AdS gravity and the scalar glueball spectrum
Energy Technology Data Exchange (ETDEWEB)
Vento, Vicente [Departament de Fisica Teorica, Universitat de Valencia y Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Cientificas, Burjassot (Valencia) (Spain)
2017-09-15
The scalar glueball spectrum has attracted much attention since the formulation of Quantum Chromodynamics. Different approaches give very different results for the glueball masses. We revisit the problem from the perspective of the AdS/CFT correspondence. (orig.)
Factorization for radiative heavy quarkonium decays into scalar Glueball
Energy Technology Data Exchange (ETDEWEB)
Zhu, Ruilin [INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,Department of Physics and Astronomy, Shanghai Jiao Tong University,Dongchuan RD 800, Shanghai 200240 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Zhongguancun E. St. 55, Beijing 100190 (China); CAS Center for Excellence in Particle Physics,Institute of High Energy Physics, Chinese Academy of Sciences,Yuquan RD 19B, Beijing 100049 (China)
2015-09-24
We establish the factorization formula for scalar Glueball production through radiative decays of vector states of heavy quarkonia, e.g. J/ψ, ψ(2S) and Υ(nS), where the Glueball mass is much less than the parent heavy quarkonium mass. The factorization is demonstrated explicitly at one-loop level through the next-to-leading order (NLO) corrections to the hard kernel, the non-relativistic QCD (NRQCD) long-distance matrix elements (LDMEs) of the heavy quarkonium, and the light-cone distribution amplitude (LCDA) of scalar Glueball. The factorization provides a comprehensive theoretical approach to investigate Glueball production in the radiative decays of vector states of heavy quarkonia and determine the physic nature of Glueball. We discuss the scale evolution equation of LCDA for scalar Glueball. In the end, we extract the value of the decay constant of Scalar Glueball from Lattice QCD calculation and analyze the mixing effect among f{sub 0}(1370), f{sub 0}(1500) and f{sub 0}(1710).
Anomalous dimensions and scalar glueball spectroscopy in AdS/QCD
Energy Technology Data Exchange (ETDEWEB)
Boschi-Filho, H.; Braga, N.R.F.; Jugeau, F.; Torres, M.A.C. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Caixa Postal 68528, Rio de Janeiro, RJ (Brazil)
2013-09-15
An extended version of the AdS/QCD soft-wall model that incorporates QCD-like anomalous contributions to the dimensions of gauge theory operators is proposed. This exploratory approach leads to a relation between scalar glueball masses and beta functions. Using this relation, the properties of the glueball mass spectroscopy that emerge from phenomenological beta functions proposed in the literature are investigated. The reverse problem is also considered: starting from a linear Regge trajectory which fits the lattice glueball masses, beta functions with different asymptotic infrared behaviors are found. Remarkably, some of them present a fixed point at finite coupling. (orig.)
Scalar mesons and the search for the 0{sup ++} Glueball
Energy Technology Data Exchange (ETDEWEB)
Ulrike Thoma
2002-10-01
The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6 GeV, which corresponds to the mass region where the scalar qq[bar]-mesons are expected. Therefore mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But, still many questions remain.
Scalar mesons and the search for the 0{sup ++} glueball
Energy Technology Data Exchange (ETDEWEB)
Thoma, U. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2003-11-01
The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular, present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6GeV, which corresponds to the mass region where the scalar q anti q-mesons are expected. Therefore, mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But still many questions remain. (orig.)
Close, Francis Edwin
1998-01-01
Gluons, the particles which bind quarks into protons may be able to stick to each other. Physicists have called these entities 'glueballs' and are convinced they are showing up in experiments (6 pages).
From black-hole quasinormal modes to scalar glueballs in a finite-temperature AdS/QCD model
Energy Technology Data Exchange (ETDEWEB)
Miranda, Alex S.; Boschi-Filho, Henrique; Braga, Nelson R.F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Ballon Bayona, C.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
2009-07-01
Full text. In the last years the AdS/CFT correspondence has been recognized as an important tool to investigate non- perturbative aspects of strongly coupled gauge theories. The most celebrated version of this correspondence relates string theory in AdS{sub 5} x S{sup 5} space to four-dimensional SU(N) Yang-Mills gauge theory with large N and extended N = 4 supersymmetry. Inspired in the AdS/CFT correspondence, recent works have proposed the construction of holographic phenomenological models to describe the strong interactions. These models are presently known as AdS/QCD. In this work we use the holographic soft-wall model to investigate the spectrum of scalar glueballs at finite temperature. The elementary excitations corresponding to glueballs are identified as the poles of the retarded correlation function of the operator Tr(F{sup 2}), where F is the field strength of the Yang-Mills gauge field. According to the gauge/gravity correspondence, in the plasma phase the poles of the retarded correlator are determined by the quasinormal spectrum of a massless scalar field propagating in the bulk geometry that consists on an AdS{sub 5} black hole with a background dilaton field. We calculate masses and decay widths of scalar glueballs in the deconfined phase and metastable phase of the plasma and analyze how these quantities evolve with temperature. We also obtain glueball dispersion relations for different temperature values. These results are found employing both the traditional power series method and a new method based on the computation of Breit-Wigner resonances. (author)
Energy Technology Data Exchange (ETDEWEB)
Vento, Vicente [Consejo Superior de Investigaciones Cientificas, Departamento de Fisica Teorica y Instituto de Fisica Corpuscular, Universidad de Valencia, Burjassot (Spain)
2016-01-15
Calculations in unquenched QCD for the scalar glueball spectrum have confirmed previous results of Gluodynamics finding a glueball at ∝1750 MeV. I analyze the implications of this discovery from the point of view of glueball-meson mixing in light of the experimental scalar spectrum. (orig.)
Glueballs at finite temperature from AdS/QCD
Energy Technology Data Exchange (ETDEWEB)
Miranda, Alex S., E-mail: astmiranda@if.ufrj.b [Laboratorio de Astrofisica Teorica e Observacional, Departamento de Ciencias Exatas e Tecnologicas, Universidade Estadual de Santa Cruz, 45650-000, Ilheus, BA (Brazil); Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Ballon Bayona, C.A., E-mail: ballon@cbpf.b [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180, Rio de Janeiro, RJ (Brazil); Boschi-Filho, Henrique, E-mail: boschi@if.ufrj.b [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Braga, Nelson R.F., E-mail: braga@if.ufrj.b [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil)
2010-02-15
Inspired in the AdS/CFT correspondence, a variety of holographic phenomenological models have been proposed in the last years to describe non-perturbative aspects of strong interactions. These models are denominated as AdS/QCD. In this work we review the use of the AdS/QCD soft-wall model to investigate the spectrum of scalar glueballs at finite temperature. The scalar glueball states are identified as the poles of the retarded correlation function of the glueball operator. In the gauge/gravity duality, these poles are determined by the quasinormal spectrum of a massless scalar field propagating in the bulk geometry that consists on an AdS5 black hole with a background dilaton field. We discuss some results for masses and decay widths of scalar glueballs in the plasma phase and analyze how these quantities evolve with temperature and momentum.
Casimir scaling and YangâMills glueballs
Directory of Open Access Journals (Sweden)
Deog Ki Hong
2017-12-01
Full Text Available We conjecture that in YangâMills theories the ratio between the ground-state glueball mass squared and the string tension is proportional to the ratio of the eigenvalues of quadratic Casimir operators in the adjoint and the fundamental representations. The proportionality constant depends on the dimension of the space-time only, and is henceforth universal. We argue that this universality, which is supported by available lattice results, is a direct consequence of area-law confinement. In order to explain this universal behavior, we provide three analytical arguments, based respectively on a BetheâSalpeter analysis, on the saturation of the scale anomaly by the lightest scalar glueball and on QCD sum rules, commenting on the underlying assumptions that they entail and on their physical implications. Keywords: Glueballs, YangâMills theories, Confinement, Casimir scaling
Casimir scaling and Yang-Mills glueballs
Hong, Deog Ki; Lee, Jong-Wan; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide
2017-12-01
We conjecture that in Yang-Mills theories the ratio between the ground-state glueball mass squared and the string tension is proportional to the ratio of the eigenvalues of quadratic Casimir operators in the adjoint and the fundamental representations. The proportionality constant depends on the dimension of the space-time only, and is henceforth universal. We argue that this universality, which is supported by available lattice results, is a direct consequence of area-law confinement. In order to explain this universal behavior, we provide three analytical arguments, based respectively on a Bethe-Salpeter analysis, on the saturation of the scale anomaly by the lightest scalar glueball and on QCD sum rules, commenting on the underlying assumptions that they entail and on their physical implications.
Glueball production via gluonic penguin B decays
Energy Technology Data Exchange (ETDEWEB)
He, Xiao-Gang [INPAC, SKLPPC, Shanghai Jiao Tong University, Department of Physics, Shanghai (China); National Center for Theoretical Sciences and Physics Department of National Tsing Hua University, Hsinchu (China); National Taiwan University, Department of Physics, Taipei (China); Yuan, Tzu-Chiang [Academia Sinica, Institute of Physics, Taipei (China)
2015-03-01
We study glueball G production in gluonic penguin decay B → G + X{sub s}, using the next-to-leading order b → sg* gluonic penguin interaction and effective couplings of a glueball to two perturbative gluons. Subsequent decays of a scalar glueball are described by using techniques of effective chiralLagrangians to incorporate the interaction between a glueball and pseudoscalar mesons.Mixing effects between the pure glueball with other mesons are considered. Identifying the f{sub 0}(1710) as a scalar glueball, we find that both the top and the charm penguin are important and obtain a sizable branching ratio for B → f{sub 0}(1710) + X{sub s} of order 1.3 x 10{sup -4}(f/0.07 GeV{sup -1}){sup 2}, where the effective coupling strength f is estimated to be 0.07 GeV{sup -1} using experimental data for the branching ratio of f{sub 0}(1710) → K anti K based on a chiral Lagrangian estimate. An alternative perturbative QCD based estimation of f is a factor of 20 larger, which would imply a much enhanced branching ratio. Glueball production from this rare semi-inclusive B decay can be probed at the LHCb and Belle II to narrow down the allowed parameter space. A similar branching ratio is expected for the pseudoscalar glueball. We also briefly comment on the case of vector and tensor glueballs. (orig.)
Covariant lattice glueball fields
Mandula, Jeffrey E.; Zweig, George; Govaerts, Jan
1983-11-01
Fields for the creation and annihilation of gluons and glueballs, which transform irreducibly under the four-dimensional lattice rotation reflection and charge conjugation symmetry groups, are defined and discussed. The fields reduce in the zero lattice spacing limit to conventional continuum operators of definite spin, parity, and charge comjugation.
Covariant lattice glueball fields
Energy Technology Data Exchange (ETDEWEB)
Mandula, J.E.; Zweig, G.; Govaerts, J.
1983-11-15
Fields for the creation and annihilation of gluons and glueballs, which transform irreducibly under the four-dimensional lattice rotation reflection and charge conjugation symmetry groups, are defined and discussed. The fields reduce in the zero lattice spacing limit to conventional continuum operators of definite spin, parity, and charge conjugation.
Ultraviolet asymptotics of glueball propagators
Bochicchio, Marco; Muscinelli, Samuele P.
2013-08-01
We point out that perturbation theory in conjunction with the renormalization group ( RG) puts a severe constraint on the structure of the large- N non-perturbative glueball propagators in SU( N) pure Y M, in QCD and in = 1 SU SY QCD with massless quarks, or in any confining asymptotically-free gauge theory massless in perturbation theory. For the scalar and pseudoscalar glueball propagators in pure Y M and QCD with massless quarks we check in detail the RG-improved estimate to the order of the leading and next-to-leading logarithms by means of a remarkable three-loop computation by Chetyrkin et al. We investigate as to whether the aforementioned constraint is satisfied by any of the scalar or pseudoscalar glueball propagators computed in the framework of the AdS String/ large- N Gauge Theory correspondence and of a recent proposal based on a Topological Field Theory underlying the large- N limit of Y M . We find that none of the proposals for the scalar or the pseudoscalar glueball propagators based on the AdS String/large- N Gauge Theory correspondence satisfies the constraint, actually as expected, since the gravity side of the correspondence is in fact strongly coupled in the ultraviolet. On the contrary, the Topological Field Theory satisfies the constraint that follows by the asymptotic freedom.
Giacosa, Francesco; Sammet, Julia; Janowski, Stanislaus
2017-06-01
We calculate two- and three-body decays of the (lightest) vector glueball into (pseudo)scalar, (axial-)vector, as well as pseudovector and excited vector mesons in the framework of a model of QCD. While absolute values of widths cannot be predicted because the corresponding coupling constants are unknown, some interesting branching ratios can be evaluated by setting the mass of the yet hypothetical vector glueball to 3.8 GeV as predicted by quenched lattice QCD. We find that the decay mode ω π π should be one of the largest (both through the decay chain O →b1π →ω π π and through the direct coupling O →ω π π ). Similarly, the (direct and indirect) decay into π K K*(892 ) is sizable. Moreover, the decays into ρ π and K*(892 )K are, although subleading, possible and could play a role in explaining the ρ π puzzle of the charmonium state ψ (2 S ) thanks to a (small) mixing with the vector glueball. The vector glueball can be directly formed at the ongoing BESIII experiment as well as at the future PANDA experiment at the FAIR facility. If the width is sufficiently small (≲100 MeV ) it should not escape future detection. It should be stressed that the employed model is based on some inputs and simplifying assumptions: the value of glueball mass (at present, the quenched lattice value is used), the lack of mixing of the glueball with other quarkonium states, and the use of few interaction terms. It then represents a first step toward the identification of the main decay channels of the vector glueball, but shall be improved when corresponding experimental candidates and/or new lattice results will be available.
Scalar operators in solid-state NMR
Energy Technology Data Exchange (ETDEWEB)
Sun, Boqin [Univ. of California, Berkeley, CA (United States)
1991-11-01
Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C_{60} is analyzed.
Glueball-baryon interactions in holographic QCD
Li, Si-Wen
2017-10-01
Studying the Witten-Sakai-Sugimoto model with type IIA string theory, we find the glueball-baryon interaction is predicted in this model. The glueball is identified as the 11D gravitational waves or graviton described by the M5-brane supergravity solution. Employing the relation of M-theory and type IIA string theory, glueball is also 10D gravitational perturbations which are the excited modes by close strings in the bulk of this model. On the other hand, baryon is identified as a D4-brane wrapped on S4 which is named as baryon vertex, so the glueball-baryon interaction is nothing but the close string/baryon vertex interaction in this model. Since the baryon vertex could be equivalently treated as the instanton configurations on the flavor brane, we identify the glueball-baryon interaction as ;graviton-instanton; interaction in order to describe it quantitatively by the quantum mechanical system for the collective modes of baryons. So the effective Hamiltonian can be obtained by considering the gravitational perturbations in the flavor brane action. With this Hamiltonian, the amplitudes and the selection rules of the glueball-baryon interaction can be analytically calculated in the strong coupling limit. We show our calculations explicitly in two characteristic situations which are ;scalar and tensor glueball interacting with baryons;. Although there is a long way to go, our work provides a holographic way to understand the interactions of baryons in hadronic physics and nuclear physics by the underlying string theory.
Decay modes of the excited pseudoscalar glueball
Eshraim, Walaa I.; Schramm, Stefan
2017-01-01
We study three different chiral Lagrangians that describe the two- and three-body decays of an excited pseudoscalar glueball, JP C=0*-+ , into light mesons and charmonium states as well as into a scalar and pseudoscalar glueball. We compute the decay channels for an excited pseudoscalar glueball with a mass of 3.7 GeV and consider a ground-state pseudoscalar glueball of mass 2.6 GeV, following predictions from lattice QCD simulations. These states and channels are in reach of the ongoing BESIII experiment and the PANDA experiments at the upcoming FAIR facility experiment. We present the resulting decay branching ratios with a parameter-free prediction.
Revisiting glueball wave functions at zero and finite temperature
Loan, Mushtaq
2008-01-01
We study the sizes and thermal properties of glueballs in a three dimensional compact Abelian gauge model on improved lattice. We predict the radii of $\\sim 0.60$ and $\\sim 1.12$ in the units of string tension, or $\\sim 0.28$ and $\\sim 0.52$ fm, for the scalar and tensor glueballs, respectively. We perform a well controlled extrapolation of the radii to the continuum limit and observe that our results agree with the predicted values. Using Monte Carlo simulations, we extract the pole-mass of the lowest scalar and tensor glueballs from the temporal correlators at finite temperature. We see a clear evidence of the deconfined phase, and the transition appears to be similar to that of the two-dimensional XY model as expected from universality arguments. Our results show no significant changes in the glueball wave functions and masses in the deconfined phase.
Configurational entropy of glueball states
Energy Technology Data Exchange (ETDEWEB)
Bernardini, Alex E., E-mail: alexeb@ufscar.br [Departamento de Física, Universidade Federal de São Carlos, PO Box 676, 13565-905, São Carlos, SP (Brazil); Braga, Nelson R.F., E-mail: braga@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, UFABC, 09210-580, Santo André (Brazil)
2017-02-10
The configurational entropy of glueball states is calculated using a holographic description. Glueball states are represented by a supergravity dual picture, consisting of a 5-dimensional graviton–dilaton action of a dynamical holographic AdS/QCD model. The configurational entropy is studied as a function of the glueball spin and of the mass, providing information about the stability of the glueball states.
Close, Frank E.
2000-01-01
Glueball candidates and qqbar mesons have been found to be produced with different momentum and angular dependences in the central region of pp collisions. This talk illustrates this phenomenon and explains the phi and t dependences of mesons with JPC = 0++,0-+, 1++, 2++ and 2-+. For production of 0++ and 2++ mesons the analysis reveals a systematic behaviour in the data that appears to distinguish between qqbar and non-qqbar or glueball candidates. An explanation is given for the absence of 0-+ glueball candidates in central production at present energies and the opportunity for their discovery at RHIC is noted.
Configurational entropy of glueball states
Directory of Open Access Journals (Sweden)
Alex E. Bernardini
2017-02-01
Full Text Available The configurational entropy of glueball states is calculated using a holographic description. Glueball states are represented by a supergravity dual picture, consisting of a 5-dimensional graviton–dilaton action of a dynamical holographic AdS/QCD model. The configurational entropy is studied as a function of the glueball spin and of the mass, providing information about the stability of the glueball states.
Energy Technology Data Exchange (ETDEWEB)
Lindenbaum, S.J.
1982-01-01
This paper describes the observation and partial wave analysis of 1203 (22 GeV) ..pi../sup -/p ..-->.. phi phi n events. This is an OZI suppressed channel in which the OZI suppression is found to be absent. Assuming QCD and the OZI rule as Ansatzen, it is concluded that the breakdown of the OZI suppression is due to glueballs. The g/sub T/(2160) and the g/sub T/(2320) with I/sup G/J/sup PC/ = 0/sup +/2/sup + +/ are two resonances determined from the partial wave analysis. It is concluded that one or two primary glueballs with the above quantum numbers are responsible for the observed two states. A brief discussion of other glueball candidates and some relevant phenomenology is also included.
Energy Technology Data Exchange (ETDEWEB)
Toki, W. [Colorado State Univ., Ft. Collins, CO (United States). Dept. of Physics
1997-06-01
In these Summer School lectures, the author reviews the results of recent glueball searches. He begins with a brief review of glueball phenomenology and meson spectroscopy, including a discussion of resonance behavior. The results on the f{sub o}(1500) and f{sub J}(1700) resonances from proton-antiproton experiments and radiative J/{Psi} decays are discussed. Finally, {pi}{pi} and {eta}{pi} studies from D{sub s} decays and exotic meson searches are reviewed. 46 refs., 40 figs.
Glueball spectra and Regge trajectories from a modified holographic softwall model
Energy Technology Data Exchange (ETDEWEB)
Capossoli, Eduardo Folco, E-mail: educapossoli@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21.941-972, Rio de Janeiro - RJ (Brazil); Departamento de Física, Colégio Pedro II, 20.921-903, Rio de Janeiro - RJ (Brazil); Boschi-Filho, Henrique, E-mail: boschi@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21.941-972, Rio de Janeiro - RJ (Brazil)
2016-02-10
In this work we propose a modified holographic softwall model, analytically solvable, to calculate the masses of lightest scalar glueball and its radial excitations and of higher spin glueball states for both even and odd spins. From these results we obtain their respective Regge trajectories, associated with the pomeron for even spins and with the odderon for odd spins. These results are in agreement with those calculated using other approaches.
Observation and phenomenology of glueballs
Energy Technology Data Exchange (ETDEWEB)
Lindenbaum, S.J.
1985-01-01
The experimental evidence and the relevant phenomenology of glueballs are reviewed. The opinion is expressed that the glueball resonance explanation is the only viable one for the data on g/sub T/, g/sub T/sup 1//, and g/sub T/sup 11//. It is shown that alternative explanations are either incorrect, or do not fit the data, or both, leading to the conclusion that these states are probably produced by glueballs. The OZI rule is explained. Glueball masses and width are considered. Some conclusions are drawn regarding an OZI suppressed reaction ..pi../sup -/p ..-->.. phi phi n. Glueball candidates from the J/psi radiative decay are discussed. 44 refs., 16 figs. (LEW)
An operator basis for the Standard Model with an added scalar singlet
Energy Technology Data Exchange (ETDEWEB)
Gripaios, Ben [Cavendish Laboratory, J.J. Thomson Avenue, Cambridge (United Kingdom); Sutherland, Dave [Cavendish Laboratory, J.J. Thomson Avenue, Cambridge (United Kingdom); Kavli Institute for Theoretical Physics, UCSB Kohn Hall, Santa Barbara CA (United States)
2016-08-17
Motivated by the possible di-gamma resonance at 750 GeV, we present a basis of effective operators for the Standard Model plus a scalar singlet at dimensions 5, 6, and 7. We point out that an earlier list at dimensions 5 and 6 contains two redundant operators at dimension 5.
DEFF Research Database (Denmark)
Sannino, Francesco
2016-01-01
We construct effective Lagrangians, and corresponding counting schemes, valid to describe the dynamics of the lowest lying large N stable massive composite state emerging in strongly coupled theories. The large N counting rules can now be employed when computing quantum corrections via an effective...... at the electroweak scale. To illustrate the formalism we consider the possibility that the Higgs emerges as: the lightest glueball of a new composite theory; the large N scalar meson in models of dynamical electroweak symmetry breaking; the large N pseudodilaton useful also for models of near-conformal dynamics...
Glueball and meson propagators of any spin in large-N QCD
Bochicchio, Marco
2013-10-01
We prove an asymptotic structure theorem for glueball and meson propagators of any spin in large-N QCD and in N=1SUSY QCD with massless quarks, that determines asymptotically the residues of the poles of the propagators in terms of their anomalous dimensions and of the spectral density of the masses. The asymptotic theorem follows by the severe constraints on the propagators in large-N QCD with massless quarks, or in any large-N confining asymptotically-free gauge theory massless in perturbation theory, that arise by perturbation theory in conjunction with the renormalization group and by the OPE on the ultraviolet side. The asymptotic theorem is inspired by a recently proposed Topological Field Theory (TFT) underlying large-N pure YM, that computes sums of the scalar and of the pseudoscalar correlators satisfying the asymptotic theorem and that implies for the large-N joint scalar and pseudoscalar glueball spectrum exact linearity in the masses squared. On the infrared side we test the prediction of the exact linearity in the TFT by Meyer-Teper lattice numerical computation of the masses of the low-lying glueballs in SU(8)YM, finding accurate agreement. Besides, we employ the aforementioned ultraviolet and infrared constraints in order to compare critically the scalar or pseudoscalar glueball propagators computed in the framework of the AdS String/large-N Gauge Theory correspondence with those of the TFT underlying large-N YM. We find that only the TFT satisfies the ultraviolet and infrared constraints.
Glueball and meson propagators of any spin in large-N QCD
Energy Technology Data Exchange (ETDEWEB)
Bochicchio, Marco, E-mail: marco.bochicchio@roma1.infn.it [Scuola Normale Superiore (SNS), Piazza dei Cavalieri 7, Pisa, I-56100 (Italy); INFN sez. Roma 1, Piazzale A. Moro 2, Roma, I-00185 (Italy)
2013-10-21
We prove an asymptotic structure theorem for glueball and meson propagators of any spin in large-N QCD and in N=1SUSY QCD with massless quarks, that determines asymptotically the residues of the poles of the propagators in terms of their anomalous dimensions and of the spectral density of the masses. The asymptotic theorem follows by the severe constraints on the propagators in large-N QCD with massless quarks, or in any large-N confining asymptotically-free gauge theory massless in perturbation theory, that arise by perturbation theory in conjunction with the renormalization group and by the OPE on the ultraviolet side. The asymptotic theorem is inspired by a recently proposed Topological Field Theory (TFT) underlying large-N pure YM, that computes sums of the scalar and of the pseudoscalar correlators satisfying the asymptotic theorem and that implies for the large-N joint scalar and pseudoscalar glueball spectrum exact linearity in the masses squared. On the infrared side we test the prediction of the exact linearity in the TFT by Meyer–Teper lattice numerical computation of the masses of the low-lying glueballs in SU(8)YM, finding accurate agreement. Besides, we employ the aforementioned ultraviolet and infrared constraints in order to compare critically the scalar or pseudoscalar glueball propagators computed in the framework of the AdS String/large-N Gauge Theory correspondence with those of the TFT underlying large-N YM. We find that only the TFT satisfies the ultraviolet and infrared constraints.
Directory of Open Access Journals (Sweden)
Marat V. Markin
2004-01-01
Full Text Available In the class of scalar type spectral operators in a complex Banach space, a characterization of the generators of analytic C0-semigroups in terms of the analytic vectors of the operators is found.
On an abstract evolution equation with a spectral operator of scalar type
Directory of Open Access Journals (Sweden)
Marat V. Markin
2002-01-01
Full Text Available It is shown that the weak solutions of the evolution equation y′(t=Ay(t, t∈[0,T (0
QCD glueball Regge trajectory and the pomeron
Llanes-Estrada, F J; Ribeiro, J E F; Szczepaniak, Adam P
2002-01-01
Implementing many-body techniques successful in other fields, we report a glueball Regge trajectory emerging from diagonalizing a confining Coulomb gauge Hamiltonian for constituent gluons. Through a BCS vacuum ansatz and gap equation, the dressed gluons acquire a dynamic mass, of order 0.8 GeV, providing the quasiparticle degrees of freedom for a TDA glueball formulation. The TDA eigenstates for two constituent gluons have orbital, L, excitations with a characteristic energy of 0.4 GeV revealing a clear Regge trajectory. In particular, the J sup P sup C =2 sup + sup + glueball coincides with the pomeron given by alpha sub P (t)=1.08+(0.25 GeV sup - sup 2)t. We also ascertain that lattice data supports our result. Finally, we conjecture on the odderon puzzle.
Two-loop scale-invariant scalar potential and quantum effective operators
Energy Technology Data Exchange (ETDEWEB)
Ghilencea, D.M. [National Institute of Physics and Nuclear Engineering (IFIN-HH), Theoretical Physics Department, Bucharest (Romania); CERN, Theory Division, Geneva 23 (Switzerland); Lalak, Z.; Olszewski, P. [University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland)
2016-12-15
Spontaneous breaking of quantum scale invariance may provide a solution to the hierarchy and cosmological constant problems. In a scale-invariant regularization, we compute the two-loop potential of a Higgs-like scalar φ in theories in which scale symmetry is broken only spontaneously by the dilaton (σ). Its VEV left angle σ right angle generates the DR subtraction scale (μ ∝ left angle σ right angle), which avoids the explicit scale symmetry breaking by traditional regularizations (where μ = fixed scale). The two-loop potential contains effective operators of non-polynomial nature as well as new corrections, beyond those obtained with explicit breaking (μ = fixed scale). These operators have the form φ{sup 6}/σ{sup 2}, φ{sup 8}/σ{sup 4}, etc., which generate an infinite series of higher dimensional polynomial operators upon expansion about left angle σ right angle >> left angle φ right angle, where such hierarchy is arranged by one initial, classical tuning. These operators emerge at the quantum level from evanescent interactions (∝ ε) between σ and φ that vanish in d = 4 but are required by classical scale invariance in d = 4 - 2ε. The Callan-Symanzik equation of the two-loop potential is respected and the two-loop beta functions of the couplings differ from those of the same theory regularized with μ = fixed scale. Therefore the running of the couplings enables one to distinguish between spontaneous and explicit scale symmetry breaking. (orig.)
Two-loop scale-invariant scalar potential and quantum effective operators
Ghilencea, D.M.
2016-11-29
Spontaneous breaking of quantum scale invariance may provide a solution to the hierarchy and cosmological constant problems. In a scale-invariant regularization, we compute the two-loop potential of a higgs-like scalar $\\phi$ in theories in which scale symmetry is broken only spontaneously by the dilaton ($\\sigma$). Its vev $\\langle\\sigma\\rangle$ generates the DR subtraction scale ($\\mu\\sim\\langle\\sigma\\rangle$), which avoids the explicit scale symmetry breaking by traditional regularizations (where $\\mu$=fixed scale). The two-loop potential contains effective operators of non-polynomial nature as well as new corrections, beyond those obtained with explicit breaking ($\\mu$=fixed scale). These operators have the form: $\\phi^6/\\sigma^2$, $\\phi^8/\\sigma^4$, etc, which generate an infinite series of higher dimensional polynomial operators upon expansion about $\\langle\\sigma\\rangle\\gg \\langle\\phi\\rangle$, where such hierarchy is arranged by {\\it one} initial, classical tuning. These operators emerge at the quantum...
Mixing among light scalar mesons and L=1 qq-bar scalar mesons
Energy Technology Data Exchange (ETDEWEB)
Teshima, T. [Department of Applied Physics, Chubu University, Kasugai (Japan)]. E-mail: teshima@isc.chubu.ac.jp; Kitamura, I.; Morisita, N. [Department of Applied Physics, Chubu University, Kasugai (Japan)
2002-06-01
Following the re-establishment of the {sigma}(500) and the {kappa}(900), the light scalar mesons a{sub 0}(980) and f{sub 0}(980) together with the {sigma}(500) and the {kappa}(900) are considered as the chiral scalar partner of pseudoscalar nonet in SU(3) chiral symmetry, and the high mass scalar mesons a{sub 0}(1450), K*{sub 0}(1430), f{sub 0}(1370) and f{sub 0}(1710) turned out to be considered as the L=1 qq-bar scalar mesons. We assume that the high mass of the L=1 qq-bar scalar mesons is caused by the mixing with the light scalar mesons. For the structure of the light scalar mesons, we adopted the qqq-barq-bar model in order to explain the 'scalar meson puzzle'. The inter-mixing between the light scalar nonet and the high mass L=1 qq-bar nonet and the intra-mixing among each nonet are analysed by including the glueball into the high mass scalar nonet. (author)
Review of meson spectroscopy: quark states and glueballs
Energy Technology Data Exchange (ETDEWEB)
Chanowitz, M.S.
1981-11-01
A group of three lectures on hadron spectroscopy are presented. Topics covered include: light L = 0 mesons, light L = 1 mesons, antiquark antiquark quark quark exotics, a catalogue of higher quark antiquark excitations, heavy quarkonium, and glueballs. (GHT)
Radiative Decays of Scalar Mesons in Light-Front Quark Model
Dewitt, Martin; Choi, Ho-Meoyng; Ji, Chueng-Ryong
2003-04-01
It is currently thought that the difficulty in experimentally identifying the light scalar glueball results from the fact that it tends to mix with nearby conventional scalar mesons. Therefore, the glueball's presence can only be inferred from the behavior of the experimentally observed (mixed) scalar states. Here, we present relativistic light-front quark model calculations of absolute widths for the radiative decay processes Scalar[0^++] → γγ, Scalar[0^++]→γ Vector[1^-], and Vector[1^-]→γ Scalar[0^++] which incorporate the effects of glueball-q barq mixing. The mixed physical states are assumed to be the f_0(1370), the f_0(1500), and the f_0(1710). The n barn, s bars, and gg content of each of the physical states is taken from the mass mixing matrix calculations of other works. These flavor/glue wavefunctions are then used in conjunction with light-front spin-space wavefunctions to compute transition form factors for the decay processes mentioned above. In the q^2→ 0 limit the form factors are used to determine the corresponding decay widths. Our results are compared with available experimental data as well as the results of a recent non-relativistic model calculation of the process Scalar[0^++]→γ Vector[1^-].
Scalar mesons above and below 1 GeV
Energy Technology Data Exchange (ETDEWEB)
Close, Frank E. [Department of Theoretical Physics, University of Oxford, Oxford (United Kingdom)]. E-mail: F.Close@physics.ox.ac.uk; Toernqvist, Nils A. [Department of Physical Sciences, University of Helsinki, Helsinki (Finland)]. E-mail: nils.tornqvist@helsinki.fi
2002-10-01
We show that two nonets and a glueball provide a consistent description of data on scalar mesons below 1.7 GeV. Above 1 GeV the states form a conventional qq-bar nonet mixed with the glueball of lattice QCD. Below 1 GeV the states also form a nonet, as implied by the attractive forces of QCD, but of a more complicated nature. Near the centre they are (qq)3-bar(q-barq-bar){sub 3} in S-wave, with some qq-bar in P-wave, but further out they rearrange as (qq-bar){sub 1}(qq-bar){sub 1} and finally as meson-meson states. A simple effective chiral model for such a system with two scalar nonets can be made involving two coupled linear sigma models. One of these could be looked upon as the Higgs sector of nonpertubative QCD. (author)
Dynamical pions and kaons in the glueball condensate vacuum
Energy Technology Data Exchange (ETDEWEB)
Hansson, T.H.; Klabuar, D.; Zahed, I.
1987-07-01
The model for pions as collective modes in the glueball condensate vacuum is extended to incorporate time-independent fields and massive quarks. The quark mass dependence of
Energy Technology Data Exchange (ETDEWEB)
Sandbrink, Dirk
2015-01-26
One of the most promising candidates to describe the physics beyond the standard model is the so-called supersymmetry. This work was created in the context of the DESY-Muenster-Collaboration, which studies in particular the N=1 supersymmetric Yang-Mills theory (SYM). SYM is a comparatively simple theory, which is therefore well-suited to study the expected properties of a supersymmetric theory with the help of Monte Carlo simulations on the lattice. This thesis is focused on the numerical determination of the quarkpotential, the glueball masses and the phase structur of the N=1 supersymmetric Yang-Mills theory. The quarkpotential is used to calculate the Sommer scale, which in turn is needed to convert the dimensionless lattice spacing into physical units. Glueballs are hypothetical particles built out of gluons, their masses are relatively hard to determine in lattice simulations due to their pure gluonic nature. For this reason, various methods are studied to reduce the uncertainties of the mass determination. The focus lies on smearing methods and their use in variational smearing as well as on the use of different glueball operators. Lastly, a first look is taken at the phase diagram of the model at finite temperature. Various simulations have been performed at finite temperature in parallel to those performed at temperature zero to analyse the behaviour of the Polyakov loop and the gluino condensate in greater detail.
Non-scalar operators for the Potts model in arbitrary dimension
Couvreur, Romain; Lykke Jacobsen, Jesper; Vasseur, Romain
2017-11-01
We investigate the operator content of the Q-state Potts model in arbitrary dimension, using the representation theory of the symmetric group. In particular we construct all possible tensors acting on N spins, corresponding to given symmetries under \
Classical limits of scalar and tensor gauge operators based on the overlap Dirac matrix
Alexandru, Andrei; Horváth, Ivan; Liu, Keh-Fei
2008-10-01
It was recently proposed by the second author to consider lattice formulations of QCD in which complete actions, including the gauge part, are built explicitly from a given Dirac operator D. In a simple example of such theory, the gauge action is proportional to the trace of Ginsparg Wilson operator D chosen to define the quark dynamics. This construction relies on the proposition that the classical limit of lattice gauge operator trD(x,x) is proportional to trF2(x) (up to an additive constant). Here we show this for the case of the overlap Dirac operator using both analytical and numerical methods. We carry out the same analysis also for the tensor component of D, which is similarly related to the field-strength tensor F, and obtain results identical to our previous derivation that used a different approach. The corresponding proportionality constants are computed to high precision for a wide range of the negative mass parameter values, and it is verified that they are the same in finite and infinite volumes.
Glueball and meson spectrum in large-N massless QCD
Bochicchio, Marco
2013-01-01
We provide outstanding numerical evidence that in large-N massless QCD the joint spectrum of the masses squared, for fixed integer spin s and unspecified parity and charge conjugation, obeys exactly the following laws: m_k^2 = (k+s/2) Lambda_QCD^2 for s even, m_k^2 = 2(k+s/2) Lambda_QCD^2 for s odd, k = 1,2,... for glueballs, and m_n^2 = 1/2 (n+s/2) Lambda_QCD^2, n = 0,1,... for mesons. One of the striking features of these laws is that they imply that the glueball and meson masses squared fo...
Method for estimating glueball-meson mixing in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Mandula, J.E.; Papanicolaou, N. (Washington Univ., St. Louis, MO (USA). Dept. of Physics)
1984-10-25
A systematic expansion of lattice QCD amplitudes based on the replica trick is discussed, the leading term of which is the quenched approximation. A parameter is defined that estimates the mixing between glueball and q anti q meson states and provides a test for the reliability of the quenched approximation. The procedure is illustrated by an explicit Monte Carlo calculation for a model system on a one-dimensional lattice.
Matrix model of QCD: Edge localized glueballs and phase transitions
Acharyya, Nirmalendu; Balachandran, A. P.
2017-10-01
In a matrix model of pure SU(2) Yang-Mills theory, boundaries emerge in the space of Mat3(R ) and the Hamiltonian requires boundary conditions. We show the existence of edge localized glueball states that can have negative energies. These edge levels can be lifted to positive energies if the gluons acquire a London-like mass. This suggests a new phase of QCD with an incompressible bulk.
Glueball and Meson Spectrum in Large- N QCD
Bochicchio, Marco
2016-06-01
In the proceedings of HADRON 2015 we outlined a proposal for a string solution of large- N QCD, that is a candidate to satisfy fundamental properties such as the asymptotic freedom of the QCD S-matrix. Here we examine in more detail the implications for the large- N glueball and meson spectrum, that we compare with Particle Data Group (2015) and lattice gauge-theory computations at large N.
Hunting for glueballs in electron-positron annihilation
Energy Technology Data Exchange (ETDEWEB)
Stanley Brodsky; Alfred Scharff Goldhaber; Jungil Lee
2003-05-01
We calculate the cross section for the exclusive production of J{sup PC} = 0{sup ++} glueballs G{sub 0} in association with the J/{psi} in e{sup +}e{sup -} annihilation using the pQCD factorization formalism. The required long-distance matrix element for the glueball is bounded by CUSB data from a search for resonances in radiative {Upsilon} decay. The cross section for e{sup +}e{sup -} {yields} J/{psi} + G{sub 0} at {radical}s = 10.6 GeV is similar to exclusive charmonium-pair production e{sup +}e{sup -} {yields} J/{psi} + h for h = {eta}{sub c} and {chi}{sub c0}, and is larger by a factor 2 than that for h = {eta}{sub c}(2S). As the subprocesses {gamma}* {yields} (c {bar c}) (c {bar c}) and {gamma}* {yields} (c {bar c}) (g g) are of the same nominal order in perturbative QCD, it is possible that some portion of the anomalously large signal observed by Belle in e{sup +}e{sup -} {yields} J/{psi} X may actually be due to the production of charmonium-glueball J/{psi} G{sub J} pairs.
Energy Technology Data Exchange (ETDEWEB)
Rejon-Barrera, Fernando [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, Postbus 94485, 1090 GL, Amsterdam (Netherlands); Robbins, Daniel [Department of Physics, Texas A& M University,TAMU 4242, College Station, TX 77843 (United States)
2016-01-22
We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.
Analysis of soft wall AdS/QCD potentials to obtain the melting temperature of scalar hadrons
Vega, Alfredo; Ibañez, Adolfo
2017-11-01
We consider an analysis of potentials related to Schrödinger-type equations for scalar fields in a 5D AdS black hole background with dilaton in order to obtain melting temperatures for different hadrons in a thermal bath. The approach does not consider calculations of spectral functions, and it is easy to yield results for hadrons with an arbitrary number of constituents. We present results for scalar mesons, glueballs, hybrid mesons and tetraquarks, and we show that mesons are more resistant to being melted in a thermal bath than other scalar hadrons, and in general the melting temperature increases when hadrons contain heavy quarks.
Pions as collective modes in the glueball condensate vacuum
Energy Technology Data Exchange (ETDEWEB)
Hansson, T.H.; Zahed, I.
1987-07-01
The glueball condensate vacuum model is extended to incorporate the effects of light quarks. The resulting model exhibits spontaneous breaking of chiral SU(2)/sub f/ symmetry, and has a new kind of collective excitations, pions, which are distinct from the usual bag-model-type states. The dynamics of the pions are described by a sigma model, and the parameters
Phenomenology of pseudotensor mesons and the pseudotensor glueball
Energy Technology Data Exchange (ETDEWEB)
Koenigstein, Adrian [Johann Wolfgang Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Giacosa, Francesco [Jan Kochanowski University, Institute of Physics, Kielce (Poland); Johann Wolfgang Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany)
2016-12-15
We study the decays of the pseudotensor mesons (π{sub 2}(1670), K{sub 2}(1770), η{sub 2}(1645), η{sub 2}(1870)) interpreted as the ground-state nonet of 1{sup 1}D{sub 2} anti qq states using interaction Lagrangians which couple them to pseudoscalar, vector, and tensor mesons. While the decays of π{sub 2}(1670) and K{sub 2}(1770) can be well described, the decays of the isoscalar states η{sub 2}(1645) and η{sub 2}(1870) can be brought in agreement with the present experimental data only if the mixing angle between nonstrange and strange states is surprisingly large (about -42 {sup circle}, similar to the mixing in the pseudoscalar sector, in which the chiral anomaly is active). Such a large mixing angle is however at odd with all other conventional quark-antiquark nonets: if confirmed, a deeper study of its origin will be needed in the future. Moreover, the anti qq assignment of pseudotensor states predicts that the ratio [η{sub 2}(1870) → a{sub 2}(1320) π]/[η{sub 2}(1870) → f{sub 2}(1270) η] is about 23.5. This value is in agreement with Barberis et al., (20.4 ± 6.6), but disagrees with the recent reanalysis of Anisovich et al., (1.7 ± 0.4). Future experimental studies are necessary to understand this puzzle. If Anisovich's value is confirmed, a simple nonet of pseudoscalar mesons cannot be able to describe data (different assignments and/or additional states, such as an hybrid state, will be needed). In the end, we also evaluate the decays of a pseudoscalar glueball into the aforementioned conventional anti qq states: a sizable decay into K{sub 2}{sup *}(1430) K and a{sub 2}(1230) π together with a vanishing decay into pseudoscalar-vector pairs (such as ρ(770) π and K*(892) K) are expected. This information can be helpful in future studies of glueballs at the ongoing BESIII and at the future PANDA experiments. (orig.)
SO(N) gauge theories in 2 + 1 dimensions: glueball spectra and confinement
Lau, Richard; Teper, Michael
2017-10-01
We calculate the spectrum of light glueballs and the string tension in a number of SO( N) lattice gauge theories in 2+1 dimensions, with N in the range 3 ≤ N ≤ 16. After extrapolating to the continuum limit and then to N = ∞ we compare to the spectrum and string tension of the SU( N → ∞) gauge theory and find that the most reliably and precisely calculated physical quantities are consistent in that limit. We also compare the glueball spectra of those pairs of SO( N) and SU( N') theories that possess the same Lie algebra, i.e. SO(3) and SU(2), SO(4) and SU(2)×SU(2), SO(6) and SU(4), and find that for the very lightest glueballs the spectra are consistent within each such pair, as are the string tensions and the couplings. Where there are apparent discrepancies they are typically for heavier glueballs, where the systematic errors are much harder to control. We calculate the SO( N) string tensions with a particular focus on the confining properties of SO(2 N + 1) theories which, unlike SO(2 N) theories, possess a trivial centre. We find that for both the light glueballs and for the string tension SO(2 N) and SO(2 N + 1) gauge theories appear to form a single smooth sequence.
Glueballs in the reaction. pi. /sup -/p. -->. phi phi n
Energy Technology Data Exchange (ETDEWEB)
Lindenbaum, S.J.
1983-01-01
The BNL/CCNY group has observed and performed a partial wave analysis on 1203 (22 GeV) ..pi../sup -/p ..-->.. phi phi n events. The OZI suppression has been found to be almost completely broken down. The phi phi spectrum is found to be composed almost entirely of two new resonances, the g/sub T/(2160) and the g/sub T/(2320) with K/sup G/J/sup PC/ = 0/sup +/2/sup + +/. For g/sub T/ (2160), M = 2.16 +- 0.05 GeV, and GAMMA = 0.31 +- 0.07 GeV. For g/sub T/(2320), M = 2.32 +- 0.04, and GAMMA = 0.22 +- 0.07. Assuming (1) QCD is correct, and (2) the OZI rule is universal for weakly coupled glue in disconnected Zweig diagrams due to the creation or annihilation of new types of quarks; it is concluded that one or two primary glueballs with the above quantum numbers are responsible for the above observed states. 42 references.
Kleihaus, Burkhard; Yazadjiev, Stoytcho
2015-01-01
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Achasov, N. N.; Kiselev, A. V.; Shestakov, G. N.
2008-01-01
Outline: 1. Introduction, 2. Confinement, chiral dynamics and light scalar mesons, 3. Chiral shielding of the \\sigma(600), chiral constraints (the CGL band), the \\sigma(600) and the f0(980) in \\pi\\pi->\\pi\\pi, \\pi\\pi->KKbar, \\phi->\\gamma\\pi0\\pi0, 4. The \\phi meson radiative decays on light scalar resonances, 5. Light scalars in \\gamma\\gamma collisions. Evidence for four-quark components of light scalars is given. The priority of Quantum Field Theory in revealing the light scalar mystery is emp...
Renormalization group summation of Laplace QCD sum rules for scalar gluon currents
Directory of Open Access Journals (Sweden)
Farrukh Chishtie
2016-03-01
Full Text Available We employ renormalization group (RG summation techniques to obtain portions of Laplace QCD sum rules for scalar gluon currents beyond the order to which they have been explicitly calculated. The first two of these sum rules are considered in some detail, and it is shown that they have significantly less dependence on the renormalization scale parameter μ2 once the RG summation is used to extend the perturbative results. Using the sum rules, we then compute the bound on the scalar glueball mass and demonstrate that the 3 and 4-Loop perturbative results form lower and upper bounds to their RG summed counterparts. We further demonstrate improved convergence of the RG summed expressions with respect to perturbative results.
Energy Technology Data Exchange (ETDEWEB)
Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)
2015-05-11
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Directory of Open Access Journals (Sweden)
Burkhard Kleihaus
2015-05-01
Full Text Available In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Alonso, Rodrigo; Manohar, Aneesh V.
2016-01-01
The $S$-matrix of a quantum field theory is unchanged by field redefinitions, and so only depends on geometric quantities such as the curvature of field space. Whether the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a subtle question since one can make a coordinate change to convert a field that transforms linearly into one that transforms non-linearly. Renormalizability of the Standard Model (SM) does not depend on the choice of scalar fields or whether the scalar fields transform linearly or non-linearly under the gauge group, but only on the geometric requirement that the scalar field manifold ${\\mathcal M}$ is flat. We explicitly compute the one-loop correction to scalar scattering in the SM written in non-linear Callan-Coleman-Wess-Zumino (CCWZ) form, where it has an infinite series of higher dimensional operators, and show that the $S$-matrix is finite. Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT) have curved ${\\mathcal M}$, ...
Exact beta function and glueball spectrum in large N Yang-Mills theory.
Bochicchio, M.
In the pure large-N Yang-Mills theory there is a quasi-BPS sector that is exactly solvable at large N. It follows an exact beta function and the glueball spectrum in this sector. The main technical tool is a new holomorphic loop equation for quasi-BPS Wilson loops, that occurs as a non-supersymmetric analogue of Dijkgraaf-Vafa holomorphic loop equation for the glueball superpotential of n=1 SUSY gauge theories. The new holomorphic loop equation is localized, i.e. reduced to a critical equation, by a deformation of the loop that is a vanishing boundary in homology, somehow in analogy with Witten's cohomological localization by a coboundary deformation in SUSY gauge theories.
A method for estimating glueball-meson mixing in lattice QCD
Mandula, Jeffrey E.; Papanicolaou, N.
1984-10-01
A systematic expansion of lattice QCD amplitudes based on the replica trick is discussed, the leading term of which is the quenched approximation. A parameter is defined that estimates the mixing between glueball and qq meson states and provides a test for the reliability of the quenched approximation. The procedure is illustrated by an explicit Monte Carlo calculation for a model system on a one-dimensional lattice.
Pseudoscalar glueball and $\\eta'$-meson in low-energy QCD expansion
Nekrasov, M L
1995-01-01
An effective chiral lagrangian of order $p^2$, describing the interaction of light pseudoscalar (PS) mesons with $\\eta'$-meson and PS-glueball, has been determined taking into consideration the renorm-group requirements imposed by QCD renormalization. It is shown that the interpolating fields for the lowest singlet quarkic and gluonic states, $\\eta^0$ and $\\eta^G$, may be involved into the effective theory to be renorm-invariant objects not mixing due to QCD renormalization. It is established...
Fratini, F.; Safari, L.
2014-08-01
We discuss the form of the wave-function of a state subjected to a scalar linear potential, focusing on quantum tunneling. We analyze the phases acquired by the evolved state and show that some are of a pure quantum mechanical origin. We propose a simple experimental scenario to measure one of these phases. We apply the evolution equations to re-analyze the Stern and Gerlach experiment and to demonstrate how to manipulate spin by employing constant electric fields.
Stochastic inflationary scalar electrodynamics
Prokopec, T.; Tsamis, N.C.; Woodard, R.P.
2008-01-01
We stochastically formulate the theory of scalar quantum electrodynamics on a de Sitter background. This reproduces the leading infrared logarithms at each loop order. It also allows one to sum the series of leading infrared logarithms to obtain explicit, nonperturbative results about the late time
Test of scalar meson structure in {phi} radiative decays
Energy Technology Data Exchange (ETDEWEB)
Kumano, S. [Mainz Univ. (Germany). Inst. fuer Kernphysik
1992-12-01
We show that {phi} radiative decays into scalar mesons [f{sub 0}(975), a{sub 0}(980) {identical_to} S] can provide important clues on the internal structures of these mesons. Radiative decay widths vary widely: B.R. = 10{sup -4}-10{sup -6} depending on the substructures (qq-bar, qqq-barq-bar, KK-bar, glueball). Hence, we could discriminate among various models by measuring these widths at future {phi} factories. The understanding of these meson structures is valuable not only in hadron spectroscopy but also in nuclear physics in connection with the widely-used but little-understood {sigma} meson. We also find that the decay {phi}{yields}S{sub {gamma}}{yields}K{sup 0}K-bar{sup 0}{sub {gamma}} is not strong enough to pose a significant background problem for studying CP violation via {phi}{yields}K{sup 0}K-bar{sup 0} at the {phi} factories. (author).
Light Scalar Mesons in Central Production at COMPASS
Austregesilo, A.
2016-01-01
COMPASS is a fixed-target experiment at the CERN SPS that studies the spectrum of light-quark hadrons. In 2009, it collected a large dataset using a $190\\,$GeV$/c$ positive hadron beam impinging on a liquid-hydrogen target in order to measure the central exclusive production of light scalar mesons. One of the goals is the search for so-called glueballs, which are hypothetical meson-like objects without valence-quark content. We study the decay of neutral resonances by selecting centrally produced pion pairs from the COMPASS dataset. The angular distributions of the two pseudoscalar mesons are decomposed in terms of partial waves, where particular attention is paid to the inherent mathematical ambiguities. The large dataset allows us to perform a detailed analysis in bins of the two squared four-momentum transfers carried by the exchange particles in the reaction. Possible parameterisations of the mass dependence of the partial-wave amplitudes in terms of resonances are also discussed.
A remark on the large difference between the glueball mass and T sub c in quenched QCD
Ishii, N
2003-01-01
The lattice QCD studies indicate that the critical temperature T sub c approx =260-280 MeV of the deconfinement phase transition in quenched QCD is considerably smaller than the lowest-lying glueball mass m sub G approx =1500-1700 MeV, i.e., T sub c <
Dynamics of Glueball and $q\\overline{q}$ production in the central region of p p collisions
Close, Francis Edwin; Schuler, G A
2000-01-01
We explain the phi and t dependences of mesons with JPC = 0pm +,1^++,2pm +$ produced in the central region of pp collisions. For the 0++ and 2++ sector this reveals a systematic behaviour in the data that appears to distinguish between qqbar and non-qqbar or glueball candidates.
The scalar field kernel in cosmological spaces
Koksma, J.F.; Prokopec, T.|info:eu-repo/dai/nl/326113398; Rigopoulos, G.I.
2008-01-01
We construct the quantum mechanical evolution operator in the Functional Schrodinger picture - the kernel - for a scalar field in spatially homogeneous FLRW spacetimes when the field is a) free and b) coupled to a spacetime dependent source term. The essential element in the construction is the
CMB bounds on tensor-scalar-scalar inflationary correlations
Shiraishi, Maresuke; Liguori, Michele; Fergusson, James R.
2018-01-01
The nonlinear interaction between one graviton and two scalars is enhanced in specific inflationary models, potentially leading to distinguishable signatures in the bispectrum of the cosmic microwave background (CMB) anisotropies. We develop the tools to examine such bispectrum signatures, and show a first application using WMAP temperature data. We consider several l-ranges, estimating the gtss amplitude parameter, by means of the so-called separable modal methodology. We do not find any evidence of a tensor-scalar-scalar signal at any scale. Our tightest bound on the size of the tensor-scalar-scalar correlator is derived from our measurement including all the multipoles in the range 2 first direct observational constraint on the primordial tensor-scalar-scalar correlation, and it will be cross-checked and improved by applying the same pipeline to high-resolution temperature and polarization data from Planck and forthcoming CMB experiments.
Bittencourt, E; Novello, M; Toniato, J D
2016-01-01
We discuss a class of models for gravity based on a scalar field. The models include and generalize the old approach by Nordstr\\"om which predated and in some way inspired General Relativity. The class include also a model that we have recently introduced and discussed in its cosmological aspects (GSG). We present here a complete characterisation of the Schwarschild geometry as a vacuum solution of GSG and sketch a discussion of the first Post-Newtonian approximation.
Search for scalar top and scalar bottom quarks at LEP
Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija
2002-01-01
Searches for a scalar top quark and a scalar bottom quark have been performed using a data sample of 438 pb-1 at centre-of-mass energies of sqrt(s) = 192 - 209 GeV collected with the OPAL detector at LEP. No evidence for a signal was found. The 95% confidence level lower limit on the scalar top quark mass is 97.6 GeV if the mixing angle between the supersymmetric partners of the left- and right-handed states of the top quark is zero. When the scalar top quark decouples from the Z0 boson, the lower limit is 95.7 GeV. These limits were obtained assuming that the scalar top quark decays into a charm quark and the lightest neutralino, and that the mass difference between the scalar top quark and the lightest neutralino is larger than 10 GeV. The complementary decay mode of the scalar top quark decaying into a bottom quark, a charged lepton and a scalar neutrino has also been studied. The lower limit on the scalar top quark mass is 93.0 GeV for this decay mode, if the mass difference between the scalar top quark a...
Rodríguez, Yeinzon; Navarro, Andrés A.
2017-03-01
An alternative for the construction of fundamental theories is the introduction of Galileons. These are fields whose action leads to non higher than second-order equations of motion. As this is a necessary but not sufficient condition to make the Hamiltonian bounded from below, as long as the action is not degenerate, the Galileon construction is a way to avoid pathologies both at the classical and quantum levels. Galileon actions are, therefore, of great interest in many branches of physics, specially in high energy physics and cosmology. This proceedings contribution presents the generalities of the construction of both scalar and vector Galileons following two different but complimentary routes.
Achasov, N. N.
2008-01-01
Outline: 1. Introduction, 2. Confinement, chiral dynamics and light scalar mesons, 3. Chiral shielding of \\sigma(600), chiral constraints, \\sigma(600), f_0(980) and their mixing in \\pi\\pi\\to\\pi\\pi, \\pi\\pi\\to K\\bar K, and \\phi\\to\\gamma\\pi0\\pi0, 4. The \\phi meson radiative decays on light scalar resonances. 5. Why a0(980) and f0(980) are not the K\\bar K molecules. 6. Light scalars in \\gamma\\gamma collisions. Evidence for four-quark components of light scalars is given. The priority of Quantum F...
Electroweak Baryogenesis and Colored Scalars
Energy Technology Data Exchange (ETDEWEB)
Cohen, Timothy; /SLAC /Michigan U., MCTP; Pierce, Aaron; /Michigan U., MCTP
2012-02-15
We consider the 2-loop finite temperature effective potential for a Standard Model-like Higgs boson, allowing Higgs boson couplings to additional scalars. If the scalars transform under color, they contribute 2-loop diagrams to the effective potential that include gluons. These 2-loop effects are perhaps stronger than previously appreciated. For a Higgs boson mass of 115 GeV, they can increase the strength of the phase transition by as much as a factor of 3.5. It is this effect that is responsible for the survival of the tenuous electroweak baryogenesis window of the Minimal Supersymmetric Standard Model. We further illuminate the importance of these 2-loop diagrams by contrasting models with colored scalars to models with singlet scalars. We conclude that baryogenesis favors models with light colored scalars. This motivates searches for pair-produced di-jet resonances or jet(s) + = E{sub T}.
Photoproduction of scalar mesons using CLAS at JLab
Chandavar, Shloka; Hicks, Kenneth; Weygand, Dennis; CLAS Collaboration
2014-09-01
The search for glueballs has been ongoing for decades. The lightest glueball has been predicted by quenched lattice QCD to have a mass in the range of 1.0-1.7 GeV and JPC =0++ . The mixing of glueball states with neighbouring meson states complicates their identification. The f0 (1500) is one of several candidates for the lightest glueball, whose presence in the Ks0 Ks0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. This is done by studying the reaction, γp -->fJ p -->Ks0> Ks0p --> 2 (π+π-) p using data from the g12 experiment. A brief description of this analysis, along with a preliminary partial wave analysis results will be presented. The search for glueballs has been ongoing for decades. The lightest glueball has been predicted by quenched lattice QCD to have a mass in the range of 1.0-1.7 GeV and JPC =0++ . The mixing of glueball states with neighbouring meson states complicates their identification. The f0 (1500) is one of several candidates for the lightest glueball, whose presence in the Ks0Ks0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. This is done by studying the reaction, γp -->fJ p -->Ks0 Ks0p --> 2 (π+π-) p using data from the g12 experiment. A brief description of this analysis, along with a preliminary partial wave analysis results will be presented. NSF.
Inflation and the Higgs Scalar
Energy Technology Data Exchange (ETDEWEB)
Green, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2014-12-05
This note makes a self-contained exposition of the basic facts of big bang cosmology as they relate to inflation. The fundamental problems with that model are then explored. A simple scalar model of inflation is evaluated which provides the solution of those problems and makes predictions which will soon be definitively tested. The possibility that the recently discovered fundamental Higgs scalar field drives inflation is explored.
Scalar multiplet recombination at large N and holography
Energy Technology Data Exchange (ETDEWEB)
Bashmakov, Vladimir [SISSA and INFN, Via Bonomea 265, I-34136 Trieste (Italy); Bertolini, Matteo [SISSA and INFN, Via Bonomea 265, I-34136 Trieste (Italy); ICTP, Strada Costiera 11, I-34014 Trieste (Italy); Pietro, Lorenzo Di [Weizmann Institute of Science, Rehovot 7610001 (Israel); Raj, Himanshu [SISSA and INFN, Via Bonomea 265, I-34136 Trieste (Italy)
2016-05-31
We consider the coupling of a free scalar to a single-trace operator of a large N CFT in d dimensions. This is equivalent to a double-trace deformation coupling two primary operators of the CFT, in the limit when one of the two saturates the unitarity bound. At leading order, the RG-flow has a non-trivial fixed point where multiplets recombine. We show this phenomenon in field theory, and provide the holographic dual description. Free scalars correspond to singleton representations of the AdS algebra. The double-trace interaction is mapped to a boundary condition mixing the singleton with the bulk field dual to the single-trace operator. In the IR, the singleton and the bulk scalar merge, providing just one long representation of the AdS algebra.
Bochicchio, Marco
2016-05-01
Employing a new class of string theories we construct a family of S -matrix amplitudes that factorize over linear Regge trajectories, and that are good candidates to be asymptotically free, i.e. to lead to asymptotically-free correlation functions working out the LS Z formulae the other way around. In particular, we propose a candidate for a string solution of QCD with NF massless quarks in the large-N 't Hooft limit, for the glueball and meson spectrum, and for certain S-matrix amplitudes in the collinear limit. The solution extends to massive quarks of equal mass.
Analysis of the scalar doubly charmed hexaquark state with QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhi-Gang [North China Electric Power University, Department of Physics, Baoding (China)
2017-09-15
In this article, we study the scalar-diquark-scalar-diquark-scalar-diquark type hexaquark state with the QCD sum rules by carrying out the operator product expansion up to the vacuum condensates of dimension 16. We obtain a lowest hexaquark mass of 6.60{sup +0.12}{sub -0.09} GeV, which can be confronted with the experimental data in the future. (orig.)
Scalar - vector soliton fiber lasers
Wu, Zhichao; Li, Lei; Luo, Yiyang; Tang, Dingyuan; Shen, Deyuan; Tang, Ming; Fu, Songnian; Zhao, Luming
2016-01-01
Rapid progress in passively mode-locked fiber lasers is currently driven by the recent discovery of vector feature of mode-locking pulses, namely, the group velocity-locked vector solitons, the phase locked vector solitons, and the high-order vector solitons. Those vector solitons are fundamentally different from the previously known scalar solitons. Here, we report a fiber laser where the mode-locked pulse evolves as a vector soliton in the strong birefringent segment and is transformed into a regular scalar soliton after the polarizer within the laser cavity. The existence of solutions in a polarization-dependent cavity comprising a periodic combination of two distinct nonlinear waves is novel and likely to be applicable to various other nonlinear systems. For very large local birefringence, our laser approaches the working regime of vector soliton lasers, while it approaches scalar soliton fiber lasers under the conditions of very small birefringence.
Massive scalar counterpart of gravitational waves in scalarized neutron star binaries
Energy Technology Data Exchange (ETDEWEB)
Wang, Jing [Sun Yat-sen University, School of Physics and Astronomy, Guangzhou (China)
2017-09-15
In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10{sup -21} eV/c{sup 2}. (orig.)
Massive scalar counterpart of gravitational waves in scalarized neutron star binaries
Wang, Jing
2017-09-01
In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10^{-21} { {eV/c}}^2.
Scalar strong interaction hadron theory
Hoh, Fang Chao
2015-01-01
The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.
SCALAR AND VECTOR IN COMPULATION
Directory of Open Access Journals (Sweden)
Valery F. Ochkov
2013-01-01
Full Text Available The article deals with two fundamental data types – scalar and vector (array, without the ability of working with them one cannot solve using computer school or university tasks in mathematics, physics, chemistry and other technical training courses. Some fundamentals of teaching computer science at school and university are covered as well.
Veltman, M.J.G.; Hooft, G. 't
1979-01-01
The completely general one-loop scalar one-, two-, three- and four-point functions are studied. Also an integral occurring in connection with soft bremsstrahlung is considered. Formulas in terms of Spence functions are given. An expansion for Spence functions with complex argument is presented.
Huang, Ching-Yuan
2003-07-01
The asymptotically flat space-time with scalar fields is studied. It shows that the concepts of Bondi mass, Bondi mass loss, etc., are also applicable to other fields, although they were originally defined by gravity. The generating formulae of Bondi mass loss and angular momentum loss by a dynamics Hamiltonian over a hyperb oloid are given by the linearised theory.
Scalar magnetometers for space applications
DEFF Research Database (Denmark)
Primdahl, Fritz
magnetometer, offer stability and resolution well suited for the calibration purposes. Recent developments are discussed. The metastable Helium magnetometer also offers quasi-absolute scalar measurements, and the use of semiconductor tuned lasers replacing an RF-excited Helium lamp holds great promise...
Tachyonic field interacting with scalar (phantom) field
Chattopadhyay, Surajit; Debnath, Ujjal
2009-01-01
In this letter, we have considered the universe is filled with the mixture of tachyonic field and scalar or phantom field. If the tachyonic field interacts with scalar or phantom field, the interaction term decays with time and the energy for scalar field is transferred to tachyonic field or the energy for phantom field is transferred to tachyonic field. The tachyonic field and scalar field potentials always decrease, but phantom field potential always increases.
Passive Scalar Evolution in Peripheral Region
Lebedev, V. V.; Turitsyn, K. S.
2003-01-01
We consider evolution of a passive scalar (concentration of pollutants or temperature) in a chaotic (turbulent) flow. A universal asymptotic behavior of the passive scalar decay (homogenization) related to peripheral regions (near walls) is established. The passive scalar moments and its pair correlation function in the peripheral region are analyzed. A special case investigated in our paper is the passive scalar decay along a pipe.
Minimally coupled scalar field cosmology in anisotropic ...
Indian Academy of Sciences (India)
We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar ...
Search for Scalar Leptons and Scalar Quarks at LEP
Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.
2004-01-01
Scalar partners of quarks and leptons, predicted in supersymmetric models, are searched for in e^+e^- collisions at centre-of-mass energies between 192GeV and 209GeV at LEP. No evidence for any such particle is found in a data sample of 450 pb^-1. Upper limits on their production cross sections are set and lower limits on their masses are derived in the framework of the Minimal Supersymmetric Standard Model.
Top-down holographic G-structure glueball spectroscopy at (N)LO in N and finite coupling
Energy Technology Data Exchange (ETDEWEB)
Sil, Karunava; Yadav, Vikas; Misra, Aalok [Indian Institute of Technology, Department of Physics, Roorkee, Uttaranchal (India)
2017-06-15
The top-down type IIB holographic dual of large-N thermal QCD as constructed in Mia et al. (Nucl Phys B 839:187, 2010) involving a fluxed resolved warped deformed conifold, its delocalized type IIA Strominger-Yau-Zaslow-mirror (SYZ-mirror) as well as its M-theory uplift constructed in Dhuria and Misra (JHEP 1311:001, 2013) - both in the finite coupling g{sub s}
Thermodynamics of perfect fluids from scalar field theory
Ballesteros, Guillermo; Pilo, Luigi
2016-01-01
The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.
Signatures of photon-scalar interaction in astrophysical situations
Ganguly, Avijit K.; Jaiswal, Manoj K.
2018-01-01
Dimension-5 photon ( γ) scalar ( ϕ) interaction term usually appear in the Lagrangians of bosonic sector of unified theories of electromagnetism and gravity. This interaction makes the medium dichoric and induces optical activity. Considering a toy model of an ultra-cold magnetized compact star (white dwarf (WD) or neutron star (NS)), we have modeled the propagation of very low energy photons with such interaction, in the environment of these stars. Assuming synchro-curvature process as the dominant mechanism of emission in such environments, we have tried to understand the polarimetric implications of photon-scalar coupling on the produced spectrum of the same. Further more assuming the `emission-energy vs emission-altitude' relation, that is believed to hold in such ( i.e., cold magnetized WD or NS) environments, we have tried to point out the possible modifications to the radiation spectrum when the same is incorporated along with dimension-5 photon-scalar mixing operator.
Scalar fluctuations in dilatonic brane-worlds
Bozza, Valerio; Veneziano, Gabriele
2001-01-01
We derive and solve the full set of scalar perturbation equations for a class of five-dimensional brane--world solutions, with a dilaton scalar field coupled to the bulk cosmological constant and to a 3-brane. The spectrum contains one localized massless scalar mode, to be interpreted as an effective dilaton on the brane, inducing long--range scalar interactions. Two massive scalar modes yield corrections to Newton's law at short distances, which persist even in the limit of vanishing dilaton (namely, in the standard Randall--Sundrum configuration).
Unique Fock quantization of scalar cosmological perturbations
Fernández-Méndez, Mikel; Olmedo, Javier; Velhinho, José M
2012-01-01
We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lema\\^{i}tre-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the co...
CP violating scalar Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Cordero-Cid, A.; Hernández-Sánchez, J. [Instituto de Física and Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, C.P. 72570 Puebla (Mexico); Keus, V. [Department of Physics and Helsinki Institute of Physics, University of Helsinki, Gustaf Hallstromin katu 2, Helsinki, FIN-00014 (Finland); School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); King, S.F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Moretti, S. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom); Rojas, D. [Instituto de Física and Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, C.P. 72570 Puebla (Mexico); Sokołowska, D. [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)
2016-12-05
We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z{sub 2} symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.
Energy Technology Data Exchange (ETDEWEB)
Alonso, Rodrigo [Department of Physics, University of California at San Diego,La Jolla, CA 92093 (United States); Jenkins, Elizabeth E.; Manohar, Aneesh V. [Department of Physics, University of California at San Diego,La Jolla, CA 92093 (United States); CERN TH Division,CH-1211 Geneva 23 (Switzerland)
2016-08-17
The S-matrix of a quantum field theory is unchanged by field redefinitions, and so it only depends on geometric quantities such as the curvature of field space. Whether the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a subtle question since one can make a coordinate change to convert a field that transforms linearly into one that transforms non-linearly. Renormalizability of the Standard Model (SM) does not depend on the choice of scalar fields or whether the scalar fields transform linearly or non-linearly under the gauge group, but only on the geometric requirement that the scalar field manifold M is flat. Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT) have curved M, since they parametrize deviations from the flat SM case. We show that the HEFT Lagrangian can be written in SMEFT form if and only if M has a SU(2){sub L}×U(1){sub Y} invariant fixed point. Experimental observables in HEFT depend on local geometric invariants of M such as sectional curvatures, which are of order 1/Λ{sup 2}, where Λ is the EFT scale. We give explicit expressions for these quantities in terms of the structure constants for a general G→H symmetry breaking pattern. The one-loop radiative correction in HEFT is determined using a covariant expansion which preserves manifest invariance of M under coordinate redefinitions. The formula for the radiative correction is simple when written in terms of the curvature of M and the gauge curvature field strengths. We also extend the CCWZ formalism to non-compact groups, and generalize the HEFT curvature computation to the case of multiple singlet scalar fields.
Random scalar fields and hyperuniformity
Ma, Zheng; Torquato, Salvatore
2017-06-01
Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystals and liquids. Hyperuniform systems have attracted recent attention because they are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has been generalized to characterize two-phase media, scalar fields, and random vector fields. In this paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we analyze spatial patterns generated from Gaussian random fields, which have been used to model the microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spinodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pattern formation, including Rayleigh-Bénard convection. We show that the Gaussian random scalar fields can be constructed to be hyperuniform. We also numerically study the time evolution of spinodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime. Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian random field to produce a two-phase random medium tends to destroy the hyperuniformity of the progenitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase media derived from thresholded non-Gaussian fields. Our investigation paves the way for new research directions to characterize the large-structure spatial patterns that arise in physics, chemistry, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists to synthesize new classes of hyperuniform materials with novel physical properties via coarsening processes and using state-of-the-art techniques, such as stereolithography and 3D printing.
Energy Technology Data Exchange (ETDEWEB)
Foda, O. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: foda@ms.unimelb.edu.au; Wheeler, M. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: mwheeler@ms.unimelb.edu.au; Zuparic, M. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: mzup@ms.unimelb.edu.au
2009-10-21
Using a Jacobi-Trudi-type identity, we show that the scalar product of a general state and a Bethe eigenstate in a finite-length XXZ spin-1/2 chain is (a restriction of) a KP {tau} function. This leads to a correspondence between the eigenstates and points on Sato's Grassmannian. Each of these points is a function of the rapidities of the corresponding eigenstate, the inhomogeneity variables of the spin chain and the crossing parameter.
Search for the glueball candidates f0(1500) and fJ(1710) in /γγ collisions
Barate, R.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Alemany, R.; Bravo, S.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Graugès, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L. M.; Pacheco, A.; Riu, I.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Boix, G.; Buchmüller, O.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Greening, T. C.; Halley, A. W.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Wright, A. E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.-C.; Rougé, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raine, C.; Teixeira-Dias, P.; Thompson, A. S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Marinelli, N.; Sciabà, A.; Sedgbeer, J. K.; Thomson, E.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Buck, P. G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Robertson, N. A.; Williams, M. I.; Giehl, I.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; Wachsmuth, H.; Zeitnitz, C.; Aubert, J. J.; Bonissent, A.; Carr, J.; Coyle, P.; Payre, P.; Rousseau, D.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Büscher, V.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, P.; Jacholkowska, A.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Bagliesi, G.; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Ferrante, I.; Foà, L.; Giassi, A.; Gregorio, A.; Ligabue, F.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Cowan, G.; Green, M. G.; Medcalf, T.; Strong, J. A.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Thompson, J. C.; Tomalin, I. R.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Konstantinidis, N.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Lehto, M.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Giannini, G.; Gobbo, B.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Hayes, O. J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P. A., III; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Wu, X.; Zobernig, G.
2000-01-01
Data taken with the ALEPH detector at LEP1 have been used to search for /γγ production of the glueball candidates f0(1500) and fJ(1710) via their decay to π+π-. No signal is observed and upper limits to the product of /γγ width and π+π- branching ratio of the f0(1500) and the fJ(1710) have been measured to beΓ(γγ-- >f0(1500)).BR(f0(1500)-- >π+π-)fJ(1710)).BR(fJ(1710)-- >π+π-)<0.55keV at 95% confidence level.
Observability of inert scalars at the LHC
Energy Technology Data Exchange (ETDEWEB)
Hashemi, Majid [Shiraz University, Physics Department, College of Sciences, Shiraz (Iran, Islamic Republic of); Najjari, Saereh [University of Warsaw, Faculty of Physics, Warsaw (Poland)
2017-09-15
In this work we investigate the observability of inert doublet model scalars at the LHC operating at the center of mass energy of 14 TeV. The signal production process is pp → AH{sup ±} → ZHW{sup ±}H leading to two different final states of l{sup +}l{sup -}HjjH and l{sup +}l{sup -}Hl{sup ±}νH based on the hadronic and leptonic decay channels of the W boson. All the relevant background processes are considered and an event selection is designed to distinguish the signal from the large Standard Model background. We found that signals of the selected search channels are well observable at the LHC with an integrated luminosity of 300 fb{sup -1}. (orig.)
Unique Fock quantization of scalar cosmological perturbations
Fernández-Méndez, Mikel; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.
2012-05-01
We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lemaître-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter-field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.
Unified Dark Matter Scalar Field Models
Directory of Open Access Journals (Sweden)
Daniele Bertacca
2010-01-01
of a single scalar field accounts for a unified description of the Dark Matter and Dark Energy sectors, dubbed Unified Dark Matter (UDM models. In this framework, we consider the general Lagrangian of -essence, which allows to find solutions around which the scalar field describes the desired mixture of Dark Matter and Dark Energy. We also discuss static and spherically symmetric solutions of Einstein's equations for a scalar field with noncanonical kinetic term, in connection with galactic halo rotation curves.
Galactic collapse of scalar field dark matter
Energy Technology Data Exchange (ETDEWEB)
Alcubierre, Miguel [Max-Planck-Institut fuer Gravitationsphysik, Am Muehlenberg 1, D-14476 Golm (Germany); Guzman, F Siddhartha [Max-Planck-Institut fuer Gravitationsphysik, Am Muehlenberg 1, D-14476 Golm (Germany); Matos, Tonatiuh [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, AP 14-740, 07000 Mexico, DF (Mexico); Nunez, Dario [Centre for Gravitational Physics and Geometry, Penn State University, University Park, PA 16802 (United States); Urena-Lopez, L Arturo [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, AP 14-740, 07000 Mexico, DF (Mexico); Wiederhold, Petra [Departamento de Control Automatico, Centro de Investigacion y de Estudios Avanzados del IPN, AP 14-740, 07000 Mexico, DF (Mexico)
2002-10-07
We present a scenario for core galaxy formation based on the hypothesis of scalar field dark matter. We interpret galaxy formation through the collapse of a scalar field fluctuation. We find that a cosh potential for the self-interaction of the scalar field provides a reasonable scenario for the formation of a galactic core plus a remnant halo, which is in agreement with cosmological observations and phenomenological studies in galaxies.
Schwarzschild black holes can wear scalar wigs.
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier
2012-08-24
We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.
Low energy constraints and scalar leptoquarks⋆
Directory of Open Access Journals (Sweden)
Fajfer Svjetlana
2014-01-01
Full Text Available The presence of a colored weak doublet scalar state with mass below 1 TeV can provide an explanation of the observed branching ratios in B → D(∗τντ decays. Constraints coming from Z → bb̄, muon g − 2, lepton flavor violating decays are derived. The colored scalar is accommodated within 45 representation of SU(5 group of unification. We show that presence of color scalar can improve mass relations in the up-type quark sector mass. Impact of the colored scalar embedding in 45-dimensional representation of SU(5 on low-energy phenomenology is also presented.
Scalar scattering via conformal higher spin exchange
Energy Technology Data Exchange (ETDEWEB)
Joung, Euihun [School of Physics and Astronomy,Seoul National University, Seoul 151-747 (Korea, Republic of); Gauge, Gravity & Strings, Center for Theoretical Physics of the Universe,Institute for Basic Sciences, Daejeon 34047 (Korea, Republic of); Nakach, Simon; Tseytlin, Arkady A. [Theoretical physics group, Blackett Laboratory,Imperial College London, SW7 2AZ (United Kingdom)
2016-02-18
Theories containing infinite number of higher spin fields require a particular definition of summation over spins consistent with their underlying symmetries. We consider a model of massless scalars interacting (via bilinear conserved currents) with conformal higher spin fields in flat space. We compute the tree-level four-scalar scattering amplitude using a natural prescription for summation over an infinite set of conformal higher spin exchanges and find that it vanishes. Independently, we show that the vanishing of the scalar scattering amplitude is, in fact, implied by the global conformal higher spin symmetry of this model. We also discuss one-loop corrections to the four-scalar scattering amplitude.
Charged composite scalar dark matter
Balkin, Reuven; Ruhdorfer, Maximilian; Salvioni, Ennio; Weiler, Andreas
2017-11-01
We consider a composite model where both the Higgs and a complex scalar χ, which is the dark matter (DM) candidate, arise as light pseudo Nambu-Goldstone bosons (pNGBs) from a strongly coupled sector with TeV scale confinement. The global symmetry structure is SO(7)/SO(6), and the DM is charged under an exact U(1)DM ⊂ SO(6) that ensures its stability. Depending on whether the χ shift symmetry is respected or broken by the coupling of the top quark to the strong sector, the DM can be much lighter than the Higgs or have a weak-scale mass. Here we focus primarily on the latter possibility. We introduce the lowest-lying composite resonances and impose calculability of the scalar potential via generalized Weinberg sum rules. Compared to previous analyses of pNGB DM, the computation of the relic density is improved by fully accounting for the effects of the fermionic top partners. This plays a crucial role in relaxing the tension with the current DM direct detection constraints. The spectrum of resonances contains exotic top partners charged under the U(1)DM, whose LHC phenomenology is analyzed. We identify a region of parameters with f = 1.4 TeV and 200 GeV ≲ m χ ≲ 400 GeV that satisfies all existing bounds. This DM candidate will be tested by XENON1T in the near future.
Axially symmetric static scalar solitons and black holes with scalar hair
Energy Technology Data Exchange (ETDEWEB)
Kleihaus, Burkhard, E-mail: kleihaus@theorie.physik.uni-oldenburg.de; Kunz, Jutta; Radu, Eugen; Subagyo, Bintoro
2013-10-01
We construct static, asymptotically flat black hole solutions with scalar hair. They evade the no-hair theorems by having a scalar potential which is not strictly positive. By including an azimuthal winding number in the scalar field ansatz, we find hairy black hole solutions which are static but axially symmetric only. These solutions possess a globally regular limit, describing scalar solitons. A branch of axially symmetric black holes is found to possess a positive specific heat.
Scalar resonances as two-quark systems
Energy Technology Data Exchange (ETDEWEB)
Shabalin, E.P.
1985-07-01
On the basis of a theory with an effective U(3)xU(3)-symmetric chiral Lagrangian it is possible to determine the properties of two-quark scalar mesons and to show that the scalar resonances delta(980) and k(1240) can be treated as P-wave states of the q-barq system.
Minimally coupled scalar field cosmology in anisotropic ...
Indian Academy of Sciences (India)
2017-01-03
Jan 3, 2017 ... modern cosmology to explain the early inflation and the late-time acceleration. The recent discovery of cosmic acceleration [3–7] has stimulated the interest to study cosmological models based on scalar fields. The cosmological models based on scalar fields have been discussed by many researchers for ...
Scalar field dark matter in hybrid approach
Friedrich, Pavel; Prokopec, Tomislav
2017-10-01
We develop a hybrid formalism suitable for modeling scalar field dark matter, in which the phase-space distribution associated with the real scalar field is modeled by statistical equal-time two-point functions and gravity is treated by two stochastic gravitational fields in the longitudinal gauge (in this work we neglect vector and tensor gravitational perturbations). Inspired by the commonly used Newtonian Vlasov-Poisson system, we firstly identify a suitable combination of equal-time two-point functions that defines the phase-space distribution associated with the scalar field and then derive both a kinetic equation that contains relativistic scalar matter corrections as well as linear gravitational scalar field equations whose sources can be expressed in terms of a momentum integral over the phase-space distribution function. Our treatment generalizes the commonly used classical scalar field formalism, in that it allows for modeling of (dynamically generated) vorticity and perturbations in anisotropic stresses of the scalar field. It also allows for a systematic inclusion of relativistic and higher-order corrections that may be used to distinguish different dark matter scenarios. We also provide initial conditions for the statistical equal-time two-point functions of the matter scalar field in terms of gravitational potentials and the scale factor.
Psycholinguistic and Neurolinguistic Investigations of Scalar Implicature
Politzer-Ahles, Stephen
2013-01-01
The present study examines the representation and composition of meaning in scalar implicatures. Scalar implicature is the phenomenon whereby the use of a less informative term (e.g., "some") is inferred to mean the negation of a more informative term (e.g., to mean "not all"). The experiments reported here investigate how the…
scalar field dynamics on a brane
Indian Academy of Sciences (India)
power-law potential V ~φa is investigated. We describe solutions for which the scalar field energy density scales as a power-law of the scale factor. We also describe solutions existing in regions of the parameter space where these scaling solutions are unstable or do not exist. Keywords. Brane; scalar field; scaling solution.
Scalar Calibration of Vector Magnetometers
DEFF Research Database (Denmark)
Merayo, José M.G.; Brauer, Peter; Primdahl, Fritz
2000-01-01
The calibration parameters of a vector magnetometer are estimated only by the use of a scalar reference magnetometer. The method presented in this paper differs from those previously reported in its linearized parametrization. This allows the determination of three offsets or signals in the absence...... of a magnetic field, three scale factors for normalization of the axes and three non-orthogonality angles which build up an orthogonal system intrinsically in the sensor. The advantage of this method compared with others lies in its linear least squares estimator, which finds independently and uniquely...... the parameters for a given data set. Therefore, a magnetometer may be characterized inexpensively in the Earth's magnetic-field environment. This procedure has been used successfully in the pre-flight calibration of the state-of-the-art magnetometers on board the magnetic mapping satellites Orsted, Astrid-2...
Scalar Potential Model of light
Hodge, John
2008-04-01
Some observations of light are inconsistent with a wave--like model. Other observations of light are inconsistent with a particle--like model. A model of light is proposed wherein Newton's and Democritus's speculations are combined with the cosmological scalar potential model (SPM). The SPM was tested by confrontation with observations of galaxy HI rotation curves (RCs), asymmetric RCs, redshift, discrete redshift, galaxy central mass, and central velocity dispersion; and with observations of the Pioneer Anomaly. The resulting model of light will be tested by numerical simulation of a photon behaving in a wave-like manner such as diffusion, interference, reflection, spectrography, and the Afshar experiment. Although the SPM light model requires more work, early results are beginning to emerge that suggest possible tests because a few predictions are inconsistent with both the current particle and wave models of light and that suggest a re-interpretation of the equations of quantum mechanics.
Pair condensation in massless scalar electrodynamics
Hey, Anthony J. G.; Mandula, Jeffrey E.
1982-05-01
Motivated by the instabilities of the vacuum to bound-state pair production at large coupling in both abelian and non-abelian gauge theories, we examine the stability of the vacuum of a constrained version of massless scalar electrodynamics to the formation of a scalar pair condensate. The trial states are constructed by analogy with the BCS ground state of super-conductivity and are such that the vacuum expectation value of the scalar field vanishes. Analysis of the minimization equation for the energy density indicates that there are two phases as a function of the coupling constant. Under the constraint that the vacuum expectation value of the scalar field be zero, we find what, for small coupling, the perturbative vacuum minimizes the energy, while for large coupling a condensate of particle-antiparticle pairs is energetically favored. After discussing the relation of our results to the phase structure of unconstrained scalar electrodynamics, we speculate on possible implications for QCD.
Pair condensation in massless scalar electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Hey, A.J.G. (Southampton Univ. (UK). Dept. of Physics); Mandula, J.E. (Washington Univ., St. Louis, MO (USA). Dept. of Physics)
1982-05-03
Motivated by the instabilities of the vacuum to bound-state pair production at large coupling in both abelian and non-abelian gauge theories, we examine the stability of the vacuum of a constrained version of massless scalar electrodynamics to the formation of a scalar pair condensate. The trial states are constructed by analogy with the BCS ground state of super-conductivity and are such that the vacuum expectation value of the scalar field vanishes. Analysis of the minimization equation for the energy density indicates that there are two phases as a function of the coupling constant. Under the constraint that the vacuum expectation value of the scalar field be zero, we find that, for small coupling, the perturbative vacuum minimizes the energy, while for large coupling a condensate of particle-antiparticle pairs is energetically favored. After discussing the relation of our results to the phase structure of unconstrained scalar electrodynamics, we speculate on possible implications for QCD.
Stability equation and two-component Eigenmode for domain walls in scalar potential model
Energy Technology Data Exchange (ETDEWEB)
Dias, G.S.; Graca, E.L.; Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: dias@cbpf.br; rafaelr@cbpf.br
2002-08-01
Supersymmetric quantum mechanics involving a two-component representation and two-component eigenfunctions is applied to obtain the stability equation associated to a potential model formulated in terms of two coupled real scalar fields. We investigate the question of stability by introducing an operator technique for the Bogomol'nyi-Prasad-Sommerfield (BPS) and non-BPS states on two domain walls in a scalar potential model with minimal N 1-supersymmetry. (author)
$K^{0}_{S} K^{0}_{S}$ Final State in Two-Photon Collisions and Implications for Glueballs
Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Ambrosi, G.; Anderhub, H.; Andreev, Valery P.; Angelescu, T.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, L.; Balandras, A.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Bhattacharya, S.; Biasini, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buffini, A.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Csilling, A.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; D'Alessandro, R.; de Asmundis, R.; Deglon, P.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dova, M.T.; Duchesneau, D.; Dufournaud, D.; Duinker, P.; Duran, I.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Extermann, P.; Fabre, M.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gau, S.S.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hidas, P.; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hoorani, H.; Hou, S.R.; Hu, Y.; Iashvili, I.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Khan, R.A.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, D.; Kim, J.K.; Kirkby, Jasper; Kiss, D.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Kopp, A.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Lugnier, L.; Luminari, L.; Lustermann, W.; Ma, W.G.; Maity, M.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Marian, G.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; von der Mey, M.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Moulik, T.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Oulianov, A.; Palomares, C.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Paramatti, R.; Park, H.K.; Park, I.H.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Raven, G.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Rodin, J.; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Seganti, A.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stone, A.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Sztaricskai, T.; Tang, X.W.; Tauscher, L.; Taylor, L.; Tellili, B.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobov, A.A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, A.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Ye, J.B.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhu, G.Y.; Zhu, R.Y.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.
2001-01-01
The $\\mbox{K}^0_{\\rm S}\\mbox{K}^0_{\\rm S}$ final state in two-photon collisions is studied with the L3 detector at LEP. The mass spectrum is dominated by the formation of the $f'_{2}$(1525) tensor meson in the helicity-two state with a two-photon width times the branching ratio into $\\rm K\\bar{K}$ of $76 \\pm\\, 6 \\pm\\, 11\\, {\\rm eV}$. A clear signal for the formation of the f$_{\\rm J}$(1710) is observed and it is found to be dominated by the spin-two helicity-two state. No resonance is observed in the mass region around $2.2 \\,{\\rm GeV}$ and an upper limit of $1.4 \\,{\\rm eV}$ at 95\\% C.L. is derived for the two-photon width times the branching ratio into $\\mbox{K}^0_{\\rm S}\\mbox{K}^0_{\\rm S}$ for the glueball candidate $\\xi(2230)$.
Top-down holographic G-structure glueball spectroscopy at (N)LO in N and finite coupling
Sil, Karunava; Yadav, Vikas; Misra, Aalok
2017-06-01
The top-down type IIB holographic dual of large- N thermal QCD as constructed in Mia et al. (Nucl Phys B 839:187, 2010) involving a fluxed resolved warped deformed conifold, its delocalized type IIA Strominger-Yau-Zaslow-mirror (SYZ-mirror) as well as its M-theory uplift constructed in Dhuria and Misra (JHEP 1311:001, 2013) - both in the finite coupling (g_s ˜ \\limits ^{Neumann/Dirichlet boundary conditions at an IR cut-off (`r_0')/horizon radius (`r_h') on the solutions to the equations of motion on the other hand. We find that the former technique produces results closer to the lattice results. We also discuss the r_h=0 limits of all calculations. In this context we also calculate the 0^{++}, 0^{{-}{-}},1^{++}, 2^{++} glueball masses up to Next to Leading Order (NLO) in N and find a g_sM^2/N(g_sN_f)-suppression similar to and further validating semi-universality of NLO corrections to transport coefficients, observed in Sil and Misra (Eur Phys J C 76(11):618, 2016).
Galilean-invariant scalar fields can strengthen gravitational lensing.
Wyman, Mark
2011-05-20
The mystery of dark energy suggests that there is new gravitational physics on long length scales. Yet light degrees of freedom in gravity are strictly limited by Solar System observations. We can resolve this apparent contradiction by adding a Galilean-invariant scalar field to gravity. Called Galileons, these scalars have strong self-interactions near overdensities, like the Solar System, that suppress their dynamical effect. These nonlinearities are weak on cosmological scales, permitting new physics to operate. In this Letter, we point out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing. Because the enhancement appears at a fixed scaled location for dark matter halos of a wide range of masses, stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.
Scalar QED, NLO and PHOTOS Monte Carlo
Nanava, G.; Was, Z.
2006-01-01
Recently, QED bremsstrahlung in $B$-meson decays into pair of scalars (\\pi's and/or K's) is of interest. If experimental acceptance must be taken into account, PHOTOS Monte Carlo is often used in experimental simulations. We will use scalar QED to benchmark PHOTOS, even though this theory is of limited use for complex objects. We present the analytical form of the kernel used in the older versions of PHOTOS, and the new, exact (scalar QED) one. Matrix element and phase-space Jacobians are sep...
Quantization of n coupled scalar field theory
Kim, Yong-Wan; Myung, Yun Soo; Park, Young-Jai
2013-10-01
We study a model of n coupled scalar fields in Minkowski spacetime in which all masses degenerate, which is considered as a toy model of polycritical gravity on anti-de Sitter spacetime. We quantize this model within the Becchi-Rouet-Stora-Tyutin scheme by introducing n Faddeev-Popov (FP) ghost fields. Extending a Becchi-Rouet-Stora-Tyutin quartet generated by two scalars and two FP ghosts to n scalars and n FP ghosts, there remains a physical subspace with positive norm for odd n, but there exists only the vacuum for even n. This clearly shows a nontriviality of odd higher-order derivative scalar field theories. This is helpful to understand the truncation mechanism, which is used to obtain a unitary conformal field theory dual to linearized polycritical gravity. It turns out that the truncation mechanism is nothing but a general quartet mechanism that appears when introducing the FP ghost action.
Entangled scalar and tensor fluctuations during inflation
Energy Technology Data Exchange (ETDEWEB)
Collins, Hael; Vardanyan, Tereza [Department of Physics, Carnegie Mellon University,5000 Forbes Avenue, Pittsburgh, Pennsylvania (United States)
2016-11-29
We show how the choice of an inflationary state that entangles scalar and tensor fluctuations affects the angular two-point correlation functions of the T, E, and B modes of the cosmic microwave background. The propagators for a state starting with some general quadratic entanglement are solved exactly, leading to predictions for the primordial scalar-scalar, tensor-tensor, and scalar-tensor power spectra. These power spectra are expressed in terms of general functions that describe the entangling structure of the initial state relative to the standard Bunch-Davies vacuum. We illustrate how such a state would modify the angular correlations in the CMB with a simple example where the initial state is a small perturbation away from the Bunch-Davies state. Because the state breaks some of the rotational symmetries, the angular power spectra no longer need be strictly diagonal.
Exotic Material as Interactions Between Scalar Fields
Directory of Open Access Journals (Sweden)
Robertson G. A.
2006-04-01
Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as "wormholes" and "warp drives". However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg-Landau (GL scalar fields associated with superconductor junctions isinvestigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energyfluctuations, cosmological scalar (i.e., Higgs fields, and gravity.
Symmetry Breaking in a random passive scalar
Kilic, Zeliha; McLaughlin, Richard; Camassa, Roberto
2017-11-01
We consider the evolution of a decaying passive scalar in the presence of a gaussian white noise fluctuating shear flow. We focus on deterministic initial data and establish the short, intermediate, and long time symmetry properties of the evolving point wise probability measure for the random passive scalar. Analytical results are compared directly to Monte Carlo simulations. Time permitting we will compare the predictions to experimental observations.
Two component WIMP-FImP dark matter model with singlet fermion, scalar and pseudo scalar
Energy Technology Data Exchange (ETDEWEB)
Dutta Banik, Amit; Pandey, Madhurima; Majumdar, Debasish [Saha Institute of Nuclear Physics, HBNI, Astroparticle Physics and Cosmology Division, Kolkata (India); Biswas, Anirban [Harish Chandra Research Institute, Allahabad (India)
2017-10-15
We explore a two component dark matter model with a fermion and a scalar. In this scenario the Standard Model (SM) is extended by a fermion, a scalar and an additional pseudo scalar. The fermionic component is assumed to have a global U(1){sub DM} and interacts with the pseudo scalar via Yukawa interaction while a Z{sub 2} symmetry is imposed on the other component - the scalar. These ensure the stability of both dark matter components. Although the Lagrangian of the present model is CP conserving, the CP symmetry breaks spontaneously when the pseudo scalar acquires a vacuum expectation value (VEV). The scalar component of the dark matter in the present model also develops a VEV on spontaneous breaking of the Z{sub 2} symmetry. Thus the various interactions of the dark sector and the SM sector occur through the mixing of the SM like Higgs boson, the pseudo scalar Higgs like boson and the singlet scalar boson. We show that the observed gamma ray excess from the Galactic Centre as well as the 3.55 keV X-ray line from Perseus, Andromeda etc. can be simultaneously explained in the present two component dark matter model and the dark matter self interaction is found to be an order of magnitude smaller than the upper limit estimated from the observational results. (orig.)
Photoproduction of Scalar Mesons Using the CEBAF Large Acceptance Spectrometer (CLAS)
Chandavar, Shloka K.
The search for glueballs has been ongoing for several decades. The lightest glueball has been predicted by quenched lattice QCD to have mass in the range of 1.0--1.7 GeV and JPC = 0++ . The mixing of glueball states with neighbouring meson states complicates their identification and hence several experiments have been carried out over the years to study the glueball candidates. By analyzing the decay channels and production mechanisms of these candidates, their glueball content can theoretically be determined. In reality, a lot of confusion still exists about the status of these glueball candidates. The f0(1500) is one of several contenders for the lightest glueball, which has been extensively studied in several different kinds of experiments. However, there exists no photoproduction data on this particle. In the analysis presented in this dissertation, the presence of the f0(1500) in the KS 0KS0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility, also called Jefferson Lab (JLab). This is done by studying the reaction, gammap → fJp → KS0 KS0p → 2(pi +pi-)p using data from the g12 experiment. A clear peak is seen at 1500 MeV in the background subtracted data. This is enhanced if the momentum transfer is restricted to be less than 1 GeV2. Comparing with simulations, it is seen that this peak is associated with t channel production mechanism. The f 2'(1525) has a mass of 1525 MeV and a width of 73 MeV, and hence there is a possibility of it contributing to the peak observed in our data. A moments analysis seems to suggest some presence of a D wave, however, the low acceptance at forward and backward angles prohibits a definitive conclusion.
Fundamental and composite scalars from extra dimensions
Energy Technology Data Exchange (ETDEWEB)
Aranda, Alfredo [Dual C-P Institute of High Energy Physics, Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima, Colima (Mexico)], E-mail: fefo@ucol.mx; Diaz-Cruz, J.L. [Dual C-P Institute of High Energy Physics, Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima, Colima (Mexico); Dual C-P Institute of High Energy Physics, Facultad de Ciencias Fisico-Matematicas, BUAP, Apdo. Postal 1364, C.P. 72000 Puebla, Pue (Mexico)], E-mail: lorenzo.diaz@fcfm.buap.mx; Hernandez-Sanchez, J. [Dual C-P Institute of High Energy Physics, Centro de Investigacion en Matematicas, Universidad Autonoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, C.P. 42184, Pachuca, Hidalgo (Mexico)], E-mail: jaimeh@uaeh.edu.mx; Noriega-Papaqui, R. [Dual C-P Institute of High Energy Physics, Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 Mexico D.F. (Mexico)], E-mail: rnoriega@fisica.unam.mx
2007-12-13
We discuss a scenario consisting of an effective 4D theory containing fundamental and composite fields. The strong dynamics sector responsible for the compositeness is assumed to be of extra dimensional origin. In the 4D effective theory the SM fermion and gauge fields are taken as fundamental fields. The scalar sector of the theory resembles a bosonic topcolor in the sense there are two scalar Higgs fields, a composite scalar field and a fundamental gauge-Higgs unification scalar. A detailed analysis of the scalar spectrum is presented in order to explore the parameter space consistent with experiment. It is found that, under the model assumptions, the acceptable parameter space is quite constrained. As a part of our phenomenological study of the model, we evaluate the branching ratio of the lightest Higgs boson and find that our model predicts a large FCNC mode h{yields}tc, which can be as large as O(10{sup -3}). Similarly, a large BR for the top FCNC decay is obtained, namely BR(t{yields}c+H){approx_equal}10{sup -4}.
Scalar, vector and tensor harmonics on the three-sphere
Lindblom, Lee; Taylor, Nicholas W.; Zhang, Fan
2017-11-01
Scalar, vector and tensor harmonics on the three-sphere were introduced originally to facilitate the study of various problems in gravitational physics. These harmonics are defined as eigenfunctions of the covariant Laplace operator which satisfy certain divergence and trace identities, and ortho-normality conditions. This paper provides a summary of these properties, along with a new notation that simplifies and clarifies some of the key expressions. Practical methods are described for accurately and efficiently computing these harmonics numerically, and test results are given that illustrate how well the analytical identities are satisfied by the harmonics computed numerically in this way.
Renormalisation group improvement of scalar field inflation
Contillo, Adriano; Rahmede, Christoph
2011-01-01
We study quantum corrections to Friedmann-Robertson-Walker cosmology with a scalar field under the assumption that the dynamics are subject to renormalisation group improvement. We use the Bianchi identity to relate the renormalisation group scale to the scale factor and obtain the improved cosmological evolution equations. We study the solutions of these equations in the renormalisation group fixed point regime, obtaining the time-dependence of the scalar field strength and the Hubble parameter in specific models with monomial and trinomial quartic scalar field potentials. We find that power-law inflation can be achieved in the renormalisation group fixed point regime with the trinomial potential, but not with the monomial one. We study the transition to the quasi-classical regime, where the quantum corrections to the couplings become small, and find classical dynamics as an attractor solution for late times. We show that the solution found in the renormalisation group fixed point regime is also a cosmologic...
Arbitrary scalar field and quintessence cosmological models
Harko, Tiberiu; Mak, M K
2014-01-01
The mechanism of the initial inflationary scenario of the universe and of its late-time acceleration can be described by assuming the existence of some gravitationally coupled scalar fields $\\phi $, with the inflaton field generating inflation and the quintessence field being responsible for the late accelerated expansion. Various inflationary and late-time accelerated scenarios are distinguished by the choice of an effective self-interaction potential $V(\\phi)$, which simulates a temporarily non-vanishing cosmological term. In this work, we present a new formalism for the analysis of scalar fields in flat isotropic and homogeneous cosmological models. The basic evolution equation of the models can be reduced to a first order non-linear differential equation. Approximate solutions of this equation can be constructed in the limiting cases of the scalar field kinetic energy and potential energy dominance, respectively, as well as in the intermediate regime. Moreover, we present several new accelerating and dece...
Dimensionality influence on passive scalar transport
Energy Technology Data Exchange (ETDEWEB)
Iovieno, M; Ducasse, L; Tordella, D, E-mail: michele.iovieno@polito.it [Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino (Italy)
2011-12-22
We numerically investigate the advection of a passive scalar through an interface placed inside a decaying shearless turbulent mixing layer. We consider the system in both two and three dimensions. The dimensionality produces a different time scaling of the diffusion, which is faster in the two-dimensional case. Two intermittent fronts are generated at the margins of the mixing layer. During the decay these fronts present a sort of propagation in both the direction of the scalar flow and the opposite direction. In two dimensions, the propagation of the fronts exhibits a significant asymmetry with respect to the initial position of the interface and is deeper for the front merged in the high energy side of the mixing. In three dimensions, the two fronts remain nearly symmetrically placed. Results concerning the scalar spectra exponents are also presented.
Extended solutions for the biadjoint scalar field
De Smet, Pieter-Jan; White, Chris D.
2017-12-01
Biadjoint scalar field theories are increasingly important in the study of scattering amplitudes in various string and field theories. Recently, some first exact nonperturbative solutions of biadjoint scalar theory were presented, with a pure power-like form corresponding to isolated monopole-like objects located at the origin of space. In this paper, we find a novel family of extended solutions, involving non-trivial form factors that partially screen the divergent field at the origin. All previous solutions emerge as special cases.
CSW rules for a massive scalar
DEFF Research Database (Denmark)
Boels, Rutger Herman; Schwinn, Christian
2008-01-01
We derive the analog of the Cachazo-Svrcek-Witten (CSW) diagrammatic Feynman rules for four-dimensional Yang-Mills gauge theory coupled to a massive colored scalar. The mass term is shown to give rise to a new tower of vertices in addition to the CSW vertices for massless scalars in non......-supersymmetric theories. The rules are derived directly from an action, once through a canonical transformation within light-cone Yang-Mills and once by the construction of a twistor action. The rules are tested against known results in several examples and are used to simplify the proof of on-shell recursion relations...
Scalar absorption by charged rotating black holes
Leite, Luiz C. S.; Benone, Carolina L.; Crispino, Luís C. B.
2017-08-01
We compute numerically the absorption cross section of planar massless scalar waves impinging upon a Kerr-Newman black hole with different incidence angles. We investigate the influence of the black hole electric charge and angular momentum in the absorption spectrum, comparing our numerical computations with analytical results for the limits of high and low frequency.
Oscillating scalar fields in extended quintessence
Li, Dan; Pi, Shi; Scherrer, Robert J.
2018-01-01
We study a rapidly oscillating scalar field with potential V (ϕ )=k |ϕ |n nonminimally coupled to the Ricci scalar R via a term of the form (1 -8 π G0ξ ϕ2)R in the action. In the weak coupling limit, we calculate the effect of the nonminimal coupling on the time-averaged equation of state parameter γ =(p +ρ )/ρ . The change in ⟨γ ⟩ is always negative for n ≥2 and always positive for n values of n . Constraints on the time variation of G force this change to be infinitesimally small at the present time whenever the scalar field dominates the expansion, but constraints in the early universe are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show that, under reasonable assumptions, this effective energy density is always smaller than the density of the scalar field itself.
Dark energy in scalar-tensor theories
Energy Technology Data Exchange (ETDEWEB)
Moeller, J.
2007-12-15
We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of {sigma}-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)
Kerr black holes with scalar hair.
Herdeiro, Carlos A R; Radu, Eugen
2014-06-06
We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.
Vast Antimatter Regions and Scalar Condensate Baryogenesis
Kirilova, D.; Panayotova, M.; Valchanov, T
2002-01-01
The possibility of natural and abundant creation of antimatter in the Universe in a SUSY-baryogenesis model with a scalar field condensate is described. This scenario predicts vast quantities of antimatter, corresponding to galaxy and galaxy cluster scales today, separated from the matter ones by baryonically empty voids. Theoretical and observational constraints on such antimatter regions are discussed.
Update on scalar singlet dark matter
Cline, J.M.; Scott, P.; Kainulainen, K.; Weniger, C.
2013-01-01
One of the simplest models of dark matter is where a scalar singlet field S comprises some or all of the dark matter and interacts with the standard model through an vertical bar H vertical bar S-2(2) coupling to the Higgs boson. We update the present limits on the model from LHC searches for
Exact solutions for the biadjoint scalar field
Energy Technology Data Exchange (ETDEWEB)
White, C.D., E-mail: Christopher.White@glasgow.ac.uk [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Centre for Research in String Theory, Queen Mary University of London, London E1 4NS (United Kingdom)
2016-12-10
Biadjoint scalar theories are novel field theories that arise in the study of non-abelian gauge and gravity amplitudes. In this short paper, we present exact nonperturbative solutions of the field equations, and compare their properties with monopole-like solutions in non-abelian gauge theory. Our results may pave the way for nonperturbative studies of the double copy.
Kundt spacetimes minimally coupled to scalar field
Energy Technology Data Exchange (ETDEWEB)
Tahamtan, T. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic); Astronomical Institute, Czech Academy of Sciences, Prague (Czech Republic); Svitek, O. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic)
2017-06-15
We derive an exact solution belonging to the Kundt class of spacetimes both with and without a cosmological constant that are minimally coupled to a free massless scalar field. We show the algebraic type of these solutions and give interpretation of the results. Subsequently, we look for solutions additionally containing an electromagnetic field satisfying nonlinear field equations. (orig.)
Varying vacuum energy of a self-interacting scalar field
Trachenko, K.
2015-11-01
Understanding mechanisms capable of altering the vacuum energy is currently of interest in field theories and cosmology. We consider an interacting scalar field and show that the vacuum energy naturally takes any value between its maximum and zero because interaction affects the number of operating field modes, the assertion that involves no assumptions or postulates. The mechanism is similar to the recently discussed temperature evolution of collective modes in liquids. The cosmological implication concerns the evolution of scalar field ϕ during the inflation of the Universe. ϕ starts with all field modes operating and maximal vacuum energy in the early inflation-dominated epoch. As a result of inflation, ϕ undergoes a dynamical crossover and arrives in the state with one long-wavelength longitudinal mode and small positive vacuum energy predicted to be asymptotically decreasing to zero in the late epoch. Accordingly, we predict that the currently observed cosmological constant will decrease in the future, and comment on the possibility of a cyclic Universe.
Brane solutions sourced by a scalar with vanishing potential and classification of scalar branes
Energy Technology Data Exchange (ETDEWEB)
Cadoni, Mariano [Dipartimento di Fisica, Università di Cagliari,Cittadella Universitaria, 09042 Monserrato (Italy); INFN, Sezione di Cagliari,Cagliari (Italy); Franzin, Edgardo [Dipartimento di Fisica, Università di Cagliari,Cittadella Universitaria, 09042 Monserrato (Italy); INFN, Sezione di Cagliari,Cagliari (Italy); CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Serra, Matteo [Dipartimento di Matematica, Sapienza Università di Roma,Piazzale Aldo Moro 2, 00185 Roma (Italy)
2016-01-20
We derive exact brane solutions of minimally coupled Einstein-Maxwell-scalar gravity in d+2 dimensions with a vanishing scalar potential and we show that these solutions are conformal to the Lifshitz spacetime whose dual QFT is characterized by hyperscaling violation. These solutions, together with the AdS brane and the domain wall sourced by an exponential potential, give the complete list of scalar branes sourced by a generic potential having simple (scale-covariant) scaling symmetries not involving Galilean boosts. This allows us to give a classification of both simple and interpolating brane solution of minimally coupled Einstein-Maxwell-scalar gravity having no Schrödinger isometries, which may be very useful for holographic applications.
Scalar Implicatures: The psychological reality of scales
Directory of Open Access Journals (Sweden)
Alex de Carvalho
2016-10-01
Full Text Available Scalar implicatures, the phenomena where a sentence like The pianist played some Mozart sonatas is interpreted as The pianist did not play all Mozart sonatas have been given two different analyses. Neo-Griceans claim that this interpretation is based on lexical scales (e.g. , where the stronger term (e.g. all implies the weaker term (e.g. some, but the weaker term (e.g., some implicates the negation of the stronger term (i.e., some = not all. Post-Griceans deny that this is the case and offer a context-based inferential account for scalar implicatures. While scalar implicatures have been extensively investigated, with results apparently in favor of post-Gricean accounts, the psychological reality of lexical scales has not been put to the test. This is what we have done in the present experiment, with a lexical decision task using lexical scales in a masked priming paradigm. While Post-Gricean accounts do not attribute any role for lexical scales in the computation of scalar implicatures, Neo-Gricean accounts suggest that lexical scales are the core mechanism behind the computation of scalar implicatures, and predict that weaker terms in a scale should prime stronger terms more than the reverse because stronger words are necessary to the interpretation of weaker words, while stronger words can be interpreted independently of weaker words. Our results provided evidence in favor of the psychological existence of scales, leading to the first clear experimental support for the Neo-Gricean account.
Dynamics of Scalar field in a Brane World
Mizuno, Shuntaro; Maeda, Kei-ichi; Yamamoto, Kohta
2002-01-01
We study the dynamics of a scalar field in the brane cosmology. We assume that a scalar field is confined in our 4-dimensional world. As for the potential of the scalar field, we discuss three typical models: (1) a power-law potential, (2) an inverse-power-law potential, and (3) an exponential potential. We show that the behavior of the scalar field is very different from a conventional cosmology when the energy density square term is dominated.
Barate, R.; Ghez, Philippe; Goy, C.; Lees, J.P.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Alemany, R.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Riu, I.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Greening, T.C.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Teixeira-Dias, P.; Thompson, A.S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Goodsir, S.; Martin, E.B.; Marinelli, N.; Sciaba, A.; Sedgbeer, J.K.; Thomson, Evelyn J.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C.K.; Buck, P.G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Williams, M.I.; Giehl, I.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Wachsmuth, H.; Zeitnitz, C.; Aubert, J.J.; Bonissent, A.; Carr, J.; Coyle, P.; Payre, P.; Rousseau, D.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Buescher, Volker; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Le Diberder, F.; Lefrancois, J.; Lutz, A.M.; Schune, M.H.; Veillet, J.J.; Videau, I.; Zerwas, D.; Bagliesi, Giuseppe; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Ferrante, I.; Foa, L.; Giassi, A.; Gregorio, A.; Ligabue, F.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Cowan, G.; Green, M.G.; Medcalf, T.; Strong, J.A.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Thompson, J.C.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Colas, P.; Emery, S.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S.N.; Dann, J.H.; Johnson, R.P.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Giannini, G.; Gobbo, B.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; von Wimmersperg-Toeller, J.H.; Wu, Sau Lan; Wu, X.; Zobernig, G.
2000-01-01
Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95\\-onfidence level.
Longacre, R S; Bugg, D V
2004-01-01
Four separate experiments, observing the OZI forbidden disconnected reaction pi- p -> phi phi n with increasing statistics were consistent. These experiments very selectively completely broke down the OZI suppression by 3 phi phi resonances with IG JPC = 0+ 2++ in the observed mass region 2.038 to 2.600 GeV. The only viable proposed explanation has been that the IG JPC = 0+ 2++ Glueball expected in this mass region caused the hard glue in the disconnection to resonate and very selectively breakdown the OZI suppression for its quantum numbers only. Recently a p p central production spin analysis found the f2(1950) had a dominant decay mode f2(1270) pi pi. We consider if it is related to the phi phi resonances, and find that it likely is.
One-loop renormalization of Resonance Chiral Theory: scalar and pseudoscalar resonances
Energy Technology Data Exchange (ETDEWEB)
Rosell, Ignasi [Departament de FIsica Teorica, IFIC, CSIC - Universitat de Valencia, Edifici d' Instituts de Paterna, Apt. Correus 22085, E-46071 Valencia (Spain); Ruiz-FemenIa, Pedro [Theory Division, Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Munich (Germany); Portoles, Jorge [Departament de FIsica Teorica, IFIC, CSIC - Universitat de Valencia, Edifici d' Instituts de Paterna, Apt. Correus 22085, E-46071 Valencia (Spain)
2005-12-15
We consider the Resonance Chiral Theory with one multiplet of scalar and pseudoscalar resonances, up to bilinear couplings in the resonance fields, and evaluate its {beta}-function at one-loop with the use of the background field method. Thus we also provide the full set of operators that renormalize the theory at one loop and render it finite.
Black holes with surrounding matter in scalar-tensor theories.
Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P
2013-09-13
We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.
Compressibility Effects on the Passive Scalar Flux Within Homogeneous Turbulence
Blaisdell, G. A.; Mansour, N. N.; Reynolds, W. C.
1994-01-01
Compressibility effects on turbulent transport of a passive scalar are studied within homogeneous turbulence using a kinematic decomposition of the velocity field into solenoidal and dilatational parts. It is found that the dilatational velocity does not produce a passive scalar flux, and that all of the passive scalar flux is due to the solenoidal velocity.
Anatomy of One-Loop Effective Action in Noncommutative Scalar Field Theories
Kiem, Youngjai; Sato, Haru-Tada; Yee, Jung-Tay; Kiem, Youngjai; Rey, Soo-Jong; Sato, Haru-Tada; Yee, Jung-Tay
2002-01-01
One-loop effective action of noncommutative scalar field theory with cubic self-interaction is studied. Utilizing worldline formulation, both planar and nonplanar part of the effective action are computed explicitly. We find complete agreement of the result with Seiberg-Witten limit of string worldsheet computation and standard Feynman diagrammatics. We prove that, at low-energy and large noncommutativity limit, nonplanar part of the effective action is simplified enormously and is resummable into a quadratic action of scalar open Wilson line operators.
Closed star product on noncommutative ℝ 3 and scalar field dynamics
Jurić, Tajron; Poulain, Timothé; Wallet, Jean-Christophe
2016-01-01
We consider the noncommutative space $\\mathbb{R}^3_\\theta$, a deformation of $\\mathbb{R}^3$ for which the star product is closed for the trace functional. We study one-loop IR and UV properties of the 2-point function for real and complex noncommutative scalar field theories with quartic interactions and Laplacian on $\\mathbb{R}^3$ as kinetic operator. We find that the 2-point functions for these noncommutative scalar field theories have no IR singularities in the external momenta, indicating...
Lattice study of the scalar and baryon spectra in many-flavor QCD
Aoki, Yasumichi; Aoyama, Tatsumi; Bennett, Ed; Kurachi, Masafumi; Maskawa, Toshihide; Miura, Kohtaroh; Nagai, Kei-Ichi; Ohki, Hiroshi; Rinaldi, Enrico; Shibata, Akihiro; Yamawaki, Koichi; Yamazaki, Takeshi
2017-12-01
In the search for a composite Higgs boson in walking technicolor models, many flavor QCD, in particular with Nf = 8, is an attractive candidate, and has been found to have a composite flavor-singlet scalar as light as the pion. Based on lattice simulations of this theory with the HISQ action, we will present our preliminary results on the scalar decay constant using the fermionic bilinear operator, and on the mass of the lightest baryon state which could be a dark matter candidate. Combining these two results, implications for dark matter direct detection are also discussed.
Oscillation modes of rapidly rotating neutron stars in scalar-tensor theories of gravity
Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Kokkotas, Kostas D.
2017-09-01
We perform the first study of the oscillation frequencies of rapidly rotating neutron stars in alternative theories of gravity, focusing mainly on the fundamental f modes. We concentrated on a particular class of alternative theories—the (massive) scalar-tensor theories. The generalization to rapid rotation is important because on one hand the rapid rotation can magnify the deviations from general relativity compared to the static case and on the other hand some of the most efficient emitters of gravitational radiation, such as the binary neutron star merger remnants, are supposed to be rotating close to their Kepler (mass-shedding) limits shortly after their formation. We have constructed several sequences of models starting from the nonrotating case and reaching up to the Kepler limit, with different values of the scalar-tensor theory coupling constant and the scalar field mass. The results show that the deviations from pure Einstein's theory can be significant, especially in the case of nonzero scalar field mass. An important property of the oscillation modes of rapidly rotating stars is that they can become secularly unstable due to the emission of gravitational radiation, the so-called Chandrasekhar-Friedman-Schutz instability. Such unstable modes are efficient emitters of gravitational radiation. Our studies show that the inclusion of a nonzero scalar field would decrease the threshold value of the normalized angular momentum where this instability starts to operate, but the growth time of the instability seems to be increased compared to pure general relativity.
Scalar Contribution to the Graviton Self-Energy During Inflation
Energy Technology Data Exchange (ETDEWEB)
Park, Sohyun [Univ. of Florida, Gainesville, FL (United States)
2012-01-01
We use dimensional regularization to evaluate the one loop contribution to the graviton self-energy from a massless, minimally coupled scalar on a locally de Sitter background. For noncoincident points our result agrees with the stress tensor correlators obtained recently by Perez-Nadal, Roura and Verdaguer. We absorb the ultraviolet divergences using the R^{2} and C^{2} counterterms first derived by ’t Hooft and Veltman, and we take the D = 4 limit of the finite remainder. The renormalized result is expressed as the sum of two transverse, 4th order differential operators acting on nonlocal, de Sitter invariant structure functions. In this form it can be used to quantum-correct the linearized Einstein equations so that one can study how the inflationary production of infrared scalars affects the propagation of dynamical gravitons and the force of gravity. We have seen that they have no effect on the propagation of dynamical gravitons. Our computation motivates a conjecture for the first correction to the vacuum state wave functional of gravitons. We comment as well on performing the same analysis for the more interesting contribution from inflationary gravitons, and on inferring one loop corrections to the force of gravity.
Scalar and Vector 4Q Systems in Anisotropic Lattice QCD
Loan, Mushtaq; Lam, Yu Yiu
2009-01-01
We present a detailed study of some $4q$ hadrons in quenched improved anisotropic lattice QCD. Using the $\\pi\\pi$ and diquark-antidiquark local and smeared operators, we attempt to isolate the signal for $I(J^{P})=0(0^{+}), 2(0^{+})$ and $1(1^{+})$ states in two flavour QCD. In the chiral limit of light-quark mass region, the lowest scalar $4q$ state is found to have a mass, $m^{I=0}_{4q}=927(12)$ MeV, which is slightly lower than the experimentally observed $f_{0}(980)$. The results from our variational analysis do not indicate a signature of a tetraquark resonance in I=1 and I=2 channels. After the chiral extrapolation the lowest $1(1^{+})$ state is found to have a mass, $m^{I=1}_{4q}=1358(28)$ MeV. We analysed the static $4q$ potential extracted form a tetraquark Wilson loop and illustrated the behaviour of the $4q$ state as a bound state, unbinding at some critical diquark separation. From our analysis we conclude that scalar $4q$ system appears as a two-pion scattering state and that there is no spatiall...
Trace anomaly, massless scalars, and the gravitational coupling of QCD
Armillis, Roberta; Corianò, Claudio; Delle Rose, Luigi
2010-09-01
The anomalous effective action describing the coupling of gravity to a non-Abelian gauge theory can be determined by a variational solution of the anomaly equation, as shown by Riegert long ago. It is given by a nonlocal expression, with the nonlocal interaction determined by the Green’s function of a conformally covariant operator of fourth order. In recent works it has been shown that this interaction is mediated by a simple pole in an expansion around a Minkowski background, coupled in the infrared in the massless fermion limit. This result relies on the local formulation of the original action in terms of two auxiliary fields, one physical scalar and one ghost, which take the role of massless composite degrees of freedom. In the gravity case, the two scalars have provided ground in favor of some recent proposals of an infrared approach to the solution of the dark energy problem, entirely based on the behavior of the vacuum energy at the QCD phase transition. As a test of this general result, we perform a complete one-loop computation of the effective action describing the coupling of a non-Abelian gauge theory to gravity. We confirm the appearance of an anomaly pole which contributes to the trace part of the TJJ correlator and of extra poles in its trace-free part, in the quark and gluon sectors, describing the coupling of the energy-momentum tensor (T) to two non-Abelian gauge currents (J).
Athermal fiber laser for the SWARM absolute scalar magnetometer
Fourcault, W.; Léger, J.-M.; Costes, V.; Fratter, I.; Mondin, L.
2017-11-01
The Absolute Scalar Magnetometer (ASM) developed by CEA-LETI/CNES is an optically pumped 4He magnetic field sensor based on the Zeeman effect and an electronic magnetic resonance whose effects are amplified by a laser pumping process [1-2]. Consequently, the role of the laser is to pump the 4He atoms at the D0 transition as well as to allow the magnetic resonance signal detection. The ASM will be the scalar magnetic reference instrument of the three ESA Swarm satellites to be launched in 2012 in order to carry out the best ever survey of the Earth magnetic field and its temporal evolution. The sensitivity and accuracy of this magnetometer based on 4He optical pumping depend directly on the characteristics of its light source, which is the key sub-system of the sensor. We describe in this paper the selected fiber laser architecture and its wavelength stabilization scheme. Its main performance in terms of spectral emission, optical power at 1083 nm and intensity noise characteristics in the frequency bands used for the operation of the magnetometer, are then presented. Environmental testing results (thermal vacuum cycling, vibrations, shocks and ageing) are also reported at the end of this paper.
SuperDARN scalar radar equations
Berngardt, O I; Potekhin, A P
2016-01-01
The quadratic scalar radar equations are obtained for SuperDARN radars that are suitable for the analysis and interpretation of experimental data. The paper is based on a unified approach to the obtaining radar equations for the monostatic and bistatic sounding with use of hamiltonian optics and ray representation of scalar Green's function and without taking into account the polarization effects. The radar equation obtained is the sum of several terms corresponding to the propagation and scattering over the different kinds of trajectories, depending on their smoothness and the possibility of reflection from the ionosphere. It is shown that the monostatic sounding in the media with significant refraction, unlike the case of refraction-free media, should be analyzed as a combination of monostatic and bistatic scattering. This leads to strong dependence of scattering amplitude on background ionospheric density due to focusing mechanism and appearance of new (bistatic) areas of effective scattering with signific...
Scalar geons in Born-Infeld gravity
Afonso, V. I.; Olmo, Gonzalo J.; Rubiera-Garcia, D.
2017-08-01
The existence of static, spherically symmetric, self-gravitating scalar field solutions in the context of Born-Infeld gravity is explored. Upon a combination of analytical approximations and numerical methods, the equations for a free scalar field (without a potential term) are solved, verifying that the solutions recover the predictions of General Relativity far from the center but finding important new effects in the central regions. We find two classes of objects depending on the ratio between the Schwarzschild radius and a length scale associated to the Born-Infeld theory: massive solutions have a wormhole structure, with their throat at r≈ 2M, while for the lighter configurations the topology is Euclidean. The total energy density of these solutions exhibits a solitonic profile with a maximum peaked away from the center, and located at the throat whenever a wormhole exists. The geodesic structure and curvature invariants are analyzed for the various configurations considered.
Scalar fields in black hole spacetimes
Thuestad, Izak; Khanna, Gaurav; Price, Richard H.
2017-07-01
The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.
The light scalar mesons as tetraquarks
Directory of Open Access Journals (Sweden)
Gernot Eichmann
2016-02-01
Full Text Available We present a numerical solution of the four-quark Bethe–Salpeter equation for ground-state scalar tetraquarks with JPC=0++. We find that the four-body equation dynamically generates pseudoscalar-meson poles in the Bethe–Salpeter amplitude. The resulting tetraquarks are genuine four-quark states that are dominated by pseudoscalar meson–meson correlations. Diquark–antidiquark contributions are subleading because of their larger mass scale. In the light quark sector, the sensitivity of the tetraquark wave function to the pion poles leads to an isoscalar tetraquark mass Mσ∼350 MeV which is comparable to that of the σ/f0(500. The masses of its multiplet partners κ and a0/f0 follow a similar pattern. This provides support for a tetraquark interpretation of the light scalar meson nonet in terms of ‘meson molecules’.
The Effective Hamiltonian in the Scalar Electrodynamics
Dineykhan, M D; Zhaugasheva, S A; Sakhyev, S K
2002-01-01
On the basis of an investigation of the asymptotic behaviour of the polarization loop for the scalar particles in the external electromagnetic field the relativistic corrections to the Hamiltonian are determined. The constituent mass of the particles in the bound state is analytically derived. It is shown that the constituent mass of the particles differs from the mass of the particles in the free state. The corrections connected with the Thomas precession have been calculated.
Nonequilibrium perturbation theory for complex scalar fields
Lawrie, I. D.; McKernan, D. B.
1996-01-01
Real-time perturbation theory is formulated for complex scalar fields away from thermal equilibrium in such a way that dissipative effects arising from the absorptive parts of loop diagrams are approximately resummed into the unperturbed propagators. Low order calculations of physical quantities then involve quasiparticle occupation numbers which evolve with the changing state of the field system, in contrast to standard perturbation theory, where these occupation numbers are frozen at their ...
Astrophysical constraints on singlet scalars at LHC
Hertzberg, Mark P.; Masoumi, Ali
2017-04-01
We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ~ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.
Effective action model of dynamically scalarizing binary neutron stars
Sennett, Noah; Shao, Lijing; Steinhoff, Jan
2017-10-01
Gravitational waves can be used to test general relativity (GR) in the highly dynamical strong-field regime. Scalar-tensor theories of gravity are natural alternatives to GR that can manifest nonperturbative phenomena in neutron stars (NSs). One such phenomenon, known as dynamical scalarization, occurs in coalescing binary NS systems. Ground-based gravitational-wave detectors may be sensitive to this effect, and thus could potentially further constrain scalar-tensor theories. This type of analysis requires waveform models of dynamically scalarizing systems; in this work we devise an analytic model of dynamical scalarization using an effective action approach. For the first time, we compute the Newtonian-order Hamiltonian describing the dynamics of a dynamically scalarizing binary in a self-consistent manner. Despite only working to leading order, the model accurately predicts the frequency at which dynamical scalarization occurs. In conjunction with Landau theory, our model allows one to definitively establish dynamical scalarization as a second-order phase transition. We also connect dynamical scalarization to the related phenomena of spontaneous scalarization and induced scalarization; these phenomena are naturally encompassed into our effective action approach.
Minazzoli, Olivier
2013-01-01
The post-Newtonian parameter \\gamma\\ resulting from a universal scalar/matter coupling is investigated in Brans-Dicke-like Scalar-Tensor theories where the scalar potential is assumed to be negligible. Conversely to previous studies, we use a perfect fluid formalism in order to get the explicit scalar-field equation. It is shown that the metric can be put in its standard post-Newtonian form. However, it is pointed out that 1-\\gamma\\ could be either positive, null or negative for finite value of \\omega_0, depending on the coupling function; while Scalar-Tensor theories without coupling always predict \\gamma<1 for finite value of \\omega_0.
Search for Scalar Top and Scalar Bottom Quarks at $\\sqrt{s}$ = 189 GeV at LEP
Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Blobel, V.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hoch, M.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lee, A.M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.
1999-01-01
Searches for a scalar top quark and a scalar bottom quark have been performed using a data sample of 182 pb-1 at a centre-of-mass energy of 189 GeV collected with the OPAL detector at LEP. No evidence for a signal was found. The 95% confidence level lower limit on the scalar top quark mass is 90.3 GeV if the mixing angle between the supersymmetric partners of the left- and right-handed states of the top quark is zero. In the worst case, when the scalar top quark decouples from the Z boson, the lower limit is 87.2 GeV. These limits were obtained assuming that the scalar top quark decays into a charm quark and the lightest neutralino, and that the mass difference between the scalar top quark and the lightest neutralino is larger than 10 GeV. The complementary decay mode of the scalar top quark decaying into a bottom quark, a charged lepton and a scalar neutrino has also been studied. From a search for the scalar bottom quark, a mass limit of 88.6 GeV was obtained if the mass difference between the scalar bottom...
Scalar Potential Model of photon diffraction
Hodge, John
2011-04-01
Some observations of light are inconsistent with a wave-like model. Other observations of light are inconsistent with a traditional particle-like model. A single model of light has remained a mystery. Newton's speculations, Democritus's speculations, the Bohm interpretation, and the fractal philosophy are combined with the cosmological Scalar Potential Model (SPM). The resulting model of photon structure and dynamics is tested by a toy computer experiment. The simulations included light from a distance and Young's experiment. The patterns on the screens showed diffraction wave patterns fit by the Fresnel equation. The model is consistent with the Afshar experiment and with the concepts of Bohmian mechanics.
Scalar-field theory of dark matter
Huang, Kerson; Zhao, Xiaofei
2013-01-01
We develop a theory of dark matter based on a previously proposed picture, in which a complex vacuum scalar field makes the universe a superfluid, with the energy density of the superfluid giving rise to dark energy, and variations from vacuum density giving rise to dark matter. We formulate a nonlinear Klein-Gordon equation to describe the superfluid, treating galaxies as external sources. We study the response of the superfluid to the galaxies, in particular, the emergence of the dark-matter galactic halo, contortions during galaxy collisions, and the creation of vortices due to galactic rotation.
Scalar boundary conditions in hyperscaling violating geometry
Directory of Open Access Journals (Sweden)
Jian-Pin Wu
2016-02-01
Full Text Available We study the possible boundary conditions of scalar field modes in a hyperscaling violation (HV geometry with Lifshitz dynamical exponent z (z≥1 and hyperscaling violation exponent θ (θ≠0. For the case with θ>0, we show that in the parameter range 1≤z≤2, −z+d−12, −z+d−10, which has been addressed in Ref. [1]. Meanwhile, we also carry out the parallel investigation in the case with θ0, only one type is available.
Scalar dissipation rate statistics in turbulent swirling jets
Stetsyuk, V.; Soulopoulos, N.; Hardalupas, Y.; Taylor, A. M. K. P.
2016-07-01
The scalar dissipation rate statistics were measured in an isothermal flow formed by discharging a central jet in an annular stream of swirling air flow. This is a typical geometry used in swirl-stabilised burners, where the central jet is the fuel. The flow Reynolds number was 29 000, based on the area-averaged velocity of 8.46 m/s at the exit and the diameter of 50.8 mm. The scalar dissipation rate and its statistics were computed from two-dimensional imaging of the mixture fraction fields obtained with planar laser induced fluorescence of acetone. Three swirl numbers, S, of 0.3, 0.58, and 1.07 of the annular swirling stream were considered. The influence of the swirl number on scalar mixing, unconditional, and conditional scalar dissipation rate statistics were quantified. A procedure, based on a Wiener filter approach, was used to de-noise the raw mixture fraction images. The filtering errors on the scalar dissipation rate measurements were up to 15%, depending on downstream positions from the burner exit. The maximum of instantaneous scalar dissipation rate was found to be up to 35 s-1, while the mean dissipation rate was 10 times smaller. The probability density functions of the logarithm of the scalar dissipation rate fluctuations were found to be slightly negatively skewed at low swirl numbers and almost symmetrical when the swirl number increased. The assumption of statistical independence between the scalar and its dissipation rate was valid for higher swirl numbers at locations with low scalar fluctuations and less valid for low swirl numbers. The deviations from the assumption of statistical independence were quantified. The conditional mean of the scalar dissipation rate, the standard deviation of the scalar dissipation rate fluctuations, the weighted probability of occurrence of the mean conditional scalar dissipation rate, and the conditional probability are reported.
Spectra of turbulently advected scalars that have small Schmidt number
Hill, Reginald J.
2017-09-01
Exact statistical equations are derived for turbulent advection of a passive scalar having diffusivity much larger than the kinematic viscosity, i.e., small Schmidt number. The equations contain all terms needed for precise direct numerical simulation (DNS) quantification. In the appropriate limit, the equations reduce to the classical theory for which the scalar spectrum is proportional to the energy spectrum multiplied by k-4, which, in turn, results in the inertial-diffusive range power law, k-17 /3. The classical theory was derived for the case of isotropic velocity and scalar fields. The exact equations are simplified for less restrictive cases: (1) locally isotropic scalar fluctuations at dissipation scales with no restriction on symmetry of the velocity field, (2) isotropic velocity field with averaging over all wave-vector directions with no restriction on the symmetry of the scalar, motivated by that average being used for DNS, and (3) isotropic velocity field with axisymmetric scalar fluctuations, motivated by the mean-scalar-gradient-source case. The equations are applied to recently published DNSs of passive scalars for the cases of a freely decaying scalar and a mean-scalar-gradient source. New terms in the exact equations are estimated for those cases and are found to be significant; those terms cause the deviations from the classical theory found by the DNS studies. A new formula for the mean-scalar-gradient case explains the variation of the scalar spectra for the DNS of the smallest Schmidt-number cases. Expansion in Legendre polynomials reveals the effect of axisymmetry. Inertial-diffusive-range formulas for both the zero- and second-order Legendre contributions are given. Exact statistical equations reveal what must be quantified using DNS to determine what causes deviations from asymptotic relationships.
Dynamical scalar hair formation around a Schwarzschild black hole
Benkel, Robert; Sotiriou, Thomas P.; Witek, Helvi
2016-12-01
Scalar fields coupled to the Gauss-Bonnet invariant evade the known no-hair theorems and have nontrivial configurations around black holes. We focus on a scalar field that couples linearly to the Gauss-Bonnet invariant and hence exhibits shift symmetry. We study its dynamical evolution and the formation of scalar hair in a Schwarzschild background. We show that the evolution eventually settles to the known static hairy solutions in the appropriate limit.
Massive basketball diagram for a thermal scalar field theory
Andersen, Jens O.; Braaten, Eric; Strickland, Michael
2000-08-01
The ``basketball diagram'' is a three-loop vacuum diagram for a scalar field theory that cannot be expressed in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature, reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We use this result to calculate the free energy for a massive scalar field with a φ4 interaction to three-loop order.
Kerr-Newman black holes with scalar hair
Delgado, Jorge F. M.; Herdeiro, Carlos A. R.; Radu, Eugen; Rúnarsson, Helgi
2016-10-01
We construct electrically charged Kerr black holes (BHs) with scalar hair. Firstly, we take an uncharged scalar field, interacting with the electromagnetic field only indirectly, via the background metric. The corresponding family of solutions, dubbed Kerr-Newman BHs with ungauged scalar hair, reduces to (a sub-family of) Kerr-Newman BHs in the limit of vanishing scalar hair and to uncharged rotating boson stars in the limit of vanishing horizon. It adds one extra parameter to the uncharged solutions: the total electric charge. This leading electromagnetic multipole moment is unaffected by the scalar hair and can be computed by using Gauss's law on any closed 2-surface surrounding (a spatial section of) the event horizon. By contrast, the first sub-leading electromagnetic multipole - the magnetic dipole moment -, gets suppressed by the scalar hair, such that the gyromagnetic ratio is always smaller than the Kerr-Newman value (g = 2). Secondly, we consider a gauged scalar field and obtain a family of Kerr-Newman BHs with gauged scalar hair. The electrically charged scalar field now stores a part of the total electric charge, which can only be computed by applying Gauss' law at spatial infinity and introduces a new solitonic limit - electrically charged rotating boson stars. In both cases, we analyze some physical properties of the solutions.
The Statistical Model with Interpartial Scalar Conformally Invariant Interaction
Ignat'ev, Yurii
2015-01-01
A closed mathematical model of the statistical self-gravitating system of scalar charged particles for conformal invariant scalar interactions is constructed on the basis of relativistic kinetics and gravitation theory. Asymptotic properties of the model are investigated in the ultrarelativistic limit. It is shown, that scalar charge density automatically generates scalar field effective mass and the value of this mass is found. In the paper it is proved the asymptotic conformal invariance of constitutive equations in case of homogenous isotropic Universe. Also it is proved the asymptotic conformal invariance of field equations at the early stages of cosmological evolution.
Neutron Star Structure in the Presence of Scalar Fields
Kazanas, Demosthenes
2004-01-01
Motivated by the possible presence of scalar fields on astrophysical scales, suggested by the apparent acceleration of the universe implied by the supernovae surveys, we present models of neutron star structure including the contribution of a (massless) scalar field to the stress energy momentum tensor, in addition to that made by the normal matter. To that end we solve the coupled Einstein -- scalar field -- hydrostatic balance equations to compute the effect of the presence of the scalar field on the neutron star structure. We find that the presence of the scalar field does change the structure of the neutron star, especially in cases of strong coupling between the scalar field and the matter density. We present the neutron star radius as a function of the matter--scalar field coupling constant for different values of the neutron star central density. The presence of the scalar field affects both the maximum neutron star mass and Its radius, the latter increasing with the value of the above coupling constant. We also compute particle and photon geodesics in the geometry of these neutron stars as well as to the geometry of black holes with different values of the scalar field. Our results may be testable with timing observations of accreting neutron stars.
Structure scalars and evolution equations in f( G) cosmology
Sharif, M.; Fatima, H. Ismat
2017-01-01
In this paper, we study the dynamics of self-gravitating fluid using structure scalars for spherical geometry in the context of f( G) cosmology. We construct structure scalars through orthogonal splitting of the Riemann tensor and deduce a complete set of equations governing the evolution of dissipative anisotropic fluid in terms of these scalars. We explore different causes of density inhomogeneity which turns out to be a necessary condition for viable models. It is explicitly shown that anisotropic inhomogeneous static spherically symmetric solutions can be expressed in terms of these scalar functions.
Light Higgs from Scalar See-Saw in Technicolor
DEFF Research Database (Denmark)
Foadi, Roshan; Frandsen, Mads Toudal
2012-01-01
We consider a TeV scale see-saw mechanism leading to light scalar resonances in models with otherwise intrinsically heavy scalars. The mechanism can provide a 125 GeV technicolor Higgs in e.g. two-scale TC models......We consider a TeV scale see-saw mechanism leading to light scalar resonances in models with otherwise intrinsically heavy scalars. The mechanism can provide a 125 GeV technicolor Higgs in e.g. two-scale TC models...
Spontaneous breakdown and the scalar nonet
Energy Technology Data Exchange (ETDEWEB)
Scadron, M.D.
1982-07-01
In the context of the QCD quark model and on the basis of dynamical Bethe-Salpeter ladder graphs, we suggest that (i) the existence of the scalar q-barq hadron multiplet, like the pseudoscalar q-barq multiplet, is a direct consequence of dynamical spontaneous breakdown of chiral symmetry with a chiral-limiting nonstrange mass scale of m/sub sigmaNS//sup CL/ = 2m/sub dyn/ roughly-equal630 MeV, (ii) the lifting of the nonstrange sigma-delta degeneracy is expected from the s-wave quark-gluon annihilation diagram, and (iii) the observed sigma-S* mixing follows from the existence of the p-wave scalar quark-annihilation diagram. The resulting predicted 0q-barq nonet is then sigma(750 MeV), kappa(800), S*(980), and delta(985), in agreement with data for the resonant masses, the mixing angle, and also decay widths except for the kappa(800).
Noncommutative Complex Scalar Field and Casimir Effect
Khelili, Farid
2012-06-01
Using the noncommutative deformed canonical commutation relations proposed by Carmona et al. [J. M. Carmona, J. L. Cortés, J. Gamboa, and F. Mendez, J. High Energy Phys.JHEPFG1029-8479 03 (2003) 058.10.1088/1126-6708/2003/03/058][J. Gamboa, J. Lopéz-Sarrion, and A. P. Polychronakos, Phys. Lett. B 634, 471 (2006).PYLBAJ0370-269310.1016/j.physletb.2006.02.014][J. M. Carmona, J. L. Cortés, Ashok Das, J. Gamboa, and F. Mendez, Mod. Phys. Lett. A 21, 883 (2006).MPLAEQ0217-732310.1142/S0217732306020111], a model describing the dynamics of the noncommutative complex scalar field is proposed. The noncommutative field equations are solved, and the vacuum energy is calculated to the second order in the parameter of noncommutativity. As an application to this model, the Casimir effect, due to the zero-point fluctuations of the noncommutative complex scalar field, is considered. It turns out that in spite of its smallness, the noncommutativity gives rise to a repulsive force at the microscopic level, leading to a modified Casimir potential with a minimum at the point amin=(5)/(84)πθ.
Semi-analytic stellar structure in scalar-tensor gravity
Horbatsch, M. W.; Burgess, C. P.
2011-08-01
Precision tests of gravity can be used to constrain the properties of hypothetical very light scalar fields, but these tests depend crucially on how macroscopic astrophysical objects couple to the new scalar field. We study the equations of stellar structure using scalar-tensor gravity, with the goal of seeing how stellar properties depend on assumptions made about the scalar coupling at a microscopic level. In order to make the study relatively easy for different assumptions about microscopic couplings, we develop quasi-analytic approximate methods for solving the stellar-structure equations rather than simply integrating them numerically. (The approximation involved assumes the dimensionless scalar coupling at the stellar center is weak, and we compare our results with numerical integration in order to establish its domain of validity.) We illustrate these methods by applying them to Brans-Dicke scalars, and their generalization in which the scalar-matter coupling slowly runs — or `walks' — as a function of the scalar field: a(phi) simeq as+bsphi. (Such couplings can arise in extra-dimensional applications, for instance.) The four observable parameters that characterize the fields external to a spherically symmetric star are the stellar radius, R, mass, M, scalar `charge', Q, and the scalar's asymptotic value, phi∞. These are subject to two relations because of the matching to the interior solution, generalizing the usual mass-radius, M(R), relation of General Relativity. Since phi∞ is common to different stars in a given region (such as a binary pulsar), all quantities can be computed locally in terms of the stellar masses. We identify how these relations depend on the microscopic scalar couplings, agreeing with earlier workers when comparisons are possible. Explicit analytical solutions are obtained for the instructive toy model of constant-density stars, whose properties we compare to more realistic equations of state for neutron star models.
2002-01-01
The experiment is aimed at:\\\\ a)\tthe search for neutral mesons and glueballs produced in central hadron-proton collisions and, simultaneously, \\\\b)\tthe study of inclusive hadronic production of neutral heavy quark mesons. \\\\ \\\\These states are observed through their decay into many photons in the 4092-cell electromagnetic Calorimeter GAMS-4000. \\\\ \\\\The NAl2 setup is supplemented with a forward magnetic spectrometer equiped with multiwire Proportional chambers (MWPC) and newly developed microstrip gas chambers (MSGC). The high spatial resolution of the latter allows to measure the momentum loss of the interacting hadron in the liquid hydrogen target (LH$_{2}$) to a precision better than 1.5 GeV/c, i.e. $3 \\times 10^{-3}$ for a 450 GeV/c proton. A system for the measurement of the time of flight (TOF) and ionization of the proton recoiling in the target completes the constraints on neutral meson production reactions. \\\\ \\\\A fast decision on the energy deposited in GAMS and the momentum of the interacting hadro...
Sensitivity of the SHiP experiment to a light scalar particle mixing with the Higgs
Lanfranchi, Gaia
2017-01-01
This conceptual study shows the ultimate sensitivity of the SHiP experiment for the search of a light scalar particle mixing with the Higgs for a dataset corresponding to 5-years of SHiP operation at a nominal intensity of 4 1013 protons on target per second. The sensitivity as a function of the length of the vessel and of its distance from the target as well as a function of the background contamination is also studied.
Variational method for objective analysis of scalar variable and its ...
Indian Academy of Sciences (India)
It has been found that objectively analysed scalar ﬁeld obtained using standard method is superior to the scalar ﬁeld derived by the triangle method,whereas the derivative ﬁelds produced by triangle method are superior to the derivative ﬁelds produced using standard method. A variational objective analysis scheme has ...
Collisionless self-gravitating statistical systems of scalar interacting particles
Ignat'ev, Yu G
2015-01-01
This paper is devoted to consideration of the theory of collisionless statistical systems with interparticle scalar interaction. The mathematical model of such systems is constructed and the exact solution of Vlasov equation for isotropic homogenous model of the Universe is found. Asymptotic solutions of self-consistent Vlasov - Einstein model for conformally invariant scalar interactions are found.
Regular and Chaotic Regimes in Scalar Field Cosmology
Directory of Open Access Journals (Sweden)
Alexey V. Toporensky
2006-03-01
Full Text Available A transient chaos in a closed FRW cosmological model with a scalar field is studied. We describe two different chaotic regimes and show that the type of chaos in this model depends on the scalar field potential. We have found also that for sufficiently steep potentials or for potentials with large cosmological constant the chaotic behavior disappears.
LIPSS results for photons coupling to light neutral scalar bosons
Energy Technology Data Exchange (ETDEWEB)
Andrei Afanasev; Oliver K. Baker; Kevin Beard; George Biallas; James Boyce; Minarni Minarni; Roopchan Ramdon; Michelle D. Shinn; Penny Slocum
2008-06-01
The LIPSS search for a light neutral scalar boson coupling to optical photons is reported. The search covers a region of parameter space of approximately 1.0 meV and coupling strength greater than 10^-6 GeV^-1. The LIPSS results show no evidence for scalar coupling in this region of parameter space.
Gravitational Field Shielding by Scalar Field and Type II Superconductors
Directory of Open Access Journals (Sweden)
Zhang B. J.
2013-01-01
Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.
Iso-scalar surfaces, mixing and reaction in turbulent flows
Dopazo, César; Martín, Jesús; Hierro, Juan
2006-08-01
Turbulent scalar mixing with chemical reaction is investigated in terms of the local geometrical features of the iso-scalar surfaces—'scalar field topologies'—, using Direct Numerical Simulation data. Two scalars with identical initial distribution, one inert and the other obeying a prescribed Arrhenius-like chemical reaction, evolve in homogeneous isotropic turbulence with a mesh size 256 3. The two local principal curvatures, k and k, of the iso-scalar surface at each point are straightforwardly obtained from the curvature tensor, n, whose elements are the spatial derivatives of the unit vector normal to the iso-surface. The scalar diffusive flux is decomposed into a 'flat-front' contribution plus a curvature induced molecular transport. Expressions for the normal propagating velocity relative to the fluid of iso-surfaces, of both the inert and the reactive scalar fields, are provided making use of the previous decomposition. The 'flat-front' and the curvature induced contributions to the diffusive fluxes, beside to the chemical reaction rate, are correlated with the principal curvatures. Results, including the joint statistics of the principal curvatures and their correlations with the scalar dissipation, are also presented. To cite this article: C. Dopazo et al., C. R. Mecanique 334 (2006).
Variational method for objective analysis of scalar variable and its ...
Indian Academy of Sciences (India)
In regard to variational optimization of meteoro- logical parameter a given measure of the 'distance' between the variational scalar analysis and the standard scalar analysis is minimized. The varia- tional analysed field must at the same time satisfy some constraint. The constraint is that the differ- ence between derivative of ...
Finsler metrics with constant (or scalar) flag curvature
Indian Academy of Sciences (India)
of new Finsler metrics of constant (or scalar) flag curvature and determine their scalar curvature. Keywords. ... For instance, Li, Chang and Mo related some Killing fields of Finsler metrics to the symmetry of very ...... [13] Shen Z, Differential Geometry of Spray and Finsler Spaces (Kluwer Academic Publish- ers) (2001) 258 ...
Small visible energy scalar top iterative discriminant analysis
Indian Academy of Sciences (India)
The search for scalar top quarks and the determination of their parameters in the framework of supersymmetric models are important aspects of the linear collider physics programme. The lightest neutralino with a small mass difference (∆m) to the scalar top quark is a candidate for dark matter in the Universe [1]. The.
Visualization of Scalar Adaptive Mesh Refinement Data
Energy Technology Data Exchange (ETDEWEB)
VACET; Weber, Gunther; Weber, Gunther H.; Beckner, Vince E.; Childs, Hank; Ligocki, Terry J.; Miller, Mark C.; Van Straalen, Brian; Bethel, E. Wes
2007-12-06
Adaptive Mesh Refinement (AMR) is a highly effective computation method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations, which must accommodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR grids as a first class data type and AMR code teams use custom built applications for AMR visualization. The Department of Energy's (DOE's) Science Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) is currently working on extending VisIt, which is an open source visualization tool that accommodates AMR as a first-class data type. These efforts will bridge the gap between general-purpose visualization applications and highly specialized AMR visual analysis applications. Here, we give an overview of the state of the art in AMR scalar data visualization research.
Abelian scalar theory at large global charge
Energy Technology Data Exchange (ETDEWEB)
Loukas, Orestis [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern (Switzerland)
2017-09-15
We elaborate on Abelian complex scalar models, which are dictated by natural actions (all couplings are of order one), at fixed and large global U(1) charge in an arbitrary number of dimensions. The ground state vertical stroke v right angle is coherently constructed by the zero modes and the appearance of a centrifugal potential is quantum mechanically verified. Using the path integral formulation we systematically analyze the quantum fluctuations around vertical stroke v right angle in order to derive an effective action for the Goldstone mode, which becomes perturbatively meaningful when the charge is large. In this regime we explicitly show, by computing the first few loop corrections, that the whole construction is stable against quantum effects, in the sense that any higher derivative couplings to Goldstone's tree-level action are suppressed by appropriate powers of the large charge. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
LHC constraints on color octet scalars
Hayreter, Alper; Valencia, German
2017-08-01
We extract constraints on the parameter space of the Manohar and Wise model by comparing the cross sections for dijet, top-pair, dijet-pair, t t ¯t t ¯ and b b ¯b b ¯ productions at the LHC with the strongest available experimental limits from ATLAS or CMS at 8 or 13 TeV. Overall we find mass limits around 1 TeV in the most sensitive regions of parameter space, and lower elsewhere. This is at odds with generic limits for color octet scalars often quoted in the literature where much larger production cross sections are assumed. The constraints that can be placed on coupling constants are typically weaker than those from existing theoretical considerations, with the exception of the parameter ηD.
The BEH mechanism and its scalar bosons
CERN. Geneva
2014-01-01
In the beginning of the 1960’s, the long range interactions within our universe were well understood from the laws of classical general relativity, Einstein’s generalisation of Newtonian gravity, and of quantum electrodynamics, the quantum version of Maxwell’s electromagnetic theory. But there was no hints of how to formulate consistent fundamental theories of short range interactions. A solution to this problem was proposed by Robert Brout and me, and independently by Peter Higgs. I shall explain our motivations for constructing this BEH mechanism and discuss its content. I will comment on how the magnificent ATLAS and CMS discovery at CERN of the scalar boson predicted by the mechanism confirms its validity and may have implications on structures at yet unexplored energies.
Scalar dark matter with type II seesaw
Directory of Open Access Journals (Sweden)
Arnab Dasgupta
2014-12-01
Full Text Available We study the possibility of generating tiny neutrino mass through a combination of type I and type II seesaw mechanism within the framework of an abelian extension of standard model. The model also provides a naturally stable dark matter candidate in terms of the lightest neutral component of a scalar doublet. We compute the relic abundance of such a dark matter candidate and also point out how the strength of type II seesaw term can affect the relic abundance of dark matter. Such a model which connects neutrino mass and dark matter abundance has the potential of being verified or ruled out in the ongoing neutrino, dark matter, as well as accelerator experiments.
Anderson, David; Yunes, Nicolás
2017-09-01
Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.
Cha, Chong M.; de Bruyn Kops, Stephen M.; Mortensen, Mikael
2006-06-01
The double scalar mixing layer (DSML) is a canonical problem for studying the mixing of multiple streams and, with reaction, combustion of the partially premixed type. In a DSML, a third stream consisting of a premixture of the reactants is introduced in between the pure fuel and air streams of the classic twin-feed or binary mixing problem. The well-known presumed probability density function (PDF), such as the β-PDF, can adequately model passive scalar mixing for the binary mixing problem on which state-of-the-art turbulent combustion models such as conditional moment closure and flamelet approaches rely. However, the β-PDF model, now a standard in CFD simulation, cannot describe turbulent mixing involving multiple streams; e.g., the asymmetric three-stream mixing characterizing the DSML. In this paper, direct numerical simulations of the DSML are performed to make available a high-fidelity database for developing more general, fine-scale mixing models required to compute turbulent combustion problems of practical engineering interest, which usually involve mixing between multiple streams. In this first part of two investigations, nonreacting numerical experiments are presented with emphasis on the nontrivial distributions of the passive scalar and its dissipation rate. Mapping closure modeling is applied to describe the PDFs and conditional dissipation rates of a single mixture fraction.
Ignat'ev, Yu G
2013-01-01
On the basis of Hamilton a formalism the dynamic equations of movement scalar charged particles in a classical scalar field are formulated. Unlike earlier published works of the author the model with zero own weight of particles is considered. Linear integrals of movement are found and ambiguity of communication between kinematic speed and an impulse of particles is specified.
Joint Scalar versus Joint Velocity-Scalar PDF Simulations of Bluff-Body Stabilized Flames with REDIM
Merci, B.; Naud, B.; Roekaerts, D.; Maas, U.
2008-01-01
Two transported PDF strategies, joint velocity-scalar PDF (JVSPDF) and joint scalar PDF (JSPDF), are investigated for bluff-body stabilized jet-type turbulent diffusion flames with a variable degree of turbulence–chemistry interaction. Chemistry is modeled by means of the novel reaction-diffusion
UV descriptions of composite Higgs models without elementary scalars
Energy Technology Data Exchange (ETDEWEB)
Barnard, James [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics,The University of Melbourne, Victoria 3010 (Australia); Gherghetta, Tony [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics,The University of Melbourne, Victoria 3010 (Australia); School of Physics and Astronomy, University of Minnesota,Minneapolis, MN 55455 (United States); Ray, Tirtha Sankar [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics,The University of Melbourne, Victoria 3010 (Australia)
2014-02-03
We consider four-dimensional UV descriptions of composite Higgs models without elementary scalars, in which four-fermion interactions are introduced to an underlying gauge theory like in the gauged NJL model. When the anomalous dimension of the fermion bilinear is large, these interactions drive the spontaneous global symmetry breaking in the model, with the Higgs identified as a Nambu-Goldstone boson. The UV descriptions support composite top partner operators, also with large anomalous dimensions, thereby providing an explicit realisation of the idea of partial compositeness. In particular, the composite SO(6)/SO(5) model can be described by an Sp gauge theory with four flavours of fermion, together with a vector-like pair of fermions transforming in the antisymmetric representation and charged under SU(3) colour. These fermions confine to produce both the Higgs and top partner bound states. Our methods can also be applied to different coset groups, suggesting that four-fermion operators can describe the underlying UV dynamics of other composite Higgs models.
Electrically charged Kerr black holes with scalar hair
Delgado, Jorge F M; Radu, Eugen; Runarsson, Helgi
2016-01-01
We construct electrically charged Kerr black holes (BHs) with scalar hair. Firstly, we take an uncharged scalar field, interacting with the electromagnetic field only indirectly, via the background metric. The corresponding family of solutions, dubbed Kerr-Newman BHs with ungauged scalar hair, reduces to (a sub-family of) Kerr-Newman BHs in the limit of vanishing scalar hair and to uncharged rotating boson stars in the limit of vanishing horizon. It adds one extra parameter to the uncharged solutions: the total electric charge. This leading electromagnetic multipole moment is unaffected by the scalar hair and can be computed by using Gauss's law on any closed 2-surface surrounding (a spatial section of) the event horizon. By contrast, the first sub-leading electromagnetic multipole -- the magnetic dipole moment --, gets suppressed by the scalar hair, such that the gyromagnetic ratio is always smaller than the Kerr-Newman value ($g=2$). Secondly, we consider a gauged scalar field and obtain a family of Kerr-Ne...
Inflation and reheating in scale-invariant scalar-tensor gravity
Tambalo, Giovanni
2016-01-01
We consider the scale-invariant inflationary model studied in [1]. The Lagrangian includes all the scale-invariant operators that can be built with combinations of $R, R^{2}$ and one scalar field. The equations of motion show that the symmetry is spontaneously broken after an arbitrarily long inflationary period and a fundamental mass scale is generated. Upon symmetry breaking, and in the Jordan frame, both Hubble function and the scalar field undergo damped oscillations that can eventually amplify Standard Model fields and reheat the Universe. In the present work, we study in detail inflation and the reheating mechanism of this model in the Einstein frame and we compare some of the results with the latest observational data.
Longitudinal W boson scattering in a light scalar top scenario
Ishiwata, Koji; Yonekura, Yuki
2017-07-01
Scalar tops in the supersymmetric model affect the potential of the standard model-like Higgs at the quantum level. In light of the equivalence theorem, the deviation of the potential from the standard model can be traced by longitudinal gauge bosons. In this work, high-energy longitudinal W boson scattering is studied in a TeV-scale scalar top scenario. O (1 - 10 %) deviation from the standard model prediction in the differential cross section is found, depending on whether the observed Higgs mass is explained only by scalar tops or by additional contributions at a higher scale.
Brief History of Ultra-light Scalar Dark Matter Models
Lee Jae-Weon
2018-01-01
This is a review on the brief history of the scalar field dark matter model also known as fuzzy dark matter, BEC dark matter, wave dark matter, or ultra-light axion. In this model ultra-light scalar dark matter particles with mass m = O(10-22)eV condense in a single Bose-Einstein condensate state and behave collectively like a classical wave. Galactic dark matter halos can be described as a self-gravitating coherent scalar field configuration called boson stars. At the scale larger than ga...
Scalar-Tensor Black Holes Embedded in an Expanding Universe
Tretyakova, Daria; Latosh, Boris
2018-02-01
In this review we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on a black hole, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the gaps that must be filled.
Effect of the chameleon scalar field on brane cosmological evolution
Directory of Open Access Journals (Sweden)
Y. Bisabr
2017-11-01
Full Text Available We have investigated a brane world model in which the gravitational field in the bulk is described both by a metric tensor and a minimally coupled scalar field. This scalar field is taken to be a chameleon with an appropriate potential function. The scalar field interacts with matter and there is an energy transfer between the two components. We find a late-time asymptotic solution which exhibits late-time accelerating expansion. We also show that the Universe recently crosses the phantom barrier without recourse to any exotic matter. We provide some thermodynamic arguments which constrain both the direction of energy transfer and dynamics of the extra dimension.
Effect of the chameleon scalar field on brane cosmological evolution
Bisabr, Y.; Ahmadi, F.
2017-11-01
We have investigated a brane world model in which the gravitational field in the bulk is described both by a metric tensor and a minimally coupled scalar field. This scalar field is taken to be a chameleon with an appropriate potential function. The scalar field interacts with matter and there is an energy transfer between the two components. We find a late-time asymptotic solution which exhibits late-time accelerating expansion. We also show that the Universe recently crosses the phantom barrier without recourse to any exotic matter. We provide some thermodynamic arguments which constrain both the direction of energy transfer and dynamics of the extra dimension.
Scalar-Tensor Black Holes Embedded in an Expanding Universe
Directory of Open Access Journals (Sweden)
Daria Tretyakova
2018-02-01
Full Text Available In this review, we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on black holes, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the issues that are not fully investigated.
Charged scalar perturbations around Garfinkle–Horowitz–Strominger black holes
Directory of Open Access Journals (Sweden)
Cheng-Yong Zhang
2015-10-01
Full Text Available We examine the stability of the Garfinkle–Horowitz–Strominger (GHS black hole under charged scalar perturbations. Employing the appropriate numerical methods, we show that the GHS black hole is always stable against charged scalar perturbations. This is different from the results obtained in the de Sitter and anti-de Sitter black holes. Furthermore, we argue that in the GHS black hole background there is no amplification of the incident charged scalar wave to cause the superradiance, so that the superradiant instability cannot exist in this spacetime.
Scalarization of neutron stars with realistic equations of state
Altaha Motahar, Zahra; Blázquez-Salcedo, Jose Luis; Kleihaus, Burkhard; Kunz, Jutta
2017-09-01
We consider the effect of scalarization on static and slowly rotating neutron stars for a wide variety of realistic equations of state, including pure nuclear matter, nuclear matter with hyperons, hybrid nuclear and quark matter, and pure quark matter. We analyze the onset of scalarization, presenting a universal relation for the critical coupling parameter versus compactness. We find that the onset and the magnitude of the scalarization are strongly correlated with the value of the gravitational potential (the metric component gt t) at the center of the star. We also consider the moment-of-inertia-compactness relations and confirm universality for the nuclear matter, hyperon and hybrid equations of state.
On the transverse Scalar Curvature of a Compact Sasaki Manifold
Directory of Open Access Journals (Sweden)
He Weiyong
2014-09-01
Full Text Available We show that the standard picture regarding the notion of stability of constant scalar curvature metrics in Kähler geometry described by S.K. Donaldson [10, 11], which involves the geometry of infinitedimensional groups and spaces, can be applied to the constant scalar curvature metrics in Sasaki geometry with only few modification. We prove that the space of Sasaki metrics is an infinite dimensional symmetric space and that the transverse scalar curvature of a Sasaki metric is a moment map of the strict contactomophism group
Brief History of Ultra-light Scalar Dark Matter Models
Lee Jae-Weon
2018-01-01
This is a review on the brief history of the scalar field dark matter model also known as fuzzy dark matter, BEC dark matter, wave dark matter, or ultra-light axion. In this model ultra-light scalar dark matter particles with mass $m = O(10^{-22})eV$ condense in a single Bose-Einstein condensate state and behave collectively like a classical wave. Galactic dark matter halos can be described as a self-gravitating coherent scalar field configuration called boson stars. At the scale larger than ...
Brief History of Ultra-light Scalar Dark Matter Models
Lee, Jae-Weon
2017-01-01
This is an ongoing review on the brief history of the scalar field dark matter model also known as fuzzy dark matter, BEC dark matter, wave dark matter, or ultra-light axion. In this model ultra-light scalar dark matter particles with mass $m = O(10^{-22})eV$ condense in a single Bose-Einstein condensate state and behave collectively like a classical wave. Galactic dark matter halos can be described as a self-gravitating coherent scalar field configuration called boson stars. At the scale lar...
Transverse relaxation of scalar-coupled protons.
Segawa, Takuya F; Baishya, Bikash; Bodenhausen, Geoffrey
2010-10-25
In a preliminary communication (B. Baishya, T. F. Segawa, G. Bodenhausen, J. Am. Chem. Soc. 2009, 131, 17538-17539), we recently demonstrated that it is possible to obtain clean echo decays of protons in biomolecules despite the presence of homonuclear scalar couplings. These unmodulated decays allow one to determine apparent transverse relaxation rates R(2) (app) of individual protons. Herein, we report the observation of R(2) (app) for three methyl protons, four amide H(N) protons, and all 11 backbone H(α) protons in cyclosporin A. If the proton resonances overlap, their R(2) (app) rates can be measured by transferring their magnetization to neighboring (13)C nuclei, which are less prone to overlap. The R(2) (app) rates of protons attached to (13)C are faster than those attached to (12)C because of (13)C-(1)H dipolar interactions. The differences of these rates allow the determination of local correlation functions. Backbone H(N) and H(α) protons that have fast decay rates R(2) (app) also feature fast longitudinal relaxation rates R(1) and intense NOESY cross peaks that are typical of crowded environments. Variations of R(2) (app) rates of backbone H(α) protons in similar amino acids reflect differences in local environments.
Searches for high mass BSM scalars
Nam, Kyungwook
2017-01-01
Searches for BSM particles using the 126 GeV Higgs boson have been carried out with the CMS detector at LHC, based on pp collision data collected at centre-of-mass energies of 7, 8, and 13 TeV. The talk presents the latest results and gives a brief review of earlier results. A search for heavy resonances decaying to Zgamma is presented. This search is based on the data collected with the CMS detector at 13 TeV. The search strategy is to look for an excess above the non-resonant Standard Model background in the Zgamma invariant mass spectrum. The background is extracted directly from data and compared with the signal expected to be produced by hypothetical scalar resonances. While the HH production within the Standard Model is very small and essentially out of the experimental reach within the LHC Run II, several theories foresee an enhancement that can be already probed with the available data. The latest searches for resonant and non-resonant Higgs pair production, made using 13 TeV pp collisions data recor...
On the Scalar Manifold of Exceptional Supergravity
Cacciatori, Sergio L; Marrani, Alessio
2012-01-01
We construct two parametrizations of the non compact exceptional Lie group G=E7(-25), based on a fibration which has the maximal compact subgroup K=(E6 x U(1))/Z_3 as a fiber. It is well known that G plays an important role in the N=2 d=4 magic exceptional supergravity, where it describes the U-duality of the theory and where the symmetric space M=G/K gives the vector multiplets' scalar manifold. First, by making use of the exponential map, we compute a realization of G/K, that is based on the E6 invariant d-tensor, and hence exhibits the maximal possible manifest [(E6 x U(1))/Z_3]-covariance. This provides a basis for the corresponding supergravity theory, which is the analogue of the Calabi-Vesentini coordinates. Then we study the Iwasawa decomposition. Its main feature is that it is SO(8)-covariant and therefore it highlights the role of triality. Along the way we analyze the relevant chain of maximal embeddings which leads to SO(8). It is worth noticing that being based on the properties of a "mixed" Freu...
Kuvshinov, A. V.; Poedjono, B.; Matzka, J.; Olsen, N.; Pai, S.; Samrock, F.
2013-12-01
Most marine EM studies are based on sea-bottom measurements which are expensive and logistically demanding. We propose a low-cost and easy-to-deploy magnetic survey concept which exploits sea surface measurements. It is assumed that the exciting source can be described by a plane wave. The concept is based on responses that relate variations of the scalar magnetic field at the survey sites with variations of the horizontal magnetic field at a base site. It can be shown that these scalar responses are a mixture of standard tipper responses and elements of the horizontal magnetic tensor and thus can be used to probe the electrical conductivity of the subsoil. This opens an avenue for sea-surface induction studies which so far was believed very difficult to conduct if conventional approaches based on vector measurements are invoked. We perform 3-D realistic model studies where the target region was Oahu Island and its surroundings, and USGS operated Honolulu geomagnetic observatory was chosen as the base site. We compare the predicted responses with the responses estimated from the scalar data collected at a few locations around Oahu Island by the unmanned, autonomous, wave and solar powered 'Wave Glider' developed and operated by Liquid Robotics Oil and Gas/Schlumberger. The marine robots observation platform is equipped with a tow Overhauser magnetometer (validated by USGS). The studies show an encouraging agreement between predictions and experiment in both components of the scalar response at all locations and we consider this as a proof of the suggested concept.
Scalar quark searches in $e^+ e^-$ collisions at $\\sqrt{s}$ = 181-184 GeV
Barate, R; Décamp, D; Ghez, P; Goy, C; Jézéquel, S; Lees, J P; Lucotte, A; Martin, F; Merle, E; Minard, M N; Nief, J Y; Pietrzyk, B; Alemany, R; Boix, G; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Morawitz, P; Park, I C; Pascual, A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Becker, U; Bright-Thomas, P G; Casper, David William; Cattaneo, M; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Gianotti, F; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Maley, P; Mato, P; Minten, Adolf G; Moneta, L; Qi, N; Pacheco, A; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Vreeswijk, M; Wachsmuth, H W; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Hühn, T; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Cerutti, F; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Chalmers, M; Curtis, L; Halley, A W; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Ward, J J; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Williams, M I; Giehl, I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Kröcker, M; Nürnberger, H A; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Ziegler, T; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Ealet, A; Fouchez, D; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Büscher, V; Cowan, G D; Dietl, H; Ganis, G; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kado, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Serin, L; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Coles, J; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Fabbro, B; Faïf, G; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Przysiezniak, H; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Foss, J; Grupen, Claus; Smolik, L; Stephan, F; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Betteridge, A P; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Zobernig, G
1998-01-01
Searches for scalar top, scalar bottom and degenerate scalar quarks have been performed with data collected with the ALEPH detector at LEP. The data sample consists of 57~$\\mathrm{pb}^{-1}$ taken at $\\rts$ = 181--184~GeV. No evidence for scalar top, scalar bottom or degenerate scalar quarks was found in the channels $\\stop \\rightarrow \\mathrm{c}\
Scalar and vector vortex beams from the source
CSIR Research Space (South Africa)
Naidoo, Darryl
2016-10-01
Full Text Available . Advanced Solid State Lasers 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), 30 October–3 November 2016, Boston, Massachusetts United States Scalar and vector vortex beams from the source Naidoo, Darryl Roux...
Holographic quantum phase transitions and interacting bulk scalars
Directory of Open Access Journals (Sweden)
Pankaj Chaturvedi
2014-12-01
Full Text Available We consider a system of two massive, mutually interacting probe real scalar fields, in zero temperature holographic backgrounds. The system does not have any continuous symmetry. For a suitable range of the interaction parameters adhering to the interaction potential between the bulk scalars, we have shown that as one turns on the source for one scalar field, the system may go through a second order quantum critical phase transition across which the second scalar field forms a condensate. We have looked at the resulting phase diagram and numerically computed the condensate. We have also investigated our system in two different backgrounds: AdS4 and AdS soliton, and got similar phase structure.
High-Range Scalar Helium Magnetometer (HSHM) Project
National Aeronautics and Space Administration — This SBIR Phase I proposal describes development of a conceptual design for a High-range Scalar Helium Magnetometer (HSHM) for the field range +/-16 Gauss. The HSHM...
Scalar perturbations of nonsingular nonrotating black holes in conformal gravity
Toshmatov, Bobir; Bambi, Cosimo; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Schee, Jan
2017-09-01
We study scalar and electromagnetic perturbations of a family of nonsingular nonrotating black hole spacetimes that are solutions in a large class of conformally invariant theories of gravity. The effective potential for scalar perturbations depends on the exact form of the scaling factor. Electromagnetic perturbations do not feel the scaling factor, and the corresponding quasinormal mode spectrum is the same as in the Schwarzschild metric. We find that these black hole metrics are stable under scalar and electromagnetic perturbations. Assuming that the quasinormal mode spectrum for scalar perturbations is not too different from that for gravitational perturbations, we can expect that the calculation of the quasinormal mode spectrum and the observation with gravitational wave detectors of quasinormal modes from astrophysical black holes can constrain the scaling factor and test these solutions.
A nonlinear dynamics for the scalar field in Randers spacetime
Energy Technology Data Exchange (ETDEWEB)
Silva, J.E.G. [Universidade Federal do Cariri (UFCA), Instituto de formação de professores, Rua Olegário Emídio de Araújo, Brejo Santo, CE, 63.260.000 (Brazil); Maluf, R.V. [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil)
2017-03-10
We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.
Evolution of Dark Energy Perturbations in Scalar-Tensor Cosmologies
Sanchez, J. C. Bueno; Perivolaropoulos, L.
2010-01-01
We solve analytically and numerically the generalized Einstein equations in scalar-tensor cosmologies to obtain the evolution of dark energy and matter linear perturbations. We compare our results with the corresponding results for minimally coupled quintessence perturbations. Our results for natural (O(1)) values of parameters in the Lagrangian which lead to a background expansion similar to LCDM are summarized as follows: 1. Scalar-Tensor dark energy density perturbations are amplified by a...
Topological defect solutions for a system of three scalar fields
Niazian, M. R.; Amani, Ali R.
2015-06-01
In this paper, we studied on the defect structures as topological by non-linear three scalar fields. By using modified Adomian decomposition method (MADM), and Adomian decomposition method (ADM) we have found the solutions of three scalar fields. Then we compared the obtained results each other by numerical solution. Also, we consider the static case and draw ϕ(x), χ(x), and ρ(x) with the choice of different values for parameter r.
Scalar perturbations of nonsingular nonrotating black holes in conformal gravity
Toshmatov, Bobir; Bambi, Cosimo; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Schee, Jan
2017-01-01
We study scalar and electromagnetic perturbations of a family of nonsingular nonrotating black hole spacetimes that are solutions in a large class of conformally invariant theories of gravity. The effective potential for scalar perturbations depends on the exact form of the scaling factor. Electromagnetic perturbations do not feel the scaling factor, and the corresponding quasinormal mode spectrum is the same as in the Schwarzschild metric. We find that these black hole metrics are stable und...
Canonical Quantization of the Scalar Field: The Measure Theoretic Perspective
Velhinho, José
2015-01-01
This review is devoted to measure theoretical methods in the canonical quantization of scalar field theories. We present in some detail the canonical quantization of the free scalar field. We study the measures associated with the free fields and present two characterizations of the support of these measures. The first characterization concerns local properties of the quantum fields, whereas for the second one we introduce a sequence of variables that test the field behaviour at large distanc...
Two photon couplings of scalar and tensor mesons
Feindt, Michael; Harjes, Jens
1991-06-01
Experimental data on exclusive two photon reactions are investigated with respect to formation of tensor and scalar mesons. Theoretical and experimental status and progress is reviewed. Furthermore, new CELLO results on γγ → π-π- and γγ → ϱ0ϱ0 are presented. Clear evidence for a large scalar contribution is found in both reactions. The implications of these new results are discussed.
Brans-Dicke type teleparallel scalar-tensor theory
Salti, Mustafa; Aydogdu, Oktay; Yanar, Hilmi; Binbay, Figen
2017-11-01
The teleparallel alternative of general relativity which is based on torsion instead of curvature is considered as the gravitational sector to explore the dark universe. Inspired from the well-known Brans-Dicke gravity, here, we introduce a new proposal for the galactic dark energy effect. The new model includes a scalar field with self-interacting potential and a non-minimal coupling between the gravity and scalar field. Additionally, we analyze the idea via the Noether symmetry approach and thermodynamics.
Cosmological Brane World Solutions with Bulk Scalar Fields
Davis, Stephen C.
2001-01-01
Cosmological brane world solutions are found for five-dimensional bulk spacetimes with a scalar field. A supergravity inspired method for obtaining static solutions is combined with a method for finding brane cosmologies with constant bulk energies. This provides a way to generate full (bulk and brane) cosmological solutions to brane worlds with bulk scalar fields. Examples of these solutions, and their cosmological evolution, are discussed.
Extending Chiral Perturbation Theory with an Isosinglet Scalar
DEFF Research Database (Denmark)
Hansen, Martin; Langaeble, Kasper; Sannino, Francesco
2017-01-01
We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology and...... and lattice investigations. By construction our results encompass several interesting limits, ranging from the dilaton to the linear sigma model....
Scalar transport in inline mixers with spatially periodic flows
Baskan, Ozge; Rajaei, Hadi; Speetjens, Michel F. M.; Clercx, Herman J. H.
2017-01-01
Spatially persisting patterns form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of stretching and folding mechanisms of the flow field. This has been investigated in many computational and theoretical studies of 2D time-periodic and 3D spatially periodic flow fields. However, experimental studies, to date, have mainly focused on flow visualization with streaks of dye rather than fully 3D scalar field measurements. Our study employs 3D particle tracking velocimetry and 3D laser-induced fluorescence to analyze the evolution of 3D flow and scalar fields and the correlation between the coherent flow/scalar field structures in a representative inline mixer, the Quatro static mixer. For this purpose an experimental setup that consists of an optically accessible test section with transparent internal elements accommodating a pressure-driven pipe flow has been built. The flow and scalar fields clearly underline the complementarity of the experimental results with numerical simulations and provide validation of the periodicity assumption needed in numerical studies. The experimental procedure employed in this investigation, which allows studying the scalar transport in the advective limit, demonstrates the suitability of the present method for exploratory mixing studies of a variety of mixing devices, beyond the Quatro static mixer.
Small vacuum energy from small equivalence violation in scalar gravity
Agrawal, Prateek; Sundrum, Raman
2017-05-01
The theory of scalar gravity proposed by Nordström, and refined by Einstein and Fokker, provides a striking analogy to general relativity. In its modern form, scalar gravity appears as the low-energy effective field theory of the spontaneous breaking of conformal symmetry within a CFT, and is AdS/CFT dual to the original Randall-Sundrum I model, but without a UV brane. Scalar gravity faithfully exhibits several qualitative features of the cosmological constant problem of standard gravity coupled to quantum matter, and the Weinberg no-go theorem can be extended to this case as well. Remarkably, a solution to the scalar gravity cosmological constant problem has been proposed, where the key is a very small violation of the scalar equivalence principle, which can be elegantly formulated as a particular type of deformation of the CFT. In the dual AdS picture this involves implementing Goldberger-Wise radion stabilization where the Goldberger-Wise field is a pseudo-Nambu Goldstone boson. In quantum gravity however, global symmetries protecting pNGBs are not expected to be fundamental. We provide a natural six-dimensional gauge theory origin for this global symmetry and show that the violation of the equivalence principle and the size of the vacuum energy seen by scalar gravity can naturally be exponentially small. Our solution may be of interest for study of non-supersymmetric CFTs in the spontaneously broken phase.
Fluctuations of a passive scalar in a turbulent mixing layer
Attili, Antonio
2013-09-19
The turbulent flow originating downstream of the Kelvin-Helmholtz instability in a mixing layer has great relevance in many applications, ranging from atmospheric physics to combustion in technical devices. The mixing of a substance by the turbulent velocity field is usually involved. In this paper, a detailed statistical analysis of fluctuations of a passive scalar in the fully developed region of a turbulent mixing layer from a direct numerical simulation is presented. Passive scalar spectra show inertial ranges characterized by scaling exponents −4/3 and −3/2 in the streamwise and spanwise directions, in agreement with a recent theoretical analysis of passive scalar scaling in shear flows [Celani et al., J. Fluid Mech. 523, 99 (2005)]. Scaling exponents of high-order structure functions in the streamwise direction show saturation of intermittency with an asymptotic exponent ζ∞=0.4 at large orders. Saturation of intermittency is confirmed by the self-similarity of the tails of the probability density functions of the scalar increments at different scales r with the scaling factor r−ζ∞ and by the analysis of the cumulative probability of large fluctuations. Conversely, intermittency saturation is not observed for the spanwise increments and the relative scaling exponents agree with recent results for homogeneous isotropic turbulence with mean scalar gradient. Probability density functions of the scalar increments in the three directions are compared to assess anisotropy.
Phenomenology of Bulk Scalar Production at the LHC
Beauchemin , Pierre-Hugues; Burgess, Cliff
We examine the sensitivity of the ATLAS detector to extra-dimensional scalars in scenarios having the extra-dimensional Planck scale in the TeV range and n = 2 large extra dimensions. Such scalars appear as partners of the graviton in higher-dimensional supersymmetric theories. Using first the scalar's lowest-dimensional effective couplings to quarks and gluons, we compute the rate of production of a hard jet together with missing energy. We find a nontrivial range of bulk scalar couplings for which ATLAS could observe a signal, and in particular, higher sensitivity to couplings to gluons than to quarks. Bulk scalar emission increases the missing-energy signal by adding to graviton production, and so complicates the inference of the extra-dimensional Planck scale from the observed rate of jet + EmissT . Because bulk scalar differential cross sections resemble those for gravitons, it is unlikely that these can be experimentally distinguished should a missing energy signal be observed. However, given, for examp...
Structure function of passive scalars in two-dimensional turbulence
Eckhardt, B; Eckhardt, Bruno; Schumacher, Joerg
1999-01-01
The structure function of a scalar $\\theta({\\bf x},t)$, passively advected in a two-dimensional turbulent flow ${\\bf u}({\\bf x},t)$, is discussed by means of the fractal dimension $\\delta^{(1)}_g$ of the passive scalar graph. A relation between $\\delta^{(1)}_g$, the scaling exponent $\\zeta_1^{(\\theta)}$ of the scalar structure function $D_1^{(\\theta)}(r)$, and the structure function $D_2(r)$ of the underlying flow field is derived. Different from the 3-d case, the 2-d structure function also depends on an additional parameter, characteristic of the driving of the passive scalar. In the enstrophy inertial subrange a mean field approximation for the velocity structure function gives a scaling of the passive scalar graph with $\\delta^{(1)}_g<2$ for intermediate and large values of the Prandtl number $Pr$. In the energy inertial subrange a model for the energy spectrum and thus $D_2(r)$ gives a passive scalar graph scaling with exponent $\\delta^{(1)}_g=5/3$. Finally, we discuss an application to recent observa...
Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence
Overholt, M. R.; Pope, S. B.
1996-11-01
Mixing of a passive scalar in statistically homogeneous, isotropic, and stationary turbulence with a mean scalar gradient is investigated via direct numerical simulation, for Taylor-scale Reynolds numbers, Rλ, from 28 to 185. Multiple independent simulations are performed to get confidence intervals, and local regression smoothing is used to further reduce statistical fluctuations. The scalar fluctuation field, φ(x,t), is initially zero, and develops to a statistically stationary state after about four eddy turnover times. Quantities investigated include the dissipation of scalar flux, which is found to be significant; probability density functions (pdfs) and joint-pdfs of the scalar, its derivatives, scalar dissipation, and mechanical dissipation; and conditional expectations of scalar mixing, ∇2φ. A linear model for scalar mixing jointly conditioned on the scalar and v-velocity is developed, and reproduces the data quite well. Also considered is scalar mixing jointly conditioned on the scalar and scalar dissipation. Terms appearing in the balance equation for the pdf of φ are examined. From a solution of the scalar pdf equation two sufficient conditions arise for the scalar pdf to be Gaussian. These are shown to be well satisfied for moderate values of the scalar, and approximately so for large fluctuations. Many correlations are also presented, including ρ(v,φ), which changes during the evolution of the scalar from a value of unity when initialized to the stationary value of 0.5-0.6.
Local thermal behaviour of a massive scalar field near a reflecting wall
Energy Technology Data Exchange (ETDEWEB)
Lorenci, V.A. De [Instituto de Física e Química, Universidade Federal de Itajubá,Itajubá, MG 37500-903 (Brazil); Gomes, L.G.; Moreira, E.S. Jr. [Instituto de Matemática e Computação, Universidade Federal de Itajubá,Itajubá, MG 37500-903 (Brazil)
2015-03-19
The mean square fluctuation and the expectation value of the stress-energy-momentum tensor of a neutral massive scalar field at finite temperature are determined near an infinite plane Dirichlet wall, and also near an infinite plane Neumann wall. The flat background has an arbitrary number of dimensions and the field is arbitrarily coupled to the vanishing curvature. It is shown that, unlike vacuum contributions, thermal contributions are free from boundary divergences, and that the thermal behaviour of the scalar field near a Dirichlet wall differs considerably from that near a Neumann wall. Far from the wall the study reveals a local version of dimensional reduction, namely, corrections to familiar blackbody expressions are linear in the temperature, with the corresponding coefficients given only in terms of vacuum expectation values in a background with one less dimension. It is shown that such corrections are “classical” (i.e., not dependent on Planck’s constant) only if the scalar field is massless. A natural conjecture that arises is that the “local dimensional reduction” is universal since it operates for massless and massive fields alike and regardless of the boundary conditions.
Fixed-Base Comb with Window-Non-Adjacent Form (NAF) Method for Scalar Multiplication
Seo, Hwajeong; Kim, Hyunjin; Park, Taehwan; Lee, Yeoncheol; Liu, Zhe; Kim, Howon
2013-01-01
Elliptic curve cryptography (ECC) is one of the most promising public-key techniques in terms of short key size and various crypto protocols. For this reason, many studies on the implementation of ECC on resource-constrained devices within a practical execution time have been conducted. To this end, we must focus on scalar multiplication, which is the most expensive operation in ECC. A number of studies have proposed pre-computation and advanced scalar multiplication using a non-adjacent form (NAF) representation, and more sophisticated approaches have employed a width-w NAF representation and a modified pre-computation table. In this paper, we propose a new pre-computation method in which zero occurrences are much more frequent than in previous methods. This method can be applied to ordinary group scalar multiplication, but it requires large pre-computation table, so we combined the previous method with ours for practical purposes. This novel structure establishes a new feature that adjusts speed performance and table size finely, so we can customize the pre-computation table for our own purposes. Finally, we can establish a customized look-up table for embedded microprocessors. PMID:23881143
Fixed-Base Comb with Window-Non-Adjacent Form (NAF Method for Scalar Multiplication
Directory of Open Access Journals (Sweden)
Yeoncheol Lee
2013-07-01
Full Text Available Elliptic curve cryptography (ECC is one of the most promising public-key techniques in terms of short key size and various crypto protocols. For this reason, many studies on the implementation of ECC on resource-constrained devices within a practical execution time have been conducted. To this end, we must focus on scalar multiplication, which is the most expensive operation in ECC. A number of studies have proposed pre-computation and advanced scalar multiplication using a non-adjacent form (NAF representation, and more sophisticated approaches have employed a width-w NAF representation and a modified pre-computation table. In this paper, we propose a new pre-computation method in which zero occurrences are much more frequent than in previous methods. This method can be applied to ordinary group scalar multiplication, but it requires large pre-computation table, so we combined the previous method with ours for practical purposes. This novel structure establishes a new feature that adjusts speed performance and table size finely, so we can customize the pre-computation table for our own purposes. Finally, we can establish a customized look-up table for embedded microprocessors.
Nucleon form factors in dispersively improved chiral effective field theory: Scalar form factor
Alarcón, J. M.; Weiss, C.
2017-11-01
We propose a method for calculating the nucleon form factors (FFs) of G -parity-even operators by combining chiral effective field theory (χ EFT ) and dispersion analysis. The FFs are expressed as dispersive integrals over the two-pion cut at t >4 Mπ2 . The spectral functions are obtained from the elastic unitarity condition and expressed as products of the complex π π →N N ¯ partial-wave amplitudes and the timelike pion FF. χ EFT is used to calculate the ratio of the partial-wave amplitudes and the pion FF, which is real and free of π π rescattering in the t channel (N /D method). The rescattering effects are then incorporated by multiplying with the squared modulus of the empirical pion FF. The procedure results in a marked improvement compared to conventional χ EFT calculations of the spectral functions. We apply the method to the nucleon scalar FF and compute the scalar spectral function, the scalar radius, the t -dependent FF, and the Cheng-Dashen discrepancy. Higher-order chiral corrections are estimated through the π N low-energy constants. Results are in excellent agreement with dispersion-theoretical calculations. We elaborate several other interesting aspects of our method. The results show proper scaling behavior in the large-Nc limit of QCD because the χ EFT calculation includes N and Δ intermediate states. The squared modulus of the timelike pion FF required by our method can be extracted from lattice QCD calculations of vacuum correlation functions of the operator at large Euclidean distances. Our method can be applied to the nucleon FFs of other operators of interest, such as the isovector-vector current, the energy-momentum tensor, and twist-2 QCD operators (moments of generalized parton distributions).
Ignat'ev, Yu G
2013-01-01
On the basis of the relativistic kinetic theory the mathematical model of cosmological plasmas with an attraction of the like charged scalar particles is formulated. It is shown, that cosmological the model, based on a classical scalar field with an attraction, is unsatisfactory, that leads to necessity of attraction of phantom models of a scalar field for systems with an attraction.
Arbitrary scalar-field and quintessence cosmological models
Energy Technology Data Exchange (ETDEWEB)
Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Lobo, Francisco S.N. [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Lisbon (Portugal); Mak, M.K. [Hong Kong Institute of Vocational Education, Department of Computing and Information Management, Hong Kong (China)
2014-03-15
The mechanism of the initial inflationary scenario of the Universe and of its late-time acceleration can be described by assuming the existence of some gravitationally coupled scalar fields φ, with the inflaton field generating inflation and the quintessence field being responsible for the late accelerated expansion. Various inflationary and late-time accelerated scenarios are distinguished by the choice of an effective self-interaction potential V(φ), which simulates a temporarily non-vanishing cosmological term. In this work, we present a new formalism for the analysis of scalar fields in flat isotropic and homogeneous cosmological models. The basic evolution equation of the models can be reduced to a first-order non-linear differential equation. Approximate solutions of this equation can be constructed in the limiting cases of the scalar-field kinetic energy and potential energy dominance, respectively, as well as in the intermediate regime. Moreover, we present several new accelerating and decelerating exact cosmological solutions, based on the exact integration of the basic evolution equation for scalar-field cosmologies. More specifically, exact solutions are obtained for exponential, generalized cosine hyperbolic, and power-law potentials, respectively. Cosmological models with power-law scalar field potentials are also analyzed in detail. (orig.)
Long-lived, colour-triplet scalars from unnaturalness
Energy Technology Data Exchange (ETDEWEB)
Barnard, James; Cox, Peter [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, The University of Melbourne,Victoria 3010 (Australia); Gherghetta, Tony [School of Physics and Astronomy, University of Minnesota,Minneapolis, Minnesota 55455 (United States); Spray, Andrew [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, The University of Melbourne,Victoria 3010 (Australia); Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon, 34051 (Korea, Republic of)
2016-03-01
Long-lived, colour-triplet scalars are a generic prediction of unnatural, or split, composite Higgs models where the spontaneous global-symmetry breaking scale f≳10 TeV and an unbroken SU(5) symmetry is preserved. Since the triplet scalars are pseudo Nambu-Goldstone bosons they are split from the much heavier composite-sector resonances and are the lightest exotic, coloured states. This makes them ideal to search for at colliders. Due to discrete symmetries the triplet scalar decays via a dimension-six term and given the large suppression scale f is often metastable. We show that existing searches for collider-stable R-hadrons from Run-I at the LHC forbid a triplet scalar mass below 845 GeV, whereas with 300 fb{sup −1} at 13 TeV triplet scalar masses up to 1.4 TeV can be discovered. For shorter lifetimes displaced-vertex searches provide a discovery reach of up to 1.8 TeV. In addition we present exclusion and discovery reaches of future hadron colliders as well as indirect limits that arise from modifications of the Higgs couplings.
On Invariants and Scalar Chiral Correlation Functions in { n} = 1 Superconformal Field Theories
Knuth, Holger
A general expression for the four-point function with vanishing total R-charge of antichiral and chiral superfields in { N} = 1 superconformal theories is given. It is obtained by applying the exponential of a simple universal nilpotent differential operator to an arbitrary function of two cross-ratios. To achieve this the nilpotent superconformal invariants according to Park are focused. Several dependencies between these invariants are presented, so that eight nilpotent invariants and 27 monomials of these invariants of degree d > 1 are left being linearly independent. It is analyzed, how terms within the four-point function of general scalar superfields cancel in order to fulfill the chiral restrictions.
Center phase transition from matter propagators in (scalar) QCD
Mitter, M.; Hopfer, M.; Schaefer, B.-J.; Alkofer, R.
2018-02-01
Novel order parameters for the confinement-deconfinement phase transition of quenched QCD and fundamentally charged scalar QCD are presented. Similar to the well-known dual condensate, they are defined via generalized matter propagators with U (1)-valued boundary conditions. The order parameters are easily accessible with functional methods. Their validity and accessibility is explicitly demonstrated by numerical studies of the Dyson-Schwinger equations for the matter propagators. Even in the case of heavy scalar matter, where the propagator does not show a signature of the phase transition, a discontinuity due to the transition can be extracted in the order parameters, establishing also fundamentally charged scalar matter as a probe for color confinement.
Scalar field dark matter and the Higgs field
Directory of Open Access Journals (Sweden)
O. Bertolami
2016-08-01
Full Text Available We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10−6–10−4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall–Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.
Investigation of Scalar Implicatures of Binus University Students
Directory of Open Access Journals (Sweden)
Clara Herlina Karjo
2011-01-01
Full Text Available Scalar implicatures are based on a range of quantifiers ordered in terms of informational strength, for example in quantity: some, most, all; in frequency: sometimes, often, and always. This study measures the scalar implicatures among university students who learn English as a foreign language. The participants for this study are fourth semester English Department students at Binus University. Using the same instruments as in Slabakova (2009 and Noveck’s study (2001 the present study aims to find out the general ability of the university students of computing scalar implicatures and to discover the level of pragmatic/logical competence of the university students with regards to their gender and grade point average. The results show that the students with GPA lower than three are more logical than those with GPA higher than three; while female students are more pragmatic than male students.
Inert scalars and vacuum metastability around the electroweak scale
Energy Technology Data Exchange (ETDEWEB)
Świeżewska, Bogumiła [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland)
2015-07-22
We analyse effective potential around the electroweak (EW) scale in the Standard Model (SM) extended with a heavy scalar doublet. We show that the additional scalars can have a strong impact on vacuum stability. Although the additional heavy scalars may improve the behaviour of running Higgs self-coupling at large field values, we prove that they can destabilise the vacuum due to EW-scale effects. A new EW symmetry conserving minimum of the effective potential can appear rendering the electroweak symmetry breaking (EWSB) minimum meta- or unstable. However, for the case of the inert doublet model (IDM) with a 125 GeV Higgs boson we demonstrate that the parameter space region where the vacuum is meta- or unstable cannot be reconciled with the constraints from perturbative unitarity, electroweak precision tests (EWPT) and dark matter relic abundance measurements.
Brief History of Ultra-light Scalar Dark Matter Models
Lee, Jae-Weon
2018-01-01
This is a review on the brief history of the scalar field dark matter model also known as fuzzy dark matter, BEC dark matter, wave dark matter, or ultra-light axion. In this model ultra-light scalar dark matter particles with mass m = O(10-22)eV condense in a single Bose-Einstein condensate state and behave collectively like a classical wave. Galactic dark matter halos can be described as a self-gravitating coherent scalar field configuration called boson stars. At the scale larger than galaxies the dark matter acts like cold dark matter, while below the scale quantum pressure from the uncertainty principle suppresses the smaller structure formation so that it can resolve the small scale crisis of the conventional cold dark matter model.
Unified cosmology with scalar-tensor theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Tajahmad, Behzad [Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Sanyal, Abhik Kumar [Jangipur College, Department of Physics, Murshidabad (India)
2017-04-15
Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)
Bounded Scalar Perturbations in Bouncing Brane World Cosmologies
Maier, Rodrigo; Soares, Ivano Damião
2013-01-01
We examine the dynamics of scalar perturbations in closed Friedmann-Lema\\^itre-Robertson- Walker (FLRW) universes in the framework of Brane World theory with a timelike extra dimension. In this scenario, the unperturbed Friedmann equations contain additional terms arising from the bulk-brane interaction that implement non-singular bounces in the models with a cosmological constant and non-interacting perfect fluids. The structure of the phase-space of the models allows for two basic configurations, namely, one bounce solutions or eternal universes. Assuming that the matter content of the model is given by dust and radiation, we derive the dynamical field equations for scalar hydrodynamical perturbations considering either a conformally flat (de Sitter) bulk or a perturbed bulk. We perform a numerical analysis which can shed some light on the study of cosmological scalar perturbations in bouncing brane world models. From a mathematical point of view we show that although the bounce enhances the amplitudes of s...
Leading-twist distribution amplitudes of scalar and vector mesons
Energy Technology Data Exchange (ETDEWEB)
Li, B. -L.; Chang, L.; Ding, M.; Roberts, C. D.; Zong, H. -S.
2016-11-01
A symmetry-preserving truncation of the two-body light-quark bound-state problem in relativistic quantum field theory is used to calculate the leading-twist parton distribution amplitudes (PDAs) of scalar systems, both ground-state and radial excitations, and the radial excitations of vector mesons. Owing to the fact that the scale-independent leptonic decay constant of a scalar meson constituted from equal-mass valence-constituents vanishes, it is found that the PDA of a given scalar system possesses one more zero than that of an analogous vector meson. Consequently, whereas the mean light-front relative momentum of the valence-constituents within a vector meson is zero, that within a scalar meson is large, an outcome which hints at a greater role for light-front angular momentum in systems classified as P-wave in quantum mechanical models. Values for the scale-dependent decay constants of ground-state scalar and vector systems are a by-product of this analysis, and they turn out to be roughly equal, viz. ≃ 0.2 GeV at an hadronic scale. In addition, it is confirmed that the dilation characterising ground-state PDAs is manifest in the PDAs of radial excitations too. The impact of SU(3)-flavour symmetry breaking is also considered. When compared with pseudoscalar states, it is a little stronger in scalar systems, but the size is nevertheless determined by the flavour-dependence of dynamical chiral symmetry breaking and the PDAs are still skewed toward the heavier valence-quark in asymmetric systems.
Brief History of Ultra-light Scalar Dark Matter Models
Directory of Open Access Journals (Sweden)
Lee Jae-Weon
2018-01-01
dark matter, BEC dark matter, wave dark matter, or ultra-light axion. In this model ultra-light scalar dark matter particles with mass m = O(10-22eV condense in a single Bose-Einstein condensate state and behave collectively like a classical wave. Galactic dark matter halos can be described as a self-gravitating coherent scalar field configuration called boson stars. At the scale larger than galaxies the dark matter acts like cold dark matter, while below the scale quantum pressure from the uncertainty principle suppresses the smaller structure formation so that it can resolve the small scale crisis of the conventional cold dark matter model.
Statistical Cosmological Fermion Systems With Interparticle Fantom Scalar Interaction
Ignat'ev, Yurii; Ignatyev, Dmitry
2016-01-01
The article represents a research of the cosmological evolution of fermion statistical systems with fantom scalar interaction where "kinetic" term's contribution to the total energy of a scalar field is negative. As a result of analytical and numerical simulation of such systems it has been revealed a existence of four possible scenarios depending on parameters of the system and initial conditions. Among these scenarios there are scenarios with an early, intermediate and late non-relativistic stages of the cosmological evolution, all of which also have necessary inflation stage.
Canonical Quantization of the Scalar Field: The Measure Theoretic Perspective
Directory of Open Access Journals (Sweden)
José Velhinho
2015-01-01
Full Text Available This review is devoted to measure theoretical methods in the canonical quantization of scalar field theories. We present in some detail the canonical quantization of the free scalar field. We study the measures associated with the free fields and present two characterizations of the support of these measures. The first characterization concerns local properties of the quantum fields, whereas for the second one we introduce a sequence of variables that test the field behaviour at large distances, thus allowing distinguishing between the typical quantum fields associated with different values of the mass.
Geometric scalar theory of gravity beyond spherical symmetry
Moschella, U.; Novello, M.
2017-04-01
We construct several exact solutions for a recently proposed geometric scalar theory of gravity. We focus on a class of axisymmetric geometries and a big-bang-like geometry and discuss their Lorentzian character. The axisymmetric solutions are parametrized by an integer angular momentum l . The l =0 (spherical) case gives rise to the Schwarzschild geometry. The other solutions have naked singular surfaces. While not a priori obvious, all the solutions that we present here are globally Lorentzian. The Lorentzian signature appears to be a robust property of the disformal geometries solving the vacuum geometric scalar theory of gravity equations.
Quantum Prisoners' Dilemma in Fluctuating Massless Scalar Field
Huang, Zhiming
2017-12-01
Quantum systems are easily affected by external environment. In this paper, we investigate the influences of external massless scalar field to quantum Prisoners' Dilemma (QPD) game. We firstly derive the master equation that describes the system evolution with initial maximally entangled state. Then, we discuss the effects of a fluctuating massless scalar field on the game's properties such as payoff, Nash equilibrium, and symmetry. We find that for different game strategies, vacuum fluctuation has different effects on payoff. Nash equilibrium is broken but the symmetry of the game is not violated.
Scalar dark matter in scale invariant standard model
Energy Technology Data Exchange (ETDEWEB)
Ghorbani, Karim [Physics Department, Faculty of Sciences,Arak University, Arak 38156-8-8349 (Iran, Islamic Republic of); Ghorbani, Hossein [Institute for Research in Fundamental Sciences (IPM),School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2016-04-05
We investigate single and two-component scalar dark matter scenarios in classically scale invariant standard model which is free of the hierarchy problem in the Higgs sector. We show that despite the very restricted space of parameters imposed by the scale invariance symmetry, both single and two-component scalar dark matter models overcome the direct and indirect constraints provided by the Planck/WMAP observational data and the LUX/Xenon100 experiment. We comment also on the radiative mass corrections of the classically massless scalon that plays a crucial role in our study.
Scalar ether theory of gravity: a modification that seems needed
Arminjon, Mayeul
2004-01-01
The construction of the scalar theory based on the concept of gravity as Archimedes' thrust is briefly summarized, emphasizing the two (extreme) possibilities that result from this concept for the gravitational rod contraction: it can either occur in only one direction, or be isotropic. A modified equation for the scalar field is stated for the new, isotropic case. The reasons to consider this case are: i) it is almost as natural as the other case, and ii) it should avoid the violation of the...
Small scale structures in coupled scalar field dark matter
Directory of Open Access Journals (Sweden)
J. Beyer
2014-11-01
Full Text Available We investigate structure formation for ultra-light scalar field dark matter coupled to quintessence, in particular the cosmon–bolon system. The linear power spectrum is computed by a numerical solution of the coupled field equations. We infer the substructure abundance within a Milky Way-like halo. Estimates of dark halo abundances from recent galaxy surveys imply a lower bound on the bolon mass of about 9×10−22 eV. This seems to exclude a possible detection of scalar field dark matter through time variation in pulsar timing signals in the near future.
Multi-Scalar Modelling for Free-form Timber Structures
DEFF Research Database (Denmark)
Poinet, Paul; Nicholas, Paul; Tamke, Martin
2016-01-01
This paper describes a new conceptual and computational framework that employs Multi-Scalar Modelling techniques (Weinan [22]) in order to overcome the problem of big data management and to enable a more integrative digital workflow during the geometrical discretization of spatial structures...... to integrate and negotiate the different parameters that drive the same segmentation strategy within a continuous environment. The research is developed in close collaboration with two industry partners – Buro Happold and DesignToProduction – and focuses on the implementation of Multi-Scalar Modelling concepts...
The Scalar Mesons, Symmetry Breaking, Three Colors and Confinement
Tornqvist, Nils A.
2006-01-01
The same, well known, det(Sigma)+ h.c. term in effective theories, which 't Hooft showed is generated by instantons in QCD and which resolves the UA(1) problem giving mass, in particular to the $\\eta'$ is for three light flavors shown to give three classical minima along the UA(1) circle. The three minima are related to the Z(3) center of SU(3). The term also contributes, in a similar way as the diquark model of Jaffe, to an inverted scalar mass spectrum for the light scalars. The three vacua...
Scalar-tensor theory of gravitation with negative coupling constant
Smalley, L. L.; Eby, P. B.
1976-01-01
The possibility of a Brans-Dicke scalar-tensor gravitation theory with a negative coupling constant is considered. The admissibility of a negative-coupling theory is investigated, and a simplified cosmological solution is obtained which allows a negative derivative of the gravitation constant. It is concluded that a Brans-Dicke theory with a negative coupling constant can be a viable alternative to general relativity and that a large negative value for the coupling constant seems to bring the original scalar-tensor theory into close agreement with perihelion-precession results in view of recent observations of small solar oblateness.
Magnetic wormholes and vertex operators
Energy Technology Data Exchange (ETDEWEB)
Singh, H. (Institute of Physics, Bhubaneswar-751 005 (India))
1994-10-15
We consider wormhole solutions in 2+1 Euclidean dimensions. A duality transformation is introduced to derive a new action from the magnetic wormhole action of Gupta, Hughes, Preskill, and Wise. The classical solution is presented. The vertex operators corresponding to the wormhole are derived. Conformally coupled scalars and spinors are considered in the wormhole background and the vertex operators are computed.
Scalar conservation and boundedness in simulations of compressible flow
Subbareddy, Pramod K.; Kartha, Anand; Candler, Graham V.
2017-11-01
With the proper combination of high-order, low-dissipation numerical methods, physics-based subgrid-scale models, and boundary conditions it is becoming possible to simulate many combustion flows at relevant conditions. However, non-premixed flows are a particular challenge because the thickness of the fuel/oxidizer interface scales inversely with Reynolds number. Sharp interfaces can also be present in the initial or boundary conditions. When higher-order numerical methods are used, there are often aphysical undershoots and overshoots in the scalar variables (e.g. passive scalars, species mass fractions or progress variable). These numerical issues are especially prominent when low-dissipation methods are used, since sharp jumps in flow variables are not always coincident with regions of strong variation in the scalar fields: consequently, special detection mechanisms and dissipative fluxes are needed. Most numerical methods diffuse the interface, resulting in artificial mixing and spurious reactions. In this paper, we propose a numerical method that mitigates this issue. We present methods for passive and active scalars, and demonstrate their effectiveness with several examples.
Recent progress in the joint velocity-scalar PDF method
Anand, M. S.
1995-01-01
This viewgraph presentation discusses joint velocity-scalar PDF method; turbulent combustion modeling issues for gas turbine combustors; PDF calculations for a recirculating flow; stochastic dissipation model; joint PDF calculations for swirling flows; spray calculations; reduced kinetics/manifold methods; parallel processing; and joint PDF focus areas.
Asymmetric inelastic inert doublet dark matter from triplet scalar leptogenesis
Energy Technology Data Exchange (ETDEWEB)
Arina, Chiara, E-mail: chiara.arina@physik.rwth-aachen.de [Institut fuer Theoretische Teilchenphysik und Kosmologie, RWTH Aachen, 52056 Aachen (Germany); Sahu, Narendra, E-mail: Narendra.Sahu@ulb.ac.be [Service de Physique Theorique, Universite Libre de Bruxelles, CP225, Bld du Triomphe, 1050 Brussels (Belgium)
2012-01-21
The nature of dark matter (DM) particles and the mechanism that provides their measured relic abundance are currently unknown. In this paper we investigate inert scalar and vector like fermion doublet DM candidates with a charge asymmetry in the dark sector, which is generated by the same mechanism that provides the baryon asymmetry, namely baryogenesis-via-leptogenesis induced by decays of scalar triplets. At the same time the model gives rise to neutrino masses in the ballpark of oscillation experiments via type II seesaw. We discuss possible sources of depletion of asymmetry in the DM and visible sectors and solve the relevant Boltzmann equations for quasi-equilibrium decay of triplet scalars. A Monte-Carlo-Markov-Chain analysis is performed for the whole parameter space. The survival of the asymmetry in the dark sector leads to inelastic scattering off nuclei. We then apply Bayesian statistic to infer the model parameters favoured by the current experimental data, in particular the DAMA annual modulation and XENON100 exclusion limit. The latter strongly disfavours asymmetric scalar doublet DM of mass O(TeV) as required by DM-DM-bar oscillations, while an asymmetric vector like fermion doublet DM with mass around 100 GeV is a good candidate for DAMA annual modulation yet satisfying the constraints from XENON100 data.
Unifying darko-lepto-genesis with scalar triplet inflation
Energy Technology Data Exchange (ETDEWEB)
Arina, Chiara, E-mail: chiara.arina@physik.rwth-aachen.de [Institut fuer Theoretische Teilchenphysik und Kosmologie, RWTH Aachen, 52056 Aachen (Germany); Gong, Jinn-Ouk, E-mail: jinn-ouk.gong@cern.ch [Theory Division, CERN, CH-1211 Geneve 23 (Switzerland); Sahu, Narendra, E-mail: nsahu@iith.ac.in [Department of Physics, IIT Hyderabad, Yeddumailaram 502 205, Andhra Pradesh (India)
2012-12-21
We present a scalar triplet extension of the standard model to unify the origin of inflation with neutrino mass, asymmetric dark matter and leptogenesis. In presence of non-minimal couplings to gravity the scalar triplet, mixed with the standard model Higgs, plays the role of inflaton in the early Universe, while its decay to SM Higgs, lepton and dark matter simultaneously generate an asymmetry in the visible and dark matter sectors. On the other hand, in the low energy effective theory the induced vacuum expectation value of the triplet gives sub-eV Majorana masses to active neutrinos. We investigate the model parameter space leading to successful inflation as well as the observed dark matter to baryon abundance. Assuming the standard model like Higgs mass to be at 125-126 GeV, we found that the mass scale of the scalar triplet to be Less-Than-Or-Equivalent-To O(10{sup 9}) GeV and its trilinear coupling to doublet Higgs is Less-Than-Or-Equivalent-To 0.09 so that it not only evades the possibility of having a metastable vacuum in the standard model, but also lead to a rich phenomenological consequences as stated above. Moreover, we found that the scalar triplet inflation strongly constrains the quartic couplings, while allowing for a wide range of Yukawa couplings which generate the CP asymmetries in the visible and dark matter sectors.
Growth of spherical overdensities in scalar-tensor cosmologies
Nazari-Pooya, N; Pace, F; Jassur, D Mohammad-Zadeh
2016-01-01
The accelerated expansion of the universe is a rather established fact in cosmology and many different models have been proposed as a viable explanation. Many of these models are based on the standard general relativistic framework of non-interacting fluids or more recently of coupled (interacting) dark energy models, where dark energy (the scalar field) is coupled to the dark matter component giving rise to a fifth-force. An interesting alternative is to couple the scalar field directly to the gravity sector via the Ricci scalar. These models are dubbed non-minimally coupled models and give rise to a time-dependent gravitational constant. In this work we study few models falling into this category and describe how observables depend on the strength of the coupling. We extend recent work on the subject by taking into account also the effects of the perturbations of the scalar field and showing their relative importance on the evolution of the mass function. By working in the framework of the spherical collaps...
Cosmological Evolution of Statistical System of Scalar Charged Particles
Ignat'ev, Yurii; Mikhailov, Mikhail; Ignatyev, Dmitry
2014-01-01
In the paper we consider the macroscopic model of plasma of scalar charged particles, obtained by means of the statistical averaging of the microscopic equations of particle dynamics in a scalar field. On the basis of kinetic equations, obtained from averaging, and their strict integral consequences, a self-consistent set of equations is formulated which describes the self-gravitating plasma of scalar charged particles. It was obtained the corresponding closed cosmological model which also was numerically simulated for the case of one-component degenerated Fermi gas and two-component Boltzmann system. It was shown that results depend weakly on the choice of a statistical model. Two specific features of cosmological evolution of a statistical system of scalar charged particles were obtained with respect to cosmological evolution of the minimal interaction models: appearance of giant bursts of invariant cosmological acceleration $\\Omega$ at the time interval $8\\cdot10^3\\div2\\cdot10^4 t_{Pl}$ and strong heating ...
Vacuum stability and perturbativity of SU(3) scalars
Heikinheimo, Matti; Kannike, Kristjan; Lyonnet, Florian; Raidal, Martti; Tuominen, Kimmo; Veermäe, Hardi
2017-10-01
We calculate the vacuum stability conditions and renormalisation group equations for the extensions of standard model with a higher colour multiplet scalar up to the representation 15' that leaves the strong interaction asymptotically free. In order to find the vacuum stability conditions, we calculate the orbit spaces for the self-couplings of the higher multiplets, which for the representations 15 and 15' of SU(3) c are highly complicated. However, if the scalar potential is linear in orbit space variables, it is sufficient to know the convex hull of the orbit space. Knowledge of the orbit spaces also facilitates the minimisation of the potentials. In contrast to the self-couplings of other multiplets, we find that the scalar quartic couplings of the representations 3 and 8 walk rather than run, remaining nearly constant and perturbative over a vast energy range. We describe the conditions for walking couplings using a schematic model. With these technical results at hand we revise earlier results of generation of new scales with large SU(3) c scalar multiplets. Our results are easily extendable to models of new physics with additional SU(3) or SU( N) gauge symmetries.
Polchinski ERG Equation in O(N) Scalar Field Theory
Kubyshin, Yuri; Neves, Rui; Potting, Robertus
We investigate the Polchinski ERG equation for d-dimensional O(N) scalar field theory. In the context of the non-pertubative derivative expansion we find families of regular solutions and establish their relation with the physical fixed points of the theory. Special emphasis is given to the limit N=∞ for which many properties can be studied analytically.
Polchinski ERG Equation in O(N) Scalar Field Theory
Kubyshin, Yuri; Neves, Rui; Potting, Robertus
2001-01-01
We investigate the Polchinski ERG equation for d-dimensional O(N) scalar field theory. In the context of the non-perturbative derivative expansion we find families of regular solutions and establish their relation with the physical fixed points of the theory. Special emphasis is given to the large N limit for which many properties can be studied analytically.
Direct Searches for Scalar Leptoquarks at the Run II Tevatron
Energy Technology Data Exchange (ETDEWEB)
Ryan, Daniel Edward [Tufts Univ., Medford, MA (United States)
2004-08-01
This dissertation sets new limits on the mass of the scalar leptoquark from direct searches carried out at the Run II CDF detector using data from March 2001 to October 2003. The data analyzed has a total time-integrated measured luminosity of 198 pb^{-1} of p$\\bar{p}$ collisions with √s = 1.96 TeV. Leptoquarks are assumed to be pair-produced and to decay into a lepton and a quark of the same generation. They consider two possible leptoquark decays: (1) β = BR(LQ → μq) = 1.0, and (2) β = BR(LQ → μq) = 0.5. For the β = 1 channel, they focus on the signature represented by two isolated high-p_{T} muons and two isolated high-p_{T} jets. For the β = 1/2 channel, they focus on the signature represented by one isolated high-p_{T} muon, large missing transverse energy, and two isolated high-p_{T} jets. No leptoquark signal is experimentally detected for either signature. Using the next to leading order theoretical cross section for scalar leptoquark production in p$\\bar{p}$ collisions [1], they set new mass limits on second generation scalar leptoquarks. They exclude the existence of second generation scalar leptoquarks with masses below 221(175) GeV/c^{2} for the β = 1(1/2) channels.
Scalar wave scattering from Schwarzschild black holes in modified gravity
Sibandze, Dan B; Maharaj, Sunil D; Nzioki, Anne Marie; Dunsby, Peter K S
2016-01-01
We consider the scattering of gravitational waves off a Schwarzschild Black Hole in $f(R)$ gravity. We find that, while the reflection and transmission coefficients for tensor waves are the same as in General Relativity, a larger fraction of scalar waves are reflected compared to what one obtains for tensors. This may provide a novel observational signature for fourth order gravity.
Eigenvalue Problem of Scalar Fields in BTZ Black Hole Spacetime
Kuwata, Maiko; Kenmoku, Masakatsu; Shigemoto, Kazuyasu
2008-01-01
We studied the eigenvalue problem of scalar fields in the (2+1)-dimensional BTZ black hole spacetime. The Dirichlet boundary condition at infinity and the Dirichlet or the Neumann boundary condition at the horizon are imposed. Eigenvalues for normal modes are characterized by the principal quantum number $(0
Anisotropic cosmological models and generalized scalar tensor theory
Indian Academy of Sciences (India)
Abstract. In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–. Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been stud- ied and some assumptions ...
Effective action for a quantum scalar field in warped spaces
Energy Technology Data Exchange (ETDEWEB)
Hoff da Silva, J.M.; Mendonca, E.L.; Scatena, E. [Universidade Estadual Paulista ' ' Julio de Mesquita Filho' ' -UNESP, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)
2015-11-15
We investigate the one-loop corrections, at zero as well as finite temperature, of a scalar field taking place in a braneworld motivated warped background. After to reach a well-defined problem, we calculate the effective action with the corresponding quantum corrections to each case. (orig.)
Real gauge singlet scalar extension of the Standard Model: A ...
Indian Academy of Sciences (India)
... the WMAP limit and the experimental results considered here. The possible differential direct detection rates and annual variation of total detection rates have been estimated for this scalar DM candidate for two detector materials, namely Ge and Xe. Finally, the -ray flux has been calculated from the galactic centre due ...
Searches for Light Scalars, Pseudoscalars, and Gauge Bosons
Soffer, Abner
2015-01-01
In the past few years there has been a great deal of theoretical and experimental activity related to the search for low-mass scalars, pseudoscalars, and vectors in various scenarios of physics beyond the standard model. I review the current status of this topic, focusing on results obtained since FPCP 2014.
Subfilter scalar-flux vector orientation in homogeneous isotropic turbulence.
Verma, Siddhartha; Blanquart, G
2014-06-01
The geometric orientation of the subfilter-scale scalar-flux vector is examined in homogeneous isotropic turbulence. Vector orientation is determined using the eigenframe of the resolved strain-rate tensor. The Schmidt number is kept sufficiently large so as to leave the velocity field, and hence the strain-rate tensor, unaltered by filtering in the viscous-convective subrange. Strong preferential alignment is observed for the case of Gaussian and box filters, whereas the sharp-spectral filter leads to close to a random orientation. The orientation angle obtained with the Gaussian and box filters is largely independent of the filter width and the Schmidt number. It is shown that the alignment direction observed numerically using these two filters is predicted very well by the tensor-diffusivity model. Moreover, preferred alignment of the scalar gradient vector in the eigenframe is shown to mitigate any probable issues of negative diffusivity in the tensor-diffusivity model. Consequentially, the model might not suffer from solution instability when used for large eddy simulations of scalar transport in homogeneous isotropic turbulence. Further a priori tests indicate poor alignment of the Smagorinsky and stretched vortex model predictions with the exact subfilter flux. Finally, strong filter dependence of subfilter scalar-flux orientation suggests that explicit filtering may be preferable to implicit filtering in large eddy simulations.
Study of systematic errors on the scalar boson mass
Randle-Conde, Aidan
2015-01-01
In this talk I presented studies of the scalar boson mass resolution at the LHC. I described in detail the limiting factors on resolution, the methods used to determine the mass resolution, and the statistical sample size required for these results for the ZZ* and diphoton final states. I finished the talk by comparing projections for various linear collider scenarios.
Accelerating Universe and the Scalar-Tensor Theory
Directory of Open Access Journals (Sweden)
Yasunori Fujii
2012-10-01
Full Text Available To understand the accelerating universe discovered observationally in 1998, we develop the scalar-tensor theory of gravitation originally due to Jordan, extended only minimally. The unique role of the conformal transformation and frames is discussed particularly from a physical point of view. We show the theory to provide us with a simple and natural way of understanding the core of the measurements, Λobs ∼ t0−2 for the observed values of the cosmological constant and today’s age of the universe both expressed in the Planckian units. According to this scenario of a decaying cosmological constant, Λobs is this small only because we are old, not because we fine-tune the parameters. It also follows that the scalar field is simply the pseudo Nambu–Goldstone boson of broken global scale invariance, based on the way astronomers and astrophysicists measure the expansion of the universe in reference to the microscopic length units. A rather phenomenological trapping mechanism is assumed for the scalar field around the epoch of mini-inflation as observed, still maintaining the unmistakable behavior of the scenario stated above. Experimental searches for the scalar field, as light as ∼ 10−9 eV, as part of the dark energy, are also discussed.
Galileons as the Scalar Analogue of General Relativity
Klein, Remko; Ozkan, Mehmet; Roest, Diederik
2016-01-01
We establish a correspondence between general relativity with diffeomorphism invariance and scalar field theories with Galilean invariance: notions such as the Levi-Civita connection and the Riemann tensor have a Galilean counterpart. This suggests Galilean theories as the unique nontrivial
Long-lived colored scalars at the LHC
Energy Technology Data Exchange (ETDEWEB)
De la Puente, Alejandro [Carleton University, Department of Physics, Ottawa, ON (Canada); TRIUMF, Theory Department, Vancouver, BC (Canada); Szynkman, Alejandro [Universidad Nacional de La Plata, IFLP, CONICET-Dept. de Fisica, La Plata (Argentina)
2016-03-15
We study the collider signatures of a long-lived massive colored scalar transforming trivially under the weak interaction and decaying within the inner sections of a detector such as ATLAS or CMS. In our study, we assume that the colored scalar couples at tree-level to a top quark and a stable fermion, possibly arising from a dark sector or from supersymmetric extensions of the Standard Model. After implementing the latest experimental searches for long-lived colored scalars, we observe a region of parameter space consistent with a colored electroweak-singlet scalar with mass between ∝200-350 GeV and a lifetime between 0.1-1mm/c together, with a nearly degenerate dark fermion that may be probed at the √(s) = 13 TeV LHC. We show that a search strategy using a combination of cuts on missing transverse energy and impact parameters can exclude regions of parameter space not accessed by prompt searches. We show that a region of parameter space within our simplified model may naturally arise from the light-stop window regime of supersymmetric extensions of the Standard Model, where a light mostly right-handed stop has a mass slightly larger than the lightest neutralino and decays through a four-body process. (orig.)
A comparative study between all-electron scalar relativistic ...
Indian Academy of Sciences (India)
effect on the adsorption behaviour of other small molecules onto gold clusters are necessary in the future. Keywords. Small gold cluster; hydrogen molecule; adsorption; scalar relativistic effect. 1. Introduction. Small gold clusters have attracted much attention from both industrial and scientific areas due to their unique.
Classification of scalar and dyadic nonlocal optical response models
DEFF Research Database (Denmark)
Wubs, Martijn
2015-01-01
Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response...
Scalar sector of two-Higgs-doublet models: A minireview
Indian Academy of Sciences (India)
Now that a 125 GeV scalar resonance has been discovered at the LHC, with its couplings to other particles showing increasing affinity to the Standard Model Higgs-like behaviour, the 2HDM parameter space is more squeezed than ever. We briefly review the different parametrizations of the 2HDM potential and discuss the ...
Probing Scalar Couplings Through Tests Of The Equivalence Principle
Chen, J
2005-01-01
It could be that our universe contains one or more nearly-massless neutral scalars, either as low energy relics of the UV complete theory, or as dynamical dark energy as called upon by observations. Here we discuss phenomenological ramifications of the coupling of a light scalar to the Standard Model. More precisely, we argue that low energy effects of this scalar are dominated by its linear couplings to gauge field kinetic terms and to fermion mass terms, which could then source fifth forces and induce variations in the 'constants.' We determine the limits on each of these couplings, first by determining the strength of the source from each sector. We find that couplings to the gluon kinetic term and to the strange quark mass term are most constrained by current null results for long range composition dependent fifth forces. Should such as detection occur, it would most likely arise from couplings to these sectors. If we are fortunate enough to make multiple measurements of scalar forces with test body pairs...
Small visible energy scalar top iterative discriminant analysis
Indian Academy of Sciences (India)
2015-11-27
Nov 27, 2015 ... Light scalar top quarks with a small mass difference with respect to the neutralino mass are of particular cosmological interest. This study uses an iterative discriminant analysis method to optimize the expected selection efficiency at the international linear collider (ILC).
f(R) gravity: scalar perturbations in the late Universe
Czech Academy of Sciences Publication Activity Database
Eingorn, M.; Novák, Jan; Zhuk, A.
2014-01-01
Roč. 74, č. 8 (2014), s. 3005 ISSN 1434-6044 Institutional support: RVO:67985840 Keywords : nonlinear f(R) gravity * scalar cosmological perturbations * scalaron Subject RIV: BA - General Mathematics Impact factor: 5.084, year: 2014 http://link.springer.com/article/10.1140/epjc/s10052-014-3005-1
A quasifibration of spaces of positive scalar curvature metrics
Chernysh, Vladislav
2004-01-01
In this paper we show that for Riemannian manifolds with boundary the natural restriction map is a quasifibration between spaces of metrics of positive scalar curvature. We apply this result to study homotopy properties of spaces of such metrics on manifolds with boundary.
Two loop stress-energy tensor for inflationary scalar electrodynamics
Prokopec, T.; Tsamis, N.C.; Woodard, R.P.
2008-01-01
We calculate the expectation value of the coincident product of two field strength tensors at two loop order in scalar electrodynamics on de Sitter background. The result agrees with the stochastic formulation which we have developed in a companion paper [2] for the nonperturbative resummation of
A Class of Homogeneous Scalar Tensor Cosmologies with a Radiation Fluid
Yazadjiev, Stoytcho S.
We present a new class of exact homogeneous cosmological solutions with a radiation fluid for all scalar tensor theories. The solutions belong to Bianchi type VIh cosmologies. Explicit examples of nonsingular homogeneous scalar tensor cosmologies are also given.
The subgrid-scale scalar variance under supercritical pressure conditions
Masi, Enrica; Bellan, Josette
2011-08-01
To model the subgrid-scale (SGS) scalar variance under supercritical-pressure conditions, an equation is first derived for it. This equation is considerably more complex than its equivalent for atmospheric-pressure conditions. Using a previously created direct numerical simulation (DNS) database of transitional states obtained for binary-species systems in the context of temporal mixing layers, the activity of terms in this equation is evaluated, and it is found that some of these new terms have magnitude comparable to that of governing terms in the classical equation. Most prominent among these new terms are those expressing the variation of diffusivity with thermodynamic variables and Soret terms having dissipative effects. Since models are not available for these new terms that would enable solving the SGS scalar variance equation, the adopted strategy is to directly model the SGS scalar variance. Two models are investigated for this quantity, both developed in the context of compressible flows. The first one is based on an approximate deconvolution approach and the second one is a gradient-like model which relies on a dynamic procedure using the Leonard term expansion. Both models are successful in reproducing the SGS scalar variance extracted from the filtered DNS database, and moreover, when used in the framework of a probability density function (PDF) approach in conjunction with the β-PDF, they excellently reproduce a filtered quantity which is a function of the scalar. For the dynamic model, the proportionality coefficient spans a small range of values through the layer cross-stream coordinate, boding well for the stability of large eddy simulations using this model.
Passive scalar mixing studies to identify the mixing length in a supersonic confined jet
Karthick, S. K.; Rao, Srisha M. V.; Jagadeesh, G.; Reddy, K. P. J.
2017-05-01
Supersonic jet with a co-flow, closely bounded by walls is known as supersonic confined jet. Supersonic confined jet is encountered in practical devices like the supersonic ejector. Mixing of the primary and the secondary fluid inside the confined passage is complex. From a design perspective, it is necessary to have an accurate knowledge of the mixing length ( L MIX). Tracers that do not actively participate in the flow behavior but rather mark the fluids such that they faithfully follow the fluid motion are known as passive scalars. Passive scalars help in the understanding the progression of mixing amidst interacting flows. In this work, we have performed passive scalar mixing studies in a supersonic confined jet for different operating conditions using an existing low area ratio (AR = 3.7) rectangular supersonic gaseous ejector. Air is used as the working fluid in both the primary and the secondary flow. The design Mach number of the primary flow nozzle ( M PD = 1.5-3.0) and the total pressure of the primary flow ( P OP = 4.89-9.89 bar) are varied during the experiments. Using the planar laser-induced fluorescence (PLIF) technique and acetone as the passive scalar, L MIX is determined. A 266 nm Nd-YAG laser with a repetition rate of 8 Hz is used to excite the acetone molecules in the flow field, and the emitted fluorescence is captured by an ICCD camera. A new method is proposed to study the passive scalar distribution from the acetone PLIF images through digital image processing. Spatial Scalar Fluctuations Intensity (SSFI or ψ) is a parameter defined at every transverse section along the flow direction. Based on the variation of ψ along the jet, the location of L MIX can be identified. L MIX is defined as the length from the supersonic nozzle exit where ψ first attains a value of 0.05. For the first time, L MIX is quantified in a supersonic confined jet. L MIX values are observed to be in the range of 3H to 6H for the cases under study, where H is the
Mixed Inert scalar triplet dark matter, radiative neutrino masses and leptogenesis
Lu, Wen-Bin; Gu, Pei-Hong
2017-01-01
The neutral component of an inert scalar multiplet with hypercharge can provide a stable dark matter particle when its real and imaginary parts have a splitting mass spectrum. Otherwise, a tree-level dark-matter-nucleon scattering mediated by the Z boson will be much above the experimental limit. In this paper we focus on a mixed inert scalar triplet dark matter scenario where a complex scalar triplet with hypercharge can mix with another real scalar triplet without hypercharge through their ...
Martynov, M. V.; Smirnov, A. D.
2010-07-01
The production of pairs of scalar particles belonging to an arbitrary color multiplet of the SU c (3) group in proton-proton collisions is considered, and the differential and total cross sections for the corresponding partonic processes are obtained. The total cross section for the production of octets of scalar gluons F 1 and F 2 at LHC is calculated versus their mass, and their dominant decays, which are necessary for their searches, are discussed. It is shown that, for mF 1 ≲ 1000 GeV, the number of signal ttilde tbtilde b events fromthe decays of the scalar gluon F 1 may exceed substantially (by not less than three standard deviations) the Standart Model background and that the cross section for the production of scalar gluons F 1 and F 2 having masses in the region m F1, m F2 ≲ 1300 GeV may be sufficient for the efficient ( N events ≲ 100-1000 at L = 10-100 fb-1) production of these particles at LHC.
Search for scalar top quarks decaying into scalar tau leptons with ATLAS at sqrt{s} =8 TeV
AUTHOR|(INSPIRE)INSPIRE-00358725; Colijn, Auke Pieter
2017-10-06
This thesis presents a search for Supersymmetry carried out in a particular scenario arising from the Gauge Mediated Supersymmetry breaking mechanism that assumes a massless gravitino as lightest supersymmetric particle, a scalar tau lepton as next-to-lightest supersymmetric particle and the top squark as the lightest among the quark superpartners. The analysis is performed using the data collected by ATLAS at a centre-of-mass energy √s = 8 TeV during 2012 data taking, for a total of 20.3 fb−1 of integrated luminosity of proton-proton collisions. Scalar top quark candidates are searched for in events with either two light leptons, one hadronically decaying tau and one light lepton or two hadronically decaying taus in the final state. No significant excess over the Standard Model expectation is found and the results are interpreted as 95% confidence lower limits not top squark and scalar tau masses. Depending on the scalar tau mass, lower limits between 490 and 650 GeV are placed on the top squark mass wit...
Reduction of the Bethe–Salpeter wave function: Fermion–scalar ...
Indian Academy of Sciences (India)
2School of Physics and Information Science, Shanxi Normal University, Linfen 041004, China. ∗. Corresponding ... Introduction. Supersymmetry theories predict the existence of massive scalar quarks and scalar leptons, and there are possibilities for these scalar particles to form bound states with ordinary particles or with ...
In-flight scalar calibration and characterisation of the Swarm magnetometry package
DEFF Research Database (Denmark)
Tøffner-Clausen, Lars; Lesur, Vincent; Olsen, Nils
2016-01-01
We present the in-flight scalar calibration and characterisation of the Swarm magnetometry package consisting of the absolute scalar magnetometer, the vector magnetometer, and the spacecraft structure supporting the instruments. A significant improvement in the scalar residuals between the pairs ...
3+1D Massless Weyl Spinors from Bosonic Scalar-Tensor Duality
Directory of Open Access Journals (Sweden)
Andrea Amoretti
2014-01-01
Full Text Available We consider the fermionization of a bosonic-free theory characterized by the 3+1D scalar-tensor duality. This duality can be interpreted as the dimensional reduction, via a planar boundary, of the 4+1D topological BF theory. In this model, adopting the Sommerfield tomographic representation of quantized bosonic fields, we explicitly build a fermionic operator and its associated Klein factor such that it satisfies the correct anticommutation relations. Interestingly, we demonstrate that this operator satisfies the massless Dirac equation and that it can be identified with a 3+1D Weyl spinor. Finally, as an explicit example, we write the integrated charge density in terms of the tomographic transformed bosonic degrees of freedom.
Anderson, David; Yunes, Nicolás; Barausse, Enrico
2016-11-01
Certain scalar-tensor theories of gravity that generalize Jordan-Fierz-Brans-Dicke theory are known to predict nontrivial phenomenology for neutron stars. In these theories, first proposed by Damour and Esposito-Farèse, the scalar field has a standard kinetic term and couples conformally to the matter fields. The weak equivalence principle is therefore satisfied, but scalar effects may arise in strong-field regimes, e.g., allowing for violations of the strong equivalence principle in neutron stars ("spontaneous scalarization") or in sufficiently tight binary neutron-star systems ("dynamical/induced scalarization"). The original scalar-tensor theory proposed by Damour and Esposito-Farèse is in tension with Solar System constraints (for couplings that lead to scalarization), if one accounts for cosmological evolution of the scalar field and no mass term is included in the action. We extend here the conformal coupling of that theory, in order to ascertain if, in this way, Solar System tests can be passed, while retaining a nontrivial phenomenology for neutron stars. We find that, even with this generalized conformal coupling, it is impossible to construct a theory that passes both big bang nucleosynthesis and Solar System constraints, while simultaneously allowing for scalarization in isolated/binary neutron stars.
Search for scalar top quark and scalar bottom quark in proton anti-proton collisions at √s = 1.8TeV
Energy Technology Data Exchange (ETDEWEB)
Holck, Christopher Matthew [Univ. of Pennsylvania, Philadelphia, PA (United States)
1999-01-01
We present the results of a search for direct pair production of scalar top (or scalar bottom) quarks followed by the decay of scalar top (or scalar bottom) quark to a charm quark (or bottom quark) and a neutralino using 88 pb^{–1} of data from p$\\bar{p}$ collisions at √s = 1.8 TeV. The experimental signature is two charm (or two bottom) jets plus significant missing energy. The number of events which pass all our selection criteria is consistent with our expectations from Standard Model processes. We observe 11(5) events in the scalar top (scalar bottom) analysis and expect 14.5 ± 4.2(5.8 ± 1.8). We use a next-to-leading order scalar quark cross section calculation to excluded points, at the 95% C.L., as a function of the scalar top mass (or scalar bottom mass) and the neutralino mass
Directory of Open Access Journals (Sweden)
J. CHELLADURAI
2015-04-01
Full Text Available Power quality problems caused by significant increase of non-linear loads initiated intensive research in high power factor converters. Most of the modern power electronic systems like variable speed drives, DC power supplies and battery charging systems uses uncontrolled diode bridge rectifier. The uncontrolled rectifier system injects lot of harmonics in to the AC supply system there by reducing the power factor to less than unity. Single stage PWM rectifier is the novel solution to eliminate the harmonics and to improve the input power factor. In this paper, a scalar controlled PWM rectifier is modeled and the system is compared with the conventional bridge rectifier with and without filter.The major advantages of using this technique are less intensive computational control and sensor less input voltage operation. The PWM rectifier system is investigated using the different carrier and modulating signal. The scalar control technique is used to control the boost rectifier output voltage and input power factor. The performance of the rectifier with different carrier and modulating techniques were compared with respect to the Total Harmonic Distortion (THD in source current. Simulation results demonstrate the effectiveness of the modified modulating signal and triangular carrier signal for effectively reducing the source current THD.
Uniqueness of the Fock quantization of scalar fields in a Bianchi I cosmology with unitary dynamics
Cortez, Jerónimo; Navascués, Beatriz Elizaga; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.
2016-11-01
The Fock quantization of free scalar fields is subject to an infinite ambiguity when it comes to choosing a set of annihilation and creation operators, a choice that is equivalent to the determination of a vacuum state. In highly symmetric situations, this ambiguity can be removed by asking vacuum invariance under the symmetries of the system. Similarly, in stationary backgrounds, one can demand time-translation invariance plus positivity of the energy. However, in more general situations, additional criteria are needed. For the case of free (test) fields minimally coupled to a homogeneous and isotropic cosmology, it has been proven that the ambiguity is resolved by introducing the criterion of unitary implementability of the quantum dynamics, as an endomorphism in Fock space. This condition determines a specific separation of the time dependence of the field, so that this splits into a very precise background dependence and a genuine quantum evolution. Furthermore, together with the condition of vacuum invariance under the spatial Killing symmetries, unitarity of the dynamics selects a unique Fock representation for the canonical commutation relations, up to unitary equivalence. In this work, we generalize these results to anisotropic spacetimes with shear, which are therefore not conformally symmetric, by considering the case of a free scalar field in a Bianchi I cosmology.
Structures and Intermittency in a Passive Scalar Model
Vergassola, M.; Mazzino, A.
1997-09-01
Perturbative expansions for intermittency scaling exponents in the Kraichnan passive scalar model [Phys. Rev. Lett. 72, 1016 (1994)] are investigated. A one-dimensional compressible model is considered for this purpose. High resolution Monte Carlo simulations using an Ito approach adapted to an advecting velocity field with a very short correlation time are performed and lead to clean scaling behavior for passive scalar structure functions. Perturbative predictions for the scaling exponents around the Gaussian limit of the model are derived as in the Kraichnan model. Their comparison with the simulations indicates that the scale-invariant perturbative scheme correctly captures the inertial range intermittency corrections associated with the intense localized structures observed in the dynamics.
A T Matrix Method Based upon Scalar Basis Functions
Mackowski, D.W.; Kahnert, F. M.; Mishchenko, Michael I.
2013-01-01
A surface integral formulation is developed for the T matrix of a homogenous and isotropic particle of arbitrary shape, which employs scalar basis functions represented by the translation matrix elements of the vector spherical wave functions. The formulation begins with the volume integral equation for scattering by the particle, which is transformed so that the vector and dyadic components in the equation are replaced with associated dipole and multipole level scalar harmonic wave functions. The approach leads to a volume integral formulation for the T matrix, which can be extended, by use of Green's identities, to the surface integral formulation. The result is shown to be equivalent to the traditional surface integral formulas based on the VSWF basis.
Exploring the structure of a possible light scalar nonet
Energy Technology Data Exchange (ETDEWEB)
Black, Deirdre; Fariborz, Amir H.; Schechter, Joseph [Syracuse Univ., Dept. of Physics, Syracuse, NY (United States)
2000-12-01
We first review the work of the Syracuse group, which uses an effective chiral Lagrangian approach, on meson-meson scattering. An illustration providing evidence for the existence of a strange scalar resonance of mass around 900 MeV is given. An attempt to fit this {kappa}(900) together with a similarly obtained {sigma}(560) and the well known a{sub 0}(980) and f{sub 0}(980) into a nonet pattern suggests that the underlying structure is closer to a dual quark-dual antiquark than to a quark-antiquark. A possible mechanism to explain a next higher-in mass scalar meson nonet is also discussed. This involves mixing between qq-bar and qqq-barq-bar states. (author)
Stationary scalar clouds around a BTZ black hole
Ferreira, Hugo R. C.; Herdeiro, Carlos A. R.
2017-10-01
We establish the existence of stationary clouds of massive test scalar fields around BTZ black holes. These clouds are zero-modes of the superradiant instability and are possible when Robin boundary conditions (RBCs) are considered at the AdS boundary. These boundary conditions are the most general ones that ensure the AdS space is an isolated system, and include, as a particular case, the commonly considered Dirichlet or Neumann-type boundary conditions (DBCs or NBCs). We obtain an explicit, closed form, resonance condition, relating the RBCs that allow the existence of normalizable (and regular on and outside the horizon) clouds to the system's parameters. Such RBCs never include pure DBCs or NBCs. We illustrate the spatial distribution of these clouds, their energy and angular momentum density for some cases. Our results show that BTZ black holes with scalar hair can be constructed, as the non-linear realization of these clouds.
Performance analysis of compressed sensing with uniform scalar quantisation
Lu, Wei; Wang, Desheng; Liu, Jian; Liu, Yingzhuang
2014-08-01
In compressed sensing, the sampling rate can be greatly reduced based on the sparsity of the original signal; however, quantisation is one key aspect in signal acquirement. This article studies the scalar quantisation and its impacts on the compressed sensing. We consider the case in which both the original and the measurement signals are quantised or discrete, which widely exists in the practical applications such as the finite precision signals in the computer and the finite-set original signal in communication systems. We derive the recovery probability bound and the necessary measurement number bound for compressed sensing with scalar quantisation and simulate three modified compressed sensing recovery algorithms. Simulations show that coarse quantisation can be applied in compressed sensing for discrete or quantised sparse signal with sampling and storage efficiency.
Treatment of anisotropic damage development within a scalar damage formulation
Chan, K. S.; Bodner, S. R.; Munson, D. E.
This paper is concerned with describing a damage mechanics formulation which provides for non-isotropic effects using a scalar damage variable. An investigation has been in progress for establishing the constitutive behavior of rock salt at long times and low to moderate confining pressures in relation to the possible use of excavated rooms in rock salt formations as repositories for nuclear waste. An important consideration is the effect of damage manifested principally by the formation of shear induced wing cracks which have a stress dependent orientation. The analytical formulation utilizes a scalar damage parameter, but is capable of indicating the non-isotropic dependence of inelastic straining on the stress state and the confining pressure. Also, the equations indicate the possibility of volumetric expansions leading to the onset of tertiary creep and eventually rupture if the damage variable reaches a critical value.
Scalar field as a Bose-Einstein condensate?
Energy Technology Data Exchange (ETDEWEB)
Castellanos, Elías; Escamilla-Rivera, Celia [Mesoamerican Centre for Theoretical Physics (ICTP regional headquarters in Central America, the Caribbean and Mexico), Universidad Autónoma de Chiapas, Carretera Zapata Km. 4, Real del Bosque (Terán), 29040, Tuxtla Gutiérrez, Chiapas (Mexico); Macías, Alfredo [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, Mexico D.F. 09340 (Mexico); Núñez, Darío, E-mail: ecastellanos@mctp.mx, E-mail: cescamilla@mctp.mx, E-mail: amac@xanum.uam.mx, E-mail: nunez@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., A.P. 70-543, México D.F. 04510 (Mexico)
2014-11-01
We discuss the analogy between a classical scalar field with a self-interacting potential, in a curved spacetime described by a quasi-bounded state, and a trapped Bose-Einstein condensate. In this context, we compare the Klein-Gordon equation with the Gross-Pitaevskii equation. Moreover, the introduction of a curved background spacetime endows, in a natural way, an equivalence to the Gross-Pitaevskii equation with an explicit confinement potential. The curvature also induces a position dependent self-interaction parameter. We exploit this analogy by means of the Thomas-Fermi approximation, commonly used to describe the Bose-Einstein condensate, in order to analyze the quasi bound scalar field distribution surrounding a black hole.
Search for First Generation Scalar Leptoquarks in the e$\
Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Benucci, Leonardo; De Wolf, Eddi A; Janssen, Xavier; Maes, Joris; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Cimmino, Anna; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; Cortina Gil, Eduardo; De Favereau De Jeneret, Jerome; Delaere, Christophe; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Carvalho, Wagner; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Aly, Ayman; Ellithi Kamel, Ali; Khalil, Shaaban; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Wyslouch, Bolek; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Lomidze, David; Anagnostou, Georgios; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Ata, Metin; Bender, Walter; Dietz-Laursonn, Erik; Erdmann, Martin; Frangenheim, Jens; Hebbeker, Thomas; Hinzmann, Andreas; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Thomas, Maarten; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katkov, Igor; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Raval, Amita; Rosin, Michele; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Görner, Martin; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schröder, Matthias; Schum, Torben; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Bauer, Julia; Berger, Joram; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Sikler, Ferenc; Veres, Gabor Istvan; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Bhattacharya, Satyaki; Choudhary, Brajesh C; Gomber, Bhawna; Gupta, Pooja; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Kumar, Ashok; Naimuddin, Md; Ranjan, Kirti; Shivpuri, Ram Krishen; Dutta, Suchandra; Sarkar, Subir; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Grandi, Claudio; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; De Mattia, Marco; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dohhee; Son, Dong-Chul; Son, Taejin; Kim, Jaeho; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Rhee, Han-Bum; Seo, Eunsung; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Tam, Jason; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Brona, Grzegorz; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Ribeiro, Pedro Quinaz; Seixas, Joao; Varela, Joao; Afanasiev, Serguei; Bunin, Pavel; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Slabospitsky, Sergey; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Bona, Marcella; Breuker, Horst; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Maurisset, Aurelie; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Racz, Attila; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Simon, Michal; Sphicas, Paraskevas; Spiropulu, Maria; Stoye, Markus; Tropea, Paola; Tsirou, Andromachi; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Starodumov, Andrei; Bäni, Lukas; Bortignon, Pierluigi; Caminada, Lea; Chanon, Nicolas; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Milenovic, Predrag; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Stieger, Benjamin; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Regenfus, Christian; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Özbek, Melih; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Hansen, Maria; Hartley, Dominic; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Ward, Simon; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; MacEvoy, Barry C; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Liu, Hongxuan; Henderson, Conor; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Salur, Sevil; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Chandra, Avdhesh; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Shen, Benjamin C; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Cassel, David; Chatterjee, Avishek; Das, Souvik; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Salvati, Emmanuele; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gunthoti, Kranti; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Khatiwada, Rakshya; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pordes, Ruth; Prokofyev, Oleg; Saoulidou, Niki; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Prescott, Craig; Remington, Ronald; Schmitt, Michael Houston; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Ceron, Cristobal; Gaultney, Vanessa; Kramer, Laird; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Mesa, Dalgis; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Quertenmont, Loic; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Ralich, Robert; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hamdan, Saleh; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Wenger, Edward Allen; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Dudero, Phillip Russell; Franzoni, Giovanni; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jones, John; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; Everett, Adam; Garfinkel, Arthur F; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Jindal, Pratima; Parashar, Neeti; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Yan, Ming; Atramentov, Oleksiy; Barker, Anthony; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Pivarski, James; Safonov, Alexei; Sengupta, Sinjini; Tatarinov, Aysen; Toback, David; Weinberger, Michael; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Mane, Poonam; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Issah, Michael; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Efron, Jonathan; Flood, Kevin; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Palmonari, Francesco; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc
2013-07-16
A search for pair-production of first generation scalar leptoquarks is performed in the final state containing an electron, a neutrino, and at least two jets using proton-proton collision data at sqrt(s)=7 TeV. The data were collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 36 inverse picobarns. The number of observed events is in good agreement with the predictions for standard model processes. Prior CMS results in the dielectron channel are combined with this electron+neutrino search. A 95% confidence level combined lower limit is set on the mass of a first generation scalar leptoquark at 340 GeV for beta=0.5, where beta is the branching fraction of the leptoquark to an electron and a quark. These results represent the most stringent direct limits to date for values of beta greater than 0.05.
Quantum Gravity Effects in Scalar, Vector and Tensor Field Propagation
Dutta, Anindita
Quantum theory of gravity deals with the physics of the gravitational field at Planck length scale (10-35 m). Even though it is experimentally hard to reach the Planck length scale, on can look for evidence of quantum gravity that is detectable in astrophysics. In this thesis, we try to find effects of loop quantum gravity corrections on observable phenomena. We show that the quantum fluctuation strain for LIGO data would be 10 -125 on the Earth. Th correction is, however, substantial near the black hole horizon. We discuss the effect of this for scalar field propagation followed by vector and tensor fields. For the scalar field, the correction introduces a new asymmetry; for the vector field, we found a new perturbation solution and for the tensor field, we found the corrected Einstein equations which are yet to solve. These will affect phenomena like Hawking radiation, black hole entropy and gravitational waves.
Extension of warm inflation to non-canonical scalar fields
Zhang, Xiao-Min
2014-01-01
We extend the warm inflationary scenario to the case of the non-canonical scalar fields. The equation of motion and the other basic equations of this new scenario are obtained. The Hubble damped term is enhanced in non-canonical inflation. A linear stability analysis is performed to give the proper slow roll conditions in warm non-canonical inflation. We study the density fluctuations in the new picture and obtain an approximate analytic expression of the power spectrum. The energy scale at the horizon crossing is depressed by both non-canonical effect and thermal effect, so does the tensor-to-scalar ratio. Besides the synergy, the non-canonical effect and the thermal effect are competing in the case of the warm non-canonical inflation.
Symmetric digit sets for elliptic curve scalar multiplication without precomputation.
Heuberger, Clemens; Mazzoli, Michela
2014-08-28
We describe a method to perform scalar multiplication on two classes of ordinary elliptic curves, namely [Formula: see text] in prime characteristic [Formula: see text], and [Formula: see text] in prime characteristic [Formula: see text]. On these curves, the 4-th and 6-th roots of unity act as (computationally efficient) endomorphisms. In order to optimise the scalar multiplication, we consider a width- w -NAF (Non-Adjacent Form) digit expansion of positive integers to the complex base of τ , where τ is a zero of the characteristic polynomial [Formula: see text] of the Frobenius endomorphism associated to the curve. We provide a precomputationless algorithm by means of a convenient factorisation of the unit group of residue classes modulo τ in the endomorphism ring, whereby we construct a digit set consisting of powers of subgroup generators, which are chosen as efficient endomorphisms of the curve.
Matrix multiplication operations using pair-wise load and splat operations
Eichenberger, Alexandre E.; Gschwind, Michael K.; Gunnels, John A.; Salapura, Valentina
2017-03-21
Mechanisms for performing a matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A pair-wise load and splat operation is performed to load a pair of scalar values of a second vector operand and replicate the pair of scalar values within a second target vector register. An operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product is accumulated with other partial products and a resulting accumulated partial product is stored. This operation may be repeated for a second pair of scalar values of the second vector operand.
Amsler, Claude
2000-01-01
The experimental status of glueballs and hybrids is briefly reviewed. Recent results for scalar mesons suggest that f sub 0 (1500) is the ground state scalar glueball. The identification of the first excited glueball state, a tensor, is premature, although candidates are available. We have now evidence for at least two mesons, pi sub 1 (1400) and pi sub 1 (1600), with quantum numbers incompatible with a qq-bar structure.
Interpreting Dynamically-Averaged Scalar Couplings in Proteins
DEFF Research Database (Denmark)
Lindorff-Larsen, Kresten; Best, Robert B.; Vendruscolo, Michele
2005-01-01
The experimental determination of scalar three-bond coupling constants represents a powerful method to probe both the structure and dynamics of proteins. The detailed structural interpretation of such coupling constants is usually based on Karplus relationships, which allow the measured couplings...... present a method to derive such parameters that uses ensembles of conformations determined through dynamic-ensemble refinement - a method that provides structural ensembles that simultaneously represent both the structure and the associated dynamics of a protein....
Fractal dimension crossovers in turbulent passive scalar signals
Grossmann, S; Grossmann, Siegfried; Lohse, Detlef
1993-01-01
Abstract: The fractal dimension $\\delta_g^{(1)}$ of turbulent passive scalar signals is calculated from the fluid dynamical equation. $\\delta_g^{(1)}$ depends on the scale. For small Prandtl (or Schmidt) number $Pr 1$ one gets a third, intermediate range in which the signal is extremely wrinkled and has $D_\\theta(r)$ has a plateau. We calculate the $Pr$-dependence of the crossovers. Comparison with a numerical reduced wave vector set calculation gives good agreement with our predictions.
Minimal scalar-less matter-coupled supergravity
Energy Technology Data Exchange (ETDEWEB)
Dall' Agata, Gianguido, E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau (France); Ferrara, Sergio [Theory Unit, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Zwirner, Fabio [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Theory Unit, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)
2016-01-10
We build the minimal supergravity model where the nilpotent chiral goldstino superfield is coupled to a chiral matter superfield, realising a different non-linear representation through a mixed nilpotency constraint. The model describes the spontaneous breaking of local supersymmetry in the presence of a generically massive Majorana fermion, but in the absence of elementary scalars. The sign and the size of the cosmological constant, the spectrum and the four-fermion interactions are controlled by suitable parameters.
Quenched scalar-meson correlator with domain wall fermions
Energy Technology Data Exchange (ETDEWEB)
Prelovsek, S.; Orginos, K
2003-05-01
We study the q-barq singlet and non-singlet scalar-meson masses using domain wall fermions and the quenched approximation. The singlet mass is found to be smaller than the non-singlet mass and indicates that the lowest singlet meson state could be lighter than 1 GeV. The two-point functions for very small quark masses are compared with expectations from the small-volume chiral perturbation theory and the presence of fermionic zero modes.
Insight into the scalar mesons from a lattice calculation
Energy Technology Data Exchange (ETDEWEB)
Alford, Mark E-mail: alford@mit.edu; Jaffe, R.L
2000-07-03
We study the possibility that the light scalar mesons are q-bar{sup 2}q{sup 2} states rather than q-barq . We perform a lattice QCD calculation of pseudoscalar meson scattering amplitudes, ignoring quark loops and quark annihilation, and find indications that for sufficiently heavy quarks there is a stable four-quark bound state with J{sup PC}=0{sup ++} and non-exotic flavor quantum numbers.
Scaling symmetry and scalar hairy Lifshitz black holes
Energy Technology Data Exchange (ETDEWEB)
Hyun, Seungjoon [Department of Physics, College of Science, Yonsei University, Seoul 120-749 (Korea, Republic of); Jeong, Jaehoon [Institute of Theoretical Physics, Aristotle University of Thessaloniki, 54124, Thessaloniki (Greece); Park, Sang-A; Yi, Sang-Heon [Department of Physics, College of Science, Yonsei University, Seoul 120-749 (Korea, Republic of)
2015-10-15
By utilizing the scaling symmetry of the reduced action for planar black holes, we obtain the corresponding conserved charge. We use the conserved charge to find the generalized Smarr relation of static hairy planar black holes in various dimensions. Our results not only reproduce the relation in the various known cases but also give the new relation in the Lifshitz planar black holes with the scalar hair.
Polchinski ERG equation and 2D scalar field theory
Kubyshin, Yuri; Neves, Rui; Potting, Robertus
1998-01-01
We investigate a $Z_2$-symmetric scalar field theory in two dimensions using the Polchinski exact renormalization group equation expanded to second order in the derivative expansion. We find preliminary evidence that the Polchinski equation is able to describe the non-perturbative infinite set of fixed points in the theory space, corresponding to the minimal unitary series of 2D conformal field theories. We compute the anomalous scaling dimension $\\eta$ and the correlation l...
Minimal scalar-less matter-coupled supergravity
Directory of Open Access Journals (Sweden)
Gianguido Dall'Agata
2016-01-01
Full Text Available We build the minimal supergravity model where the nilpotent chiral goldstino superfield is coupled to a chiral matter superfield, realising a different non-linear representation through a mixed nilpotency constraint. The model describes the spontaneous breaking of local supersymmetry in the presence of a generically massive Majorana fermion, but in the absence of elementary scalars. The sign and the size of the cosmological constant, the spectrum and the four-fermion interactions are controlled by suitable parameters.
Local transformations of units in scalar-tensor cosmology
Energy Technology Data Exchange (ETDEWEB)
Catena, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pietroni, M. [INFN, Sezione di Padova (Italy); Scarabello, L. [INFN, Sezione di Padova (Italy)]|[Padua Univ. (Italy). Dipt. di Fisica
2006-10-15
The physical equivalence of Einstein and Jordan frame in Scalar Tensor theories has been explained by Dicke in 1962: they are related by a local transformation of units. We discuss this point in a cosmological framework. Our main result is the construction of a formalism in which all the physical observables are frame-invariant. The application of this approach to CMB codes is at present under analysis. (orig.)
Bounded scalar perturbations in bouncing brane world cosmologies
Maier, Rodrigo; Pace, Francesco; Soares, Ivano Damião
2013-11-01
We examine the dynamics of scalar perturbations in closed Friedmann-Lemaître-Robertson-Walker universes in the framework of brane world theory with a timelike extra dimension. In this scenario, the unperturbed Friedmann equations contain additional terms arising from the bulk-brane interaction that implement nonsingular bounces in the models with a cosmological constant and noninteracting perfect fluids. The structure of the phase space of the models allows for two basic configurations, namely, one bounce solutions and eternal universes. Assuming that the matter content of the model is given by dust and radiation, we derive the dynamical field equations for scalar hydrodynamical perturbations considering either a conformally flat (de Sitter) bulk or a perturbed bulk. The dynamical system built with these equations is extremely involved. Nevertheless, in this paper we perform a numerical analysis which can shed some light on the study of cosmological scalar perturbations in bouncing brane world models. From a mathematical point of view we show that although the bounce enhances the amplitudes of scalar perturbations for one bounce models in the case of a de Sitter bulk, the amplitudes of the perturbations remain sufficiently small and bounded relative to the background values up to a certain scale. For one bounce models in the case of a perturbed bulk the amplitudes of all perturbations (apart from the Weyl fluid energy density) remain sufficiently small and bounded relative to the background values for any scale of the perturbations. We also discuss and compare the stability and bounded behavior of the perturbations in the late accelerated phase of one bounce solutions. For eternal universes we argue that some of these features are maintained only for early times (typically of the order of the first bounce). In this sense we show that eternal solutions are highly unstable configurations considering the background model of this paper.
Higgs particles interacting via a scalar Dark Matter field
Directory of Open Access Journals (Sweden)
Bhattacharya Yajnavalkya
2016-01-01
Full Text Available We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.
Analysis of scalar dissipation in terms of vorticity geometry in isotropic turbulence
Gonzalez, Michel
2016-01-01
The mechanisms promoting scalar dissipation through scalar gradient production are scrutinized in terms of vorticity alignment with respect to strain principal axes. For that purpose, a stochastic Lagrangian model for the velocity gradient tensor and the scalar gradient vector is used. The model results show that the major part of scalar dissipation occurs for stretched vorticity, namely when the vorticity vector aligns with the extensional and intermediate strain eigenvectors. More specifically, it appears that the mean scalar dissipation is well represented by the sample defined by alignment with the extensional strain, while the most intense scalar dissipation is promoted by the set of events for which vorticity aligns with the intermediate strain. This difference is explained by rather subtle mechanisms involving the statistics of both the strain intensities and the scalar gradient alignment resulting from these special alignments of vorticity. The analysis allowing for the local flow structure confirms t...
Constraints from high redshift supernovae upon scalar field cosmologies
Energy Technology Data Exchange (ETDEWEB)
Frieman, J.A. [NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois60510 (United States)]|[Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois60637 (United States); Waga, I. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ, 21945-970 (Brazil)
1998-04-01
Recent observations of high-redshift type Ia supernovae have placed stringent constraints on the cosmological constant {Lambda}. We explore the implications of these SNe observations for cosmological models in which a classically evolving scalar field currently dominates the energy density of the Universe. Such models have been shown to share the advantages of {Lambda} models: compatibility with the spatial flatness predicted by inflation; a Universe older than the standard Einstein{endash}de Sitter model; and, combined with cold dark matter, predictions for large-scale structure formation in good agreement with data from galaxy surveys. Compared to the cosmological constant, these scalar field models are consistent with the SNe observations for a lower matter density, {Omega}{sub m0}{approximately}0.2, and a higher age, H{sub 0}t{sub 0}{approx_gt}1. Combined with the fact that scalar field models imprint a distinctive signature on the cosmic microwave background anisotropy, they remain currently viable and should be testable in the near future. {copyright} {ital 1998} {ital The American Physical Society}
Scalar dissipation rates in non-conservative transport systems
Engdahl, Nicholas B.; Ginn, Timothy R.; Fogg, Graham E.
2013-06-01
This work considers how the inferred mixing state of diffusive and advective-diffusive systems will vary over time when the solute masses are not constant over time. We develop a number of tools that allow the scalar dissipation rate to be used as a mixing measure in these systems without calculating local concentration gradients. The behavior of dissipation rates is investigated for single and multi-component kinetic reactions and a commonly studied equilibrium reaction. The scalar dissipation rate of a tracer experiencing first-order decay can be determined exactly from the decay constant and the dissipation rate of a passive tracer, and the mixing rate of a conservative component is not the superposition of the solute specific mixing rates. We then show how the behavior of the scalar dissipation rate can be determined from a limited subset of an infinite domain. Corrections are derived for constant and time dependent limits of integration the latter is used to approximate dissipation rates in advective-diffusive systems. Several of the corrections exhibit similarities to the previous work on mixing, including non-Fickian mixing. This illustrates the importance of accounting for the effects that reaction systems or limited monitoring areas may have on the inferred mixing state.
Unifying darko-lepto-genesis with scalar triplet inflation
Arina, Chiara; Sahu, Narendra
2012-01-01
We present a scalar triplet extension of the standard model to unify the origin of inflation with neutrino mass, asymmetric dark matter and leptogenesis. In presence of non-minimal couplings to gravity the scalar triplet, mixed with the standard model Higgs, plays the role of inflaton in the early Universe, while its decay to SM Higgs, lepton and dark matter simultaneously generate an asymmetry in the visible and dark matter sectors. On the other hand, in the low energy effective theory the induced vacuum expectation value of the triplet gives sub-eV Majorana masses to active neutrinos. We investigate the model parameter space leading to successful inflation as well as the observed dark matter to baryon abundance. Assuming the standard model like Higgs mass to be at 125-126 GeV, we found that the mass scale of the scalar triplet to be ~ O(10^9) GeV and its trilinear coupling to doublet Higgs is ~ 0.09 so that it not only evades the possibility of having a metastable vacuum in the standard model, but also lead...
Radiative decays of a singlet scalar boson through vectorlike quarks
Yoon, Yeo Woong; Cheung, Kingman; Kang, Sin Kyu; Song, Jeonghyeon
2017-09-01
If the standard model Higgs boson were much heavier, it would appear as a broad resonance since its decay into a pair of longitudinally polarized gauge bosons is highly enhanced. We study whether the same enhancement happens at loop level in a simple extension of the standard model with a singlet scalar boson S and three vectorlike quark multiplets. In order to focus on the loop effects, we assume that S does not interact with the standard model particles at tree level. Vectorlike quarks running in the loop link the singlet scalar S to the standard model world. There are two kinds of loop effects in the S phenomenology—the mixing with the Higgs boson and the radiative decays into h h , W W , Z Z , g g , and γ γ . We show that the crucial conditions for the loop-induced longitudinal polarization enhancement are the large mass differences among vectorlike quarks. The current LHC constraints from the heavy scalar searches and the Higgs precision data are shown to be very significant: the mixing angle with the Higgs boson should be smaller than about 0.1 for mS=750 GeV .
Directly Measuring the Tensor Structure of the Scalar Coupling to Gauge Bosons
Energy Technology Data Exchange (ETDEWEB)
Stolarski, Daniel; Vega-Morales, Roberto
2012-12-01
Kinematic distributions in the decays of the newly discovered resonance to four leptons can provide a direct measurement of the tensor structure of the particle's couplings to gauge bosons. Even if the particle is shown to be a parity even scalar, measuring this tensor structure is a necessary step in determining if this particle is responsible for giving mass to the Z. We consider a Standard Model like coupling as well as coupling via a dimension five operator to either ZZ or Z\\gamma. We show that using full kinematic information from each event allows discrimination between renormalizable and higher dimensional coupling to ZZ at the 95% confidence level with O(50) signal events, and coupling to Z\\gamma can be distinguished with as few as 20 signal events. This shows that these measurements can be useful even with this year's LHC data.
DEFF Research Database (Denmark)
Möllers, Jan
2013-01-01
For any Hermitian Lie group $G$ of tube type we give a geometric quantization procedure of certain $K_{\\mathbb{C}}$-orbits in $\\mathfrak{p}_{\\mathbb{C}}^*$ to obtain all scalar type highest weight representations. Here $K_{\\mathbb{C}}$ is the complexification of a maximal compact subgroup $K......\\subseteq G$ with corresponding Cartan decomposition $\\mathfrak{g}=\\mathfrak{k}+\\mathfrak{p}$ of the Lie algebra of $G$. We explicitly realize every such representation $\\pi$ on a Fock space consisting of square integrable holomorphic functions on its associated variety $Ass......\\"odinger model of $\\pi$ is a realization on $L^2(\\mathcal{O})$, where $\\mathcal{O}\\subseteq\\mathcal{O}^G$ is a Lagrangian submanifold. We construct an intertwining operator from the Schr\\"odinger model to the new Fock model, the generalized Segal-Bargmann transform, which gives a geometric quantization...
The edge of entanglement: getting the boundary right for non-minimally coupled scalar fields
Energy Technology Data Exchange (ETDEWEB)
Herzog, Christopher P. [C.N. Yang Institute for Theoretical Physics,Department of Physics and Astronomy, Stony Brook University,Stony Brook, NY 11794 (United States); Nishioka, Tatsuma [Department of Physics, Faculty of Science, The University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan)
2016-12-27
In entanglement computations for a free scalar field with coupling to background curvature, there is a boundary term in the modular Hamiltonian which must be correctly specified in order to get sensible results. We focus here on the entanglement in flat space across a planar interface and (in the case of conformal coupling) other geometries related to this one by Weyl rescaling of the metric. For these “half-space entanglement” computations, we give a new derivation of the boundary term and revisit how it clears up a number of puzzles in the literature, including mass corrections and twist operator dimensions. We also discuss how related boundary terms may show up in other field theories.
Scalar-pseudoscalar interaction in the francium atom
Skripnikov, L. V.; Maison, D. E.; Mosyagin, N. S.
2017-02-01
Fr atom can be successively used to search for the atomic permanent electric dipole moment (EDM) [Hyperfine Interact. 236, 53 (2015), 10.1007/s10751-015-1193-1; J. Phys.: Conference Series 691, 012017 (2016), 10.1088/1742-6596/691/1/012017]. It can be induced by the permanent electron EDM predicted by modern extensions of the standard model to be nonzero at the level accessible by the new generation of EDM experiments. We consider another mechanism of the atomic EDM generation in Fr. This is caused by the scalar-pseudoscalar nucleus-electron neutral current interaction with the dimensionless strength constant kT ,P. Similar to the electron EDM this interaction violates both spatial parity and time-reversal symmetries and can also induce permanent atomic EDM. It was shown in [Phys. Rev. D 89, 056006 (2014), 10.1103/PhysRevD.89.056006] that the scalar-pseudoscalar contribution to the atomic EDM can dominate over the direct contribution from the electron EDM within the standard model. We report high-accuracy combined all-electron and two-step relativistic coupled cluster treatment of the effect from the scalar-pseudoscalar interaction in the Fr atom. Up to the quadruple cluster amplitudes within the coupled cluster method with single, double, triple, and noniterative quadruple amplitudes, CCSDT(Q), were included in correlation treatment. This calculation is required for the interpretation of the experimental data in terms of kT ,P. The resulted EDM of the Fr atom expressed in terms of kT ,P is dFr=kT ,P4.50 ×10-18e cm , where e is the (negative) charge of the electron. The value of the ionization potential of the 2S1 /2 ground state of Fr calculated within the same methods is in very good agreement with the experimental datum.
Behavior of light polarization in photon-scalar interaction
Azizi, Azizollah; Nasirimoghadam, Soudabe
2017-11-01
Quantum theories of gravity help us to improve our insight into the gravitational interactions. Motivated by the interesting effect of gravity on the photon trajectory, we treat a quantum recipe concluding a classical interaction of light and a massive object such as the sun. We use the linear quantum gravity to compute the classical potential of a photon interacting with a massive scalar. The leading terms have a traditional 1/r subordinate and demonstrate a polarization-dependent behavior. This result challenges the equivalence principle; attractive and/or repulsive interactions are admissible.
Scalar field collapse in a conformally flat spacetime
Energy Technology Data Exchange (ETDEWEB)
Chakrabarti, Soumya; Banerjee, Narayan [Indian Institute of Science Education and Research, Kolkata, Department of Physical Sciences, Mohanpur, West Bengal (India)
2017-03-15
The collapse scenario of a scalar field along with a perfect fluid distribution was investigated for a conformally flat spacetime. The theorem for the integrability of an anharmonic oscillator has been utilized. For a pure power-law potential of the form φ{sup n+1}, it was found that a central singularity is formed which is covered by an apparent horizon for n > 0 and n < -3. Some numerical results have also been presented for a combination of two different powers of φ in the potential. (orig.)
Design of structurally colored surfaces based on scalar diffraction theory
DEFF Research Database (Denmark)
Johansen, Villads Egede; Andkjær, Jacob Anders; Sigmund, Ole
2014-01-01
In this paper we investigate the possibility of controlling the color and appearance of surfaces simply by modifying the height profile of the surface on a nanoscale level. The applications for such methods are numerous: new design possibilities for high-end products, color engraving on any highly...... reflective surface, paint-free text and coloration, UV-resistant coloring, etc. In this initial study, the main focus is on finding a systematic way to obtain these results. For now the simulation and optimization is based on a simple scalar diffraction theory model. From the results, several design issues...
Early ontogenesis of the angelfish, Pterophyllum scalare Schultze, 1823 (Cichlidae)
Agata Korzelecka-Orkisz; Zuzanna Szalast; Dorota Pawlos; Izabella Smaruj; Adam Tañski; Joanna Szulc; Krzysztof Formicki
2012-01-01
This study describes the egg membrane structures of angelfish (Pterophyllum scalare), morpho-physiological changes during angelfish embryogenesis from activation to hatching under optimal conditions (28°C; pH 6.8), the developing larvae and fry, the effect of alkaline pH on the early developmental stages of the species, the relationship between food item size and fry survival. Egg membranes (thin, transparent, 1.67-2.18 µm thick) are covered by a sticky substance. The amber-coloured angelfish...
Topological geons with self-gravitating phantom scalar field
Kratovitch, P. V.; Potashov, I. M.; Tchemarina, Ju V.; Tsirulev, A. N.
2017-12-01
A topological geon is the quotient manifold M/Z 2 where M is a static spherically symmetric wormhole having the reflection symmetry with respect to its throat. We distinguish such asymptotically at solutions of the Einstein equations according to the form of the time-time metric function by using the quadrature formulas of the so-called inverse problem for self-gravitating spherically symmetric scalar fields. We distinguish three types of geon spacetimes and illustrate them by simple examples. We also study possible observational effects associated with bounded geodesic motion near topological geons.
Spinning scalar solitons in anti-de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Radu, Eugen, E-mail: eugen.radu@uni-oldenburg.de [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Subagyo, Bintoro [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany)
2012-10-31
We present spinning Q-balls and boson stars in four-dimensional anti-de Sitter spacetime. These are smooth, horizonless solutions for gravity coupled to a massive complex scalar field with a harmonic dependence on time and the azimuthal angle. Similar to the flat spacetime configurations, the angular momentum is quantized. We find that a class of solutions with a self-interaction potential has a limit corresponding to static solitons with axial symmetry only. An exact solution describing spherically symmetric Q-balls in a fixed AdS background is also discussed.
Effects of isovector scalar meson on hyperon star
Biswal, S. K.; Kumar, Bharat; Patra, S. K.
2016-01-01
We study the effects of isovector-scalar ($\\delta$)-meson on neutron star. Influence of $\\delta$-meson on both static and rotating neutron star is discussed. Inclusion of $\\delta$-meson in a neutron star system consisting of proton, neutron and electron, make the equation of state stiffer in higher density and consequently increases the maximum mass of the star. But induction of $\\delta$-meson in the hyperon star decreases the maximum mass of the hyperon star. This is due to the early evoluti...
Stable cosmological models driven by a free quantum scalar field
Energy Technology Data Exchange (ETDEWEB)
Dappiaggi, C.; Pinamonti, N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Citta Univ., Roma (Italy). Istituto Nazionale di Alta Matematica ' ' F. Severi' ' - GNFM; Fredenhagen, K. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2008-01-15
In the mathematically rigorous analysis of semiclassical Einstein's equations, the renormalisation of the stress-energy tensor plays a crucial role. We address such a topic in the case of a scalar field with both arbitrary mass and coupling with gravity in the hypothesis that the underlying algebraic quantum state is of Hadamard type. Particularly, if we focus on highly symmetric solutions of the semiclassical Einstein's equations, the envisaged method displays a de Sitter type behaviour even without an a priori introduced cosmological constant. As a further novel result we shall show that these solutions turn out to be stable. (orig.)
The cosmological backreaction: gauge (in)dependence, observers and scalars
Energy Technology Data Exchange (ETDEWEB)
Marozzi, G., E-mail: giovanni.marozzi@college-de-france.fr [Collège de France, 11 Place M. Berthelot, 75005 Paris (France)
2011-01-01
We discuss several issues related to a recent proposal for defining classical spatial averages to be used in the so-called cosmological backreaction problem. In the large averaging-volume limit all gauge dependence disappears and different averages can be univocally characterized by the observers associated with different scalar fields. The relation between such averaging procedure and the standard one is emphasized and a gauge invariant way to select different observers is presented. For finite averaging volumes we show that, within our proposal, a residual gauge dependence is left, but is suppressed by several effects.
Force-dynamic cultural models in a scalar adjectival construction
DEFF Research Database (Denmark)
Jensen, Kim Ebensgaard
Consider the following instances of the scalar adjectival [too ADJ to V]-construction: (1) The tatty furniture betrayed elegant lines, and the windows, too grimy to see through, stretched up ten feet. (COCA 2011 FIC Bk:NeverGentleman) (2) They're too slow to catch a seal in open water. (COCA 2011...... MAG NationalGeographic) (3) If the making of a revolution is drama, punctuated with tragedies too numerous to count, making peace is long-form prose requiring iterations of conversation between people. (COCA 2011 MAG TechReview) (4) I'm too young to get married. (COCA 2011 FIC Callaloo) (5) I...
Neutrino Oscillations as a Probe of Light Scalar Dark Matter.
Berlin, Asher
2016-12-02
We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.
Active helium target: Neutron scalar polarizability extraction via Compton scattering
Energy Technology Data Exchange (ETDEWEB)
Morris, Meg, E-mail: mmorris@mta.ca; Hornidge, David [Mount Allison University, Sackville, New Brunswick (Canada); Annand, John; Strandberg, Bruno [University of Glasgow, Scotland (United Kingdom)
2015-12-31
Precise measurement of the neutron scalar polarizabilities has been a lasting challenge because of the lack of a free-neutron target. Led by the University of Glasgow and the Mount Allison University groups of the A2 collaboration in Mainz, Germany, preparations have begun to test a recent theoretical model with an active helium target with the hope of determining these elusive quantities with small statistical, systematic, and model-dependent errors. Apparatus testing and background-event simulations have been carried out, with the full experiment projected to run in 2015. Once determined, these values can be applied to help understand quantum chromodynamics in the nonperturbative region.
Nandi, Debottam
2016-01-01
In this work, we present a consistent Hamiltonian analysis of cosmological perturbations for generalized non-canonical scalar fields. In order to do so, we introduce a new phase-space variable that is uniquely defined for different non-canonical scalar fields. We also show that this is the simplest and efficient way of expressing the Hamiltonian. We extend the Hamiltonian approach of [arXiv:1512.02539] to non-canonical scalar field and obtain a new definition of speed of sound in phase-space. In order to invert generalized phase-space Hamilton's equations to Euler-Lagrange equations of motion, we prescribe a general inversion formulae and show that our approach for non-canonical scalar field is consistent. We also obtain the third and fourth order interaction Hamiltonian for generalized non-canonical scalar fields and briefly discuss the extension of our method to generalized Galilean scalar fields.
Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields
Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes
2014-01-01
Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.
Higgs portal dark matter and neutrino mass and mixing with a doubly charged scalar
Directory of Open Access Journals (Sweden)
I.M. Hierro
2017-06-01
Full Text Available We consider an extension of the Standard Model involving two new scalar particles around the TeV scale: a singlet neutral scalar ϕ, to be eventually identified as the Dark Matter candidate, plus a doubly charged SU(2L singlet scalar, S++, that can be the source for the non-vanishing neutrino masses and mixings. Assuming an unbroken Z2 symmetry in the scalar sector, under which only the additional neutral scalar ϕ is odd, we write the most general (renormalizable scalar potential. The model may be regarded as a possible extension of the conventional Higgs portal Dark Matter scenario which also accounts for neutrino mass and mixing. This framework cannot completely explain the observed positron excess. However a softening of the discrepancy observed in conventional Higgs portal framework can be obtained, especially when the scale of new physics responsible for generating neutrino masses and lepton number violating processes is around 2 TeV.
Ignat'ev, Yu G
2013-01-01
On the basis of the relativistic kinetic theory the relativistic statistical systems with scalar interaction particles are investigated. The self-consistent system of the equations describing self-gravitating plasma with interpartial scalar interaction is formulated, macroscopical laws of preservation are received. The closed system of the equations describing cosmological models to which the matter is presented by plasma with interpartial scalar interaction is received.
Scalar field coupling to Einstein tensor in regular black hole spacetime
Zhang, Chi; Wu, Chen
2018-02-01
In this paper, we study the perturbation property of a scalar field coupling to Einstein's tensor in the background of the regular black hole spacetimes. Our calculations show that the the coupling constant η imprints in the wave equation of a scalar perturbation. We calculated the quasinormal modes of scalar field coupling to Einstein's tensor in the regular black hole spacetimes by the 3rd order WKB method.
Uniqueness theorem for static wormholes in Einstein phantom scalar field theory
Yazadjiev, Stoytcho
2017-08-01
In the present paper we prove a uniqueness theorem for the regular static, traversable wormhole solutions to the Einstein phantom scalar field theory with two asymptotically flat regions (ends). We show that when a certain condition on the asymptotic values of the scalar field is imposed such solutions are uniquely specified by their mass M and the scalar charge D . The main arguments in the proof are based on the positive energy theorem.
Late Inspiral and Merger of Binary Black Holes in Scalar-Tensor Theories of Gravity
Healy, James; Bode, Tanja; Haas, Roland; Pazos, Enrique; Laguna, Pablo; Shoemaker, Deirdre M.; Yunes, Nicolás
2011-01-01
Gravitational wave observations will probe non-linear gravitational interactions and thus enable strong tests of Einstein's theory of general relativity. We present a numerical relativity study of the late inspiral and merger of binary black holes in scalar-tensor theories of gravity. We consider black hole binaries in an inhomogeneous scalar field, specifically binaries inside a scalar field bubble, in some cases with a potential. We calculate the emission of dipole radiation. We also show h...
Curvature Perturbation and Domain Wall Formation with Pseudo Scaling Scalar Dynamics
Ema, Yohei; Takimoto, Masahiro
2015-01-01
Cosmological dynamics of scalar field with a monomial potential $\\phi^{n}$ with a general background equation of state is revisited. It is known that if $n$ is smaller than a critical value, the scalar field exhibits a coherent oscillation and if $n$ is larger it obeys a scaling solution without oscillation. We study in detail the case where $n$ is equal to the critical value, and find a peculiar scalar dynamics which is neither oscillating nor scaling solution, and we call it a pseudo scaling solution. We also discuss cosmological implications of a pseudo scaling scalar dynamics, such as the curvature perturbation and the domain wall problem.
Ignat'ev, Yu G
2016-01-01
In this paper we investigate the asymptotic behavior of the cosmological model based on phantom scalar field on the ground of qualitative analysis of the system of the cosmological model's differential equations and show that as opposed to models with classical scalar field, such models have stable asymptotic solutions with constant value of the potential both in infinite past and infinite future. We also develop numerical models of the cosmological evolution models with phantom scalar field in this paper. {\\bf keywords}: cosmological model, phantom scalar field, quality analysis, asymptotic behavior, numerical simulation, numerical gravitation.\\\\ {\\bf PACS}: 04.20.Cv, 98.80.Cq, 96.50.S 52.27.Ny
Wave propagation and shock formation in the most general scalar-tensor theories
Tanahashi, Norihiro; Ohashi, Seiju
2017-11-01
This work studies wave propagation in the most general covariant scalar-tensor theories with second-order field equations, particularly focusing on the causal structure realized in these theories and also the shock formation process induced by nonlinear effects. For these studies we use the Horndeski theory and its generalization to the two scalar field case. We show that propagation speeds of the gravitational wave and scalar field wave in these theories may differ from the light speed depending on background field configuration, and find that a Killing horizon becomes a boundary of causal domain if the scalar fields share the symmetry of the background spacetime. With regard to the shock formation, we focus on transport of discontinuity in second derivatives of the metric and scalar field in the shift-symmetric Horndeski theory. We find that amplitude of the discontinuity generically diverges within finite time, which corresponds to shock formation. It turns out that the canonical scalar field and the scalar DBI model, among other theories described by the Horndeski theory, are free from such shock formation even when the background geometry and scalar field configuration are nontrivial. We also observe that the gravitational wave is protected against shock formation when the background has some symmetries at least. This fact may indicate that the gravitational wave in this theory is more well-behaved compared to the scalar field, which typically suffers from shock formation.
Effects of scalar mesons in a Skyrme model with hidden local symmetry
He, Bing-Ran; Ma, Yong-Liang; Harada, Masayasu
2015-10-01
We study the effects of light scalar mesons on the Skyrmion properties by constructing and examining a mesonic model including pion, rho meson, and omega meson fields as well as two-quark and four-quark scalar meson fields. In our model, the physical scalar mesons are defined as mixing states of the two- and four-quark fields. We first omit the four-quark scalar meson field from the model and find that when there is no direct coupling between the two-quark scalar meson and the vector mesons, the soliton mass is smaller and the soliton size is larger for lighter scalar mesons; when direct coupling is switched on, as the coupling strength increases, the soliton becomes heavy, and the radius of the baryon number density becomes large as the repulsive force arising from the ω meson becomes strong. We then include the four-quark scalar meson field in the model and find that mixing between the two-quark and four-quark components of the scalar meson fields also affects the properties of the soliton. When the two-quark component of the lighter scalar meson is increased, the soliton mass decreases and the soliton size increases.
Charged black holes in a generalized scalar-tensor gravity model
Brihaye, Yves; Hartmann, Betti
2017-09-01
We study 4-dimensional charged and static black holes in a generalized scalar-tensor gravity model, in which a shift symmetry for the scalar field exists. For vanishing scalar field the solution corresponds to the Reissner-Nordström (RN) solution, while solutions of the full scalar-gravity model have to be constructed numerically. We demonstrate that these black holes support Galilean scalar hair up to a maximal value of the scalar-tensor coupling that depends on the value of the charge and can be up to roughly twice as large as that for uncharged solutions. The Hawking temperature TH of the hairy black holes at maximal scalar-tensor coupling decreases continuously with the increase of the charge and reaches TH = 0 for the highest possible charge that these solutions can carry. However, in this limit, the scalar-tensor coupling needs to vanish. The limiting solution hence corresponds to the extremal RN solution, which does not support regular Galilean scalar hair due to its AdS2 ×S2 near-horizon geometry.
Search for scalar gluons with the ATLAS detector at the LHC
AUTHOR|(CDS)2079195; Zerwas, Dirk
This thesis describes the search for new color-octet scalar particles in the ATLAS experiment data at the Large Hadron Collider (LHC). For a wide range of mass, the decay of the scalar to two SM partons dominates. This motivates the search for these new scalars in multijet final states, where they would manifest as dijet resonances. As the new scalars are products in pairs, a final state containing at least four jets is used as a search environment. A method is developed to extract a possible scalar resonance from the multijet QCD background and is used to search for such scalar in the data from the ATLAS experiment collected in 2010 and 2011. The data are in agreement with the estimation of the background and limits are set on the scalar production cross section as a function of the scalar mass. Interpreting these limits in models of supersymmetry, the scalar gluon of the MRSSM and of the hybrid N=1/N=2 model is excluded at the 95 % CL between 100 and 287 GeV. Limits are also interpreted in a model of gauge ...
Kaluza-Klein reduction and Bergmann-Wagoner bi-scalar general action of scalar-tensor gravity
Bamba, Kazuharu; Momeni, Davood; Myrzakulov, Ratbay
2014-01-01
We examine the Kaluza-Klein (KK) dimensional reduction from higher-dimensional space-time and the properties of the resultant Bergmann-Wagoner general action of scalar-tensor theories. With the analysis of the perturbations, we also investigate the stability of the anti-de Sitter (AdS) space-time in the $D\\in\\mathcal{N}$-dimensional Einstein gravity with the negative cosmological constant. Furthermore, we derive the conditions for the dimensional reduction to successfully be executed and pres...
Kaluza-Klein reduction and Bergmann-Wagoner bi-scalar general action of scalar-tensor gravity
Bamba, Kazuharu; Momeni, Davood; Myrzakulov, Ratbay
2015-07-01
We examine the Kaluza-Klein (KK) dimensional reduction from higher dimensional space-time and the properties of the resultant Bergmann-Wagoner general action of scalar-tensor theories. With the analysis of the perturbations, we also investigate the stability of the anti-de Sitter (AdS) space-time in the (D ∈ 𝒩)-dimensional Einstein gravity with the negative cosmological constant. Furthermore, we derive the conditions for the dimensional reduction to successfully be executed and present the KK compactification mechanism.
Search for Ultralight Scalar Dark Matter with Atomic Spectroscopy.
Van Tilburg, Ken; Leefer, Nathan; Bougas, Lykourgos; Budker, Dmitry
2015-07-03
We report new limits on ultralight scalar dark matter (DM) with dilatonlike couplings to photons that can induce oscillations in the fine-structure constant α. Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels whose energy splitting is sensitive to changes in α. Spectroscopy data for two isotopes of dysprosium over a two-year span are analyzed for coherent oscillations with angular frequencies below 1 rad s-1. No signal consistent with a DM coupling is identified, leading to new constraints on dilatonlike photon couplings over a wide mass range. Under the assumption that the scalar field comprises all of the DM, our limits on the coupling exceed those from equivalence-principle tests by up to 4 orders of magnitude for masses below 3×10(-18) eV. Excess oscillatory power, inconsistent with fine-structure variation, is detected in a control channel, and is likely due to a systematic effect. Our atomic spectroscopy limits on DM are the first of their kind, and leave substantial room for improvement with state-of-the-art atomic clocks.
Children's derivation of scalar implicatures: Alternatives and relevance.
Skordos, Dimitrios; Papafragou, Anna
2016-08-01
Utterances such as "Megan ate some of the cupcakes" are often interpreted as "Megan ate some but not all of the cupcakes". Such an interpretation is thought to arise from a pragmatic inference called scalar implicature (SI). Preschoolers typically fail to spontaneously generate SIs without the assistance of training or context that make the stronger alternative salient. However, the exact role of alternatives in generating SIs remains contested. Specifically, it is not clear whether children have difficulty with spontaneously generating possible informationally stronger scalemates, or with considering how alternatives might be relevant. We present three studies with English-speaking 5-year-olds and adults designed to address these questions. We show that (a) the accessibility of the stronger alternative is important for children's SI generation (Experiment 1); (b) the explicit presence of the stronger alternative leads children to generate SIs only when the stronger scalar term can easily be seen as relevant (Experiment 2); and (c) in contexts that establish relevant alternatives, the explicit presence of the stronger alternative is not necessary (Experiment 3). We conclude that children's considerations of lexical alternatives during SI-computation include an important role for conversational relevance. We also show that this more nuanced approach to the role of lexical alternatives in pragmatic inference unifies previously unconnected findings about children's early pragmatic development and bears on major accounts proposed to date for children's problems with SIs. Copyright © 2016 Elsevier B.V. All rights reserved.
Non-Gaussianity from Self-Ordering Scalar Fields
Figueroa, Daniel G; Kamionkowski, Marc
2010-01-01
The Universe may harbor relics of the post-inflationary epoch in the form of a network of self-ordered scalar fields. Such fossils, while consistent with current cosmological data at trace levels, may leave too weak an imprint on the cosmic microwave background and the large-scale distribution of matter to allow for direct detection. The non-Gaussian statistics of the density perturbations induced by these fields, however, permit a direct means to probe for these relics. Here we calculate the bispectrum that arises in models of self-ordered scalar fields. We find a compact analytic expression for the bispectrum, evaluate it numerically, and provide a simple approximation that may be useful for data analysis. The bispectrum is largest for triangles that are aligned (have edges $k_1\\simeq 2 k_2 \\simeq 2 k_3$) as opposed to the local-model bispectrum, which peaks for squeezed triangles ($k_1\\simeq k_2 \\gg k_3$), and the equilateral bispectrum, which peaks at $k_1\\simeq k_2 \\simeq k_3$. We estimate that this non-...
Absorption of scalars by extremal black holes in string theory
Moura, Filipe
2017-09-01
We show that the low frequency absorption cross section of minimally coupled test massless scalar fields by extremal spherically symmetric black holes in d dimensions is equal to the horizon area, even in the presence of string-theoretical α ' corrections. Classically one has the relation σ = 4 GS between that absorption cross section and the black hole entropy. By comparing in each case the values of the horizon area and Wald's entropy, we discuss the validity of such relation in the presence of higher derivative corrections for extremal black holes in many different contexts: in the presence of electric and magnetic charges; for nonsupersymmetric and supersymmetric black holes; in d=4 and d=5 dimensions. The examples we consider seem to indicate that this relation is not verified in the presence of α ' corrections in general, although being valid in some specific cases (electrically charged maximally supersymmetric black holes in d=5). We argue that the relation σ = 4 GS should in general be valid for the absorption cross section of scalar fields which, although being independent from the black hole solution, have their origin from string theory, and therefore are not minimally coupled.
Search for the Scalar Component of Weak Interactions
Zakoucky, Dalibor
2014-01-01
Weak interactions ar e described by the Standard Model which postulates the basic assumption about the pure " V (ector) - A (xial vector)" character of the interaction. Nevertheless, even after half a century of development of the model and experimental testing of its fundamental i ngredients, experimental data still allow the existence of other types of weak interactions - e.g. scalar interactions are ruled out only on the 7% level. Experimental project WITCH ( W eak I nteraction T rap for CH arged particles) was set up at the isoto pe separator ISOLDE at CERN trying to probe the properties of the weak interaction in order to look for their forbidden (scalar, tensor) components or at least significantly improve their current experimental limits. Experimental setup consisting of a comb ination of 2 Penning traps and retardation spectrometer allows to catch the radioactive nuclei from ISOLDE separator, traps and cools them and lets them decay in rest and then probes the energy spectrum of recoiling nuclei whic...
Visibility graphs of random scalar fields and spatial data
Lacasa, Lucas; Iacovacci, Jacopo
2017-07-01
We extend the family of visibility algorithms to map scalar fields of arbitrary dimension into graphs, enabling the analysis of spatially extended data structures as networks. We introduce several possible extensions and provide analytical results on the topological properties of the graphs associated to different types of real-valued matrices, which can be understood as the high and low disorder limits of real-valued scalar fields. In particular, we find a closed expression for the degree distribution of these graphs associated to uncorrelated random fields of generic dimension. This result holds independently of the field's marginal distribution and it directly yields a statistical randomness test, applicable in any dimension. We showcase its usefulness by discriminating spatial snapshots of two-dimensional white noise from snapshots of a two-dimensional lattice of diffusively coupled chaotic maps, a system that generates high dimensional spatiotemporal chaos. The range of potential applications of this combinatorial framework includes image processing in engineering, the description of surface growth in material science, soft matter or medicine, and the characterization of potential energy surfaces in chemistry, disordered systems, and high energy physics. An illustration on the applicability of this method for the classification of the different stages involved in carcinogenesis is briefly discussed.
Tracking our universe to de Sitter by a Horndeski scalar
Germani, Cristiano; Martín-Moruno, Prado
2017-12-01
Assuming both that our Universe is evolving into a de Sitter space and a vanishing cosmological constant, leaves only the option that the observed acceleration is provided by a "kinetic" energy of a scalar field. From an effective field theory point of view, the absence of Ostrogradsky instabilities restricts the choice to shift-symmetric Horndeski theories. Within these theories, we find the conditions for the existence of a de Sitter critical point in a universe filled by matter, radiation and a Horndeski scalar. Moreover, we show that this point is a universal attractor and we provide the tracking trajectory. Therefore, if a de Sitter fixed point exists within these models, our Universe will eventually evolve into a de Sitter space. As an example, we have discussed the case of the combined Galileon-Slotheon system, in which the Galileon is kinetically non-minimal coupled to the Einstein tensor. Interestingly, we have also found that the tracker trajectory of this system does not follow previous literature assumptions.
Fast and slow thermal processes in harmonic scalar lattices
Kuzkin, V. A.; Krivtsov, A. M.
2017-12-01
An approach for analytical description of thermal processes in harmonic lattices is presented. We cover longitudinal and transverse vibrations of chains and out-of-plane vibrations of two-dimensional lattices with interactions of an arbitrary number of neighbors. The motion of each particle is governed by a single scalar equation and therefore the notion ‘scalar lattice’ is used. The evolution of initial temperature field in an infinite lattice is investigated. An exact equation describing the evolution is derived. Continualization of this equation with respect to spatial coordinates is carried out. The resulting continuum equation is solved analytically. The solution shows that the kinetic temperature is represented as the sum of two terms, one describing short time behavior, the other large time behavior. At short times, the temperature performs high-frequency oscillations caused by redistribution of energy among kinetic and potential forms (fast process). Characteristic time of this process is of the order of ten periods of atomic vibrations. At large times, changes of the temperature are caused by ballistic heat transfer (slow process). The temperature field is represented as a superposition of waves having the shape of initial temperature distribution and propagating with group velocities dependent on the wave vector. Expressions describing fast and slow processes are invariant with respect to substitution t by -t . However, examples considered in the paper demonstrate that these processes are irreversible. Numerical simulations show that presented theory describes the evolution of temperature field at short and large time scales with high accuracy.
Reopening the Higgs portal for single scalar dark matter
Casas, J. A.; Cerdeño, D. G.; Moreno, J. M.; Quilis, J.
2017-05-01
A real singlet scalar, connected to the Standard Model sector through a portal with the Higgs boson, is one of the simplest and most popular models for dark matter (DM). However, the experimental advances in direct and indirect DM searches, together with the latest results from the LHC, have ruled out vast areas of the parameter space of this scenario; and are expected to probe it completely within the next years, ruling it out if no signal is found. Motivated by the simplicity of this model, in this article we address a minimal, renormalizable extension that could evade detection, consisting of the addition of an extra real singlet scalar field in the dark sector. We analyze the physical constraints on the model and show that the new annihilation and/or coannihilation channels involving the extra singlet allow to reproduce the correct DM relic abundance while avoiding the bounds from direct and indirect searches for any DM mass above 50 GeV. We also show that, in some interesting regions of the parameter space, the extra particle can be integrated-out, leaving a "clever" effective theory (just involving the DM particle and the Higgs), that essentially reproduces the results.
AdS Black Hole with Phantom Scalar Field
Directory of Open Access Journals (Sweden)
Limei Zhang
2017-01-01
Full Text Available We present an AdS black hole solution with Ricci flat horizon in Einstein-phantom scalar theory. The phantom scalar fields just depend on the transverse coordinates x and y, which are parameterized by the parameter α. We study the thermodynamics of the AdS phantom black hole. Although its horizon is a Ricci flat Euclidean space, we find that the thermodynamical properties of the black hole solution are qualitatively the same as those of AdS Schwarzschild black hole. Namely, there exists a minimal temperature and the large black hole is thermodynamically stable, while the smaller one is unstable, so there is a so-called Hawking-Page phase transition between the large black hole and the thermal gas solution in the AdS space-time in Poincare coordinates. We also calculate the entanglement entropy for a strip geometry dual to the AdS phantom black holes and find that the behavior of the entanglement entropy is qualitatively the same as that of the black hole thermodynamical entropy.
Scalar Relativistic Study of the Structure of Rhodium Acetate
Directory of Open Access Journals (Sweden)
Emily E. Edwards
2004-01-01
Full Text Available Abstract: Rhodium acetate, related rhodium carboxylates, and rhodium amide complexes are powerful catalysts for carbene chemistry. They readily promote the decomposition of diazo compounds and transfer the resulting carbene to a variety of substrates. There have been several quantum chemistry studies of these compounds, particularly of the acetate. These have all used non-relativistic methods, and all have shown optimized Rh-Rh bond lengths significantly longer than the experimental value. In this study we have surveyed several scalar relativistic DFT methods using Gaussian, Slater, and numerical basis functions (in DGAUSS, ADF, and DMOL3. Several combinations of exchange-correlation functionals with relativistic and non-relativistic effective core potentials (ECP were investigated, as were non-relativistic and all electron scalar relativistic methods. The combination of the PW91 exchange and PW91 correlation functional with the Christiansen-Ermler ECP gave the best results: 2.3918 ÃƒÂ… compared to the experimental value of 2.3855Ã‚Â±0.0005 ÃƒÂ….
One-loop renormalization of a gravity-scalar system
Energy Technology Data Exchange (ETDEWEB)
Park, I.Y. [Philander Smith College, Department of Applied Mathematics, Little Rock, AR (United States)
2017-05-15
Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the ''mass'' term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information. (orig.)
Status of the scalar singlet dark matter model
Energy Technology Data Exchange (ETDEWEB)
Athron, Peter; Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Bringmann, Torsten; Dal, Lars A.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Chrzaszcz, Marcin [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Jackson, Paul; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kahlhoefer, Felix [DESY, Hamburg (Germany); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); McKay, James; Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Mahmoudi, Farvah [Univ. Lyon, Univ. Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); CERN, Theoretical Physics Department, Geneva (Switzerland); Martinez, Gregory D. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Centre for Translational Data Science, Faculty of Engineering and Information Technologies, School of Physics, Sydney, NSW (Australia); Serra, Nicola [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Collaboration
2017-08-15
One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z{sub 2} symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ∝ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned. (orig.)
The realization of scalar inferences: context sensitivity without processing cost.
Directory of Open Access Journals (Sweden)
Stephen Politzer-Ahles
Full Text Available Scalar inference is the phenomenon whereby the use of a less informative term (e.g., some of is inferred to mean the negation of a more informative term (e.g., to mean not all of. Default processing accounts assume that the interpretation of some of as meaning not all of is realized easily and automatically (regardless of context, whereas context-driven processing accounts assume that it is realized effortfully and only in certain contexts. In the present study, participants' self-paced reading times were recorded as they read vignettes in which the context did or did not bias the participants to make a scalar inference (to interpret some of as meaning not all of. The reading times suggested that the realization of the inference was influenced by the context, but did not provide evidence for processing cost at the time the inference is realized, contrary to the predictions of context-driven processing accounts. The results raise the question of why inferencing occurs only in certain contexts if it does not involve extra processing effort.
Aboubrahim, Amin; Nath, Pran
2017-10-01
We investigate the possibility of testing supergravity unified models with scalar masses in the range 50-100 TeV and much lighter gaugino masses at the Large Hadron Collider. The analysis is carried out under the constraints that models produce the Higgs boson mass consistent with experiment and also produce dark matter consistent with WMAP and PLANCK experiments. A set of benchmarks in the supergravity parameter space are investigated using a combination of signal regions which are optimized for the model set. It is found that some of the models with scalar masses in the 50-100 TeV mass range are discoverable with as little as 100 fb-1 of integrated luminosity and should be accessible at the LHC RUN II. The remaining benchmark models are found to be discoverable with less than 1000 fb-1 of integrated luminosity and thus testable in the high luminosity era of the LHC, i.e., at HL-LHC. It is shown that scalar masses in the 50-100 TeV range but gaugino masses much lower in mass produce unification of gauge coupling constants, consistent with experimental data at low scale, with as good an accuracy (and sometimes even better) as models with low [O (1 ) TeV ] weak scale supersymmetry. Decay of the gravitinos for the supergravity model benchmarks are investigated and it is shown that they decay before the big bang nucleosynthesis (BBN). Further, we investigate the nonthermal production of neutralinos from gravitino decay and it is found that the nonthermal contribution to the dark matter relic density is negligible relative to that from the thermal production of neutralinos for reheat temperature after inflation up to 1 09 GeV . An analysis of the direct detection of dark matter for supergravity grand unified models (SUGRA) with high scalar masses is also discussed. SUGRA models with scalar masses in the range 50-100 TeV have several other attractive features such as they help alleviate the supersymmetric C P problem and help suppress proton decay from baryon and lepton
Quantization of a scalar field in two Poincaré patches of anti-de Sitter space and AdS/CFT
Directory of Open Access Journals (Sweden)
Ippei Fujisawa
2014-09-01
Full Text Available Two sets of modes of a massive free scalar field are quantized in a pair of Poincaré patches of Lorentzian anti-de Sitter (AdS space, AdSd+1 (d≥2. It is shown that in Poincaré coordinates (r,t,x→, the two boundaries at r=±∞ are connected. When the scalar mass m satisfies a condition 0<ν=(d2/4+(mℓ2<1, there exist two sets of mode solutions to Klein–Gordon equation, with distinct fall-off behaviors at the boundary. By using the fact that the boundaries at r=±∞ are connected, a conserved Klein–Gordon norm can be defined for these two sets of scalar modes, and these modes are canonically quantized. Energy is also conserved. A prescription within the approximation of semi-classical gravity is presented for computing two- and three-point functions of the operators in the boundary CFT, which correspond to the two fall-off behaviours of scalar field solutions.
On a family of (1+1)-dimensional scalar field theory models: Kinks, stability, one-loop mass shifts
Energy Technology Data Exchange (ETDEWEB)
Alonso-Izquierdo, A., E-mail: alonsoiz@usal.es [Departamento de Matematica Aplicada and IUFFyM, Universidad de Salamanca (Spain); Mateos Guilarte, J. [Departamento de Fisica Fundamental and IUFFyM, Universidad de Salamanca (Spain)
2012-09-15
In this paper we construct a one-parametric family of (1+1)-dimensional one-component scalar field theory models supporting kinks. Inspired by the sine-Gordon and {phi}{sup 4} models, we look at all possible extensions such that the kink second-order fluctuation operators are Schroedinger differential operators with Poeschl-Teller potential wells. In this situation, the associated spectral problem is solvable and therefore we shall succeed in analyzing the kink stability completely and in computing the one-loop quantum correction to the kink mass exactly. When the parameter is a natural number, the family becomes the hierarchy for which the potential wells are reflectionless, the two first levels of the hierarchy being the sine-Gordon and {phi}{sup 4} models. - Highlights: Black-Right-Pointing-Pointer We construct a family of scalar field theory models supporting kinks. Black-Right-Pointing-Pointer The second-order kink fluctuation operators involve Poeschl-Teller potential wells. Black-Right-Pointing-Pointer We compute the one-loop quantum correction to the kink mass with different methods.
Battaglia, M.; Marshall, J.S.; Poss, S.; Sailer, A.; Thomson, M.; van der Kraaij, E.
2013-01-01
The determination of scalar lepton and gaugino masses is an important part of the programme of spectroscopic studies of Supersymmetry at a high energy e+e- linear collider. In this article we present results of a study of the processes: e+e- -> eR eR -> e+e- chi0 chi, e+e- -> muR muR -> mu mu- chi0 chi0, e+e- -> eL eL -> e e chi0 chi0 and e+e- -> snu_e snu_e -> e e chi+ chi-in two Supersymmetric benchmark scenarios at 3 TeV and 1.4 TeV at CLIC. We characterize the detector performance, lepton energy resolution and boson mass resolution. We report the accuracy of the production cross section measurements and the eR muR, snu_e, chi+ and chi0 mass determination, estimate the systematic errors affecting the mass measurement and discuss the requirements on the detector time stamping capability and beam polarization. The analysis accounts for the CLIC beam energy spectrum and the dominant beam-induced background. The detector performances are incorporated by full simulation and reconstruction of the events within t...
Minimal Supergravity Scalar Neutrino Dark Matter and Inverse Seesaw Neutrino Masses
Arina, C.; Bazzocchi, F.; Fornengo, N.; Romao, J. C.; Valle, J. W. F.
2008-01-01
We show that within the inverse seesaw mechanism for generating neutrino masses, minimal supergravity naturally provides the scalar neutrino as the lightest superparticle. We also demonstrate that such schemes naturally reconcile the small neutrino masses with the correct relic scalar neutrino dark
The Solution Set of the n-Player Scalar Feedback Nash Algebraic Riccati Equations
Engwerda, J.C.
1999-01-01
In this paper we analyse the set of scalar algebraic Riccati equations (ARE) that play an important role in finding feedback Nash equilibria of the scalar N-player linear-quadratic differential game. We show that in general there exist maximal 2N - 1 solutions of the (ARE) that give rise to a Nash
Engwerda, Jacob
2015-01-01
This note deals with solving scalar coupled algebraic Riccati equations. These equations arise in finding linear feedback Nash equilibria of the scalar N-player affine quadratic differential game. A numerical procedure is provided to compute all the stabilizing solutions. The main idea is to
Myers–Perry black holes with scalar hair and a mass gap
Energy Technology Data Exchange (ETDEWEB)
Brihaye, Yves [Physique–Mathématique, Universite de Mons-Hainaut, Mons (Belgium); Herdeiro, Carlos; Radu, Eugen [Departamento de Física da Universidade de Aveiro and I3N, Campus de Santiago, 3810-183 Aveiro (Portugal)
2014-12-12
We construct a family of asymptotically flat, rotating black holes with scalar hair and a regular horizon, within five dimensional Einstein's gravity minimally coupled to a complex, massive scalar field doublet. These solutions are supported by rotation and have no static limit. They are described by their mass M, two equal angular momenta J{sub 1}=J{sub 2}≡J and a conserved Noether charge Q, measuring the scalar hair. For vanishing horizon size the solutions reduce to five dimensional boson stars. In the limit of vanishing Noether charge density, the scalar field becomes point-wise arbitrarily small and the geometry becomes, locally, arbitrarily close to that of a specific set of Myers–Perry black holes (MPBHs); but there remains a global difference with respect to the latter, manifest in a finite mass gap. Thus, the scalar hair never becomes a linear perturbation of MPBHs. This is a qualitative difference when compared to Kerr black holes with scalar hair [1]. Whereas the existence of the latter can be anticipated in linear theory, from the existence of scalar bound states on the Kerr geometry (i.e. scalar clouds), the hair of these MPBHs is intrinsically non-linear.
Possibly All of that and Then Some: Scalar Implicatures Are Understood in Two Steps
Tomlinson, John M., Jr.; Bailey, Todd M.; Bott, Lewis
2013-01-01
Scalar implicatures often incur a processing cost in sentence comprehension tasks. We used a novel mouse-tracking technique in a sentence verification paradigm to test different accounts of this effect. We compared a two-step account, in which people access a basic meaning and then enrich the basic meaning to form the scalar implicature, against a…
Myers–Perry black holes with scalar hair and a mass gap
Directory of Open Access Journals (Sweden)
Yves Brihaye
2014-12-01
Full Text Available We construct a family of asymptotically flat, rotating black holes with scalar hair and a regular horizon, within five dimensional Einstein's gravity minimally coupled to a complex, massive scalar field doublet. These solutions are supported by rotation and have no static limit. They are described by their mass M, two equal angular momenta J1=J2≡J and a conserved Noether charge Q, measuring the scalar hair. For vanishing horizon size the solutions reduce to five dimensional boson stars. In the limit of vanishing Noether charge density, the scalar field becomes point-wise arbitrarily small and the geometry becomes, locally, arbitrarily close to that of a specific set of Myers–Perry black holes (MPBHs; but there remains a global difference with respect to the latter, manifest in a finite mass gap. Thus, the scalar hair never becomes a linear perturbation of MPBHs. This is a qualitative difference when compared to Kerr black holes with scalar hair [1]. Whereas the existence of the latter can be anticipated in linear theory, from the existence of scalar bound states on the Kerr geometry (i.e. scalar clouds, the hair of these MPBHs is intrinsically non-linear.
Solution of the Higgs scalar-tensor theory without Higgs particles for static stars
Rekowski, Oleg von Styp; Frommert, Hartmut
1996-01-01
Within the scalar-tensor theory of gravity with Higgs mechanism without Higgs particles, we prove that the excited Higgs potential (the scalar field) vanishs inside and outside of the stellar matter for static spherically symmetric configurations. The field equation for the metric (the tensorial gravitational field) turns out to be essentially the Einsteinian one.
Renormalization-group analysis of the cosmological constraint on the Higgs scalar mass
Kiselev, V. V.; Timofeev, S. A.
The standard Model Higgs scalar boson minimally coupled to gravity does not take part in the inflation of the early universe if its mass exceeds a threshold value, which is m (H) (min) = 142 GeV in the tree approximation for the potential of the scalar. Two-loop corrections modify this estimate,
Topological Aharonov-Bohm Effect of Neutral Scalar Particle on Noncommutative Space
Wang, Ya-Hui; Wang, Jian-Hua; Ma, Kai
2017-12-01
We study the interactions between a neutral scalar particle and electromagnetic fields on noncommutative space. Because of the noncommutativity of space, neutral particle can couple to electromagnetic fields at the tree level, and the interaction strength is represented by a new coupling constant. We find that on noncommtuative space the topological Aharonov-Bohm effect is nontrivial even for neutral scalar particle.
DEFF Research Database (Denmark)
Kuvshinov, Alexey; Matzka, Jürgen; Poedjono, Benny
2016-01-01
-keeping platform. The concept exploits scalar magnetic responses that relate variations of the scalar magnetic field at the survey sites with variations of the horizontal magnetic field at a reference site. A 3-D model study offshore Oahu Island (Hawaii) demonstrates that these responses are sensitive...
Nonequlibrium dynamics of scalar fields in a thermal bath
Energy Technology Data Exchange (ETDEWEB)
Anisimov, A.; Buchmueller, W.; Drewes, M.; Mendizabal, S.
2008-12-15
We study the approach to equilibrium for a scalar field which is coupled to a large thermal bath. Our analysis of the initial value problem is based on Kadanoff-Baym equations which are shown to be equivalent to a stochastic Langevin equation. The interaction with the thermal bath generates a temperature-dependent spectral density, either through decay and inverse decay processes or via Landau damping. In equilibrium, energy density and pressure are determined by the Bose-Einstein distribution function evaluated at a complex quasi-particle pole. The time evolution of the statistical propagator is compared with solutions of the Boltzmann equations for particles as well as quasi-particles. The dependence on initial conditions and the range of validity of the Boltzmann approximation are determined. (orig.)
Scalar scattering from charged black holes on the brane
de Oliveira, Ednilton S.
2018-03-01
The differential scattering cross section of massless scalar fields localized on the 3-brane of charged static black holes in the ADD model is analyzed. While results valid over the entire range of the scattering angle can be obtained only via a numerical approach, analytical results can be obtained via the geodesic, Born and glory approximations. Comparison between numerical and analytical results leads to excellent agreement. The increase of the charge intensity has the consequence of increasing the width of the interference fringes in the scattering cross section. Its influence on the intensity of the scattered flux, however, depends on the dimensionality of the spacetime. Analyses for the special cases of uncharged and extremely charged black holes are included.
The Cauchy problem of scalar-tensor theories of gravity
Energy Technology Data Exchange (ETDEWEB)
Salgado, Marcelo [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-543 Mexico 04510 DF (Mexico)
2006-07-21
The 3 + 1 formulation of scalar-tensor theories of gravity (STT) is obtained in the physical (Jordan) frame departing from the 4 + 0 covariant field equations. Contrary to common belief (folklore), the new system of ADM-like equations shows that the Cauchy problem of STT is well formulated (in the sense that the whole system of evolution equations is of first order in the time derivative). This is the first step towards a full first-order (in time and space) formulation from which a subsequent hyperbolicity analysis (a well-posedness determination) can be performed. Several gauge (lapse and shift) conditions are considered and implemented for STT. In particular, a generalization of the harmonic gauge for STT allows us to prove the well posedness of the STT using a second-order analysis which is very similar to the one employed in general relativity. Several appendices complement the ideas of the main part of the paper.
Some remarks on the genesis of scalar-tensor theories
Goenner, Hubert
2012-01-01
Between 1941 and 1962, scalar-tensor theories of gravitation were suggested four times by different scientists in four different countries. The earliest originator, the Swiss mathematician W. Scherrer, was virtually unknown until now whereas the chronologically latest pair gave their names to a multitude of publications on Brans-Dicke theory. P. Jordan, one of the pioneers of quantum mechanics theory, and Y. Thiry, a student of the mathematician A. Lichnerowicz, known by his book on celestial mechanics, complete the quartet. Diverse motivations for and conceptual interpretations of their theories will be discussed as well as relations among them. Also, external factors like language, citation habits, or closeness to the mainstream are considered. It will become clear why Brans-Dicke theory, although structurally a d\\'ej\\`a-vu, superseded all the other approaches.
On Naturalness of Scalar Fields and Standard Model
Pivovarov, Grigorii B
2008-01-01
We discuss how naturalness predicts the scale of new physics. Two conditions on the scale are considered. The first is the more conservative condition due to Veltman (Acta Phys. Polon. B 12, 437 (1981)). It requires that radiative corrections to the electroweak mass scale would be reasonably small. The second is the condition due to Barbieri and Giudice (Nucl. Phys. B 306, 63 (1988)), which is more popular lately. It requires that physical mass scale would not be oversensitive to the values of the input parameters. We show here that the above two conditions behave differently if higher order corrections are taken into account. Veltman's condition is robust (insensitive to higher order corrections), while Barbieri-Giudice condition changes qualitatively. We conclude that higher order perturbative corrections take care of the fine tuning problem, and, in this respect, scalar field is a natural system. We apply the Barbieri-Giudice condition with higher order corrections taken into account to the Standard Model,...
Massless Interacting Scalar Fields in de Sitter space
Directory of Open Access Journals (Sweden)
Nacir Diana López
2016-01-01
Full Text Available We present a method to compute the two-point functions for an O(N scalar field model in de Sitter spacetime, avoiding the well known infrared problems for massless fields. The method is based on an exact treatment of the Euclidean zero modes and a perturbative one of the nonzero modes, and involves a partial resummation of the leading secular terms. This resummation, crucial to obtain a decay of the correlation functions, is implemented along with a double expansion in an effective coupling constant √λ and in 1/N. The results reduce to those known in the leading infrared approximation and coincide with the ones obtained directly in Lorentzian de Sitter spacetime in the large N limit. The new method allows for a systematic calculation of higher order corrections both in √λ and in 1/N.
A probabilistic angle on one-loop scalar integrals
Benhaddou, Kamel
2017-06-01
Recasting the N-point one-loop scalar integral as a probabilistic problem allows the derivation of integral recurrence relations, as well as exact analytical expressions in the most common cases. ɛ expansions are derived by writing a formula that relates an N-point function in decimal dimensions to an N-point function in integer dimensions. As an example, we give relations for the massive five-point function in n=4-2ε and n=6-2ε dimensions. The reduction of tensor integrals of rank two with N = 5 is achieved showing the method’s potential. No hypergeometric functions are involved. Results are expressed as integrals of arcsine functions, whose analytical continuation is well known.
Mono-jet signatures of gluphilic scalar dark matter
Godbole, Rohini M.; Mendiratta, Gaurav; Shivaji, Ambresh; Tait, Tim M. P.
2017-09-01
A gluphilic scalar dark matter (GSDM) model has recently been proposed as an interesting vision for WIMP dark matter communicating dominantly with the Standard Model via gluons. We discuss the collider signature of a hard jet recoiling against missing momentum (;mono-jet;) in such a construction, whose leading contribution is at one-loop. We compare the full one-loop computation with an effective field theory (EFT) treatment, and find (as expected) that EFT does not accurately describe regions of parameter space where mass of the colored mediator particles are comparable to the experimental cuts on the missing energy. We determine bounds (for several choices of SU(3) representation of the mediator) from the √{ s} = 8 TeV data, and show the expected reach of the √{ s} = 13 TeV LHC and a future 100 TeV pp collider to constrain or discover GSDM models.
Black hole accretion in scalar-tensor-vector gravity
John, Anslyn J
2016-01-01
We examine the accretion of matter onto a black hole in scalar--tensor--vector gravity (STVG). The gravitational constant is $G=G_{N} (1 + \\alpha)$ where $\\alpha$ is a parameter taken to be constant for static black holes in the theory. The STVG black hole is spherically symmetric and characterised by two event horizons. The matter falling into the black hole obeys the polytrope equation of state and passes through two critical points before entering the outer horizon. We obtain analytical expressions for the mass accretion rate as well as for the outer critical point, critical velocity and critical sound speed. Our results complement existing strong field tests like lensing and orbital motion and could be used in conjunction to determine observational constraints on STVG.
Spontaneous symmetry breaking in the $S_3$-symmetric scalar sector
Emmanuel-Costa, D.; Osland, P.; Rebelo, M.N.
2016-02-23
We present a detailed study of the vacua of the $S_3$-symmetric three-Higgs-doublet potential, specifying the region of parameters where these minimisation solutions occur. We work with a CP conserving scalar potential and analyse the possible real and complex vacua with emphasis on the cases in which the CP symmetry can be spontaneously broken. Results are presented both in the reducible-representation framework of Derman, and in the irreducible-representation framework. Mappings between these are given. Some of these implementations can in principle accommodate dark matter and for that purpose it is important to identify the residual symmetries of the potential after spontaneous symmetry breakdown. We are also concerned with constraints from vacuum stability.
Qualitative analysis and characterization of two cosmologies including scalar fields
Leon, Genly
2014-01-01
The problem of dark energy can be roughly stated as the proposition and validation of a cosmological model that can explain the phenomenon of the accelerated expansion of the Universe. This problem is an open discussion topic in modern physics. One of the most common approaches is that of the "Dark Energy" (DE), a matter component still unknown, with repulsive character (to explain the accelerated expansion), which fills about 2/3 of the total content of the Universe. In this thesis are investigated two cosmological models, a non-minimally coupled quintessence field, based on a Scalar-Tensor Theory of gravity, formulated in the Einstein's frame, and a quintom dark energy model, based on General Relativity. A normalization and parametrization procedure is introduced for each model, in order to investigate the flow properties of an associated autonomous system of ordinary differential equations. In our study are combined topological, analytical and numerical techniques. We are mainly interested in the past dyna...
Identification of black hole horizons using scalar curvature invariants
Coley, Alan; McNutt, David
2018-01-01
We introduce the concept of a geometric horizon, which is a surface distinguished by the vanishing of certain curvature invariants which characterize its special algebraic character. We motivate its use for the detection of the event horizon of a stationary black hole by providing a set of appropriate scalar polynomial curvature invariants that vanish on this surface. We extend this result by proving that a non-expanding horizon, which generalizes a Killing horizon, coincides with the geometric horizon. Finally, we consider the imploding spherically symmetric metrics and show that the geometric horizon identifies a unique quasi-local surface corresponding to the unique spherically symmetric marginally trapped tube, implying that the spherically symmetric dynamical black holes admit a geometric horizon. Based on these results, we propose a suite of conjectures concerning the application of geometric horizons to more general dynamical black hole scenarios.
Scalar-flat Kaehler metrics with conformal Bianchi V symmetry
Energy Technology Data Exchange (ETDEWEB)
Dunajski, Maciej [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Plansangkate, Prim, E-mail: M.Dunajski@damtp.cam.ac.uk, E-mail: plansang@CRM.UMontreal.ca [Centre de Recherches Mathematiques (CRM), Universite de Montreal, CP 6128, Montreal (Quebec) H3C 3J7 (Canada)
2011-06-21
We provide an affirmative answer to a question posed by Tod (1995, Twistor Theory (New York: Dekker)), and construct all four-dimensional Kaehler metrics with vanishing scalar curvature which are invariant under the conformal action of the Bianchi V group. The construction is based on the combination of twistor theory and the isomonodromic problem with two double poles. The resulting metrics are non-diagonal in the left-invariant basis and are explicitly given in terms of Bessel functions and their integrals. We also make a connection with the LeBrun ansatz, and characterize the associated solutions of the SU({infinity}) Toda equation by the existence a non-abelian two-dimensional group of point symmetries.
Primordial GWs from universality classes of pseudo-scalar inflation
Pieroni, M.
2017-05-01
In this contribution we discuss the possibility of generating an observable gravitational wave (GW) background by coupling a pseudo-scalar inflaton to some Abelian gauge fields. This analysis is performed by dividing inflationary models into universality classes. We find that of the most promising scenario is a Starobinsky-like model, which may lead to the generation of observational signatures both in upcoming CMB detectors as well as for direct GW detectors. The signal which can be produced in these models would both be observable in ground-based detectors, such as advanced LIGO, and in space-based detectors, such as LISA. The complementarity between the CMB and direct GW detection may be used to extract informations on the microphysics of inflation. Interestingly the mechanism discussed in this contribution may also be relevant for the generation of Primordial Black Holes (PBHs).
Non-minimal scalar multiplets, supersymmetry breaking and dualities
Energy Technology Data Exchange (ETDEWEB)
Farakos, Fotis; Hulík, Ondřej; Kočí, Pavel; Unge, Rikard von [Institute for Theoretical Physics, Masaryk University,611 37 Brno (Czech Republic)
2015-09-25
We study supersymmetry breaking in theories with non-minimal multiplets (such as the complex linear or CNM multiplets), by using superspace higher derivative terms which give rise to new supersymmetry breaking vacuum solutions on top of the standard supersymmetric vacuum. We illustrate the decoupling of the additional massive sectors inside the complex linear and the CNM multiplets and show that only the Goldstino sector is left in the low energy limit. We also discuss the duality between non-minimal scalar multiplets and chiral multiplets in the presence of superspace higher derivatives. From the superspace Noether procedure we calculate the supercurrents, and we show that in the supersymmetry breaking vacuum the chiral superfield X which enters the Ferrara-Zumino supercurrent conservation equation does indeed flow in the IR to the chiral constrained Goldstino superfield. We also provide a description of the Goldstino sector in terms of the Samuel-Wess superfield for the supersymmetry breaking mechanism at hand.
Massless Interacting Scalar Fields in de Sitter space
López Nacir, Diana
2016-10-28
We present a method to compute the two-point functions for an $O(N)$ scalar field model in de Sitter spacetime, avoiding the well known infrared problems for massless fields. The method is based on an exact treatment of the Euclidean zero modes and a perturbative one of the nonzero modes, and involves a partial resummation of the leading secular terms. This resummation, crucial to obtain a decay of the correlation functions, is implemented along with a double expansion in an effective coupling constant $\\sqrt\\lambda$ and in $1/N$. The results reduce to those known in the leading infrared approximation and coincide with the ones obtained directly in Lorentzian de Sitter spacetime in the large $N$ limit. The new method allows for a systematic calculation of higher order corrections both in $\\sqrt\\lambda$ and in $1/N$.
Gravitomagnetic effects in quadratic gravity with a scalar field
Finch, Andrew
2016-01-01
The two gravitomagnetic effects which influence bodies orbiting around a gravitational source are the geodetic effect and the Lense-Thirring effect. The former describes the precession angle of the axis of a spinning gyroscope while in orbit around a nonrotating gravitational source whereas the latter provides a correction for this angle in the case of a spinning source. In this paper we derive the relevant equations in quadratic gravity and relate them to their equivalents in general relativity. Starting with an investigation into Kepler's third law in quadratic gravity with a scalar field, the effects of an axisymmetric and rotating gravitational source on an orbiting body in a circular, equatorial orbit are introduced.
Masses of scalar and axial-vector B mesons revisited
Energy Technology Data Exchange (ETDEWEB)
Cheng, Hai-Yang [Academia Sinica, Institute of Physics, Taipei (China); Yu, Fu-Sheng [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China)
2017-10-15
The SU(3) quark model encounters a great challenge in describing even-parity mesons. Specifically, the q anti q quark model has difficulties in understanding the light scalar mesons below 1 GeV, scalar and axial-vector charmed mesons and 1{sup +} charmonium-like state X(3872). A common wisdom for the resolution of these difficulties lies on the coupled channel effects which will distort the quark model calculations. In this work, we focus on the near mass degeneracy of scalar charmed mesons, D{sub s0}{sup *} and D{sub 0}{sup *0}, and its implications. Within the framework of heavy meson chiral perturbation theory, we show that near degeneracy can be qualitatively understood as a consequence of self-energy effects due to strong coupled channels. Quantitatively, the closeness of D{sub s0}{sup *} and D{sub 0}{sup *0} masses can be implemented by adjusting two relevant strong couplings and the renormalization scale appearing in the loop diagram. Then this in turn implies the mass similarity of B{sub s0}{sup *} and B{sub 0}{sup *0} mesons. The P{sub 0}{sup *}P{sub 1}{sup '} interaction with the Goldstone boson is crucial for understanding the phenomenon of near degeneracy. Based on heavy quark symmetry in conjunction with corrections from QCD and 1/m{sub Q} effects, we obtain the masses of B{sup *}{sub (s)0} and B{sup '}{sub (s)1} mesons, for example, M{sub B{sub s{sub 0{sup *}}}} = (5715 ± 1) MeV + δΔ{sub S}, M{sub B}{sup {sub '{sub s{sub 1}}}} = (5763 ± 1) MeV + δΔ{sub S} with δΔ{sub S} being 1/m{sub Q} corrections. We find that the predicted mass difference of 48 MeV between B{sup '}{sub s1} and B{sub s0}{sup *} is larger than that of 20-30 MeV inferred from the relativistic quark models, whereas the difference of 15 MeV between the central values of M{sub B}{sup {sub '{sub s{sub 1}}}} and M{sub B}{sup {sub '{sub 1}}} is much smaller than the quark model expectation of 60-100 MeV. Experimentally, it is important to have a precise
Effective long wavelength scalar dynamics in de Sitter
Moss, Ian
2016-01-01
We discuss the effective infrared theory governing a light scalar's long wavelength dynamics in de Sitter spacetime. We show how the separation of scales around the physical curvature radius $k/a \\sim H$ can be performed consistently with a window function and how short wavelengths can be integrated out in the Schwinger-Keldysh path integral formalism. At leading order, and for time scales $\\Delta t \\gg H^{-1}$, this results in the well-known Starobinsky stochastic evolution. Our approach allows for the computation of quantum UV corrections, generating an effective potential on which the stochastic dynamics takes place, as well as the description of dynamics on spatial and temporal scales comparable to $H^{-1}$ and above. We further elaborate on the use of a Wigner function to evaluate the non-perturbative expectation values of field correlators and the stress-energy tensor of $\\phi$ within the stochastic formalism.
Mono-jet signatures of gluphilic scalar dark matter
Directory of Open Access Journals (Sweden)
Rohini M. Godbole
2017-09-01
Full Text Available A gluphilic scalar dark matter (GSDM model has recently been proposed as an interesting vision for WIMP dark matter communicating dominantly with the Standard Model via gluons. We discuss the collider signature of a hard jet recoiling against missing momentum (“mono-jet” in such a construction, whose leading contribution is at one-loop. We compare the full one-loop computation with an effective field theory (EFT treatment, and find (as expected that EFT does not accurately describe regions of parameter space where mass of the colored mediator particles are comparable to the experimental cuts on the missing energy. We determine bounds (for several choices of SU(3 representation of the mediator from the s=8 TeV data, and show the expected reach of the s=13 TeV LHC and a future 100 TeV pp collider to constrain or discover GSDM models.
Chiral effective theory with a light scalar and lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Soto, J., E-mail: joan.soto@ub.edu [Departament d' Estructura i Constituents de la Materia, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Talavera, P., E-mail: pere.talavera@icc.ub.edu [Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Comte Urgell 187, E-08036 Barcelona (Spain); Tarrus, J., E-mail: tarrus@ecm.ub.es [Departament d' Estructura i Constituents de la Materia, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain)
2013-01-21
We extend the usual chiral perturbation theory framework ({chi}PT) to allow the inclusion of a light dynamical isosinglet scalar. Using lattice QCD results, and a few phenomenological inputs, we explore the parameter space of the effective theory. We discuss the S-wave pion-pion scattering lengths, extract the average value of the two light quark masses and evaluate the impact of the dynamical singlet field in the low-energy constants l{sup Macron }{sub 1}, l{sup Macron }{sub 3} and l{sup Macron }{sub 4} of {chi}PT. We also show how to extract the mass and width of the sigma resonance from chiral extrapolations of lattice QCD data.
Scalar field dark matter in clusters of galaxies
Bernal, Tula; Robles, Victor H.; Matos, Tonatiuh
2017-07-01
One alternative to the cold dark matter (CDM) paradigm is the scalar field dark matter (SFDM) model, which assumes dark matter is a spin-0 ultra-light scalar field (SF) with a typical mass m ˜ 10-22 eV/c2 and positive self-interactions. Due to the ultra-light boson mass, the SFDM could form Bose-Einstein condensates (BEC) in the very early Universe, which are interpreted as the dark matter haloes. Although cosmologically the model behaves as CDM, they differ at small scales: SFDM naturally predicts fewer satellite haloes, cores in dwarf galaxies and the formation of massive galaxies at high redshifts. The ground state (or BEC) solution at zero temperature suffices to describe low-mass galaxies but fails for larger systems. A possible solution is adding finite-temperature corrections to the SF potential which allows combinations of excited states. In this work, we test the finite-temperature multistate SFDM solution at galaxy cluster scales and compare our results with the Navarro-Frenk-White (NFW) and BEC profiles. We achieve this by fitting the mass distribution of 13 Chandra X-ray clusters of galaxies, excluding the region of the brightest cluster galaxy. We show that the SFDM model accurately describes the clusters' DM mass distributions offering an equivalent or better agreement than the NFW profile. The complete disagreement of the BEC model with the data is also shown. We conclude that the theoretically motivated multistate SFDM profile is an interesting alternative to empirical profiles and ad hoc fitting-functions that attempt to couple the asymptotic NFW decline with the inner core in SFDM.
Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems
Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Grelu, Philippe; Mihalache, Dumitru
2017-11-01
This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks—the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Manakov system). In addition to their intriguing bright–dark dynamics, a series of other peculiar structures, such as coexisting rogue waves, watch-hand-like rogue waves, complementary rogue waves, and vector dark three sisters, are reviewed. Finally, for practical considerations, we also remark on higher-dimensional rogue waves occurring in three closely-related (2 + 1)D nonlinear systems, namely, the Davey–Stewartson equation, the composite (2 + 1)D NLS equation, and the Kadomtsev–Petviashvili I equation. As an interesting contrast to the peculiar X-shaped light bullets, a concept of rogue wave bullets intended for high-dimensional systems is particularly put forward by combining contexts in nonlinear optics.
Convergence of scalar-tensor theories towards general relativity and primordial nucleosynthesis
Serna, A; Navarro, A
2002-01-01
In this paper, we analyse the conditions for convergence towards general relativity of scalar-tensor gravity theories defined by an arbitrary coupling function alpha (in the Einstein frame). We show that, in general, the evolution of the scalar field (phi) is governed by two opposite mechanisms: an attraction mechanism which tends to drive scalar-tensor models towards Einstein's theory, and a repulsion mechanism which has the contrary effect. The attraction mechanism dominates the recent epochs of the universe evolution if, and only if, the scalar field and its derivative satisfy certain boundary conditions. Since these conditions for convergence towards general relativity depend on the particular scalar-tensor theory used to describe the universe evolution, the nucleosynthesis bounds on the present value of the coupling function, alpha sub 0 , strongly differ from some theories to others. For example, in theories defined by alpha propor to |phi| analytical estimates lead to very stringent nucleosynthesis bou...
Dănilă, Bogdan; Mak, Man Kwong; Pantaragphong, Praiboon; Sabau, Sorin
2016-01-01
We perform the study of the stability of the cosmological scalar field models, by using the Jacobi stability analysis, or the Kosambi-Cartan-Chern (KCC) theory. In the KCC approach we describe the time evolution of the scalar field cosmologies in geometric terms, by performing a "second geometrization", by considering them as paths of a semispray. By introducing a non-linear connection and a Berwald type connection associated to the Friedmann and Klein-Gordon equations, five geometrical invariants can be constructed, with the second invariant giving the Jacobi stability of the cosmological model. We obtain all the relevant geometric quantities, and we formulate the condition of the Jacobi stability for scalar field cosmologies in the second order formalism. As an application of the developed methods we consider the Jacobi stability properties of the scalar fields with exponential and Higgs type potential. We find that the Universe dominated by a scalar field exponential potential is in Jacobi unstable state, ...
Spontaneous scalarization with an extremely massive field and heavy neutron stars
Morisaki, Soichiro; Suyama, Teruaki
2017-10-01
We investigate the internal structure and the mass-radius relation of neutron stars in a recently proposed scalar-tensor theory dubbed asymmetron in which a massive scalar field undergoes spontaneous scalarization inside neutron stars. We focus on the case where the Compton wavelength is shorter than 10 km, which has not been investigated in the literature. By solving the modified Einstein equations, either purely numerically or by partially using a semianalytic method, we find that not only the weakening of gravity by spontaneous scalarization but also the scalar force affect the internal structure significantly in the massive case. We also find that the maximum mass of neutron stars is larger for certain parameter sets than that in general relativity and reaches 2 M⊙ even if the effect of strange hadrons is taken into account. There is even a range of parameters where the maximum mass of neutron stars largely exceeds the threshold that violates the causality bound in general relativity.
Cosmological evolution and Solar System consistency of massive scalar-tensor gravity
de Pirey Saint Alby, Thibaut Arnoulx; Yunes, Nicolás
2017-09-01
The scalar-tensor theory of Damour and Esposito-Farèse recently gained some renewed interest because of its ability to suppress modifications to general relativity in the weak field, while introducing large corrections in the strong field of compact objects through a process called scalarization. A large sector of this theory that allows for scalarization, however, has been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study an extension of this theory by endowing the scalar field with a mass to determine whether this allows the theory to pass Solar System constraints upon cosmological evolution for a larger sector of coupling parameter space. We show that the cosmological scalar field goes first through a quiescent phase, similar to the behavior of a massless field, but then it enters an oscillatory phase, with an amplitude (and frequency) that decays (and grows) exponentially. We further show that after the field enters the oscillatory phase, its effective energy density and pressure are approximately those of dust, as expected from previous cosmological studies. Due to these oscillations, we show that the scalar field cannot be treated as static today on astrophysical scales, and so we use time-dependent perturbation theory to compute the scalar-field-induced modifications to Solar System observables. We find that these modifications are suppressed when the mass of the scalar field and the coupling parameter of the theory are in a wide range, allowing the theory to pass Solar System constraints, while in principle possibly still allowing for scalarization.
Ignat'ev, Yurii
2014-01-01
In the article it is shown that at presence of fundamental scalar fields determining the masses of the scalar charged particles the global thermodynamic equilibrium (GTE) is compatible with a process of the cosmological expansion of the statistical system.
Regular boundary value problems for the heat equation with scalar parameters
Kalmenov, Tynysbek Sh.; Besbaev, Gani; Medetbekova, Ryskul
2017-09-01
This paper belongs to the general theory of well-posed initial-boundary value problems for parabolic equations. The classical construction of a boundary value problem is as follows: an equation and a boundary condition are given. It is necessary to investigate the solvability of this problem and properties of the solution if it exists (in the sense of belonging to some space). Beginning with the papers of J. von Neumann and M.I. Vishik (1951), there exists another more general approach: an equation and a space are given, right-hand parts of the equation and boundary conditions, and a solution must belong to this space. It is necessary to describe all the boundary conditions, for which the problem is correctly solvable in this space. Further development of this theory was given by M. Otelbaev, who constructed a complete theory for ordinary differential operators and for symmetric semibounded operators in a Banach space. In this paper we find regular solution of the regular boundary problem for the heat equation with scalar parameter.
Scalar field with the source in the form of the stress-energy tensor trace as a dark energy model
Dudko, I G
2016-01-01
We consider a scalar-tensor theory of gravitation with the scalar source being the trace of the stress-energy tensor of the scalar field itself and matter. We obtain an example of a numerical solution of the cosmological equations which shows that under some special choice of the scalar parameters, there exists a slow-roll regime in which the modern values of the Hubble and deceleration parameters may be obtained.
Scalar perturbation produced at the pre-inflationary stage in Eddington-inspired Born-Infeld gravity
Energy Technology Data Exchange (ETDEWEB)
Cho, Inyong; Singh, Naveen K. [Seoul National University of Science and Technology, Institute of Convergence Fundamental Studies, School of Liberal Arts, Seoul (Korea, Republic of)
2015-06-15
We investigate the scalar perturbation produced at the pre-inflationary stage driven by a massive scalar field in Eddington-inspired Born-Infeld gravity. The scalar power spectrum exhibits a peculiar rise for low k-modes. The tensor-to-scalar ratio can be significantly lowered compared with that in the standard chaotic inflation model in general relativity. This result is very affirmative considering the recent dispute on the detection of gravitational wave radiation between PLANCK and BICEP2. (orig.)
Vaithianathan, T.; Xia, Yanjun; Collins, Lance R.
2011-11-01
Xia and Collins [Physics of Fluids 23 (6):065107, 2011] developed the Bounded Stochastic Shell Mixing (BSSM) model that takes into account the multi-scale nature of the turbulent mixing process. They successfully applied the model to mixing of isotropic scalars with an initial double-delta probability density function (PDF). To enforce the scalar bounds, they introduced a novel ``zeroth mode'' that precisely cancels the inherently non-conservative random terms in the formulation. The extension of the model to the mixing of inhomogeneous scalar fields uses notional particles that move with a fluctuating velocity that is chosen to conform with the underlying turbulent energy spectrum. A consistency condition further requires the particle motion in the direction of the mean scalar gradient be carefully connected to the generation of the scalar fluctuation. The appropriate constraint has been derived and is enforced by the numerical algorithm. This new formulation has been applied to turbulent mixing of a scalar slab of specified thickness. (In the limit of zero thickness, this reduces to the classical ``line source'' problem.) We analyze multiple scalars so that differential diffusion can be considered as well as the effect of the thickness of the slab (relative to the turbulence length scales). The predictions of the BSSM model compare well with direct numerical simulations.
Gotoh, Toshiyuki
2012-11-01
Spectrum of passive scalar variance at very high Schmidt number up to 1000 in isotropic steady turbulence has been studied by using very high resolution DNS. Gaussian random force and scalar source which are isotropic and white in time are applied at low wavenumber band. Since the Schmidt number is very large, the system was integrated for 72 large eddy turn over time for the system to forgot the initial state. It is found that the scalar spectrum attains the asymptotic k-1 spectrum in the viscous-convective range and the constant CB is found to be 5.7 which is larger than 4.9 obtained by DNS under the uniform mean scalar gradient. Reasons for the difference are inferred as the Reynolds number effect, anisotropy, difference in the scalar injection, duration of time average, and the universality of the constant is discussed. The constant CB is also compared with the prediction by the Lagrangian statistical theory for the passive scalar. The scalar spectrum in the far diffusive range is found to be exponential, which is consistent with the Kraichnan's spectrum. However, the Kraichnan spectrum was derived under the assumption that the velocity field is white in time, therefore theoretical explanation of the agreement needs to be explored. Grant-in-Aid for Scientific Research No. 21360082, Ministry of Education, Culture, Sports, Science and Technology of Japan.
Gradient trajectory analysis of the scalar superlayer in a jet flow
Gampert, Markus; Schaefer, Philip; Peters, Norbert
2012-11-01
Based on planar high-speed Rayleigh scattering measurements of the mass fraction of propane discharging from a turbulent round jet into co-flowing carbon dioxide at nozzle based Reynolds numbers Re0 = 3 , 000 - 8 , 600 , we investigate the scalar superlayer. The latter is located between the fully turbulent part of the jet and the outer flow and has the so called turbulent/non-turbulent interface embedded within it. It is termed in analogy to the laminar superlayer introduced by Corrsin and Kistler (NACA Report 1244, 1955). Using scalar gradient trajectories, we partition the turbulent scalar field into the afore mentioned three regions according to an approach developed by Mellado et al. (J. Fluid Mech. 626:333-365, 2009) based on which we in a next step investigate conditioned zonal statistics of the scalar pdf as well as the scalar difference along the trajectory and its mean scalar value. Finally, we relate our results for the scalar superlayer on the one hand to the findings made in other experimental and numerical studies of the turbulent/non-turbulent interface and discuss them on the other hand in the context of the flamelet approach in turbulent non-premixed combustion. This work was funded by the Cluster of Excellence ``Tailor-Made Fuels from Biomass,'' which is funded by the Excellence Initiative of the German federal state governments to promote science and research at German universities.
Integrable Scalar Cosmologies I. Foundations and links with String Theory
Fré, P.; Sagnotti, A.; Sorin, A. S.
2013-12-01
We build a number of integrable one-scalar spatially flat cosmologies, which play a natural role in inflationary scenarios, examine their behavior in several cases and draw from them some general lessons on this type of systems, whose potentials involve combinations of exponential functions, and on similar non-integrable ones. These include the impossibility for the scalar to emerge from the initial singularity descending along asymptotically exponential potentials with logarithmic slopes exceeding a critical value (“climbing phenomenon”) and the inevitable collapse in a Big Crunch whenever the scalar tries to settle at negative extrema of the potential. We also elaborate on the links between these types of potentials and “brane supersymmetry breaking”, a mechanism that ties together string scale and scale of supersymmetry breaking in a class of orientifold models. Our Universe is highly isotropic and homogeneous at large scales, while its current state of acceleration is well accounted for by a small positive cosmological constant; Our Universe is spatially flat, which brings to the forefront metrics of the form ds2=e dt2-a2(t) dxṡdx. Special “gauge functions” B(t) can result in simpler expressions for the scale factor a(t), which becomes a quantity of utmost interest for Theoretical Physics; Vacuum energy accounts for about 70% of the present contents of the Universe, dark matter of unknown origin for another 24%, so that only 6% is left for conventional baryonic matter in the form of luminous stars and galaxies. The climbing phenomenon, whereby the scalar field cannot emerge from the initial singularity climbing down potentials that are asymptotically exponential with logarithmic slopes exceeding a critical value. Or, if you will, the impossibility for scalar fields to overcome, in a contracting phase, the attractive force of such potential ends. The physical meaning of this phenomenon was first elucidated in [18] in the simple exponential
Ignat'ev, Yu G
2015-01-01
The article proposes generalizations of the macroscopic model of plasma of scalar charged particles to the cases of inter-particle interaction with multiple scalar fields and negative effective masses of these particles. The model is based on the microscopic dynamics of a particle at presence of scalar fields. The theory is managed to be generalized naturally having strictly reviewed a series of its key positions depending on a sign of particle masses. Thereby, it is possible to remove the artificial restriction contradicting the more fundamental principle of action functional additivity. Additionally, as a condition of internal consistency of the theory, particle effective mass function is found.
Discovering a Light Scalar or Pseudoscalar at The Large Hadron Collider
DEFF Research Database (Denmark)
Frandsen, Mads Toudal; Sannino, Francesco
2012-01-01
The allowed standard model Higgs mass range has been reduced to a region between 114 and 130 GeV or above 500 GeV, at the 99% confidence level, since the Large Hadron Collider (LHC) program started. Furthermore some of the experiments at Tevatron and LHC observe excesses that could arise from...... a spin-0 particle with a mass of about 125 GeV. It is therefore timely to compare the standard model Higgs predictions against those of a more general new spin-0 state, either scalar or pseudo-scalar. Using an effective Lagrangian approach we investigate the ability to discriminate between a scalar...
arXiv Tensor to scalar ratio from single field magnetogenesis
Giovannini, Massimo
2017-08-10
The tensor to scalar ratio is affected by the evolution of the large-scale gauge fields potentially amplified during an inflationary stage of expansion. After deriving the exact evolution equations for the scalar and tensor modes of the geometry in the presence of dynamical gauge fields, it is shown that the tensor to scalar ratio is bounded from below by the dominance of the adiabatic contribution and it cannot be smaller than one thousands whenever the magnetogenesis is driven by a single inflaton field.
Phase space analysis for a scalar-tensor model with kinetic and Gauss-Bonnet couplings
Granda, L N
2016-01-01
We study the phase space for an scalar-tensor string inspired model of dark energy with non minimal kinetic and Gauss Bonnet couplings. The form of the scalar potential and of the coupling terms is of the exponential type, which give rise to appealing cosmological solutions. The critical points describe a variety of cosmological scenarios that go from matter or radiation dominated universe to dark energy dominated universe. There were found trajectories in the phase space departing from unstable or saddle fixed points and arriving to the stable scalar field dominated point corresponding to late-time accelerated expansion.
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar, E-mail: shaharhod@gmail.com [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Academic College, Jerusalem 91010 (Israel)
2017-05-10
We study analytically the characteristic resonance spectrum of charged massive scalar fields linearly coupled to a spherically symmetric charged reflecting shell. In particular, we use analytical techniques in order to solve the Klein–Gordon wave equation for the composed charged-shell–charged-massive-scalar-field system. Interestingly, it is proved that the resonant oscillation frequencies of this composed physical system are determined by the characteristic zeroes of the confluent hypergeometric function. Following this observation, we derive a remarkably compact analytical formula for the resonant oscillation frequencies which characterize the marginally-bound charged massive scalar field configurations. The analytically derived resonance spectrum is confirmed by numerical computations.
Evolution of perturbations in distinct classes of canonical scalar field models of dark energy
Jassal, H. K.
2009-01-01
Dark energy must cluster in order to be consistent with the equivalence principle. The background evolution can be effectively modelled by either a scalar field or by a barotropic fluid.The fluid model can be used to emulate perturbations in a scalar field model of dark energy, though this model breaks down at large scales. In this paper we study evolution of dark energy perturbations in canonical scalar field models: the classes of thawing and freezing models.The dark energy equation of stat...
Quasinormal modes of black holes in scalar-tensor theories with nonminimal derivative couplings
Dong, Ruifeng; Sakstein, Jeremy; Stojkovic, Dejan
2017-09-01
We study the quasinormal modes of asymptotically anti-de Sitter black holes in a class of shift-symmetric Horndeski theories where a gravitational scalar is derivatively coupled to the Einstein tensor. The spacetime differs from exact Schwarzschild-anti-de Sitter, resulting in a different effective potential for the quasinormal modes and a different spectrum. We numerically compute this spectrum for a massless test scalar coupled both minimally to the metric, and nonminimally to the gravitational scalar. We find interesting differences from the Schwarzschild-anti-de Sitter black hole found in general relativity.
Comment on "Self-gravitating spherically symmetric solutions in scalar-torsion theories"
Yaqin, Ainol; Gunara, Bobby Eka
2017-07-01
We find a crucial miscalculation in [G. Kofinas, E. Papantonopoulos, and E. N. Saridakis, Self-gravitating spherically symmetric solutions in scalar-torsion theories, Phys. Rev. D 91, 104034 (2015), 10.1103/PhysRevD.91.104034] which leads to the wrong master equation. This follows that there is no wormhole-like solution for hyperbolic scalar potential and the solution at large distances differs from that of [G. Kofinas, E. Papantonopoulos, and E. N. Saridakis, Self-gravitating spherically symmetric solutions in scalar-torsion theories, Phys. Rev. D 91, 104034 (2015), 10.1103/PhysRevD.91.104034].
Self-Gravitating Spherically Symmetric Solutions in Scalar-Torsion Theories
Kofinas, Georgios; Saridakis, Emmanuel N
2015-01-01
We studied spherically symmetric solutions in scalar-torsion gravity theories in which a scalar field is coupled to torsion with a derivative coupling. We obtained the general field equations from which we extracted a decoupled master equation, the solution of which leads to the specification of all other unknown functions. We first obtained an exact solution which represents a new wormhole-like solution dressed with a regular scalar field. Then, we found large distance linearized spherically symmetric solutions in which the space asymptotically is AdS.
Momentum and scalar transport at the turbulent/non-turbulent interface of a jet
DEFF Research Database (Denmark)
Westerweel, J.; Fukushima, C.; Pedersen, Jakob Martin
2009-01-01
are consistent with computations by Mathew & Basu (Phys. Fluids, vol. 14, 2002, pp. 2065-2072) in showing that for a jet flow (without forcing) the entrainment process is dominated by small-scale eddying at the highly sheared interface ('nibbling'), with large-scale engulfing making a small (less than 10...... eddy viscosity and eddy diffusivity and the momentum and scalar fluxes inside the interface. Since the eddy diffusivity is larger than the eddy viscosity, the scalar profile is flatter inside the interface so that the scalar discontinuity is relatively greater than the mean velocity discontinuity...
Quantum tunneling from rotating black holes with scalar hair in three dimensions
Energy Technology Data Exchange (ETDEWEB)
Sakalli, I.; Gursel, H. [Eastern Mediterranean University, Department of Physics, Mersin-10 (Turkey)
2016-06-15
We study the Hawking radiation of scalar and Dirac particles (fermions) emitted from a rotating scalar hair black hole (RSHBH) within the context of three dimensional (3D) Einstein gravity using non-minimally coupled scalar field theory. Amalgamating the quantum tunneling approach with the Wentzel-Kramers-Brillouin approximation, we obtain the tunneling rates of the outgoing particles across the event horizon. Inserting the resultant tunneling rates into the Boltzmann formula, we then obtain the Hawking temperature (T{sub H}) of the 3D RSHBH. (orig.)
Search for pair production of the scalar top quark in muon+tau final states
D0 Collaboration; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Aoki, M.; Askew, A.; Asman, B.; Atkins, S.; Atramentov, O.
2012-01-01
We present a search for the pair production of scalar top quarks ($\\tilde{t}_{1}$), the lightest supersymmetric partners of the top quarks, in $p\\bar{p}$ collisions at a center-of-mass energy of 1.96 TeV, using data corresponding to an integrated luminosity of {7.3 $fb^{-1}$} collected with the \\dzero experiment at the Fermilab Tevatron Collider. Each scalar top quark is assumed to decay into a $b$ quark, a charged lepton, and a scalar neutrino ($\\tilde{\
Scalar field self-force effects on a particle orbiting a Reissner-Nordstrom black hole
Bini, Donato; Geralico, Andrea
2016-01-01
Scalar field self-force effects on a scalar charge orbiting a Reissner-Nordstr\\"om black hole are investigated. The scalar wave equation is solved analytically in a post-Newtonian framework, and the solution is used to compute the self-field as well as the components of the self-force at the particle's location up to 7.5 post-Newtonian order. The energy fluxes radiated to infinity and down the hole are also evaluated. Comparison with previous numerical results in the Schwarzschild case shows a good agreement in both strong-field and weak-field regimes.
Alhulaimi, B.; van den Hoogen, R. J.; Coley, A. A.
2017-12-01
Inflationary spatially homogeneous cosmological models within an Einstein-aether gravitational framework are investigated. The matter source is assumed to be a scalar field which is coupled to the aether field expansion and shear scalars through the generalized harmonic scalar field potential. The evolution equations are expressed in terms of expansion-normalized variables to produce an autonomous system of ordinary differential equations suitable for numerical and local stability analysis. An analysis of the local stability of the equilibrium points indicates that there exists a range of values of the parameters in which there exists an accelerating expansionary future attractor.
Scalar Aharonov–Bohm Phase in Ramsey Atom Interferometry under Time-Varying Potential
Directory of Open Access Journals (Sweden)
Atsuo Morinaga
2016-08-01
Full Text Available In a Ramsey atom interferometer excited by two electromagnetic fields, if atoms are under a time-varying scalar potential during the interrogation time, the phase of the Ramsey fringes shifts owing to the scalar Aharonov–Bohm effect. The phase shift was precisely examined using a Ramsey atom interferometer with a two-photon Raman transition under the second-order Zeeman potential, and a formula for the phase shift was derived. Using the derived formula, the frequency shift due to the scalar Aharonov–Bohm effect in the frequency standards utilizing the Ramsey atom interferometer was discussed.
Tunnelling of scalar and Dirac particles from squashed charged rotating Kaluza-Klein black holes
Stetsko, M. M.
2016-02-01
The thermal radiation of scalar particles and Dirac fermions from squashed charged rotating five-dimensional black holes is considered. To obtain the temperature of the black holes we use the tunnelling method. In the case of scalar particles we make use of the Hamilton-Jacobi equation. To consider tunnelling of fermions the Dirac equation was investigated. The examination shows that the radial parts of the action for scalar particles and fermions in the quasi-classical limit in the vicinity of horizon are almost the same and as a consequence it gives rise to identical expressions for the temperature in the two cases.
Black holes from multiplets of scalar fields in 2 + 1- and 3 + 1 dimensions
Energy Technology Data Exchange (ETDEWEB)
Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean Univ., Gazimagusa (Turkey). Dept. of Physics
2016-08-15
We obtain classes of black hole solutions constructed from multiplets of scalar fields in 2 + 1/3 + 1 dimensions. The multi-component scalars do not undergo a symmetry breaking so that only the isotropic modulus is effective. The Lagrangian is supplemented by a self-interacting potential which plays significant role in obtaining the exact solutions. In 2 + 1/3 + 1 dimensions, a doublet/triplet of scalars is effective, which enriches the available black hole spacetimes and creates useful Liouville weighted field theoretic models. (orig.)
Directory of Open Access Journals (Sweden)
Nakwoo Kim
2015-03-01
Full Text Available We consider scalar fields which are coupled to Einstein gravity with a negative cosmological constant, and construct periodic solutions perturbatively. In particular, we study tachyonic scalar fields whose mass is at or above the Breitenlohner–Freedman bound in four, five, and seven spacetime dimensions. The critical amplitude of the leading order perturbation, for which the perturbative expansion breaks down, increases as we consider less massive fields. We present various examples including a model with a self-interacting scalar field which is derived from a consistent truncation of IIB supergravity.
Quantum cosmology with matter in scalar-tensor theory
Lee, S.; Lim, H.
2016-11-01
The cosmological application of the low energy effective action of string theory with perfect fluid type matter (satisfying p=γ ρ ) is reconsidered. First, its isotropic and anisotropic spacetime cosmological solutions are obtained for general γ . The scale factor duality is applied and checked for our model as well as in the presence of γ of which possible extension to nonvanishing γ is pioneered before. The asymptotic behavior of the solutions is investigated because of the complexity of the solutions. Second, as a quantization, we apply the canonical quantization and the corresponding Wheeler-De Witt equation is constructed for this scalar-tensor theory. By solving the Wheeler-De Witt equation the wave function is found for general value of γ . On the basis of its wave function, the tunneling rate turns out to be just the ratio of norms of the wave function for pre- and post-big-bang phases. This result shows that the rate grows as γ gets value close to a specific value. This resolves the undetermined value for the behavior of the scale factors.
Search for light scalar Dark Matter candidate with AURIGA detector
Branca, Antonio; Cerdonio, Massimo; Conti, Livia; Falferi, Paolo; Marin, Francesco; Mezzena, Renato; Ortolan, Antonello; Prodi, Giovanni A; Taffarello, Luca; Vedovato, Gabriele; Vinante, Andrea; Vitale, Stefano; Zendri, Jean-Pierre
2016-01-01
A search for a new scalar field, called moduli, has been performed using the cryogenic resonant-mass AURIGA detector. Predicted by string theory, moduli may provide a significant contribution to the dark matter (DM) component of our universe. If this is the case, the interaction of ordinary matter with the local DM moduli, forming the Galaxy halo, will cause an oscillation of solid bodies with a frequency corresponding to the mass of moduli. In the sensitive band of AURIGA, some $100\\,\\mathrm{Hz}$ at around $1\\,\\mathrm{kHz}$, the expected signal, with a $Q=\\tfrac{\\triangle f}{f}\\sim10^{6}$, is a narrow peak, $\\triangle f\\sim1\\,\\mathrm{mHz}$. Here the detector strain sensitivity is $h_{s}\\sim2\\times10^{-21}\\,\\mathrm{Hz^{-1/2}}$, within a factor of $2$. These numbers translate to upper limits at $95\\%\\,C.L.$ on the moduli coupling to ordinary matter $d_{e}\\lesssim10^{-5}$ around masses $m_{\\phi}=3.6\\cdot10^{-12}\\,\\mathrm{eV}$, for the standard DM halo model with $\\rho_{DM}=0.3\\,\\mathrm{GeV/cm^{3}}$.
A New Scalar Quantization Method for Digital Image Watermarking
Directory of Open Access Journals (Sweden)
Yevhen Zolotavkin
2016-01-01
Full Text Available A new technique utilizing Scalar Quantization is designed in this paper in order to be used for Digital Image Watermarking (DIW. Efficiency of the technique is measured in terms of distortions of the original image and robustness under different kinds of attacks, with particular focus on Additive White Gaussian Noise (AWGN and Gain Attack (GA. The proposed technique performance is affirmed by comparing with state-of-the-art methods including Quantization Index Modulation (QIM, Distortion Compensated QIM (DC-QIM, and Rational Dither Modulation (RDM. Considerable improvements demonstrated by the method are due to a new form of distribution of quantized samples and a procedure that recovers a watermark after GA. In contrast to other known quantization methods, the detailed method here stipulates asymmetric distribution of quantized samples. This creates a distinctive feature and is expressed numerically by one of the proposed criteria. In addition, several realizations of quantization are considered and explained using a concept of Initial Data Loss (IDL which helps to reduce watermarking distortions. The procedure for GA recovery exploits one of the two criteria of asymmetry. The accomplishments of the procedure are due to its simplicity, computational lightness, and sufficient precision of estimation of unknown gain factor.
Shadows of Kerr black holes with scalar hair
Cunha, Pedro V P; Radu, Eugen; Runarsson, Helgi F
2015-01-01
Using backwards ray tracing, we study the shadows of Kerr black holes with scalar hair (KBHsSH). KBHsSH interpolate continuously between Kerr BHs and boson stars (BSs), so we start by investigating the lensing of light due to BSs. Moving from the weak to the strong gravity region, BSs - which by themselves have no shadows - are classified, according to the lensing produced, as: $(i)$ non-compact, which yield no multiple images; $(ii)$ compact, which produce an increasing number of Einstein rings and multiple images of the whole celestial sphere; $(iii)$ ultra-compact, which possess light rings, yielding an infinite number of images with (we conjecture) a self-similar structure. The shadows of KBHsSH, for Kerr-like horizons and non-compact BS-like hair, are analogous to, but distinguishable from, those of comparable Kerr BHs. But for non-Kerr-like horizons and ultra-compact BS-like hair, the shadows of KBHsSH are drastically different: novel shapes arise, sizes are considerably smaller and multiple shadows of ...
Equivalence of cosmological observables in conformally related scalar tensor theories
Rondeau, François; Li, Baojiu
2017-12-01
Scalar tensor theories can be expressed in different frames, such as the commonly used Einstein and Jordan frames, and it is generally accepted that cosmological observables are the same in these frames. We revisit this by making a detailed side-by-side comparison of the quantities and equations in two conformally related frames, from the actions and fully covariant field equations to the linearized equations in both real and Fourier spaces. This confirms that the field and conservation equations are equivalent in the two frames, in the sense that we can always re-express equations in one frame using relevant transformations of variables to derive the corresponding equations in the other. We show, with both analytical derivation and a numerical example, that the line-of-sight integration to calculate CMB temperature anisotropies can be done using either Einstein frame or Jordan frame quantities, and the results are identical, provided the correct redshift is used in the Einstein frame (1 +z ≠1 /a ).
Self-interacting scalar fields at high-temperature
Energy Technology Data Exchange (ETDEWEB)
Deur, Alexandre [University of Virginia, Charlottesville, VA (United States)
2017-06-15
We study two self-interacting scalar field theories in their high-temperature limit using path integrals on a lattice. We first discuss the formalism and recover known potentials to validate the method. We then discuss how these theories can model, in the high-temperature limit, the strong interaction and General Relativity. For the strong interaction, the model recovers the known phenomenology of the nearly static regime of heavy quarkonia. The model also exposes a possible origin for the emergence of the confinement scale from the approximately conformal Lagrangian. Aside from such possible insights, the main purpose of addressing the strong interaction here - given that more sophisticated approaches already exist - is mostly to further verify the pertinence of the model in the more complex case of General Relativity for which non-perturbative methods are not as developed. The results have important implications on the nature of Dark Matter. In particular, non-perturbative effects naturally provide flat rotation curves for disk galaxies, without need for non-baryonic matter, and explain as well other observations involving Dark Matter such as cluster dynamics or the dark mass of elliptical galaxies. (orig.)
About the (non)scalar property for time perception.
Grondin, Simon
2014-01-01
Approaching sensation scientifically is relatively straightforward. There are physical attributes for stimulating the central nervous system, and there are specific receptors for each sense for translating the physical signals into codes that brain will recognize. When studying time though, it is far from obvious that there are any specific receptors or specific stimuli. Consequently, it becomes important to determine whether internal time obeys some laws or principles usually reported when other senses are studied. In addition to reviewing some classical methods for studying time perception, the present chapter focusses on one of these laws, Weber law, also referred to as the scalar property in the field of time perception. Therefore, the question addressed here is the following: does variability increase linearly as a function of the magnitude of the duration under investigation? The main empirical facts relative to this question are reviewed, along with a report of the theoretical impact of these facts on the hypotheses about the nature of the internal mechanisms responsible for estimating time.
General scalar-tensor cosmology: analytical solutions via noether symmetry
Energy Technology Data Exchange (ETDEWEB)
Massaeli, Erfan; Motaharfar, Meysam; Sepangi, Hamid Reza [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of)
2017-02-15
We analyze the cosmology of a general scalar-tensor theory which encompasses generalized Brans-Dicke theory, Gauss-Bonnet gravity, non-minimal derivative gravity, generalized Galilean gravity and also the general k-essence type models. Instead of taking into account phenomenological considerations we adopt a Noether symmetry approach, as a physical criterion, to single out the form of undetermined functions in the action. These specified functions symmetrize equations of motion in the simplest possible form which result in exact solutions. Demanding de Sitter, power-law and bouncing universe solutions in the absence and presence of matter density leads to exploring new as well as well-investigated models. We show that there are models for which the dynamics of the system allows a transition from a decelerating phase (matter dominated era) to an accelerating phase (dark energy epoch) and could also lead to general Brans-Dicke with string correction without a self-interaction potential. Furthermore, we classify the models based on a phantom or quintessence dark energy point of view. Finally, we obtain the condition for stability of a de Sitter solution for which the solution is an attractor of the system. (orig.)
Shadows of Kerr Black Holes with Scalar Hair.
Cunha, Pedro V P; Herdeiro, Carlos A R; Radu, Eugen; Rúnarsson, Helgi F
2015-11-20
Using backwards ray tracing, we study the shadows of Kerr black holes with scalar hair (KBHSH). KBHSH interpolate continuously between Kerr BHs and boson stars (BSs), so we start by investigating the lensing of light due to BSs. Moving from the weak to the strong gravity region, BSs-which by themselves have no shadows-are classified, according to the lensing produced, as (i) noncompact, which yield not multiple images, (ii) compact, which produce an increasing number of Einstein rings and multiple images of the whole celestial sphere, and (iii) ultracompact, which possess light rings, yielding an infinite number of images with (we conjecture) a self-similar structure. The shadows of KBHSH, for Kerr-like horizons and noncompact BS-like hair, are analogous to, but distinguishable from, those of comparable Kerr BHs. But for non-Kerr-like horizons and ultracompact BS-like hair, the shadows of KBHSH are drastically different: novel shapes arise, sizes are considerably smaller, and multiple shadows of a single BH become possible. Thus, KBHSH provide quantitatively and qualitatively new templates for ongoing (and future) very large baseline interferometry observations of BH shadows, such as those of the Event Horizon Telescope.
Scalar perturbations in cosmological models with quark nuggets
Energy Technology Data Exchange (ETDEWEB)
Brilenkov, Maxim [Odessa National University, Department of Theoretical Physics, Odessa (Ukraine); Eingorn, Maxim [North Carolina Central University, CREST and NASA Research Centers, Durham, NC (United States); Jenkovszky, Laszlo [Bogolyubov Institute for Theoretical Physics, Kiev (Ukraine); Zhuk, Alexander [Odessa National University, Astronomical Observatory, Odessa (Ukraine)
2014-08-15
In this paper we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, the Universe is filled with inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Supposing that a small fraction of colored objects escaped hadronization and survived up to now in the form of quark-gluon nuggets (QNs), and also taking into account radiation, we investigate scalar perturbations of the FRW metrics due to inhomogeneities of dustlike matter as well as fluctuations of QNs and radiation. In particular, we demonstrate that the nonrelativistic gravitational potential is defined by the distribution of inhomogeneities/fluctuations of both dustlike matter and QNs. Consequently, QNs can be distributed around the baryonic inhomogeneities (e.g., galaxies) in such a way that it can solve the problem of the flatness of the rotation curves. We also show that the fluctuations of radiation are caused by both the inhomogeneities in the form of galaxies and the fluctuations of quark-gluon nuggets. Therefore, if QNs exist, the CMB anisotropy should contain also the contributions from QNs. Additionally, the spatial distribution of the radiation fluctuations is defined by the gravitational potential. All these results look physically reasonable. (orig.)
Direct Searches For Scalar Leptoquarks At The Run Ii Tevatron
Ryan, D E
2004-01-01
This dissertation sets new limits on the mass of the scalar leptoquark from direct searches carried out at the Run II CDF detector using data from March 2001 to October 2003. The data analysed has a total time-integrated measured luminosity of 198 pb−1 of pp¯ collisions with s = 1.96 TeV. Leptoquarks are assumed to be pair-produced and to decay into a lepton and a quark of the same generation. We consider two possible leptoquark decays: (1) β = BR(LQ → μq ) = 1.0, and (2) β = BR(LQ → μq ) = 0.5. For the β = 1 channel, we focus on the signature represented by two isolated high- pT muons and two isolated high-pT jets. For the β = 1/2 channel, we focus on the signature represented by one isolated high-pT muon, large missing transverse energy, and two isolated high- p T jets. No leptoquark signal is experimentally detected for either signature. Using the next to leading order theoretical cross section for s...
Gravitational waves from self-ordering scalar fields
Fenu, Elisa; Durrer, Ruth; Garcia-Bellido, Juan
2009-01-01
Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as $\\Omega_{\\rm GW}(f) \\propto f^3$ with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer tim...
On determinant representations of scalar products and form factors in the SoV approach: the XXX case
Kitanine, N.; Maillet, J. M.; Niccoli, G.; Terras, V.
2016-03-01
In the present article we study the form factors of quantum integrable lattice models solvable by the separation of variables (SoVs) method. It was recently shown that these models admit universal determinant representations for the scalar products of the so-called separate states (a class which includes in particular all the eigenstates of the transfer matrix). These results permit to obtain simple expressions for the matrix elements of local operators (form factors). However, these representations have been obtained up to now only for the completely inhomogeneous versions of the lattice models considered. In this article we give a simple algebraic procedure to rewrite the scalar products (and hence the form factors) for the SoV related models as Izergin or Slavnov type determinants. This new form leads to simple expressions for the form factors in the homogeneous and thermodynamic limits. To make the presentation of our method clear, we have chosen to explain it first for the simple case of the XXX Heisenberg chain with anti-periodic boundary conditions. We would nevertheless like to stress that the approach presented in this article applies as well to a wide range of models solved in the SoV framework.
Micro-fabricated atomic magnetometer with hybrid vector-scalar operation Project
National Aeronautics and Space Administration — Measurement of magnetic fields provides valuable information about charged particles and plasma interactions in the solar system, and about planetary dynamics and...
Progress in pseudo-scalar meson photoproduction experiments at MAMI-C in Mainz.
Energy Technology Data Exchange (ETDEWEB)
Annand, John R.M; Hamilton, David J.; Howdle, David; Livingston, Ken; MacGregor, Ian James Douglas; Mancell, Joe; McNicoll, Eilidh; Robinson, Jamie; Rosner, Guenther [Department of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom)
2009-07-01
Since its upgrade in 2007, the Glasgow-Mainz spectrometer has provided a state-of-the-art photon tagger for a series of photo-production experiments at electron beam energies from 200 to 1508 MeV. We report on the operational status of the tagging spectrometer, refitted with a new focal-plane detector to extend its rate capability and improve its timing resolution by a factor 2. This complements the Crystal Ball and TAPS calorimeters, which provide almost 4{pi} detection of both neutral and charged particles. These systems have very high detection efficiency for multi-photon final states. Measurement of pseudo-scalar-meson photo production on the nucleon is a major component of the experimental programme. We have data on {pi}{sup 0}, {pi}{sup +}, {eta}, {eta}{sup '}, K{sup 0}, K{sup +} (single and multiple-meson) final states for {sup 1}H and {sup 2}H targets. The eventual goal is to make complete measurements of the helicity amplitudes, which require at least 8 observables chosen properly from unpolarised, single-spin and double-spin possibilities. The possibilities in Mainz will extend when polarised targets become available in 2009. In December 2008 the maximum MAMI-C energy was raised to 1557 MeV and data taken with an open trigger at tagged-photon energies from 80 to 1447 MeV. We show some first analyses of these tests.
Quantum Cramer–Rao Bound for a Massless Scalar Field in de Sitter Space
Directory of Open Access Journals (Sweden)
Marcello Rotondo
2017-10-01
Full Text Available How precisely can we estimate cosmological parameters by performing a quantum measurement on a cosmological quantum state? In quantum estimation theory, the variance of an unbiased parameter estimator is bounded from below by the inverse of measurement-dependent Fisher information and ultimately by quantum Fisher information, which is the maximization of the former over all positive operator-valued measurements. Such bound is known as the quantum Cramer –Rao bound. We consider the evolution of a massless scalar field with Bunch–Davies vacuum in a spatially flat FLRW spacetime, which results in a two-mode squeezed vacuum out-state for each field wave number mode. We obtain the expressions of the quantum Fisher information as well as the Fisher informations associated to occupation number measurement and power spectrum measurement, and show the specific results of their evolution for pure de Sitter expansion and de Sitter expansion followed by a radiation-dominated phase as examples. We will discuss these results from the point of view of the quantum-to-classical transition of cosmological perturbations and show quantitatively how this transition and the residual quantum correlations affect the bound on the precision.
Numerical simulations of stellar collapse in scalar-tensor theories of gravity
Gerosa, Davide; Ott, Christian D
2016-01-01
We present numerical-relativity simulations of spherically symmetric core collapse and compact-object formation in scalar-tensor theories of gravity. The additional scalar degree of freedom introduces a propagating monopole gravitational-wave mode. Detection of monopole scalar waves with current and future gravitational-wave experiments may constitute smoking gun evidence for strong-field modifications of General Relativity. We collapse both polytropic and more realistic pre-supernova profiles using a high-resolution shock-capturing scheme and an approximate prescription for the nuclear equation of state. The most promising sources of scalar radiation are protoneutron stars collapsing to black holes. In case of a Galactic core collapse event forming a black hole, Advanced LIGO may be able to place independent constraints on the parameters of the theory at a level comparable to current Solar-System and binary-pulsar measurements. In the region of the parameter space admitting spontaneously scalarised stars, tr...
Goloviznin, V. M.; Kanaev, A. A.
2012-03-01
The CABARET computational algorithm is generalized to one-dimensional scalar quasilinear hyperbolic partial differential equations with allowance for inequality constraints on the solution. This generalization can be used to analyze seepage of liquid radioactive wastes through the unsaturated zone.
Search for the Standard Model Scalar Decaying to Fermions at CMS
Dutta, Valentina
2013-01-01
The latest results of the search for the standard model scalar boson in fermionic decay channels at the CMS experiment are presented. The dataset used corresponds to an integrated luminosity of 5 $fb^{-1}$ of proton-proton collision data collected at $\\sqrt{s}$ = 7 TeV and up to 19.4 $fb^{-1}$ collected at $\\sqrt{s}$ = 8 TeV. The analyses described include the searches for the standard model scalar decaying to tau pairs and to a pair of b-quarks. In the tau-pair nal state, an excess of events is observed over a broad range of SM scalar mass hypotheses, with a maximum local signicance of 2.93 standard deviations at $m_H$ = 120 GeV. The excess is compatible with the presence of a standard model scalar boson of mass 125 GeV.
Family number non-conservation induced by the supersymmetric mixing of scalar leptons
Energy Technology Data Exchange (ETDEWEB)
Levine, M.J.S.
1987-08-01
The most egregious aspect of (N = 1) supersymmetric theories is that each particle state is accompanied by a 'super-partner', a state with identical quantum numbers save that it differs in spin by one half unit. For the leptons these are scalars and are called ''sleptons'', or scalar leptons. These consist of the charged sleptons (selectron, smuon, stau) and the scalar neutrinos ('sneutrinos'). We examine a model of supersymmetry with soft breaking terms in the electroweak sector. Explicit mixing among the scalar leptons results in a number of effects, principally non-conservation of lepton family number. Comparison with experiment permits us to place constraints upon the model. 49 refs., 12 figs.
Pathological behaviour of the scalar graviton in Hořava-Lifshitz gravity
National Research Council Canada - National Science Library
Koyama, Kazuya; Arroja, Frederico
2010-01-01
We confirm the recent claims that, in the infrared limit of Hořava-Lifshitz gravity, the scalar graviton becomes a ghost if the sound speed squared is positive on the flat de Sitter and Minkowski background...
New class of cosmological solutions for a self-interacting scalar field
Chaadaev, A. A.; Chervon, S. V.
2013-12-01
New cosmological solutions are found to the system of Einstein scalar field equations using the scalar field φ as the argument. For a homogeneous and isotropic Universe, the system of equations is reduced to two equations, one of which is an equation of Hamilton-Jacobi type. Using the hyperbolically parameterized representation of this equation together with the consistency condition, explicit dependences of the potential V of the scalar field and the Hubble parameter H on φ are obtained. The dependences of the scalar field and the scale factor a on cosmic time t have also been found. It is shown that this scenario corresponds to the evolution of the Universe with accelerated expansion out to times distant from the initial singularity.
CP-even scalar boson production via gluon fusion at the LHC
Anastasiou, Charalampos; Dulat, Falko; Furlan, Elisabetta; Gehrmann, Thomas; Herzog, Franz; Lazopoulos, Achilleas; Mistlberger, Bernhard
2016-09-07
In view of the searches at the LHC for scalar particle resonances in addition to the 125 GeV Higgs boson, we present the cross section for a CP-even scalar produced via gluon fusion at N3LO in perturbative QCD assuming that it couples directly to gluons in an effective theory approach. We refine our prediction by taking into account the possibility that the scalar couples to the top-quark and computing the corresponding contributions through NLO in perturbative QCD. We assess the theoretical uncertainties of the cross section due to missing higher-order QCD effects and we provide the necessary information for obtaining the cross section value and uncertainty from our results in specific scenarios beyond the Standard Model. We also give detailed results for the case of a 750 GeV scalar, which will be the subject of intense experimental studies.
Superradiant instability of charged scalar field in stringy black hole mirror system
Energy Technology Data Exchange (ETDEWEB)
Li, Ran; Zhao, Junkun [Henan Normal University, Department of Physics, Xinxiang (China)
2014-09-15
It has been shown that the mass of a charged scalar field in the background of a charged stringy black hole is never able to generate a potential well outside the event horizon to trap the superradiant modes. This is to say that the charged stringy black hole is stable against massive charged scalar perturbations. In this paper we will study the superradiant instability of the massless scalar field in the background of charged stringy black hole due to a mirror-like boundary condition. The analytical expression of the frequencies of unstable superradiant modes is derived by using the asymptotic matching method. It is also pointed out that the black hole mirror system becomes extremely unstable for a large charge q of the scalar field and a small mirror radius r{sub m}. (orig.)
Slowly decaying resonances of massive scalar fields around Schwarzschild-de Sitter black holes
Toshmatov, Bobir; Stuchlík, Zdeněk
2017-07-01
We study in special limiting cases quasinormal modes of massive scalar fields in the Schwarzschild-de Sitter black hole backgrounds. We determine the lower limit on the mass parameter of the scalar field that allows the waves with quasinormal frequencies to propagate to infinity, showing that it depends on the spacetime parameters only. Then we discuss in the large multipole number limit quasinormal modes, whose frequencies can be directly related to the unstable circular photon geodesics. In the large scalar mass approximation, we demonstrate the new interesting phenomenon of slowly decaying resonances, that are strongly related to the maximum of the effective potential of the massive scalar field, which is located at the static radius of the Schwarzschild-de Sitter spacetimes, where the cosmic repulsion is just balanced by the black hole attraction.
Di-Higgs enhancement by neutral scalar as probe of new colored sector
Nakamura, Koji; Nishiwaki, Kenji; Oda, Kin-ya; Park, Seong Chan; Yamamoto, Yasuhiro
2017-05-01
We study a class of models in which the Higgs pair production is enhanced at hadron colliders by an extra neutral scalar. The scalar particle is produced by the gluon fusion via a loop of new colored particles, and decays into di-Higgs through its mixing with the Standard Model Higgs. Such a colored particle can be the top/bottom partner, such as in the dilaton model, or a colored scalar which can be triplet, sextet, octet, etc., called leptoquark, diquark, coloron, etc., respectively. We examine the experimental constraints from the latest Large Hadron Collider (LHC) data, and discuss the future prospects of the LHC and the Future Circular Collider up to 100 TeV. We also point out that the 2.4 σ excess in the b \\bar{b} γ γ final state reported by the ATLAS experiment can be interpreted as the resonance of the neutral scalar at 300 GeV.
Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows Project
National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...
Excited scalar and pseudoscalar mesons in the extended linear sigma model
Energy Technology Data Exchange (ETDEWEB)
Parganlija, Denis [Technische Universitaet Wien, Institut fuer Theoretische Physik, Vienna (Austria); Giacosa, Francesco [Jan Kochanowski University, Institute of Physics, Kielce (Poland); Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany)
2017-07-15
We present an in-depth study of masses and decays of excited scalar and pseudoscalar anti qq states in the Extended Linear Sigma Model (eLSM). The model also contains ground-state scalar, pseudoscalar, vector and axial-vector mesons. The main objective is to study the consequences of the hypothesis that the f{sub 0}(1790) resonance, observed a decade ago by the BES Collaboration and recently by LHCb, represents an excited scalar quarkonium. In addition we also analyse the possibility that the new a{sub 0}(1950) resonance, observed recently by BABAR, may also be an excited scalar state. Both hypotheses receive justification in our approach although there appears to be some tension between the simultaneous interpretation of f{sub 0}(1790)/a{sub 0}(1950) and pseudoscalar mesons η(1295), π(1300), η(1440) and K(1460) as excited anti qq states. (orig.)
An introduction to vectors, vector operators and vector analysis
Joag, Pramod S
2016-01-01
Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.
Mass ladder operators from spacetime conformal symmetry
Cardoso, Vitor; Houri, Tsuyoshi; Kimura, Masashi
2017-07-01
Ladder operators can be useful constructs, allowing for unique insight and intuition. In fact, they have played a special role in the development of quantum mechanics and field theory. Here, we introduce a novel type of ladder operators, which map a scalar field onto another massive scalar field. We construct such operators, in arbitrary dimensions, from closed conformal Killing vector fields, eigenvectors of the Ricci tensor. As an example, we explicitly construct these objects in anti-de Sitter (A d S ) spacetime and show that they exist for masses above the Breitenlohner-Freedman bound. Starting from a regular seed solution of the massive Klein-Gordon equation, mass ladder operators in AdS allow one to build a variety of regular solutions with varying boundary condition at spatial infinity. We also discuss mass ladder operator in the context of spherical harmonics, and the relation between supersymmetric quantum mechanics and so-called Aretakis constants in an extremal black hole.
Dynamics of test bodies in scalar-tensor theory and equivalence principle
Obukhov, Yuri N
2016-01-01
How do test bodies move in scalar-tensor theories of gravitation? We provide an answer to this question on the basis of a unified multipolar scheme. In particular, we give the explicit equations of motion for pointlike, as well as spinning test bodies, thus extending the well-known general relativistic results of Mathisson, Papapetrou, and Dixon to scalar-tensor theories of gravity. We demonstrate the validity of the equivalence principle for test bodies.
Shell model for time-correlated random advection of passive scalars
DEFF Research Database (Denmark)
Andersen, Ken Haste; Muratore-Ginanneschi, P.
1999-01-01
We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time correlations are investigated using perturbation theory around the white...... noise limit and nonperturbatively by numerical integration. The time correlation of the velocity field is seen to enhance the intermittency of the passive scalar. [S1063-651X(99)07711-9]....
Directory of Open Access Journals (Sweden)
Kazuharu Bamba
2014-10-01
Full Text Available We reconstruct scalar field theories to realize inflation compatible with the BICEP2 result as well as the Planck. In particular, we examine the chaotic inflation model, natural (or axion inflation model, and an inflationary model with a hyperbolic inflaton potential. We perform an explicit approach to find out a scalar field model of inflation in which any observations can be explained in principle.
Directory of Open Access Journals (Sweden)
Grégory Antoni
2017-01-01
Full Text Available The present study concerns the development of a new iterative method applied to a numerical continuation procedure for parameterized scalar nonlinear equations. Combining both a modified Newton’s technique and a stationary-type numerical procedure, the proposed method is able to provide suitable approximate solutions associated with scalar nonlinear equations. A numerical analysis of predictive capabilities of this new iterative algorithm is addressed, assessed, and discussed on some specific examples.
Strong gravitational lensing for black holes with scalar charge in massive gravity
Zhang, Ruanjing; Jing, Jiliang; Chen, Songbai
2017-03-01
We investigate the strong gravitational lensing for black holes with scalar charge in massive gravity. We find that the scalar charge and the type of the black hole significantly affect the radius of the photon sphere, deflection angle, angular image position, angular image separation, relative magnifications, and time delay in strong gravitational lensing. Our results can be reduced to those of the Schwarzschild and Reissner-Nordström black holes in some special cases.
Hawking radiation of five-dimensional charged black holes with scalar fields
Directory of Open Access Journals (Sweden)
Yan-Gang Miao
2017-09-01
Full Text Available We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.
A two-component dark matter model with real singlet scalars ...
Indian Academy of Sciences (India)
symmetry, namely Z2 × Z′2 such that S. Z2. −→ −S and S′. Z′2. −→ −S′. Also both of them do not generate any vacuum expectation value (VEV) upon spontaneous symmetry breaking. (〈S〉 = 0 and 〈S′〉 = 0). The scalar sector potential (for Higgs and two real singlet scalars) in this framework can then be written as.
De Sitter ground state of scalar-tensor gravity and its primordial perturbation
Zhang, Hongsheng
2010-01-01
We find an exact de Sitter solution of scalar-tensor gravity, in which the non-minimal coupling scalar is rolling along a non-constant potential. We investigated its primordial quantum perturbation around the adiabatic vacuum. We put forward for the first time that exact de Sitter generates non-exactly scale invariant perturbations. In the conformal coupling case, this model predicts that the tensor mode of the perturbation (gravity wave) is strongly depressed.
A new approach to exact solutions construction in scalar cosmology with a Gauss-Bonnet term
Fomin, I. V.; Chervon, S. V.
2017-08-01
We study the cosmological model based on Einstein-Gauss-Bonnet gravity with non-minimal coupling of a scalar field to a Gauss-Bonnet term in four-dimensional (4D) Friedmann universe. We show how constructing the exact solutions by the method based on a confrontation of the Hubble parameter in the model under consideration is achieved with that in a standard scalar field inflationary cosmology.
Scalar-QED {beta}-functions near Planck`s scale
Energy Technology Data Exchange (ETDEWEB)
Pires, Gentil O. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Dept. de Campos e Particulas
1997-12-31
The Renormalization Group Flow Equations of the Scalar-QED model near Planck`s scale are computed within the framework of the average effective action. Exact Flow Equations, corrected by Einstein Gravity, for the running self-interacting scalar coupling parameter and for the running v.e.v. of {phi} {sup *} {phi}, are computed taking into account threshold effects. Analytic solutions are given in the infrared and ultraviolet limits. (author) 17 refs.
Wheeler-DeWitt equation and Lie symmetries in Bianchi scalar-field cosmology
Energy Technology Data Exchange (ETDEWEB)
Paliathanasis, A. [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Karpathopoulos, L. [University of Athens, Faculty of Physics, Department of Astronomy-Astrophysics-Mechanics, Athens (Greece); Wojnar, A. [Institute for Theoretical Physics, Wroclaw (Poland); Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sez. di Napoli, Naples (Italy); Capozziello, S. [Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); Gran Sasso Science Institute (INFN), L' Aquila (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sez. di Napoli, Naples (Italy)
2016-04-15
Lie symmetries are discussed for the Wheeler-De Witt equation in Bianchi Class A cosmologies. In particular, we consider general relativity, minimally coupled scalar-field gravity and hybrid gravity as paradigmatic examples of the approach. Several invariant solutions are determined and classified according to the form of the scalar-field potential. The approach gives rise to a suitable method to select classical solutions and it is based on the first principle of the existence of symmetries. (orig.)