is of the order of the condensation scale Λ c and the temperature is smaller then the photon's temperature. The dark matter is of the warm matter type. The only parameters of the model are the number of particles of the dark group. The allowed values of the different parameters are severely restricted. The dark group energy density at Λ c must be Ω DGc ≤0.17 and the evolution and acceptable values of dark matter and dark energy leads to a constrain of Λ c and the IPL parameter n giving Λ c =O(1-10 3 ) eV and 0.28≤n≤1.04

  13. Generalised teleparallel quintom dark energy non-minimally coupled with the scalar torsion and a boundary term

    Science.gov (United States)

    Bahamonde, Sebastian; Marciu, Mihai; Rudra, Prabir

    2018-04-01

    Within this work, we propose a new generalised quintom dark energy model in the teleparallel alternative of general relativity theory, by considering a non-minimal coupling between the scalar fields of a quintom model with the scalar torsion component T and the boundary term B. In the teleparallel alternative of general relativity theory, the boundary term represents the divergence of the torsion vector, B=2∇μTμ, and is related to the Ricci scalar R and the torsion scalar T, by the fundamental relation: R=‑T+B. We have investigated the dynamical properties of the present quintom scenario in the teleparallel alternative of general relativity theory by performing a dynamical system analysis in the case of decomposable exponential potentials. The study analysed the structure of the phase space, revealing the fundamental dynamical effects of the scalar torsion and boundary couplings in the case of a more general quintom scenario. Additionally, a numerical approach to the model is presented to analyse the cosmological evolution of the system.

  14. Comparison between two scalar field models using rotation curves of spiral galaxies

    Science.gov (United States)

    Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh

    2018-04-01

    Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.

  15. Quasistationary solutions of scalar fields around accreting black holes

    Science.gov (United States)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.

    2016-08-01

    Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.

  16. Priors on the effective dark energy equation of state in scalar-tensor theories

    Science.gov (United States)

    Raveri, Marco; Bull, Philip; Silvestri, Alessandra; Pogosian, Levon

    2017-10-01

    Constraining the dark energy (DE) equation of state, wDE, is one of the primary science goals of ongoing and future cosmological surveys. In practice, with imperfect data and incomplete redshift coverage, this requires making assumptions about the evolution of wDE with redshift z . These assumptions can be manifested in a choice of a specific parametric form, which can potentially bias the outcome, or else one can reconstruct wDE(z ) nonparametrically, by specifying a prior covariance matrix that correlates values of wDE at different redshifts. In this work, we derive the theoretical prior covariance for the effective DE equation of state predicted by general scalar-tensor theories with second order equations of motion (Horndeski theories). This is achieved by generating a large ensemble of possible scalar-tensor theories using a Monte Carlo methodology, including the application of physical viability conditions. We also separately consider the special subcase of the minimally coupled scalar field, or quintessence. The prior shows a preference for tracking behaviors in the most general case. Given the covariance matrix, theoretical priors on parameters of any specific parametrization of wDE(z ) can also be readily derived by projection.

  17. Late forming dark matter in theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Das, Subinoy; Weiner, Neal

    2011-01-01

    We study the possibility of late forming dark matter, where a scalar field, previously trapped in a metastable state by thermal or finite density effects, goes through a phase transition near the era matter-radiation equality and begins to oscillate about its true minimum. Such a theory is motivated generally if the dark energy is of a similar form, but has not yet made the transition to dark matter, and, in particular, arises automatically in recently considered theories of neutrino dark energy. If such a field comprises the present dark matter, the matter power spectrum typically shows a sharp break at small, presently nonlinear scales, below which power is highly suppressed and previously contained acoustic oscillations. If, instead, such a field forms a subdominant component of the total dark matter, such acoustic oscillations may imprint themselves in the linear regime.

  18. Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies

    CERN Document Server

    D'Amico, Guido; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.

  19. Dark energy observational evidence and theoretical models

    CERN Document Server

    Novosyadlyj, B; Shtanov, Yu; Zhuk, A

    2013-01-01

    The book elucidates the current state of the dark energy problem and presents the results of the authors, who work in this area. It describes the observational evidence for the existence of dark energy, the methods and results of constraining of its parameters, modeling of dark energy by scalar fields, the space-times with extra spatial dimensions, especially Kaluza---Klein models, the braneworld models with a single extra dimension as well as the problems of positive definition of gravitational energy in General Relativity, energy conditions and consequences of their violation in the presence of dark energy. This monograph is intended for science professionals, educators and graduate students, specializing in general relativity, cosmology, field theory and particle physics.

  20. Dynamics of Interacting Tachyonic Teleparallel Dark Energy

    International Nuclear Information System (INIS)

    Banijamali, Ali

    2014-01-01

    We consider a tachyon scalar field which is nonminimally coupled to gravity in the framework of teleparallel gravity. We analyze the phase-space of the model, known as tachyonic teleparallel dark energy, in the presence of an interaction between dark energy and background matter. We find that although there exist some late-time accelerated attractor solutions, there is no scaling attractor. So, unfortunately interacting tachyonic teleparallel dark energy cannot alleviate the coincidence problem.

  1. Metastable dark energy

    Directory of Open Access Journals (Sweden)

    Ricardo G. Landim

    2017-01-01

    Full Text Available We build a model of metastable dark energy, in which the observed vacuum energy is the value of the scalar potential at the false vacuum. The scalar potential is given by a sum of even self-interactions up to order six. The deviation from the Minkowski vacuum is due to a term suppressed by the Planck scale. The decay time of the metastable vacuum can easily accommodate a mean life time compatible with the age of the universe. The metastable dark energy is also embedded into a model with SU(2R symmetry. The dark energy doublet and the dark matter doublet naturally interact with each other. A three-body decay of the dark energy particle into (cold and warm dark matter can be as long as large fraction of the age of the universe, if the mediator is massive enough, the lower bound being at intermediate energy level some orders below the grand unification scale. Such a decay shows a different form of interaction between dark matter and dark energy, and the model opens a new window to investigate the dark sector from the point-of-view of particle physics.

  2. Minimally coupled scalar field cosmology in anisotropic ...

    Indian Academy of Sciences (India)

    2017-01-03

    Jan 3, 2017 ... So far, a large class of scalar field dark energy mod- els have been ... gains a lot of interest, under the light of the recently announced Planck Probe ...... Figure 1. wm vs. t for c2 = 1, V0 = 1 and some values of λ and α. Figure 2.

  3. R2 dark energy in the laboratory

    Science.gov (United States)

    Brax, Philippe; Valageas, Patrick; Vanhove, Pierre

    2018-05-01

    We analyze the role, on large cosmological scales and laboratory experiments, of the leading curvature squared contributions to the low-energy effective action of gravity. We argue for a natural relationship c0λ2≃1 at low energy between the R2 coefficients c0 of the Ricci scalar squared term in this expansion and the dark energy scale Λ =(λ MPl)4 in four-dimensional Planck mass units. We show how the compatibility between the acceleration of the expansion rate of the Universe, local tests of gravity and the quantum stability of the model all converge to select such a relationship up to a coefficient which should be determined experimentally. When embedding this low-energy theory of gravity into candidates for its ultraviolet completion, we find that the proposed relationship is guaranteed in string-inspired supergravity models with modulus stabilization and supersymmetry breaking leading to de Sitter compactifications. In this case, the scalar degree of freedom of R2 gravity is associated to a volume modulus. Once written in terms of a scalar-tensor theory, the effective theory corresponds to a massive scalar field coupled with the universal strength β =1 /√{6 } to the matter stress-energy tensor. When the relationship c0λ2≃1 is realized, we find that on astrophysical scales and in cosmology the scalar field is ultralocal and therefore no effect arises on such large scales. On the other hand, the scalar field mass is tightly constrained by the nonobservation of fifth forces in torsion pendulum experiments such as Eöt-Wash. It turns out that the observation of the dark energy scale in cosmology implies that the scalar field could be detectable by fifth-force experiments in the near future.

  4. Unified dark energy and dust dark matter dual to quadratic purely kinetic K-essence

    International Nuclear Information System (INIS)

    Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana

    2016-01-01

    We consider a modified gravity plus single scalar-field model, where the scalar Lagrangian couples symmetrically both to the standard Riemannian volume-form (spacetime integration measure density) given by the square root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume-form in terms of an auxiliary maximal-rank antisymmetric tensor gauge field. As shown in a previous paper, the pertinent scalar-field dynamics provides an exact unified description of both dark energy via dynamical generation of a cosmological constant, and dark matter as a ''dust'' fluid with geodesic flow as a result of a hidden Noether symmetry. Here we extend the discussion by considering a non-trivial modification of the purely gravitational action in the form of f(R) = R -αR 2 generalized gravity. Upon deriving the corresponding ''Einstein-frame'' effective action of the latter modified gravity-scalar-field theory we find explicit duality (in the sense of weak versus strong coupling) between the original model of unified dynamical dark energy and dust fluid dark matter, on one hand, and a specific quadratic purely kinetic ''k-essence'' gravity-matter model with special dependence of its coupling constants on only two independent parameters, on the other hand. The canonical Hamiltonian treatment and Wheeler-DeWitt quantization of the dual purely kinetic ''k-essence'' gravity-matter model is also briefly discussed. (orig.)

  5. Growth rate in the dynamical dark energy models

    International Nuclear Information System (INIS)

    Avsajanishvili, Olga; Arkhipova, Natalia A.; Samushia, Lado; Kahniashvili, Tina

    2014-01-01

    Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter α that describes the steepness of the scalar field potential. (orig.)

  6. Growth rate in the dynamical dark energy models.

    Science.gov (United States)

    Avsajanishvili, Olga; Arkhipova, Natalia A; Samushia, Lado; Kahniashvili, Tina

    Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter [Formula: see text] that describes the steepness of the scalar field potential.

  7. Kinetic k-essence ghost dark energy model

    International Nuclear Information System (INIS)

    Rozas-Fernández, Alberto

    2012-01-01

    A ghost dark energy model has been recently put forward to explain the current accelerated expansion of the Universe. In this model, the energy density of ghost dark energy, which comes from the Veneziano ghost of QCD, is proportional to the Hubble parameter, ρ D =αH. Here α is a constant of order Λ QCD 3 where Λ QCD ∼100 MeV is the QCD mass scale. We consider a connection between ghost dark energy with/without interaction between the components of the dark sector and the kinetic k-essence field. It is shown that the cosmological evolution of the ghost dark energy dominated Universe can be completely described a kinetic k-essence scalar field. We reconstruct the kinetic k-essence function F(X) in a flat Friedmann-Robertson-Walker Universe according to the evolution of ghost dark energy density.

  8. Scalar dark matter in the B−L model

    International Nuclear Information System (INIS)

    Rodejohann, Werner; Yaguna, Carlos E.

    2015-01-01

    The U(1) B−L extension of the Standard Model requires the existence of right-handed neutrinos and naturally realizes the seesaw mechanism of neutrino mass generation. We study the possibility of explaining the dark matter in this model with an additional scalar field, ϕ DM , that is a singlet of the Standard Model but charged under U(1) B−L . An advantage of this scenario is that the stability of ϕ DM can be guaranteed by appropriately choosing its B−L charge, without the need of an extra ad hoc discrete symmetry. We investigate in detail the dark matter phenomenology of this model. We show that the observed dark matter density can be obtained via gauge or scalar interactions, and that semi-annihilations could play an important role in the latter case. The regions consistent with the dark matter density are determined in each instance and the prospects for detection in future experiments are analyzed. If dark matter annihilations are controlled by the B−L gauge interaction, the mass of the dark matter particle should lie below 5 TeV and its direct detection cross section can be easily probed by XENON1T; if instead they are controlled by scalar interactions, the dark matter mass can be much larger and the detection prospects are less certain. Finally, we show that this scenario can be readily extended to accommodate multiple dark matter particles

  9. Topology and dark energy: testing gravity in voids.

    Science.gov (United States)

    Spolyar, Douglas; Sahlén, Martin; Silk, Joe

    2013-12-13

    Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field--here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state of DE which is density and scale dependent. Tension between type Ia supernovae and Planck could be reduced. In voids, the scalar field dramatically alters the equation of state of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.

  10. A Unified Model of Phantom Energy and Dark Matter

    Science.gov (United States)

    Chaves, Max; Singleton, Douglas

    2008-01-01

    To explain the acceleration of the cosmological expansion researchers have considered an unusual form of mass-energy generically called dark energy. Dark energy has a ratio of pressure over mass density which obeys w = p/ρ theories based on graded Lie algebras naturally have such a negative kinetic energy and thus give a model for phantom energy in a less ad hoc manner. We find that the model also contains ordinary scalar fields and anti-commuting (Grassmann) vector fields which act as a form of two component dark matter. Thus from a gauge theory based o! n a graded algebra we naturally obtained both phantom energy and dark matter.

  11. Assessing the viability of successful reconstruction of the dynamics of dark energy using varying fundamental couplings

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Losano, L., E-mail: losano@fisica.ufpb.br [Departamento de Fisica, Universidade Federal da Paraiba, 58051-970 Joao Pessoa, Paraiba (Brazil); Centro de Fisica do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Menezes, R., E-mail: rmenezes@dce.ufpb.br [Departamento de Ciencias Exatas, Universidade Federal da Paraiba, 58297-000 Rio Tinto, PB (Brazil); Departamento de Fisica, Universidade Federal de Campina Grande, 58109-970 Campina Grande, Paraiba (Brazil); Oliveira, J.C.R.E., E-mail: jespain@fe.up.pt [Centro de Fisica do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Departamento de Engenharia Fisica da Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2012-10-31

    We assess the viability of successful reconstruction of the evolution of the dark energy equation of state using varying fundamental couplings, such as the fine structure constant or the proton-to-electron mass ratio. We show that the same evolution of the dark energy equation of state parameter with cosmic time may be associated with arbitrary variations of the fundamental couplings. Various examples of models with the same (different) background evolution and different (the same) time variation of fundamental couplings are studied in the Letter. Although we demonstrate that, for a broad family of models, it is possible to redefine the scalar field in such a way that its dynamics is that of a standard quintessence scalar field, in general such redefinition leads to the breakdown of the linear relation between the scalar field and the variation of fundamental couplings. This implies that the assumption of a linear coupling is not sufficient to guarantee a successful reconstruction of the dark energy dynamics and consequently additional model dependent assumptions about the scalar field responsible for the dark energy need to be made.

  12. Scalar fields: at the threshold of astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, F S [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo. Edificio C-3, Cd. Universitaria, A. P. 2-82, 58040 Morelia, Michoacan (Mexico)

    2007-11-15

    In this manuscript the potential existence of self-gravitating complex scalar field configurations is explored. Stable boson stars are presented as potential black hole candidates, and the strengths and weaknesses of such idea are described. On the other hand, Newtonian boson systems are also studied because they are the bricks of the structure within the scalar field dark matter model or the Bose condensate dark matter; the collapse of density fluctuations is described; also the interaction between two structures is shown to allow solitonic behavior, which in turn allows the formation of ripples of dark matter. The processes related to potential observations are also discussed.

  13. Leptogenesis, Dark Energy, Dark Matter and the neutrinos

    International Nuclear Information System (INIS)

    Sarkar, Utpal

    2007-01-01

    In this review we discuss how the models of neutrino masses can accommodate solutions to the problem of matter-antimatter asymmetry in the universe, dark energy or cosmological constant problem and dark matter candidates. The matter-antimatter asymmetry is explained by leptogenesis, originating from the lepton number violation associated with the neutrino masses. The dark energy problem is correlated with a mass varying neutrinos, which could originate from a pseudo-Nambu-Goldstone boson. In some radiative models of neutrino masses, there exists a Higgs doublet that does not acquire any vacuum expectation value. This field could be inert and the lightest inert particle could then be a dark matter candidate. We reviewed these scenarios in connection with models of neutrino masses with right-handed neutrinos and with triplet Higgs scalars

  14. Generalized second law of thermodynamics for non-canonical scalar field model with corrected-entropy

    International Nuclear Information System (INIS)

    Das, Sudipta; Mamon, Abdulla Al; Debnath, Ujjal

    2015-01-01

    In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. For this purpose, we have assumed two types of horizons viz apparent horizon and event horizon for the universe and using first law of thermodynamics, we have examined the validity of GSL on both apparent and event horizons. Next, we have considered two types of entropy-corrections on apparent and event horizons. Using the modified area law, we have examined the validity of GSL of thermodynamics on apparent and event horizons under some restrictions of model parameters. (orig.)

  15. Imperfect dark energy from kinetic gravity braiding

    Energy Technology Data Exchange (ETDEWEB)

    Deffayet, Cédric [AstroParticule and Cosmologie, UMR7164-CNRS, Université Denis Diderot-Paris 7, CEA, Observatoire de Paris, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Pujolàs, Oriol [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Sawicki, Ignacy; Vikman, Alexander, E-mail: deffayet@iap.fr, E-mail: oriol.pujolas@cern.ch, E-mail: ignacy.sawicki@nyu.edu, E-mail: alexander.vikman@nyu.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2010-10-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.

  16. Imperfect dark energy from kinetic gravity braiding

    International Nuclear Information System (INIS)

    Deffayet, Cédric; Pujolàs, Oriol; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime

  17. Two component WIMP-FImP dark matter model with singlet fermion, scalar and pseudo scalar

    Energy Technology Data Exchange (ETDEWEB)

    Dutta Banik, Amit; Pandey, Madhurima; Majumdar, Debasish [Saha Institute of Nuclear Physics, HBNI, Astroparticle Physics and Cosmology Division, Kolkata (India); Biswas, Anirban [Harish Chandra Research Institute, Allahabad (India)

    2017-10-15

    We explore a two component dark matter model with a fermion and a scalar. In this scenario the Standard Model (SM) is extended by a fermion, a scalar and an additional pseudo scalar. The fermionic component is assumed to have a global U(1){sub DM} and interacts with the pseudo scalar via Yukawa interaction while a Z{sub 2} symmetry is imposed on the other component - the scalar. These ensure the stability of both dark matter components. Although the Lagrangian of the present model is CP conserving, the CP symmetry breaks spontaneously when the pseudo scalar acquires a vacuum expectation value (VEV). The scalar component of the dark matter in the present model also develops a VEV on spontaneous breaking of the Z{sub 2} symmetry. Thus the various interactions of the dark sector and the SM sector occur through the mixing of the SM like Higgs boson, the pseudo scalar Higgs like boson and the singlet scalar boson. We show that the observed gamma ray excess from the Galactic Centre as well as the 3.55 keV X-ray line from Perseus, Andromeda etc. can be simultaneously explained in the present two component dark matter model and the dark matter self interaction is found to be an order of magnitude smaller than the upper limit estimated from the observational results. (orig.)

  18. Dark energy and the fifth force problem

    International Nuclear Information System (INIS)

    Guendelman, E I; Kaganovich, A B

    2008-01-01

    Generally accepted explanation of the observed accelerated expansion of the present day universe is based on the idea of the existence of a new entity called dark energy. Resolution of the 'cosmic coincidence' problem implies that dark energy and dark matter follow the same scaling solution during a significant period of evolution. This becomes possible only if there exists a coupling of the dark energy (modeled by a light scalar field) to dark matter. This conclusion following from the observed cosmological data serves for an additional evidence of well-known theoretical predictions of a light scalar coupled to matter. However, according to the results of the fifth force experiments, a similar coupling of the light scalar field to visible (baryonic) matter is strongly suppressed. After a brief review of some models intended for resolution of this 'fifth force problem', we present a model with spontaneously broken scale invariance where the strength of the dilaton-to-matter coupling appears to be dependent on the matter density. This is realized without any special assumptions in the underlying action intended for obtaining such a dependence. As a result the dilaton-to-matter coupling constant measured under conditions of all known fifth force experiments turns out automatically (without any sort of fine tuning) to be so small that, at least in the near future, experiments will not be able to reveal it. On the other hand, if the matter is very diluted (such as galaxy halo dark matter) then its coupling to the dilaton may not be weak. However, the latter situation is realized under conditions not compatible with the design of the fifth force experiments

  19. Inflation and dark energy from three-forms

    International Nuclear Information System (INIS)

    Koivisto, Tomi S.; Nunes, Nelson J.

    2009-01-01

    Three-forms can give rise to viable cosmological scenarios of inflation and dark energy with potentially observable signatures distinct from standard single scalar field models. In this study, the background dynamics and linear perturbations of self-interacting three-form cosmology are investigated. The phase space of cosmological solutions possesses (super)-inflating attractors and saddle points, which can describe three-form driven inflation or dark energy. The quantum generation and the classical evolution of perturbations is considered. The scalar and tensor spectra from a three-form inflation and the impact from the presence of a three-form on matter perturbations are computed. Stability properties and equivalence of the model with alternative formulations are discussed.

  20. Cosmological evolution of interacting dark energy in Lorentz violation

    International Nuclear Information System (INIS)

    Zen, Freddy P.; Gunara, Bobby E.; Triyanta; Arianto; Purwanto, A.

    2009-01-01

    The cosmological evolution of an interacting scalar-field model in which the scalar field interacts with dark matter, radiation, and baryons via Lorentz violation is investigated. We propose a model of interaction through the effective coupling, anti β. Using dynamical system analysis, we study the linear dynamics of an interacting model and show that the dynamics of critical points are completely controlled by two parameters. Some results can be mentioned as follows. Firstly, the sequence of radiation, the dark matter, and the scalar-field dark energy exist and baryons are subdominant. Secondly, the model also allows for the possibility of having a universe in the phantom phase with constant potential. Thirdly, the effective gravitational constant varies with respect to time through anti β. In particular, we consider the simple case where anti β has a quadratic form and has a good agreement with the modified ΛCDM and quintessence models. Finally, we also calculate the first post-Newtonian parameters for our model. (orig.)

  1. Perturbations of ultralight vector field dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Cembranos, J.A.R.; Maroto, A.L.; Jareño, S.J. Núñez [Departamento de Física Teórica I, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2017-02-13

    We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with k{sup 2}≪Hma, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with k{sup 2}≫Hma, we get a wave-like behaviour in which the sound speed is non-vanishing and of order c{sub s}{sup 2}≃k{sup 2}/m{sup 2}a{sup 2}. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we find that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order (Φ−Ψ)/Φ∼c{sub s}{sup 2}. Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also h/Φ∼c{sub s}{sup 2}. This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.

  2. Status of the scalar singlet dark matter model

    Science.gov (United States)

    Athron, Peter; Balázs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Kahlhoefer, Felix; Krislock, Abram; Kvellestad, Anders; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin

    2017-08-01

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z_2 symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ˜ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.

  3. Induced gravity and the attractor dynamics of dark energy/dark matter

    International Nuclear Information System (INIS)

    Cervantes-Cota, Jorge L.; Putter, Roland de; Linder, Eric V.

    2010-01-01

    Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity

  4. Dark matter and electroweak phase transition in the mixed scalar dark matter model

    Science.gov (United States)

    Liu, Xuewen; Bian, Ligong

    2018-03-01

    We study the electroweak phase transition in the framework of the scalar singlet-doublet mixed dark matter model, in which the particle dark matter candidate is the lightest neutral Higgs that comprises the C P -even component of the inert doublet and a singlet scalar. The dark matter can be dominated by the inert doublet or singlet scalar depending on the mixing. We present several benchmark models to investigate the two situations after imposing several theoretical and experimental constraints. An additional singlet scalar and the inert doublet drive the electroweak phase transition to be strongly first order. A strong first-order electroweak phase transition and a viable dark matter candidate can be accomplished in two benchmark models simultaneously, for which a proper mass splitting among the neutral and charged Higgs masses is needed.

  5. Search for scalar dark energy in $t\\bar{t}+E_{T}^{\\text{miss}}$ and mono-jet final states with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2018-01-01

    This note presents the first collider search for light scalar particles that could contribute to the accelerating expansion of the observable universe. The results are based on a re-interpretation of a search for top super-partners using the $t\\bar{t}+E_{T}^{\\text{miss}}$ signature and a search for dark matter using the mono-jet signature. The analysis uses a dataset of LHC $pp$ collision events collected with the ATLAS detector at $\\sqrt{s}=13$ TeV corresponding to an integrated luminosity of 36.1~fb$^{-1}$. No significant excess over the predicted background is observed. The search allows to set the most stringent constraints on the suppression scale of conformal and disformal couplings of dark energy to standard model matter in the context of an effective field theory of dark energy.

  6. Thermal dark matter co-annihilating with a strongly interacting scalar

    Science.gov (United States)

    Biondini, S.; Laine, M.

    2018-04-01

    Recently many investigations have considered Majorana dark matter co-annihilating with bound states formed by a strongly interacting scalar field. However only the gluon radiation contribution to bound state formation and dissociation, which at high temperatures is subleading to soft 2 → 2 scatterings, has been included. Making use of a non-relativistic effective theory framework and solving a plasma-modified Schrödinger equation, we address the effect of soft 2 → 2 scatterings as well as the thermal dissociation of bound states. We argue that the mass splitting between the Majorana and scalar field has in general both a lower and an upper bound, and that the dark matter mass scale can be pushed at least up to 5…6TeV.

  7. Symmetron dark energy in laboratory experiments.

    Science.gov (United States)

    Upadhye, Amol

    2013-01-18

    The symmetron scalar field is a matter-coupled dark energy candidate which effectively decouples from matter in high-density regions through a symmetry restoration. We consider a previously unexplored regime, in which the vacuum mass μ~2.4×10(-3) eV of the symmetron is near the dark energy scale, and the matter coupling parameter M~1 TeV is just beyond standard model energies. Such a field will give rise to a fifth force at submillimeter distances which can be probed by short-range gravity experiments. We show that a torsion pendulum experiment such as Eöt-Wash can exclude symmetrons in this regime for all self-couplings λ is < or approximately equal to 7.5.

  8. Dark matter and dark energy from the solution of the strong CP problem.

    Science.gov (United States)

    Mainini, Roberto; Bonometto, Silvio A

    2004-09-17

    The Peccei-Quinn (PQ) solution of the strong CP problem requires the existence of axions, which are viable candidates for dark matter. If the Nambu-Goldstone potential of the PQ model is replaced by a potential V(|Phi|) admitting a tracker solution, the scalar field |Phi| can account for dark energy, while the phase of Phi yields axion dark matter. If V is a supergravity (SUGRA) potential, the model essentially depends on a single parameter, the energy scale Lambda. Once we set Lambda approximately equal to 10(10) GeV at the quark-hadron transition, |Phi| naturally passes through values suitable to solve the strong CP problem, later growing to values providing fair amounts of dark matter and dark energy.

  9. Leptonic Dark Matter with Scalar Dilepton Mediator

    OpenAIRE

    Ma, Ernest

    2018-01-01

    A simple and elegant mechanism is proposed to resolve the problem of having a light scalar mediator for self-interacting dark matter and the resulting disruption to the cosmic microwave background (CMB) at late times by the former's enhanced Sommerfeld production and decay. The crucial idea is to have Dirac neutrinos with the conservation of U(1) lepton number extended to the dark sector. The simplest scenario consists of scalar or fermion dark matter with unit lepton number accompanied by a ...

  10. Is the cosmological dark sector better modeled by a generalized Chaplygin gas or by a scalar field?

    Energy Technology Data Exchange (ETDEWEB)

    Campo, Sergio del; Herrera, Ramon [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Fabris, Julio C. [Universidade Federal do Espirito Santo, Departamento de Fisica, Vitoria, Espirito Santo (Brazil); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Zimdahl, Winfried [Universidade Federal do Espirito Santo, Departamento de Fisica, Vitoria, Espirito Santo (Brazil)

    2017-07-15

    Both scalar fields and (generalized) Chaplygin gases have been widely used separately to characterize the dark sector of the universe. Here we investigate the cosmological background dynamics for a mixture of both these components and quantify the fractional abundances that are admitted by observational data from supernovae of type Ia and from the evolution of the Hubble rate. Moreover, we study how the growth rate of (baryonic) matter perturbations is affected by the dark-sector perturbations. (orig.)

  11. Mono-jet signatures of gluphilic scalar dark matter

    Directory of Open Access Journals (Sweden)

    Rohini M. Godbole

    2017-09-01

    Full Text Available A gluphilic scalar dark matter (GSDM model has recently been proposed as an interesting vision for WIMP dark matter communicating dominantly with the Standard Model via gluons. We discuss the collider signature of a hard jet recoiling against missing momentum (“mono-jet” in such a construction, whose leading contribution is at one-loop. We compare the full one-loop computation with an effective field theory (EFT treatment, and find (as expected that EFT does not accurately describe regions of parameter space where mass of the colored mediator particles are comparable to the experimental cuts on the missing energy. We determine bounds (for several choices of SU(3 representation of the mediator from the s=8 TeV data, and show the expected reach of the s=13 TeV LHC and a future 100 TeV pp collider to constrain or discover GSDM models.

  12. Modified Holographic Ricci Dark Energy in Chameleon Brans–Dicke Cosmology and Its Thermodynamic Consequence

    International Nuclear Information System (INIS)

    Jawad, A.; Chattopadhyay, S.; Bhattacharya, S.; Pasqua, A.

    2015-01-01

    The objective of this paper is to discuss the Chameleon Brans–Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n. (paper)

  13. Bayesian evidences for dark energy models in light of current observational data

    Science.gov (United States)

    Lonappan, Anto. I.; Kumar, Sumit; Ruchika; Dinda, Bikash R.; Sen, Anjan A.

    2018-02-01

    We do a comprehensive study of the Bayesian evidences for a large number of dark energy models using a combination of latest cosmological data from SNIa, CMB, BAO, strong lensing time delay, growth measurements, measurements of Hubble parameter at different redshifts and measurements of angular diameter distance by Megamaser Cosmology Project. We consider a variety of scalar field models with different potentials as well as different parametrizations for the dark energy equation of state. Among 21 models that we consider in our study, we do not find strong evidences in favor of any evolving dark energy model compared to Λ CDM . For the evolving dark energy models, we show that purely nonphantom models have much better evidences compared to those models that allow both phantom and nonphantom behaviors. Canonical scalar field with exponential and tachyon field with square potential have highest evidences among all the models considered in this work. We also show that a combination of low redshift measurements decisively favors an accelerating Λ CDM model compared to a nonaccelerating power law model.

  14. Dust of dark energy

    International Nuclear Information System (INIS)

    Lim, Eugene A.; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a novel class of field theories where energy always flows along timelike geodesics, mimicking in that respect dust, yet which possess non-zero pressure. This theory comprises two scalar fields, one of which is a Lagrange multiplier enforcing a constraint between the other's field value and derivative. We show that this system possesses no wave-like modes but retains a single dynamical degree of freedom. Thus, the sound speed is always identically zero on all backgrounds. In particular, cosmological perturbations reproduce the standard behaviour for hydrodynamics in the limit of vanishing sound speed. Using all these properties we propose a model unifying Dark Matter and Dark Energy in a single degree of freedom. In a certain limit this model exactly reproduces the evolution history of ΛCDM, while deviations away from the standard expansion history produce a potentially measurable difference in the evolution of structure

  15. Scalar dark matter: real vs complex

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hongyan; Zheng, Sibo [Department of Physics, Chongqing University,Chongqing 401331 (China)

    2017-03-27

    We update the parameter spaces for both a real and complex scalar dark matter via the Higgs portal. In the light of constraints arising from the LUX 2016 data, the latest Higgs invisible decay and the gamma ray spectrum, the dark matter resonant mass region is further restricted to a narrow window between 54.9−62.3 GeV in both cases, and its large mass region is excluded until 834 GeV and 3473 GeV for the real and complex scalar, respectively.

  16. Scalar dark matter: real vs complex

    International Nuclear Information System (INIS)

    Wu, Hongyan; Zheng, Sibo

    2017-01-01

    We update the parameter spaces for both a real and complex scalar dark matter via the Higgs portal. In the light of constraints arising from the LUX 2016 data, the latest Higgs invisible decay and the gamma ray spectrum, the dark matter resonant mass region is further restricted to a narrow window between 54.9−62.3 GeV in both cases, and its large mass region is excluded until 834 GeV and 3473 GeV for the real and complex scalar, respectively.

  17. Energy momentum tensor in theories with scalar field

    International Nuclear Information System (INIS)

    Joglekar, S.D.

    1992-01-01

    The renormalization of energy momentum tensor in theories with scalar fields and two coupling constants is considered. The need for addition of an improvement term is shown. Two possible forms for the improvement term are: (i) One in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be derived from an action that is a finite function of bare quantities), (ii) One in which the improvement coefficient is a finite quantity, i.e. finite function of the renormalized quantities are considered. Four possible model of such theories are (i) Scalar Q.E.D. (ii) Non-Abelian theory with scalars, (iii) Yukawa theory, (iv) A model with two scalars. In all these theories a negative conclusion is established: neither forms for the improvement terms lead to a finite energy momentum tensor. Physically this means that when interaction with external gravity is incorporated in such a model, additional experimental input in the form of root mean square mass radius must be given to specify the theory completely, and the flat space parameters are insufficient. (author). 12 refs

  18. Neutrino dark energy. Revisiting the stability issue

    Energy Technology Data Exchange (ETDEWEB)

    Eggers Bjaelde, O.; Hannestad, S. [Aarhus Univ. (Denmark). Dept. of Physics and Astronomy; Brookfield, A.W. [Sheffield Univ. (United Kingdom). Dept. of Applied Mathematics and Dept. of Physics, Astro-Particle Theory and Cosmology Group; Van de Bruck, C. [Sheffield Univ. (United Kingdom). Dept. of Applied Mathematics, Astro-Particle Theory and Cosmology Group; Mota, D.F. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik]|[Institute of Theoretical Astrophysics, Oslo (Norway); Schrempp, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Tocchini-Valentini, D. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy

    2007-05-15

    A coupling between a light scalar field and neutrinos has been widely discussed as a mechanism for linking (time varying) neutrino masses and the present energy density and equation of state of dark energy. However, it has been pointed out that the viability of this scenario in the non-relativistic neutrino regime is threatened by the strong growth of hydrodynamic perturbations associated with a negative adiabatic sound speed squared. In this paper we revisit the stability issue in the framework of linear perturbation theory in a model independent way. The criterion for the stability of a model is translated into a constraint on the scalar-neutrino coupling, which depends on the ratio of the energy densities in neutrinos and cold dark matter. We illustrate our results by providing meaningful examples both for stable and unstable models. (orig.)

  19. Dark energy exponential potential models as curvature quintessence

    International Nuclear Information System (INIS)

    Capozziello, S; Cardone, V F; Piedipalumbo, E; Rubano, C

    2006-01-01

    It has been recently shown that, under some general conditions, it is always possible to find a fourth-order gravity theory capable of reproducing the same dynamics as a given dark energy model. Here, we discuss this approach for a dark energy model with a scalar field evolving under the action of an exponential potential. In the absence of matter, such a potential can be recovered from a fourth-order theory via a conformal transformation. Including the matter term, the function f(R) entering the generalized gravity Lagrangian can be reconstructed according to the dark energy model

  20. Status of the scalar singlet dark matter model

    Energy Technology Data Exchange (ETDEWEB)

    Athron, Peter; Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Bringmann, Torsten; Dal, Lars A.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Chrzaszcz, Marcin [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Jackson, Paul; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kahlhoefer, Felix [DESY, Hamburg (Germany); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); McKay, James; Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Mahmoudi, Farvah [Univ. Lyon, Univ. Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); CERN, Theoretical Physics Department, Geneva (Switzerland); Martinez, Gregory D. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Centre for Translational Data Science, Faculty of Engineering and Information Technologies, School of Physics, Sydney, NSW (Australia); Serra, Nicola [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Collaboration

    2017-08-15

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z{sub 2} symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ∝ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned. (orig.)

  1. Exploring parameter constraints on quintessential dark energy: The exponential model

    International Nuclear Information System (INIS)

    Bozek, Brandon; Abrahamse, Augusta; Albrecht, Andreas; Barnard, Michael

    2008-01-01

    We present an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their 'w 0 -w a ' parametrization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which cannot be distinguished from a cosmological constant at DETF 'Stage 2', and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3σ

  2. Impact of semi-annihilations on dark matter phenomenology - an example of ZN symmetric scalar dark matter

    International Nuclear Information System (INIS)

    Belanger, G.; Kannike, K.; Pukhov, A.; Raidal, M.

    2012-01-01

    We study the impact of semi-annihilations χχ ↔ χX; where χ is dark matter and X is any standard model particle, on dark matter phenomenology. We formulate scalar dark matter models with minimal field content that predict non-trivial dark matter phenomenology for different discrete Abelian symmetries Z N , N > 2, and contain semi-annihilation processes. We implement such an example model in micrOMEGAs and show that semi-annihilations modify the phenomenology of this type of models. (authors)

  3. The CHASE laboratory search for chameleon dark energy

    International Nuclear Information System (INIS)

    Steffen, Jason H.

    2010-01-01

    A scalar field is a favorite candidate for the particle responsible for dark energy. However, few theoretical means exist that can simultaneously explain the observed acceleration of the Universe and evade tests of gravity. The chameleon mechanism, whereby the properties of a particle depend upon the local environment, is one possible avenue. We present the results of the Chameleon Afterglow Search (CHASE) experiment, a laboratory probe for chameleon dark energy. CHASE marks a significant improvement other searches for chameleons both in terms of its sensitivity to the photon/chameleon coupling as well as its sensitivity to the classes of chameleon dark energy models and standard power-law models. Since chameleon dark energy is virtually indistinguishable from a cosmological constant, CHASE tests dark energy models in a manner not accessible to astronomical surveys.

  4. The CHASE laboratory search for chameleon dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason [Fermi National Accelerator Laboratory - Fermilab, P.O. Box 500, Batavia, IL 60510-5011 (United States)

    2010-07-01

    A scalar field is a favorite candidate for the particle responsible for dark energy. However, few theoretical means exist that can simultaneously explain the observed acceleration of the Universe and evade tests of gravity. The chameleon mechanism, whereby the properties of a particle depend upon the local environment, is one possible avenue. I present the results of the Chameleon Afterglow Search (CHASE) experiment, a laboratory probe for chameleon dark energy. CHASE marks a significant improvement over other searches for chameleons both in terms of its sensitivity to the photon/chameleon coupling as well as its sensitivity to the classes of chameleon dark energy models and standard power-law models. Since chameleon dark energy is virtually indistinguishable from a cosmological constant, CHASE tests dark energy models in a manner not accessible to astronomical surveys. (author)

  5. The Matrix Reloaded - on the Dark Energy Seesaw

    DEFF Research Database (Denmark)

    Enqvist, Kari; Hannestad, Steen; Sloth, Martin Snoager

    2007-01-01

    We propose a novel mechanism for dark energy, based on an extended seesaw for scalar fields, which does not require any new physics at energies below the TeV scale. A very light quintessence mass is usually considered to be technically unnatural, unless it is protected by some symmetry broken...

  6. N-body simulations for coupled scalar-field cosmology

    International Nuclear Information System (INIS)

    Li Baojiu; Barrow, John D.

    2011-01-01

    We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled-scalar-field models, including background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled-scalar-field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not work. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulation works for similar models. We then study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to see the agreement and places where the nonlinear treatment deviates from the linear approximation. We also propose an algorithm to identify gravitationally virialized matter halos, trying to take account of the fact that the virialization itself is also modified by the scalar-field coupling. We use the algorithm to measure the mass function and study the properties of dark-matter halos. We find that the net effect of the scalar coupling helps produce more heavy halos in our simulation boxes and suppresses the inner (but not the outer) density profile of halos compared with the ΛCDM prediction, while the suppression weakens as the coupling between the scalar field and dark-matter particles increases in strength.

  7. Inflation and dark energy from f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Artymowski, Michał [Department of Physics, Beijing Normal University, Beijing 100875 (China); Lalak, Zygmunt, E-mail: artymowski@bnu.edu.cn, E-mail: Zygmunt.Lalak@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warszawa (Poland)

    2014-09-01

    The standard Starobinsky inflation has been extended to the R + α R{sup n} - β R{sup 2-n} model to obtain a stable minimum of the Einstein frame scalar potential of the auxiliary field. As a result we have obtained obtain a scalar potential with non-zero value of residual vacuum energy, which may be a source of Dark Energy. Our results can be easily consistent with PLANCK or BICEP2 data for appropriate choices of the value of n.

  8. Crossing the phantom divide with Ricci-like holographic dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Lepe, S. [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Facultad de Ciencias, Casilla, Valparaiso (Chile); Pena, F. [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Temuco (Chile)

    2010-10-15

    In this work we study the dark energy problem by adopting an holographic model proposed recently in the literature. In this model there has been postulated an energy density {rho}{proportional_to}R, where R is the Ricci scalar curvature. Under this consideration, we have obtained a cosmological scenario which arises from considering two non-interacting fluids along the lines of a reasonable Ansatz for the cosmic coincidence parameter. We have adjusted the involved parameters in the model according to the observational data, showing that the equation of state for the dark energy exhibits a cross through the -1 barrier. Additionally, we have found a disagreement of these parameters in comparison with a scalar field theory approach. (orig.)

  9. Generalizing a unified model of dark matter, dark energy, and inflation with a noncanonical kinetic term

    International Nuclear Information System (INIS)

    De-Santiago, Josue; Cervantes-Cota, Jorge L.

    2011-01-01

    We study a unification model for dark energy, dark matter, and inflation with a single scalar field with noncanonical kinetic term. In this model, the kinetic term of the Lagrangian accounts for the dark matter and dark energy, and at early epochs, a quadratic potential accounts for slow roll inflation. The present work is an extension to the work by Bose and Majumdar [Phys. Rev. D 79, 103517 (2009).] with a more general kinetic term that was proposed by Chimento in Phys. Rev. D 69, 123517 (2004). We demonstrate that the model is viable at the background and linear perturbation levels.

  10. Metric-affine formalism of higher derivative scalar fields in cosmology

    International Nuclear Information System (INIS)

    Li, Mingzhe; Wang, Xiulian

    2012-01-01

    Higher derivative scalar field theories have received considerable attention for the potentially explanations of the initial state of the universe or the current cosmic acceleration which they might offer. They have also attracted many interests in the phenomenological studies of infrared modifications of gravity. These theories are mostly studied by the metric variational approach in which only the metric is the fundamental field to account for the gravitation. In this paper we study the higher derivative scalar fields with the metric-affine formalism where the affine connection is treated arbitrarily at the beginning. Because the higher derivative scalar fields couple to the connection directly in a covariant theory these two formalisms will lead to different results. These differences are suppressed by the powers of the Planck mass and are usually expected to have small effects. But in some cases they may cause non-negligible deviations. We show by a higher derivative dark energy model that the two formalisms lead to significantly different pictures of the future universe

  11. Triplet scalars and dark matter at the LHC

    International Nuclear Information System (INIS)

    Fileviez Perez, Pavel; Patel, Hiren H.; Ramsey-Musolf, Michael J.; Wang, Kai

    2009-01-01

    We investigate the predictions of a simple extension of the standard model where the Higgs sector is composed of one SU(2) L doublet and one real triplet. We discuss the general features of the model, including its vacuum structure, theoretical and phenomenological constraints, and expectations for Higgs collider studies. The model predicts the existence of a pair of light charged scalars and, for vanishing triplet vacuum expectation value, contains a cold dark matter candidate. When the latter possibility occurs, the charged scalars are long-lived, leading to a prediction of distinctive single charged track with missing transverse energy or double charged track events at the large hadron collider. The model predicts a significant excess of two-photon events compared to SM expectations due to the presence of a light charged scalar.

  12. Energy weighted x-ray dark-field imaging.

    Science.gov (United States)

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  13. Neutrino Oscillations as a Probe of Light Scalar Dark Matter.

    Science.gov (United States)

    Berlin, Asher

    2016-12-02

    We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.

  14. Higgs production as a probe of dark energy interactions

    CERN Document Server

    Brax, Philippe; Davis, Anne-Christine; Seery, David; Weltman, Amanda

    2010-01-01

    We study Higgs production under the influence of a light, scalar dark energy field with chameleon-like couplings to matter. Our analysis is relevant for hadron colliders, such as the Large Hadron Collider, which are expected to manufacture Higgs particles through weak boson fusion, or associated production with a Z or W. We show that the corrections arising in these models are too small to be observed. This result can be attributed to the gauge invariance of the low energy Lagrangian. As a by-product of our analysis, we provide the first microphysical realization of a dark energy model coupled to the electromagnetic field strength. In models where dark energy couples to all matter species in a uniform manner we are able to give a new, stringent bound on its coupling strength.

  15. Higgs production as a probe of dark energy interactions

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine; Seery, David

    2009-11-01

    We study Higgs production under the influence of a light, scalar dark energy field with chameleon-like couplings to matter. Our analysis is relevant for hadron colliders, such as the Large Hadron Collider, which are expected to manufacture Higgs particles through weak boson fusion, or associated production with a Z or W ± . We show that the corrections arising in these models are too small to be observed. This result can be attributed to the gauge invariance of the low energy Lagrangian. As a by-product of our analysis, we provide the first microphysical realization of a dark energy model coupled to the electromagnetic field strength. In models where dark energy couples to all matter species in a uniform manner we are able to give a new, stringent bound on its coupling strength. (orig.)

  16. Higgs production as a probe of dark energy interactions

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, URA2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, Anne-Christine; Seery, David [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences; Weltmann, Amanda [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences; Cape Town Univ. (South Africa). Dept. of Mathematics and Applied Mathematics; Centre for Theoretical Cosmology Fellow, Cambridge (United Kingdom)

    2009-11-15

    We study Higgs production under the influence of a light, scalar dark energy field with chameleon-like couplings to matter. Our analysis is relevant for hadron colliders, such as the Large Hadron Collider, which are expected to manufacture Higgs particles through weak boson fusion, or associated production with a Z or W{sup {+-}}. We show that the corrections arising in these models are too small to be observed. This result can be attributed to the gauge invariance of the low energy Lagrangian. As a by-product of our analysis, we provide the first microphysical realization of a dark energy model coupled to the electromagnetic field strength. In models where dark energy couples to all matter species in a uniform manner we are able to give a new, stringent bound on its coupling strength. (orig.)

  17. Probing dark energy with atom interferometry

    International Nuclear Information System (INIS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E.A.

    2015-01-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry

  18. Probing dark energy with atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare; Copeland, Edmund J. [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Hinds, E.A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: Edmund.Copeland@nottingham.ac.uk, E-mail: Ed.Hinds@imperial.ac.uk [Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  19. Late time phase transition as dark energy

    Indian Academy of Sciences (India)

    Abstract. We show that the dark energy field can naturally be described by the scalar condensates of a non-abelian gauge group. This gauge group is unified with the standard model gauge groups and it has a late time phase transition. The small phase transition explains why the positive acceleration of the universe is ...

  20. Imprint of thawing scalar fields on the large scale galaxy overdensity

    Science.gov (United States)

    Dinda, Bikash R.; Sen, Anjan A.

    2018-04-01

    We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. We consider the full general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single autonomous system of equations containing both the background and the perturbed equations of motion which we subsequently solve for different scalar field potentials. First we study the percentage deviation from the Λ CDM model for different cosmological parameters as well as in the observed galaxy power spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly the difference in background expansion results from the enhancement of power from Λ CDM on small scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power from Λ CDM on large scales. This can be useful to distinguish scalar field models from Λ CDM with future optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types of scalar field using some particular choices for the scalar field potentials. We show that thawing and tracking models can have large differences in observed galaxy power spectra on large scales and for smaller redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small and is mainly due to the difference in background expansion.

  1. Is the effective field theory of dark energy effective?

    Energy Technology Data Exchange (ETDEWEB)

    Linder, Eric V. [Berkeley Center for Cosmological Physics and Berkeley Lab, University of California, New Campbell Hall 341, Berkeley, CA, 94720 (United States); Sengör, Gizem; Watson, Scott, E-mail: evlinder@lbl.gov, E-mail: gsengor@syr.edu, E-mail: gswatson@syr.edu [Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244 (United States)

    2016-05-01

    The effective field theory of cosmic acceleration systematizes possible contributions to the action, accounting for both dark energy and modifications of gravity. Rather than making model dependent assumptions, it includes all terms, subject to the required symmetries, with four (seven) functions of time for the coefficients. These correspond respectively to the Horndeski and general beyond Horndeski class of theories. We address the question of whether this general systematization is actually effective, i.e. useful in revealing the nature of cosmic acceleration when compared with cosmological data. The answer is no and yes: there is no simple time dependence of the free functions —assumed forms in the literature are poor fits, but one can derive some general characteristics in early and late time limits. For example, we prove that the gravitational slip must restore to general relativity in the de Sitter limit of Horndeski theories, and why it doesn't more generally. We also clarify the relation between the tensor and scalar sectors, and its important relation to observations; in a real sense the expansion history H ( z ) or dark energy equation of state w ( z ) is 1/5 or less of the functional information! In addition we discuss the de Sitter, Horndeski, and decoupling limits of the theory utilizing Goldstone techniques.

  2. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    International Nuclear Information System (INIS)

    Jhalani, V.; Kharkwal, H.; Singh, A.

    2016-01-01

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  3. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    Energy Technology Data Exchange (ETDEWEB)

    Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com [L. N. Mittal Institute of Information Technology, Physics Department (India)

    2016-11-15

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  4. Modified Holographic Ricci Dark Energy in Chameleon Brans-Dicke Cosmology and Its Thermodynamic Consequence

    Science.gov (United States)

    Jawad, A.; Chattopadhyay, S.; Bhattacharya, S.; Pasqua, A.

    2015-04-01

    The objective of this paper is to discuss the Chameleon Brans-Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n. The financial Supported from Department of Science and Technology, Govt. of India under Project Grant No. SR/FTP/PS-167/2011 is thankfully acknowledged by SC

  5. Generalized dark energy interactions with multiple fluids

    Energy Technology Data Exchange (ETDEWEB)

    De Bruck, Carsten van; Mifsud, Jurgen [Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Mimoso, José P.; Nunes, Nelson J., E-mail: c.vandebruck@sheffield.ac.uk, E-mail: jmifsud1@sheffield.ac.uk, E-mail: jpmimoso@fc.ul.pt, E-mail: njnunes@fc.ul.pt [Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, PT1749-016 Lisboa (Portugal)

    2016-11-01

    In the search for an explanation for the current acceleration of the Universe, scalar fields are the most simple and useful tools to build models of dark energy. This field, however, must in principle couple with the rest of the world and not necessarily in the same way to different particles or fluids. We provide the most complete dynamical system analysis to date, consisting of a canonical scalar field conformally and disformally coupled to both dust and radiation. We perform a detailed study of the existence and stability conditions of the systems and comment on constraints imposed on the disformal coupling from Big-Bang Nucleosynthesis and given current limits on the variation of the fine-structure constant.

  6. Holographik, the k-essential approach to interactive models with modified holographic Ricci dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Forte, Monica [Universidad de Buenos Aires, Departamento de Fisica, Facultad de ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2016-12-15

    We make a scalar representation of interactive models with cold dark matter and modified holographic Ricci dark energy through unified models driven by scalar fields with non-canonical kinetic term. These models are applications of the formalism of exotic k-essences generated by the global description of cosmological models with two interactive fluids in the dark sector and in these cases they correspond to the usual k-essences. The formalism is applied to the cases of constant potential in Friedmann-Robertson-Walker geometries. (orig.)

  7. Radiative inflation and dark energy

    International Nuclear Information System (INIS)

    Di Bari, Pasquale; King, Stephen F.; Luhn, Christoph; Merle, Alexander; Schmidt-May, Angnis

    2011-01-01

    We propose a model based on radiative symmetry breaking that combines inflation with dark energy and is consistent with the Wilkinson Microwave Anisotropy Probe 7-year regions. The radiative inflationary potential leads to the prediction of a spectral index 0.955 S < or approx. 0.967 and a tensor to scalar ratio 0.142 < or approx. r < or approx. 0.186, both consistent with current data but testable by the Planck experiment. The radiative symmetry breaking close to the Planck scale gives rise to a pseudo Nambu-Goldstone boson with a gravitationally suppressed mass which can naturally play the role of a quintessence field responsible for dark energy. Finally, we present a possible extra dimensional scenario in which our model could be realized.

  8. The thawing dark energy dynamics: Can we detect it?

    Energy Technology Data Exchange (ETDEWEB)

    Sen, S. [Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India); Sen, A.A., E-mail: anjan.ctp@jmi.ac.i [Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India); Sami, M. [Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India)

    2010-03-15

    We consider different classes of scalar field models including quintessence and tachyon scalar fields with a variety of generic potentials belonging to the thawing type. We focus on observational quantities like Hubble parameter, luminosity distance as well as quantities related to the Baryon Acoustic Oscillation measurement. Our study shows that with present state of observations, one cannot distinguish amongst various models which in turn cannot be distinguished from cosmological constant. Our analysis indicates that there is a small chance to observe the dark energy metamorphosis in near future.

  9. ASTROPHYSICS. Atom-interferometry constraints on dark energy.

    Science.gov (United States)

    Hamilton, P; Jaffe, M; Haslinger, P; Simmons, Q; Müller, H; Khoury, J

    2015-08-21

    If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration. Copyright © 2015, American Association for the Advancement of Science.

  10. On scalar and vector fields coupled to the energy-momentum tensor

    Science.gov (United States)

    Jiménez, Jose Beltrán; Cembranos, Jose A. R.; Sánchez Velázquez, Jose M.

    2018-05-01

    We consider theories for scalar and vector fields coupled to the energy-momentum tensor. Since these fields also carry a non-trivial energy-momentum tensor, the coupling prescription generates self-interactions. In analogy with gravity theories, we build the action by means of an iterative process that leads to an infinite series, which can be resumed as the solution of a set of differential equations. We show that, in some particular cases, the equations become algebraic and that is also possible to find solutions in the form of polynomials. We briefly review the case of the scalar field that has already been studied in the literature and extend the analysis to the case of derivative (disformal) couplings. We then explore theories with vector fields, distinguishing between gauge-and non-gauge-invariant couplings. Interactions with matter are also considered, taking a scalar field as a proxy for the matter sector. We also discuss the ambiguity introduced by superpotential (boundary) terms in the definition of the energy-momentum tensor and use them to show that it is also possible to generate Galileon-like interactions with this procedure. We finally use collider and astrophysical observations to set constraints on the dimensionful coupling which characterises the phenomenology of these models.

  11. Dark energy in hybrid inflation

    International Nuclear Information System (INIS)

    Gong, Jinn-Ouk; Kim, Seongcheol

    2007-01-01

    The situation that a scalar field provides the source of the accelerated expansion of the Universe while rolling down its potential is common in both the simple models of the primordial inflation and the quintessence-based dark energy models. Motivated by this point, we address the possibility of causing the current acceleration via the primordial inflation using a simple model based on hybrid inflation. We trigger the onset of the motion of the quintessence field via the waterfall field, and find that the fate of the Universe depends on the true vacuum energy determined by choosing the parameters. We also briefly discuss the variation of the equation of state and the possible implementation of our scenario in supersymmetric theories

  12. Interactions between dark energy and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, Marco

    2009-03-20

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with {lambda}{sub CDM}. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the {lambda}{sub CDM} model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter

  13. Interactions between dark energy and dark matter

    International Nuclear Information System (INIS)

    Baldi, Marco

    2009-01-01

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with Λ CDM . Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the Λ CDM model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter space of such scenarios

  14. Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter

    Science.gov (United States)

    Bernal, T.; Fernández-Hernández, L. M.; Matos, T.; Rodríguez-Meza, M. A.

    2018-04-01

    Cold dark matter (CDM) has shown to be an excellent candidate for the dark matter (DM) of the Universe at large scales; however, it presents some challenges at the galactic level. The scalar field dark matter (SFDM), also called fuzzy, wave, Bose-Einstein condensate, or ultralight axion DM, is identical to CDM at cosmological scales but different at the galactic ones. SFDM forms core haloes, it has a natural cut-off in its matter power spectrum, and it predicts well-formed galaxies at high redshifts. In this work we reproduce the rotation curves of high-resolution low surface brightness (LSB) and SPARC galaxies with two SFDM profiles: (1) the soliton+NFW profile in the fuzzy DM (FDM) model, arising empirically from cosmological simulations of real, non-interacting scalar field (SF) at zero temperature, and (2) the multistate SFDM (mSFDM) profile, an exact solution to the Einstein-Klein-Gordon equations for a real, self-interacting SF, with finite temperature into the SF potential, introducing several quantum states as a realistic model for an SFDM halo. From the fits with the soliton+NFW profile, we obtained for the boson mass 0.212 motivated framework additional or alternative to the FDM profile.

  15. Imperfect Dark Energy from Kinetic Gravity Braiding

    CERN Document Server

    Deffayet, Cedric; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energ...

  16. Simple implementation of general dark energy models

    International Nuclear Information System (INIS)

    Bloomfield, Jolyon K.; Pearson, Jonathan A.

    2014-01-01

    We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data

  17. Interaction of Gravitational field and Brans-Dicke field in R/W universe containing Dark Energy like fluid

    International Nuclear Information System (INIS)

    Singh, Kangujam Priyokumar; Dewri, Mukunda; Singh, Koijam Manihar

    2016-01-01

    On studying some new models of Robertson-Walker universes with a Brans-Dicke scalar field, it is found that most of these universes contain a dark energy like fluid which confirms the present scenario of the expansion of the universe. In one of the cases, the exact solution of the field equations gives a universe with a false vacuum, while in another it reduces to that of dust distribution in the Brans-Dicke cosmology when the cosmological constant is not in the picture. In one particular model it is found that the universe may undergo a Big Rip in the future, and thus it will be very interesting to investigate such models further. (paper)

  18. Mixed Inert scalar triplet dark matter, radiative neutrino masses and leptogenesis

    Directory of Open Access Journals (Sweden)

    Wen-Bin Lu

    2017-11-01

    Full Text Available The neutral component of an inert scalar multiplet with hypercharge can provide a stable dark matter particle when its real and imaginary parts have a splitting mass spectrum. Otherwise, a tree-level dark-matter-nucleon scattering mediated by the Z boson will be much above the experimental limit. In this paper we focus on a mixed inert scalar triplet dark matter scenario where a complex scalar triplet with hypercharge can mix with another real scalar triplet without hypercharge through their renormalizable coupling to the standard model Higgs doublet. We consider three specified cases that carry most of the relevant features of the full parameter space: (i the neutral component of the real triplet dominates the dark matter particle, (ii the neutral component of the complex triplet dominates the dark matter particle; and (iii the neutral components of the real and complex triplets equally constitute the dark matter particle. Subject to the dark matter relic abundance and direct detection constraint, we perform a systematic study on the allowed parameter space with particular emphasis on the interplay among triplet-doublet terms and gauge interactions. In the presence of these mixed inert scalar triplets, some heavy Dirac fermions composed of inert fermion doublets can be utilized to generate a tiny Majorana neutrino mass term at one-loop level and realize a successful leptogenesis for explaining the cosmic baryon asymmetry.

  19. A note on perfect scalar fields

    International Nuclear Information System (INIS)

    Unnikrishnan, Sanil; Sriramkumar, L.

    2010-01-01

    We derive a condition on the Lagrangian density describing a generic, single, noncanonical scalar field, by demanding that the intrinsic, nonadiabatic pressure perturbation associated with the scalar field vanishes identically. Based on the analogy with perfect fluids, we refer to such fields as perfect scalar fields. It is common knowledge that models that depend only on the kinetic energy of the scalar field (often referred to as pure kinetic models) possess no nonadiabatic pressure perturbation. While we are able to construct models that seemingly depend on the scalar field and also do not contain any nonadiabatic pressure perturbation, we find that all such models that we construct allow a redefinition of the field under which they reduce to pure kinetic models. We show that, if a perfect scalar field drives inflation, then, in such situations, the first slow roll parameter will always be a monotonically decreasing function of time. We point out that this behavior implies that these scalar fields cannot lead to features in the inflationary, scalar perturbation spectrum.

  20. Inflation and dark energy from the Brans-Dicke theory

    Energy Technology Data Exchange (ETDEWEB)

    Artymowski, Michał [Institute of Physics, Jagiellonian UniversityŁojasiewicza 11, 30-348 Kraków (Poland); Lalak, Zygmunt; Lewicki, Marek [Institute of Theoretical Physics, Faculty of Physics, University of Warsawul. Pasteura 5, 02-093 Warszawa (Poland)

    2015-06-17

    We consider the Brans-Dicke theory motivated by the f(R)=R+αR{sup n}−βR{sup 2−n} model to obtain a stable minimum of the Einstein frame scalar potential of the Brans-Dicke field. As a result we have obtained an inflationary scalar potential with non-zero value of residual vacuum energy, which may be a source of dark energy. In addition we discuss the probability of quantum tunnelling from the minimum of the potential. Our results can be easily consistent with PLANCK or BICEP2 data for appropriate choices of the value of n and ω.

  1. Exotic Material as Interactions Between Scalar Fields

    Directory of Open Access Journals (Sweden)

    Robertson G. A.

    2015-10-01

    Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as “wormholes” and “warp drives”. However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg- Landau (GL scalar fields associated with superconductor junctions is investigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energy fluctuations, cosmological scalar (i. e., Higgs fields, and gravity.

  2. Crossing the phantom divide: Dark energy internal degrees of freedom

    International Nuclear Information System (INIS)

    Hu, Wayne

    2005-01-01

    Dark energy constraints have forced viable alternatives that differ substantially from a cosmological constant Λ to have an equation of state w that evolves across the phantom divide set by Λ. Naively, crossing this divide makes the dark energy gravitationally unstable, a problem that is typically finessed by unphysically ignoring the perturbations. While this procedure does not affect constraints near the favored cosmological constant model it can artificially enhance the confidence with which alternative models are rejected. Similar to the general problem of stability for w<0, the solution lies in the internal degrees of freedom in the dark energy sector. We explicitly show how to construct a two scalar field model that crosses the phantom divide and mimics the single field behavior on either side to substantially better than 1% in all observables. It is representative of models where the internal degrees of freedom keep the dark energy smooth out to the horizon scale independently of the equation of state

  3. Higgs seesaw mechanism as a source for dark energy.

    Science.gov (United States)

    Krauss, Lawrence M; Dent, James B

    2013-08-09

    Motivated by the seesaw mechanism for neutrinos which naturally generates small neutrino masses, we explore how a small grand-unified-theory-scale mixing between the standard model Higgs boson and an otherwise massless hidden sector scalar can naturally generate a small mass and vacuum expectation value for the new scalar which produces a false vacuum energy density contribution comparable to that of the observed dark energy dominating the current expansion of the Universe. This provides a simple and natural mechanism for producing the correct scale for dark energy, even if it does not address the long-standing question of why much larger dark energy contributions are not produced from the visible sector. The new scalar produces no discernible signatures in existing terrestrial experiments so that one may have to rely on other cosmological tests of this idea.

  4. Magnetized Anisotropic Dark Energy Models in Barber’s Second Self-Creation Theory

    Directory of Open Access Journals (Sweden)

    D. D. Pawar

    2014-01-01

    Full Text Available The present paper deals with Bianchi type IX cosmological model with magnetized anisotropic dark energy by using Barber’s self-creation theory. The energy momentum tensor consists of anisotropic fluid with EoS parameter ω and a uniform magnetic field of energy density ρB. In order to obtain the exact solution we have assumed that dark energy components and the components of magnetic field interact minimally and obey the law of conservation of energy momentum tensors. We have also used the special law of variation for the mean generalized Hubble parameter and power law relation between scalar field and scale factor. Some physical and kinematical properties of the models have been discussed.

  5. Unified dark fluid in Brans-Dicke theory

    International Nuclear Information System (INIS)

    Tripathy, Sunil K.; Behera, Dipanjali; Mishra, Bivudutta

    2015-01-01

    Anisotropic dark energy cosmological models are constructed in the frame work of generalised Brans-Dicke theory with a self-interacting potential. A unified dark fluid characterised by a linear equation of state is considered as the source of dark energy. The shear scalar is considered to be proportional to the expansion scalar simulating an anisotropic relationship among the directional expansion rates. The dynamics of the universe in the presence of a unified dark fluid in anisotropic background have been discussed. The presence of an evolving scalar field makes it possible to get an accelerating phase of expansion even for a linear relationship among the directional Hubble rates. It is found that the anisotropy in expansion rates does not affect the scalar field, the self-interacting potential, but it controls the non-evolving part of the Brans-Dicke parameter. (orig.)

  6. Detecting dark energy in orbit: The cosmological chameleon

    International Nuclear Information System (INIS)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Khoury, Justin; Weltman, Amanda

    2004-01-01

    We show that the chameleon scalar field can drive the current phase of cosmic acceleration for a large class of scalar potentials that are also consistent with local tests of gravity. These provide explicit realizations of a quintessence model where the quintessence scalar field couples directly to baryons and dark matter with gravitational strength. We analyze the cosmological evolution of the chameleon field and show the existence of an attractor solution with the chameleon following the minimum of its effective potential. For a wide range of initial conditions, spanning many orders of magnitude in initial chameleon energy density, the attractor is reached before nucleosynthesis. Surprisingly, the range of allowed initial conditions leading to a successful cosmology is wider than in normal quintessence. We discuss applications to the cyclic model of the universe and show how the chameleon mechanism weakens some of the constraints on cyclic potentials

  7. Particle physics and dark energy. Beyond classical dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias

    2008-10-24

    In this work, quantum corrections to classical equations of motion are investigated for dynamical models of dark energy featuring a time-evolving quintessence scalar field. Employing effective quantum field theory, the robustness of tracker quintessence potentials against quantum corrections as well as their impact on cosmological observables are discussed. Furthermore, it is demonstrated that a rolling quintessence field can also play an important role for baryogenesis in the early universe. The macroscopic time-evolution of scalar quantum fields can be described from first principles within nonequilibrium quantum field theory based on Kadanoff-Baym equations derived from the 2PI effective action. A framework for the nonperturbative renormalization of Kadanoff-Baym equations is provided. Renormalized Kadanoff-Baym equations are proposed and their finiteness is shown for a special case. (orig.)

  8. Particle physics and dark energy. Beyond classical dynamics

    International Nuclear Information System (INIS)

    Garny, Mathias

    2008-01-01

    In this work, quantum corrections to classical equations of motion are investigated for dynamical models of dark energy featuring a time-evolving quintessence scalar field. Employing effective quantum field theory, the robustness of tracker quintessence potentials against quantum corrections as well as their impact on cosmological observables are discussed. Furthermore, it is demonstrated that a rolling quintessence field can also play an important role for baryogenesis in the early universe. The macroscopic time-evolution of scalar quantum fields can be described from first principles within nonequilibrium quantum field theory based on Kadanoff-Baym equations derived from the 2PI effective action. A framework for the nonperturbative renormalization of Kadanoff-Baym equations is provided. Renormalized Kadanoff-Baym equations are proposed and their finiteness is shown for a special case. (orig.)

  9. Quasilocal variables in spherical symmetry: Numerical applications to dark matter and dark energy sources

    International Nuclear Information System (INIS)

    Sussman, Roberto A.

    2009-01-01

    A numerical approach is considered for spherically symmetric spacetimes that generalize Lemaitre-Tolman-Bondi dust solutions to nonzero pressure ('LTB spacetimes'). We introduce quasilocal (QL) variables that are covariant LTB objects satisfying evolution equations of Friedman-Lemaitre-Robertson-Walker (FLRW) cosmologies. We prove rigorously that relative deviations of the local covariant scalars from the QL scalars are nonlinear, gauge invariant and covariant perturbations on a FLRW formal background given by the QL scalars. The dynamics of LTB spacetimes is completely determined by the QL scalars and these exact perturbations. Since LTB spacetimes are compatible with a wide variety of ''equations of state,'' either single fluids or mixtures, a large number of known solutions with dark matter and dark energy sources in a FLRW framework (or with linear perturbations) can be readily examined under idealized but nontrivial inhomogeneous conditions. Coordinate choices and initial conditions are derived for a numerical treatment of the perturbation equations, allowing us to study nonlinear effects in a variety of phenomena, such as gravitational collapse, nonlocal effects, void formation, dark matter and dark energy couplings, and particle creation. In particular, the embedding of inhomogeneous regions can be performed by a smooth matching with a suitable FLRW solution, thus generalizing the Newtonian 'top hat' models that are widely used in astrophysical literature. As examples of the application of the formalism, we examine numerically the formation of a black hole in an expanding Chaplygin gas FLRW universe, as well as the evolution of density clumps and voids in an interactive mixture of cold dark matter and dark energy.

  10. Scalar Dark Matter From Theory Space

    Energy Technology Data Exchange (ETDEWEB)

    Birkedal-Hansen, Andreas; Wacker, Jay G.

    2003-12-26

    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass {Omicron}(100 GeV), the second region has a candidate with a mass greater than {Omicron}(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible WIMP (weakly interacting massive particle).

  11. Scalar dark matter from theory space

    International Nuclear Information System (INIS)

    Birkedal-Hansen, Andreas; Wacker, Jay G.

    2004-01-01

    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass O(100 GeV), the second region has a candidate with a mass greater than O(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible weakly interacting massive particle

  12. Exotic Material as Interactions Between Scalar Fields

    Directory of Open Access Journals (Sweden)

    Robertson G. A.

    2006-04-01

    Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as "wormholes" and "warp drives". However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg-Landau (GL scalar fields associated with superconductor junctions isinvestigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energyfluctuations, cosmological scalar (i.e., Higgs fields, and gravity.

  13. Inflation and dark energy from the Brans-Dicke theory

    Energy Technology Data Exchange (ETDEWEB)

    Artymowski, Michał [Institute of Physics, Jagiellonian University Łojasiewicza 11, 30-348 Kraków (Poland); Lalak, Zygmunt; Lewicki, Marek, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Zygmunt.Lalak@fuw.edu.pl, E-mail: Marek.Lewicki@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw ul. Pasteura 5, 02-093 Warszawa (Poland)

    2015-06-01

    We consider the Brans-Dicke theory motivated by the f(R) = R + α R{sup n} − β R{sup 2−n} model to obtain a stable minimum of the Einstein frame scalar potential of the Brans-Dicke field. As a result we have obtained an inflationary scalar potential with non-zero value of residual vacuum energy, which may be a source of dark energy. In addition we discuss the probability of quantum tunnelling from the minimum of the potential. Our results can be easily consistent with PLANCK or BICEP2 data for appropriate choices of the value of n and ω.

  14. Time variation of fundamental couplings and dynamical dark energy

    International Nuclear Information System (INIS)

    Dent, Thomas; Stern, Steffen; Wetterich, Christof

    2009-01-01

    Scalar field dynamics may give rise to a nonzero cosmological variation of fundamental constants. Within different scenarios based on the unification of gauge couplings, the various claimed observations and bounds may be combined in order to trace or restrict the time history of the couplings and masses. If the scalar field is responsible for a dynamical dark energy or quintessence, cosmological information becomes available for its time evolution. Combining this information with the time variation of couplings, one can determine the interaction strength between the scalar and atoms, which may be observed by tests of the Weak Equivalence Principle. We compute bounds on the present rate of coupling variation from experiments testing the differential accelerations for bodies with equal mass and different composition and compare the sensitivity of various methods. In particular, we discuss two specific models of scalar evolution: crossover quintessence and growing neutrino models

  15. Dynamics of Mixed Dark Energy Domination in Teleparallel Gravity and Phase-Space Analysis

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2015-01-01

    Full Text Available We consider a novel dark energy model to investigate whether it will provide an expanding universe phase. Here we propose a mixed dark energy domination which is constituted by tachyon, quintessence, and phantom scalar fields nonminimally coupled to gravity, in the absence of background dark matter and baryonic matter, in the framework of teleparallel gravity. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions implying the acceleration phase of universe.

  16. Constraining Dark Matter Interactions with Pseudoscalar and Scalar Mediators Using Collider Searches for Multijets plus Missing Transverse Energy.

    Science.gov (United States)

    Buchmueller, Oliver; Malik, Sarah A; McCabe, Christopher; Penning, Bjoern

    2015-10-30

    The monojet search, looking for events involving missing transverse energy (E_{T}) plus one or two jets, is the most prominent collider dark matter search. We show that multijet searches, which look for E_{T} plus two or more jets, are significantly more sensitive than the monojet search for pseudoscalar- and scalar-mediated interactions. We demonstrate this in the context of a simplified model with a pseudoscalar interaction that explains the excess in GeV energy gamma rays observed by the Fermi Large Area Telescope. We show that multijet searches already constrain a pseudoscalar interpretation of the excess in much of the parameter space where the mass of the mediator M_{A} is more than twice the dark matter mass m_{DM}. With the forthcoming run of the Large Hadron Collider at higher energies, the remaining regions of the parameter space where M_{A}>2m_{DM} will be fully explored. Furthermore, we highlight the importance of complementing the monojet final state with multijet final states to maximize the sensitivity of the search for the production of dark matter at colliders.

  17. Unitarity constraints in the standard model with a singlet scalar field

    International Nuclear Information System (INIS)

    Kang, Sin Kyu; Park, Jubin

    2015-01-01

    Motivated by the discovery of a new scalar field and amelioration of the electroweak vacuum stability ascribed to a singlet scalar field embedded in the standard model (SM), we examine the implication of the perturbative unitarity in the SM with a singlet scalar field. Taking into account the full contributions to the scattering amplitudes, we derive unitarity conditions on the scattering matrix which can be translated into bounds on the masses of the scalar fields. In the case that the singlet scalar field develops vacuum expectation value (VEV), we get the upper bound on the singlet scalar mass varying with the mixing between the singlet and Higgs scalars. On the other hand, the mass of the Higgs scalar can be constrained by the unitarity condition in the case that the VEV of the singlet scalar is not generated. Applying the upper bound on the Higgs mass to the scenario of the unitarized Higgs inflation, we discuss how the unitarity condition can constrain the Higgs inflation. The singlet scalar mass is not constrained by the unitarity itself when we impose Z 2 in the model because of no mixing with the Higgs scalar. But, regarding the singlet scalar field as a cold dark matter candidate, we derive upper bound on the singlet scalar mass by combining the observed relic abundance with the unitarity condition.

  18. Scalar dark matter in leptophilic two-Higgs-doublet model

    Science.gov (United States)

    Bandyopadhyay, Priyotosh; Chun, Eung Jin; Mandal, Rusa

    2018-04-01

    Two-Higgs-Doublet Model of Type-X in the large tan ⁡ β limit becomes leptophilic to allow a light pseudo-scalar A and thus provides an explanation of the muon g - 2 anomaly. Introducing a singlet scalar dark matter S in this context, one finds that two important dark matter properties, nucleonic scattering and self-annihilation, are featured separately by individual couplings of dark matter to the two Higgs doublets. While one of the two couplings is strongly constrained by direct detection experiments, the other remains free to be adjusted for the relic density mainly through the process SS → AA. This leads to the 4τ final states which can be probed by galactic gamma ray detections.

  19. Stability of a Noncanonical Scalar Field Model during Cosmological Date

    Directory of Open Access Journals (Sweden)

    Z. Ossoulian

    2016-01-01

    Full Text Available Using the noncanonical model of scalar field, the cosmological consequences of a pervasive, self-interacting, homogeneous, and rolling scalar field are studied. In this model, the scalar field potential is “nonlinear” and decreases in magnitude with increasing the value of the scalar field. A special solution of the nonlinear field equations of ϕ that has time dependency as fixed point is obtained. The fixed point relies on the noncanonical term of action and γ-parameter; this parameter appeared in energy density of scalar field redshift. By means of such fixed point the different eigenvalues of the equation of motion will be obtained. In different epochs in the evolution of the Universe for different values of q and n, the potentials as a function of scalar field are attained. The behavior of baryonic perturbations in linear perturbation scenario as a considerable amount of energy density of scalar field at low redshifts prevents the growth of perturbations in the ordinary matter fluid. The energy density in the scalar field is not appreciably perturbed by nonrelativistic gravitational fields, in either the radiation or matter dominant or scalar field dominated epoch.

  20. Dynamics of entropy perturbations in assisted dark energy with mixed kinetic terms

    International Nuclear Information System (INIS)

    Karwan, Khamphee

    2011-01-01

    We study dynamics of entropy perturbations in the two-field assisted dark energy model. Based on the scenario of assisted dark energy, in which one scalar field is subdominant compared with the other in the early epoch, we show that the entropy perturbations in this two-field system tend to be constant on large scales in the early epoch and hence survive until the present era for a generic evolution of both fields during the radiation and matter eras. This behaviour of the entropy perturbations is preserved even when the fields are coupled via kinetic interaction. Since, for assisted dark energy, the subdominant field in the early epoch becomes dominant at late time, the entropy perturbations can significantly influence the dynamics of density perturbations in the universe. Assuming correlations between the entropy and curvature perturbations, the entropy perturbations can enhance the integrated Sachs-Wolfe (ISW) effect if the signs of the contributions from entropy perturbations and curvature perturbations are opposite after the matter era, otherwise the ISW contribution is suppressed. For canonical scalar field the effect of entropy perturbations on ISW effect is small because the initial value of the entropy perturbations estimated during inflation cannot be sufficiently large. However, in the case of k-essence, the initial value of the entropy perturbations can be large enough to affect the ISW effect to leave a significant imprint on the CMB power spectrum

  1. Fermion field as inflaton, dark energy and dark matter

    International Nuclear Information System (INIS)

    Grams, Guilherme; Souza, Rudinei C de; Kremer, Gilberto M

    2014-01-01

    The search for constituents that can explain the periods of accelerating expansion of the Universe is a fundamental topic in cosmology. In this context, we investigate how fermionic fields minimally and non-minimally coupled with the gravitational field may be responsible for accelerated regimes during the evolution of the Universe. The forms of the potential and coupling of the model are determined through the technique of the Noether symmetry for two cases. The first case comprises a Universe filled only with the fermion field. Cosmological solutions are straightforwardly obtained for this case and an exponential inflation mediated by the fermion field is possible with a non-minimal coupling. The second case takes account of the contributions of radiation and baryonic matter in the presence of the fermion field. In this case the fermion field plays the role of dark energy and dark matter, and when a non-minimal coupling is allowed, it mediates a power-law inflation. (paper)

  2. Scalar dark matter with type II seesaw

    Directory of Open Access Journals (Sweden)

    Arnab Dasgupta

    2014-12-01

    Full Text Available We study the possibility of generating tiny neutrino mass through a combination of type I and type II seesaw mechanism within the framework of an abelian extension of standard model. The model also provides a naturally stable dark matter candidate in terms of the lightest neutral component of a scalar doublet. We compute the relic abundance of such a dark matter candidate and also point out how the strength of type II seesaw term can affect the relic abundance of dark matter. Such a model which connects neutrino mass and dark matter abundance has the potential of being verified or ruled out in the ongoing neutrino, dark matter, as well as accelerator experiments.

  3. How CMB and large-scale structure constrain chameleon interacting dark energy

    International Nuclear Information System (INIS)

    Boriero, Daniel; Das, Subinoy; Wong, Yvonne Y.Y.

    2015-01-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H 0 tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H 0 value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys

  4. How CMB and large-scale structure constrain chameleon interacting dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Boriero, Daniel [Fakultät für Physik, Universität Bielefeld, Universitätstr. 25, Bielefeld (Germany); Das, Subinoy [Indian Institute of Astrophisics, Bangalore, 560034 (India); Wong, Yvonne Y.Y., E-mail: boriero@physik.uni-bielefeld.de, E-mail: subinoy@iiap.res.in, E-mail: yvonne.y.wong@unsw.edu.au [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)

    2015-07-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength, can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.

  5. Viable dark matter via radiative symmetry breaking in a scalar singlet Higgs portal extension of the standard model.

    Science.gov (United States)

    Steele, T G; Wang, Zhi-Wei; Contreras, D; Mann, R B

    2014-05-02

    We consider the generation of dark matter mass via radiative electroweak symmetry breaking in an extension of the conformal standard model containing a singlet scalar field with a Higgs portal interaction. Generating the mass from a sequential process of radiative electroweak symmetry breaking followed by a conventional Higgs mechanism can account for less than 35% of the cosmological dark matter abundance for dark matter mass M(s)>80 GeV. However, in a dynamical approach where both Higgs and scalar singlet masses are generated via radiative electroweak symmetry breaking, we obtain much higher levels of dark matter abundance. At one-loop level we find abundances of 10%-100% with 106 GeVdark matter mass. The dynamical approach also predicts a small scalar-singlet self-coupling, providing a natural explanation for the astrophysical observations that place upper bounds on dark matter self-interaction. The predictions in all three approaches are within the M(s)>80 GeV detection region of the next generation XENON experiment.

  6. Fingerprinting dark energy. II. Weak lensing and galaxy clustering tests

    International Nuclear Information System (INIS)

    Sapone, Domenico; Kunz, Martin; Amendola, Luca

    2010-01-01

    The characterization of dark energy is a central task of cosmology. To go beyond a cosmological constant, we need to introduce at least an equation of state and a sound speed and consider observational tests that involve perturbations. If dark energy is not completely homogeneous on observable scales, then the Poisson equation is modified and dark matter clustering is directly affected. One can then search for observational effects of dark energy clustering using dark matter as a probe. In this paper we exploit an analytical approximate solution of the perturbation equations in a general dark energy cosmology to analyze the performance of next-decade large-scale surveys in constraining equation of state and sound speed. We find that tomographic weak lensing and galaxy redshift surveys can constrain the sound speed of the dark energy only if the latter is small, of the order of c s < or approx. 0.01 (in units of c). For larger sound speeds the error grows to 100% and more. We conclude that large-scale structure observations contain very little information about the perturbations in canonical scalar field models with a sound speed of unity. Nevertheless, they are able to detect the presence of cold dark energy, i.e. a dark energy with nonrelativistic speed of sound.

  7. Model of a multiverse providing the dark energy of our universe

    Science.gov (United States)

    Rebhan, E.

    2017-09-01

    It is shown that the dark energy presently observed in our universe can be regarded as the energy of a scalar field driving an inflation-like expansion of a multiverse with ours being a subuniverse among other parallel universes. A simple model of this multiverse is elaborated: Assuming closed space geometry, the origin of the multiverse can be explained by quantum tunneling from nothing; subuniverses are supposed to emerge from local fluctuations of separate inflation fields. The standard concept of tunneling from nothing is extended to the effect that in addition to an inflationary scalar field, matter is also generated, and that the tunneling leads to an (unstable) equilibrium state. The cosmological principle is assumed to pertain from the origin of the multiverse until the first subuniverses emerge. With increasing age of the multiverse, its spatial curvature decays exponentially so fast that, due to sharing the same space, the flatness problem of our universe resolves by itself. The dark energy density imprinted by the multiverse on our universe is time-dependent, but such that the ratio w = ϱ/(c2p) of its mass density and pressure (times c2) is time-independent and assumes a value - 1 + 𝜖 with arbitrary 𝜖 > 0. 𝜖 can be chosen so small, that the dark energy model of this paper can be fitted to the current observational data as well as the cosmological constant model.

  8. Collider constraints on interactions of dark energy with the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Brax, P. [CEA, IPhT, CNRS, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, C. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, A.C.; Seery, D. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Weltman, A. (eds.) [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Cape Town Univ. (South Africa). Dept. of Mathematics and Applied Mathematics

    2009-04-15

    We study models in which a light scalar dark energy particle couples to the gauge fields of the electroweak force, the photon, Z, and W{sup {+-}} bosons. Our analysis applies to a large class of interacting dark energy models, including those in which the dark energy mass can be adjusted to evade fifth-force bounds by the so-called ''chameleon'' mechanism. We conclude that - with the usual choice of Higgs sector - electroweak precision observables are screened from the indirect effects of dark energy, making such corrections effectively unobservable at present-day colliders, and limiting the dark energy discovery potential of any future International Linear Collider. We show that a similar screening effect applies to processes mediated by flavour-changing neutral currents, which can be traced to the Glashow-Iliopoulos-Maiani mechanism. However, Higgs boson production at the Large Hadron Collider via weak boson fusion may receive observable corrections. (orig.)

  9. Lepton flavor violation and scalar dark matter in a radiative model of neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Esch, Sonja; Klasen, Michael; Lamprea, David R. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Theoretische Physik, Muenster (Germany); Yaguna, Carlos E. [Universidad Pedagogica y Tecnologica de Colombia, Escuela de Fisica, Tunja (Colombia)

    2018-02-15

    We consider a simple extension of the Standard Model that can account for the dark matter and explain the existence of neutrino masses. The model includes a vector-like doublet of SU(2), a singlet fermion, and two scalar singlets, all of them odd under a new Z{sub 2} symmetry. Neutrino masses are generated radiatively by one-loop processes involving the new fields, while the dark matter candidate is the lightest neutral particle among them. We focus specifically on the case where the dark matter particle is one of the scalars and its relic density is determined by its Yukawa interactions. The phenomenology of this setup, including neutrino masses, dark matter and lepton flavor violation, is analyzed in some detail. We find that the dark matter mass must be below 600 GeV to satisfy the relic density constraint. Lepton flavor violating processes are shown to provide the most promising way to test this scenario. Future μ → 3e and μ-e conversion experiments, in particular, have the potential to probe the entire viable parameter space of this model. (orig.)

  10. Arbitrary scalar-field and quintessence cosmological models

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Lobo, Francisco S.N.; Mak, M.K.

    2014-01-01

    The mechanism of the initial inflationary scenario of the Universe and of its late-time acceleration can be described by assuming the existence of some gravitationally coupled scalar fields φ, with the inflaton field generating inflation and the quintessence field being responsible for the late accelerated expansion. Various inflationary and late-time accelerated scenarios are distinguished by the choice of an effective self-interaction potential V(φ), which simulates a temporarily non-vanishing cosmological term. In this work, we present a new formalism for the analysis of scalar fields in flat isotropic and homogeneous cosmological models. The basic evolution equation of the models can be reduced to a first-order non-linear differential equation. Approximate solutions of this equation can be constructed in the limiting cases of the scalar-field kinetic energy and potential energy dominance, respectively, as well as in the intermediate regime. Moreover, we present several new accelerating and decelerating exact cosmological solutions, based on the exact integration of the basic evolution equation for scalar-field cosmologies. More specifically, exact solutions are obtained for exponential, generalized cosine hyperbolic, and power-law potentials, respectively. Cosmological models with power-law scalar field potentials are also analyzed in detail. (orig.)

  11. Simulations of structure formation in interacting dark energy cosmologies

    International Nuclear Information System (INIS)

    Baldi, M.

    2009-01-01

    The evidence in favor of a dark energy component dominating the Universe, and driving its presently accelerated expansion, has progressively grown during the last decade of cosmological observations. If this dark energy is given by a dynamic scalar field, it may also have a direct interaction with other matter fields in the Universe, in particular with cold dark matter. Such interaction would imprint new features on the cosmological background evolution as well as on the growth of cosmic structure, like an additional long-range fifth-force between massive particles, or a variation in time of the dark matter particle mass. We present here the implementation of these new physical effects in the N-body code GADGET-2, and we discuss the outcomes of a series of high-resolution N-body simulations for a selected family of interacting dark energy models. We interestingly find, in contrast with previous claims, that the inner overdensity of dark matter halos decreases in these models with respect to ΛCDM, and consistently halo concentrations show a progressive reduction for increasing couplings. Furthermore, the coupling induces a bias in the overdensities of cold dark matter and baryons that determines a decrease of the halo baryon fraction below its cosmological value. These results go in the direction of alleviating tensions between astrophysical observations and the predictions of the ΛCDM model on small scales, thereby opening new room for coupled dark energy models as an alternative to the cosmological constant.

  12. Scalar field cosmology: I. Asymptotic freedom and the initial-value problem

    International Nuclear Information System (INIS)

    Huang, Kerson; Low, Hwee-Boon; Tung, Roh-Suan

    2012-01-01

    The purpose of this work is to use a renormalized quantum scalar field to investigate very early cosmology, in the Planck era immediately following the big bang. Renormalization effects make the field potential dependent on length scale, and are important during the big bang era. We use the asymptotically free Halpern-Huang scalar field, which is derived from renormalization-group analysis, and solve Einstein's equation with Robertson-Walker metric as an initial-value problem. The main prediction is that the Hubble parameter follows a power law: H≡ a-dot /a∼t -p , and the universe expands at an accelerated rate: a ∼ expt 1-p . This gives 'dark energy', with an equivalent cosmological constant that decays in time like t -2p , which avoids the 'fine-tuning' problem. The power law predicts a simple relation for the galactic redshift. Comparison with data leads to the speculation that the universe experienced a crossover transition, which was completed about seven billion years ago. (paper)

  13. Oscillating scalar fields in extended quintessence

    Science.gov (United States)

    Li, Dan; Pi, Shi; Scherrer, Robert J.

    2018-01-01

    We study a rapidly oscillating scalar field with potential V (ϕ )=k |ϕ |n nonminimally coupled to the Ricci scalar R via a term of the form (1 -8 π G0ξ ϕ2)R in the action. In the weak coupling limit, we calculate the effect of the nonminimal coupling on the time-averaged equation of state parameter γ =(p +ρ )/ρ . The change in ⟨γ ⟩ is always negative for n ≥2 and always positive for n change to be infinitesimally small at the present time whenever the scalar field dominates the expansion, but constraints in the early universe are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show that, under reasonable assumptions, this effective energy density is always smaller than the density of the scalar field itself.

  14. Dark Energy from structure: a status report

    Science.gov (United States)

    Buchert, Thomas

    2008-02-01

    The effective evolution of an inhomogeneous universe model in any theory of gravitation may be described in terms of spatially averaged variables. In Einstein’s theory, restricting attention to scalar variables, this evolution can be modeled by solutions of a set of Friedmann equations for an effective volume scale factor, with matter and backreaction source terms. The latter can be represented by an effective scalar field (“morphon field”) modeling Dark Energy. The present work provides an overview over the Dark Energy debate in connection with the impact of inhomogeneities, and formulates strategies for a comprehensive quantitative evaluation of backreaction effects both in theoretical and observational cosmology. We recall the basic steps of a description of backreaction effects in relativistic cosmology that lead to refurnishing the standard cosmological equations, but also lay down a number of challenges and unresolved issues in connection with their observational interpretation. The present status of this subject is intermediate: we have a good qualitative understanding of backreaction effects pointing to a global instability of the standard model of cosmology; exact solutions and perturbative results modeling this instability lie in the right sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if backreaction effects turn out to be less important than anticipated by some researchers, the concordance high-precision cosmology, the architecture of current N-body simulations, as well as standard perturbative approaches may all fall short in correctly describing the Late Universe.

  15. Dark energy and the accelerating universe: progress, problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.A.S. [Universidade de Sao Paulo (IAG/USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas

    2012-07-01

    Full text: A large number of recent observational data strongly suggest that we live in a flat, accelerating Universe composed by nearly 1/3 of matter (baryonic + dark) and 2/3 of an exotic component with large negative pressure, usually named Dark Energy. The basic set of experiments includes: observations from SNe Ia, CMB anisotropies, baryon acoustic oscillations (BAO) and X-ray data from galaxy clusters. Within the general relativity, the simplest explanation for dark energy is the cosmological constant associated with the zero-point energy density of all quantum fields present in the Universe. However, all estimates for its value are many orders-of-magnitude too large. Many alternative ideas include more exotic candidates for dark energy among them an extremely light scalar field. However, some possible explanations for the present accelerating stage also invokes gravitational physics beyond general relativity. In this way, several observations using satellites and ground-based telescopes are in operation or being planned to test whether dark energy is the cosmological constant or something more exotic, as well as to decide whether or not the standard general relativity can explain cosmic acceleration. In the current view, dark energy is an interesting example of new physics, and, certainly, its possible existence is one of the most profound mysteries of modern physics. In this talk we present a simplified picture of the main results and discuss briefly the difficulties underlying the dark energy paradigm and some of its possible alternatives. (author)

  16. Dark matter particle production in b→s transitions with missing energy

    International Nuclear Information System (INIS)

    Bird, Chris; Jackson, Paul; Kowalewski, Robert; Pospelov, Maxim

    2004-01-01

    Dedicated underground experiments searching for dark matter have little sensitivity to GeV and sub-GeV masses of dark matter particles. We show that the decay of B mesons to K(K * ) and missing energy in the final state can be an efficient probe of dark matter models in this mass range. We analyze the minimal scalar dark matter model to show that the width of the decay mode with two dark matter scalars B→KSS may exceed the decay width in the standard model channel, B→Kνν-bar, by up to 2 orders of magnitude. Existing data from B physics experiments almost entirely exclude dark matter scalars with masses less than 1 GeV. Expected data from B factories probe the range of dark matter masses up to 2 GeV

  17. Sound of Dark Matter: Searching for Light Scalars with Resonant-Mass Detectors.

    Science.gov (United States)

    Arvanitaki, Asimina; Dimopoulos, Savas; Van Tilburg, Ken

    2016-01-22

    The fine-structure constant and the electron mass in string theory are determined by the values of scalar fields called moduli. If the dark matter takes on the form of such a light modulus, it oscillates with a frequency equal to its mass and an amplitude determined by the local dark-matter density. This translates into an oscillation of the size of a solid that can be observed by resonant-mass antennas. Existing and planned experiments, combined with a dedicated resonant-mass detector proposed in this Letter, can probe dark-matter moduli with frequencies between 1 kHz and 1 GHz, with much better sensitivity than searches for fifth forces.

  18. Higgs production as a probe of chameleon dark energy

    International Nuclear Information System (INIS)

    Brax, Philippe; Burrage, Clare; Davis, Anne-Christine; Seery, David; Weltman, Amanda

    2010-01-01

    In this paper we study various particle physics effects of a light, scalar dark energy field with chameleonlike couplings to matter. We show that a chameleon model with only matter couplings will induce a coupling to photons. In doing so, we derive the first microphysical realization of a chameleonic dark energy model coupled to the electromagnetic field strength. This analysis provides additional motivation for current and near-future tests of axionlike and chameleon particles. We find a new bound on the coupling strength of chameleons in uniformly coupled models. We also study the effect of chameleon fields on Higgs production, which is relevant for hadron colliders. These are expected to manufacture Higgs particles through weak boson fusion, or associated production with a Z or W ± . We show that, like the Tevatron, the LHC will not be able to rule out or observe chameleons through this mechanism, because gauge invariance of the low energy Lagrangian suppresses the corrections that may arise.

  19. Dynamical system of scalar field from 2-dimension to 3-D and its cosmological implications

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Wei [Shanghai Normal University, Department of Physics, Shanghai (China); The Shanghai Key Lab for Astrophysics, Shanghai (China); Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Tu, Hong [Shanghai Normal University, Department of Physics, Shanghai (China); The Shanghai Key Lab for Astrophysics, Shanghai (China); Huang, Jiasheng [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Shu, Chenggang [The Shanghai Key Lab for Astrophysics, Shanghai (China)

    2016-09-15

    We give the three-dimensional dynamical autonomous systems for most of the popular scalar field dark energy models including (phantom) quintessence, (phantom) tachyon, K-essence, and general non-canonical scalar field models, change the dynamical variables from variables (x, y, λ) to observable related variables (w{sub φ}, Ω{sub φ}, λ), and show the intimate relationships between those scalar fields that the three-dimensional system of K-essence can reduce to (phantom) tachyon, general non-canonical scalar field can reduce to (phantom) quintessence and K-essence can also reduce to (phantom) quintessence for some special cases. For the applications of the three-dimensional dynamical systems, we investigate several special cases and give the exactly dynamical solutions in detail. In the end of this paper, we argue that it is more convenient and also has more physical meaning to express the differential equations of dynamical systems in (w{sub φ}, Ω{sub φ}, λ) instead of variables (x, y, λ) and to investigate the dynamical system in three dimensions instead of two dimensions. We also raise a question about the possibility of the chaotic behavior in the spatially flat single scalar field FRW cosmological models in the presence of ordinary matter. (orig.)

  20. Dark Energy and Structure Formation

    International Nuclear Information System (INIS)

    Singh, Anupam

    2010-01-01

    We study the gravitational dynamics of dark energy configurations. We report on the time evolution of the dark energy field configurations as well as the time evolution of the energy density to demonstrate the gravitational collapse of dark energy field configurations. We live in a Universe which is dominated by Dark Energy. According to current estimates about 75% of the Energy Density is in the form of Dark Energy. Thus when we consider gravitational dynamics and Structure Formation we expect Dark Energy to play an important role. The most promising candidate for dark energy is the energy density of fields in curved space-time. It therefore become a pressing need to understand the gravitational dynamics of dark energy field configurations. We develop and describe the formalism to study the gravitational collapse of fields given any general potential for the fields. We apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting evolution equations which determine the time evolution of field configurations as well as the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our universe.

  1. Transient accelerating scalar models with exponential potentials

    International Nuclear Information System (INIS)

    Cui Wen-Ping; Zhang Yang; Fu Zheng-Wen

    2013-01-01

    We study a known class of scalar dark energy models in which the potential has an exponential term and the current accelerating era is transient. We find that, although a decelerating era will return in the future, when extrapolating the model back to earlier stages (z ≳ 4), scalar dark energy becomes dominant over matter. So these models do not have the desired tracking behavior, and the predicted transient period of acceleration cannot be adopted into the standard scenario of the Big Bang cosmology. When couplings between the scalar field and matter are introduced, the models still have the same problem; only the time when deceleration returns will be varied. To achieve re-deceleration, one has to turn to alternative models that are consistent with the standard Big Bang scenario.

  2. Statefinder diagnosis for Ricci dark energy

    International Nuclear Information System (INIS)

    Feng Chaojun

    2008-01-01

    Statefinder diagnostic is a useful method which can differ one dark energy model from each others. In this Letter, we apply this method to a holographic dark energy model from Ricci scalar curvature, called the Ricci dark energy model (RDE). We plot the evolutionary trajectories of this model in the statefinder parameter-planes, and it is found that the parameter of this model plays a significant role from the statefinder viewpoint. In a very special case, the statefinder diagnostic fails to discriminate LCDM and RDE models, thus we apply a new diagnostic called the Om diagnostic proposed recently to this model in this case in Appendix A and it works well

  3. Limits on dark radiation, early dark energy, and relativistic degrees of freedom

    International Nuclear Information System (INIS)

    Calabrese, Erminia; Melchiorri, Alessandro; Huterer, Dragan; Linder, Eric V.; Pagano, Luca

    2011-01-01

    Recent cosmological data analyses hint at the presence of an extra relativistic energy component in the early universe. This component is often parametrized as an excess of the effective neutrino number N eff over the standard value of 3.046. The excess relativistic energy could be an indication for an extra (sterile) neutrino, but early dark energy and barotropic dark energy also contribute to the relativistic degrees of freedom. We examine the capabilities of current and future data to constrain and discriminate between these explanations, and to detect the early dark energy density associated with them. We find that while early dark energy does not alter the current constraints on N eff , a dark radiation component, such as that provided by barotropic dark energy models, can substantially change current constraints on N eff , bringing its value back to agreement with the theoretical prediction. Both dark energy models also have implications for the primordial mass fraction of Helium Y p and the scalar perturbation index n s . The ongoing Planck satellite mission will be able to further discriminate between sterile neutrinos and early dark energy.

  4. Vacuum fluctuations in an ancestor vacuum: A possible dark energy candidate

    Science.gov (United States)

    Aoki, Hajime; Iso, Satoshi; Lee, Da-Shin; Sekino, Yasuhiro; Yeh, Chen-Pin

    2018-02-01

    We consider an open universe created by bubble nucleation, and study possible effects of our "ancestor vacuum," a de Sitter space in which bubble nucleation occurred, on the present universe. We compute vacuum expectation values of the energy-momentum tensor for a minimally coupled scalar field, carefully taking into account the effect of the ancestor vacuum by the Euclidean prescription. We pay particular attention to the so-called supercurvature mode, a non-normalizable mode on a spatial slice of the open universe, which has been known to exist for sufficiently light fields. This mode decays in time most slowly, and may leave residual effects of the ancestor vacuum, potentially observable in the present universe. We point out that the vacuum energy of the quantum field can be regarded as dark energy if mass of the field is of order the present Hubble parameter or smaller. We obtain preliminary results for the dark energy equation of state w (z ) as a function of the redshift.

  5. Dark Mass Creation During EWPT Via Dark Energy Interaction

    OpenAIRE

    Kisslinger, Leonard S.; Casper, Steven

    2013-01-01

    We add Dark Matter Dark Energy terms with a quintessence field interacting with a Dark Matter field to a MSSM EW Lagrangian previously used to calculate the magnetic field created during the EWPT. From the expectation value of the quintessence field we estimate the Dark Matter mass for parameters used in previous work on Dark Matter-Dark Energy interactions.

  6. Dark Energy after GW170817 and GRB170817A

    Science.gov (United States)

    Creminelli, Paolo; Vernizzi, Filippo

    2017-12-01

    The observation of GW170817 and its electromagnetic counterpart implies that gravitational waves travel at the speed of light, with deviations smaller than a few ×10-15 . We discuss the consequences of this experimental result for models of dark energy and modified gravity characterized by a single scalar degree of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular cosmological solution but also for nearby solutions obtained by slightly changing the matter abundance. For this to happen, the coefficients of various operators must satisfy precise relations that we discuss both in the language of the effective field theory of dark energy and in the covariant one, for Horndeski, beyond Horndeski, and degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further tuning of the models, since they are stable under quantum corrections.

  7. Dark Energy after GW170817 and GRB170817A.

    Science.gov (United States)

    Creminelli, Paolo; Vernizzi, Filippo

    2017-12-22

    The observation of GW170817 and its electromagnetic counterpart implies that gravitational waves travel at the speed of light, with deviations smaller than a few×10^{-15}. We discuss the consequences of this experimental result for models of dark energy and modified gravity characterized by a single scalar degree of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular cosmological solution but also for nearby solutions obtained by slightly changing the matter abundance. For this to happen, the coefficients of various operators must satisfy precise relations that we discuss both in the language of the effective field theory of dark energy and in the covariant one, for Horndeski, beyond Horndeski, and degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further tuning of the models, since they are stable under quantum corrections.

  8. Constraints on reconstructed dark energy model from SN Ia and BAO/CMB observations

    Energy Technology Data Exchange (ETDEWEB)

    Mamon, Abdulla Al [Manipal University, Manipal Centre for Natural Sciences, Manipal (India); Visva-Bharati, Department of Physics, Santiniketan (India); Bamba, Kazuharu [Fukushima University, Division of Human Support System, Faculty of Symbiotic Systems Science, Fukushima (Japan); Das, Sudipta [Visva-Bharati, Department of Physics, Santiniketan (India)

    2017-01-15

    The motivation of the present work is to reconstruct a dark energy model through the dimensionless dark energy function X(z), which is the dark energy density in units of its present value. In this paper, we have shown that a scalar field φ having a phenomenologically chosen X(z) can give rise to a transition from a decelerated to an accelerated phase of expansion for the universe. We have examined the possibility of constraining various cosmological parameters (such as the deceleration parameter and the effective equation of state parameter) by comparing our theoretical model with the latest Type Ia Supernova (SN Ia), Baryon Acoustic Oscillations (BAO) and Cosmic Microwave Background (CMB) radiation observations. Using the joint analysis of the SN Ia+BAO/CMB dataset, we have also reconstructed the scalar potential from the parametrized X(z). The relevant potential is found, a polynomial in φ. From our analysis, it has been found that the present model favors the standard ΛCDM model within 1σ confidence level. (orig.)

  9. Time dependent black holes and scalar hair

    International Nuclear Information System (INIS)

    Chadburn, Sarah; Gregory, Ruth

    2014-01-01

    We show how to correctly account for scalar accretion onto black holes in scalar field models of dark energy by a consistent expansion in terms of a slow roll parameter. At leading order, we find an analytic solution for the scalar field within our Hubble volume, which is regular on both black hole and cosmological event horizons, and compute the back reaction of the scalar on the black hole, calculating the resulting expansion of the black hole. Our results are independent of the relative size of black hole and cosmological event horizons. We comment on the implications for more general black hole accretion, and the no hair theorems. (paper)

  10. Dark matter relics and the expansion rate in scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Bhaskar; Jimenez, Esteban [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Zavala, Ivonne, E-mail: dutta@physics.tamu.edu, E-mail: este1985@physics.tamu.edu, E-mail: e.i.zavalacarrasco@swansea.ac.uk [Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2017-06-01

    We study the impact of a modified expansion rate on the dark matter relic abundance in a class of scalar-tensor theories. The scalar-tensor theories we consider are motivated from string theory constructions, which have conformal as well as disformally coupled matter to the scalar. We investigate the effects of such a conformal coupling to the dark matter relic abundance for a wide range of initial conditions, masses and cross-sections. We find that exploiting all possible initial conditions, the annihilation cross-section required to satisfy the dark matter content can differ from the thermal average cross-section in the standard case. We also study the expansion rate in the disformal case and find that physically relevant solutions require a nontrivial relation between the conformal and disformal functions. We study the effects of the disformal coupling in an explicit example where the disformal function is quadratic.

  11. Plane Symmetric Dark Energy Models in the Form of Wet Dark Fluid in f ( R, T) Gravity

    Science.gov (United States)

    Chirde, V. R.; Shekh, S. H.

    2016-06-01

    In this paper, we have investigated the plane symmetric space-time with wet dark fluid (WDF), which is a candidate for dark energy, in the framework of f ( R, T) gravity Harko et al. 2011, Phys. Rev. D, 84, 024020), where R and T denote the Ricci scalar and the trace of the energy-momentum tensor respectively. We have used the equation of state in the form of WDF for the dark energy component of the Universe. It is modeled on the equation of state p = ω( ρ - ρ ∗). The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied. Also, we have discussed the well-known astrophysical phenomena, namely the look-back time, proper distance, the luminosity distance and angular diameter distance with red shift.

  12. Exact scaling solutions in normal and Brans-Dicke models of dark energy

    International Nuclear Information System (INIS)

    Arias, Olga; Gonzalez, Tame; Leyva, Yoelsy; Quiros, Israel

    2003-01-01

    A linear relationship between the Hubble expansion parameter and the time derivative of the scalar field is explored in order to derive exact cosmological, attractor-like solutions, both in Einstein's theory and in Brans-Dicke gravity with two fluids: a background fluid of ordinary matter and a self-interacting scalar-field fluid accounting for the dark energy in the universe. A priori assumptions about the functional form of the self-interaction potential or about the scale factor behaviour are not necessary. These are obtained as outputs of the assumed relationship between the Hubble parameter and the time derivative of the scalar field. A parametric class of scaling quintessence models given by a self-interaction potential of a peculiar form, a combination of exponentials with dependence on the barotropic index of the background fluid, arises. Both normal quintessence described by a self-interacting scalar field minimally coupled to gravity and Brans-Dicke quintessence given by a non-minimally coupled scalar field are then analysed and the relevance of these models for the description of the cosmic evolution is discussed in some detail. The stability of these solutions is also briefly commented on

  13. Dark energy equation of state and anthropic selection

    International Nuclear Information System (INIS)

    Garriga, Jaume; Linde, Andrei; Vilenkin, Alexander

    2004-01-01

    We explore the possibility that the dark energy is due to a potential of a scalar field and that the magnitude and the slope of this potential in our part of the Universe are largely determined by anthropic selection effects. We find that, in some models, the most probable values of the slope are very small, implying that the dark energy density stays constant to very high accuracy throughout cosmological evolution. In other models, however, the most probable values of the slope are such that the slow roll condition is only marginally satisfied, leading to a recollapse of the local universe on a time scale comparable to the lifetime of the Sun. In the latter case, the effective equation of state varies appreciably with the redshift, leading to a number of testable predictions

  14. Dark energy from pNGB mediated Dirac neutrino condensate

    Directory of Open Access Journals (Sweden)

    Ujjal Kumar Dey

    2018-03-01

    Full Text Available We consider an extension of the Standard Model that provide an unified description of eV scale neutrino mass and dark energy. An explicit model is presented by augmenting the Standard Model with an SU(2L doublet scalar, a singlet scalar and right handed neutrinos where all of them are assumed to be charged under a global U(1X symmetry. A light pseudo-Nambu–Goldstone Boson, associated with the spontaneously broken U(1X symmetry, acts as a mediator of an attractive force leading to a Dirac neutrino condensate, with large correlation length, and a non-zero gap in the right range providing a cosmologically feasible dark energy scenario. The neutrino mass is generated through the usual Dirac seesaw mechanism. Parameter space, reproducing viable dark energy scenario while having neutrino mass in the right ballpark, is presented.

  15. Collider constraints and prospects of a scalar singlet extension to Higgs portal dark matter

    International Nuclear Information System (INIS)

    Dupuis, Grace

    2016-01-01

    This work considers an extension of the Standard Model (SM) Higgs sector by a real, scalar singlet field, including applicability to a dark matter (DM) model with the addition of a Yukawa coupling to a fermionic dark matter candidate. The collider signatures and constraints on the mixed two-Higgs scenario are determined, including limits from Higgs production signals and exclusion searches, as well as constraints arising from the Higgs total and invisible widths. As there is overwhelming Higgs data which is consistent with a SM scenario, the case in which an additional scalar has evaded detection is further explored in the context of Higgs precision measurement. The discovery reach and prospective signatures of the model at a proposed linear collider are investigated, with particular focus on the Higgs triple coupling, and di-Higgs production processes.

  16. CP violating scalar Dark Matter

    Science.gov (United States)

    Cordero-Cid, A.; Hernández-Sánchez, J.; Keus, V.; King, S. F.; Moretti, S.; Rojas, D.; Sokołowska, D.

    2016-12-01

    We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z 2 symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.

  17. Nonlinear spherical perturbations in quintessence models of dark energy

    Science.gov (United States)

    Pratap Rajvanshi, Manvendra; Bagla, J. S.

    2018-06-01

    Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from ‑1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.

  18. Dark matter cosmic string in the gravitational field of a black hole

    Science.gov (United States)

    Nakonieczny, Łukasz; Nakonieczna, Anna; Rogatko, Marek

    2018-03-01

    We examined analytically and proposed a numerical model of an Abelian Higgs dark matter vortex in the spacetime of a stationary axisymmetric Kerr black hole. In analytical calculations the dark matter sector was modeled by an addition of a U(1)-gauge field coupled to the visible sector. The backreaction analysis revealed that the impact of the dark vortex presence is far more complicated than causing only a deficit angle. The vortex causes an ergosphere shift and the event horizon velocity is also influenced by its presence. These phenomena are more significant than in the case of a visible vortex sector. The area of the event horizon of a black hole is diminished and this decline is larger in comparison to the Kerr black hole with an Abelian Higgs vortex case. After analyzing the gravitational properties for the general setup, we focused on the subset of models that are motivated by particle physics. We retained the Abelian Higgs model as a description of the dark matter sector (this sector contained a heavy dark photon and an additional complex scalar) and added a real scalar representing the real component of the Higgs doublet in the unitary gauge, as well as an additional U(1)-gauge field representing an ordinary electromagnetic field. Moreover, we considered two coupling channels between the visible and dark sectors, which were the kinetic mixing between the gauge fields and a quartic coupling between the scalar fields. After solving the equations of motion for the matter fields numerically we analyzed properties of the cosmic string in the dark matter sector and its influence on the visible sector fields that are directly coupled to it. We found out that the presence of the cosmic string induced spatial variation in the vacuum expectation value of the Higgs field and a nonzero electromagnetic field around the black hole.

  19. Experimental constraints on light scalar field models in cosmology and particle physics (SNLS and CMS experiments)

    International Nuclear Information System (INIS)

    Neveu, Jeremy

    2014-01-01

    The nature of dark energy and dark matter is still unknown today. Light scalar field models have been proposed to explain the late-time accelerated expansion of the Universe and the apparent abundance of non-baryonic matter. In the first part of this thesis, the Galileon theory, a well-posed modified gravity theory preserving the local gravitation thanks to the Vainshtein screening effect, is accurately tested against recent cosmological data. Observational constraints are derived on the model parameters using cosmological distance and growth rate of structure measurements. A good agreement is observed between data and theory predictions. The Galileon theory appears therefore as a promising alternative to the cosmological constant scenario. In the second part, the dark matter question is explored through an extra-dimension theory containing massive and stable scalar fields called Branons. Branon production is searched for in the proton-proton collisions that were collected by the Compact Muon Solenoid experiment in 2012 at the Large Hadron Collider. Events with a single photon and transverse missing energy are selected in this data set and compared to the Standard Model and instrumental background estimates. No signature of new physics is observed, so experimental limits on the Branon model parameters are derived. This thesis concludes with some ideas to reach an unified description of both models in the frame of extra-dimension theories. (author) [fr

  20. A non-minimally coupled quintom dark energy model on the warped DGP brane

    International Nuclear Information System (INIS)

    Nozari, K; Azizi, T; Setare, M R; Behrouz, N

    2009-01-01

    We construct a quintom dark energy model with two non-minimally coupled scalar fields, one quintessence and the other phantom field, confined to the warped Dvali-Gabadadze-Porrati (DGP) brane. We show that this model accounts for crossing of the phantom divide line in appropriate subspaces of the model parameter space. This crossing occurs for both normal and self-accelerating branches of this DGP-inspired setup.

  1. Inert doublet dark matter with an additional scalar singlet and 125 GeV Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Dutta Banik, Amit; Majumdar, Debasish [Saha Institute of Nuclear Physics, Astroparticle Physics and Cosmology Division, Kolkata (India)

    2014-11-15

    In this work we consider a model for particle dark matter where an extra inert Higgs doublet and an additional scalar singlet is added to the Standard Model (SM) Lagrangian. The dark matter candidate is obtained from only the inert doublet. The stability of this one component dark matter is ensured by imposing a Z{sub 2} symmetry on this additional inert doublet. The additional singlet scalar has a vacuum expectation value (VEV) and mixes with the Standard Model Higgs doublet, resulting in two CP even scalars h{sub 1} and h{sub 2}. We treat one of these scalars, h{sub 1}, to be consistent with the SM Higgs-like boson of mass around 125 GeV reported by the LHC experiment. These two CP even scalars contribute to the annihilation cross section of this inert doublet dark matter, resulting in a larger dark matter mass region that satisfies the observed relic density. We also investigate the h{sub 1} → γγ and h{sub 1} → γ Z processes and compared these with LHC results. This is also used to constrain the dark matter parameter space in the present model. We find that the dark matter candidate in the mass region 60-80 GeV (m{sub 1} = 125 GeV, mass of h{sub 1}) satisfies the recent bound from LUX direct detection experiment. (orig.)

  2. New production mechanism for keV sterile neutrino Dark Matter by decays of frozen-in scalars

    International Nuclear Information System (INIS)

    Merle, Alexander; Niro, Viviana; Schmidt, Daniel

    2014-01-01

    We propose a new production mechanism for keV sterile neutrino Dark Matter. In our setting, we assume the existence of a scalar singlet particle which never entered thermal equilibrium in the early Universe, since it only couples to the Standard Model fields by a really small Higgs portal interaction. For suitable values of this coupling, the scalar can undergo the so-called freeze-in process, and in this way be efficiently produced in the early Universe. These scalars can then decay into keV sterile neutrinos and produce the correct Dark Matter abundance. While similar settings in which the scalar does enter thermal equilibrium and then freezes out have been studied previously, the mechanism proposed here is new and represents a versatile extension of the known case. We perform a detailed numerical calculation of the DM production using a set of coupled Boltzmann equations, and we illustrate the successful regions in the parameter space. Our production mechanism notably can even work in models where active-sterile mixing is completely absent

  3. Distinguishing modified gravity from dark energy

    International Nuclear Information System (INIS)

    Bertschinger, Edmund; Zukin, Phillip

    2008-01-01

    The acceleration of the Universe can be explained either through dark energy or through the modification of gravity on large scales. In this paper we investigate modified gravity models and compare their observable predictions with dark energy models. Modifications of general relativity are expected to be scale independent on superhorizon scales and scale dependent on subhorizon scales. For scale-independent modifications, utilizing the conservation of the curvature scalar and a parametrized post-Newtonian formulation of cosmological perturbations, we derive results for large-scale structure growth, weak gravitational lensing, and cosmic microwave background anisotropy. For scale-dependent modifications, inspired by recent f(R) theories we introduce a parametrization for the gravitational coupling G and the post-Newtonian parameter γ. These parametrizations provide a convenient formalism for testing general relativity. However, we find that if dark energy is generalized to include both entropy and shear stress perturbations, and the dynamics of dark energy is unknown a priori, then modified gravity cannot in general be distinguished from dark energy using cosmological linear perturbations.

  4. WIMP Dark Matter and Unitarity-Conserving Inflation via a Gauge Singlet Scalar

    International Nuclear Information System (INIS)

    Kahlhoefer, Felix; McDonald, John

    2015-07-01

    A gauge singlet scalar with non-minimal coupling to gravity can drive inflation and later freeze out to become cold dark matter. We explore this idea by revisiting inflation in the singlet direction (S-inflation) and Higgs Portal Dark Matter in light of the Higgs discovery, limits from LUX and observations by Planck. We show that large regions of parameter space remain viable, so that successful inflation is possible and the dark matter relic abundance can be reproduced. Moreover, the scalar singlet can stabilise the electroweak vacuum and at the same time overcome the problem of unitarity-violation during inflation encountered by Higgs Inflation, provided the singlet is a real scalar. The 2-σ Planck upper bound on n s imposes that the singlet mass is below 2 TeV, so that almost the entire allowed parameter range can be probed by XENON1T.

  5. Beta Function Quintessence Cosmological Parameters and Fundamental Constants I: Power and Inverse Power Law Dark Energy Potentials

    Science.gov (United States)

    Thompson, Rodger I.

    2018-04-01

    This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar ϕ with respect to the natural log of the scale factor a, β (φ )=d φ /d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar ϕ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated "beta potential" is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are that are not calculable using only the model action. As an example this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that ΛCDM is part of the family of quintessence cosmology power law potentials with a power of zero.

  6. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    Theoretical framework. In the present work, the dark matter candidate has two components S and S′ both of ... The scalar sector potential (for Higgs and two real singlet scalars) in this framework can then be written .... In this work we obtain the allowed values of model parameters (δ2, δ′2, MS and M′S) using three direct ...

  7. Thermodynamics of perfect fluids from scalar field theory

    CERN Document Server

    Ballesteros, Guillermo; Pilo, Luigi

    2016-01-01

    The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.

  8. Implications of a scalar dark force for terrestrial experiments

    International Nuclear Information System (INIS)

    Carroll, Sean M.; Mantry, Sonny; Ramsey-Musolf, Michael J.

    2010-01-01

    A long-range intergalactic force between dark matter (DM) particles, mediated by an ultralight scalar, is tightly constrained by galactic dynamics and large scale structure formation. We examine the implications of such a 'dark force' for several terrestrial experiments, including Eoetvoes tests of the Weak Equivalence Principle (WEP), direct-detection DM searches, and collider studies. The presence of a dark force implies a nonvanishing effect in Eoetvoes tests that could be probed by current and future experiments depending on the DM model. For scalar DM that is a singlet under the standard model gauge groups, a dark force of astrophysically relevant magnitude is ruled out in large regions of parameter space by the DM relic density and WEP constraints. WEP tests also imply constraints on the Higgs-exchange contributions to the spin-independent (SI) DM-nucleus direct-detection cross section. For WIMP scenarios, these considerations constrain Higgs-exchange contributions to the SI cross section to be subleading compared to gauge-boson mediated contributions. In multicomponent DM scenarios, a dark force would preclude large shifts in the rate for Higgs decay to two photons associated with DM-multiplet loops that might otherwise lead to measurable deviations at the LHC or a future linear collider. The combination of observations from galactic dynamics, large scale structure formation, Eoetvoes experiments, DM-direct-detection experiments, and colliders can further constrain the size of new long-range forces in the dark sector.

  9. Growth of perturbations in dark matter coupled with quintessence

    International Nuclear Information System (INIS)

    Koivisto, Tomi

    2005-01-01

    We consider the evolution of linear perturbations in models with a nonminimal coupling between dark matter and scalar field dark energy. Growth of matter inhomogeneities in two examples of such models proposed in the literature are investigated in detail. Both of these models are based on a low-energy limit of effective string theory action, and have been previously shown to naturally lead to late acceleration of the Universe. However, we find that these models can be ruled out by taking properly into account the impact of the scalar field coupling on the formation of structure in the dark matter density. In particular, when the transition to acceleration in these models begins, the interaction with dark energy enhances the small scale clustering in dark matter much too strongly. We discuss also the role of an effective small scale sound speed squared and the issue of adiabatic initial conditions in models with a coupled dark sector

  10. Quantum field theory in curved spacetime and the dark matter problem

    International Nuclear Information System (INIS)

    Grib, A. A.; Pavlov, Yu. V.

    2007-01-01

    Quantum field theory in nonstationary curved Friedmann spacetime leads to the phenomenon of creation of massive particles. The hypothesis that in the end of inflation gravitation creates from vacuum superheavy particles decaying on quarks and leptons leading to the observed baryon charge is investigated. Taking the complex scalar field for these particles in analogy with K 0 -meson theory one obtains two components - the long living and short living ones, so that the long living component after breaking the Grand Unification symmetry has a long life time and is observed today as dark matter. The hypothesis that ultra high energy cosmic rays occur as manifestation of superheavy dark matter is considered and some experimental possibilities of the proposed scheme are analyzed

  11. Nonminimally coupled scalar fields may not curve spacetime

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2005-01-01

    It is shown that flat spacetime can be dressed with a real scalar field that satisfies the nonlinear Klein-Gordon equation without curving spacetime. Surprisingly, this possibility arises from the nonminimal coupling of the scalar field with the curvature, since a footprint of the coupling remains in the energy-momentum tensor even when gravity is switched off. Requiring the existence of solutions with vanishing energy-momentum tensor fixes the self-interaction potential as a local function of the scalar field depending on two coupling constants. The solutions describe shock waves and, in the Euclidean continuation, instanton configurations in any dimension. As a consequence of this effect, the tachyonic solutions of the free massive Klein-Gordon equation become part of the vacuum

  12. Scalar dark matter, type II seesaw and the DAMPE cosmic ray e+ + e- excess

    Science.gov (United States)

    Li, Tong; Okada, Nobuchika; Shafi, Qaisar

    2018-04-01

    The DArk Matter Particle Explorer (DAMPE) has reported a measurement of the flux of high energy cosmic ray electrons plus positrons (CREs) in the energy range between 25GeV and 4.6TeV. With unprecedented high energy resolution, the DAMPE data exhibit an excess of the CREs flux at an energy of around 1.4TeV. In this letter, we discuss how the observed excess can be understood in a minimal framework where the Standard Model (SM) is supplemented by a stable SM singlet scalar as dark matter (DM) and type II seesaw for generating the neutrino mass matrix. In our framework, a pair of DM particles annihilates into a pair of the SM SU(2) triplet scalars (Δs) in type II seesaw, and the subsequent Δ decays create the primary source of the excessive CREs around 1.4TeV. The lepton flavor structure of the primary source of CREs has a direct relation with the neutrino oscillation data. We find that the DM interpretation of the DAMPE excess determines the pattern of neutrino mass spectrum to be the inverted hierarchy type, taking into account the constraints from the Fermi-LAT observations of dwarf spheroidal galaxies.

  13. Low-scale neutrino seesaw mechanism and scalar dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Fabbrichesi, M. [INFN, Sezione di Trieste, Trieste (Italy); Petcov, S.T. [INFN, Sezione di Trieste, Trieste (Italy); SISSA, Trieste (Italy); Kavli IPMU, University of Tokyo, Tokyo (Japan)

    2014-02-15

    We discuss how two birds - the little hierarchy problem of low-scale type-I seesaw models and the search for a viable dark matter candidate - are (proverbially) killed by one stone: a new inert scalar state. (orig.)

  14. Novel Probes of Gravity and Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Bhuvnesh; et al.

    2013-09-20

    The discovery of cosmic acceleration has stimulated theorists to consider dark energy or modifications to Einstein's General Relativity as possible explanations. The last decade has seen advances in theories that go beyond smooth dark energy -- modified gravity and interactions of dark energy. While the theoretical terrain is being actively explored, the generic presence of fifth forces and dark sector couplings suggests a set of distinct observational signatures. This report focuses on observations that differ from the conventional probes that map the expansion history or large-scale structure. Examples of such novel probes are: detection of scalar fields via lab experiments, tests of modified gravity using stars and galaxies in the nearby universe, comparison of lensing and dynamical masses of galaxies and clusters, and the measurements of fundamental constants at high redshift. The observational expertise involved is very broad as it spans laboratory experiments, high resolution astronomical imaging and spectroscopy and radio observations. In the coming decade, searches for these effects have the potential for discovering fundamental new physics. We discuss how the searches can be carried out using experiments that are already under way or with modest adaptations of existing telescopes or planned experiments. The accompanying paper on the Growth of Cosmic Structure describes complementary tests of gravity with observations of large-scale structure.

  15. Dark energy

    International Nuclear Information System (INIS)

    Wang, Yun

    2010-01-01

    Dark energy research aims to illuminate the mystery of the observed cosmic acceleration, one of the fundamental problems in physics and astronomy today. This book presents a systematic and detailed review of the current state of dark energy research, with the focus on the examination of the major observational techniques for probing dark energy. It can be used as a textbook to train students and others who wish to enter this extremely active field in cosmology.

  16. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, L.

    2006-06-01

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10 13 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  17. Rippled cosmological dark matter from a damped oscillating Newton constant

    International Nuclear Information System (INIS)

    Davidson, Aharon

    2005-01-01

    Let the reciprocal Newton 'constant' be an apparently non-dynamical Brans-Dicke scalar field damped oscillating towards its general relativistic VEV. We show, without introducing additional matter fields or dust, that the corresponding cosmological evolution averagely resembles, in the Jordan frame, the familiar dark radiation → dark matter → dark energy domination sequence. The fingerprints of our theory are fine ripples, hopefully testable, in the FRW scale factor; they die away at the general relativity limit. The possibility that the Brans-Dicke scalar also serves as the inflaton is favourably examined

  18. Ricci dark energy in Chern-Simons modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.G.; Santos, A.F. [Universidade Federal de Mato Grosso (UFMT), Campo Grande, MT (Brazil)

    2013-07-01

    Full text: Currently the accelerated expansion of the universe has been strongly confirmed by some independent experiments such as the Cosmic Microwave Background Radiation (CMBR) and Sloan Digital Sky Survey (SDSS). In an attempt to explain this phenomenon there are two possible paths; first option - propose corrections to general relativity, second option - assuming that there is a dominant component of the universe, a kind of antigravity called dark energy. Any way that we intend to follow, there are numerous models that attempt to explain this effect. One of the models of modified gravity that has stood out in recent years is the Chern-Simons modified gravity. This modification consists in the addition of the Pontryagin density, which displays violation of parity symmetry in Einstein-Hilbert action. From among the various models proposed for dark energy there are some that are based on the holographic principle, known as holographic dark energy. Such models are based on the idea that the energy density of a given system is proportional to the inverse square of some characteristic length of the system. From these studies, here we consider the model proposed by Gao et. al., a model of dark energy where the characteristic length is given by the average radius of the Ricci scalar. Thus, the dark energy density is proportional to the Ricci scalar, i.e., ρ{sub x} ∝ R. It is a phenomenologically viable model and displays results similar to that presented by the cosmological model ACDM. In this work, we have considered the Ricci dark energy model in the dynamic Chern-Simons modified gravity. We show that in this context the evolution of the scale factor is similar to that displayed by the modified Chaplygin gas. (author)

  19. Ricci dark energy in Chern-Simons modified gravity

    International Nuclear Information System (INIS)

    Silva, J.G.; Santos, A.F.

    2013-01-01

    Full text: Currently the accelerated expansion of the universe has been strongly confirmed by some independent experiments such as the Cosmic Microwave Background Radiation (CMBR) and Sloan Digital Sky Survey (SDSS). In an attempt to explain this phenomenon there are two possible paths; first option - propose corrections to general relativity, second option - assuming that there is a dominant component of the universe, a kind of antigravity called dark energy. Any way that we intend to follow, there are numerous models that attempt to explain this effect. One of the models of modified gravity that has stood out in recent years is the Chern-Simons modified gravity. This modification consists in the addition of the Pontryagin density, which displays violation of parity symmetry in Einstein-Hilbert action. From among the various models proposed for dark energy there are some that are based on the holographic principle, known as holographic dark energy. Such models are based on the idea that the energy density of a given system is proportional to the inverse square of some characteristic length of the system. From these studies, here we consider the model proposed by Gao et. al., a model of dark energy where the characteristic length is given by the average radius of the Ricci scalar. Thus, the dark energy density is proportional to the Ricci scalar, i.e., ρ x ∝ R. It is a phenomenologically viable model and displays results similar to that presented by the cosmological model ACDM. In this work, we have considered the Ricci dark energy model in the dynamic Chern-Simons modified gravity. We show that in this context the evolution of the scale factor is similar to that displayed by the modified Chaplygin gas. (author)

  20. Self-acceleration in scalar-bimetric theories

    Science.gov (United States)

    Brax, Philippe; Valageas, Patrick

    2018-05-01

    We describe scalar-bimetric theories where the dynamics of the Universe are governed by two separate metrics, each with an Einstein-Hilbert term. In this setting, the baryonic and dark matter components of the Universe couple to metrics which are constructed as functions of these two gravitational metrics. More precisely, the two metrics coupled to matter are obtained by a linear combination of their vierbeins, with scalar-dependent coefficients. The scalar field, contrary to dark-energy models, does not have a potential of which the role is to mimic a late-time cosmological constant. The late-time acceleration of the expansion of the Universe can be easily obtained at the background level in these models by appropriately choosing the coupling functions appearing in the decomposition of the vierbeins for the baryonic and dark matter metrics. We explicitly show how the concordance model can be retrieved with negligible scalar kinetic energy. This requires the scalar coupling functions to show variations of order unity during the accelerated expansion era. This leads in turn to deviations of order unity for the effective Newton constants and a fifth force that is of the same order as Newtonian gravity, with peculiar features. The baryonic and dark matter self-gravities are amplified although the gravitational force between baryons and dark matter is reduced and even becomes repulsive at low redshift. This slows down the growth of baryonic density perturbations on cosmological scales, while dark matter perturbations are enhanced. These scalar-bimetric theories have a perturbative cutoff scale of the order of 1 AU, which prevents a precise comparison with Solar System data. On the other hand, we can deduce strong requirements on putative UV completions by analyzing the stringent constraints in the Solar System. Hence, in our local environment, the upper bound on the time evolution of Newton's constant requires an efficient screening mechanism that both damps the fifth

  1. Effect of the chameleon scalar field on brane cosmological evolution

    Science.gov (United States)

    Bisabr, Y.; Ahmadi, F.

    2017-11-01

    We have investigated a brane world model in which the gravitational field in the bulk is described both by a metric tensor and a minimally coupled scalar field. This scalar field is taken to be a chameleon with an appropriate potential function. The scalar field interacts with matter and there is an energy transfer between the two components. We find a late-time asymptotic solution which exhibits late-time accelerating expansion. We also show that the Universe recently crosses the phantom barrier without recourse to any exotic matter. We provide some thermodynamic arguments which constrain both the direction of energy transfer and dynamics of the extra dimension.

  2. Effect of the chameleon scalar field on brane cosmological evolution

    Directory of Open Access Journals (Sweden)

    Y. Bisabr

    2017-11-01

    Full Text Available We have investigated a brane world model in which the gravitational field in the bulk is described both by a metric tensor and a minimally coupled scalar field. This scalar field is taken to be a chameleon with an appropriate potential function. The scalar field interacts with matter and there is an energy transfer between the two components. We find a late-time asymptotic solution which exhibits late-time accelerating expansion. We also show that the Universe recently crosses the phantom barrier without recourse to any exotic matter. We provide some thermodynamic arguments which constrain both the direction of energy transfer and dynamics of the extra dimension.

  3. Effective description of higher-order scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, David [APC—Astroparticule et Cosmologie, Université Paris Diderot Paris 7, 75013 Paris (France); Mancarella, Michele; Vernizzi, Filippo [Institut de physique théorique, Université Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette (France); Noui, Karim, E-mail: langlois@apc.univ-paris7.fr, E-mail: michele.mancarella@cea.fr, E-mail: karim.noui@lmpt.univ-tours.fr, E-mail: filippo.vernizzi@cea.fr [Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais, Parc de Grandmont, 37200 Tours (France)

    2017-05-01

    Most existing theories of dark energy and/or modified gravity, involving a scalar degree of freedom, can be conveniently described within the framework of the Effective Theory of Dark Energy, based on the unitary gauge where the scalar field is uniform. We extend this effective approach by allowing the Lagrangian in unitary gauge to depend on the time derivative of the lapse function. Although this dependence generically signals the presence of an extra scalar degree of freedom, theories that contain only one propagating scalar degree of freedom, in addition to the usual tensor modes, can be constructed by requiring the initial Lagrangian to be degenerate. Starting from a general quadratic action, we derive the dispersion relations for the linear perturbations around Minkowski and a cosmological background. Our analysis directly applies to the recently introduced Degenerate Higher-Order Scalar-Tensor (DHOST) theories. For these theories, we find that one cannot recover a Poisson-like equation in the static linear regime except for the subclass that includes the Horndeski and so-called 'beyond Horndeski' theories. We also discuss Lorentz-breaking models inspired by Horava gravity.

  4. Unification of inflation, dark energy, and dark matter within the Salam-Sezgin cosmological model

    International Nuclear Information System (INIS)

    Henriques, Alfredo B.; Potting, Robertus; Sa, Paulo M.

    2009-01-01

    We investigate a cosmological model, based on the Salam-Sezgin six-dimensional supergravity theory and on previous work by Anchordoqui, Goldberg, Nawata, and Nunez. Assuming a period of warm inflation, we show that it is possible to extend the evolution of the model back in time, to include the inflationary period, thus unifying inflation, dark matter, and dark energy within a single framework. Like the previous authors, we were not able to obtain the full dark matter content of the universe from the Salam-Sezgin scalar fields. However, even if only partially successful, this work shows that present-day theories, based on superstrings and supergravity, may eventually lead to a comprehensive modeling of the evolution of the universe. We find that the gravitational-wave spectrum of the model has a nonconstant negative slope in the frequency range (10 -15 -10 6 ) rad/s, and that, unlike standard (cold) inflation models, it shows no structure in the MHz/GHz range of frequencies.

  5. Emergence of running dark energy from polynomial f( R) theory in Palatini formalism

    Science.gov (United States)

    Szydłowski, Marek; Stachowski, Aleksander; Borowiec, Andrzej

    2017-09-01

    We consider FRW cosmology in f(R)= R+ γ R^2+δ R^3 modified framework. The Palatini approach reduces its dynamics to the simple generalization of Friedmann equation. Thus we study the dynamics in two-dimensional phase space with some details. After reformulation of the model in the Einstein frame, it reduces to the FRW cosmological model with a homogeneous scalar field and vanishing kinetic energy term. This potential determines the running cosmological constant term as a function of the Ricci scalar. As a result we obtain the emergent dark energy parametrization from the covariant theory. We study also singularities of the model and demonstrate that in the Einstein frame some undesirable singularities disappear.

  6. Emergence of running dark energy from polynomial f(R) theory in Palatini formalism

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Stachowski, Aleksander [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Borowiec, Andrzej [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland)

    2017-09-15

    We consider FRW cosmology in f(R)= R + γR{sup 2} + δR{sup 3} modified framework. The Palatini approach reduces its dynamics to the simple generalization of Friedmann equation. Thus we study the dynamics in two-dimensional phase space with some details. After reformulation of the model in the Einstein frame, it reduces to the FRW cosmological model with a homogeneous scalar field and vanishing kinetic energy term. This potential determines the running cosmological constant term as a function of the Ricci scalar. As a result we obtain the emergent dark energy parametrization from the covariant theory. We study also singularities of the model and demonstrate that in the Einstein frame some undesirable singularities disappear. (orig.)

  7. Resonant SIMP dark matter

    Directory of Open Access Journals (Sweden)

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  8. Anisotropic scalar field with cosmological time

    International Nuclear Information System (INIS)

    Kleber, A.; Teixeira, A.F.F.

    1978-04-01

    A static, nonsingular, plane-symmetric scalar field of long range is considered under the general relativity, and a one-parametric class of exact solutions with cosmological time is obtained, in harmonic coordinates. In the absence of any material source, the gravitation originated by the pure scalar field can be studied in detail. A velocity-dependent acceleration field is found, acting attractively on the component of the velocity normal to the plane of symmetry, and repulsively on the component parallel to that plane. Particles at rest are insensitive to the gravitation, although the time component of the energy momentum tensor is point dependent and positive definite

  9. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    2016-01-05

    component dark matter model with real singlet scalars confronting GeV -ray excess from galactic centre and Fermi bubble. Debasish Majumdar Kamakshya Prasad Modak Subhendu Rakshit. Special: Cosmology Volume 86 Issue ...

  10. Interacting entropy-corrected new agegraphic dark energy in the non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, Kayoomars [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Sorouri, Arash, E-mail: KKarami@uok.ac.i [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2010-08-15

    Here, we consider the entropy-corrected version of the new agegraphic dark energy (NADE) model in the non-flat Friedmann-Robertson-Walker universe. We derive the exact differential equation that determines the evolution of the entropy-corrected NADE density parameter in the presence of interaction with dark matter. We also obtain the equation of state and deceleration parameters and present a necessary condition for the selected model to cross the phantom divide. Moreover, we reconstruct the potential and the dynamics of the phantom scalar field according to the evolutionary behavior of the interacting entropy-corrected new agegraphic model.

  11. Exact spinor-scalar bound states in a quantum field theory with scalar interactions

    International Nuclear Information System (INIS)

    Shpytko, Volodymyr; Darewych, Jurij

    2001-01-01

    We study two-particle systems in a model quantum field theory in which scalar particles and spinor particles interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green's functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown to have Dirac and Klein-Gordon one-particle limits. Analytical solutions for the bound state energy spectrum are obtained for the case of massless mediating fields

  12. Inflation, Dark Matter, and Dark Energy in the String Landscape

    OpenAIRE

    Liddle, Andrew R; Ureña-López, L Arturo

    2006-01-01

    We consider the conditions needed to unify the description of dark matter, dark energy and inflation in the context of the string landscape. We find that incomplete decay of the inflaton field gives the possibility that a single field is responsible for all three phenomena. By contrast, unifying dark matter and dark energy into a single field, separate from the inflaton, appears rather difficult.

  13. Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions

    International Nuclear Information System (INIS)

    Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.

    1979-01-01

    Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given

  14. Vacuum stability of a general scalar potential of a few fields

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, Kristjan [NICPB, Tallinn (Estonia)

    2016-06-15

    We calculate analytical vacuum stability or bounded from below conditions for general scalar potentials of a few fields. After a brief review of copositivity, we show how to find positivity conditions for more complicated potentials. We discuss the vacuum stability conditions of the general potential of two real scalars, without and with the Higgs boson included in the potential. As further examples, we give explicit vacuum stability conditions for the two Higgs doublet model with no explicit CP breaking, and for the Z{sub 3} scalar dark matter with an inert doublet and a complex singlet. We give a short overview of positivity conditions for tensors of quartic couplings via tensor eigenvalues. (orig.)

  15. Observational constraints on tachyonic chameleon dark energy model

    Science.gov (United States)

    Banijamali, A.; Bellucci, S.; Fazlpour, B.; Solbi, M.

    2018-03-01

    It has been recently shown that tachyonic chameleon model of dark energy in which tachyon scalar field non-minimally coupled to the matter admits stable scaling attractor solution that could give rise to the late-time accelerated expansion of the universe and hence alleviate the coincidence problem. In the present work, we use data from Type Ia supernova (SN Ia) and Baryon Acoustic oscillations to place constraints on the model parameters. In our analysis we consider in general exponential and non-exponential forms for the non-minimal coupling function and tachyonic potential and show that the scenario is compatible with observations.

  16. Search for a photophilic scalar mediator between standard model and dark sector particles in di-photon final states

    CERN Document Server

    Belfkir, Mohamed

    2017-01-01

    The strong CP violation and Dark matter are two important and theoretically compelling issues in modern particle physics and cosmology and the concept of axion-like particle (ALPs) is an elegant solution to both. To solve the CP violation problem we introduce a scalar field. The quanta associated to this field is the ALP.

  17. Inflation via logarithmic entropy-corrected holographic dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Darabi, F.; Felegary, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Setare, M.R. [University of Kurdistan, Department of Science, Bijar (Iran, Islamic Republic of)

    2016-12-15

    We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)

  18. Inflation via logarithmic entropy-corrected holographic dark energy model

    International Nuclear Information System (INIS)

    Darabi, F.; Felegary, F.; Setare, M.R.

    2016-01-01

    We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)

  19. Cosmology with interaction in the dark sector

    International Nuclear Information System (INIS)

    Costa, F. E. M.; Barboza, E. M. Jr.; Alcaniz, J. S.

    2009-01-01

    Unless some unknown symmetry in nature prevents or suppresses a nonminimal coupling in the dark sector, the dark energy field may interact with the pressureless component of dark matter. In this paper, we investigate some cosmological consequences of a general model of interacting dark matter-dark energy characterized by a dimensionless parameter ε. We derive a coupled scalar field version for this general class of scenarios and carry out a joint statistical analysis involving type Ia supernovae data (Legacy and Constitution sets), measurements of baryon acoustic oscillation peaks at z=0.20 (2dFGRS) and z=0.35 (SDSS), and measurements of the Hubble evolution H(z). For the specific case of vacuum decay (w=-1), we find that, although physically forbidden, a transfer of energy from dark matter to dark energy is favored by the data.

  20. Toward a unified description of dark energy and dark matter from the abnormally weighting energy hypothesis

    International Nuclear Information System (INIS)

    Fuezfa, A.; Alimi, J.-M.

    2007-01-01

    The abnormally weighting energy hypothesis consists of assuming that the dark sector of cosmology violates the weak equivalence principle (WEP) on cosmological scales, which implies a violation of the strong equivalence principle for ordinary matter. In this paper, dark energy is shown to result from the violation of WEP by pressureless (dark) matter. This allows us to build a new cosmological framework in which general relativity is satisfied at low scales, as WEP violation depends on the ratio of the ordinary matter over dark matter densities, but at large scales, we obtain a general relativity-like theory with a different value of the gravitational coupling. This explanation is formulated in terms of a tensor-scalar theory of gravitation without WEP for which there exists a revisited convergence mechanism toward general relativity. The consequent dark energy mechanism build upon the anomalous gravity of dark matter (i) does not require any violation of the strong energy condition p 2 /3, (ii) offers a natural way out of the coincidence problem thanks to the nonminimal couplings to gravitation, (iii) accounts fairly for supernovae data from various simple couplings and with density parameters very close to the ones of the concordance model ΛCDM, and therefore suggests an explanation to its remarkable adequacy. Finally, (iv) this mechanism ends up in the future with an Einstein-de Sitter expansion regime once the attractor is reached

  1. Mapping misoriented fibers using X-ray dark field tomography

    DEFF Research Database (Denmark)

    Lauridsen, Torsten; Lauridsen, Erik Mejdal; Feidenhans’l, Robert

    2014-01-01

    such tomograms on a highly nonisotropic sample, i.e. a five layer “sandwich” of oriented carbon fibers. The fibers are parallel within the individual sandwich layers, but perpendicular to the fibers in the adjacent layers. We show that by choosing a rotation axis parallel to the grating stepping direction (i.......e. a horizontal rotation axis in most setup configurations) it is possible to produce a darkfield tomogram where fibers parallel to the probed scattering direction appear to have no dark field signal. The method produces a tomogram in the form of a scalar field of dark field scattering values....

  2. The 5D Standing Wave Braneworld with Real Scalar Field

    OpenAIRE

    Merab Gogberashvili; Pavle Midodashvili

    2013-01-01

    We introduce the new 5D braneworld with the real scalar field in the bulk. The model represents the brane which bounds collective oscillations of gravitational and scalar field standing waves. These waves are out of phase; that is, the energy of oscillations passes back and forth between the scalar and gravitational waves. When the amplitude of the standing waves is small, the brane width and the size of the horizon in extra space are of a same order of magnitude, and matter fields are locali...

  3. Fitting and forecasting coupled dark energy in the non-linear regime

    Energy Technology Data Exchange (ETDEWEB)

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, Heidelberg, 69120 Germany (Germany); Baldi, Marco, E-mail: casas@thphys.uni-heidelberg.de, E-mail: l.amendola@thphys.uni-heidelberg.de, E-mail: mail@marcobaldi.it, E-mail: v.pettorino@thphys.uni-heidelberg.de, E-mail: vollmer@thphys.uni-heidelberg.de [Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, viale Berti Pichat, 6/2, Bologna, I-40127 Italy (Italy)

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.

  4. Fitting and forecasting coupled dark energy in the non-linear regime

    International Nuclear Information System (INIS)

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian; Baldi, Marco

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β 2 , with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications

  5. Interacting dark sector with transversal interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chimento, Luis P.; Richarte, Martín G. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Pabellón I, Buenos Aires 1428 (Argentina)

    2015-03-26

    We investigate the interacting dark sector composed of dark matter, dark energy, and dark radiation for a spatially flat Friedmann-Robertson-Walker (FRW) background by introducing a three-dimensional internal space spanned by the interaction vector Q and solve the source equation for a linear transversal interaction. Then, we explore a realistic model with dark matter coupled to a scalar field plus a decoupled radiation term, analyze the amount of dark energy in the radiation era and find that our model is consistent with the recent measurements of cosmic microwave background anisotropy coming from Planck along with the future constraints achievable by CMBPol experiment.

  6. Cosmological viability conditions for f(T) dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2012-11-01

    Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.

  7. Impact of semi-annihilations on dark matter phenomenology. An example of ZN symmetric scalar dark matter

    International Nuclear Information System (INIS)

    Bélanger, Geneviève; Kannike, Kristjan; Pukhov, Alexander; Raidal, Martti

    2012-01-01

    We study the impact of semi-annihilations x i x j ↔x k X and dark matter conversion x i x j ↔x k x l , where x i is any dark matter and X is any standard model particle, on dark matter phenomenology. We formulate minimal scalar dark matter models with an extra doublet and a complex singlet that predict non-trivial dark matter phenomenology with semi-annihilation processes for different discrete Abelian symmetries Z N , N > 2. We implement two such example models with Z 3 and Z 4 symmetry in micrOMEGAs and work out their phenomenology. We show that both semi-annihilations and dark matter conversion significantly modify the dark matter relic abundance in this type of models. In the Z 4 model, there are two stable neutral particles and therefore multi-component dark matter. We also study the possibility of dark matter direct detection in XENON100 in those models

  8. Dark energy from discrete spacetime.

    Directory of Open Access Journals (Sweden)

    Aaron D Trout

    Full Text Available Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  9. Dark energy from discrete spacetime.

    Science.gov (United States)

    Trout, Aaron D

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  10. Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure

    Science.gov (United States)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.

  11. Dynamics of quintessence models of dark energy with exponential coupling to dark matter

    International Nuclear Information System (INIS)

    Gonzalez, Tame; Leon, Genly; Quiros, Israel

    2006-01-01

    We explore quintessence models of dark energy which exhibit non-minimal coupling between the dark matter and dark energy components of the cosmic fluid. The kind of coupling chosen is inspired by scalar-tensor theories of gravity. We impose a suitable dynamics of the expansion allowing us to derive exact Friedmann-Robertson-Walker solutions once the coupling function is given as input. Self-interaction potentials of single and double exponential types emerge as a result of our choice of the coupling function. The stability and existence of the solutions are discussed in some detail. Although, in general, models with appropriate interaction between the components of the cosmic mixture are useful for handling the coincidence problem, in the present study this problem cannot be avoided due to the choice of solution generating ansatz

  12. Weakly interacting dark matter and baryogenesis

    International Nuclear Information System (INIS)

    Gu Peihong; Lindner, Manfred; Sarkar, Utpal; Zhang Xinmin

    2011-01-01

    In the present Universe visible and dark matter contribute comparable energy density although they have different properties. This phenomenon can be explained if the dark matter relic density, originating from a dark matter asymmetry, is fully determined by the baryon asymmetry. Thus the dark matter mass is not arbitrary; rather, it becomes predictive. We realize this scenario in baryon (lepton) number conserving models where two or more neutral singlet scalars decay into two or three baryonic (leptonic) dark matter scalars, and also decay into quarks (leptons) through other on-shell and/or off-shell exotic scalar bilinears. The produced baryon (lepton) asymmetries in the dark matter scalar and in the standard model quarks (leptons) are thus equal and opposite. The dark matter mass can be predicted in a range from a few GeV to a few TeV, depending on the baryon (lepton) numbers of the decaying scalars and the dark matter scalar. The dark matter scalar can interact with the visible matter through the exchange of the standard model Higgs boson, opening a window for the dark matter direct detection experiments. These models also provide testable predictions in the searches for the exotic scalar bilinears at LHC.

  13. Schwarzschild black holes can wear scalar wigs.

    Science.gov (United States)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  14. Symmetry inheritance of scalar fields

    International Nuclear Information System (INIS)

    Ivica Smolić

    2015-01-01

    Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair. (paper)

  15. Multiloop atom interferometer measurements of chameleon dark energy in microgravity

    Science.gov (United States)

    Chiow, Sheng-wey; Yu, Nan

    2018-02-01

    Chameleon field is one of the promising candidates of dark energy scalar fields. As in all viable candidate field theories, a screening mechanism is implemented to be consistent with all existing tests of general relativity. The screening effect in the chameleon theory manifests its influence limited only to the thin outer layer of a bulk object, thus producing extra forces orders of magnitude weaker than that of the gravitational force of the bulk. For pointlike particles such as atoms, the depth of screening is larger than the size of the particle, such that the screening mechanism is ineffective and the chameleon force is fully expressed on the atomic test particles. Extra force measurements using atom interferometry are thus much more sensitive than bulk mass based measurements, and indeed have placed the most stringent constraints on the parameters characterizing chameleon field. In this paper, we present a conceptual measurement approach for chameleon force detection using atom interferometry in microgravity, in which multiloop atom interferometers exploit specially designed periodic modulation of chameleon fields. We show that major systematics of the dark energy force measurements, i.e., effects of gravitational forces and their gradients, can be suppressed below all hypothetical chameleon signals in the parameter space of interest.

  16. Gravitational Field Shielding by Scalar Field and Type II Superconductors

    Directory of Open Access Journals (Sweden)

    Zhang B. J.

    2013-01-01

    Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.

  17. Isotropic background for interacting two fluid scenario coupled with zero mass scalar field in modified gravity

    International Nuclear Information System (INIS)

    Chirde, V.R.; Shekh, S.H.

    2016-01-01

    The modified theories of gravity have engrossed much attention in the last decade, especially f(R) gravity. In this contextual exploration, we investigate interaction between barotropic fluid and dark energy with zero-mass scalar field for the spatially homogeneous and isotropic flat FRW universe. In this universe, the field equations correspond to the particular choice of f(R) = R+bR m . The exact solutions of the field equations are obtained by applying volumetric power law and exponential law of expansion. In power and exponential law of expansion, the universe shows both matter dominated and DE era for b ≤ 0 and b ≥ 0 and remain present in dark era respectively, but power law model is fully occupying with real matter for b > 0 and for b < 0 exponential model expands with negative pressure and remain present in matter dominated phase respectively. The physical behavior of the universe has been discussed by using some physical quantities

  18. Scalar field cosmology in three-dimensions

    International Nuclear Information System (INIS)

    Oliveira Neto, G.

    2001-01-01

    We study an analytical solution to the Einstein's equations in 2 + 1-dimensions. The space-time is dynamical and has a line symmetry. The matter content is a minimally coupled, massless, scalar field. Depending on the value of certain parameters, this solution represents three distinct space-times. The first one is at space-time. Then, we have a big bang model with a negative curvature scalar and a real scalar field. The last case is a big bang model with event horizons where the curvature scalar vanishes and the scalar field changes from real to purely imaginary. (author)

  19. Energy levels of a scalar particle in a static gravitational field close to the black hole limit

    Science.gov (United States)

    Gossel, G. H.; Berengut, J. C.; Flambaum, V. V.

    2011-10-01

    The bound-state energy levels of a scalar particle in the gravitational field of finite-sized objects with interiors described by the Florides and Schwarzschild metrics are found. For these metrics, bound states with zero energy (where the binding energy is equal to the rest mass of the scalar particle) only exist when a singularity occurs in the metric. Therefore, in contrast to the Coulomb case, no pairs are produced in the non-singular static metric. For the Florides metric the singularity occurs in the black hole limit, while for the Schwarzschild interior metric it corresponds to infinite pressure at the center. Moreover, the energy spectrum is shown to become quasi-continuous as the metric becomes singular.

  20. Energy-momentum tensor in theories with scalar fields and two coupling constants. I. Non-Abelian case

    International Nuclear Information System (INIS)

    Joglekar, S.D.; Misra, A.

    1989-01-01

    In this paper, we generalize our earlier discussion of renormalization of the energy-momentum tensor in scalar QED to that in non-Abelian gauge theories involving scalar fields. We show the need for adding an improvement term to the conventional energy-momentum tensor. We consider two possible forms for the improvement term: (i) one in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be derived from an action that is a finite function of bare quantities); (ii) one in which the improvement coefficient is a finite quantity, i.e., a finite function of renormalized parameters. We establish a negative result; viz., neither form leads to a finite energy-momentum tensor to O(e 2 λ/sup n/)

  1. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    2016-01-05

    Jan 5, 2016 ... We propose a two-component dark matter (DM) model, each component of which is a real singlet scalar, to explain results from both direct and indirect detection experiments. We put the constraints on the model parameters from theoretical bounds, PLANCK relic density results and direct DM experiments.

  2. A simplified 2HDM with a scalar dark matter and the galactic center gamma-ray excess

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Han, Xiao-Fang, E-mail: xfhan@mail.itp.ac.cn

    2014-12-12

    Due to the strong constraint from the LUX experiment, the scalar portal dark matter cannot generally explain a gamma-ray excess in the galactic center by the annihilation of dark matter to bb{sup ¯}. With the motivation of eliminating the tension, we add a scalar dark matter to the aligned two-Higgs-doublet model, and focus on a simplified scenario, which has two main characteristics: (i) The heavy CP-even Higgs is the discovered 125 GeV Higgs boson, which has the same couplings to the gauge bosons and fermions as the SM Higgs. (ii) Only the light CP-even Higgs mediates the dark matter interactions with SM particles, which have no couplings to WW and ZZ, but have the independent couplings to the up-type quarks, down-type quarks and charged leptons. We find that the tension between 〈σv〉{sub SS→bb{sup ¯}} and the constraint from LUX induced by the scalar portal dark matter can go away for the isospin-violating dark matter–nucleon coupling with −1.0

  3. Dependence of cosmological energy-density irregularities on the shape of the scalar-field potential during inflation and ''reheating''

    International Nuclear Information System (INIS)

    Ratra, B.

    1991-01-01

    Estimates for the baryon-dominated epoch form of the large-scale adiabatic energy-density irregularities generated during an early scalar-field-dominated inflation epoch, in simple inflation-modified hot-big-bang models, are compared to the widely used approximate general expression, which is proportional to the large-scale, gauge-invariant part of H 2 left-angle φφ * right-angle/(Φ b ) 2 evaluated at the first Hubble radius crossing (here Φ b and φ are the spatially homogeneous and inhomogeneous parts of the scalar field, H is the Hubble parameter, and an overdot represents a derivative with respect to time). In the de Sitter inflation limit, if the inflation-epoch background scalar-field solution is an ''attractor,'' or if there is sufficient inflation before the scale of interest leaves the Hubble radius, the approximate general expression identically reproduces what we have found. It is also less than an order of magnitude away from our expression in a large fraction of the parameter space of the inflation model we study and is within 2 orders of magnitude of our result in almost all of parameter space. We also show that the more accurate general expression (which the above formula is an approximation of) identically reproduces our results in the simple models studied, provided the inflation-epoch background scalar-field solution is an ''attractor'' or if there is sufficient inflation. The approximate general formula is used to restudy energy-density inhomogeneities in the quartic-potential scalar-field de Sitter inflation model; the difference between the standard result in this model and our result in related models is traced to a difference in the form of the part of the potential used to model ''reheating'' and the end of inflation

  4. Dark energy and bouncing universe from k-fields

    International Nuclear Information System (INIS)

    Kang, Jin U

    2009-01-01

    In this thesis we consider some cosmological implications of k-fields, which are general scalar fields with non-canonical kinetic terms in the action. Cosmological scenarios with k-essence are invoked in order to explain the observed late-time acceleration of the universe. These scenarios avoid the need for fine-tuned initial conditions (the ''coincidence problem'') because of the attractor-like dynamics of the k-essence field φ. We carry out a comprehensive study of attractor-like cosmological solutions (''trackers'') involving a k-essence scalar field φ and another matter component. The result of this study is a complete classification of k-essence Lagrangians that admit asymptotically stable tracking solutions, among all Lagrangians of the form p=K(φ)L(X). Using this classification, we select the class of models that describe the late-time acceleration and avoid the coincidence problem through the tracking mechanism. In the context of k-essence cosmology, the superluminal epoch does not lead to causality violations. We discuss the implications of superluminal signal propagation for possible causality violations in Lorentz-invariant field theories. Another application of k-fields was made in the new ekpyrotic scenario that attempts to solve the big-bang singularity problem by involving violation of the null energy condition in a model which combines the ekpyrotic/cyclic scenario with the ghost condensate theory and the curvation mechanism of production of adiabatic perturbations of metric. The Lagrangian of this theory, as well as of the ghost condensate model, contains a term with higher derivatives, which was added to the theory to stabilize its vacuum state. We find that this term may affect the dynamics of the cosmological evolution. Moreover, after a proper quantization, this term results in the existence of a new ghost field with negative energy, which leads to a catastrophic vacuum instability. We explain why one cannot treat this dangerous term as a

  5. Dark energy and bouncing universe from k-fields

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin U

    2009-09-11

    In this thesis we consider some cosmological implications of k-fields, which are general scalar fields with non-canonical kinetic terms in the action. Cosmological scenarios with k-essence are invoked in order to explain the observed late-time acceleration of the universe. These scenarios avoid the need for fine-tuned initial conditions (the ''coincidence problem'') because of the attractor-like dynamics of the k-essence field {phi}. We carry out a comprehensive study of attractor-like cosmological solutions (''trackers'') involving a k-essence scalar field {phi} and another matter component. The result of this study is a complete classification of k-essence Lagrangians that admit asymptotically stable tracking solutions, among all Lagrangians of the form p=K({phi})L(X). Using this classification, we select the class of models that describe the late-time acceleration and avoid the coincidence problem through the tracking mechanism. In the context of k-essence cosmology, the superluminal epoch does not lead to causality violations. We discuss the implications of superluminal signal propagation for possible causality violations in Lorentz-invariant field theories. Another application of k-fields was made in the new ekpyrotic scenario that attempts to solve the big-bang singularity problem by involving violation of the null energy condition in a model which combines the ekpyrotic/cyclic scenario with the ghost condensate theory and the curvation mechanism of production of adiabatic perturbations of metric. The Lagrangian of this theory, as well as of the ghost condensate model, contains a term with higher derivatives, which was added to the theory to stabilize its vacuum state. We find that this term may affect the dynamics of the cosmological evolution. Moreover, after a proper quantization, this term results in the existence of a new ghost field with negative energy, which leads to a catastrophic vacuum instability. We explain

  6. Self-interacting scalar fields at high-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Deur, Alexandre [University of Virginia, Charlottesville, VA (United States)

    2017-06-15

    We study two self-interacting scalar field theories in their high-temperature limit using path integrals on a lattice. We first discuss the formalism and recover known potentials to validate the method. We then discuss how these theories can model, in the high-temperature limit, the strong interaction and General Relativity. For the strong interaction, the model recovers the known phenomenology of the nearly static regime of heavy quarkonia. The model also exposes a possible origin for the emergence of the confinement scale from the approximately conformal Lagrangian. Aside from such possible insights, the main purpose of addressing the strong interaction here - given that more sophisticated approaches already exist - is mostly to further verify the pertinence of the model in the more complex case of General Relativity for which non-perturbative methods are not as developed. The results have important implications on the nature of Dark Matter. In particular, non-perturbative effects naturally provide flat rotation curves for disk galaxies, without need for non-baryonic matter, and explain as well other observations involving Dark Matter such as cluster dynamics or the dark mass of elliptical galaxies. (orig.)

  7. Scalar field propagation in the ϕ 4 κ-Minkowski model

    Science.gov (United States)

    Meljanac, S.; Samsarov, A.; Trampetić, J.; Wohlgenannt, M.

    2011-12-01

    In this article we use the noncommutative (NC) κ-Minkowski ϕ 4 model based on the κ-deformed star product, (★ h ). The action is modified by expanding up to linear order in the κ-deformation parameter a, producing an effective model on commutative spacetime. For the computation of the tadpole diagram contributions to the scalar field propagation/self-energy, we anticipate that statistics on the κ-Minkowski is specifically κ-deformed. Thus our prescription in fact represents hybrid approach between standard quantum field theory (QFT) and NCQFT on the κ-deformed Minkowski spacetime, resulting in a κ-effective model. The propagation is analyzed in the framework of the two-point Green's function for low, intermediate, and for the Planckian propagation energies, respectively. Semiclassical/hybrid behavior of the first order quantum correction do show up due to the κ-deformed momentum conservation law. For low energies, the dependence of the tadpole contribution on the deformation parameter a drops out completely, while for Planckian energies, it tends to a fixed finite value. The mass term of the scalar field is shifted and these shifts are very different at different propagation energies. At the Planck-ian energies we obtain the direction dependent κ-modified dispersion relations. Thus our κ-effective model for the massive scalar field shows a birefringence effect.

  8. Fractional statistics, exceptional preons, scalar dark matter, lepton number violation, neutrino masses, and hidden gauge structure

    International Nuclear Information System (INIS)

    Zee, A.

    1985-09-01

    A brief review is given of the basics of fractional statistics, which is based on the Dirac-Bohm-Aharanov effect. Some group theoretic aspects of exceptional preons are breifly described, and a theory is proposed containing hypercolor and hyperflavor with G/sub HC/ x G/sub HF/ = E(6) x E(6) and preons in (27,27). It is also suggested that the dark matter in the universe is due to a scalar field which transforms as a singlet under SU(3) x SU(2) x U(1) and interacts only via the Higgs boson. Some speculation is made on the existence and physical consequences of a SU(2) singet charged scalar field which couples to two lepton doublet, necessarily violating electron, muon, and tauon numbers. The Majorana masses of neutrinos are discussed as the result of breaking the total lepton number. Abelian gauge field hidden inside non-abelian gauge theory is briefly described in analogy to the electromagnetic potential term. 20 refs

  9. Hydrodynamic fluctuations from a weakly coupled scalar field

    Science.gov (United States)

    Jackson, G.; Laine, M.

    2018-04-01

    Studies of non-equilibrium dynamics of first-order cosmological phase transitions may involve a scalar field interacting weakly with the energy-momentum tensor of a thermal plasma. At late times, when the scalar field is approaching equilibrium, it experiences both damping and thermal fluctuations. We show that thermal fluctuations induce a shear viscosity and a gravitational wave production rate, and propose that including this tunable contribution may help in calibrating the measurement of the gravitational wave production rate in hydrodynamic simulations. Furthermore it may enrich their physical scope, permitting in particular for a study of the instability of growing bubbles.

  10. Direct and indirect singlet scalar dark matter detection in the lepton-specific two-Higgs-doublet model

    International Nuclear Information System (INIS)

    Boucenna, M. S.; Profumo, S.

    2011-01-01

    A recent study of gamma-ray data from the Galactic center motivates the investigation of light (∼7-10 GeV) particle dark matter models featuring tau-lepton pairs as dominant annihilation final state. The lepton-specific two-Higgs-doublet model provides a natural framework where light, singlet scalar dark matter can pair-annihilate dominantly into tau leptons. We calculate the nucleon-dark matter cross section for singlet scalar dark matter within the lepton-specific two-Higgs-doublet model framework, and compare with recent results from direct detection experiments. We study how direct dark matter searches can be used to constrain the dark matter interpretation of gamma-ray observations, for different dominant annihilation final states. We show that models exist with the correct thermal relic abundance that could fit the claimed gamma-ray excess from the Galactic center region and have direct detection cross sections of the order of what is needed to interpret recent anomalous events reported by direct detection experiments.

  11. Transport equation for the time scale of a turbulent scalar field

    International Nuclear Information System (INIS)

    Kurbatskij, A.F.

    1999-01-01

    The two-parametric turbulence models cause serious difficulties by modeling the near-wall flows due to absence of the natural boundary condition on the wall for dissipation of the ε turbulence energy and the ε θ scalar field destruction. This difficulty may be overcome, if instead of the ε and ε θ , as the second parameter of the model, to apply the time scales of the turbulent dynamic and scalar fields. The equation of the scalar field is derived and numerical coefficients included therein, are determined from the simplest problems on the turbulent heat transfer [ru

  12. Einstein-Cartan Gravity with Torsion Field Serving as an Origin for the Cosmological Constant or Dark Energy Density

    Science.gov (United States)

    Ivanov, A. N.; Wellenzohn, M.

    2016-09-01

    We analyse the Einstein-Cartan gravity in its standard form { R }=R+{{ K }}2, where { R } {and} R are the Ricci scalar curvatures in the Einstein-Cartan and Einstein gravity, respectively, and {{ K }}2 is the quadratic contribution of torsion in terms of the contorsion tensor { K }. We treat torsion as an external (or background) field and show that its contribution to the Einstein equations can be interpreted in terms of the torsion energy-momentum tensor, local conservation of which in a curved spacetime with an arbitrary metric or an arbitrary gravitational field demands a proportionality of the torsion energy-momentum tensor to a metric tensor, a covariant derivative of which vanishes owing to the metricity condition. This allows us to claim that torsion can serve as an origin for the vacuum energy density, given by the cosmological constant or dark energy density in the universe. This is a model-independent result that may explain the small value of the cosmological constant, which is a long-standing problem in cosmology. We show that the obtained result is valid also in the Poincaré gauge gravitational theory of Kibble, where the Einstein-Hilbert action can be represented in the same form: { R }=R+{{ K }}2.

  13. Charged composite scalar dark matter

    Science.gov (United States)

    Balkin, Reuven; Ruhdorfer, Maximilian; Salvioni, Ennio; Weiler, Andreas

    2017-11-01

    We consider a composite model where both the Higgs and a complex scalar χ, which is the dark matter (DM) candidate, arise as light pseudo Nambu-Goldstone bosons (pNGBs) from a strongly coupled sector with TeV scale confinement. The global symmetry structure is SO(7)/SO(6), and the DM is charged under an exact U(1)DM ⊂ SO(6) that ensures its stability. Depending on whether the χ shift symmetry is respected or broken by the coupling of the top quark to the strong sector, the DM can be much lighter than the Higgs or have a weak-scale mass. Here we focus primarily on the latter possibility. We introduce the lowest-lying composite resonances and impose calculability of the scalar potential via generalized Weinberg sum rules. Compared to previous analyses of pNGB DM, the computation of the relic density is improved by fully accounting for the effects of the fermionic top partners. This plays a crucial role in relaxing the tension with the current DM direct detection constraints. The spectrum of resonances contains exotic top partners charged under the U(1)DM, whose LHC phenomenology is analyzed. We identify a region of parameters with f = 1.4 TeV and 200 GeV ≲ m χ ≲ 400 GeV that satisfies all existing bounds. This DM candidate will be tested by XENON1T in the near future.

  14. Time dependence of the field energy densities surrounding sources: Application to scalar mesons near point sources and to electromagnetic fields near molecules

    International Nuclear Information System (INIS)

    Persico, F.; Power, E.A.

    1987-01-01

    The time dependence of the dressing-undressing process, i.e., the acquiring or losing by a source of a boson field intensity and hence of a field energy density in its neighborhood, is considered by examining some simple soluble models. First, the loss of the virtual field is followed in time when a point source is suddenly decoupled from a neutral scalar meson field. Second, an initially bare point source acquires a virtual meson cloud as the coupling is switched on. The third example is that of an initially bare molecule interacting with the vacuum of the electromagnetic field to acquire a virtual photon cloud. In all three cases the dressing-undressing is shown to take place within an expanding sphere of radius r = ct centered at the source. At each point in space the energy density tends, for large times, to that of the ground state of the total system. Differences in the time dependence of the dressing between the massive scalar field and the massless electromagnetic field are discussed. The results are also briefly discussed in the light of Feinberg's ideas on the nature of half-dressed states in quantum field theory

  15. On the cosmology of scalar-tensor-vector gravity theory

    Science.gov (United States)

    Jamali, Sara; Roshan, Mahmood; Amendola, Luca

    2018-01-01

    We consider the cosmological consequences of a special scalar-tensor-vector theory of gravity, known as MOG (for MOdified Gravity), proposed to address the dark matter problem. This theory introduces two scalar fields G(x) and μ(x), and one vector field phiα(x), in addition to the metric tensor. We set the corresponding self-interaction potentials to zero, as in the standard form of MOG. Then using the phase space analysis in the flat Friedmann-Robertson-Walker background, we show that the theory possesses a viable sequence of cosmological epochs with acceptable time dependency for the cosmic scale factor. We also investigate MOG's potential as a dark energy model and show that extra fields in MOG cannot provide a late time accelerated expansion. Furthermore, using a dynamical system approach to solve the non-linear field equations numerically, we calculate the angular size of the sound horizon, i.e. θs, in MOG. We find that 8× 10‑3rad<θs<8.2× 10‑3 rad which is way outside the current observational bounds. Finally, we generalize MOG to a modified form called mMOG, and we find that mMOG passes the sound-horizon constraint. However, mMOG also cannot be considered as a dark energy model unless one adds a cosmological constant, and more importantly, the matter dominated era is still slightly different from the standard case.

  16. Dark Energy, scalar-curvature couplings and a critical acceleration scale

    CERN Document Server

    Navarro, Ignacio

    2008-01-01

    We study the effects of coupling a cosmologically rolling scalar field to higher order curvature terms. We show that when the strong coupling scale of the theory is on the 10^{-3}-10^{-1}eV range, the model passes all experimental bounds on the existence of fifth forces even if the field has a mass of the order of the Hubble scale in vacuum and non-suppressed couplings to SM fields. The reason is that the coupling to certain curvature invariant acts as an effective mass that grows in regions of large curvature. This prevents the field from rolling down its potential near sources and makes its effects on fifth-force search experiments performed in the laboratory to be observable only at the sub-mm scale. We obtain the static spherically symmetric solutions of the theory and show that a long-range force appears but it is turned on only below a fixed Newtonian acceleration scale of the order of the Hubble constant. We comment on the possibility of using this feature of the model to alleviate the CDM small scale ...

  17. Propagators for a scalar field in some Bianchi-type I universe

    International Nuclear Information System (INIS)

    Nariai, Hidekazu.

    1976-05-01

    As a sequel to previous papers on bi-scalar propagators in the Friedmann universes and a special Kasner universe (whose underlying space-time is flat), their counterparts for a massless scalar field in some Bianchi-type I universe (which is intrinsically curved and anisotropic) are derived by means of Hadamard's procedure and ours, the latter of which becomes inevitable in the realm of quantized field. The retarded propagator thus obtained is applied to the generation of the scalar field from a point source and a spatially uniform distribution of sources, respectively. In the former case, the luminosity formula for a point source is derived, which is an anisotropic version of Robertson's formula in the Friedmann universes. In the latter case, it is shown that the scalar field may behave as either a perfect fluid obeying Zel'dovich's hardest equation of state or an imperfect fluid whose equation of state violates the energy condition. Implication of the above three works on the occasion of quantizing the scalar field is also touched upon. (auth.)

  18. Comment on 'Effects of quantized scalar fields in cosmological spacetimes with big rip singularities'

    International Nuclear Information System (INIS)

    Haro, Jaume; Amoros, Jaume

    2011-01-01

    There are two nonequivalent ways to check if quantum effects in the context of semiclassical gravity can moderate or even cancel the final singularity appearing in a universe filled with dark energy: The method followed in [J. D. Bates and P. R. Anderson, Phys. Rev. D 82, 024018 (2010).] is to introduce the classical Friedmann solution in the energy density of the quantum field, and to compare the result with the density of dark energy determined by the Friedmann equation. The method followed in this comment is to solve directly the semiclassical equations. The results obtained by either method are very different, leading to opposed conclusions. The authors of [J. D. Bates and P. R. Anderson, Phys. Rev. D 82, 024018 (2010)] find that for a perfect fluid with state equation p=ωρ and ω<-1 (phantom fluid), considering realistic values of ω leads to a quantum field energy density that remains small compared to the dark energy density until the curvature reaches the Planck scale or higher, at which point the semiclassical approach stops being valid. The conclusion is that quantum effects do not affect significantly the expansion of the universe until the scalar curvature reaches the Planck scale. In this comment we will show by numerical integration of the semiclassical equations that quantum effects modify drastically the expansion of the universe from an early point. We also present an analytic argument explaining why the method of [J. D. Bates and P. R. Anderson, Phys. Rev. D 82, 024018 (2010)] fails to detect this. The units employed are the same as in [J. D. Bates and P. R. Anderson, Phys. Rev. D 82, 024018 (2010)] (c=(ℎ/2π)=G=1).

  19. Stochastic dark energy from inflationary quantum fluctuations

    Science.gov (United States)

    Glavan, Dražen; Prokopec, Tomislav; Starobinsky, Alexei A.

    2018-05-01

    We study the quantum backreaction from inflationary fluctuations of a very light, non-minimally coupled spectator scalar and show that it is a viable candidate for dark energy. The problem is solved by suitably adapting the formalism of stochastic inflation. This allows us to self-consistently account for the backreaction on the background expansion rate of the Universe where its effects are large. This framework is equivalent to that of semiclassical gravity in which matter vacuum fluctuations are included at the one loop level, but purely quantum gravitational fluctuations are neglected. Our results show that dark energy in our model can be characterized by a distinct effective equation of state parameter (as a function of redshift) which allows for testing of the model at the level of the background.

  20. On Scalar Energy: Mathematical Formulation

    International Nuclear Information System (INIS)

    Hathout, A.M.

    2011-01-01

    A new kind of electromagnetic waves (EMW), which exists only in vacuum of the empty space, will be discussed and mathematically formulated in this paper. The mathematical existence of this energy was first proposed in a series of groundbreaking equations by Scottish Mathematician, James Clerk Maxwell, in the mid of 1800 and 39;s. This energy is called scalar energy. It is characterized by both particle and wave like. The waves of this energy are called longitudinal EMW to distinguish them from transverse EM, the kind we are familiar with in our daily life. Teslas name of this energy is scalar energy or zero point energy. It is aimed at this paper to explain more details and to verify the scalar EM concept in vacuum.

  1. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    Science.gov (United States)

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Winter, Frank; Nplqcd Collaboration

    2018-04-01

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass mπ˜806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O (10 %), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.

  2. On symmetry inheritance of nonminimally coupled scalar fields

    Science.gov (United States)

    Barjašić, Irena; Smolić, Ivica

    2018-04-01

    We present the first symmetry inheritance analysis of fields non-minimally coupled to gravity. In this work we are focused on the real scalar field ϕ with nonminimal coupling of the form ξφ2 R . Possible cases of symmetry noninheriting fields are constrained by the properties of the Ricci tensor and the scalar potential. Examples of such spacetimes can be found among those which are ‘dressed’ with the stealth scalar field, a nontrivial scalar field configuration with the vanishing energy–momentum tensor. We classify the scalar field potentials which allow symmetry noninheriting stealth field configurations on top of the exact solutions of the Einstein’s gravitational field equation with the cosmological constant.

  3. Dark clouds in particle physics and cosmology: the issues of dark matter and dark energy

    International Nuclear Information System (INIS)

    Zhang Xinmin

    2011-01-01

    Unveiling the nature of dark matter and dark energy is one of the main tasks of particle physics and cosmology in the 21st century. We first present an overview of the history and current status of research in cosmology, at the same time emphasizing the new challenges in particle physics. Then we focus on the scientific issues of dark energy, dark matter and anti-matter, and review the recent progress made in these fields. Finally, we discuss the prospects for future research on the experimental probing of dark matter and dark energy in China. (authors)

  4. Barbero-Immirzi parameter as a scalar field: K-inflation from loop quantum gravity?

    International Nuclear Information System (INIS)

    Taveras, Victor; Yunes, Nicolas

    2008-01-01

    We consider a loop-quantum gravity inspired modification of general relativity, where the Holst action is generalized by making the Barbero-Immirzi (BI) parameter a scalar field, whose value could be dynamically determined. The modified theory leads to a nonzero torsion tensor that corrects the field equations through quadratic first derivatives of the BI field. Such a correction is equivalent to general relativity in the presence of a scalar field with nontrivial kinetic energy. This stress energy of this field is automatically covariantly conserved by its own dynamical equations of motion, thus satisfying the strong equivalence principle. Every general relativistic solution remains a solution to the modified theory for any constant value of the BI field. For arbitrary time-varying BI fields, a study of cosmological solutions reduces the scalar-field stress energy to that of a pressureless perfect fluid in a comoving reference frame, forcing the scale-factor dynamics to be equivalent to those of a stiff equation of state. Upon ultraviolet completion, this model could provide a natural mechanism for k inflation, where the role of the inflaton is played by the BI field and inflation is driven by its nontrivial kinetic energy instead of a potential.

  5. Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map

    Science.gov (United States)

    Rosales, Carlos

    2011-07-01

    A method for simple but realistic generation of three-dimensional synthetic turbulent passive scalar fields is presented. The method is an extension of the minimal turnover Lagrangian map approach (MTLM) [C. Rosales and C. Meneveau, Phys. Rev. E 78, 016313 (2008)] formulated for the generation of synthetic turbulent velocity fields. In this development, the minimal Lagrangian map is applied to deform simultaneously a vector field and an advected scalar field. This deformation takes place over a hierarchy of spatial scales encompassing a range from integral to dissipative scales. For each scale, fluid particles are mapped transporting the scalar property, without interaction or diffusional effects, from their initial configuration to new positions determined only by their velocity at the beginning of the motion and a parameter chosen to accumulate deformation for the equivalent of the phenomenological "turn-over" time scale. The procedure is studied for the case of inertial-convective regime. It is found that many features of passive scalar turbulence are well reproduced by this simple kinematical construction. Fundamental statistics of the resulting synthetic scalar fields, evaluated through the flatness and probability density functions of the scalar gradient and scalar increments, reproduce quite well the known statistical characteristics of passive scalars in turbulent fields. High-order statistics are also consistent with those observed in real hydrodynamic turbulence. The anomalous scaling of real turbulence is well reproduced for different kind of structure functions, with good quantitative agreement in general, for the scaling exponents. The spatial structure of the scalar field is also quite realistic, as well as several characteristics of the dissipation fields for the scalar variance and kinetic energy. Similarly, the statistical geometry at dissipative scales that ensues from the coupling of velocity and scalar gradients behaves in agreement with what is

  6. Massive scalar counterpart of gravitational waves in scalarized neutron star binaries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Sun Yat-sen University, School of Physics and Astronomy, Guangzhou (China)

    2017-09-15

    In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10{sup -21} eV/c{sup 2}. (orig.)

  7. Reconstructing an f(R) model from holographic dark energy: using the observational evidence

    International Nuclear Information System (INIS)

    Saaidi, Kh; Aghamohammadi, A

    2012-01-01

    We investigate the correspondence relation between f(R) gravity and an interacting holographic dark energy (HDE). By obtaining the conditions needed for some observational evidence such as positive acceleration expansion of the Universe, crossing the phantom divide line and validity of the thermodynamics second law in an interacting HDE model and corresponding it with the f(R) model of gravity, we find a viable f(R) model that can explain the present Universe. We also obtain the explicit evolutionary forms of the corresponding scalar field, potential and scale factor of the Universe. (paper)

  8. Imprints of dark energy on the structuring of the universe

    International Nuclear Information System (INIS)

    Bouillot, V.

    2012-01-01

    This thesis is dedicated to the research of specific imprints of Dark Energy in both linear and non-linear gravitational collapse processes through theoretical and numerical developments. Indeed, many aspects of cosmology has been tackled: first, to study the influence of various complex Dark Energy models on the halo clustering, we develop in a covariant formalism the usual linear cosmological perturbation theory. It gives an extent of the classical Sasaki-Mukhanov equations to scalar fields coupled with multiple cosmological fluids. The result is the description of the evolution of linear perturbations of complex Dark Energy models with a minimal number of degrees of freedom. In the last decade, the number and quality of cosmological observations on the matter distribution in the Universe as well on the velocity fields have increased exponentially. In particular, recent measurements show the existence of abnormally high velocity fields with respect to the linear theory in ΛCDM. The explanation of this cosmic flow excess at intermediate scales is the main contribution of this thesis: reinterpreting the anomalous cosmic flow (Watkins et al.) measured at scales ∼ 50 Mpc/h as a rare event realization in linear theory, we propose a new cosmological probe. This probe uses the scale of convergence of the measured cosmic flow with the theoretical one. We develop the sensibility on this new cosmological probe in three competitive Dark Energy models. Those results, based on analytical methods, are compared with measures issued from state-of-the-art numerical simulations we are deeply involved in. Then, starting from those numerical simulations, we investigate the dynamical origin of such a cosmic flow: we prove this movement to be due to an asymmetry of the three-dimensional matter distribution at higher scales (∼ 80 Mpc/h). This asymmetry is shown by introducing an original estimator of the matter field, which quantify the deviation from symmetry of a given field

  9. Gravitational waves from scalar field accretion

    International Nuclear Information System (INIS)

    Nunez, Dario; Degollado, Juan Carlos; Moreno, Claudia

    2011-01-01

    Our aim in this work is to outline some physical consequences of the interaction between black holes and scalar field halos in terms of gravitational waves. In doing so, the black hole is taken as a static and spherically symmetric gravitational source, i.e. the Schwarzschild black hole, and we work within the test field approximation, considering that the scalar field lives in the curved space-time outside the black hole. We focused on the emission of gravitational waves when the black hole is perturbed by the surrounding scalar field matter. The symmetries of the space-time and the simplicity of the matter source allow, by means of a spherical harmonic decomposition, to study the problem by means of a one-dimensional description. Some properties of such gravitational waves are discussed as a function of the parameters of the infalling scalar field, and allow us to make the conjecture that the gravitational waves carry information on the type of matter that generated them.

  10. Optical activity from high energy physics models

    International Nuclear Information System (INIS)

    Jaiswal, M.K.; Ganguly, A.K.

    2012-01-01

    Since the last decade we have come across some observational evidence suggest that the universe is currently undergoing acceleration. A way to resolve this problem is by introducing a scalar field that provides 'dark energy' with negative pressure, that couples to ordinary matter fields. There are many theories where the existence of light scalar fields is possible, e.g. in string theory there are many moduli fields that couple to matter or scalar tensor theory etc. One such theory goes by the name of the chameleonic theory. The introduction of chameleon field was to explain to the source of dark matter in the universe

  11. Analytic solutions in the dyon black hole with a cosmic string: Scalar fields, Hawking radiation and energy flux

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Silva, G.V., E-mail: gislainevs@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)

    2015-11-15

    Charged massive scalar fields are considered in the gravitational and electromagnetic field produced by a dyonic black hole with a cosmic string along its axis of symmetry. Exact solutions of both angular and radial parts of the covariant Klein–Gordon equation in this background are obtained, and are given in terms of the confluent Heun functions. The role of the presence of the cosmic string in these solutions is showed up. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation spectrum and the energy flux. -- Highlights: •A cosmic string is introduced along the axis of symmetry of the dyonic black hole. •The covariant Klein–Gordon equation for a charged massive scalar field in this background is analyzed. •Both angular and radial parts are transformed to a confluent Heun equation. •The resulting Hawking radiation spectrum and the energy flux are obtained.

  12. Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores

    Science.gov (United States)

    Chanda, Prolay Krishna; Das, Subinoy

    2017-04-01

    We propose a novel mechanism that explains the cored dark matter density profile in recently observed dark matter rich dwarf spheroidal galaxies. In our scenario, dark matter particle mass decreases gradually as a function of distance towards the center of a dwarf galaxy due to its interaction with a chameleon scalar. At closer distance towards the Galactic center the strength of attractive scalar fifth force becomes much stronger than gravity and is balanced by the Fermi pressure of the dark matter cloud; thus, an equilibrium static configuration of the dark matter halo is obtained. Like the case of soliton star or fermion Q-star, the stability of the dark matter halo is obtained as the scalar achieves a static profile and reaches an asymptotic value away from the Galactic center. For simple scalar-dark matter interaction and quadratic scalar self-interaction potential, we show that dark matter behaves exactly like cold dark matter (CDM) beyond a few kpc away from the Galactic center but at closer distance it becomes lighter and Fermi pressure cannot be ignored anymore. Using Thomas-Fermi approximation, we numerically solve the radial static profile of the scalar field, fermion mass and dark matter energy density as a function of distance. We find that for fifth force mediated by an ultralight scalar, it is possible to obtain a flattened dark matter density profile towards the Galactic center. In our scenario, the fifth force can be neglected at distance r ≥1 kpc from the Galactic center and dark matter can be simply treated as heavy nonrelativistic particles beyond this distance, thus reproducing the success of CDM at large scales.

  13. The electromagnetic coupling and the dark side of the Universe

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Torres, P.

    2007-01-01

    We examine the properties of dark energy and dark matter through the study of the variation of the electromagnetic coupling. For concreteness, we consider the unification model of dark energy and dark matter, the generalized Chaplygin gas model (GCG), characterized by the equation of state p=-Aρ α , where p is the pressure, ρ is the energy density and A and α are positive constants. The coupling of electromagnetism with the GCG's scalar field can give rise to such a variation. We compare our results with experimental data, and find that the degeneracy on parameters α and A s , A s =A/ρ ch0 1+α , is considerable

  14. Dark energy from gravitoelectromagnetic inflation?

    International Nuclear Information System (INIS)

    Membiela, A.; Bellini, M.

    2008-01-01

    Gravitoelectromagnetic Inflation (GI) was introduced to describe in a unified manner electromagnetic, gravitatory and inflation fields from a 5D vacuum state. On the other hand, the primordial origin and evolution of dark energy is today unknown. In this letter we show using GI that the zero modes of some redefined vector fields B i = A i /a produced during inflation could be the source of dark energy in the Universe.

  15. Dark energy from gravitoelectromagnetic inflation?

    Science.gov (United States)

    Membiela, F. A.; Bellini, M.

    2008-02-01

    Gravitoectromagnetic Inflation (GI) was introduced to describe in an unified manner, electromagnetic, gravitatory and inflaton fields from a 5D vacuum state. On the other hand, the primordial origin and evolution of dark energy is today unknown. In this letter we show using GI that the zero modes of some redefined vector fields $B_i=A_i/a$ produced during inflation, could be the source of dark energy in the universe.

  16. The state equation of Yang-Mills field dark energy models

    International Nuclear Information System (INIS)

    Zhao Wen; Zhang Yang

    2006-01-01

    In this paper, we study the possibility of building Yang-Mills (YM) field dark energy models with equation of state (EoS) crossing -1, and find that it cannot be realized by the single YM field models, no matter what kind of Lagrangian or initial condition. But the states of -1 -1 to <-1, and it will go to the critical state of ω = -1 with the expansion of the universe, which character is the same as the single YM field models, and the big rip is naturally avoided

  17. Scalar field collapse in Gauss-Bonnet gravity

    Science.gov (United States)

    Banerjee, Narayan; Paul, Tanmoy

    2018-02-01

    We consider a "scalar-Einstein-Gauss-Bonnet" theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon.

  18. The dark universe dark matter and dark energy

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    According to the standard cosmological model, 95% of the present mass density of the universe is dark: roughly 70% of the total in the form of dark energy and 25% in the form of dark matter. In a series of four lectures, I will begin by presenting a brief review of cosmology, and then I will review the observational evidence for dark matter and dark energy. I will discuss some of the proposals for dark matter and dark energy, and connect them to high-energy physics. I will also present an overview of an observational program to quantify the properties of dark energy.

  19. An extended action for the effective field theory of dark energy: a stability analysis and a complete guide to the mapping at the basis of EFTCAMB

    International Nuclear Information System (INIS)

    Frusciante, Noemi; Papadomanolakis, Georgios; Silvestri, Alessandra

    2016-01-01

    We present a generalization of the effective field theory (EFT) formalism for dark energy and modified gravity models to include operators with higher order spatial derivatives. This allows the extension of the EFT framework to a wider class of gravity theories such as Hořava gravity. We present the corresponding extended action, both in the EFT and the Arnowitt-Deser-Misner (ADM) formalism, and proceed to work out a convenient mapping between the two, providing a self contained and general procedure to translate a given model of gravity into the EFT language at the basis of the Einstein-Boltzmann solver EFTCAMB. Putting this mapping at work, we illustrate, for several interesting models of dark energy and modified gravity, how to express them in the ADM notation and then map them into the EFT formalism. We also provide for the first time, the full mapping of GLPV models into the EFT framework. We next perform a thorough analysis of the physical stability of the generalized EFT action, in absence of matter components. We work out viability conditions that correspond to the absence of ghosts and modes that propagate with a negative speed of sound in the scalar and tensor sector, as well as the absence of tachyonic modes in the scalar sector. Finally, we extend and generalize the phenomenological basis in terms of α-functions introduced to parametrize Horndeski models, to cover all theories with higher order spatial derivatives included in our extended action. We elaborate on the impact of the additional functions on physical quantities, such as the kinetic term and the speeds of propagation for scalar and tensor modes.

  20. Zero-point energy of massless scalar fields in the presence of soft and semihard boundaries in D dimensions

    International Nuclear Information System (INIS)

    Caruso, F.; De Paola, R.; Svaiter, N.F.

    1998-06-01

    The renormalized energy density of a massless scalar field defined in a D-dimensional flat spacetime is computed in the presence of 'soft'and 'semihard'boundaries, modeled by some smoothly increasing potential functions. The sign of the renormalized energy densities for these different confining situations is investigated. The dependence of this energy on D for the cases of 'hard'and 'soft/semihard'boundaries area compared. (author)

  1. Casimir-type effects for scalar fields interacting with material slabs

    International Nuclear Information System (INIS)

    Fialkovsky, I V; Pis'mak, Yu M; Markov, V N

    2010-01-01

    We study the field theoretical model of a scalar field in the presence of spacial inhomogeneities in the form of one and two finite-width mirrors (material slabs). The interaction of the scalar field with the defect is described with a position-dependent mass term. For a single-layer system we develop a rigorous calculation method and derive explicitly the propagator of the theory, the S-matrix elements and the Casimir self-energy of the slab. Detailed investigation of particular limits of self-energy is presented, and the connection to known cases is discussed. The calculation method is also found applicable to the two-mirror case. With its help we derive the corresponding Casimir energy and analyze it. For particular values of parameters of the model an obtained result recovers the Lifshitz formula. We also propose a procedure to unambiguously obtain the finite Casimir self-energy of a single slab without reference to any renormalization conditions. We hope that our approach can be applied to the calculation of Casimir self-energies in other demanded cases (such as a dielectric ball, etc).

  2. Production of inert scalars at the high energy e+e− colliders

    International Nuclear Information System (INIS)

    Hashemi, Majid; Krawczyk, Maria; Najjari, Saereh; Żarnecki, Aleksander Filip

    2016-01-01

    We investigate the phenomenology of the light charged and neutral scalars in Inert Doublet Model at future e + e − colliders with center of mass energies of 0.5 and 1 TeV, and integrated luminosity of 500 fb −1 . The analysis covers two production processes, e + e − →H + H − and e + e − →AH, and consists of signal selections, cross section determinations as well as dark matter mass measurements. Several benchmark points are studied with focus on H ± →W ± H and A→ZH decays. It is concluded that the signal will be well observable in different final states allowing for mass determination of all new scalars with statistical precision of the order of few hundred MeV.

  3. Thermally Generated Gauge Singlet Scalars as Self-Interacting Dark Matter

    CERN Document Server

    McDonald, J

    2002-01-01

    We show that a gauge singlet scalar S with a coupling to the Higgs doublet of the form lambda_{S} S^{\\dagger}S H^{\\dagger}H and with the S mass entirely generated by the Higgs expectation value has a thermally generated relic density Omega_{S} \\approx 0.3 if m_{S} \\approx (2.9-10.5)(Omega_{S}/0.3)^{1/5}(h/0.7)^{2/5} MeV for Higgs boson masses in the range 115 GeV to 1 TeV. Remarkably, this is very similar to the range (m_{S} = (6.6-15.4)\\eta^{2/3} MeV) required in order for the self-interaction (\\eta/4)(S^{\\dagger}S)^{2} to account for self-interacting dark matter when \\eta is about 1. The corresponding coupling is lambda_{S} \\approx (2.7 \\times 10^{-10} - 3.6 \\times 10^{-9})(Omega_{S}/0.3)^{2/5}(h/0.7)^{4/5}, implying that such scalars are very weakly coupled to the Standard Model sector. More generally, for the case where the S mass is at least partially due to a bare mass term, if m_{S} \\approx 10 \\eta^{2/3} MeV, corresponding to self-interacting dark matter, then in order not to overpopulate the Universe ...

  4. Accelerating Universe and the Scalar-Tensor Theory

    Directory of Open Access Journals (Sweden)

    Yasunori Fujii

    2012-10-01

    Full Text Available To understand the accelerating universe discovered observationally in 1998, we develop the scalar-tensor theory of gravitation originally due to Jordan, extended only minimally. The unique role of the conformal transformation and frames is discussed particularly from a physical point of view. We show the theory to provide us with a simple and natural way of understanding the core of the measurements, Λobs ∼ t0−2 for the observed values of the cosmological constant and today’s age of the universe both expressed in the Planckian units. According to this scenario of a decaying cosmological constant, Λobs is this small only because we are old, not because we fine-tune the parameters. It also follows that the scalar field is simply the pseudo Nambu–Goldstone boson of broken global scale invariance, based on the way astronomers and astrophysicists measure the expansion of the universe in reference to the microscopic length units. A rather phenomenological trapping mechanism is assumed for the scalar field around the epoch of mini-inflation as observed, still maintaining the unmistakable behavior of the scenario stated above. Experimental searches for the scalar field, as light as ∼ 10−9 eV, as part of the dark energy, are also discussed.

  5. Di-photon excess illuminates dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Backović, Mihailo [Center for Cosmology, Particle Physics and Phenomenology - CP3,Universite Catholique de Louvain, Louvain-la-neuve (Belgium); Mariotti, Alberto [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel,Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Redigolo, Diego [Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589,Universiteé Pierre et Marie Curie, 4 place Jussieu, F-75005, Paris (France)

    2016-03-22

    We propose a simplified model of dark matter with a scalar mediator to accommodate the di-photon excess recently observed by the ATLAS and CMS collaborations. Decays of the resonance into dark matter can easily account for a relatively large width of the scalar resonance, while the magnitude of the total width combined with the constraint on dark matter relic density leads to sharp predictions on the parameters of the Dark Sector. Under the assumption of a rather large width, the model predicts a signal consistent with ∼300 GeV dark matter particle and ∼750 GeV scalar mediator in channels with large missing energy. This prediction is not yet severely bounded by LHC Run I searches and will be accessible at the LHC Run II in the jet plus missing energy channel with more luminosity. Our analysis also considers astro-physical constraints, pointing out that future direct detection experiments will be sensitive to this scenario.

  6. Di-photon excess illuminates dark matter

    International Nuclear Information System (INIS)

    Backović, Mihailo; Mariotti, Alberto; Redigolo, Diego

    2016-01-01

    We propose a simplified model of dark matter with a scalar mediator to accommodate the di-photon excess recently observed by the ATLAS and CMS collaborations. Decays of the resonance into dark matter can easily account for a relatively large width of the scalar resonance, while the magnitude of the total width combined with the constraint on dark matter relic density leads to sharp predictions on the parameters of the Dark Sector. Under the assumption of a rather large width, the model predicts a signal consistent with ∼300 GeV dark matter particle and ∼750 GeV scalar mediator in channels with large missing energy. This prediction is not yet severely bounded by LHC Run I searches and will be accessible at the LHC Run II in the jet plus missing energy channel with more luminosity. Our analysis also considers astro-physical constraints, pointing out that future direct detection experiments will be sensitive to this scenario.

  7. Finite action for three dimensional gravity with a minimally coupled scalar field

    International Nuclear Information System (INIS)

    Gegenberg, Jack; Martinez, Cristian; Troncoso, Ricardo

    2003-01-01

    Three-dimensional gravity with a minimally coupled self-interacting scalar is considered. The falloff of the fields at infinity is assumed to be slower than that of a localized distribution of matter in the presence of a negative cosmological constant. However, the asymptotic symmetry group remains to be the conformal group. The counterterm Lagrangian needed to render the action finite is found by demanding that the action attain an extremum for the boundary conditions implied by the above falloff of the fields at infinity. These counterterms explicitly depend on the scalar field. As a consequence, the Brown-York stress-energy tensor acquires a nontrivial contribution from the matter sector. Static circularly symmetric solutions with a regular scalar field are explored for a one-parameter family of potentials. Their masses are computed via the Brown-York quasilocal stress-energy tensor, and they coincide with the values obtained from the Hamiltonian approach. The thermal behavior, including the transition between different configurations, is analyzed, and it is found that the scalar black hole can decay into the Banados-Teitelboim-Zanelli solution irrespective of the horizon radius. It is also shown that the AdS conformal field theory correspondence yields the same central charge as for pure gravity

  8. Scalar field collapse in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Narayan [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Nadia, West Bengal (India); Paul, Tanmoy [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2018-02-15

    We consider a ''scalar-Einstein-Gauss-Bonnet'' theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon. (orig.)

  9. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    Directory of Open Access Journals (Sweden)

    Babak Vakili

    2014-11-01

    Full Text Available We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–Robertson–Walker (FRW model, a scalar field with potential function V(ϕ with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(ϕ. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion. Keywords: Noether symmetry, Scalar field cosmology, Vector field cosmology

  10. Black holes in the presence of dark energy

    International Nuclear Information System (INIS)

    Babichev, E O; Dokuchaev, V I; Eroshenko, Yu N

    2013-01-01

    The new, rapidly developing field of theoretical research—studies of dark energy interacting with black holes (and, in particular, accreting onto black holes)–—is reviewed. The term 'dark energy' is meant to cover a wide range of field theory models, as well as perfect fluids with various equations of state, including cosmological dark energy. Various accretion models are analyzed in terms of the simplest test field approximation or by allowing back reaction on the black-hole metric. The behavior of various types of dark energy in the vicinity of Schwarzschild and electrically charged black holes is examined. Nontrivial effects due to the presence of dark energy in the black hole vicinity are discussed. In particular, a physical explanation is given of why the black hole mass decreases when phantom energy is being accreted, a process in which the basic energy conditions of the famous theorem of nondecreasing horizon area in classical black holes are violated. The theoretical possibility of a signal escaping from beneath the black hole event horizon is discussed for a number of dark energy models. Finally, the violation of the laws of thermodynamics by black holes in the presence of noncanonical fields is considered. (reviews of topical problems)

  11. Random scalar fields and hyperuniformity

    Science.gov (United States)

    Ma, Zheng; Torquato, Salvatore

    2017-06-01

    Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystals and liquids. Hyperuniform systems have attracted recent attention because they are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has been generalized to characterize two-phase media, scalar fields, and random vector fields. In this paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we analyze spatial patterns generated from Gaussian random fields, which have been used to model the microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spinodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pattern formation, including Rayleigh-Bénard convection. We show that the Gaussian random scalar fields can be constructed to be hyperuniform. We also numerically study the time evolution of spinodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime. Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian random field to produce a two-phase random medium tends to destroy the hyperuniformity of the progenitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase media derived from thresholded non-Gaussian fields. Our investigation paves the way for new research directions to characterize the large-structure spatial patterns that arise in physics, chemistry, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists to synthesize new classes of hyperuniform materials with novel physical properties via coarsening processes and using state-of-the-art techniques, such as stereolithography and 3D printing.

  12. Nonconformal scalar field in uniform isotropic space and the method of Hamiltonian diagonalization

    International Nuclear Information System (INIS)

    Pavlov, Yu.V.

    2001-01-01

    One diagonalized metric Hamiltonian of scalar field with arbitrary relation with curvature in N-dimensional uniform isotropic space. One derived spectrum of energies of the appropriate quasi-particles. One calculated energy of quasi-particle appropriate to the canonical Hamiltonian diagonal shape. One structured a modified tensor of energy-pulse with the following features. In case of conformal scalar field it coincides with the metric tensor of energy-pulse. When it is diagonalized the energies of the appropriate particles of nonconformal field are equal to oscillation frequency and the number of such particles produced in non-stationary metric is the finite one. It is shown that Hamiltonian calculated on the basis of the modified tensor of energy-pulse may be derived as a canonical one at certain selection of variables [ru

  13. Exploring extra dimensions with scalar fields

    Science.gov (United States)

    Brown, Katherine; Mathur, Harsh; Verostek, Mike

    2018-05-01

    This paper provides a pedagogical introduction to the physics of extra dimensions by examining the behavior of scalar fields in three landmark models: the ADD, Randall-Sundrum, and DGP spacetimes. Results of this analysis provide qualitative insights into the corresponding behavior of gravitational fields and elementary particles in each of these models. In these "brane world" models, the familiar four dimensional spacetime of everyday experience is called the brane and is a slice through a higher dimensional spacetime called the bulk. The particles and fields of the standard model are assumed to be confined to the brane, while gravitational fields are assumed to propagate in the bulk. For all three spacetimes, we calculate the spectrum of propagating scalar wave modes and the scalar field produced by a static point source located on the brane. For the ADD and Randall-Sundrum models, at large distances, the field looks like that of a point source in four spacetime dimensions, but at short distances, it crosses over to a form appropriate to the higher dimensional spacetime. For the DGP model, the field has the higher dimensional form at long distances rather than short. The behavior of these scalar fields, derived using only undergraduate level mathematics, closely mirror the results that one would obtain by performing the far more difficult task of analyzing the behavior of gravitational fields in these spacetimes.

  14. Non-minimally coupled tachyon field in teleparallel gravity

    Energy Technology Data Exchange (ETDEWEB)

    Fazlpour, Behnaz [Department of Physics, Babol Branch, Islamic Azad University, Shariati Street, Babol (Iran, Islamic Republic of); Banijamali, Ali, E-mail: b.fazlpour@umz.ac.ir, E-mail: a.banijamali@nit.ac.ir [Department of Basic Sciences, Babol University of Technology, Shariati Street, Babol (Iran, Islamic Republic of)

    2015-04-01

    We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P{sub 4}), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of this point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field.

  15. Non-minimally coupled tachyon field in teleparallel gravity

    International Nuclear Information System (INIS)

    Fazlpour, Behnaz; Banijamali, Ali

    2015-01-01

    We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P 4 ), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of this point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field

  16. Early universe with modified scalar-tensor theory of gravity

    Science.gov (United States)

    Mandal, Ranajit; Sarkar, Chandramouli; Sanyal, Abhik Kumar

    2018-05-01

    Scalar-tensor theory of gravity with non-minimal coupling is a fairly good candidate for dark energy, required to explain late-time cosmic evolution. Here we study the very early stage of evolution of the universe with a modified version of the theory, which includes scalar curvature squared term. One of the key aspects of the present study is that, the quantum dynamics of the action under consideration ends up generically with de-Sitter expansion under semiclassical approximation, rather than power-law. This justifies the analysis of inflationary regime with de-Sitter expansion. The other key aspect is that, while studying gravitational perturbation, the perturbed generalized scalar field equation obtained from the perturbed action, when matched with the perturbed form of the background scalar field equation, relates the coupling parameter and the potential exactly in the same manner as the solution of classical field equations does, assuming de-Sitter expansion. The study also reveals that the quantum theory is well behaved, inflationary parameters fall well within the observational limit and quantum perturbation analysis shows that the power-spectrum does not deviate considerably from the standard one obtained from minimally coupled theory.

  17. Interacting holographic dark energy in Brans-Dicke theory

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad

    2009-01-01

    We study cosmological application of interacting holographic energy density in the framework of Brans-Dicke cosmology. We obtain the equation of state and the deceleration parameter of the holographic dark energy in a non-flat universe. As system's IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as L=ar(t). We find that the combination of Brans-Dicke field and holographic dark energy can accommodate w D =-1 crossing for the equation of state of noninteracting holographic dark energy. When an interaction between dark energy and dark matter is taken into account, the transition of w D to phantom regime can be more easily accounted for than when resort to the Einstein field equations is made.

  18. Euclidean wormholes with minimally coupled scalar fields

    International Nuclear Information System (INIS)

    Ruz, Soumendranath; Modak, Bijan; Debnath, Subhra; Sanyal, Abhik Kumar

    2013-01-01

    A detailed study of quantum and semiclassical Euclidean wormholes for Einstein's theory with a minimally coupled scalar field has been performed for a class of potentials. Massless, constant, massive (quadratic in the scalar field) and inverse (linear) potentials admit the Hawking and Page wormhole boundary condition both in the classically forbidden and allowed regions. An inverse quartic potential has been found to exhibit a semiclassical wormhole configuration. Classical wormholes under a suitable back-reaction leading to a finite radius of the throat, where the strong energy condition is satisfied, have been found for the zero, constant, quadratic and exponential potentials. Treating such classical Euclidean wormholes as an initial condition, a late stage of cosmological evolution has been found to remain unaltered from standard Friedmann cosmology, except for the constant potential which under the back-reaction produces a term like a negative cosmological constant. (paper)

  19. What makes the Universe accelerate? A review on what dark energy could be and how to test it.

    Science.gov (United States)

    Brax, Philippe

    2018-01-01

    Explaining the origin of the acceleration of the expansion of the Universe remains as challenging as ever. In this review, we present different approaches from dark energy to modified gravity. We also emphasize the quantum nature of the problem and the need for an explanation which should violate Weinberg's no go theorem. This might involve a self-tuning mechanism or the acausal sequestering of the vacuum energy. Laboratory tests of the coupling to matter of nearly massless scalar fields, which could be one of the features required to explain the cosmic acceleration, are also reviewed.

  20. On the Effective Equation of State of Dark Energy

    DEFF Research Database (Denmark)

    Sloth, Martin Snoager

    2010-01-01

    In an effective field theory model with an ultraviolet momentum cutoff, there is a relation between the effective equation of state of dark energy and the ultraviolet cutoff scale. It implies that a measure of the equation of state of dark energy different from minus one, does not rule out vacuum...... energy as dark energy. It also indicates an interesting possibility that precise measurements of the infrared properties of dark energy can be used to probe the ultraviolet cutoff scale of effective quantum field theory coupled to gravity. In a toy model with a vacuum energy dominated universe...... with a Planck scale cutoff, the dark energy effective equation of state is -0.96....

  1. Small vacuum energy from small equivalence violation in scalar gravity

    International Nuclear Information System (INIS)

    Agrawal, Prateek; Sundrum, Raman

    2017-01-01

    The theory of scalar gravity proposed by Nordström, and refined by Einstein and Fokker, provides a striking analogy to general relativity. In its modern form, scalar gravity appears as the low-energy effective field theory of the spontaneous breaking of conformal symmetry within a CFT, and is AdS/CFT dual to the original Randall-Sundrum I model, but without a UV brane. Scalar gravity faithfully exhibits several qualitative features of the cosmological constant problem of standard gravity coupled to quantum matter, and the Weinberg no-go theorem can be extended to this case as well. Remarkably, a solution to the scalar gravity cosmological constant problem has been proposed, where the key is a very small violation of the scalar equivalence principle, which can be elegantly formulated as a particular type of deformation of the CFT. In the dual AdS picture this involves implementing Goldberger-Wise radion stabilization where the Goldberger-Wise field is a pseudo-Nambu Goldstone boson. In quantum gravity however, global symmetries protecting pNGBs are not expected to be fundamental. We provide a natural six-dimensional gauge theory origin for this global symmetry and show that the violation of the equivalence principle and the size of the vacuum energy seen by scalar gravity can naturally be exponentially small. Our solution may be of interest for study of non-supersymmetric CFTs in the spontaneously broken phase.

  2. Small vacuum energy from small equivalence violation in scalar gravity

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Sundrum, Raman [Department of Physics, University of Maryland,College Park, MD 20742 (United States)

    2017-05-29

    The theory of scalar gravity proposed by Nordström, and refined by Einstein and Fokker, provides a striking analogy to general relativity. In its modern form, scalar gravity appears as the low-energy effective field theory of the spontaneous breaking of conformal symmetry within a CFT, and is AdS/CFT dual to the original Randall-Sundrum I model, but without a UV brane. Scalar gravity faithfully exhibits several qualitative features of the cosmological constant problem of standard gravity coupled to quantum matter, and the Weinberg no-go theorem can be extended to this case as well. Remarkably, a solution to the scalar gravity cosmological constant problem has been proposed, where the key is a very small violation of the scalar equivalence principle, which can be elegantly formulated as a particular type of deformation of the CFT. In the dual AdS picture this involves implementing Goldberger-Wise radion stabilization where the Goldberger-Wise field is a pseudo-Nambu Goldstone boson. In quantum gravity however, global symmetries protecting pNGBs are not expected to be fundamental. We provide a natural six-dimensional gauge theory origin for this global symmetry and show that the violation of the equivalence principle and the size of the vacuum energy seen by scalar gravity can naturally be exponentially small. Our solution may be of interest for study of non-supersymmetric CFTs in the spontaneously broken phase.

  3. A model for dark energy decay

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Elcio, E-mail: eabdalla@usp.br [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970, São Paulo (Brazil); Graef, L.L., E-mail: leilagraef@usp.br [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970, São Paulo (Brazil); Wang, Bin, E-mail: wang_b@sjtu.edu.cn [INPAC and Department of Physics, Shanghai Jiao Tong University, 200240 Shanghai (China)

    2013-11-04

    We discuss a model of nonperturbative decay of dark energy. We suggest the possibility that this model can provide a mechanism from the field theory to realize the energy transfer from dark energy into dark matter, which is the requirement to alleviate the coincidence problem. The advantage of the model is the fact that it accommodates a mean life compatible with the age of the universe. We also argue that supersymmetry is a natural set up, though not essential.

  4. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk

    2017-01-10

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  5. Effective dark energy equation of state in interacting dark energy models

    International Nuclear Information System (INIS)

    Avelino, P.P.; Silva, H.M.R. da

    2012-01-01

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  6. Effective dark energy equation of state in interacting dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Silva, H.M.R. da, E-mail: hilberto.silva@gmail.com [Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2012-07-24

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  7. 10th Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe

    CERN Document Server

    UCLA Dark Matter 2012

    2012-01-01

    These proceedings provide the latest results on dark matter and dark energy research. The UCLA Department of Physics and Astronomy hosted its tenth Dark Matter and Dark Energy conference in Marina del Rey and brought together all the leaders in the field. The symposium provided a scientific forum for the latest discussions in the field.  Topics covered at the symposium:  •Status of measurements of the equation of state of dark energy and new experiments •The search for missing energy events at the LHC and implications for dark matter search •Theoretical calculations on all forms of dark matter (SUSY, axions, sterile neutrinos, etc.) •Status of the indirect search for dark matter •Status of the direct search for dark matter in detectors around the world •The low-mass wimp search region •The next generation of very large dark matter detectors •New underground laboratories for dark matter search  

  8. Healthy imperfect dark matter from effective theory of mimetic cosmological perturbations

    International Nuclear Information System (INIS)

    Hirano, Shin'ichi; Nishi, Sakine; Kobayashi, Tsutomu

    2017-01-01

    We study the stability of a recently proposed model of scalar-field matter called mimetic dark matter or imperfect dark matter. It has been known that mimetic matter with higher derivative terms suffers from gradient instabilities in scalar perturbations. To seek for an instability-free extension of imperfect dark matter, we develop an effective theory of cosmological perturbations subject to the constraint on the scalar field's kinetic term. This is done by using the unifying framework of general scalar-tensor theories based on the ADM formalism. We demonstrate that it is indeed possible to construct a model of imperfect dark matter which is free from ghost and gradient instabilities. As a side remark, we also show that mimetic F (R) theory is plagued with the Ostrogradsky instability.

  9. Healthy imperfect dark matter from effective theory of mimetic cosmological perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Shin' ichi; Nishi, Sakine; Kobayashi, Tsutomu, E-mail: s.hirano@rikkyo.ac.jp, E-mail: sakine@rikkyo.ac.jp, E-mail: tsutomu@rikkyo.ac.jp [Department of Physics, Rikkyo University, Toshima, Tokyo 171-8501 (Japan)

    2017-07-01

    We study the stability of a recently proposed model of scalar-field matter called mimetic dark matter or imperfect dark matter. It has been known that mimetic matter with higher derivative terms suffers from gradient instabilities in scalar perturbations. To seek for an instability-free extension of imperfect dark matter, we develop an effective theory of cosmological perturbations subject to the constraint on the scalar field's kinetic term. This is done by using the unifying framework of general scalar-tensor theories based on the ADM formalism. We demonstrate that it is indeed possible to construct a model of imperfect dark matter which is free from ghost and gradient instabilities. As a side remark, we also show that mimetic F (R) theory is plagued with the Ostrogradsky instability.

  10. Decoding the hologram: Scalar fields interacting with gravity

    Science.gov (United States)

    Kabat, Daniel; Lifschytz, Gilad

    2014-03-01

    We construct smeared conformal field theory (CFT) operators which represent a scalar field in anti-de Sitter (AdS) space interacting with gravity. The guiding principle is microcausality: scalar fields should commute with themselves at spacelike separation. To O(1/N) we show that a correct and convenient criterion for constructing the appropriate CFT operators is to demand microcausality in a three-point function with a boundary Weyl tensor and another boundary scalar. The resulting bulk observables transform in the correct way under AdS isometries and commute with boundary scalar operators at spacelike separation, even in the presence of metric perturbations.

  11. Dynamical evolution of quintessence dark energy in collapsing dark matter halos

    International Nuclear Information System (INIS)

    Wang Qiao; Fan Zuhui

    2009-01-01

    In this paper, we analyze the dynamical evolution of quintessence dark energy induced by the collapse of dark matter halos. Different from other previous studies, we develop a numerical strategy which allows us to calculate the dark energy evolution for the entire history of the spherical collapse of dark matter halos, without the need of separate treatments for linear, quasilinear, and nonlinear stages of the halo formation. It is found that the dark energy perturbations evolve with redshifts, and their specific behaviors depend on the quintessence potential as well as the collapsing process. The overall energy density perturbation is at the level of 10 -6 for cluster-sized halos. The perturbation amplitude decreases with the decrease of the halo mass. At a given redshift, the dark energy perturbation changes with the radius to the halo center, and can be either positive or negative depending on the contrast of ∂ t φ, ∂ r φ, and φ with respect to the background, where φ is the quintessence field. For shells where the contrast of ∂ r φ is dominant, the dark energy perturbation is positive and can be as high as about 10 -5 .

  12. Consequences of dark matter-dark energy interaction on cosmological parameters derived from type Ia supernova data

    International Nuclear Information System (INIS)

    Amendola, Luca; Campos, Gabriela Camargo; Rosenfeld, Rogerio

    2007-01-01

    Models where the dark matter component of the Universe interacts with the dark energy field have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. In these models the mass of the cold dark matter particles is a function of the dark energy field responsible for the present acceleration of the Universe, and different scenarios can be parametrized by how the mass of the cold dark matter particles evolves with time. In this article we study the impact of a constant coupling δ between dark energy and dark matter on the determination of a redshift dependent dark energy equation of state w DE (z) and on the dark matter density today from SNIa data. We derive an analytical expression for the luminosity distance in this case. In particular, we show that the presence of such a coupling increases the tension between the cosmic microwave background data from the analysis of the shift parameter in models with constant w DE and SNIa data for realistic values of the present dark matter density fraction. Thus, an independent measurement of the present dark matter density can place constraints on models with interacting dark energy

  13. A power-law coupled three-form dark energy model

    Science.gov (United States)

    Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He

    2018-02-01

    We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω _{m0} and the present three-form field κ X0 gives stringent constraints on the coupling constant, - 0.017< λ <0.047 (2σ confidence level), by which we present the model's applicable parameter range.

  14. A power-law coupled three-form dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He [Nankai University, Department of Physics, Tianjin (China)

    2018-02-15

    We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω{sub m0} and the present three-form field κX{sub 0} gives stringent constraints on the coupling constant, -0.017 < λ < 0.047 (2σ confidence level), by which we present the model's applicable parameter range. (orig.)

  15. Beyond the perfect fluid hypothesis for the dark energy equation of state

    International Nuclear Information System (INIS)

    Cardone, V.F.; Troisi, A.; Tortora, C.; Capozziello, S.

    2006-01-01

    Abandoning the perfect fluid hypothesis, we investigate here the possibility that the dark energy equation of state (EoS) w is a nonlinear function of the energy density ρ. To this aim, we consider four different EoS describing classical fluids near thermodynamical critical points and discuss the main features of cosmological models made out of dust matter and a dark energy term with the given EoS. Each model is tested against the data on the dimensionless coordinate distance to Type Ia Supernovae and radio galaxies, the shift and the acoustic peak parameters and the positions of the first three peaks in the anisotropy spectrum of the comic microwave background radiation. We propose a possible interpretation of each model in the framework of scalar field quintessence determining the shape of the self-interaction potential V(φ) that gives rise to each one of the considered thermodynamical EoS. As a general result, we demonstrate that replacing the perfect fluid EoS with more general expressions gives both the possibility of successfully solving the problem of cosmic acceleration escaping the resort to phantom models

  16. Planck 2015 results. XIV. Dark energy and modified gravity

    CERN Document Server

    Ade, P.A.R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Heavens, A.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Ma, Y.Z.; Macias-Perez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Martin, P.G.; Martinelli, M.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Salvatelli, V.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Schaefer, B.M.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Viel, M.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-20

    We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG), beyond the cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state, principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories and coupled DE. In addition to the latest Planck data, for our main analyses we use baryonic acoustic oscillations, type-Ia supernovae and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshif...

  17. Transverse electric fields' effects in the Dark Energy Camera CCDs

    International Nuclear Information System (INIS)

    Plazas, A A; Sheldon, E S; Bernstein, G M

    2014-01-01

    Spurious electric fields transverse to the surface of thick CCDs displace the photo-generated charges, effectively modifying the pixel area and producing noticeable signals in astrometric and photometric measurements. We use data from the science verification period of the Dark Energy Survey (DES) to characterize these effects in the Dark Energy Camera (DECam) CCDs, where the transverse fields manifest as concentric rings (impurity gradients or ''tree rings'') and bright stripes near the boundaries of the detectors (''edge distortions'') with relative amplitudes of about 1% and 10%, respectively. Using flat-field images, we derive templates in the five DES photometric bands (grizY) for the tree rings and the edge distortions as a function of their position on each DECam detector. Comparison of the astrometric and photometric residuals confirms their nature as pixel-size variations. The templates are directly incorporated into the derivation of photometric and astrometric residuals. The results presented in these proceedings are a partial report of analysis performed before the workshop ''Precision Astronomy with Fully depleted CDDs'' at Brookhaven National Laboratory. Additional work is underway, and the final results and analysis will be published elsewhere (Plazas, Bernstein and Sheldon 2014, in prep.)

  18. A simplified approach to general scalar-tensor theories

    International Nuclear Information System (INIS)

    Bloomfield, Jolyon

    2013-01-01

    The most general covariant action describing gravity coupled to a scalar field with only second order equations of motion, Horndeski's theory (also known as ''Generalized Galileons''), provides an all-encompassing model in which single scalar dark energy models may be constrained. However, the generality of the model makes it cumbersome to manipulate. In this paper, we demonstrate that when considering linear perturbations about a Friedmann-Robertson-Walker background, the theory is completely specified by only six functions of time, two of which are constrained by the background evolution. We utilise the ideas of the Effective Field Theory of Inflation/Dark Energy to explicitly construct these six functions of time in terms of the free functions appearing in Horndeski's theory. These results are used to investigate the behavior of the theory in the quasistatic approximation. We find that only four functions of time are required to completely specify the linear behavior of the theory in this limit, which can further be reduced if the background evolution is fixed. This presents a significantly reduced parameter space from the original presentation of Horndeski's theory, giving hope to the possibility of constraining the parameter space. This work provides a cross-check for previous work on linear perturbations in this theory, and also generalizes it to include spatial curvature

  19. Scalar field mass in generalized gravity

    International Nuclear Information System (INIS)

    Faraoni, Valerio

    2009-01-01

    The notions of mass and range of a Brans-Dicke-like scalar field in scalar-tensor and f(R) gravity are subject to an ambiguity that hides a potential trap. We spell out this ambiguity and identify a physically meaningful and practical definition for these quantities. This is relevant when giving a mass to this scalar in order to circumvent experimental limits on the PPN parameters coming from solar system experiments.

  20. Dynamical analysis for a scalar-tensor model with Gauss-Bonnet and non-minimal couplings

    Energy Technology Data Exchange (ETDEWEB)

    Granda, L.N.; Jimenez, D.F. [Universidad del Valle, Departamento de Fisica, Cali (Colombia)

    2017-10-15

    We study the autonomous system for a scalar-tensor model of dark energy with Gauss-Bonnet and non-minimal couplings. The critical points describe important stable asymptotic scenarios including quintessence, phantom and de Sitter attractor solutions. Two functional forms for the coupling functions and the scalar potential are considered: power-law and exponential functions of the scalar field. For the exponential functions the existence of stable quintessence, phantom or de Sitter solutions, allows for an asymptotic behavior where the effective Newtonian coupling becomes constant. The phantom solutions could be realized without appealing to ghost degrees of freedom. Transient inflationary and radiation-dominated phases can also be described. (orig.)

  1. Adiabatic instability in coupled dark energy/dark matter models

    International Nuclear Information System (INIS)

    Bean, Rachel; Flanagan, Eanna E.; Trodden, Mark

    2008-01-01

    We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the Universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, which can also be thought of as a type of Jeans instability, is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid, and results in the exponential growth of small scale modes. We discuss the role of the instability in specific coupled cold dark matter and mass varying neutrino models of dark energy and clarify for these theories the regimes in which the instability can be evaded due to nonadiabaticity or weak coupling.

  2. Scalar fields nonminimally coupled to pp waves

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Hassaiene, Mokhtar

    2005-01-01

    Here, we report pp waves configurations of three-dimensional gravity for which a scalar field nonminimally coupled to them acts as a source. In absence of self-interaction the solutions are gravitational plane waves with a profile fixed in terms of the scalar wave. In the self-interacting case, only power-law potentials parameterized by the nonminimal coupling constant are allowed by the field equations. In contrast with the free case the self-interacting scalar field does not behave like a wave since it depends only on the wave-front coordinate. We address the same problem when gravitation is governed by topologically massive gravity and the source is a free scalar field. From the pp waves derived in this case, we obtain at the zero topological mass limit, new pp waves solutions of conformal gravity for any arbitrary value of the nonminimal coupling parameter. Finally, we extend these solutions to the self-interacting case of conformal gravity

  3. DESTINY, The Dark Energy Space Telescope

    Science.gov (United States)

    Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod

    2007-01-01

    We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.

  4. Braneworlds and dark energy

    International Nuclear Information System (INIS)

    Neves, Rui; Vaz, Cenalo

    2006-01-01

    In the Randall-Sundrum scenario, we analyse the dynamics of an AdS 5 braneworld when conformal matter fields propagate in five dimensions. We show that conformal fields of weight -4 are associated with stable geometries which describe the dynamics of inhomogeneous dust, generalized dark radiation and homogeneous polytropic dark energy on a spherically symmetric 3-brane embedded in the compact AdS 5 orbifold. We discuss aspects of the radion stability conditions and of the localization of gravity in the vicinity of the brane

  5. Interacting agegraphic dark energy

    International Nuclear Information System (INIS)

    Wei, Hao; Cai, Rong-Gen

    2009-01-01

    A new dark energy model, named ''agegraphic dark energy'', has been proposed recently, based on the so-called Karolyhazy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed. (orig.)

  6. The Rainich problem for coupled gravitational and scalar meson fields

    International Nuclear Information System (INIS)

    Hyde, J.M.

    1975-01-01

    The equations of the coupled gravitational and scalar meson fields in general relativity are considered. It is shown that the wave equation for the scalar meson field which is usually specified explicitly in addition to the Einstein field equations is implied by Einstein's equations. Using this result it is then shown how the scalar field may be eliminated explicitly from the field equations, thus solving the Rainich problem for the coupled gravitational and scalar meson fields. (author) [fr

  7. Anisotropic inflation from charged scalar fields

    International Nuclear Information System (INIS)

    Emami, Razieh; Firouzjahi, Hassan; Movahed, S.M. Sadegh; Zarei, Moslem

    2011-01-01

    We consider models of inflation with U(1) gauge fields and charged scalar fields including symmetry breaking potential, chaotic inflation and hybrid inflation. We show that there exist attractor solutions where the anisotropies produced during inflation becomes comparable to the slow-roll parameters. In the models where the inflaton field is a charged scalar field the gauge field becomes highly oscillatory at the end of inflation ending inflation quickly. Furthermore, in charged hybrid inflation the onset of waterfall phase transition at the end of inflation is affected significantly by the evolution of the background gauge field. Rapid oscillations of the gauge field and its coupling to inflaton can have interesting effects on preheating and non-Gaussianities

  8. Open Wilson lines and generalized star product in noncommutative scalar field theories

    International Nuclear Information System (INIS)

    Kiem, Youngjai; Sato, Haru-Tada; Rey, Soo-Jong; Yee, Jung-Tay

    2002-01-01

    Open Wilson line operators and a generalized star product have been studied extensively in noncommutative gauge theories. We show that they also show up in noncommutative scalar field theories as universal structures. We first point out that the dipole picture of noncommutative geometry provides an intuitive argument for the robustness of the open Wilson lines and generalized star products therein. We calculate the one-loop effective action of noncommutative scalar field theory with a cubic self-interaction and show explicitly that the generalized star products arise in the nonplanar part. It is shown that, at the low-energy, large noncommutativity limit, the nonplanar part is expressible solely in terms of the scalar open Wilson line operator and descendants

  9. Constraining the dark side with observations

    International Nuclear Information System (INIS)

    Diez-Tejedor, Alberto

    2007-01-01

    The main purpose of this talk is to use the observational evidences pointing out to the existence of a dark side in the universe in order to infer some of the properties of the unseen material. We will work within the Unified Dark Matter models, in which both, Dark Matter and Dark Energy appear as the result of one unknown component. By modeling effectively this component with a classical scalar field minimally coupled to gravity, we will use the observations to constrain the form of the dark action. Using the flat rotation curves of spiral galaxies we will see that we are restringed to the use of purely kinetic actions, previously studied in cosmology by Scherrer. Finally we arrive to a simple action which fits both cosmological and astrophysical observations

  10. Constraining the dark side with observations

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Tejedor, Alberto [Dpto. de Fisica Teorica, Universidad del PaIs Vasco, Apdo. 644, 48080, Bilbao (Spain)

    2007-05-15

    The main purpose of this talk is to use the observational evidences pointing out to the existence of a dark side in the universe in order to infer some of the properties of the unseen material. We will work within the Unified Dark Matter models, in which both, Dark Matter and Dark Energy appear as the result of one unknown component. By modeling effectively this component with a classical scalar field minimally coupled to gravity, we will use the observations to constrain the form of the dark action. Using the flat rotation curves of spiral galaxies we will see that we are restringed to the use of purely kinetic actions, previously studied in cosmology by Scherrer. Finally we arrive to a simple action which fits both cosmological and astrophysical observations.

  11. Exact solutions in string-motivated scalar-field cosmology

    International Nuclear Information System (INIS)

    Oezer, M.; Taha, M.O.

    1992-01-01

    Two exact cosmological solutions to a scalar-field potential motivated by six-dimensional (6D) Einstein-Maxwell theory are given. The resulting pure scalar-field cosmology is free of singularity and causality problems but conserves entropy. These solutions are then extended into exact cosmological solutions for a decaying scalar field with an approximate two-loop 4D string potential. The resulting cosmology is, for both solutions, free of cosmological problems and close to the standard cosmology of the radiation era

  12. Laboratory constraints on chameleon dark energy and power-law fields

    OpenAIRE

    Steffen, Jason H.; Upadhye, Amol; Baumbaugh, Al; Chou, Aaron S.; Mazur, Peter O.; Tomlin, Ray; Weltman, Amanda; Wester, William

    2010-01-01

    We report results from the GammeV Chameleon Afterglow Search---a search for chameleon particles created via photon/chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of chameleon power-law models and dark energy models not previously explored. These results exclude five orders of magnitude in the coupling of chameleons to photons covering a range of four orders of magnitude in chameleon effective mass and, for individual chameleon models, exclude betw...

  13. Laboratory Constraints on Chameleon Dark Energy and Power-Law Fields

    International Nuclear Information System (INIS)

    Steffen, J. H.; Baumbaugh, A.; Chou, A. S.; Mazur, P. O.; Tomlin, R.; Wester, W.; Upadhye, A.; Weltman, A.

    2010-01-01

    We report results from a search for chameleon particles created via photon-chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of unexplored chameleon power-law and dark energy models. These results exclude 5 orders of magnitude in the coupling of chameleons to photons covering a range of 4 orders of magnitude in chameleon effective mass and, for individual models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.

  14. NLO+NLL collider bounds, Dirac fermion and scalar dark matter in the B-L model

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, Michael [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Theoretische Physik, Muenster (Germany); Lyonnet, Florian [Southern Methodist University, Dallas, TX (United States); Queiroz, Farinaldo S. [Max-Planck-Institut fuer Kernphysik, Particle and Astroparticle Physics Division, Heidelberg (Germany)

    2017-05-15

    Baryon and lepton numbers being accidental global symmetries of the Standard Model (SM), it is natural to promote them to local symmetries. However, to preserve anomaly-freedom, only combinations of B-L are viable. In this spirit, we investigate possible dark matter realizations in the context of the U(1){sub B-L} model: (i) Dirac fermion with unbroken B-L; (ii) Dirac fermion with broken B-L; (iii) scalar dark matter; (iv) two-component dark matter. We compute the relic abundance, direct and indirect detection observables and confront them with recent results from Planck, LUX-2016, and Fermi-LAT and prospects from XENON1T. In addition to the well-known LEP bound M{sub Z}{sup {sub '}}/g{sub BL} >or similar 7 TeV, we include often ignored LHC bounds using 13 TeV dilepton (dimuon + dielectron) data at next-to-leading order plus next-to-leading logarithmic accuracy. We show that, for gauge couplings smaller than 0.4, the LHC gives rise to the strongest collider limit. In particular, we find M{sub Z}{sup {sub '}}/g{sub BL} > 8.7 TeV for g{sub BL} = 0.3. We conclude that the NLO+NLL corrections improve the dilepton bounds on the Z{sup '} mass and that both dark matter candidates are only viable in the Z{sup '} resonance region, with the parameter space for scalar dark matter being fully probed by XENON1T. Lastly, we show that one can successfully have a minimal two-component dark matter model. (orig.)

  15. Supersymmetric theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Fardon, Rob; Nelson, Ann E.; Weiner, Neal

    2006-01-01

    We present a supersymmetric model of dark energy from Mass Varying Neutrinos which is stable against radiative corrections to masses and couplings, and free of dynamical instabilities. This is the only such model of dark energy involving fields with significant couplings to any standard model particle. We briefly discuss consequences for neutrino oscillations and solar neutrinos

  16. Hawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild-de Sitter black hole

    Science.gov (United States)

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-07-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.

  17. A minimal model for two-component dark matter

    International Nuclear Information System (INIS)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E.

    2014-01-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z_2 symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  18. Conformal scalar field on the hyperelliptic curve and critical Ashkin-Teller multipoint correlation functions

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1987-01-01

    A multipoint conformal block of Ramond states of the two-dimensional free scalar field is calculated. This function is related to the free energy of the scalar field on the hyperelliptic Riemann surface under a particular choice of boundary conditions. Being compactified on the circle this field leads to the crossing symmetric correlation functions with a discrete spectrum of scale dimensions. These functions are supposed to describe multipoint spin correlations of the critical Ashkin-Teller model. (orig.)

  19. Dark energy from modified gravity with Lagrange multipliers

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; Matsumoto, Jiro; Nojiri, Shin'ichi; Odintsov, Sergei D.

    2010-01-01

    We study scalar-tensor theory, k-essence and modified gravity with Lagrange multiplier constraint which role is to reduce the number of degrees of freedom. Dark Energy cosmology of different types (ΛCDM, unified inflation with DE, smooth non-phantom/phantom transition epoch) is reconstructed in such models. It is demonstrated that presence of Lagrange multiplier simplifies the reconstruction scenario. It is shown that mathematical equivalence between scalar theory and F(R) gravity is broken due to presence of constraint. The cosmological evolution is defined by the second F 2 (R) function dictated by the constraint. The convenient F(R) gravity sector is relevant for local tests. This opens the possibility to make originally non-realistic theory to be viable by adding the corresponding constraint. A general discussion on the role of Lagrange multipliers to make higher-derivative gravity canonical is developed.

  20. Stability of braneworlds with non-minimally coupled multi-scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Feng-Wei; Gu, Bao-Min [Lanzhou University, Institute of Theoretical Physics, Lanzhou (China); Lanzhou University, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou (China); Liu, Yu-Xiao [Lanzhou University, Research Center of Gravitation, Lanzhou (China)

    2018-02-15

    Linear stability of braneworld models constructed with multi-scalar fields is very different from that of single-scalar field models. It is well known that both the tensor and the scalar perturbations of the latter are stable at linear level. However, in general there is no effective method to deal with the stability problem of the scalar perturbations for braneworld models constructed with non-minimally coupled multi-scalar fields. In this work we present a systematic covariant approach to deal with the scalar perturbations. By introducing the orthonormal bases in field space and making the Kaluza-Klein decomposition, we get a set of coupled Schroedinger-like equations of the scalar perturbation modes. Using the nodal theorem, we show that the result is model-dependent. For superpotential derived brane models, the scalar perturbations are stable, but there exist normalizable scalar zero modes, which will result in unacceptable fifth force on the brane. We also use this method to analyze the f(R) braneworld model with an explicit solution and find that the scalar perturbations are stable and the scalar zero modes cannot be localized on the brane, which ensures that there is no extra long-range force and the Newtonian potential on the brane can be recovered. (orig.)

  1. Thermal inflation with a thermal waterfall scalar field coupled to a light spectator scalar field

    Science.gov (United States)

    Dimopoulos, Konstantinos; Lyth, David H.; Rumsey, Arron

    2017-05-01

    A new model of thermal inflation is introduced, in which the mass of the thermal waterfall field is dependent on a light spectator scalar field. Using the δ N formalism, the "end of inflation" scenario is investigated in order to ascertain whether this model is able to produce the dominant contribution to the primordial curvature perturbation. A multitude of constraints are considered so as to explore the parameter space, with particular emphasis on key observational signatures. For natural values of the parameters, the model is found to yield a sharp prediction for the scalar spectral index and its running, well within the current observational bounds.

  2. Quantization of a scalar field in the Kerr spacetime

    International Nuclear Information System (INIS)

    Ford, L.H.

    1974-01-01

    A discussion of field quantization in a curved background spacetime is presented, with emphasis on the quantization of a scalar field in the Kerr spacetime. The ambiguity in the choice of a Fock space is discussed. The example of quantized fields in a rotating frame of reference in Minkowski space is analyzed, and it is shown that there is a preferred choice of states which makes particle number an invariant under transformation to the rotating frame. This choice allows the existence of negative energy quanta of the field

  3. An axion-like scalar field environment effect on binary black hole merger

    Science.gov (United States)

    Yang, Qing; Ji, Li-Wei; Hu, Bin; Cao, Zhou-Jian; Cai, Rong-Gen

    2018-06-01

    The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediate-mass binary black holes by means of an axion-like scalar field and investigate their joint evolution. In detail, we consider equal mass binary black holes surrounded by a shell of axion-like scalar field both in spherically symmetric and non-spherically symmetric cases, and with different strengths of the scalar field. Our result shows that the environmental scalar field could essentially modify the dynamics. Firstly, in the spherically symmetric case, with increase of the scalar field strength, the number of circular orbits for the binary black hole is reduced. This means that the scalar field could significantly accelerate the merger process. Secondly, once the scalar field strength exceeds a certain critical value, the scalar field could collapse into a third black hole with its mass being larger than that of the binary. Consequently, the new black hole that collapses from the environmental scalar field could accrete the binary promptly and the binary collides head-on with each other. In this process, there is almost no quadrupole signal produced, and, consequently, the gravitational wave is greatly suppressed. Thirdly, when the scalar field strength is relatively smaller than the critical value, the black hole orbit could develop eccentricity through accretion of the scalar field. Fourthly, during the initial stage of the inspiral, the gravitational attractive force from the axion-like scalar field could induce a sudden turn in the binary orbits, hence resulting in a transient wiggle in the gravitational waveform. Finally, in the non-spherical case, the scalar field could gravitationally attract the binary moving toward the center of mass for the scalar field and slow down the merger process.

  4. Cosmological anisotropy from non-comoving dark matter and dark energy

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Lobo, Francisco S. N.

    2013-01-01

    We consider a cosmological model in which the two major fluid components of the Universe, dark energy and dark matter, flow with distinct four-velocities. This cosmological configuration is equivalent to a single anisotropic fluid, expanding with a four-velocity that is an appropriate combination of the two fluid four-velocities. The energy density of the single cosmological fluid is larger than the sum of the energy densities of the two perfect fluids, i.e., dark energy and dark matter, respectively, and contains a correction term due to the anisotropy generated by the differences in the four-velocities. Furthermore, the gravitational field equations of the two-fluid anisotropic cosmological model are obtained for a Bianchi type I geometry. By assuming that the non-comoving motion of the dark energy and dark matter induces small perturbations in the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker type cosmological background, and that the anisotropy parameter is small, the equations of the cosmological perturbations due to the non-comoving nature of the two major components are obtained. The time evolution of the metric perturbations is explicitly obtained for the cases of the exponential and power law background cosmological expansion. The imprints of a non-comoving dark energy - dark matter on the Cosmic Microwave Background and on the luminosity distance are briefly discussed, and the temperature anisotropies and the quadrupole are explicitly obtained in terms of the metric perturbations of the flat background metric. Therefore, if there is a slight difference between the four-velocities of the dark energy and dark matter, the Universe would acquire some anisotropic characteristics, and its geometry will deviate from the standard FLRW one. In fact, the recent Planck results show that the presence of an intrinsic large scale anisotropy in the Universe cannot be excluded a priori, so that the model presented in this work can be considered as a

  5. Constraining Dark Energy with X-ray Clusters, SNe Ia and the CMB

    International Nuclear Information System (INIS)

    Rapetti, D

    2005-01-01

    In [1] we present new constraints on the evolution of dark energy from an analysis of Cosmic Microwave Background, supernova and X-ray galaxy cluster data. From a combined analysis of all three data sets and assuming that the Universe is at, we examine a series of dark energy models with up to three free parameters: the current dark energy equation of state w 0 , the early time equation of state w et and the scale factor at transition, a t . Allowing the transition scale factor to vary over the range 0.5 t 0 = -1.27 -0.39 +0.33 and w et = -0.66 -0.62 +0.44 . They find no significant evidence for evolution in the dark energy equation of state parameter with redshift. The complementary nature of the data sets leads to a tight constraint on the mean matter density, (Omega) m , alleviates a number of other parameter degeneracies, including that between the scalar spectral index n s , the physical baryon density (Omega) b h 2 and the optical depth τ and also allows us to examine models dropping the flatness prior. As required for the energy-momentum conservation our analysis includes spatial perturbations in the dark energy component. We show that not including them leads to spuriously tighter constraints on w 0 and especially on wet

  6. Nonlinear Gravitational Waves as Dark Energy in Warped Spacetimes

    Directory of Open Access Journals (Sweden)

    Reinoud Jan Slagter

    2017-02-01

    Full Text Available We find an azimuthal-angle dependent approximate wave like solution to second order on a warped five-dimensional manifold with a self-gravitating U(1 scalar gauge field (cosmic string on the brane using the multiple-scale method. The spectrum of the several orders of approximation show maxima of the energy distribution dependent on the azimuthal-angle and the winding numbers of the subsequent orders of the scalar field. This breakup of the quantized flux quanta does not lead to instability of the asymptotic wavelike solution due to the suppression of the n-dependency in the energy momentum tensor components by the warp factor. This effect is triggered by the contribution of the five dimensional Weyl tensor on the brane. This contribution can be understood as dark energy and can trigger the self-acceleration of the universe without the need of a cosmological constant. There is a striking relation between the symmetry breaking of the Higgs field described by the winding number and the SO(2 breaking of the axially symmetric configuration into a discrete subgroup of rotations of about 180 ∘ . The discrete sequence of non-axially symmetric deviations, cancelled by the emission of gravitational waves in order to restore the SO(2 symmetry, triggers the pressure T z z for discrete values of the azimuthal-angle. There could be a possible relation between the recently discovered angle-preferences of polarization axes of quasars on large scales and our theoretical predicted angle-dependency and this could be evidence for the existence of cosmic strings. Careful comparison of this spectrum of extremal values of the first and second order φ-dependency and the distribution of the alignment of the quasar polarizations is necessary. This can be accomplished when more observational data become available. It turns out that, for late time, the vacuum 5D spacetime is conformally invariant if the warp factor fulfils the equation of a vibrating

  7. Massive scalar field evolution in de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Department of Physics, King’s College London,Strand, London WC2R 2LS (United Kingdom); Rajantie, Arttu [Department of Physics, Imperial College London,London SW7 2AZ (United Kingdom)

    2017-01-30

    The behaviour of a massive, non-interacting and non-minimally coupled quantised scalar field in an expanding de Sitter background is investigated by solving the field evolution for an arbitrary initial state. In this approach there is no need to choose a vacuum in order to provide a definition for particle states, nor to introduce an explicit ultraviolet regularization. We conclude that the expanding de Sitter space is a stable equilibrium configuration under small perturbations of the initial conditions. Depending on the initial state, the energy density can approach its asymptotic value from above or below, the latter of which implies a violation of the weak energy condition. The backreaction of the quantum corrections can therefore lead to a phase of super-acceleration also in the non-interacting massive case.

  8. Propagators for a scalar field in a homogeneous expanding universe, 1

    International Nuclear Information System (INIS)

    Nariai, Hidekazu; Tanabe, Kenji.

    1975-11-01

    In view of a recent interest in the quantum field-theoretical creation of particles in a big-bang universe (which, via the problem how their vacuum state should be defined, will be connected with their propagators whose structure depends also on that of the universe), our previous formulae for bi-scalar Green's functions corresponding to a massless scalar field in the radiation- and matter-dominated stages of the Friedmann universe with flat 3-space are extended in a classical level. One is to derive the formulae for a massive scalar field in the same universe, and another lies in deriving the ones applicable to the respective stages of a closed universe with spherical topology. As an application, we discuss a massless scalar field (e.g., photons or gravitons defined suitably) and its physical property in the cases where its source distribution is spatially uniform and where that is of a delta-singularity. It is shown that the energy-momentum tensor in the first case is formally the same as a perfect fluid whose sound velocity relative to the light velocity is unity, while the tensor in the second case leads naturally to Robertson's formula for the apparent luminosity of a receding galaxy. The behavior of photons or gravitons generated from a turbulent medium in an early universe is also dealt with. (auth.)

  9. Dark matter search and the scalar quark contents of the nucleon

    International Nuclear Information System (INIS)

    Dinter, Simon; Drach, Vincent; Jansen, Karl

    2011-09-01

    We present lattice QCD simulation results from the European Twisted Mass Collaboration (ETMC) for the light, strange and charm quark contents of the nucleon. These quantities are important ingredients to estimate the cross-section for the detection of WIMPs as Dark Matter candidates. By employing a particular lattice QCD formulation, i.e. twisted mass fermions, accurate results of the light and strange scalar contents of the nucleon can be obtained. In addition, we provide a bound for the charm quark content of the nucleon. (orig.)

  10. Dark matter search and the scalar quark contents of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-09-15

    We present lattice QCD simulation results from the European Twisted Mass Collaboration (ETMC) for the light, strange and charm quark contents of the nucleon. These quantities are important ingredients to estimate the cross-section for the detection of WIMPs as Dark Matter candidates. By employing a particular lattice QCD formulation, i.e. twisted mass fermions, accurate results of the light and strange scalar contents of the nucleon can be obtained. In addition, we provide a bound for the charm quark content of the nucleon. (orig.)

  11. Quantum fate of singularities in a dark-energy dominated universe

    International Nuclear Information System (INIS)

    Bouhmadi-Lopez, Mariam; Kiefer, Claus; Sandhoefer, Barbara; Moniz, Paulo Vargas

    2009-01-01

    Classical models for dark energy can exhibit a variety of singularities, many of which occur for scale factors much bigger than the Planck length. We address here the issue of whether some of these singularities, the big freeze and the big demarrage, can be avoided in quantum cosmology. We use the framework of quantum geometrodynamics. We restrict our attention to a class of models whose matter content can be described by a generalized Chaplygin gas and be represented by a scalar field with an appropriate potential. Employing the DeWitt criterion that the wave function be zero at the classical singularity, we show that a class of solutions to the Wheeler-DeWitt equation fulfilling this condition can be found. These solutions thus avoid the classical singularity. We discuss the reasons for the remaining ambiguity in fixing the solution.

  12. Dynamical analysis for a vector-like dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Landim, Ricardo C.G. [Instituto de Fisica, Universidade de Sao Paulo, Departamento de Fisica-Matematica, Sao Paulo, SP (Brazil)

    2016-09-15

    In this paper we perform a dynamical analysis for a vector field as a candidate for the dark energy, in the presence of a barotropic fluid. The vector is one component of the so-called cosmic triad, which is a set of three identical copies of an abelian field pointing mutually in orthogonal directions. In order to generalize the analysis, we also assumed the interaction between dark energy and the barotropic fluid, with a phenomenological coupling. Both matter and dark energy eras can be successfully described by the critical points, indicating that the dynamical system theory is a viable tool to analyze asymptotic states of such cosmological models. (orig.)

  13. Electrodynamics of a Cosmic Dark Fluid

    Directory of Open Access Journals (Sweden)

    Alexander B. Balakin

    2016-06-01

    Full Text Available Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic waves propagate, and magneto-electric field structures emerge and evolve. A medium-type representation of the Dark Fluid allows us to involve in its analysis the concepts and mathematical formalism elaborated in the framework of classical covariant electrodynamics of continua, and to distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity, piezo-magnetism, electro- and magneto-striction and dynamo-optical activity. The Dark Fluid is assumed to be formed by a duet of a Dark Matter (a pseudoscalar axionic constituent and Dark Energy (a scalar element; respectively, we distinguish electrodynamic effects induced by these two constituents of the Dark Fluid. The review contains discussions of 10 models, which describe electrodynamic effects induced by Dark Matter and/or Dark Energy. The models are accompanied by examples of exact solutions to the master equations, correspondingly extended; applications are considered for cosmology and space-times with spherical and pp-wave symmetries. In these applications we focused the attention on three main electromagnetic phenomena induced by the Dark Fluid: first, emergence of Longitudinal Magneto-Electric Clusters; second, generation of anomalous electromagnetic responses; third, formation of Dark Epochs in the Universe history.

  14. Interacting Agegraphic Dark Energy

    OpenAIRE

    Wei, Hao; Cai, Rong-Gen

    2007-01-01

    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\\'{a}rolyh\\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegrap...

  15. Laboratory constraints on chameleon dark energy and power-law fields

    International Nuclear Information System (INIS)

    Steffen, Jason H.; Upadhye, Amol; Baumbaugh, Al; Chou, Aaron S.; Mazur, Peter O.; Tomlin, Ray; Weltman, Amanda; Wester, William

    2010-01-01

    We report results from the GammeV Chameleon Afterglow Search - a search for chameleon particles created via photon/chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of chameleon power-law models and dark energy models not previously explored. These results exclude five orders of magnitude in the coupling of chameleons to photons covering a range of four orders of magnitude in chameleon effective mass and, for individual chameleon models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.

  16. An effective description of dark matter and dark energy in the mildly non-linear regime

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Matthew; Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94306 (United States); Maleknejad, Azadeh, E-mail: matthew.lewandowski@cea.fr, E-mail: azade@ipm.ir, E-mail: senatore@stanford.edu [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. Code. 19538-33511, Tehran (Iran, Islamic Republic of)

    2017-05-01

    In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the information resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. The Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.

  17. Extra Dimensions are Dark: II Fermionic Dark Matter

    OpenAIRE

    Rizzo, Thomas G.

    2018-01-01

    Extra dimensions can be very useful tools when constructing new physics models. Previously, we began investigating toy models for the 5-D analog of the kinetic mixing/vector portal scenario where the interactions of bulk dark matter with the brane-localized fields of the Standard Model are mediated by a massive $U(1)_D$ dark photon also living in the bulk. In that setup, where the dark matter was taken to be a complex scalar, a number of nice features were obtained such as $U(1)_D$ breaking b...

  18. Einstein's Gravity and Dark Energy/Matter

    CERN Document Server

    Sarfatti, J

    2003-01-01

    Should Einstein's general relativity be quantized in the usual way even though it is not renormalizable the way the spin 1/2 lepto-quark - spin 1 gauge force boson local field theories are? Condensed matter theorists using P.W. Anderson's "More is different" approach, consistent with Andrei Sakharov's idea of "metric elasticity" with gravity emergent out of quantum electrodynamic zero point vacuum fluctuations, is the approach I take in this paper. The QED vacuum in globally-flat Minkowski space-time is unstable due to exchange of virtual photons between virtual electrons and positron "holes" near the -mc2 Fermi surface well inside the 2mc2 energy gap. This results in a non-perturbative emergence of both Einstein's gravity and a unified dark energy/dark matter w = -1 exotic vacuum zero point fluctuation field controlled by the local macro-quantum vacuum coherent field. The latter is a Bose-Einstein condensate of virtual off-mass-shell bound electron-positron pairs. The dark matter exotic vacuum phase with pos...

  19. Self-gravitating black hole scalar wigs

    Science.gov (United States)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Núñez, Darío; Sarbach, Olivier

    2017-07-01

    It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.

  20. Low energy constraints and scalar leptoquarks⋆

    Directory of Open Access Journals (Sweden)

    Fajfer Svjetlana

    2014-01-01

    Full Text Available The presence of a colored weak doublet scalar state with mass below 1 TeV can provide an explanation of the observed branching ratios in B → D(∗τντ decays. Constraints coming from Z → bb̄, muon g − 2, lepton flavor violating decays are derived. The colored scalar is accommodated within 45 representation of SU(5 group of unification. We show that presence of color scalar can improve mass relations in the up-type quark sector mass. Impact of the colored scalar embedding in 45-dimensional representation of SU(5 on low-energy phenomenology is also presented.

  1. Search for Dark Matter In events with heavy quarks and missing transverse energy with the ATLAS detector

    CERN Document Server

    Afik, Yoav; The ATLAS collaboration

    2017-01-01

    A wide search program is being carried at the LHC under the hypothesis that Dark Matter (DM) consists of weakly interacting massive particles (WIMPs). Final states with heavy flavour quarks and large momentum imbalance represent an interesting discovery signature which allows to probe models with scalar or pseudo-scalar interactions between the Standard Model and the dark sector under the assumption of Minimal Flavour Violation. We present the most recent results of searches for DM produced in association with a pair of heavy flavour quarks (DM+HF) in ATLAS [1-2] based on 36.1 fb-1 of proton-proton collision data collected at a centre of mass energy of 13 TeV.

  2. Propagators for a quantized scalar field in a static closed universe

    International Nuclear Information System (INIS)

    Nariai, Hidekazu; Azuma, Takahiro.

    1978-07-01

    In a previous paper, a massive scalar field in an expanding closed universe was canonically quantized by taking full account of its coupling-type with the background universe and of the latter's topological (spherical or elliptic) nature. General formulae (including the parts of vacuum fluctuation which should after all be removed by a suitable regularization) for the energy density and pressure of the quantized medium were derived. Various propagators for the quantized scalar field were also dealt with, because the Feynman propagator in particular became important as soon as the pair-creation of those particles was called for. However, there will be an intimate relation between the former hydrodynamic quantities and the pair-creation of their constituents. Accordingly, this problem is studied in detail by adopting a static closed universe (for simplicity in the reduction of various expressions derived in the previous paper) and examining the behavior of various bi-scalar propagators in the universe. (author)

  3. Dark energy from quantum matter

    International Nuclear Information System (INIS)

    Dappiaggi, Claudio; Hack, Thomas-Paul; Moeller, Jan; Pinamonti, Nicola

    2010-07-01

    We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)

  4. Dark energy from quantum matter

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Moeller, Jan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Pinamonti, Nicola [Rome-2 Univ. (Italy). Dipt. di Matematica

    2010-07-15

    We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)

  5. K -essence model from the mechanical approach point of view: coupled scalar field and the late cosmic acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-López, Mariam; Kumar, K. Sravan; Marto, João [Departamento de Física, Universidade da Beira Interior, Rua Marquês D' Ávila e Bolama, 6201-001 Covilhã (Portugal); Morais, João [Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain); Zhuk, Alexander, E-mail: mbl@ubi.pt, E-mail: sravan@ubi.pt, E-mail: jmarto@ubi.pt, E-mail: jviegas001@ikasle.ehu.eus, E-mail: ai.zhuk2@gmail.com [Astronomical Observatory, Odessa National University, Street Dvoryanskaya 2, Odessa 65082 (Ukraine)

    2016-07-01

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we can consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a K -essence scalar field, playing the role of dark energy, and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as the fluctuations of the other perfect fluids are non-relativistic. Such fluids are designated as coupled because they are concentrated around the inhomogeneities. In the present paper, we investigate the conditions under which the K -essence scalar field with the most general form for its action can become coupled. We investigate at the background level three particular examples of the K -essence models: (i) the pure kinetic K -essence field, (ii) a K -essence with a constant speed of sound and (iii) the K -essence model with the Lagrangian bX + cX {sup 2}− V (φ). We demonstrate that if the K -essence is coupled, all these K -essence models take the form of multicomponent perfect fluids where one of the component is the cosmological constant. Therefore, they can provide the late-time cosmic acceleration and be simultaneously compatible with the mechanical approach.

  6. Relativistic gravitation from massless systems of scalar and vector fields

    International Nuclear Information System (INIS)

    Fonseca Teixeira, A.F. da.

    1979-01-01

    Under the laws of Einstein's gravitational theory, a massless system consisting of the diffuse sources of two fields is discussed. One fields is scalar, of long range, the other is a vector field of short range. A proportionality between the sources is assumed. Both fields are minimally coupled to gravitation, and contribute positive definitely to the time component of the energy momentum tensor. A class of static, spherically symmetric solutions of the equations is obtained, in the weak field limit. The solutions are regular everywhere, stable, and can represent large or small physical systems. The gravitational field presents a Schwarzschild-type asymptotic behavior. The dependence of the energy on the various parameters characterizing the system is discussed in some detail. (Author) [pt

  7. Weak lensing: Dark Matter, Dark Energy and Dark Gravity

    International Nuclear Information System (INIS)

    Heavens, Alan

    2009-01-01

    In this non-specialist review I look at how weak lensing can provide information on the dark sector of the Universe. The review concentrates on what can be learned about Dark Matter, Dark Energy and Dark Gravity, and why. On Dark Matter, results on the confrontation of theoretical profiles with observation are reviewed, and measurements of neutrino masses discussed. On Dark Energy, the interest is whether this could be Einstein's cosmological constant, and prospects for high-precision studies of the equation of state are considered. On Dark Gravity, we consider the exciting prospects for future weak lensing surveys to distinguish General Relativity from extra-dimensional or other gravity theories.

  8. Scalar fields in black hole spacetimes

    Science.gov (United States)

    Thuestad, Izak; Khanna, Gaurav; Price, Richard H.

    2017-07-01

    The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.

  9. Essential building blocks of dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Gleyzes, Jerome; Vernizzi, Filippo [CEA, IPhT, 91191 Gif-sur-Yvette cédex, France CNRS, URA-2306, 91191 Gif-sur-Yvette cédex (France); Langlois, David; Piazza, Federico, E-mail: jerome.gleyzes@cea.fr, E-mail: langlois@apc.univ-paris7.fr, E-mail: fpiazza@apc.univ-paris7.fr, E-mail: filippo.vernizzi@cea.fr [APC, (CNRS-Université Paris 7), 10 rue Alice Domon et Léonie Duquet, 75205 Paris (France)

    2013-08-01

    We propose a minimal description of single field dark energy/modified gravity within the effective field theory formalism for cosmological perturbations, which encompasses most existing models. We start from a generic Lagrangian given as an arbitrary function of the lapse and of the extrinsic and intrinsic curvature tensors of the time hypersurfaces in unitary gauge, i.e. choosing as time slicing the uniform scalar field hypersurfaces. Focusing on linear perturbations, we identify seven Lagrangian operators that lead to equations of motion containing at most two (space or time) derivatives, the background evolution being determined by the time-dependent coefficients of only three of these operators. We then establish a dictionary that translates any existing or future model whose Lagrangian can be written in the above form into our parametrized framework. As an illustration, we study Horndeski's — or generalized Galileon — theories and show that they can be described, up to linear order, by only six of the seven operators mentioned above. This implies, remarkably, that the dynamics of linear perturbations can be more general than that of Horndeski while remaining second order. Finally, in order to make the link with observations, we provide the entire set of linear perturbation equations in Newtonian gauge, the effective Newton constant in the quasi-static approximation and the ratio of the two gravitational potentials, in terms of the time-dependent coefficients of our Lagrangian.

  10. Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories

    Science.gov (United States)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-04-01

    In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole solutions with scalar hair. Based on a previous theoretical analysis, which studied the evasion of the old and novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field, satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically flat black-hole solutions with nontrivial scalar hair. The solution for the scalar field and the profile of the corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a nonmonotonic behavior, an unusual feature that highlights the limitations of the existing no-hair theorems. We also determine and study in detail the scalar charge, horizon area, and entropy of our solutions.

  11. Evaluating dark energy probes using multidimensional dark energy parameters

    International Nuclear Information System (INIS)

    Albrecht, Andreas; Bernstein, Gary

    2007-01-01

    We investigate the value of future dark-energy experiments by modeling their ability to constrain the dark-energy equation of state. Similar work was recently reported by the Dark Energy Task Force (DETF) using a two dimensional parameterization of the equation-of-state evolution. We examine constraints in a nine-dimensional dark-energy parameterization, and find that the best experiments constrain significantly more than two dimensions in our 9D space. Consequently the impact of these experiments is substantially beyond that revealed in the DETF analysis, and the estimated cost per 'impact' drops by about a factor of 10 as one moves to the very best experiments. The DETF conclusions about the relative value of different techniques and of the importance of combining techniques are unchanged by our analysis

  12. Geodesics of black holes with dark energy

    Science.gov (United States)

    Ghaderi, K.

    2017-12-01

    Dark energy is the most popular hypothesis to explain recent observations suggesting that the world will increasingly expand. One of the models of dark energy is quintessence which is highly plausible. In this paper, we investigate the effect of dark energy on the null geodesics of Schwarzschild, Reissner-Nordström, Schwarzschild-de Sitter and Bardeen black holes. Using the definition of effective potential, the radius of the circular orbits, the period, the instability of the circular orbits, the force exerted on the photons and the deviation angle of light in quintessence field are calculated and the results are analyzed and discussed.

  13. Can Effective Field Theory of inflation generate large tensor-to-scalar ratio within Randall–Sundrum single braneworld?

    International Nuclear Information System (INIS)

    Choudhury, Sayantan

    2015-01-01

    In this paper my prime objective is to explain the generation of large tensor-to-scalar ratio from the single field sub-Planckian inflationary paradigm within Randall–Sundrum (RS) single braneworld scenario in a model independent fashion. By explicit computation I have shown that the effective field theory prescription of brane inflation within RS single brane setup is consistent with sub-Planckian excursion of the inflaton field, which will further generate large value of tensor-to-scalar ratio, provided the energy density for inflaton degrees of freedom is high enough compared to the brane tension in high energy regime. Finally, I have mentioned the stringent theoretical constraint on positive brane tension, cut-off of the quantum gravity scale and bulk cosmological constant to get sub-Planckian field excursion along with large tensor-to-scalar ratio as recently observed by BICEP2 or at least generates the tensor-to-scalar ratio consistent with the upper bound of Planck (2013 and 2015) data and Planck+BICEP2+Keck Array joint constraint

  14. Symmetries of noncommutative scalar field theory

    International Nuclear Information System (INIS)

    De Goursac, Axel; Wallet, Jean-Christophe

    2011-01-01

    We investigate symmetries of the scalar field theory with a harmonic term on the Moyal space with the Euclidean scalar product and general symplectic form. The classical action is invariant under the orthogonal group if this group acts also on the symplectic structure. We find that the invariance under the orthogonal group can also be restored at the quantum level by restricting the symplectic structures to a particular orbit.

  15. Classical behavior of a scalar field in the inflationary universe

    International Nuclear Information System (INIS)

    Sasaki, Misao; Nambu, Yasusada; Nakao, Ken-ichi.

    1987-09-01

    Extending the coarse-graining approach of Starobinsky, we formulate a theory to deal with the dynamics of a scalar field in inflationary universe models. We find a set of classical Langevin equations which describes the large scale behavior of the scalar field, provided that the coarse-grained size is greater than the effective compton wavelength of the scalar field. The corresponding Fokker-Planck equation is also derived which is defined on the phase space of the scalar field. We show that our theory is essentially equivalent to the one-loop field theory in de Sitter space and reduces to that of Starobinsky in a strong limit of the slow roll-over condition. Analysis of a simple Higgs potential model is done and the implications are discussed. (author)

  16. Dynamics of the universe with disformal coupling between the dark sectors

    Energy Technology Data Exchange (ETDEWEB)

    Karwan, Khamphee; Sapa, Stharporn [Naresuan University, The Institute for Fundamental Study ' ' The Tah Poe Academia Institute' ' , Phitsanulok (Thailand)

    2017-05-15

    We use a dynamical analysis to study the evolution of the universe at late time for the model in which the interaction between dark energy and dark matter is inspired by a disformal transformation. We extend the analysis in the existing literature by assuming that the disformal coefficient depends both on the scalar field and its kinetic terms. We find that the dependence of the disformal coefficient on the kinetic term of scalar field leads to two classes of the scaling fixed points that can describe the acceleration of the universe at late time. The first class exists only for the case where the disformal coefficient depends on the kinetic terms. The fixed points in this class are saddle points unless the slope of the conformal coefficient is sufficiently large. The second class can be viewed as the generalization of the fixed points studied in the literature. According to the stability analysis of these fixed points, we find that the stable fixed point can take two different physically relevant values for the same value of the parameters of the model. These different values of the fixed points can be reached for different initial conditions for the equation of state parameter of dark energy. We also discuss the situations in which this feature disappears. (orig.)

  17. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    Science.gov (United States)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  18. Interacting massless scalar and source-free electromagnetic fields

    International Nuclear Information System (INIS)

    Ayyangar, B.R.N.; Mohanty, G.

    1985-01-01

    The relativistic field equations for interacting massless attractive scalar and source-free electromagnetic fields in a cylindrically symmetric spacetime of one degree of freedom with reflection symmetry have been reduced to a first order implicit differential equation depending on time which enables one to generate a class of solution to the field equations. The nature of the scalar and electromagnetic fields is discussed. It is shown that the geometry of the spacetime admits of an irrotational stiff fluid distribution without prejudice to the interacting electromagnetic fields. 10 refs. (author)

  19. Stability of a collapsed scalar field and cosmic censorship

    International Nuclear Information System (INIS)

    Abe, S.

    1988-01-01

    The static and asymptotically flat solution to the Einstein-massless-scalar model with spherical symmetry describes the spacetime with a naked singularity when it has a nonvanishing scalar charge. We show that such a solution is unstable against the spherical scalar monopole perturbation. This suggests the validity of the cosmic censorship hypothesis in the spherical collapse of the scalar field

  20. New interactions in the dark sector mediated by dark energy

    International Nuclear Information System (INIS)

    Brookfield, Anthony W.; Bruck, Carsten van de; Hall, Lisa M. H.

    2008-01-01

    Cosmological observations have revealed the existence of a dark matter sector, which is commonly assumed to be made up of one particle species only. However, this sector might be more complicated than we currently believe: there might be more than one dark matter species (for example, two components of cold dark matter or a mixture of hot and cold dark matter) and there may be new interactions between these particles. In this paper we study the possibility of multiple dark matter species and interactions mediated by a dark energy field. We study both the background and the perturbation evolution in these scenarios. We find that the background evolution of a system of multiple dark matter particles (with constant couplings) mimics a single fluid with a time-varying coupling parameter. However, this is no longer true on the perturbative level. We study the case of attractive and repulsive forces as well as a mixture of cold and hot dark matter particles

  1. Regular and Chaotic Regimes in Scalar Field Cosmology

    Directory of Open Access Journals (Sweden)

    Alexey V. Toporensky

    2006-03-01

    Full Text Available A transient chaos in a closed FRW cosmological model with a scalar field is studied. We describe two different chaotic regimes and show that the type of chaos in this model depends on the scalar field potential. We have found also that for sufficiently steep potentials or for potentials with large cosmological constant the chaotic behavior disappears.

  2. Astrophysical constraints on scalar field models

    International Nuclear Information System (INIS)

    Bertolami, O.; Paramos, J.

    2005-01-01

    We use stellar structure dynamics arguments to extract bounds on the relevant parameters of two scalar field models: the putative scalar field mediator of a fifth force with a Yukawa potential and the new variable mass particle models. We also analyze the impact of a constant solar inbound acceleration, such as the one reported by the Pioneer anomaly, on stellar astrophysics. We consider the polytropic gas model to estimate the effect of these models on the hydrostatic equilibrium equation and fundamental quantities such as the central temperature. The current bound on the solar luminosity is used to constrain the relevant parameters of each model

  3. Exact solutions for scalar field cosmology in f(R) gravity

    Science.gov (United States)

    Maharaj, S. D.; Goswami, R.; Chervon, S. V.; Nikolaev, A. V.

    2017-09-01

    We study scalar field FLRW cosmology in the content of f(R) gravity. Our consideration is restricted to the spatially flat Friedmann universe. We derived the general evolution equations of the model, and showed that the scalar field equation is automatically satisfied for any form of the f(R) function. We also derived representations for kinetic and potential energies, as well as for the acceleration in terms of the Hubble parameter and the form of the f(R) function. Next we found the exact cosmological solutions in modified gravity without specifying the f(R) function. With negligible acceleration of the scalar curvature, we found that the de Sitter inflationary solution is always attained. Also we obtained new solutions with special restrictions on the integration constants. These solutions contain oscillating, accelerating, decelerating and even contracting universes. For further investigation, we selected special cases which can be applied with early or late inflation. We also found exact solutions for the general case for the model with negligible acceleration of the scalar curvature in terms of special Airy functions. Using initial conditions which represent the universe at the present epoch, we determined the constants of integration. This allows for the comparison of the scale factor in the new solutions with that for current stage of the universe evolution in the ΛCDM model.

  4. Emission of massive scalar fields by a higher-dimensional rotating black hole

    International Nuclear Information System (INIS)

    Kanti, P.; Pappas, N.

    2010-01-01

    We perform a comprehensive study of the emission of massive scalar fields by a higher-dimensional, simply rotating black hole both in the bulk and on the brane. We derive approximate, analytic results as well as exact numerical ones for the absorption probability, and demonstrate that the two sets agree very well in the low and intermediate-energy regime for scalar fields with mass m Φ ≤1 TeV in the bulk and m Φ ≤0.5 TeV on the brane. The numerical values of the absorption probability are then used to derive the Hawking radiation power emission spectra in terms of the number of extra dimensions, angular-momentum of the black hole and mass of the emitted field. We compute the total emissivities in the bulk and on the brane, and demonstrate that, although the brane channel remains the dominant one, the bulk-over-brane energy ratio is considerably increased (up to 34%) when the mass of the emitted field is taken into account.

  5. Dark Matter Detection Using Helium Evaporation and Field Ionization.

    Science.gov (United States)

    Maris, Humphrey J; Seidel, George M; Stein, Derek

    2017-11-03

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  6. Dark Matter Detection Using Helium Evaporation and Field Ionization

    Science.gov (United States)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek

    2017-11-01

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  7. Solar System constraints on massless scalar-tensor gravity with positive coupling constant upon cosmological evolution of the scalar field

    Science.gov (United States)

    Anderson, David; Yunes, Nicolás

    2017-09-01

    Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.

  8. Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Pinamonti, Nicola [Roma ' ' Tor Vergata' ' Univ. (Italy). Dipt. di Matematica

    2010-09-15

    We construct and discuss Hadamard states for both scalar and Dirac spinor fields in a large class of spatially flat Friedmann-Robertson-Walker spacetimes characterised by an initial phase either of exponential or of power-law expansion. The states we obtain can be interpreted as being in thermal equilibrium at the time when the scale factor a has a specific value a = a{sub 0}. In the case a{sub 0} = 0, these states fulfil a strict KMS condition on the boundary of the spacetime, which is either a cosmological horizon, or a Big Bang hypersurface. Furthermore, in the conformally invariant case, they are conformal KMS states on the full spacetime. However, they provide a natural notion of an approximate KMS state also in the remaining cases, especially for massive fields. On the technical side, our results are based on a bulk-to-boundary reconstruction technique already successfully applied in the scalar case and here proven to be suitable also for spinor fields. The potential applications of the states we find range over a broad spectrum, but they appear to be suited to discuss in particular thermal phenomena such as the cosmic neutrino background or the quantum state of dark matter. (orig.)

  9. Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes

    International Nuclear Information System (INIS)

    Dappiaggi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola

    2010-09-01

    We construct and discuss Hadamard states for both scalar and Dirac spinor fields in a large class of spatially flat Friedmann-Robertson-Walker spacetimes characterised by an initial phase either of exponential or of power-law expansion. The states we obtain can be interpreted as being in thermal equilibrium at the time when the scale factor a has a specific value a = a 0 . In the case a 0 = 0, these states fulfil a strict KMS condition on the boundary of the spacetime, which is either a cosmological horizon, or a Big Bang hypersurface. Furthermore, in the conformally invariant case, they are conformal KMS states on the full spacetime. However, they provide a natural notion of an approximate KMS state also in the remaining cases, especially for massive fields. On the technical side, our results are based on a bulk-to-boundary reconstruction technique already successfully applied in the scalar case and here proven to be suitable also for spinor fields. The potential applications of the states we find range over a broad spectrum, but they appear to be suited to discuss in particular thermal phenomena such as the cosmic neutrino background or the quantum state of dark matter. (orig.)

  10. Scalar fields and their applications in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Mbelek, Jean-Paul

    2003-01-01

    This research thesis reports an analysis of the different existing theoretical contexts of occurrence of scalar fields in unified field theories, astrophysics and cosmology. More particularly, most of unified theories (Grand Unified Theories of GUTs, string theories, and so on) can be reduced, within astrophysical and cosmological conditions, to the form of effective theories such as Kaluza-Klein (multi-dimensional theories) or Brans-Dicke (four-dimensional theories) theories which comprise scalar fields. After a presentation of these theories, the author discusses the concept of scalar fields in field quantum theories and in cosmology. He proposes a stabilised model of the Kaluza-Klein theory in 5D, and several experiments designed to measure G. The thesis is completed by several published articles and contributions [fr

  11. Revival of the unified dark energy-dark matter model?

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Sen, A.A.

    2004-01-01

    We consider the generalized Chaplygin gas (GCG) proposal for unification of dark energy and dark matter and show that it admits an unique decomposition into dark energy and dark matter components once phantomlike dark energy is excluded. Within this framework, we study structure formation and show that difficulties associated to unphysical oscillations or blowup in the matter power spectrum can be circumvented. Furthermore, we show that the dominance of dark energy is related to the time when energy density fluctuations start deviating from the linear δ∼a behavior

  12. A nonlinear dynamics for the scalar field in Randers spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.E.G. [Universidade Federal do Cariri (UFCA), Instituto de formação de professores, Rua Olegário Emídio de Araújo, Brejo Santo, CE, 63.260.000 (Brazil); Maluf, R.V. [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil)

    2017-03-10

    We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.

  13. Force field refinement from NMR scalar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Huang Jing [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland); Meuwly, Markus, E-mail: m.meuwly@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2012-03-02

    Graphical abstract: We show that two classes of H-bonds are sufficient to quantitatively describe scalar NMR coupling constants in small proteins. Highlights: Black-Right-Pointing-Pointer We present force field refinements based on explicit MD simulations using scalar couplings across hydrogen bonds. Black-Right-Pointing-Pointer This leads to {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.03 Hz at best compared to experiment. Black-Right-Pointing-Pointer A classification of H-bonds according to secondary structure is not sufficiently robust. Black-Right-Pointing-Pointer Grouping H-bonds into two classes and reparametrization yields an RMSD of 0.07 Hz. Black-Right-Pointing-Pointer This is an improvement of 50. - Abstract: NMR observables contain valuable information about the protein dynamics sampling a high-dimensional potential energy surface. Depending on the observable, the dynamics is sensitive to different time-windows. Scalar coupling constants {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} reflect the pico- to nanosecond motions associated with the intermolecular hydrogen bond network. Including an explicit H-bond in the molecular mechanics with proton transfer (MMPT) potential allows us to reproduce experimentally determined {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.02 Hz at best for ubiquitin and protein G. This is based on taking account of the chemically changing environment by grouping the H-bonds into up to seven classes. However, grouping them into two classes already reduces the RMSD between computed and observed {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings by almost 50%. Thus, using ensemble-averaged data with two classes of H-bonds leads to substantially improved scalar couplings from simulations with accurate force fields.

  14. Feebly Interacting Dark Matter Particle as the Inflaton

    OpenAIRE

    Tenkanen, Tommi

    2016-01-01

    We present a scenario where a $Z_2$-symmetric scalar field $\\phi$ first drives cosmic inflation, then reheats the Universe but remains out-of-equilibrium itself, and finally comprises the observed dark matter abundance, produced by particle decays \\`{a} la freeze-in mechanism. We work model-independently without specifying the interactions of the scalar field besides its self-interaction coupling, $\\lambda\\phi^4$, non-minimal coupling to gravity, $\\xi\\phi^2R$, and coupling to another scalar f...

  15. Spherically symmetric scalar field collapse

    Indian Academy of Sciences (India)

    2013-03-01

    Mar 1, 2013 ... The very recent interest in scalar field collapse stems from a cosmological ... The objective of the present investigation is to explore the collapsing modes of a simple ..... The authors thank the BRNS (DAE) for financial support.

  16. Sterile neutrino dark matter and low scale leptogenesis from a charged scalar.

    Science.gov (United States)

    Frigerio, Michele; Yaguna, Carlos E

    We show that novel paths to dark matter generation and baryogenesis are open when the standard model is extended with three sterile neutrinos [Formula: see text] and a charged scalar [Formula: see text]. Specifically, we propose a new production mechanism for the dark matter particle-a multi-keV sterile neutrino, [Formula: see text]-that does not depend on the active-sterile mixing angle and does not rely on a large primordial lepton asymmetry. Instead, [Formula: see text] is produced, via freeze-in, by the decays of [Formula: see text] while it is in equilibrium in the early Universe. In addition, we demonstrate that, thanks to the couplings between the heavier sterile neutrinos [Formula: see text] and [Formula: see text], baryogenesis via leptogenesis can be realized close to the electroweak scale. The lepton asymmetry is generated either by [Formula: see text]-decays for masses [Formula: see text] TeV, or by [Formula: see text]-oscillations for [Formula: see text] GeV. Experimental signatures of this scenario include an X-ray line from dark matter decays, and the direct production of [Formula: see text] at the LHC. This model thus describes a minimal, testable scenario for neutrino masses, the baryon asymmetry, and dark matter.

  17. Anomalous coupling of scalars to gauge fields

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine; Seery, David; Weltman, Amanda

    2010-10-01

    We study the transformation properties of a scalar-tensor theory, coupled to fermions, under the Weyl rescaling associated with a transition from the Jordan to the Einstein frame. We give a simple derivation of the corresponding modification to the gauge couplings. After changing frames, this gives rise to a direct coupling between the scalar and the gauge fields. (orig.)

  18. Anomalous coupling of scalars to gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Geneve Univ. (Switzerland). Dept. de Physique Theorique; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, Anne-Christine [Centre for Mathematical Sciences, Cambridge (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Seery, David [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Weltman, Amanda [Cape Town Univ., Rondebosch (South Africa). Astronomy, Cosmology and Gravity Centre

    2010-10-15

    We study the transformation properties of a scalar-tensor theory, coupled to fermions, under the Weyl rescaling associated with a transition from the Jordan to the Einstein frame. We give a simple derivation of the corresponding modification to the gauge couplings. After changing frames, this gives rise to a direct coupling between the scalar and the gauge fields. (orig.)

  19. Dark Matter Decays from Nonminimal Coupling to Gravity.

    Science.gov (United States)

    Catà, Oscar; Ibarra, Alejandro; Ingenhütt, Sebastian

    2016-07-08

    We consider the standard model extended with a dark matter particle in curved spacetime, motivated by the fact that the only current evidence for dark matter is through its gravitational interactions, and we investigate the impact on the dark matter stability of terms in the Lagrangian linear in the dark matter field and proportional to the Ricci scalar. We show that this "gravity portal" induces decay even if the dark matter particle only has gravitational interactions, and that the decay branching ratios into standard model particles only depend on one free parameter: the dark matter mass. We study in detail the case of a singlet scalar as a dark matter candidate, which is assumed to be absolutely stable in flat spacetime due to a discrete Z_{2} symmetry, but which may decay in curved spacetimes due to a Z_{2}-breaking nonminimal coupling to gravity. We calculate the dark matter decay widths and we set conservative limits on the nonminimal coupling parameter from experiments. The limits are very stringent and suggest that there must exist an additional mechanism protecting the singlet scalar from decaying via this gravity portal.

  20. Topological black holes dressed with a conformally coupled scalar field and electric charge

    International Nuclear Information System (INIS)

    Martinez, Cristian; Troncoso, Ricardo; Staforelli, Juan Pablo

    2006-01-01

    Electrically charged solutions for gravity with a conformally coupled scalar field are found in four dimensions in the presence of a cosmological constant. If a quartic self-interaction term for the scalar field is considered, there is a solution describing an asymptotically locally AdS charged black hole dressed with a scalar field that is regular on and outside the event horizon, which is a surface of negative constant curvature. This black hole can have negative mass, which is bounded from below for the extremal case, and its causal structure shows that the solution describes a ''black hole inside a black hole''. The thermodynamics of the nonextremal black hole is analyzed in the grand canonical ensemble. The entropy does not follow the area law, and there is an effective Newton constant which depends on the value of the scalar field at the horizon. If the base manifold is locally flat, the solution has no electric charge, and the scalar field has a vanishing stress-energy tensor so that it dresses a locally AdS spacetime with a nut at the origin. In the case of vanishing self interaction, the solutions also dress locally AdS spacetimes, and if the base manifold is of negative constant curvature a massless electrically charged hairy black hole is obtained. The thermodynamics of this black hole is also analyzed. It is found that the bounds for the black holes parameters in the conformal frame obtained from requiring the entropy to be positive are mapped into the ones that guarantee cosmic censorship in the Einstein frame

  1. Thermodynamics of de Sitter black holes with a conformally coupled scalar field

    International Nuclear Information System (INIS)

    Barlow, Anne-Marie; Doherty, Daniel; Winstanley, Elizabeth

    2005-01-01

    We study the thermodynamics of de Sitter black holes with a conformally coupled scalar field. The geometry is that of the lukewarm Reissner-Nordstroem-de Sitter black holes, with the event and cosmological horizons at the same temperature. This means that the region between the event and cosmological horizons can form a regular Euclidean instanton. The entropy is modified by the nonminimal coupling of the scalar field to the geometry, but can still be derived from the Euclidean action, provided suitable modifications are made to deal with the electrically charged case. We use the first law as derived from the isolated horizons formalism to compute the local horizon energies for the event and cosmological horizons

  2. Cosmic Visions Dark Energy. Science

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Heitmann, Katrin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hirata, Chris [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Roodman, Aaron [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seljak, Uroš [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Slosar, Anže [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Trodden, Mark [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-04-26

    Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiments, DESI and LSST, complete their surveys, there will still be much information left in the sky. This additional information will enable us to understand the physics underlying the dark universe at an even deeper level and, in case Stage IV surveys find hints for physics beyond the current Standard Model of Cosmology, to revolutionize our current view of the universe. There are many ideas for how best to supplement and aid DESI and LSST in order to access some of this remaining information and how surveys beyond Stage IV can fully exploit this regime. These ideas flow to potential projects that could start construction in the 2020's.

  3. Cosmic Visions Dark Energy: Science

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Slosar, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Heitmann, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hirata, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Honscheid, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roodman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seljak, U. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trodden, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-26

    Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiments, DESI and LSST, complete their surveys, there will still be much information left in the sky. This additional information will enable us to understand the physics underlying the dark universe at an even deeper level and, in case Stage IV surveys find hints for physics beyond the current Standard Model of Cosmology, to revolutionize our current view of the universe. There are many ideas for how best to supplement and aid DESI and LSST in order to access some of this remaining information and how surveys beyond Stage IV can fully exploit this regime. These ideas flow to potential projects that could start construction in the 2020's.

  4. Interacting dark energy and the expansion of the universe

    CERN Document Server

    Silbergleit, Alexander S

    2017-01-01

    This book presents a high-level study of cosmology with interacting dark energy and no additional fields. It is known that dark energy is not necessarily uniform when other sources of gravity are present: interaction with matter leads to its variation in space and time. The present text studies the cosmological implications of this circumstance by analyzing cosmological models in which the dark energy density interacts with matter and thus changes with the time. The book also includes a translation of a seminal article about the remarkable life and work of E.B. Gliner, the first person to suggest the concept of dark energy in 1965.

  5. Unified Description of Dark Energy and Dark Matter

    OpenAIRE

    Petry, Walter

    2008-01-01

    Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...

  6. Effective field theory of dark matter from membrane inflationary paradigm

    Science.gov (United States)

    Choudhury, Sayantan; Dasgupta, Arnab

    2016-09-01

    In this article, we have studied the cosmological and particle physics constraints on dark matter relic abundance from effective field theory of inflation from tensor-to-scalar ratio (r), in case of Randall-Sundrum single membrane (RSII) paradigm. Using semi-analytical approach we establish a direct connection between the dark matter relic abundance (ΩDMh2) and primordial gravity waves (r), which establishes a precise connection between inflation and generation of dark matter within the framework of effective field theory in RSII membrane. Further assuming the UV completeness of the effective field theory perfectly holds good in the prescribed framework, we have explicitly shown that the membrane tension, σ ≤ O(10-9) Mp4 , bulk mass scale M5 ≤ O(0.04 - 0.05) Mp, and cosmological constant Λ˜5 ≥ - O(10-15) Mp5 , in RSII membrane plays the most significant role to establish the connection between dark matter and inflation, using which we have studied the features of various mediator mass scale suppressed effective field theory "relevant operators" induced from the localized s, t and u channel interactions in RSII membrane. Taking a completely model independent approach, we have studied an exhaustive list of tree-level Feynman diagrams for dark matter annihilation within the prescribed setup and to check the consistency of the obtained results, further we apply the constraints as obtained from recently observed Planck 2015 data and Planck + BICEP2 + Keck Array joint data sets. Using all of these derived results we have shown that to satisfy the bound on, ΩDMh2 = 0.1199 ± 0.0027, as from Planck 2015 data, it is possible to put further stringent constraint on r within, 0.01 ≤ r ≤ 0.12, for thermally averaged annihilation cross-section of dark matter, 〈 σv 〉 ≈ O(10-28 - 10-27) cm3 / s, which are very useful to constrain various membrane inflationary models.

  7. Babinet’s principle for scalar complex objects in the far field

    Science.gov (United States)

    Rodriguez-Zurita, G.; Rickenstorff, C.; Pastrana-Sánchez, R.; Vázquez-Castillo, J. F.; Robledo-Sanchez, C.; Meneses-Fabian, C.; Toto-Arellano, N. I.

    2014-10-01

    Babinet’s principle is briefly reviewed, especially regarding the zeroth diffraction order of the far field diffraction pattern associated with a given aperture. The pattern is basically described by the squared modulus of the Fourier transform of its amplitude distribution (scalar case). In this paper, complementary objects are defined with respect to complex values and not only with respect to unity in order to include phase objects and phase modulation. It is shown that the difference in complementary patterns can be sometimes a bright spot at the zero order location as is widely known, but also, it can be a gray spot or even a dark one. Conditions of occurrence for each case are given as well as some numerical and experimental examples.

  8. Babinet’s principle for scalar complex objects in the far field

    International Nuclear Information System (INIS)

    Rodriguez-Zurita, G; Rickenstorff, C; Pastrana-Sánchez, R; Vázquez-Castillo, J F; Robledo-Sanchez, C; Meneses-Fabian, C; Toto-Arellano, N I

    2014-01-01

    Babinet’s principle is briefly reviewed, especially regarding the zeroth diffraction order of the far field diffraction pattern associated with a given aperture. The pattern is basically described by the squared modulus of the Fourier transform of its amplitude distribution (scalar case). In this paper, complementary objects are defined with respect to complex values and not only with respect to unity in order to include phase objects and phase modulation. It is shown that the difference in complementary patterns can be sometimes a bright spot at the zero order location as is widely known, but also, it can be a gray spot or even a dark one. Conditions of occurrence for each case are given as well as some numerical and experimental examples. (paper)

  9. Top-philic scalar Dark Matter with a vector-like fermionic top partner

    OpenAIRE

    Baek, Seungwon; Ko, Pyungwon; Wu, Peiwen

    2016-01-01

    We consider a simple extension of the Standard Model with a scalar top-philic Dark Matter (DM) $S$ coupling, apart from the Higgs portal, exclusively to the right-handed top quark $t_R$ and a colored vector-like top partner $T$ with a Yukawa coupling $y_{ST}$ which we call the topVL portal. When the Higgs portal is closed and $y_{ST}$ is perturbative $ (\\lesssim 1)$, $TS\\to (W^+b, gt)$, $SS\\to t\\bar{t}$ and $T\\bar{T}\\to (q\\bar{q},gg)$ provide the dominant (co)annihilation contributions to obt...

  10. Multipartite interacting scalar dark matter in the light of updated LUX data

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Subhaditya; Ghosh, Purusottam; Poulose, Poulose, E-mail: subhab@iitg.ernet.in, E-mail: p.ghosh@iitg.ernet.in, E-mail: poulose@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India)

    2017-04-01

    We explore constraints on multipartite dark matter (DM) framework composed of singlet scalar DM interacting with the Standard Model (SM) through Higgs portal coupling. We compute relic density and direct search constraints including the updated LUX bound for two component scenario with non-zero interactions between two DM components in Z{sub 2} × Z{sub 2}{sup '} framework in comparison with the one having O(2) symmetry. We point out availability of a significantly large region of parameter space of such a multipartite model with DM-DM interactions.

  11. S-Channel Dark Matter Simplified Models and Unitarity

    CERN Document Server

    Englert, Christoph; Spannowsky, Michael

    The ultraviolet structure of $s$-channel mediator dark matter simplified models at hadron colliders is considered. In terms of commonly studied $s$-channel mediator simplified models it is argued that at arbitrarily high energies the perturbative description of dark matter production in high energy scattering at hadron colliders will break down in a number of cases. This is analogous to the well documented breakdown of an EFT description of dark matter collider production. With this in mind, to diagnose whether or not the use of simplified models at the LHC is valid, perturbative unitarity of the scattering amplitude in the processes relevant to LHC dark matter searches is studied. The results are as one would expect: at the LHC and future proton colliders the simplified model descriptions of dark matter production are in general valid. As a result of the general discussion, a simple new class of previously unconsidered `Fermiophobic Scalar' simplified models is proposed, in which a scalar mediator couples to...

  12. Constraining Dark Sectors at Colliders: Beyond the Effective Theory Approach

    CERN Document Server

    Harris, Philip; Spannowsky, Michael; Williams, Ciaran

    2015-01-01

    We outline and investigate a set of benchmark simplified models with the aim of providing a minimal simple framework for an interpretation of the existing and forthcoming searches of dark matter particles at the LHC. The simplified models we consider provide microscopic QFT descriptions of interactions between the Standard Model partons and the dark sector particles mediated by the four basic types of messenger fields: scalar, pseudo-scalar, vector or axial-vector. Our benchmark models are characterised by four to five parameters, including the mediator mass and width, the dark matter mass and an effective coupling(s). In the gluon fusion production channel we resolve the top-quark in the loop and compute full top-mass effects for scalar and pseudo-scalar messengers. We show the LHC limits and reach at 8 and 14 TeV for models with all four messenger types. We also outline the complementarity of direct detection, indirect detection and LHC bounds for dark matter searches. Finally, we investigate the effects wh...

  13. Dark energy fingerprints in the nonminimal Wu-Yang wormhole structure

    Science.gov (United States)

    Balakin, Alexander B.; Zayats, Alexei E.

    2014-08-01

    We discuss new exact solutions to nonminimally extended Einstein-Yang-Mills equations describing spherically symmetric static wormholes supported by the gauge field of the Wu-Yang type in a dark energy environment. We focus on the analysis of three types of exact solutions to the gravitational field equations. Solutions of the first type relate to the model, in which the dark energy is anisotropic; i.e., the radial and tangential pressures do not coincide. Solutions of the second type correspond to the isotropic pressure tensor; in particular, we discuss the exact solution, for which the dark energy is characterized by the equation of state for a string gas. Solutions of the third type describe the dark energy model with constant pressure and energy density. For the solutions of the third type, we consider in detail the problem of horizons and find constraints for the parameters of nonminimal coupling and for the constitutive parameters of the dark energy equation of state, which guarantee that the nonminimal wormholes are traversable.

  14. Scalar field vacuum expectation value induced by gravitational wave background

    Science.gov (United States)

    Jones, Preston; McDougall, Patrick; Ragsdale, Michael; Singleton, Douglas

    2018-06-01

    We show that a massless scalar field in a gravitational wave background can develop a non-zero vacuum expectation value. We draw comparisons to the generation of a non-zero vacuum expectation value for a scalar field in the Higgs mechanism and with the dynamical Casimir vacuum. We propose that this vacuum expectation value, generated by a gravitational wave, can be connected with particle production from gravitational waves and may have consequences for the early Universe where scalar fields are thought to play an important role.

  15. arXiv Tensor to scalar ratio from single field magnetogenesis

    CERN Document Server

    Giovannini, Massimo

    2017-08-10

    The tensor to scalar ratio is affected by the evolution of the large-scale gauge fields potentially amplified during an inflationary stage of expansion. After deriving the exact evolution equations for the scalar and tensor modes of the geometry in the presence of dynamical gauge fields, it is shown that the tensor to scalar ratio is bounded from below by the dominance of the adiabatic contribution and it cannot be smaller than one thousands whenever the magnetogenesis is driven by a single inflaton field.

  16. Singlet fermionic dark matter with Veltman conditions

    Science.gov (United States)

    Kim, Yeong Gyun; Lee, Kang Young; Nam, Soo-hyeon

    2018-07-01

    We reexamine a renormalizable model of a fermionic dark matter with a gauge singlet Dirac fermion and a real singlet scalar which can ameliorate the scalar mass hierarchy problem of the Standard Model (SM). Our model setup is the minimal extension of the SM for which a realistic dark matter (DM) candidate is provided and the cancellation of one-loop quadratic divergence to the scalar masses can be achieved by the Veltman condition (VC) simultaneously. This model extension, although renormalizable, can be considered as an effective low-energy theory valid up to cut-off energies about 10 TeV. We calculate the one-loop quadratic divergence contributions of the new scalar and fermionic DM singlets, and constrain the model parameters using the VC and the perturbative unitarity conditions. Taking into account the invisible Higgs decay measurement, we show the allowed region of new physics parameters satisfying the recent measurement of relic abundance. With the obtained parameter set, we predict the elastic scattering cross section of the new singlet fermion into target nuclei for a direct detection of the dark matter. We also perform the full analysis with arbitrary set of parameters without the VC as a comparison, and discuss the implication of the constraints by the VC in detail.

  17. Interacting ghost dark energy in Brans-Dicke theory

    International Nuclear Information System (INIS)

    Ebrahimi, Esmaeil; Sheykhi, Ahmad

    2011-01-01

    We investigate the QCD ghost model of dark energy in the framework of Brans-Dicke cosmology. First, we study the non-interacting ghost dark energy in a flat Brans-Dicke theory. In this case we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of ghost energy density. Interestingly enough, we find that the equation of state parameter of the non-interacting ghost dark energy can cross the phantom line (w D =-1) provided the parameters of the model are chosen suitably. Then, we generalize the study to the interacting ghost dark energy in both flat and non-flat Brans-Dicke framework and find out that the transition of w D to phantom regime can be more easily achieved for than when resort to the Einstein field equations is made.

  18. Dissipation element analysis of turbulent scalar fields

    International Nuclear Information System (INIS)

    Wang Lipo; Peters, Norbert

    2008-01-01

    Dissipation element analysis is a new approach for studying turbulent scalar fields. Gradient trajectories starting from each material point in a scalar field Φ'(x-vector,t) in ascending directions will inevitably reach a maximal and a minimal point. The ensemble of material points sharing the same pair ending points is named a dissipation element. Dissipation elements can be parameterized by the length scale l and the scalar difference Δφ ', which are defined as the straight line connecting the two extremal points and the scalar difference at these points, respectively. The decomposition of a turbulent field into dissipation elements is space-filling. This allows us to reconstruct certain statistical quantities of fine scale turbulence which cannot be obtained otherwise. The marginal probability density function (PDF) of the length scale distribution based on a Poisson random cutting-reconnection process shows satisfactory agreement with the direct numerical simulation (DNS) results. In order to obtain the further information that is needed for the modeling of scalar mixing in turbulence, such as the marginal PDF of the length of elements and all conditional moments as well as their scaling exponents, there is a need to model the joint PDF of l and Δφ ' as well. A compensation-defect model is put forward in this work to show the dependence of Δφ ' on l. The agreement between the model prediction and DNS results is satisfactory, which may provide another explanation of the Kolmogorov scaling and help to improve turbulent mixing models. Furthermore, intermittency and cliff structure can also be related to and explained from the joint PDF.

  19. Constraints on early dark energy from CMB lensing and weak lensing tomography

    International Nuclear Information System (INIS)

    Hollenstein, Lukas; Crittenden, Robert; Sapone, Domenico; Schäfer, Björn Malte

    2009-01-01

    Dark energy can be studied by its influence on the expansion of the Universe as well as on the growth history of the large-scale structure. In this paper, we follow the growth of the cosmic density field in early dark energy cosmologies by combining observations of the primary CMB temperature and polarisation power spectra at high redshift, of the CMB lensing deflection field at intermediate redshift and of weak cosmic shear at low redshifts for constraining the allowed amount of early dark energy. We present these forecasts using the Fisher matrix formalism and consider the combination of Planck data with the weak lensing survey of Euclid. We find that combining these data sets gives powerful constraints on early dark energy and is able to break degeneracies in the parameter set inherent to the various observational channels. The derived statistical 1σ-bound on the early dark energy density parameter is σ(Ω e d ) = 0.0022 which suggests that early dark energy models can be well examined in our approach. In addition, we derive the dark energy figure of merit for the considered dark energy parameterisation and comment on the applicability of the growth index to early dark energy cosmologies

  20. Measuring the speed of dark: Detecting dark energy perturbations

    International Nuclear Information System (INIS)

    Putter, Roland de; Huterer, Dragan; Linder, Eric V.

    2010-01-01

    The nature of dark energy can be probed not only through its equation of state but also through its microphysics, characterized by the sound speed of perturbations to the dark energy density and pressure. As the sound speed drops below the speed of light, dark energy inhomogeneities increase, affecting both cosmic microwave background and matter power spectra. We show that current data can put no significant constraints on the value of the sound speed when dark energy is purely a recent phenomenon, but can begin to show more interesting results for early dark energy models. For example, the best fit model for current data has a slight preference for dynamics [w(a)≠-1], degrees of freedom distinct from quintessence (c s ≠1), and early presence of dark energy [Ω de (a<<1)≠0]. Future data may open a new window on dark energy by measuring its spatial as well as time variation.

  1. Supergravity, Dark Energy and the Fate of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Shmakova, Marina

    2002-09-27

    We propose a description of dark energy and acceleration of the universe in extended supergravities with de Sitter (dS) solutions. Some of them are related to M-theory with non-compact internal spaces. Masses of ultra-light scalars in these models are quantized in units of the Hubble constant: m{sup 2} = nH{sup 2}. If dS solution corresponds to a minimum of the effective potential, the universe eventually becomes dS space. If dS solution corresponds to a maximum or a saddle point, which is the case in all known models based on N = 8 supergravity, the flat universe eventually stops accelerating and collapses to a singularity. We show that in these models, as well as in the simplest models of dark energy based on N = 1 supergravity, the typical time remaining before the global collapse is comparable to the present age of the universe, t = O(10{sup 10}) years. We discuss the possibility of distinguishing between various models and finding our destiny using cosmological observations.

  2. Coupled scalar fields in a flat FRW universe. Renormalisation

    Energy Technology Data Exchange (ETDEWEB)

    Baacke, Juergen [Technische Univ. Dortmund (Germany). Fakultaet Physik; Covi, Laura [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kevlishvili, Nina [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Andronikashvili Institute of Physics, Tbilisi (Georgia)

    2010-06-15

    We study the non-equilibrium dynamics of a system of coupled scalar fields in a Friedmann-Robertson-Walker (FRW) universe. We consider the evolution of spatially homogeneous ''classical'' fields and of their quantum fluctuations including the quantum backreaction in the one-loop approximation. We discuss in particular the dimensional regularisation of the coupled system and a special subtraction procedure in order to obtain the renormalised equations of motion and the renormalised energy-momentum tensor and ensure that the energy is well-defined and covariantly conserved. These results represent at the same time a theoretical analysis and a viable scheme for stable numerical simulations. As an example for an application of the general formalism, we present simulations for a hybrid inflationary model. (orig.)

  3. Unification of dark energy and dark matter

    International Nuclear Information System (INIS)

    Takahashi, Fuminobu; Yanagida, T.T.

    2006-01-01

    We propose a scenario in which dark energy and dark matter are described in a unified manner. The ultralight pseudo-Nambu-Goldstone (pNG) boson, A, naturally explains the observed magnitude of dark energy, while the bosonic supersymmetry partner of the pNG boson, B, can be a dominant component of dark matter. The decay of B into a pair of electron and positron may explain the 511 keV γ ray from the Galactic Center

  4. Scalar field cosmologies with inverted potentials

    Energy Technology Data Exchange (ETDEWEB)

    Boisseau, B.; Giacomini, H. [Université de Tours, Laboratoire de Mathématiques et Physique Théorique, CNRS/UMR 7350, 37200 Tours (France); Polarski, D., E-mail: bruno.boisseau@lmpt.univ-tours.fr, E-mail: hector.giacomini@lmpt.univ-tours.fr, E-mail: david.polarski@umontpellier.fr [Université Montpellier and CNRS, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France)

    2015-10-01

    Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.

  5. Scalar field cosmologies with inverted potentials

    International Nuclear Information System (INIS)

    Boisseau, B.; Giacomini, H.; Polarski, D.

    2015-01-01

    Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF

  6. Relativistic n-body wave equations in scalar quantum field theory

    International Nuclear Information System (INIS)

    Emami-Razavi, Mohsen

    2006-01-01

    The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields

  7. Condensate cosmology: Dark energy from dark matter

    International Nuclear Information System (INIS)

    Bassett, Bruce A.; Parkinson, David; Kunz, Martin; Ungarelli, Carlo

    2003-01-01

    Imagine a scenario in which the dark energy forms via the condensation of dark matter at some low redshift. The Compton wavelength therefore changes from small to very large at the transition, unlike quintessence or metamorphosis. We study cosmic microwave background (CMB), large scale structure, supernova and radio galaxy constraints on condensation by performing a four parameter likelihood analysis over the Hubble constant and the three parameters associated with Q, the condensate field: Ω Q , w f and z t (energy density and equation of state today, and redshift of transition). Condensation roughly interpolates between ΛCDM (for large z t ) and SCDM (low z t ) and provides a slightly better fit to the data than ΛCDM. We confirm that there is no degeneracy in the CMB between H and z t and discuss the implications of late-time transitions for the Lyman-α forest. Finally we discuss the nonlinear phase of both condensation and metamorphosis, which is much more interesting than in standard quintessence models

  8. Einstein gravity with torsion induced by the scalar field

    Science.gov (United States)

    Özçelik, H. T.; Kaya, R.; Hortaçsu, M.

    2018-06-01

    We couple a conformal scalar field in (2+1) dimensions to Einstein gravity with torsion. The field equations are obtained by a variational principle. We could not solve the Einstein and Cartan equations analytically. These equations are solved numerically with 4th order Runge-Kutta method. From the numerical solution, we make an ansatz for the rotation parameter in the proposed metric, which gives an analytical solution for the scalar field for asymptotic regions.

  9. Entanglement in holographic dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, R., E-mail: horvat@lei3.irb.h [Rudjer Boskovic Institute, P.O. Box 180, 10002 Zagreb (Croatia)

    2010-10-18

    We study a process of equilibration of holographic dark energy (HDE) with the cosmic horizon around the dark-energy dominated epoch. This process is characterized by a huge amount of information conveyed across the horizon, filling thereby a large gap in entropy between the system on the brink of experiencing a sudden collapse to a black hole and the black hole itself. At the same time, even in the absence of interaction between dark matter and dark energy, such a process marks a strong jump in the entanglement entropy, measuring the quantum-mechanical correlations between the horizon and its interior. Although the effective quantum field theory (QFT) with a peculiar relationship between the UV and IR cutoffs, a framework underlying all HDE models, may formally account for such a huge shift in the number of distinct quantum states, we show that the scope of such a framework becomes tremendously restricted, devoid virtually any application in other cosmological epochs or particle-physics phenomena. The problem of negative entropies for the non-phantom stuff is also discussed.

  10. Entanglement in holographic dark energy models

    International Nuclear Information System (INIS)

    Horvat, R.

    2010-01-01

    We study a process of equilibration of holographic dark energy (HDE) with the cosmic horizon around the dark-energy dominated epoch. This process is characterized by a huge amount of information conveyed across the horizon, filling thereby a large gap in entropy between the system on the brink of experiencing a sudden collapse to a black hole and the black hole itself. At the same time, even in the absence of interaction between dark matter and dark energy, such a process marks a strong jump in the entanglement entropy, measuring the quantum-mechanical correlations between the horizon and its interior. Although the effective quantum field theory (QFT) with a peculiar relationship between the UV and IR cutoffs, a framework underlying all HDE models, may formally account for such a huge shift in the number of distinct quantum states, we show that the scope of such a framework becomes tremendously restricted, devoid virtually any application in other cosmological epochs or particle-physics phenomena. The problem of negative entropies for the non-phantom stuff is also discussed.

  11. "Dark energy" in the Local Void

    Science.gov (United States)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  12. Embrace the Dark Side: Advancing the Dark Energy Survey

    Science.gov (United States)

    Suchyta, Eric

    The Dark Energy Survey (DES) is an ongoing cosmological survey intended to study the properties of the accelerated expansion of the Universe. In this dissertation, I present work of mine that has advanced the progress of DES. First is an introduction, which explores the physics of the cosmos, as well as how DES intends to probe it. Attention is given to developing the theoretical framework cosmologists use to describe the Universe, and to explaining observational evidence which has furnished our current conception of the cosmos. Emphasis is placed on the dark sector - dark matter and dark energy - the content of the Universe not explained by the Standard Model of particle physics. As its name suggests, the Dark Energy Survey has been specially designed to measure the properties of dark energy. DES will use a combination of galaxy cluster, weak gravitational lensing, angular clustering, and supernovae measurements to derive its state of the art constraints, each of which is discussed in the text. The work described in this dissertation includes science measurements directly related to the first three of these probes. The dissertation presents my contributions to the readout and control system of the Dark Energy Camera (DECam); the name of this software is SISPI. SISPI uses client-server and publish-subscribe communication patterns to coordinate and command actions among the many hardware components of DECam - the survey instrument for DES, a 570 megapixel CCD camera, mounted at prime focus of the Blanco 4-m Telescope. The SISPI work I discuss includes coding applications for DECam's filter changer mechanism and hexapod, as well as developing the Scripts Editor, a GUI application for DECam users to edit and export observing sequence SISPI can load and execute. Next, the dissertation describes the processing of early DES data, which I contributed. This furnished the data products used in the first-completed DES science analysis, and contributed to improving the

  13. Possible dark energy imprints in the gravitational wave spectrum of mixed neutron-dark-energy stars

    Energy Technology Data Exchange (ETDEWEB)

    Yazadjiev, Stoytcho S. [Department of Theoretical Physics, Faculty of Physics, St. Kliment Ohridski University of Sofia, James Bourchier Blvd. 5, 1164 Sofia (Bulgaria); Doneva, Daniela D., E-mail: yazad@phys.uni-sofia.bg, E-mail: daniela.doneva@uni-tuebingen.de [Theoretical Astrophysics, IAAT, Eberhard-Karls University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2012-03-01

    In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.

  14. One-loop masses of open-string scalar fields in string theory

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2008-01-01

    In phenomenological models with D-branes, there are in general open-string massless scalar fields, in addition to closed-string massless moduli fields corresponding to the compactification. It is interesting to focus on the fate of such scalar fields in models with broken supersymmetry, because no symmetry forbids their masses. The one-loop effect may give non-zero masses to them, and in some cases mass squared may become negative, which means the radiative gauge symmetry breaking. In this article we investigate and propose a simple method for calculating the one-loop corrections using the boundary state formalism. There are two categories of massless open-string scalar fields. One consists the gauge potential fields corresponding to compactified directions, which can be understood as scalar fields in uncompactified space-time (related with Wilson line degrees of freedom). The other consists 'gauge potential fields' corresponding to transverse directions of D-brane, which emerge as scalar fields in D-brane world-volume (related with brane moduli fields). The D-brane boundary states with constant backgrounds of these scalar fields are constructed, and one-loop scalar masses are calculated in the closed string picture. Explicit calculations are given in the following four concrete models: one D25-brane with a circle compactification in bosonic string theory, one D9-brane with a circle compactification in superstring theory, D3-branes at a supersymmetric C 3 /Z 3 orbifold singularity, and a model of brane supersymmetry breaking with D3-branes and anti-D7-branes at a supersymmetric C 3 /Z 3 orbifold singularity. We show that the sign of the mass squared has a strong correlation with the sign of the related open-string one-loop vacuum amplitude.

  15. Non-Gaussianity from self-ordering scalar fields

    International Nuclear Information System (INIS)

    Figueroa, Daniel G.; Caldwell, Robert R.; Kamionkowski, Marc

    2010-01-01

    The Universe may harbor relics of the post-inflationary epoch in the form of a network of self-ordered scalar fields. Such fossils, while consistent with current cosmological data at trace levels, may leave too weak an imprint on the cosmic microwave background and the large-scale distribution of matter to allow for direct detection. The non-Gaussian statistics of the density perturbations induced by these fields, however, permit a direct means to probe for these relics. Here we calculate the bispectrum that arises in models of self-ordered scalar fields. We find a compact analytic expression for the bispectrum, evaluate it numerically, and provide a simple approximation that may be useful for data analysis. The bispectrum is largest for triangles that are aligned (have edges k 1 ≅2k 2 ≅2k 3 ) as opposed to the local-model bispectrum, which peaks for squeezed triangles (k 1 ≅k 2 >>k 3 ), and the equilateral bispectrum, which peaks at k 1 ≅k 2 ≅k 3 . We estimate that this non-Gaussianity should be detectable by the Planck satellite if the contribution from self-ordering scalar fields to primordial perturbations is near the current upper limit.

  16. Gravitational peculiarities of a scalar field

    International Nuclear Information System (INIS)

    Kleber, A.; Fonseca Teixeira, A.F. da

    1979-11-01

    The zero-adjoint of a time-static Ricci-flat solution to Einstein's field equations is investigated. It represents a spacetime curved solely by a massless scalar field. The cylindrical symmetry is assumed to permit both planar and non-planar geodetic motions. Unusual, velocity-dependent gravitational features are encountered from these geodesics. (Author) [pt

  17. Dark matter and dark energy: The critical questions

    International Nuclear Information System (INIS)

    Michael S. Turner

    2002-01-01

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% ± 1% baryons; 29% ± 4% cold dark matter; and 66% ± 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up

  18. Dark energy from the string axiverse.

    Science.gov (United States)

    Kamionkowski, Marc; Pradler, Josef; Walker, Devin G E

    2014-12-19

    String theories suggest the existence of a plethora of axionlike fields with masses spread over a huge number of decades. Here, we show that these ideas lend themselves to a model of quintessence with no super-Planckian field excursions and in which all dimensionless numbers are order unity. The scenario addresses the "Why now?" problem-i.e., Why has accelerated expansion begun only recently?-by suggesting that the onset of dark-energy domination occurs randomly with a slowly decreasing probability per unit logarithmic interval in cosmic time. The standard axion potential requires us to postulate a rapid decay of most of the axion fields that do not become dark energy. The need for these decays is averted, though, with the introduction of a slightly modified axion potential. In either case, a universe like ours arises in roughly 1 in 100 universes. The scenario may have a host of observable consequences.

  19. Towards Kaluza-Klein Dark Matter on nilmanifolds

    Energy Technology Data Exchange (ETDEWEB)

    Andriot, David [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Institut für Mathematik, Humboldt-Universität zu Berlin,IRIS-Adlershof, Zum Großen Windkanal 6, 12489 Berlin (Germany); Cacciapaglia, Giacomo [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNL,F-69622, Villeurbanne (France); Deandrea, Aldo [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNL,F-69622, Villeurbanne (France); Institut Universitaire de France,103 boulevard Saint-Michel, 75005 Paris (France); Deutschmann, Nicolas [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNL,F-69622, Villeurbanne (France); Centre for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium); Tsimpis, Dimitrios [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNL,F-69622, Villeurbanne (France)

    2016-06-28

    We present a first study of the field spectrum on a class of negatively-curved compact spaces: nilmanifolds or twisted tori. This is a case where analytical results can be obtained, allowing to check numerical methods. We focus on the Kaluza-Klein expansion of a scalar field. The results are then applied to a toy model where a natural Dark Matter candidate arises as a stable massive state of the bulk scalar.

  20. Metamaterial Model of Tachyonic Dark Energy

    Directory of Open Access Journals (Sweden)

    Igor I. Smolyaninov

    2014-02-01

    Full Text Available Dark energy with negative pressure and positive energy density is believed to be responsible for the accelerated expansion of the universe. Quite a few theoretical models of dark energy are based on tachyonic fields interacting with itself and normal (bradyonic matter. Here, we propose an experimental model of tachyonic dark energy based on hyperbolic metamaterials. Wave equation describing propagation of extraordinary light inside hyperbolic metamaterials exhibits 2 + 1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational force between extraordinary photons. We demonstrate that this model has a self-interacting tachyonic sector having negative effective pressure and positive effective energy density. Moreover, a composite multilayer SiC-Si hyperbolic metamaterial exhibits closely separated tachyonic and bradyonic sectors in the long wavelength infrared range. This system may be used as a laboratory model of inflation and late time acceleration of the universe.

  1. Scalar field Green functions on causal sets

    International Nuclear Information System (INIS)

    Nomaan Ahmed, S; Surya, Sumati; Dowker, Fay

    2017-01-01

    We examine the validity and scope of Johnston’s models for scalar field retarded Green functions on causal sets in 2 and 4 dimensions. As in the continuum, the massive Green function can be obtained from the massless one, and hence the key task in causal set theory is to first identify the massless Green function. We propose that the 2d model provides a Green function for the massive scalar field on causal sets approximated by any topologically trivial 2-dimensional spacetime. We explicitly demonstrate that this is indeed the case in a Riemann normal neighbourhood. In 4d the model can again be used to provide a Green function for the massive scalar field in a Riemann normal neighbourhood which we compare to Bunch and Parker’s continuum Green function. We find that the same prescription can also be used for de Sitter spacetime and the conformally flat patch of anti-de Sitter spacetime. Our analysis then allows us to suggest a generalisation of Johnston’s model for the Green function for a causal set approximated by 3-dimensional flat spacetime. (paper)

  2. Constraining slow-roll inflation in the presence of dynamical dark energy

    International Nuclear Information System (INIS)

    Xia Junqing; Zhang Xinmin

    2008-01-01

    In this Letter we perform a global analysis of the constraints on the inflationary parameters in the presence of dynamical dark energy models from the current observations, including the three-year Wilkinson Microwave Anisotropy Probe (WMAP3) data, Boomerang-2K2, CBI, VSA, ACBAR, SDSS LRG, 2dFGRS and ESSENCE (192 sample). We use the analytic description of the inflationary power spectra in terms of the horizon-flow parameters {ε i }. With the first order approximation in the slow-roll expansion, we find that the constraints on the horizon-flow parameters are ε 1 2 =0.034±0.024 (1σ) in the ΛCDM model. In the framework of dynamical dark energy models, the constraints become obviously weak, ε 1 2 =-0.006±0.039 (1σ), and the inflation models with a 'blue' tilt, which are excluded about 2σ in the ΛCDM model, are allowed now. With the second order approximation, the constraints on the horizon-flow parameters are significantly relaxed further. If considering the non-zero ε 3 , the large running of the scalar spectral index is found for the ΛCDM model, as well as the dynamical dark energy models

  3. The Brans-Dicke gravity as a theory of dark matter

    International Nuclear Information System (INIS)

    Kim, Hongsu

    2010-01-01

    The pure Brans-Dicke (BD) gravity with or without the cosmological constant Λ has been taken as a model theory for dark matter. Indeed, there has been a consensus that unless one modifies either the standard theory of gravity, namely, general relativity, or the standard model for particle physics, or both, one can never achieve a satisfying understanding of the phenomena associated with dark matter and dark energy. Along this line, our dark matter model in this work can be thought of as an attempt to modify the gravity side alone in the simplest fashion to achieve the goal. Among others, it is demonstrated that our model theory can successfully predict the emergence of a dark matter halo-like configuration in terms of a self-gravitating spacetime solution to the BD field equations and reproduce the flattened rotation curve in this dark halo-like object in terms of the non-trivial energy density of the BD scalar field, which was absent in the context of general relativity, where Newton's constant is strictly a 'constant' having no dynamics. Our model theory, however, is not entirely without flaw, such as the prediction of relativistic jets in all types of galaxies, which actually is not the case.

  4. Nuclear matter in relativistic mean field theory with isovector scalar meson.

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M. [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-01

    Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)] is studied. While the {delta}-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to {delta}-field to the nuclear symmetry energy is negative. To fit the empirical value, E{sub s}{approx}30 MeV, a stronger {rho}-meson coupling is required than in absence of the {delta}-field. The energy per particle of neutron star matter is than larger at high densities than the one with no {delta}-field included. Also, the proton fraction of {beta}-stable matter increases. Splitting of proton and neutron effective masses due to the {delta}-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs.

  5. Nuclear matter in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1996-12-01

    Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)] is studied. While the δ-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to δ-field to the nuclear symmetry energy is negative. To fit the empirical value, E s ∼30 MeV, a stronger ρ-meson coupling is required than in absence of the δ-field. The energy per particle of neutron star matter is than larger at high densities than the one with no δ-field included. Also, the proton fraction of β-stable matter increases. Splitting of proton and neutron effective masses due to the δ-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs

  6. Equivalence between Born–Infeld tachyon and effective real scalar field theories for brane structures in warped geometry

    International Nuclear Information System (INIS)

    Bernardini, A.E.; Bertolami, O.

    2013-01-01

    An equivalence between Born–Infeld and effective real scalar field theories for brane structures is built in some specific warped space–time scenarios. Once the equations of motion for tachyon fields related to the Born–Infeld action are written as first-order equations, a simple analytical connection with a particular class of real scalar field superpotentials can be found. This equivalence leads to the conclusion that, for a certain class of superpotentials, both systems can support identical thick brane solutions as well as brane structures described through localized energy densities, T 00 (y), in the 5th dimension, y. Our results indicate that thick brane solutions realized by the Born–Infeld cosmology can be connected to real scalar field brane scenarios which can be used to effectively map the tachyon condensation mechanism

  7. The charged black-hole bomb: A lower bound on the charge-to-mass ratio of the explosive scalar field

    Science.gov (United States)

    Hod, Shahar

    2016-04-01

    The well-known superradiant amplification mechanism allows a charged scalar field of proper mass μ and electric charge q to extract the Coulomb energy of a charged Reissner-Nordström black hole. The rate of energy extraction can grow exponentially in time if the system is placed inside a reflecting cavity which prevents the charged scalar field from escaping to infinity. This composed black-hole-charged-scalar-field-mirror system is known as the charged black-hole bomb. Previous numerical studies of this composed physical system have shown that, in the linearized regime, the inequality q / μ > 1 provides a necessary condition for the development of the superradiant instability. In the present paper we use analytical techniques to study the instability properties of the charged black-hole bomb in the regime of linearized scalar fields. In particular, we prove that the lower bound q/μ>√{rm /r- - 1/ rm /r+ - 1 } provides a necessary condition for the development of the superradiant instability in this composed physical system (here r± are the horizon radii of the charged Reissner-Nordström black hole and rm is the radius of the confining mirror). This analytically derived lower bound on the superradiant instability regime of the composed black-hole-charged-scalar-field-mirror system is shown to agree with direct numerical computations of the instability spectrum.

  8. Scalar dark matter interpretation of the DAMPE data with U(1) gauge interactions

    Science.gov (United States)

    Cao, Junjie; Feng, Lei; Guo, Xiaofei; Shang, Liangliang; Wang, Fei; Wu, Peiwen

    2018-05-01

    Recently, the Dark Matter Particle Explorer (DAMPE) experiment released the new measurement of the total cosmic e+e- flux between 25 GeV and 4.6 TeV, which indicates a spectral softening at around 0.9 TeV and a tentative peak at around 1.4 TeV. We utilize a scalar dark matter (DM) model to explain the DAMPE peak by χ χ →Z'Z'→ℓℓ ¯ ℓ'ℓ' ¯ with an additional anomaly-free gauged U (1 ) family symmetry, in which χ , Z', and ℓ(') denote, respectively, the scalar DM, the new gauge boson, and ℓ(')=e , μ , τ with mχ˜mZ'˜2 ×1.5 (TeV ) . We first illustrate that the minimal framework GSM×U (1 )Y' with the above mass choices can explain the DAMPE excess, which, however, be excluded by LHC constraints from the Z' searches. Then, we study a nonminimal framework GSM×U (1 )Y'×U (1 )Y'' in which U (1 )Y'' mixes with U (1)Y'. We show that such a framework can interpret the DAMPE data and at the same time survive all other constraints including the DM relic abundance, DM direct detection, and collider bounds. We also investigate the predicted e+e- spectrum in this framework and find that the mass splitting Δ m =mχ-mZ'' should be less than about 17 GeV to produce the peaklike structure.

  9. The dark side of cosmology: dark matter and dark energy.

    Science.gov (United States)

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  10. Bose-Einstein condensation and symmetry breaking of a complex charged scalar field

    International Nuclear Information System (INIS)

    Matos, Tonatiuh; Castellanos, Elias; Suarez, Abril

    2017-01-01

    In this work the Klein-Gordon equation for a complex scalar field with U(1) symmetry endowed in a mexican-hat scalar field potential with thermal and electromagnetic contributions is written as a Gross-Pitaevskii (GP)-like equation. This equation is interpreted as a charged generalization of the GP equation at finite temperatures found in previous works. Its hydrodynamical representation is obtained and the corresponding thermodynamical properties are derived and related to measurable quantities. The condensation temperature in the non-relativistic regime associated with the aforementioned system within the semiclassical approximation is calculated. Also, a generalized equation for the conservation of energy for a charged bosonic gas is found when electromagnetic fields are introduced, and it is studied how under certain circumstances its breaking of symmetry can give some insight on the phase transition of the system not just into the condensed phase but also on other related systems. (orig.)

  11. Bose-Einstein condensation and symmetry breaking of a complex charged scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Tonatiuh [Centro de Investigacion y de Estudios Avanzados del IPN, Departamento de Fisica, Mexico, DF (Mexico); Castellanos, Elias [Centro de Investigacion y de Estudios Avanzados del IPN, Departamento de Fisica, Mexico, DF (Mexico); Universidad Autonoma de Chiapas, Mesoamerican Centre for Theoretical Physics, Tuxtla Gutierrez, Chiapas (Mexico); Suarez, Abril [Centro de Investigacion y de Estudios Avanzados del IPN, Departamento de Fisica, Mexico, DF (Mexico); Universidad Politecnica Metropolitana de Hidalgo, Departamento de Aeronautica, Tolcayuca, Hidalgo (Mexico)

    2017-08-15

    In this work the Klein-Gordon equation for a complex scalar field with U(1) symmetry endowed in a mexican-hat scalar field potential with thermal and electromagnetic contributions is written as a Gross-Pitaevskii (GP)-like equation. This equation is interpreted as a charged generalization of the GP equation at finite temperatures found in previous works. Its hydrodynamical representation is obtained and the corresponding thermodynamical properties are derived and related to measurable quantities. The condensation temperature in the non-relativistic regime associated with the aforementioned system within the semiclassical approximation is calculated. Also, a generalized equation for the conservation of energy for a charged bosonic gas is found when electromagnetic fields are introduced, and it is studied how under certain circumstances its breaking of symmetry can give some insight on the phase transition of the system not just into the condensed phase but also on other related systems. (orig.)

  12. The generalized Fenyes-Nelson model for free scalar field theory

    International Nuclear Information System (INIS)

    Davidson, M.

    1980-01-01

    The generalized Fenyes-Nelson model of quantum mechanics is applied to the free scalar field. The resulting Markov field is equivalent to the Euclidean Markov field with the times scaled by a common factor which depends on the diffusion parameter. This result is consistent with Guerra's earlier work on stochastic quantization of scalar fields. It suggests a deep connection between Euclidean field theory and the stochastic interpretation of quantum mechanics. The question of Lorentz covariance is also discussed. (orig.)

  13. Study of inflationary generalized cosmic Chaplygin gas for standard and tachyon scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-07-15

    We consider an inflationary universe model in the context of the generalized cosmic Chaplygin gas by taking the matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during the intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index, and the important observational parameter, the tensor-scalar ratio in terms of inflation. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case. (orig.)

  14. Study of inflationary generalized cosmic Chaplygin gas for standard and tachyon scalar fields

    International Nuclear Information System (INIS)

    Sharif, M.; Saleem, Rabia

    2014-01-01

    We consider an inflationary universe model in the context of the generalized cosmic Chaplygin gas by taking the matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during the intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index, and the important observational parameter, the tensor-scalar ratio in terms of inflation. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case. (orig.)

  15. On dark energy isocurvature perturbation

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe

    2011-01-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data

  16. Scalar multi-wormholes

    International Nuclear Information System (INIS)

    Egorov, A I; Kashargin, P E; Sushkov, Sergey V

    2016-01-01

    In 1921 Bach and Weyl derived the method of superposition to construct new axially symmetric vacuum solutions of general relativity. In this paper we extend the Bach–Weyl approach to non-vacuum configurations with massless scalar fields. Considering a phantom scalar field with the negative kinetic energy, we construct a multi-wormhole solution describing an axially symmetric superposition of N wormholes. The solution found is static, everywhere regular and has no event horizons. These features drastically tell the multi-wormhole configuration from other axially symmetric vacuum solutions which inevitably contain gravitationally inert singular structures, such as ‘struts’ and ‘membranes’, that keep the two bodies apart making a stable configuration. However, the multi-wormholes are static without any singular struts. Instead, the stationarity of the multi-wormhole configuration is provided by the phantom scalar field with the negative kinetic energy. Anther unusual property is that the multi-wormhole spacetime has a complicated topological structure. Namely, in the spacetime there exist 2 N asymptotically flat regions connected by throats. (paper)

  17. Conserved charges of minimal massive gravity coupled to scalar field

    Science.gov (United States)

    Setare, M. R.; Adami, H.

    2018-02-01

    Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected.

  18. Conserved charges of minimal massive gravity coupled to scalar field

    International Nuclear Information System (INIS)

    Setare, M.R.; Adami, H.

    2018-01-01

    Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected. (orig.)

  19. Conserved charges of minimal massive gravity coupled to scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R.; Adami, H. [University of Kurdistan, Department of Science, Sanandaj (Iran, Islamic Republic of)

    2018-02-15

    Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected. (orig.)

  20. Tight connection between direct and indirect detection of dark matter through Higgs portal couplings to a hidden sector

    International Nuclear Information System (INIS)

    Arina, Chiara; Josse-Michaux, Francois-Xavier; Sahu, Narendra

    2010-01-01

    We present a hidden Abelian extension of the standard model including a complex scalar as a dark matter candidate and a light scalar acting as a long range force carrier between dark matter particles. The Sommerfeld enhanced annihilation cross section of the dark matter explains the observed cosmic ray excesses. The light scalar field also gives rise to potentially large cross sections of dark matter on the nucleon, therefore providing an interesting way to probe this model simultaneously at direct and indirect dark matter search experiments. We constrain the parameter space of the model by taking into account the CDMS-II exclusion limit as well as PAMELA and Fermi LAT data.