WorldWideScience

Sample records for scalar glueball mass

  1. Open boundary condition, Wilson flow and the scalar glueball mass

    Chowdhury, Abhishek; Harindranath, A.; Maiti, Jyotirmoy

    2014-01-01

    A major problem with periodic boundary condition on the gauge fields used in current lattice gauge theory simulations is the trapping of topological charge in a particular sector as the continuum limit is approached. To overcome this problem open boundary condition in the temporal direction has been proposed recently. One may ask whether open boundary condition can reproduce the observables calculated with periodic boundary condition. In this work we find that the extracted lowest glueball mass using open and periodic boundary conditions at the same lattice volume and lattice spacing agree for the range of lattice scales explored in the range 3 GeV≤(1/a)≤5 GeV. The problem of trapping is overcome to a large extent with open boundary and we are able to extract the glueball mass at even larger lattice scale ≈ 5.7 GeV. To smoothen the gauge fields we have used recently proposed Wilson flow which, compared to HYP smearing, exhibits better systematics in the extraction of glueball mass. The extracted glueball mass shows remarkable insensitivity to the lattice spacings in the range explored in this work, 3 GeV≤(1/a)≤5.7 GeV.

  2. Thermal spectrum of pseudo-scalar glueballs and Debye screening mass from holography

    Braga, Nelson R.F.; Ferreira, Luiz F. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil)

    2017-10-15

    The finite temperature spectrum of pseudo-scalar glueballs in a plasma is studied using a holographic model. The 0{sup -+} glueball is represented by a pseudo-scalar (axion) field living in a five dimensional geometry that comes from a solution of Einstein equations for gravity coupled with a dilaton scalar field. The spectral function obtained from the model shows a clear peak corresponding to the quasi-particle ground state. Analyzing the variation of the position of the peak with temperature, we describe the thermal behavior of the Debye screening mass of the plasma. As a check of consistency, the zero temperature limit of the model is also investigated. The glueball masses obtained are consistent with previous lattice results. (orig.)

  3. Properties of the scalar glueball

    Lanik, J.

    1984-01-01

    A detailed analysis of an effective Lagrangian model for cupling between a scalar glueball and pseudoscalar mesons is given. This coupling is shown to satisfy the SU(2)xSU(2) rule. The model is consistent with the glueball assignment for the scalar gsub(s)(1240) particle. Moreover, the SU(2)xSU(2) coupling rule explained also the existing experimental data for decays of the tensor glueball candidate THETA(1640) into pseudoscalar mesons

  4. AdS gravity and the scalar glueball spectrum

    Vento, Vicente [Departament de Fisica Teorica, Universitat de Valencia y Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Cientificas, Burjassot (Valencia) (Spain)

    2017-09-15

    The scalar glueball spectrum has attracted much attention since the formulation of Quantum Chromodynamics. Different approaches give very different results for the glueball masses. We revisit the problem from the perspective of the AdS/CFT correspondence. (orig.)

  5. Factorization for radiative heavy quarkonium decays into scalar Glueball

    Zhu, Ruilin [INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,Department of Physics and Astronomy, Shanghai Jiao Tong University,Dongchuan RD 800, Shanghai 200240 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Zhongguancun E. St. 55, Beijing 100190 (China); CAS Center for Excellence in Particle Physics,Institute of High Energy Physics, Chinese Academy of Sciences,Yuquan RD 19B, Beijing 100049 (China)

    2015-09-24

    We establish the factorization formula for scalar Glueball production through radiative decays of vector states of heavy quarkonia, e.g. J/ψ, ψ(2S) and Υ(nS), where the Glueball mass is much less than the parent heavy quarkonium mass. The factorization is demonstrated explicitly at one-loop level through the next-to-leading order (NLO) corrections to the hard kernel, the non-relativistic QCD (NRQCD) long-distance matrix elements (LDMEs) of the heavy quarkonium, and the light-cone distribution amplitude (LCDA) of scalar Glueball. The factorization provides a comprehensive theoretical approach to investigate Glueball production in the radiative decays of vector states of heavy quarkonia and determine the physic nature of Glueball. We discuss the scale evolution equation of LCDA for scalar Glueball. In the end, we extract the value of the decay constant of Scalar Glueball from Lattice QCD calculation and analyze the mixing effect among f{sub 0}(1370), f{sub 0}(1500) and f{sub 0}(1710).

  6. Mesons, PANDA and the scalar glueball

    Parganlija, Denis

    2014-01-01

    The non-perturbative nature of Quantum Chromodynamics (QCD) at low energies has prompted the expectation that the gauge-bosons of QCD – gluons – might give rise to compound objects denoted as glueballs. Experimental signals for glueballs have represented a matter of research for various collaborations in the last decades; future research in this direction is a main endeavour planned by the PANDA Collaboration at FAIR. Hence in this article I review some of the outstanding issues in the glueball search, particularly with regard to the ground state – the scalar glueball, and discuss the relevance for PANDA at FAIR.

  7. Scalar mesons and the search for the 0++ Glueball

    Ulrike Thoma

    2002-01-01

    The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6 GeV, which corresponds to the mass region where the scalar qq[bar]-mesons are expected. Therefore mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But, still many questions remain

  8. Scalar mesons and the search for the 0++ glueball

    Thoma, U.

    2003-01-01

    The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular, present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6GeV, which corresponds to the mass region where the scalar q anti q-mesons are expected. Therefore, mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But still many questions remain. (orig.)

  9. Scalar mesons and the search for the 0{sup ++} glueball

    Thoma, U. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2003-11-01

    The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular, present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6GeV, which corresponds to the mass region where the scalar q anti q-mesons are expected. Therefore, mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But still many questions remain. (orig.)

  10. Scalar mesons and the search for the 0{sup ++} Glueball

    Ulrike Thoma

    2002-10-01

    The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6 GeV, which corresponds to the mass region where the scalar qq[bar]-mesons are expected. Therefore mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But, still many questions remain.

  11. Scalar mesons and glueballs in a chiral U(3)xU(3) quark model with 't Hooft interaction

    Nagy, M.; Volkov, M.K.; Yudichev, V.L.

    2000-01-01

    In a U(3)xU(3) quark chiral model of the Nambu-Jona-Lasino (NJL) type with the 't Hooft interaction, the ground scalar isoscalar mesons and a scalar glueball are described. The glueball (dilaton) is introduced into the effective meson Lagrangian written in a chirally symmetric form on the basis of scale invariance. The singlet-octet mixing of scalar isoscalar mesons and their mixing with the glueball are taken into account. Mass spectra of the scalar mesons and glueball and their strong decays are described

  12. Glueball masses in quantum chromodynamics

    Luo Xiangqian; Zhongshan Univ., Guangzhou, GD; Zhongshan Univ., Guangzhou; Chen Qizhou; Zhongshan Univ., Guangzhou, GD; Zhongshan Univ., Guangzhou; Guo Shuohong; Zhongshan Univ., Guangzhou, GD; Zhongshan Univ., Guangzhou; Fang Xiyan; Zhongshan Univ., Guangzhou, GD; Zhongshan Univ., Guangzhou; Liu Jinming; Zhongshan Univ., Guangzhou, GD; Zhongshan Univ., Guangzhou

    1996-01-01

    We review the recent glueball mass calculations using an efficient method for solving the Schroedinger equation order by order with a scheme preserving the continuum limit. The reliability of the method is further supported by new accurate results for (1+1)-dimensional σ models and (2+1)-dimensional non-abelian models. We present first and encouraging data for the glueball masses in 3+1 dimensional QCD. (orig.)

  13. Hunting the Scalar Glueball: Prospects for BES III

    Chanowitz, Michael S.

    2006-01-01

    The search for the ground state scalar glueball G 0 is reviewed. Spin zero glueballs will have unique dynamical properties if the 0 →(bar q)q amplitude is suppressed by chiral symmetry, as it is to all orders in perturbation theory: for instance, mixing of G 0 with (bar q)q mesons would be suppressed, radiative ψ decay would be a filter for new physics in the spin zero channel, and the decay G 0 →(bar K)K could be enhanced relative to G 0 → ππ. These properties are consistent with the identification of f 0 (1710) as the largely unmixed ground state scalar glueball, while recent BES data implies that f 0 (1500) does not contain the dominant glueball admixture. Three hypotheses are discussed: that G 0 is (1) predominantly f 0 (1500) or (2) predominantly f 0 (1710) or (3) is strongly mixed between f 0 (1500) and f 0 (1710)

  14. Glueball masses for the deformed conifold theory

    Caceres, Elena; Hernandez, Rafael

    2000-11-01

    We obtain the spectrum of glueball masses for the N=1 non-conformal cascade theory whose supergravity dual was recently constructed by Klebanov and Strassler. The glueball masses are calculated by solving the supergravity equations of motion for the dilaton and the two-form in the deformed conifold background. (author)

  15. Glueballs

    Meshkov, S.

    1984-01-01

    The current status of various glueball properties such as level ordering, masses, production, and decay is reviewed. Glueball candidates iota(1440), theta(1670), g/sub T/(2160), g/sub T/(2320), and 0(2.3-3.4) are examined. A simple model which incorporates the mixing of the glueball candidate iota(1440) with quarkonium states eta(549) and eta'(958), and of the theta(1670) with f(1270) and f'(1515) is presented; neither the iota(1440) nor the theta(1670) can be consistently interpreted as a glueball in this framework. A 5 x 5 model of Palmer and Pinsky which also includes radial excitation of the eta an eta' yields two solutions for the pseudoscalar system, the preferred one of which has iota(1440) being mainly an ss-bar radial excitation, and a second solution in which the iota(1440) is mixed strongly with the eta'(960) and is about half bare glueball. The current leading glueball candidates are the phiphi enhancements at 2160 and 2320 MeV

  16. On one estimate of glueball mass

    Boos, E.E.

    1986-01-01

    The Bethe-Salpeter equation for the wave function of the bound state of two gluons is considered. The mass of the glueball 0 ++ , (M gl ∼ 1.3 GeV), is estimated using some expansions in the equation kernel in the spirit of those made in the QCD sum rules method. In the leading approximation, the masses of the glueballs 0 ++ and 2 ++ appear to be degenerate. A possibility to improve the accuracy of estimating the mass by using the expansion in 1/N c is discussed

  17. Scalar Glueball-Quarkonium Mixing and the Structure of the QCD Vacuum

    Ellis, Jonathan Richard; Kharzeev, Dima E

    1999-01-01

    We use Ward identities of broken scale invariance to infer the amount of scalar glueball--$\\bar{q}q$ meson mixing from the ratio of quark and gluon condensates in the QCD vacuum. Assuming dominance by a single scalar state, as suggested by a phase-shift analysis, we find a mixing angle $\\gamma \\sim 36^{\\circ}$, corresponding to near-maximal mixing of the glueball and

  18. Glueballs

    Close, Francis Edwin

    1998-01-01

    Gluons, the particles which bind quarks into protons may be able to stick to each other. Physicists have called these entities 'glueballs' and are convinced they are showing up in experiments (6 pages).

  19. Scalar quarkonium masses

    Lee, W.; Weingarten, D.

    1996-01-01

    We evaluate the valence approximation to the mass of scalar quarkonium for a range of different parameters. Our results strongly suggest that the infinite volume continuum limit of the mass of ss scalar quarkonium lies well below the mass of f J (1710). The resonance f 0 (1500) appears to the best candidate for ss scalar quarkonium. (orig.)

  20. Padé approximation and glueball mass estimates in 3d and 4d with Nc=2,3 colors

    Dudal, D.; Guimaraes, M.S.; Sorella, S.P.

    2014-01-01

    A Padé approximation approach, rooted in an infrared moment technique, is employed to provide mass estimates for various glueball states in pure gauge theories. The main input in this analysis are theoretically well-motivated fits to lattice gluon propagator data, which are by now available for both SU(2) and SU(3) in 3 and 4 space–time dimensions. We construct appropriate gauge invariant and Lorentz covariant operators in the (pseudo)scalar and (pseudo)tensor sector. Our estimates compare reasonably well with a variety of lattice sources directly aimed at extracting glueball masses.

  1. Glueball-meson mixing

    Vento, Vicente [Consejo Superior de Investigaciones Cientificas, Departamento de Fisica Teorica y Instituto de Fisica Corpuscular, Universidad de Valencia, Burjassot (Spain)

    2016-01-15

    Calculations in unquenched QCD for the scalar glueball spectrum have confirmed previous results of Gluodynamics finding a glueball at ∝1750 MeV. I analyze the implications of this discovery from the point of view of glueball-meson mixing in light of the experimental scalar spectrum. (orig.)

  2. Renormalisation group behaviour of O+ and 2+ glueball masses in SU(2) lattice gauge theory

    Ishikawa, K.; Schierholz, G.

    1982-07-01

    We calculate the 0 + and 2 + glueball masses at several values of the coupling and verify compatibility with the desired renormalisation group behaviour. The calculation uses momentum smeared glueball wave functions on a large 8 4 lattice and confirms our previous results obtained on smaller lattices. (orig.)

  3. A brief review of glueball masses from gauge/gravity duality

    Caceres, Elena

    2005-01-01

    This is a brief review of the status of glueball mass calculations from Supergravity. After reviewing the basic concepts, we summarize results of glueball spectrum for different models and compare their assets as well as their shortcomings. We focus on AdS black-hole, Klebanov-Strassler and Maldacena-Nunnez backgrounds

  4. Instantons and glueballs

    Forkel, H.

    2001-01-01

    We investigate the impact of instantons on scalar glueball properties in a largely model-independent analytical approach based on the instanton-improved operator product expansion (IOPE) of the 0 ++ glueball correlator. The instanton contributions turn out to be dominant, to substantially improve the consistency of the corresponding QCD sum rules, and to increase the glueball residue about fivefold. (orig.)

  5. Glueballs, a little review

    Fishbane, P.M.

    1981-01-01

    An integral part of quantum chromodynamics is the gauge field state called the glueball. This article discusses theoretically predicted properties of glueballs, as well as some experimental candidates for glueballs. Particular attention is given to glueball masses and widths, and phenomena such as flavor dependence of decays, photonic couplings, gluon jets and gluon fusion. Finally, the possibility that a particle related to the E(1420) state found in hadronic experiments is a glueball is discussed

  6. Glueballs, hybrids, multiquarks

    Klempt, Eberhard [Helmholtz-Institut fuer Strahlen-und Kernphysik der Rheinischen Friedrich-Wilhelms Universitaet, Nussallee 14-16, D-53115 Bonn (Germany)], E-mail: klempt@hiskp.uni-bonn.de; Zaitsev, Alexander [Institute for High-Energy Physics, Moscow Region, RU-142284 Protvino (Russian Federation)

    2007-12-15

    Glueballs, hybrids and multiquark states are predicted as bound states in models guided by quantum chromo dynamics (QCD), by QCD sum rules or QCD on a lattice. Estimates for the (scalar) glueball ground state are in the mass range from 1000 to 1800 MeV, followed by a tensor and a pseudoscalar glueball at higher mass. Experiments have reported evidence for an abundance of meson resonances with 0{sup -+},0{sup ++} and 2{sup ++} quantum numbers. In particular, the sector of scalar mesons is full of surprises starting from the elusive {sigma} and {kappa} mesons. The a{sub 0}(980) and f{sub 0}(980), discussed extensively in the literature, are reviewed with emphasis on their Janus-like appearance as KK-bar molecules, tetraquark states or qq-bar mesons. Most exciting is the possibility that the three mesons f{sub 0}(1370), f{sub 0}(1500), and f{sub 0}(1710) might reflect the appearance of a scalar glueball in the world of quarkonia. However, the existence of f{sub 0}(1370) is not beyond doubt and there is evidence that both f{sub 0}(1500) and f{sub 0}(1710) are flavour octet states, possibly in a tetraquark composition. We suggest a scheme in which the scalar glueball is dissolved into the wide background into which all scalar flavour-singlet mesons collapse. There is an abundance of meson resonances with the quantum numbers of the {eta}. Three states are reported below 1.5GeV/c{sup 2} whereas quark models expect only one, perhaps two. One of these states, {iota}(1440), was the prime glueball candidate for a long time. We show that {iota}(1440) is the first radial excitation of the {eta} meson. Hybrids may have exotic quantum numbers which are not accessible by qq-bar mesons. There are several claims for J{sup PC}=1{sup -+} exotics, some of them with properties as predicted from the flux tube model interpreting the quark-antiquark binding by a gluon string. The evidence for these states depends partly on the assumption that meson-meson interactions are dominated by s

  7. Decays of the vector glueball

    Giacosa, Francesco; Sammet, Julia; Janowski, Stanislaus

    2017-06-01

    We calculate two- and three-body decays of the (lightest) vector glueball into (pseudo)scalar, (axial-)vector, as well as pseudovector and excited vector mesons in the framework of a model of QCD. While absolute values of widths cannot be predicted because the corresponding coupling constants are unknown, some interesting branching ratios can be evaluated by setting the mass of the yet hypothetical vector glueball to 3.8 GeV as predicted by quenched lattice QCD. We find that the decay mode ω π π should be one of the largest (both through the decay chain O →b1π →ω π π and through the direct coupling O →ω π π ). Similarly, the (direct and indirect) decay into π K K*(892 ) is sizable. Moreover, the decays into ρ π and K*(892 )K are, although subleading, possible and could play a role in explaining the ρ π puzzle of the charmonium state ψ (2 S ) thanks to a (small) mixing with the vector glueball. The vector glueball can be directly formed at the ongoing BESIII experiment as well as at the future PANDA experiment at the FAIR facility. If the width is sufficiently small (≲100 MeV ) it should not escape future detection. It should be stressed that the employed model is based on some inputs and simplifying assumptions: the value of glueball mass (at present, the quenched lattice value is used), the lack of mixing of the glueball with other quarkonium states, and the use of few interaction terms. It then represents a first step toward the identification of the main decay channels of the vector glueball, but shall be improved when corresponding experimental candidates and/or new lattice results will be available.

  8. Configurational entropy of glueball states

    Bernardini, Alex E., E-mail: alexeb@ufscar.br [Departamento de Física, Universidade Federal de São Carlos, PO Box 676, 13565-905, São Carlos, SP (Brazil); Braga, Nelson R.F., E-mail: braga@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, UFABC, 09210-580, Santo André (Brazil)

    2017-02-10

    The configurational entropy of glueball states is calculated using a holographic description. Glueball states are represented by a supergravity dual picture, consisting of a 5-dimensional graviton–dilaton action of a dynamical holographic AdS/QCD model. The configurational entropy is studied as a function of the glueball spin and of the mass, providing information about the stability of the glueball states.

  9. Glueball phenomenology within a nonlocal approach

    Giacosa, F.

    2005-01-01

    In this thesis we describe the properties of glueball phenomenology within a nonlocal covariant constituent approach. The search for glueballs, their theoretical description and the mixing with quarkonia mesons is an active and unsolved issue of hadronic QCD. Different models and assignments have been proposed, but up to now no certain statement about their existence can be done. After introducing the theoretical framework in which we will work in, the attention will be focused on the problem of the scalar glueball, which lattice QCD predicts to be the lightest gluonic state with a mass between 1.4-1.8 GeV. In the same mass region one encounters many scalar resonances; mixing between the bare glueball and quarkonia states is therefore likely. In a covariant constituent approach one cannot define rigorously a mixing matrix connecting the bare to physical fields. However, we propose a definition which satisfies the correct requirements and which can be compared to other phenomenological studies. The two-photon decay of isoscalar-scalar states is believed to be crucial to pin down the flavor content of the resonances between 1 and 2 GeV. We discuss and calculate the two-photon decay rates of the mixed states glueball-quarkonia, getting results which are consistent with the current experimental upper limits

  10. Status of glueball mass calculations in lattice gauge theory

    Kronfeld, A.S.

    1989-11-01

    The status of glueball spectrum calculations in lattice gauge theory is briefly reviewed, with focus on the comparison between Monte Carlo simulations and small-volume analytical calculations in SU(3). The agreement gives confidence that the large-volume Monte Carlo results are accurate, at least in the context of the pure gauge theory. An overview of some of the technical questions, which is aimed at non-experts, serves as an introduction. 19 refs., 1 fig

  11. D-particle Recoil Space Times and "Glueball" Masses

    Mavromatos, Nikolaos E; Mavromatos, Nick E.; Winstanley, Elizabeth

    2001-01-01

    We discuss the properties of matter in a D-dimensional anti-de-Sitter-type space time induced dynamically by the recoil of a very heavy D(irichlet)-particle defect embedded in it. The particular form of the recoil geometry, which from a world-sheet view point follows from logarithmic conformal field theory deformations of the pertinent sigma-models, results in the presence of both infrared and ultraviolet (spatial) cut-offs. These are crucial in ensuring the presence of mass gaps in scalar matter propagating in the D-particle recoil space time. The analogy of this problem with the Liouville-string approach to QCD, suggested earlier by John Ellis and one of the present authors, prompts us to identify the resulting scalar masses with those obtained in the supergravity approach based on the Maldacena's conjecture, but without the imposition of any supersymmetry in our case. Within reasonable numerical uncertainties, we observe that agreement is obtained between the two approaches for a particular value of the ra...

  12. Glueball Spectrum and Matrix Elements on Anisotropic Lattices

    Y. Chen; A. Alexandru; S.J. Dong; T. Draper; I. Horvath; F.X. Lee; K.F. Liu; N. Mathur; C. Morningstar; M. Peardon; S. Tamhankar; B.L. Young; J.B. Zhang

    2006-01-01

    The glueball-to-vacuum matrix elements of local gluonic operators in scalar, tensor, and pseudoscalar channels are investigated numerically on several anisotropic lattices with the spatial lattice spacing ranging from 0.1fm - 0.2fm. These matrix elements are needed to predict the glueball branching ratios in J/{psi} radiative decays which will help identify the glueball states in experiments. Two types of improved local gluonic operators are constructed for a self-consistent check and the finite volume effects are studied. We find that lattice spacing dependence of our results is very weak and the continuum limits are reliably extrapolated, as a result of improvement of the lattice gauge action and local operators. We also give updated glueball masses with various quantum numbers.

  13. Scalar field mass in generalized gravity

    Faraoni, Valerio

    2009-01-01

    The notions of mass and range of a Brans-Dicke-like scalar field in scalar-tensor and f(R) gravity are subject to an ambiguity that hides a potential trap. We spell out this ambiguity and identify a physically meaningful and practical definition for these quantities. This is relevant when giving a mass to this scalar in order to circumvent experimental limits on the PPN parameters coming from solar system experiments.

  14. A remark on the large difference between the glueball mass and T sub c in quenched QCD

    Ishii, N

    2003-01-01

    The lattice QCD studies indicate that the critical temperature T sub c approx =260-280 MeV of the deconfinement phase transition in quenched QCD is considerably smaller than the lowest-lying glueball mass m sub G approx =1500-1700 MeV, i.e., T sub c <glueball in the confinement phase is strongly suppressed by the statistical factor e sup - sup m sup sub G sup / sup T sup sub c approx =0.00207 even near T approx =T sub c. We consider its physical implication, and argue the abnormal feature of the deconfinement phase transition in quenched QCD from the statistical viewpoint. To appreciate this, we demonstrate a statistical argument of the QCD phase transition using the recent lattice QCD data. From the phenomenological relation between T sub c and the glueball mass, the deconfinement transition is found to take place in quenched QCD before a reasonable amount of glueballs is thermally excited. In this way, quenched QCD reve...

  15. Glueball production via gluonic penguin B decays

    He, Xiao-Gang [INPAC, SKLPPC, Shanghai Jiao Tong University, Department of Physics, Shanghai (China); National Center for Theoretical Sciences and Physics Department of National Tsing Hua University, Hsinchu (China); National Taiwan University, Department of Physics, Taipei (China); Yuan, Tzu-Chiang [Academia Sinica, Institute of Physics, Taipei (China)

    2015-03-01

    We study glueball G production in gluonic penguin decay B → G + X{sub s}, using the next-to-leading order b → sg* gluonic penguin interaction and effective couplings of a glueball to two perturbative gluons. Subsequent decays of a scalar glueball are described by using techniques of effective chiralLagrangians to incorporate the interaction between a glueball and pseudoscalar mesons.Mixing effects between the pure glueball with other mesons are considered. Identifying the f{sub 0}(1710) as a scalar glueball, we find that both the top and the charm penguin are important and obtain a sizable branching ratio for B → f{sub 0}(1710) + X{sub s} of order 1.3 x 10{sup -4}(f/0.07 GeV{sup -1}){sup 2}, where the effective coupling strength f is estimated to be 0.07 GeV{sup -1} using experimental data for the branching ratio of f{sub 0}(1710) → K anti K based on a chiral Lagrangian estimate. An alternative perturbative QCD based estimation of f is a factor of 20 larger, which would imply a much enhanced branching ratio. Glueball production from this rare semi-inclusive B decay can be probed at the LHCb and Belle II to narrow down the allowed parameter space. A similar branching ratio is expected for the pseudoscalar glueball. We also briefly comment on the case of vector and tensor glueballs. (orig.)

  16. Glueball production via gluonic penguin B decays

    He, Xiao-Gang; Yuan, Tzu-Chiang

    2015-01-01

    We study glueball G production in gluonic penguin decay B → G + X s , using the next-to-leading order b → sg* gluonic penguin interaction and effective couplings of a glueball to two perturbative gluons. Subsequent decays of a scalar glueball are described by using techniques of effective chiralLagrangians to incorporate the interaction between a glueball and pseudoscalar mesons.Mixing effects between the pure glueball with other mesons are considered. Identifying the f 0 (1710) as a scalar glueball, we find that both the top and the charm penguin are important and obtain a sizable branching ratio for B → f 0 (1710) + X s of order 1.3 x 10 -4 (f/0.07 GeV -1 ) 2 , where the effective coupling strength f is estimated to be 0.07 GeV -1 using experimental data for the branching ratio of f 0 (1710) → K anti K based on a chiral Lagrangian estimate. An alternative perturbative QCD based estimation of f is a factor of 20 larger, which would imply a much enhanced branching ratio. Glueball production from this rare semi-inclusive B decay can be probed at the LHCb and Belle II to narrow down the allowed parameter space. A similar branching ratio is expected for the pseudoscalar glueball. We also briefly comment on the case of vector and tensor glueballs. (orig.)

  17. Observation and phenomenology of glueballs

    Lindenbaum, S.J.

    1985-01-01

    The experimental evidence and the relevant phenomenology of glueballs are reviewed. The opinion is expressed that the glueball resonance explanation is the only viable one for the data on g/sub T/, g/sub T 1 /, and g/sub T 11 /. It is shown that alternative explanations are either incorrect, or do not fit the data, or both, leading to the conclusion that these states are probably produced by glueballs. The OZI rule is explained. Glueball masses and width are considered. Some conclusions are drawn regarding an OZI suppressed reaction π - p → phi phi n. Glueball candidates from the J/psi radiative decay are discussed. 44 refs., 16 figs

  18. Observation and phenomenology of glueballs

    Lindenbaum, S.J.

    1985-01-01

    The experimental evidence and the relevant phenomenology of glueballs are reviewed. The opinion is expressed that the glueball resonance explanation is the only viable one for the data on g/sub T/, g/sub T/sup 1//, and g/sub T/sup 11//. It is shown that alternative explanations are either incorrect, or do not fit the data, or both, leading to the conclusion that these states are probably produced by glueballs. The OZI rule is explained. Glueball masses and width are considered. Some conclusions are drawn regarding an OZI suppressed reaction ..pi../sup -/p ..-->.. phi phi n. Glueball candidates from the J/psi radiative decay are discussed. 44 refs., 16 figs. (LEW)

  19. Status of the glueballs

    Lindenbaum, S.J.

    1983-01-01

    If you assume as input axioms: (1) QCD is correct; and (2) the OZI rule is universal for weakly coupled glue in disconnected Zweig diagrams where the disconnection is due to the creation or annihilation of new flavor(s) of quark(s), then the BNL/CCNY g/sub T/(2010), g/sub T/'(2220) and g/sub T/(2360) observed in π - p → phi phi n are produced by 1-3 primary glueballs. One or two broad primary glueballs could in principle break down the OZI suppression and mix with one or two quark states which accidentally have the same quantum numbers and nearly the same mass. However the simplest explanation of the rather unusual characteristics of our data is that we have found a triplet of J/sup PC/ = 2 ++ glueball states. Since our input axioms are in good agreement with experiments and merely represent modern QCD practice, we have very probably discovered 1-3 J/sup PC/ = 2 ++ glueballs. The iota(1440) and the theta(1700) observed in J/psi radiative decay are glueball candidates. The pros and cons of which are discussed briefly here. 41 references

  20. Status of the glueballs

    Lindenbaum, S.J.

    1983-08-03

    If you assume as input axioms: (1) QCD is correct; and (2) the OZI rule is universal for weakly coupled glue in disconnected Zweig diagrams where the disconnection is due to the creation or annihilation of new flavor(s) of quark(s), then the BNL/CCNY g/sub T/(2010), g/sub T/'(2220) and g/sub T/(2360) observed in ..pi../sup -/p ..-->.. phi phi n are produced by 1-3 primary glueballs. One or two broad primary glueballs could in principle break down the OZI suppression and mix with one or two quark states which accidentally have the same quantum numbers and nearly the same mass. However the simplest explanation of the rather unusual characteristics of our data is that we have found a triplet of J/sup PC/ = 2/sup + +/ glueball states. Since our input axioms are in good agreement with experiments and merely represent modern QCD practice, we have very probably discovered 1-3 J/sup PC/ = 2/sup + +/ glueballs. The iota(1440) and the theta(1700) observed in J/psi radiative decay are glueball candidates. The pros and cons of which are discussed briefly here. 41 references.

  1. The glueball trail

    Roy, P.

    1980-03-01

    The issue of the existence and of the mass values of a new type of unstable hadron composed only of glue, called glueballs (or gluonium), is discussed. Suggested models which could indicate their existence are considered and possible production mechanisms in hadron-hadron collisions and in the decay of heavy quarkonia examined. (UK)

  2. Numerical determination of quark potential, glueball masses, and phase structure in the N=1 supersymmetric Yang-Mills theory; Numerische Bestimmung von Quarkpotential, Glueball-Massen und Phasenstruktur in der N=1 supersymmetrischen Yang-Mills-Theorie

    Sandbrink, Dirk

    2015-01-26

    One of the most promising candidates to describe the physics beyond the standard model is the so-called supersymmetry. This work was created in the context of the DESY-Muenster-Collaboration, which studies in particular the N=1 supersymmetric Yang-Mills theory (SYM). SYM is a comparatively simple theory, which is therefore well-suited to study the expected properties of a supersymmetric theory with the help of Monte Carlo simulations on the lattice. This thesis is focused on the numerical determination of the quarkpotential, the glueball masses and the phase structur of the N=1 supersymmetric Yang-Mills theory. The quarkpotential is used to calculate the Sommer scale, which in turn is needed to convert the dimensionless lattice spacing into physical units. Glueballs are hypothetical particles built out of gluons, their masses are relatively hard to determine in lattice simulations due to their pure gluonic nature. For this reason, various methods are studied to reduce the uncertainties of the mass determination. The focus lies on smearing methods and their use in variational smearing as well as on the use of different glueball operators. Lastly, a first look is taken at the phase diagram of the model at finite temperature. Various simulations have been performed at finite temperature in parallel to those performed at temperature zero to analyse the behaviour of the Polyakov loop and the gluino condensate in greater detail.

  3. Glueballs: a status report

    Scharre, D.L.

    1982-01-01

    It is expected from quantum chromodynamics (QCD) that glueballs, bound states which contain gluons but no valence quarks, should exist. To date, no conclusive evidence for glueballs has been presented. After a brief review of the expected properties and experimental signatures of glueballs the status of some glueball candidate states are discussed

  4. Hadronic production of glueballs

    Lindenbaum, S.J.

    1983-01-01

    Local Gauge Invariance of SU(3)/sub c/ and color confinement would require that the only hadrons in the world be glueballs. However, when we add the quarks and obtain QCD it is experimentally clear that quark built states mask the expected glueballs. Thus discovery of glueballs is essential for the viability of QCD. Papers presented at the 1983 International Europhysics Conference on High Energy Physics on the hadronic production of glueballs and searches for glueballs are reviewed

  5. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk

    2017-01-10

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  6. Glueballs of QCD and beyond

    Lindenbaum, S.J.

    1984-01-01

    There are two methods discussed by which glueballs might be found. In the first, an OZI suppressed channel with variable mass is used, such as the reaction π - p → phi phi n. The breakdown of the OZI suppression is the glueball signal. The OZI suppression is a filter letting glueballs pass while strongly rejecting conventional hadronic states. The other method is to look in a channel enriched in gluons such as the radiative decay of the J/psi and search for new phenomena, such as the iota(1440), the theta(1640), and the zeta(2220). It is anticipated that the next step in nested gauge-gauge groups might be some new strong color interaction conceptually similar to hypercolor, technicolor, or extended technicolor. 43 refs., 13 figs

  7. Glueballs of QCD and beyond

    Lindenbaum, S.J.

    1984-01-01

    There are two methods discussed by which glueballs might be found. In the first, an OZI suppressed channel with variable mass is used, such as the reaction ..pi../sup -/p ..-->.. phi phi n. The breakdown of the OZI suppression is the glueball signal. The OZI suppression is a filter letting glueballs pass while strongly rejecting conventional hadronic states. The other method is to look in a channel enriched in gluons such as the radiative decay of the J/psi and search for new phenomena, such as the iota(1440), the theta(1640), and the zeta(2220). It is anticipated that the next step in nested gauge-gauge groups might be some new strong color interaction conceptually similar to hypercolor, technicolor, or extended technicolor. 43 refs., 13 figs. (LEW)

  8. Sizes of the lightest glueballs in SU(3) lattice gauge theory

    Loan Mushtaq; Ying Yi

    2006-01-01

    Standard Monte Carlo simulations have been performed on improved lattices to determine the wave functions and the sizes of the scalar and tensor glueballs at four lattice spacings in the range a =0.05 - 0.145 fm. Systematic errors introduced by the discretization and the finite volume are studied. Our results in the continuum limit show that the tensor glueball is approximately two times as large as the scalar glueball. (author)

  9. Constituent gluon interpretation of glueballs and gluelumps

    Boulanger, N.; Buisseret, F.; Mathieu, V.; Semay, C.

    2008-01-01

    Arguments are given that support the interpretation of the lattice QCD glueball and gluelump spectra in terms of bound states of massless constituent gluons with helicity 1. In this scheme, we show that the mass hierarchy of the currently known gluelumps and glueballs is mainly due to the number of constituent gluons and can be understood within a simple flux tube model. It is also argued that the lattice QCD 0 +- glueball should be seen as a four-gluon bound state. We finally predict the mass of the 0 - state, not yet computed in lattice QCD. (orig.)

  10. Tensor glueball-meson mixing phenomenology

    Burakovsky, L.; Page, P.R.

    2000-01-01

    The overpopulated isoscalar tensor states are sifted using Schwinger-type mass relations. Two solutions are found: one where the glueball is the f J (2220), and one where the glueball is more distributed, with f 2 (1820) having the largest component. The f 2 (1565) and f J (1710) cannot be accommodated as glueball-(hybrid) meson mixtures in the absence of significant coupling to decay channels. f 2 '(1525)→ππ is in agreement with experiment. The f J (2220) decays neither flavour democratically nor is narrow. (orig.)

  11. Universal contributions to scalar masses from five dimensional supergravity

    Dudas, Emilian

    2012-01-01

    We compute the effective Kahler potential for matter fields in warped compactifications, starting from five dimensional gauged supergravity, as a function of the matter fields localization. We show that truncation to zero modes is inconsistent and the tree-level exchange of the massive gravitational multiplet is needed for consistency of the four-dimensional theory. In addition to the standard Kahler coming from dimensional reduction, we find the quartic correction coming from integrating out the gravity multiplet. We apply our result to the computation of scalar masses, by assuming that the SUSY breaking field is a bulk hypermultiplet. In the limit of extreme opposite localization of the matter and the spurion fields, we find zero scalar masses, consistent with sequestering arguments. Surprisingly enough, for all the other cases the scalar masses are tachyonic. This suggests the holographic interpretation that a CFT sector always generates operators contributing in a tachyonic way to scalar masses. Viability...

  12. On the scalar electron mass limit from single photon experiments

    Grivaz, J.F.

    1987-03-01

    We discuss how the 90% C.L. lower limit on the mass of the scalar electron, as extracted from the single photon experiments, is affected by the way the background from radiative neutrino pair production is handled. We argue that some of the results presented at the Berkeley conference are overoptimistic, and that the mass lower limit is 65 GeV rather than the advertized value of 84 GeV, for the case of degenerate scalar electrons with massless photinos

  13. Photon collisions as a glueball source

    Liu, H.C.

    1984-01-01

    Photon-photon and photon-nucleon collisions are suggested as a glueball source at small x in the collision center-of-mass frame. The glueball-production cross section is estimated through the two-gluon-fusion mechanism in perturbative quantum chromodynamics. The pointlike component of the photon structure function has a distinctive feature in that it consists almost purely of gluons at small x, which turns out to be very effective in producing glueballs. A much larger signal-to-noise ratio is expected in the glueball search in high-energy photon-photon and photon-nucleon collisions compared with hadron-hadron collisions. It is argued that the background due to soft collisions of the photons can be effectively reduced

  14. Scalar mass relations and flavor violations in supersymmetric theories

    Cheng, Hsin-Chia; California Univ., Berkeley, CA

    1996-01-01

    Supersymmetry provides the most promising solution to the gauge hierarchy problem. For supersymmetry to stablize the hierarchy, it must be broken at the weak scale. The combination of weak scale supersymmetry and grand unification leads to a successful prediction of the weak mixing angle to within 1% accuracy. If supersymmetry is a symmetry of nature, the mass spectrum and the flavor mixing pattern of the scalar superpartners of all the quarks and leptons will provide important information about a more fundamental theory at higher energies. We studied the scalar mass relations which follow from the assumption that at high energies there is a grand unified theory which leads to a significant prediction of the weak mixing angle; these will serve as important tests of grand unified theories. Two intragenerational mass relations for each of the light generations are derived. A third relation is also found which relates the Higgs masses and the masses of all three generation scalars. In a realistic supersymmetric grand unified theory, nontrivial flavor mixings are expected to exist at all gaugino vertices. This could lead to important contributions to the neutron electric dipole moment, the decay mode p → K 0 μ + , weak scale radiative corrections to the up-type quark masses, and lepton flavor violating signals such as μ → eγ. These also provide important probes of physics at high energy scales. Supersymmetric theories involving a spontaneously broken flavor symmetry can provide a solution to the supersymmetric flavor-changing problem and an understanding of the fermion masses and mixings. We studied the possibilities and the general conditions under which some fermion masses and mixings can be obtained radiatively. We also constructed theories of flavor in which the first generation fermion masses arise from radiative corrections while flavor-changing constraints are satisfied. 69 refs., 19 figs., 9 tabs

  15. Hadronic production of J/sup PC/ = 2++ glueballs

    Lindenbaum, S.J.

    1986-01-01

    An OZI suppressed channel with variable mass, namely the reaction π - p → phi phi n, has been used as a filter which allows resonating gluons or glueballs to pass, while strongly rejecting conventional quark-built hadronic states. The breakdown of the OZI suppression signals a glueball. Glueball mass and particle width estimates are discussed. Reasons why g/sub T/'s have not been seen in other channels, particularly the decay of J/psi, are considered. 34 refs., 9 figs

  16. Structures of conserved currents and mass spectra for scalar fields

    Shintani, Meiun.

    1979-05-01

    Considering the commutators between a scalar field and a conserved current, we shall clarify the connection between the mass spectrum for a scalar field and the structures of a current. For a special form of currents involving c-number functions, non-invariance of the vacuum under the corresponding transformation entails the existence of a massive mode. It is shown that once a type of currents is specified, the pole structures for sub(o) depend only on c-number parts of J sub(μ)(x). We shall show that non-vanishing Goldstone commutator does not automatically imply the degeneracy of the vacuum state, and discuss the applicability of the Goldstone theorem. (author)

  17. Evidence for glueballs

    Lindenbaum, S.J.

    1982-01-01

    This paper describes the observation and partial wave analysis of 1203 (22 GeV) π - p → phi phi n events. This is an OZI suppressed channel in which the OZI suppression is found to be absent. Assuming QCD and the OZI rule as Ansatzen, it is concluded that the breakdown of the OZI suppression is due to glueballs. The g/sub T/(2160) and the g/sub T/(2320) with I/sup G/J/sup PC/ = 0 + 2 ++ are two resonances determined from the partial wave analysis. It is concluded that one or two primary glueballs with the above quantum numbers are responsible for the observed two states. A brief discussion of other glueball candidates and some relevant phenomenology is also included

  18. Glueballs and beyond

    Lindenbaum, S.J.

    1983-12-01

    One of the most exciting developments in the physics of the 20th Century is the proposal that locally gauge invariant groups describe the strong, electromagnetic and weak interactions. SU(2)/sub L/ x U(1) the electroweak group has had enormous successes including the recent discovery of the W/sup +-/ and Z 0 . In the case of strong interactions, Quantum Chromodynamics is built upon the local gauge invariance of SU(3)/sub color/ which gives rise to the eight massless spin 1 gauge bosons which carry color called gluons. The colored quarks are then added to yield Quantum Chromodynamics (QCD). Although there have been many dynamical and static successes of QCD, there has been one important missing link in QCD which casts a dark shadow over it and SU(3)/sub color/. Let us assume the strong interactions are described by locally gauge invariant SU(3)/sub color/ in a pure Yang Mills theory. Then if we consider the effects of confinement one is inescapably led to the existence of glueballs (multigluon resonant states). Experimentally we found vast numbers of q anti q states and qqq states but until recently no convincing evidence for glueballs. Fortunately recent work has led to the discovery of glueballs provided one assumes the following two simple input axioms: (1) QCD is correct and (2) the OZI (or Zweig) Rule is universal for weakly coupled glue in disconnected Zweig diagrams where the disconnection is caused by creation or annihilation of new flavors of quarks. There are other glueball candidates found in the radiative J/psi decays and some relatively weaker candidates from direct pattern recognition in hadronic spectroscopy, nonet + glueball → decuplet with characteristic mixing splitting. The evidence for glueballs is discussed and speculation on what lies beyond for the physics of the 21st Century is given. 36 references

  19. Search for glueballs

    Toki, W. [Colorado State Univ., Ft. Collins, CO (United States). Dept. of Physics

    1997-06-01

    In these Summer School lectures, the author reviews the results of recent glueball searches. He begins with a brief review of glueball phenomenology and meson spectroscopy, including a discussion of resonance behavior. The results on the f{sub o}(1500) and f{sub J}(1700) resonances from proton-antiproton experiments and radiative J/{Psi} decays are discussed. Finally, {pi}{pi} and {eta}{pi} studies from D{sub s} decays and exotic meson searches are reviewed. 46 refs., 40 figs.

  20. Scalar eletrodynamics in three dimensions with topological mass terms

    Mello, E.R.B. de.

    1986-01-01

    The interaction between a charged scalar field and a gauge field in a three-dimensional space-time is studied. The topological mass term (the Chern-Simons term) is added to the system and it is investigated how this term, odd by P and Τ symmetry, modifies the corrections to the propagators and vertices of this theory. These corrections are obtained to order e 2 in perturbation theory. In the correction of the linear vertex a new type term arises. Although this term, which comes from the topological one, presents and abnormal parity, the Ward's identity is still valid. (Author) [pt

  1. Glueballs, Hybrids and Exotics

    Reyes, M. A.; Moreno, G.

    2006-09-01

    We comment on the physics analysis carried out by the Experimental High Energy Physics (EHEP) group of the Instituto de Fisica of the University of Guanajuato (IFUG), Mexico. In particular, this group has been involved in analysis carried out to search for glueball, hybrid and exotic candidates.

  2. Glueballs, Hybrids and Exotics

    Reyes, M. A.; Moreno, G.

    2006-01-01

    We comment on the physics analysis carried out by the Experimental High Energy Physics (EHEP) group of the Instituto de Fisica of the University of Guanajuato (IFUG), Mexico. In particular, this group has been involved in analysis carried out to search for glueball, hybrid and exotic candidates

  3. Current situation on the glueball research

    Shen Qixing

    1991-01-01

    The current situation on the glueball research is reviewed. The emphases are some qualitative guidances to identify the glueball and several possible candidate states for the glueball which have been discovered in the experiments

  4. Masses of scalar and axial-vector B mesons revisited

    Cheng, Hai-Yang [Academia Sinica, Institute of Physics, Taipei (China); Yu, Fu-Sheng [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China)

    2017-10-15

    The SU(3) quark model encounters a great challenge in describing even-parity mesons. Specifically, the q anti q quark model has difficulties in understanding the light scalar mesons below 1 GeV, scalar and axial-vector charmed mesons and 1{sup +} charmonium-like state X(3872). A common wisdom for the resolution of these difficulties lies on the coupled channel effects which will distort the quark model calculations. In this work, we focus on the near mass degeneracy of scalar charmed mesons, D{sub s0}{sup *} and D{sub 0}{sup *0}, and its implications. Within the framework of heavy meson chiral perturbation theory, we show that near degeneracy can be qualitatively understood as a consequence of self-energy effects due to strong coupled channels. Quantitatively, the closeness of D{sub s0}{sup *} and D{sub 0}{sup *0} masses can be implemented by adjusting two relevant strong couplings and the renormalization scale appearing in the loop diagram. Then this in turn implies the mass similarity of B{sub s0}{sup *} and B{sub 0}{sup *0} mesons. The P{sub 0}{sup *}P{sub 1}{sup '} interaction with the Goldstone boson is crucial for understanding the phenomenon of near degeneracy. Based on heavy quark symmetry in conjunction with corrections from QCD and 1/m{sub Q} effects, we obtain the masses of B{sup *}{sub (s)0} and B{sup '}{sub (s)1} mesons, for example, M{sub B{sub s{sub 0{sup *}}}} = (5715 ± 1) MeV + δΔ{sub S}, M{sub B}{sup {sub '{sub s{sub 1}}}} = (5763 ± 1) MeV + δΔ{sub S} with δΔ{sub S} being 1/m{sub Q} corrections. We find that the predicted mass difference of 48 MeV between B{sup '}{sub s1} and B{sub s0}{sup *} is larger than that of 20-30 MeV inferred from the relativistic quark models, whereas the difference of 15 MeV between the central values of M{sub B}{sup {sub '{sub s{sub 1}}}} and M{sub B}{sup {sub '{sub 1}}} is much smaller than the quark model expectation of 60-100 MeV. Experimentally, it is important to have a precise

  5. Lower Limits on Soft Supersymmetry-Breaking Scalar Masses

    Ellis, John R.; Olive, Keith A.; Ellis, John; Olive, Keith A.

    2002-01-01

    Working in the context of the CMSSM, we argue that phenomenological constraints now require the universal soft supersymmetry-breaking scalar mass m_0 be non-zero at the input GUT scale. This conclusion is primarily imposed by the LEP lower limit on the Higgs mass and the requirement that the lightest supersymmetric particle not be charged. We find that m_0 > 0 for all tan beta if mu 0 only when tan beta sim 8 and one allows an uncertainty of 3+ GeV in the theoretical calculation of the Higgs mass. Upper limits on flavour-changing neutral interactions in the MSSM squark sector allow substantial violations of non-universality in the m_0 values, even if their magnitudes are comparable to the lower limit we find in the CMSSM. Also, we show that our lower limit on m_0 at the GUT scale in the CMSSM is compatible with the no-scale boundary condition m_0 = 0 at the Planck scale.

  6. Experimental status of scalar and tensor mesons

    Von Dombrowski, S.

    1997-01-01

    The recent discoveries of a 0 (1450) and f 0 (1370)/f 0 (1500) in antiproton-proton annihilation at rest shed new light on the interpretation of light scalar mesons. The properties of f 0 (1500) match the expectations of a scalar glueball mixed with nearby qq states. New decay modes of the ξ(2230) are reported in radiative J/Ψ decays, pointing also towards a (tensor) glueball nature of this state. Results from different experiments are discussed and compared. (orig.)

  7. Lifting scalar-quark and -lepton masses with sideways U(1)-II

    McCabe, J.F.; Wada, W.W.

    1984-01-01

    We investigate the phenomenological consequences of an SUSY model with a gauged O'Raifeartaigh sector on scalar partner masses. The model has the gauge symmetry SU(5) x U(1). We find that this form of spontaneous SUSY breaking leads to large scalar partner masses through one loop graphs without changing quark and lepton masses from tree values, and without breaking SU(5) symmetries by the scalar partner sector. To calculate the scalar partner masses we extend previous work on supergraph techniques to include cases when SUSY is broken at tree level. We are able to sum exactly the corrections to unbroken propagators with the aid of a supersymmetric version of tree-level Dyson equations. We show how the same ideas can be implemented in an SU(5) gauge model where the normal Higgs give large masses radiatively to the scalar-quarks and -leptons. 7 references

  8. Second Hagedorn temperature and glueball formation

    Dias de Deus, J.; Pimenta, M.

    1984-09-01

    We argue that confinement involving higher representations of SU(N) in singlet Ranti R bound states may occur at higher Hagedorn temperatures. The simplest possibility corresponds to the case when the binding potential is proportional to the quadratic Casimir Csub(R). The lowest Hagedorn temperature Tsub(H1) is the temperature for qanti q meson formation. The next, Tsub(H2), is the temperature for glueball hadronization. Higher representation Ranti R bound states are not likely to occur. The second Hagedorn temperature, separating the physics of hadrons from the physics of QCD plasma, plays the role of the deconfining temperature. Simple effective potential estimates give Tsub(H2)/Tsub(H1)approx.=(Csub(A)/Csub(F))sup(1/2)=3/2, in SU(3), with Tsub(H2)=395 MeV and Tsub(H1)=210 MeV, and for the glueball spin-averaged mass, μsub(G)=1370 MeV. Glueballs, in comparison with normal hadrons, are produced with larger psub(T) and larger multiplicities. (orig.)

  9. Rotational perturbations of Friedmann universes in Einstein zero mass scalar theory

    Krori, K.D.; Sarmah, J.C.; Goswami, D.

    1983-01-01

    The authors find that except in the case of 'perfect dragging', the zero mass scalar field has a damping effect on the rotation of matter. One of the three cases studied here shows that the scalar field may exist only during a certain interval in the course of the evolution of the universe. The zero mass scaler field has acquired particular importance recently because of a suggestion by Weinberg and Wilezek that there should exist a pseudo-scalar boson, the so-called axion, of negligible mass

  10. Glueball properties from the Bethe-Salpeter equation

    Kellermann, Christian

    2012-01-01

    For over thirty years bound states of gluons are an outstanding problem of both theoretical and experimental physics. Being predicted by Quantum-Chromodynamics their experimental confirmation is one of the foremost goals of large experimental facilities currently under construction like FAIR in Darmstadt. This thesis presents a novel approach to the theoretical determination of physical properties of bound states of two gluons, called glueballs. It uses the consistent combination of Schwinger-Dyson equations for gluons and ghosts and appropriate Bethe-Salpeter equations describing their corresponding bound-states. A rigorous derivation of both sets of equations, starting from an 2PI effective action is given as well as a general determination of appropriate decompositions of Bethe-Salpeter amplitudes to a given set of quantum numbers of a glueball. As an application example bound state masses of glueballs in a simple truncation scheme are calculated. (orig.)

  11. Scalar sector extensions and the Higgs mass fine-tuning problem

    Chakraborty, Indrani

    2014-01-01

    One of the ways to address the fine-tuning problem in the Standard Model is to assume the existence of some symmetry which keeps the quantum corrections to the Higgs mass to a manageable level. This condition, known after Veltman who first propounded it, is unfortunately not satisfied in the SM, given that we know all the masses. We discuss how one can get back the Veltman Condition if one or more gauge singlet scalars are introduced in the model. We show that the most favored solution is the case where the singlet scalar does not mix with the SM doublet, and thus can act as a viable cold dark matter candidate. Furthermore, the fine-tuning problem of the new scalars necessitates the introduction of vector like fermions. Thus, singlet scalar(s) and vector fermions are minimal enhancements over the Standard Model to alleviate the fine-tuning problem. We also show that the model predicts Landau poles for all the scalar couplings, whose positions depend only on the number of such singlets. Thus, introduction of some new physics at that scale becomes inevitable. We also discuss how the model confronts the LHC constraints and the latest XENON100 data. Some more such extensions, with higher scalar multiplets, are also discussed. (author)

  12. Glueballs--some selected theoretical topics

    Carlson, C.E.

    1983-01-01

    Elementary considerations of how glueballs may be found--by oddballs (abnormal -c /SUB n/ states), by overpopulation, and by decay democracy--are given. Two glueball candidates iota 1440 and theta 1640 are considered. It is stated that iota 1440 can be accommodated as a radically excited pseudoscalar, not as a glueball. Theta 1640 has decay properties uncharacteristic of glueballs, but of a state made from quarks. Finally, the worry that glueballs may mix with quark states with the same quantum number (gluonium-quarkonium mixing) is examined

  13. QCD and the search for glueballs

    Close, F.E.

    1982-05-01

    In reviewing the search for glueballs within the QCD theory the problem of identifying glueballs in psi → γ X reactions is considered, the extent to which the two meson states (the i(1440) and the theta (1640)) seen in psi radiative decay can be shown to be candidates for glueballs is examined, and the current theory of and data on glueballs are discussed. Where to search for glueballs and recent ideas on the properties of the hermophrodite states are considered. (U.K.)

  14. One-loop masses of open-string scalar fields in string theory

    Kitazawa, Noriaki

    2008-01-01

    In phenomenological models with D-branes, there are in general open-string massless scalar fields, in addition to closed-string massless moduli fields corresponding to the compactification. It is interesting to focus on the fate of such scalar fields in models with broken supersymmetry, because no symmetry forbids their masses. The one-loop effect may give non-zero masses to them, and in some cases mass squared may become negative, which means the radiative gauge symmetry breaking. In this article we investigate and propose a simple method for calculating the one-loop corrections using the boundary state formalism. There are two categories of massless open-string scalar fields. One consists the gauge potential fields corresponding to compactified directions, which can be understood as scalar fields in uncompactified space-time (related with Wilson line degrees of freedom). The other consists 'gauge potential fields' corresponding to transverse directions of D-brane, which emerge as scalar fields in D-brane world-volume (related with brane moduli fields). The D-brane boundary states with constant backgrounds of these scalar fields are constructed, and one-loop scalar masses are calculated in the closed string picture. Explicit calculations are given in the following four concrete models: one D25-brane with a circle compactification in bosonic string theory, one D9-brane with a circle compactification in superstring theory, D3-branes at a supersymmetric C 3 /Z 3 orbifold singularity, and a model of brane supersymmetry breaking with D3-branes and anti-D7-branes at a supersymmetric C 3 /Z 3 orbifold singularity. We show that the sign of the mass squared has a strong correlation with the sign of the related open-string one-loop vacuum amplitude.

  15. Semirelativistic potential model for low-lying three-gluon glueballs

    Mathieu, Vincent; Semay, Claude; Silvestre-Brac, Bernard

    2006-01-01

    The three-gluon glueball states are studied with the generalization of a semirelativistic potential model giving good results for two-gluon glueballs. The Hamiltonian depends only on 3 parameters fixed on two-gluon glueball spectra: the strong coupling constant, the string tension, and a gluon size which removes singularities in the potential. The Casimir scaling determines the structure of the confinement. Low-lying J PC states are computed and compared with recent lattice calculations. A good agreement is found for 1 -- and 3 -- states, but our model predicts a 2 -- state much higher in energy than the lattice result. The 0 -+ mass is also computed

  16. Revisiting the pseudoscalar meson and glueball mixing and key issues in the search for a pseudoscalar glueball state

    Qin, Wen; Zhao, Qiang; Zhong, Xian-Hui

    2018-05-01

    We revisit the mixing mechanism for pseudoscalar mesons and glueball which is introduced by the axial vector anomaly. We demonstrate that the physical mass of the pseudoscalar glueball does not favor to be lower than 1.8 GeV if all the parameters are reasonably constrained. This conclusion, on the one hand, can accommodate the pseudoscalar glueball mass calculated by lattice QCD, and on the other hand, is consistent with the high-statistics analyses at BESIII that all the available measurements do not support the presence of two closely overlapping pseudoscalar states in any exclusive channel. Such a result is in agreement with the recent claim that the slightly shifted peak positions for two possible states η (1405 ) and η (1475 ) observed in different channels are actually originated from one single state with the triangle singularity interferences. By resolving this long-standing paradox, one should pay more attention to higher mass region for the purpose of searching for the pseudoscalar glueball candidate.

  17. Testing feasibility of scalar-tensor gravity by scale dependent mass and coupling to matter

    Mota, D. F.; Salzano, V.; Capozziello, S.

    2011-01-01

    We investigate whether there is any cosmological evidence for a scalar field with a mass and coupling to matter which change accordingly to the properties of the astrophysical system it ''lives in,'' without directly focusing on the underlying mechanism that drives the scalar field scale-dependent-properties. We assume a Yukawa type of coupling between the field and matter and also that the scalar-field mass grows with density, in order to overcome all gravity constraints within the Solar System. We analyze three different gravitational systems assumed as ''cosmological indicators'': supernovae type Ia, low surface brightness spiral galaxies and clusters of galaxies. Results show (i) a quite good fit to the rotation curves of low surface brightness galaxies only using visible stellar and gas-mass components is obtained; (ii) a scalar field can fairly well reproduce the matter profile in clusters of galaxies, estimated by x-ray observations and without the need of any additional dark matter; and (iii) there is an intrinsic difficulty in extracting information about the possibility of a scale-dependent massive scalar field (or more generally about a varying gravitational constant) from supernovae type Ia.

  18. Mixed Inert scalar triplet dark matter, radiative neutrino masses and leptogenesis

    Wen-Bin Lu

    2017-11-01

    Full Text Available The neutral component of an inert scalar multiplet with hypercharge can provide a stable dark matter particle when its real and imaginary parts have a splitting mass spectrum. Otherwise, a tree-level dark-matter-nucleon scattering mediated by the Z boson will be much above the experimental limit. In this paper we focus on a mixed inert scalar triplet dark matter scenario where a complex scalar triplet with hypercharge can mix with another real scalar triplet without hypercharge through their renormalizable coupling to the standard model Higgs doublet. We consider three specified cases that carry most of the relevant features of the full parameter space: (i the neutral component of the real triplet dominates the dark matter particle, (ii the neutral component of the complex triplet dominates the dark matter particle; and (iii the neutral components of the real and complex triplets equally constitute the dark matter particle. Subject to the dark matter relic abundance and direct detection constraint, we perform a systematic study on the allowed parameter space with particular emphasis on the interplay among triplet-doublet terms and gauge interactions. In the presence of these mixed inert scalar triplets, some heavy Dirac fermions composed of inert fermion doublets can be utilized to generate a tiny Majorana neutrino mass term at one-loop level and realize a successful leptogenesis for explaining the cosmic baryon asymmetry.

  19. Scalar loops and the Higgs mass in the Salam-Weinberg-Glashow model

    Ghose, P.

    1982-08-01

    It is shown that spontaneous symmetry breaking is predominantly driven by scalar loops in the standard Salam-Weinberg-Glashow model if lambda approx.=0(e 2 ). The Higgs mass is predicted to be 0(64 GeV), which is considerably higher than the Coleman Weinberg prediction. (author)

  20. Scalar loops and the Higgs mass in the Salam-Weinberg-Glashow model

    Ghose, P.

    1983-01-01

    It is shown that spontaneous symmetry breaking is predominantly driven by scalar loops in the standard Salam-Weinberg-Glashow model if lambdaapproximately equal to O(e 2 ). The Higgs mass is predicted to be O(64 GeV), which is considerably higher than the Coleman-Weinberg prediction (1973 Phys. Rev. D 7 1888). (author)

  1. Higgs mass range from standard model false vacuum inflation in scalar-tensor gravity

    Masina, I.; Notari, A.

    2012-01-01

    If the standard model is valid up to very high energies it is known that the Higgs potential can develop a local minimum at field values around 10(15)-10(17) GeV, for a narrow band of values of the top quark and Higgs masses. We show that in a scalar-tensor theory of gravity such Higgs false vacu....... This prediction could be soon tested at the Large Hadron Collider. Our inflationary scenario could also be further checked by better constraining the spectral index and the tensor-to-scalar ratio....

  2. Nucleon scalar matrix elements with N{sub f}=2+1+1 twisted mass fermions

    Dinter, Simon; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-12-15

    We investigate scalar matrix elements of the nucleon using N{sub f}=2+1+1 flavors of maximally twisted mass fermions at a fixed value of the lattice spacing of a{approx}0.078 fm. We compute disconnected contributions to the relevant three-point functions using an efficient noise reduction technique. Using these methods together with an only multiplicative renormalization applicable for twisted mass fermions, allows us to obtain accurate results in the light and strange sector. (orig.)

  3. Complete two-loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry

    Martin, Stephen P.

    2003-01-01

    I present a method for accurately calculating the pole mass of the lightest Higgs scalar boson in supersymmetric extensions of the standard model, using a mass-independent renormalization scheme. The Higgs scalar self-energies are approximated by supplementing the exact one-loop results with the second derivatives of the complete two-loop effective potential in Landau gauge. I discuss the dependence of this approximation on the choice of renormalization scale, and note the existence of particularly poor choices, which fortunately can be easily identified and avoided. For typical input parameters, the variation in the calculated Higgs boson mass over a wide range of renormalization scales is found to be of the order of a few hundred MeV or less, and is significantly improved over previous approximations

  4. Search for scalar fermions and long-lived scalar leptons at centre-of-mass energies of 130 GeV to 172 GeV

    Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brenke, T; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cerruti, C; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Damgaard, G; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Duperrin, A; Durand, J D; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Gris, P; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Konoplyannikov, A K; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Krstic, J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lamsa, J; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Lokajícek, M; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Masik, J; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mirabito, L; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navas, S; Nawrocki, K; Negri, P; Neufeld, N; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolaenko, V; Nikolenko, M; Nomokonov, V P; Normand, Ainsley; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rakoczy, D; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Siebel, M; Silvestre, R; Simard, L C; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Chikilev, O G; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1999-01-01

    Data taken by DELPHI during the 1995 and 1996 LEP runs have been used to search for the supersymmetric partners of electron, muon and tau leptons and of top and bottom quarks. The observations are in agreement with standard model predictions. Limits are set on sfermion masses. Searches for long lived scalar leptons from low scale supersymmetry breaking models exclude stau masses below 55~GeV/c$^2$ at the 95\\% confidence level, irrespective of the gravitino mass.

  5. Nature of the light scalar mesons

    Vijande, J.; Valcarce, A.; Fernandez, F.; Silvestre-Brac, B.

    2005-01-01

    Despite the apparent simplicity of meson spectroscopy, light scalar mesons cannot be accommodated in the usual qq structure. We study the description of the scalar mesons below 2 GeV in terms of the mixing of a chiral nonet of tetraquarks with conventional qq states. A strong diquark-antidiquark component is found for several states. The consideration of a glueball as dictated by quenched lattice QCD drives a coherent picture of the isoscalar mesons

  6. Cosmic selection rule for the glueball dark matter relic density

    Soni, Amarjit; Xiao, Huangyu; Zhang, Yue

    2017-10-01

    We point out a unique mechanism to produce the relic abundance for the glueball dark matter from a gauged SU (N )d hidden sector which is bridged to the standard model sector through heavy vectorlike quarks colored under gauge interactions from both sides. A necessary ingredient of our assumption is that the vectorlike quarks, produced either thermally or nonthermally, are abundant enough to dominate the universe for some time in the early universe. They later undergo dark color confinement and form unstable vectorlike-quarkonium states which annihilate decay and reheat the visible and dark sectors. The ratio of entropy dumped into two sectors and the final energy budget in the dark glueballs is only determined by low energy parameters, including the intrinsic scale of the dark SU (N )d , Λd, and number of dark colors, Nd, but depend weakly on parameters in the ultraviolet such as the vectorlike quark mass or the initial condition. We call this a cosmic selection rule for the glueball dark matter relic density.

  7. Glueballs in the reaction π-p → phi phi n at 22 GeV/c

    Love, W.A.

    1983-01-01

    The current favorite candidate theory of strong interactions is Quantum Chromodynamics. In this theory, bound states of two or more gluons, called glueballs, must exist. Experimentally, the detection of glueballs (all of which are massive enough to decay quickly to ordinary q anti q hadrons) is complicated by the lack of any explicit signature. The calculation of the mass of the low-lying glueballs by lattice gauge methods and the MIT bag model at present give only a rough guide to experimental searches. A popular place to look has been among the systems recoiling from photons emitted in heavy quarkonium decays. In general, processes which must exchange hard gluons are needed. One touchstone seems to be the concept of democracy. Unmixed glueball states are flavor singlets and should show equal decay amplitudes to states made of strange or non-strange quarks (or indeed of charmed or b quarks at higher masses). The MPS Experiment number 679 setup and results are described

  8. Sound of Dark Matter: Searching for Light Scalars with Resonant-Mass Detectors.

    Arvanitaki, Asimina; Dimopoulos, Savas; Van Tilburg, Ken

    2016-01-22

    The fine-structure constant and the electron mass in string theory are determined by the values of scalar fields called moduli. If the dark matter takes on the form of such a light modulus, it oscillates with a frequency equal to its mass and an amplitude determined by the local dark-matter density. This translates into an oscillation of the size of a solid that can be observed by resonant-mass antennas. Existing and planned experiments, combined with a dedicated resonant-mass detector proposed in this Letter, can probe dark-matter moduli with frequencies between 1 kHz and 1 GHz, with much better sensitivity than searches for fifth forces.

  9. Lepton flavor violation and scalar dark matter in a radiative model of neutrino masses

    Esch, Sonja; Klasen, Michael; Lamprea, David R. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Theoretische Physik, Muenster (Germany); Yaguna, Carlos E. [Universidad Pedagogica y Tecnologica de Colombia, Escuela de Fisica, Tunja (Colombia)

    2018-02-15

    We consider a simple extension of the Standard Model that can account for the dark matter and explain the existence of neutrino masses. The model includes a vector-like doublet of SU(2), a singlet fermion, and two scalar singlets, all of them odd under a new Z{sub 2} symmetry. Neutrino masses are generated radiatively by one-loop processes involving the new fields, while the dark matter candidate is the lightest neutral particle among them. We focus specifically on the case where the dark matter particle is one of the scalars and its relic density is determined by its Yukawa interactions. The phenomenology of this setup, including neutrino masses, dark matter and lepton flavor violation, is analyzed in some detail. We find that the dark matter mass must be below 600 GeV to satisfy the relic density constraint. Lepton flavor violating processes are shown to provide the most promising way to test this scenario. Future μ → 3e and μ-e conversion experiments, in particular, have the potential to probe the entire viable parameter space of this model. (orig.)

  10. Mass change and motion of a scalar charge in cosmological spacetimes

    Haas, Roland; Poisson, Eric

    2005-01-01

    Continuing previous work reported in an earlier paper (Burko, Harte and Poisson 2002 Phys. Rev. D 65 124006), we calculate the self-force acting on a point scalar charge in a wide class of cosmological spacetimes. The self-force produces two types of effect. The first is a time-changing inertial mass, and this is calculated exactly for a particle at rest relative to the cosmological fluid. We show that for certain cosmological models, the mass decreases and then increases back to its original value. For all other models except de Sitter spacetime, the mass is restored only to a fraction of its original value. For de Sitter spacetime the mass steadily decreases. The second effect is a deviation relative to geodesic motion, and we calculate this for a charge that moves slowly relative to the dust in a matter-dominated cosmology. We show that the net effect of the self-force is to push on the particle. We show that this is not an artefact of the scalar theory: the electromagnetic self-force acting on an electrically charged particle also pushes on the particle. The paper concludes with a demonstration that the pushing effect can also occur in the context of slow-motion electrodynamics in flat spacetime

  11. Nucleon in confining models with glueballs

    Broniowski, W.

    1987-07-01

    Solutions to non-chiral and chiral color dielectric models are discussed. The coupling of glueballs produces absolute quark confinement and generates selfconsistently a bag. 9 refs., 2 figs., 1 tab. (author)

  12. Hybrids and glueballs: new forms of matter

    Close, F.

    1983-01-01

    Theories of the forces that bind together the atomic nucleus predict the existence of exotic forms of matter, dubbed ''glueballs'' and ''hybrids''. The underlying story illustrates progress in science through the agencies of analogy and paradox. (author)

  13. U(3)-flavor nonet scalar as an origin of the flavor mass spectra

    Koide, Yoshio

    2008-01-01

    According to an idea that the quark and lepton mass spectra originate in a VEV structure of a U(3)-flavor nonet scalar Φ, the mass spectra of the down-quarks and charged leptons are investigated. The U(3) flavor symmetry is spontaneously and completely broken by non-zero and non-degenerated VEVs of Φ, without passing any subgroup of U(3). The ratios (m e +m μ +m τ )/(√(m e )+√(m μ )+√(m τ )) 2 and √(m e m μ m τ )/(√(m e )+√(m μ )+√(m τ )) 3 are investigated based on a toy model

  14. Is the G(1440) a glueball

    Milton, K.A.; Palmer, W.F.; Pinsky, S.S.

    1982-01-01

    The G(1440) qualitatively satisfies all criteria for a glueball: It is an isosinglet preferentially produced in hard gluon channels which mediate OZI inhibited processes in an SU(3) symmetric way. A simple pole model is used to predict G → deltaπ, rhoγ, omega γ, phiγ, γγ, rhoππ, and etaππ. The small G → eta ππ rate is explained by a cancellation between G → deltaπ → etaππ and G → etaepsilon → etaππ amplitudes which has also been observed in the corresponding s(1275) amplitude. While the G does not fit naturally into a pure radial excitation nonet - one cannot account for the mass spectrum - standard octet-singlet mixing with angle THETA/sub R/ = -18 0 yields rates for psi → γG and psi → γs(1275) production that are not now inconsistent with the limit on G production in π - p → Gn. 41 references

  15. Fractional statistics, exceptional preons, scalar dark matter, lepton number violation, neutrino masses, and hidden gauge structure

    Zee, A.

    1985-09-01

    A brief review is given of the basics of fractional statistics, which is based on the Dirac-Bohm-Aharanov effect. Some group theoretic aspects of exceptional preons are breifly described, and a theory is proposed containing hypercolor and hyperflavor with G/sub HC/ x G/sub HF/ = E(6) x E(6) and preons in (27,27). It is also suggested that the dark matter in the universe is due to a scalar field which transforms as a singlet under SU(3) x SU(2) x U(1) and interacts only via the Higgs boson. Some speculation is made on the existence and physical consequences of a SU(2) singet charged scalar field which couples to two lepton doublet, necessarily violating electron, muon, and tauon numbers. The Majorana masses of neutrinos are discussed as the result of breaking the total lepton number. Abelian gauge field hidden inside non-abelian gauge theory is briefly described in analogy to the electromagnetic potential term. 20 refs

  16. Algebraic approaches to hadrons and the identification of iota(1440) with glueball

    Teshima, T.; Oneda, S.

    1984-01-01

    The identifications of iota(1440) and theta(1640) with glueballs are difficult, if one relies on the popular simple quarkonium-glueball mass matrices. However, a different conclusion has been drawn from two distinct algebraic approaches. They are both based on QCD algebras and produce almost identical results for the 0 -+ mesons. In this paper, in the framework of chiral U(4) x U(4) QCD algebras, the problems of 0 -+ meson masses, mixings, decay constants, branching ratios of J/psi→iotaγ, eta'γ, and etaγ, and the widths of the iota→rhoγ and 2γ decays are discussed. It is found that the main features of the mixing parameters obtained previously in the U(3) x U(3) scheme remain intact and the iota(1440) can again be accommodated as a glueball which appreciably mixes with the eta'. It is also pointed out that the simple quarkonium-glueball mass matrices may fail to include the important effect of flavor-symmetry breaking and therefore are not very realistic. This is demonstrated by showing that the mass matrices can be reproduced in the present algebraic approach only if one is willing to take the symmetry limit for quantities which clearly involve the effect of symmetry breaking

  17. Isotropic background for interacting two fluid scenario coupled with zero mass scalar field in modified gravity

    Chirde, V.R.; Shekh, S.H.

    2016-01-01

    The modified theories of gravity have engrossed much attention in the last decade, especially f(R) gravity. In this contextual exploration, we investigate interaction between barotropic fluid and dark energy with zero-mass scalar field for the spatially homogeneous and isotropic flat FRW universe. In this universe, the field equations correspond to the particular choice of f(R) = R+bR m . The exact solutions of the field equations are obtained by applying volumetric power law and exponential law of expansion. In power and exponential law of expansion, the universe shows both matter dominated and DE era for b ≤ 0 and b ≥ 0 and remain present in dark era respectively, but power law model is fully occupying with real matter for b > 0 and for b < 0 exponential model expands with negative pressure and remain present in matter dominated phase respectively. The physical behavior of the universe has been discussed by using some physical quantities

  18. A uniqueness criterion for the Fock quantization of scalar fields with time-dependent mass

    Cortez, Jeronimo; Mena Marugan, Guillermo A; Olmedo, Javier; Velhinho, Jose M

    2011-01-01

    A major problem in the quantization of fields in curved spacetimes is the ambiguity in the choice of a Fock representation for the canonical commutation relations. There exists infinite number of choices leading to different physical predictions. In stationary scenarios, a common strategy is to select a vacuum (or a family of unitarily equivalent vacua) by requiring invariance under the spacetime symmetries. When stationarity is lost, a natural generalization consists in replacing time invariance by unitarity in the evolution. We prove that when the spatial sections are compact, the criterion of a unitary dynamics, together with the invariance under the spatial isometries, suffices to select a unique family of Fock quantizations for a scalar field with time-dependent mass. (fast track communication)

  19. Renormalization group summation of Laplace QCD sum rules for scalar gluon currents

    Farrukh Chishtie

    2016-03-01

    Full Text Available We employ renormalization group (RG summation techniques to obtain portions of Laplace QCD sum rules for scalar gluon currents beyond the order to which they have been explicitly calculated. The first two of these sum rules are considered in some detail, and it is shown that they have significantly less dependence on the renormalization scale parameter μ2 once the RG summation is used to extend the perturbative results. Using the sum rules, we then compute the bound on the scalar glueball mass and demonstrate that the 3 and 4-Loop perturbative results form lower and upper bounds to their RG summed counterparts. We further demonstrate improved convergence of the RG summed expressions with respect to perturbative results.

  20. Gauge-invariant scalar and field strength correlators in 3d

    Laine, Mikko

    1998-01-01

    Gauge-invariant non-local scalar and field strength operators have been argued to have significance, e.g., as a way to determine the behaviour of the screened static potential at large distances, as order parameters for confinement, as input parameters in models of confinement, and as gauge-invariant definitions of light constituent masses in bound state systems. We measure such "correlators" in the 3d pure SU(2) and SU(2)+Higgs models on the lattice. We extract the corresponding mass parameters and discuss their scaling and physical interpretation. We find that the finite part of the MS-bar scheme mass measured from the field strength correlator is large, more than half the glueball mass. We also determine the non-perturbative contribution to the Debye mass in the 4d finite T SU(2) gauge theory with a method due to Arnold and Yaffe, finding $\\delta m_D\\approx 1.06(4)g^2T$.

  1. String theory and the dark glueball problem

    Halverson, James; Nelson, Brent D. [Northeastern Univ., Boston, MA (United States). Dept. of Physics; Ruehle, Fabian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-09-15

    We study cosmological constraints on dark pure Yang-Mills sectors. Dark glueballs are overproduced for large regions of ultraviolet parameter space. The problem may be alleviated in two ways: via a large preferential reheating into the visible sector, motivating certain inflation or modulus decay models, or via decays into axions or moduli, which are strongly constrained by nucleosynthesis and ΔN{sub eff} bounds. String models frequently have multiple hidden Yang-Mills sectors, which are subject to even stronger constraints due to the existence of multiple dark glueballs.

  2. Glueballs in π- p→ phi phi n

    Caruso Neto, F.

    1983-01-01

    The present status of glueballs, including theoretical and experimental aspects is critically reviewed. A set of favored processes where it may be possible to search for these objects is presented. Some of the existent problems related to the unambiguous prediction of their properties are stressed. A model which is able to explain the experimental data for the reaction π - p→ phi phi n, allowing us to estimate the coupling constants g sub(Gphi phi) e g sub(Gππ) of a glueball 2 ++ state to phi phi and ππ, respectively is proposed. (Author) [pt

  3. String theory and the dark glueball problem

    Halverson, James; Nelson, Brent D.

    2016-09-01

    We study cosmological constraints on dark pure Yang-Mills sectors. Dark glueballs are overproduced for large regions of ultraviolet parameter space. The problem may be alleviated in two ways: via a large preferential reheating into the visible sector, motivating certain inflation or modulus decay models, or via decays into axions or moduli, which are strongly constrained by nucleosynthesis and ΔN_e_f_f bounds. String models frequently have multiple hidden Yang-Mills sectors, which are subject to even stronger constraints due to the existence of multiple dark glueballs.

  4. Composite Inflation Setup and Glueball Inflation

    Bezrukov, Fedor; Channuie, Phongpichit; Jark Joergensen, Jakob

    2012-01-01

    the relevant example where the inflaton is identified with the glueball field of a pure Yang-Mills theory. We introduce the dilatonic-like glueball action which is obtained by requiring saturation of the underlying Yang-Mills trace anomaly at the effective action level. We couple the resulting action non...... picture than within the Palatini one. Finally we show that, in the metric formulation, the model nicely respects tree-level unitarity for the scattering of the inflaton field all the way to the Planck scale....

  5. Supersymmetry searches in GUT models with non-universal scalar masses

    Cannoni, M.; Gómez, M.E. [Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain); Ellis, J. [Theoretical Particle Physics and Cosmology Group, Physics Department, King' s College London, London WC2R 2LS (United Kingdom); Lola, S. [Department of Physics, University of Patras, 26500 Patras (Greece); De Austri, R. Ruiz, E-mail: mirco.cannoni@dfa.uhu.es, E-mail: John.Ellis@cern.ch, E-mail: mario.gomez@dfa.uhu.es, E-mail: magda@physics.upatras.gr, E-mail: rruiz@ific.uv.es [Instituto de Física Corpuscular, IFIC-UV/CSIC, Valencia (Spain)

    2016-03-01

    We study SO(10), SU(5) and flipped SU(5) GUT models with non-universal soft supersymmetry-breaking scalar masses, exploring how they are constrained by LHC supersymmetry searches and cold dark matter experiments, and how they can be probed and distinguished in future experiments. We find characteristic differences between the various GUT scenarios, particularly in the coannihilation region, which is very sensitive to changes of parameters. For example, the flipped SU(5) GUT predicts the possibility of ∼t{sub 1}−χ coannihilation, which is absent in the regions of the SO(10) and SU(5) GUT parameter spaces that we study. We use the relic density predictions in different models to determine upper bounds for the neutralino masses, and we find large differences between different GUT models in the sparticle spectra for the same LSP mass, leading to direct connections of distinctive possible experimental measurements with the structure of the GUT group. We find that future LHC searches for generic missing E{sub T}, charginos and stops will be able to constrain the different GUT models in complementary ways, as will the Xenon 1 ton and Darwin dark matter scattering experiments and future FERMI or CTA γ-ray searches.

  6. Supersymmetry Searches in GUT Models with Non-Universal Scalar Masses

    Cannoni, M.; Gómez, M.E.; Lola, S.; Ruiz de Austri, R.

    2016-03-22

    We study SO(10), SU(5) and flipped SU(5) GUT models with non-universal soft supersymmetry-breaking scalar masses, exploring how they are constrained by LHC supersymmetry searches and cold dark matter experiments, and how they can be probed and distinguished in future experiments. We find characteristic differences between the various GUT scenarios, particularly in the coannihilation region, which is very sensitive to changes of parameters. For example, the flipped SU(5) GUT predict the possibility of $\\tilde{t}_1-\\chi$ coannihilation, which is absent in the regions of the SO(10) and SU(5) GUT parameter spaces that we study. We use the relic density predictions in different models to determine upper bounds for the neutralino masses, and we find large differences between different GUT models in the sparticle spectra for the same LSP mass, leading to direct connections of distinctive possible experimental measurements with the structure of the GUT group. We find that future LHC searches for generic missing $E_T$...

  7. On investigating the structure of hadrons: Lattice Monte Carlo measurements of colour magnetic and electric fields and the topological charge density inside glueballs

    Ishikawa, K.; Schierholz, G.; Teper, M.; Schneider, H.

    1982-12-01

    We present some techniques for elucidating hadronic structure via lattice Monte Carlo calculations. Applying these techniques, we measure the fluctuations of colour magnetic and electric fields as well as the topological charge density inside and outside the lowest lying 0 + and 2 + glueballs in the SU(2) non-abelian lattice gauge theory. This gives us a detailed picture of the glueball structure. We also obtain, as a by-product, a reliable estimate of the gluon condensate sup(αs)/sub(π) and an estimate of the O - glueball mass which agrees with our previous estimates. (orig.)

  8. J/Ψ decays, quark-gluon mixing in light mesons and glueball interpretation of L(1440), Θ(1720) and S*(980)-mesons

    Eremyan, Sh.S.; Nazaryan, A.Eh.

    1987-01-01

    The mixing angles for pseudoscalar, tensor and scalar meson multiplets are obtained in assumption on existence of a glueball component. The results are shown to be independent on the kind of the mixing matrix. It turned out that L(1440), Θ(1720) and S*(980) mesons are quite real candidates for glueballs. All the available experimental data on two-particle decays of 0 - , 2 + and 0 + -mesons are described and predictions for a large of such decays are given. 13 refs.; 6 figs.; 9 tabs

  9. QCD, OZI, and evidence for glueballs

    Lindenbaum, S.J.

    1981-01-01

    The characteristics expected from low Q-QCD for the behavior of glueballs and the OZI rule is discussed. The reaction π - p → phi phi n represents on OZI forbidden (hairpin) diagram. It has been observed at the Brookhaven National Laboratory multiparticle spectrometer by the Brookhaven National Laboratory/City College of New York group. The author has shown that the expected OZI suppression is essentially entirely absent and in fact the Isobar Model which does not contain OZI suppression quantitatively explains the observed results. A general evaluation of the special characteristics of the data compared to other related reactions plus the foregoing facts leads the author to conclude that the intervention of glueball resonances is the likely explanation in the context of QCD. Other explanations are shown to be improbable. In particular the hypothesis that decay of a radial excitation of the eta' is responsible for lack of OZI suppression is ruled out. Planned experiments with the purpose of explicity discovering glueballs will be discussed. The OZI rule peculiarities such as violation of crossing symmetry and unitarity are attributed to color confinement

  10. QCD, OZI, and evidence for glueballs

    Lindenbaum, S.J.

    1981-01-01

    The characteristics expected from low Q-QCD for the behavior of glueballs and the OZI rule is discussed. The reaction ..pi../sup -/p ..-->.. phi phi n represents on OZI forbidden (hairpin) diagram. It has been observed at the Brookhaven National Laboratory multiparticle spectrometer by the Brookhaven National Laboratory/City College of New York group. The author has shown that the expected OZI suppression is essentially entirely absent and in fact the Isobar Model which does not contain OZI suppression quantitatively explains the observed results. A general evaluation of the special characteristics of the data compared to other related reactions plus the foregoing facts leads the author to conclude that the intervention of glueball resonances is the likely explanation in the context of QCD. Other explanations are shown to be improbable. In particular the hypothesis that decay of a radial excitation of the eta' is responsible for lack of OZI suppression is ruled out. Planned experiments with the purpose of explicity discovering glueballs will be discussed. The OZI rule peculiarities such as violation of crossing symmetry and unitarity are attributed to color confinement.

  11. Photoproduction of scalar mesons at CLAS

    Chandavar, Shloka; Hicks, Kenneth; Weygand, Dennis; CLAS Collaboration

    2013-10-01

    A single gluon, which carries color charge, cannot exist independently outside a hadron. Lattice QCD calculations in pure SU(3), however, predict the existence of glueballs which are bound states of two or more gluons. In the real world, the challenge to identify glueballs experimentally is the fact they mix with meson states. The f0 (1500) is one of several candidates for the lightest glueball, with JPC =0++ . We investigate the presence of this particle in photoproduction by analyzing the reaction γp -->fJ p -->KS0KS0 p --> 2 (π+π-) p . This reaction was studied using data from the g12 experiment performed using the CLAS detector at Jefferson Lab. A preliminary partial wave analysis, performed on the KS0KS0 invariant mass spectrum, will be presented. These results update those presented for this reaction channel at previous conferences. This work is supported by grant from NSF.

  12. Electromagnetic production of Higgs bosons, SUSY particles, glueballs and mesons in ultrarelativistic heavy-ion collisions

    Greiner, M.; Soff, G.

    1992-12-01

    The electromagnetic creation of various exotic particles in ultrarelativistic heavy-ion collisions is discussed. The production of intermediate mass Higgs bosons of the minimal supersymmetric extension of the Standard Model is enhanced over the Standard Model Higgs boson formation for certain model parameter choices and as a consequence might be detectable at LCH and SSC. We also investigate the electromagnetic generation of supersymmetric fermions and bosons as well as glueballs, mesons and fermions. (orig.)

  13. Masses and widths of scalar-isoscalar multi-channel resonances from data analysis

    Surovtsev, Yu .S.; Bydžovský, Petr; Kaminski, R.; Lyubovitskij, V. E.; Nagy, M.

    2014-01-01

    Roč. 41, č. 2 (2014), 025006 ISSN 0954-3899 R&D Projects: GA ČR(CZ) GAP203/12/2126; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : coupled-channel formalism * meson-meson scattering * scalar and pseudoscalar mesons Subject RIV: BE - Theoretical Physics Impact factor: 2.777, year: 2014

  14. Photoproduction of scalar mesons using CLAS at JLab

    Chandavar, Shloka; Hicks, Kenneth; Weygand, Dennis; CLAS Collaboration

    2014-09-01

    The search for glueballs has been ongoing for decades. The lightest glueball has been predicted by quenched lattice QCD to have a mass in the range of 1.0-1.7 GeV and JPC =0++ . The mixing of glueball states with neighbouring meson states complicates their identification. The f0 (1500) is one of several candidates for the lightest glueball, whose presence in the Ks0 Ks0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. This is done by studying the reaction, γp -->fJ p -->Ks0> Ks0p --> 2 (π+π-) p using data from the g12 experiment. A brief description of this analysis, along with a preliminary partial wave analysis results will be presented. The search for glueballs has been ongoing for decades. The lightest glueball has been predicted by quenched lattice QCD to have a mass in the range of 1.0-1.7 GeV and JPC =0++ . The mixing of glueball states with neighbouring meson states complicates their identification. The f0 (1500) is one of several candidates for the lightest glueball, whose presence in the Ks0Ks0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. This is done by studying the reaction, γp -->fJ p -->Ks0 Ks0p --> 2 (π+π-) p using data from the g12 experiment. A brief description of this analysis, along with a preliminary partial wave analysis results will be presented. NSF.

  15. Standard model false vacuum inflation: correlating the tensor-to-scalar ratio to the top quark and Higgs boson masses.

    Masina, Isabella; Notari, Alessio

    2012-05-11

    For a narrow band of values of the top quark and Higgs boson masses, the standard model Higgs potential develops a false minimum at energies of about 10(16)  GeV, where primordial inflation could have started in a cold metastable state. A graceful exit to a radiation-dominated era is provided, e.g., by scalar-tensor gravity models. We pointed out that if inflation happened in this false minimum, the Higgs boson mass has to be in the range 126.0±3.5  GeV, where ATLAS and CMS subsequently reported excesses of events. Here we show that for these values of the Higgs boson mass, the inflationary gravitational wave background has be discovered with a tensor-to-scalar ratio at hand of future experiments. We suggest that combining cosmological observations with measurements of the top quark and Higgs boson masses represent a further test of the hypothesis that the standard model false minimum was the source of inflation in the universe.

  16. The case of the pseudoscalar glueball

    Masoni, A. [Istituto Nazionale di Fisica Nucleare (INFN), Cagliari (Italy)

    2005-07-01

    The {eta}(1405), once called the E or {iota} represents a case in itself in the glueball search. It has been studied through six different production mechanisms by more than thirty experiments for a period spanning four decades. More than 70 experimental results are now quoted within the Review of Particle Properties. The purpose of this review is to focus on the key point: the existence or not of an extra pseudoscalar state . A possible interpretation of the data indicating the presence of a non qq-bar state will be presented and discussed. Open questions and alternative interpretations will be considered. (author)

  17. Scalar mesons as a mixing of two and four quark states

    Silvestre-Brac, B.; Vijande, J.; Fernandez, F.; Valcarce, A.

    2005-01-01

    The scalar mesons are a puzzling problem in meson spectroscopy: they appear to be too numerous and with a mass often incompatible with usual quark-quark potentials. In this paper, we study the possibility to describe them as a mixing of states composed of one and two quark-antiquark pairs. A potential containing confinement, gluon exchange and boson exchange, as expected from chiral symmetry, is used in a consistent way to calculate the two and four quark states separately. Then, a coupling between these states is introduced as a constant term depending only on the flavour of the created pair. The description is largely improved. To refine the treatment, a coupling with a glueball is also considered. All the experimental resonances seem to fit correctly in this scheme. (author)

  18. Scalar mesons as a mixing of two and four quark states

    Silvestre-Brac, B. [Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Grenoble (France); Vijande, J.; Fernandez, F.; Valcarce, A. [Universidad de Salamanca, Salamanca (Spain). Grupo de Fisica Nuclear

    2005-07-01

    The scalar mesons are a puzzling problem in meson spectroscopy: they appear to be too numerous and with a mass often incompatible with usual quark-quark potentials. In this paper, we study the possibility to describe them as a mixing of states composed of one and two quark-antiquark pairs. A potential containing confinement, gluon exchange and boson exchange, as expected from chiral symmetry, is used in a consistent way to calculate the two and four quark states separately. Then, a coupling between these states is introduced as a constant term depending only on the flavour of the created pair. The description is largely improved. To refine the treatment, a coupling with a glueball is also considered. All the experimental resonances seem to fit correctly in this scheme. (author)

  19. Anisotropic Bianchi Type-I and Type-II Bulk Viscous String Cosmological Models Coupled with Zero Mass Scalar Field

    Venkateswarlu, R.; Sreenivas, K.

    2014-06-01

    The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.

  20. Higgs scalar in the grand desert with observable proton lifetime in SU(5) and small neutrino masses in SO(10)

    Kynshi, M.L.; Parida, M.K.

    1993-01-01

    We find that the presence of a real scalar in the grand desert transforming as ζ(3,0,8) under SU(2) L xU(1) Y xSU(3) C ensures the agreement of the GUT predictions with the data from CERN LEP and proton lifetime (τ p ). The mass of ζ is predicted to be close to the Peccei-Quinn symmetry-breaking scale. The computation of the threshold effects in SU(5) with Higgs representations 24, 5, and 75 shows that the maximum allowed τ p for reasonable superheavy Higgs boson masses is accessible to experimental tests at low energies. The additional predictions in SO(10) are small neutrino masses compatible with solutions to the solar-neutrino problem and the dark matter of the Universe

  1. Semirelativistic potential model for three-gluon glueballs

    Mathieu, Vincent; Semay, Claude; Silvestre-Brac, Bernard

    2008-01-01

    The three-gluon glueball states are studied with the generalization of a semirelativistic potential model giving good results for two-gluon glueballs. The Hamiltonian depends only on 3 parameters fixed on two-gluon glueball spectra: the strong coupling constant, the string tension, and a gluon size which removes singularities in the potential. The Casimir scaling determines the structure of the confinement. Our results are in good agreement with other approaches and lattice calculation for the odderon trajectory but differ strongly from lattice in the J +- sector. We propose a possible explanation for this problem.

  2. On a family of (1+1)-dimensional scalar field theory models: Kinks, stability, one-loop mass shifts

    Alonso-Izquierdo, A., E-mail: alonsoiz@usal.es [Departamento de Matematica Aplicada and IUFFyM, Universidad de Salamanca (Spain); Mateos Guilarte, J. [Departamento de Fisica Fundamental and IUFFyM, Universidad de Salamanca (Spain)

    2012-09-15

    In this paper we construct a one-parametric family of (1+1)-dimensional one-component scalar field theory models supporting kinks. Inspired by the sine-Gordon and {phi}{sup 4} models, we look at all possible extensions such that the kink second-order fluctuation operators are Schroedinger differential operators with Poeschl-Teller potential wells. In this situation, the associated spectral problem is solvable and therefore we shall succeed in analyzing the kink stability completely and in computing the one-loop quantum correction to the kink mass exactly. When the parameter is a natural number, the family becomes the hierarchy for which the potential wells are reflectionless, the two first levels of the hierarchy being the sine-Gordon and {phi}{sup 4} models. - Highlights: Black-Right-Pointing-Pointer We construct a family of scalar field theory models supporting kinks. Black-Right-Pointing-Pointer The second-order kink fluctuation operators involve Poeschl-Teller potential wells. Black-Right-Pointing-Pointer We compute the one-loop quantum correction to the kink mass with different methods.

  3. Glueballs, hermaphrodites and QCD problems for baryon spectroscopy

    Close, F.E.

    1981-08-01

    Spin-orbit splittings in baryon spectroscopy are examined with relevance to QCD: successes and failures are discussed. Claims to have seen glueballs are evaluated and the possibility of hermaphrodites-states containing quarks and glue - is mentioned. (author)

  4. A low Fermi scale from a simple gaugino-scalar mass relation

    Bruemmer, F. [International School for Advanced Studies, Trieste (Italy); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    In supersymmetric extensions of the Standard Model, the Fermi scale of electroweak symmetry breaking is determined by the pattern of supersymmetry breaking. We present an example, motivated by a higher-dimensional GUT model, where a particular mass relation between the gauginos, third-generation squarks and Higgs fields of the MSSM leads to a Fermi scale smaller than the soft mass scale. This is in agreement with the measured Higgs boson mass. The {mu} parameter is generated independently of supersymmetry breaking, however the {mu} problem becomes less acute due to the little hierarchy between the soft mass scale and the Fermi scale as we argue. The resulting superparticle mass spectra depend on the localization of quark and lepton fields in higher dimensions. In one case, the squarks of the first two generations as well as the gauginos and higgsinos can be in the range of the LHC. Alternatively, only the higgsinos may be accessible at colliders. The lightest superparticle is the gravitino.

  5. Search for a vector glueball by a scan of the J/ψ resonance

    Bai, J.Z.; Bardon, O.; Blum, I.; Breakstone, A.; Burnett, T.; Chen, G.P.; Chen, H.F.; Chen, J.; Chen, S.M.; Chen, Y.; Chen, Y.B.; Chen, Y.Q.; Cheng, B.S.; Cowan, R.F.; Cui, X.Z.; Ding, H.L.; Du, Z.Z.; Dunwoodie, W.; Fan, X.L.; Fang, J.; Fero, M.; Gao, C.S.; Gao, M.L.; Gao, S.Q.; Gratton, P.; Gu, J.H.; Gu, S.D.; Gu, W.X.; Gu, Y.F.; Guo, Y.N.; Han, S.W.; Han, Y.; Harris, F.A.; Hatanaka, M.; He, J.; He, M.; Hitlin, D.G.; Hu, G.Y.; Hu, T.; Hu, X.Q.; Huang, D.Q.; Huang, Y.Z.; Izen, J.M.; Jia, Q.P.; Jiang, C.H.; Jin, S.; Jin, Y.; Jones, L.; Kang, S.H.; Ke, Z.J.; Kelsey, M.H.; Kim, B.K.; Kong, D.; Lai, Y.F.; Lan, H.B.; Lang, P.F.; Lankford, A.; Li, F.; Li, J.; Li, P.Q.; Li, Q.; Li, R.B.; Li, W.; Li, W.D.; Li, W.G.; Li, X.H.; Li, X.N.; Lin, S.Z.; Liu, H.M.; Liu, J.; Liu, J.H.; Liu, Q.; Liu, R.G.; Liu, Y.; Liu, Z.A.; Lou, X.C.; Lowery, B.; Lu, J.G.; Luo, S.Q.; Luo, Y.; Ma, A.M.; Ma, E.C.; Ma, J.M.; Mao, H.S.; Mao, Z.P.; Malchow, R.; Mandelkern, M.; Meng, X.C.; Ni, H.L.; Nie, J.; Olsen, S.L.; Oyang, J.; Paluselli, D.; Pan, L.J.; Panetta, J.; Porter, F.; Prabhakar, E.; Qi, N.D.; Que, Y.K.; Quigley, J.; Rong, G.; Schernau, M.; Schmid, B.; Schultz, J.; Shao, Y.Y.; Shen, B.W.; Shen, D.L.; Shen, H.; Shen, X.Y.; Sheng, H.Y.; Shi, H.Z.; Shi, X.R.; Smith, A.; Soderstrom, E.; Song, X.F.; Standifird, J.; Stoker, D.; Sun, F.; Sun, H.S.; Sun, S.J.; Synodinos, J.; Tan, Y.P.; Tang, S.Q.; Toki, W.; Tong, G.L.; Torrence, E.; Wang, F.; Wang, L.S.; Wang, L.Z.; Wang, M.; Wang, P.; Wang, P.L.; Wang, S.M.; Wang, T.J.; Wang, Y.Y.; Wei, C.L.; Whittaker, S.; Wilson, R.; Wisniewski, W.J.; Xi, D.M.; Xia, X.M.; Xie, P.P.; Xiong, W.J.; Xu, D.Z.; Xu, R.S.; Xu, Z.Q.; Xue, S.T.; Yamamoto, R.; Yan, J.; Yan, W.G.; Yang, C.M.; Yang, C.Y.; Yang, J.; Yang, W.; Ye, M.H.; Ye, S.W.; Ye, S.Z.; Young, K.; Yu, C.S.; Yu, C.X.; Yu, Z.Q.; Yuan, C.Z.; Zhang, B.Y.; Zhang, C.C.; Zhang, D.H.; Zhang, H.L.; Zhang, J.; Zhang, J.W.; Zhang, L.S.; Zhang, S.Q.; Zhang, Y.; Zhang, Y.Y.; Zhao, D.X.; Zhao, H.W.; Zhao, J.W.

    1996-01-01

    The cross section for e + e - →ρπ has been measured by the BES detector at BEPC at center-of-mass energies covering a 40 MeV interval spanning the J/ψ resonance. The data are used to search for the vector gluonium state hypothesized by Brodsky, Lepage, and Tuan as an explanation of the ρπ puzzle in charmonium physics. The shape of the ρπ cross section is compatible with that of the total hadronic cross section. No distortions indicating the presence of a vector glueball are seen. copyright 1996 The American Physical Society

  6. Origin of fermion masses and quark mixing without of fundamental scalars

    Dyatlov, I.T.

    1991-01-01

    Hierarchy of masses of fermion generation and the properties of the weak mixing matrix give evidence for the mechanism in which the fourth generation condensate and new vector boson are necessary elements. Rather large value of neutral transitions between heavy flavours could serve as a main experimental manifestation of the suggested mechanism

  7. Search for scalar top and scalar bottom quarks at LEP

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2002-01-01

    Searches for a scalar top quark and a scalar bottom quark have been performed using a data sample of 438 pb-1 at centre-of-mass energies of sqrt(s) = 192 - 209 GeV collected with the OPAL detector at LEP. No evidence for a signal was found. The 95% confidence level lower limit on the scalar top quark mass is 97.6 GeV if the mixing angle between the supersymmetric partners of the left- and right-handed states of the top quark is zero. When the scalar top quark decouples from the Z0 boson, the lower limit is 95.7 GeV. These limits were obtained assuming that the scalar top quark decays into a charm quark and the lightest neutralino, and that the mass difference between the scalar top quark and the lightest neutralino is larger than 10 GeV. The complementary decay mode of the scalar top quark decaying into a bottom quark, a charged lepton and a scalar neutrino has also been studied. The lower limit on the scalar top quark mass is 93.0 GeV for this decay mode, if the mass difference between the scalar top quark a...

  8. Note on possible glueball production in anti p4He reactions at 0.6 GeV/c incident momentum

    Breivik, F.O.; Haatuft, A.; Halsteinslid, A.

    1990-10-01

    The invariant mass distribution of six-particle systems in the final states of anti p 4 He-reactions at 0.6 GeV/c incident momentum shows two narrow peaks at about 1500 and 1850 MeV/c 2 which may be due to the production of glueballs. 12 refs., 4 figs

  9. Light Scalar Mesons in Central Production at COMPASS

    Austregesilo, A.

    2016-01-01

    COMPASS is a fixed-target experiment at the CERN SPS that studies the spectrum of light-quark hadrons. In 2009, it collected a large dataset using a $190\\,$GeV$/c$ positive hadron beam impinging on a liquid-hydrogen target in order to measure the central exclusive production of light scalar mesons. One of the goals is the search for so-called glueballs, which are hypothetical meson-like objects without valence-quark content. We study the decay of neutral resonances by selecting centrally produced pion pairs from the COMPASS dataset. The angular distributions of the two pseudoscalar mesons are decomposed in terms of partial waves, where particular attention is paid to the inherent mathematical ambiguities. The large dataset allows us to perform a detailed analysis in bins of the two squared four-momentum transfers carried by the exchange particles in the reaction. Possible parameterisations of the mass dependence of the partial-wave amplitudes in terms of resonances are also discussed.

  10. Glueballs in 2++ /phi//phi/ final states

    Lindenbaum, S.J.

    1988-01-01

    In this paper we discuss the striking evidence obtained by BNL/CCNY for the g/sub T/(2010), g/sub T'/(2300) and g/sub T''/(2340) I/sup G/J/sup PC/ = 0 + 2 ++ resonances which comprise virtually all of the π/sup /minus//p → /phi//phi/n. The complete breakdown of the expected OZI suppression, and the striking differences of these states from conventional states and background in other channels has so far only been successfully explained by assuming they are produced by 1-3 2 ++ glueballs. The comparison with J//phi/ radiative decay results is made. A discussion of other glueball candidates in the light of a coupled channel analysis of the 2 ++ and 0 ++ channels is also made. The forthcoming search for an exotic J/sup PC/ glueball is discussed. 12 refs., 10 figs., 2 tabs

  11. The charged black-hole bomb: A lower bound on the charge-to-mass ratio of the explosive scalar field

    Hod, Shahar

    2016-04-01

    The well-known superradiant amplification mechanism allows a charged scalar field of proper mass μ and electric charge q to extract the Coulomb energy of a charged Reissner-Nordström black hole. The rate of energy extraction can grow exponentially in time if the system is placed inside a reflecting cavity which prevents the charged scalar field from escaping to infinity. This composed black-hole-charged-scalar-field-mirror system is known as the charged black-hole bomb. Previous numerical studies of this composed physical system have shown that, in the linearized regime, the inequality q / μ > 1 provides a necessary condition for the development of the superradiant instability. In the present paper we use analytical techniques to study the instability properties of the charged black-hole bomb in the regime of linearized scalar fields. In particular, we prove that the lower bound q/μ>√{rm /r- - 1/ rm /r+ - 1 } provides a necessary condition for the development of the superradiant instability in this composed physical system (here r± are the horizon radii of the charged Reissner-Nordström black hole and rm is the radius of the confining mirror). This analytically derived lower bound on the superradiant instability regime of the composed black-hole-charged-scalar-field-mirror system is shown to agree with direct numerical computations of the instability spectrum.

  12. Measurement of the BEH scalar mass and other couplings in ATLAS and CMS

    Sperka, David Michael

    2018-01-01

    The CMS and ATLAS collaborations have performed numerous studies of the Higgs boson's properties using $pp$ collisions from the LHC at $\\sqrt{s}=13$ TeV during 2016. These studies include precision measurements of the Higgs boson's mass, which is a free parameter of the Standard Model. The Higgs bosons couplings have been constrained by combining the measurements of multiple production and decay channels. These measurements can also be used to place indirect constraints on physics beyond the standard model involving extended Higgs sectors.

  13. Glueballs in the Π-p→ΦΦn reaction

    Caruso Neto, F.

    1983-01-01

    The present status of glueballs, including theoretical and experimental aspects are critically reviewed. A set of favored processes where it may be possible to search for these objects is presented. Some of the existent problems related to the unambiguous prediction of their properties are stressed. A model which is able to explain the experimental data for the reaction Π - p→ΦΦn, allowing us to estimate the coupling constants G ΦΦ and G ΠΠ of a glueball 2 ++ state to ΦΦ and ΠΠ, respectively is proposed. (Author) [pt

  14. Mass measurement of right-handed scalar quarks and time measurement of hadronic showers for the compact linear collider

    Weuste, Lars

    2013-01-01

    The Compact Linear Collider (CLIC) is a concept for a 48.3 km long e + e - accelerator with a center-of-mass energy of 3TeV. Its purpose is the precise measurement of particles discovered by the LHC as well as the discovery of yet unknown particles. The International Large Detector (ILD) is one of its detector concepts which was specifically designed for the usage of the Particle Flow Algorithm. This thesis is divided into two parts, both within the context of CLIC. In the first part of this thesis the unprecedented measurement on time structure of hadronic showers in calorimeters with tungsten absorber material, which is used in the ILD concept for CLIC, is presented. It shows the development and the construction of a small testbeam experiment called Tungsten Timing Testbeam (T3B) which consists of only 15 scintillator tiles of 30 x 30 x 5 mm 3 , read out with Silicon Photomultipliers which in turn were connected to USB oscilloscopes. T3B was placed downstream of the CALICE tungsten analog hadron calorimeter (W-AHCal) during beam tests performed at CERN in 2010 and 2011. The resulting data is compared to simulation obtained with three different hadronic shower physics models of the Geant4 simulation toolkit: QGSPBERT, QGSPBERTHP and QBBC. The results from 60 GeV high statistics run show that QBBC and QGSPBERTHP are mostly consistent with the testbeam data, while QGSPBERT, which is lacking a sophisticated treatment of neutrons, overestimates the late energy depositions. The second part of this thesis presents one out of the six benchmark processes that were part of the CLIC Conceptual Design Report (CDR) to verify the detector performance at CLIC. This benchmark process is the measurement of the mass and cross-section of two supersymmetric right-handed scalar quarks. In the underlying SUSY model these almost exclusively decay into the lightest neutralino (missing energy) and the corresponding standard model quark (jet). Within this analysis pile-up from beam

  15. Radiative decays involving f0(980) and a0(980) and mixing between low and high mass scalar mesons

    Teshima, T.; Kitamura, I.; Morisita, N.

    2005-01-01

    We analyze the experimental data for φ->f 0 (980)γ, φ->a 0 (980)γ, f 0 (980)->γγ and a 0 (980)->γγ decay widths in a framework where f 0 (980) and a 0 (980) are assumed to be mainly qqq-bar q-bar low mass scalar mesons and mixed with qq-bar high mass scalar mesons. Applied the vector meson dominance model (VDM), these decays amplitudes are expressed by coupling parameters B describing the S (qqq-bar q-bar scalar meson)-V (vector meson)-V (vector meson) coupling and B ' describing the S ' (qq-bar scalar meson)-V-V coupling. Adopting the magnitudes for B and B ' as 3∼2.8 GeV -1 and ∼12 GeV -1 , respectively, the mixing angle between a 0 (980) and a 0 (1450) as ∼9 o , and the mixing parameter λ 01 causing the mixing between I=0 qqq-bar q-bar state and qq-bar state as ∼0.24 GeV 2 , we can interpret these experimental data, consistently

  16. Massive scalar counterpart of gravitational waves in scalarized neutron star binaries

    Wang, Jing [Sun Yat-sen University, School of Physics and Astronomy, Guangzhou (China)

    2017-09-15

    In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10{sup -21} eV/c{sup 2}. (orig.)

  17. Filtering overpopulated isoscalar tensor states with mass relations

    Burakovsky, Leonid; Page, Philip R.

    2000-01-01

    Schwinger-type mass formulas are used to analyze glueball-meson mixing for isoscalar tensor mesons. In one solution, the f J (2220) is the physical glueball, and in the other the glueball is distributed over various states, with f 2 (1810) having the largest glueball component. Neither the f 2 (1565) nor the f J (1710) are among the physical states without assuming significant coupling to decay channels. The decay f 2 (1525)→ππ is consistent with experiment, and f J (2220) is neither narrow nor decays flavor democratically. (c) 2000 The American Physical Society

  18. Some exotic mesons and glueballs from the string model

    Burden, C.J.; Tassie, L.J.

    1982-01-01

    Planar solutions are found to the relativistic string equation corresponding to rigid-body rotation. These solutions allow for the construction of certain classes of exotic mesons and of glueballs with asymptotically straight Chew-Frautschi plots. We determine the asymtotic slope of the Chew-Frautschi plots for these hadrons. (orig.)

  19. Mass measurement of right-handed scalar quarks and time measurement of hadronic showers for the compact linear collider

    Weuste, Lars

    2013-06-12

    The Compact Linear Collider (CLIC) is a concept for a 48.3 km long e{sup +}e{sup -} accelerator with a center-of-mass energy of 3TeV. Its purpose is the precise measurement of particles discovered by the LHC as well as the discovery of yet unknown particles. The International Large Detector (ILD) is one of its detector concepts which was specifically designed for the usage of the Particle Flow Algorithm. This thesis is divided into two parts, both within the context of CLIC. In the first part of this thesis the unprecedented measurement on time structure of hadronic showers in calorimeters with tungsten absorber material, which is used in the ILD concept for CLIC, is presented. It shows the development and the construction of a small testbeam experiment called Tungsten Timing Testbeam (T3B) which consists of only 15 scintillator tiles of 30 x 30 x 5 mm{sup 3}, read out with Silicon Photomultipliers which in turn were connected to USB oscilloscopes. T3B was placed downstream of the CALICE tungsten analog hadron calorimeter (W-AHCal) during beam tests performed at CERN in 2010 and 2011. The resulting data is compared to simulation obtained with three different hadronic shower physics models of the Geant4 simulation toolkit: QGSPBERT, QGSPBERTHP and QBBC. The results from 60 GeV high statistics run show that QBBC and QGSPBERTHP are mostly consistent with the testbeam data, while QGSPBERT, which is lacking a sophisticated treatment of neutrons, overestimates the late energy depositions. The second part of this thesis presents one out of the six benchmark processes that were part of the CLIC Conceptual Design Report (CDR) to verify the detector performance at CLIC. This benchmark process is the measurement of the mass and cross-section of two supersymmetric right-handed scalar quarks. In the underlying SUSY model these almost exclusively decay into the lightest neutralino (missing energy) and the corresponding standard model quark (jet). Within this analysis pile

  20. Solution of Effective-Mass Dirac Equation with Scalar-Vector and Pseudoscalar Terms for Generalized Hulthén Potential

    Altuğ Arda

    2017-01-01

    Full Text Available We find the exact bound state solutions and normalization constant for the Dirac equation with scalar-vector-pseudoscalar interaction terms for the generalized Hulthén potential in the case where we have a particular mass function m(x. We also search the solutions for the constant mass where the obtained results correspond to the ones when the Dirac equation has spin and pseudospin symmetry, respectively. After giving the obtained results for the nonrelativistic case, we search then the energy spectra and corresponding upper and lower components of Dirac spinor for the case of PT-symmetric forms of the present potential.

  1. Photoproduction of Scalar Mesons Using the CEBAF Large Acceptance Spectrometer (CLAS)

    Chandavar, Shloka K.

    The search for glueballs has been ongoing for several decades. The lightest glueball has been predicted by quenched lattice QCD to have mass in the range of 1.0--1.7 GeV and JPC = 0++ . The mixing of glueball states with neighbouring meson states complicates their identification and hence several experiments have been carried out over the years to study the glueball candidates. By analyzing the decay channels and production mechanisms of these candidates, their glueball content can theoretically be determined. In reality, a lot of confusion still exists about the status of these glueball candidates. The f0(1500) is one of several contenders for the lightest glueball, which has been extensively studied in several different kinds of experiments. However, there exists no photoproduction data on this particle. In the analysis presented in this dissertation, the presence of the f0(1500) in the KS 0KS0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility, also called Jefferson Lab (JLab). This is done by studying the reaction, gammap → fJp → KS0 KS0p → 2(pi +pi-)p using data from the g12 experiment. A clear peak is seen at 1500 MeV in the background subtracted data. This is enhanced if the momentum transfer is restricted to be less than 1 GeV2. Comparing with simulations, it is seen that this peak is associated with t channel production mechanism. The f 2'(1525) has a mass of 1525 MeV and a width of 73 MeV, and hence there is a possibility of it contributing to the peak observed in our data. A moments analysis seems to suggest some presence of a D wave, however, the low acceptance at forward and backward angles prohibits a definitive conclusion.

  2. Experimental investigations of production of glueballs and meson resonant states

    Lindenbaum, S.J.

    1987-01-01

    The major efforts reported have been directed toward investigating glueballs and non-strange mesons. The g/sub T/(2050), g/sub T'/(2300), and g/sub T''/(2350) have been observed in the OZI forbidden reaction π - p → phi phi n. Their characteristics are explained within the context of quantum chromodynamics as being produced by 1 to 3 primary glueballs. It is proposed to increase the present statistics in order to reduce the effective partial wave analysis resolution, and to begin to study the high vertical bar t' vertical bar region. It is further planned to pursue coupled channel analysis of high precision π - p → K/sub s/ 0 K/sub s/ 0 n data and other relevant world data in the 2 ++ , 0 ++ , and 4 ++ channels. A program is planned to investigate K - p and p anti p interactions at 8 GeV/c

  3. Glueball candidate iota(1460) and quarkonium-gluonium mixing

    Basu, S.; Lahiri, A.; Bagchi, B.

    1988-01-01

    Using infinite-momentum-frame techniques we generalize the Schwinger formula for the pseudoscalar nonets to include the effects of the iota(1460). By seeking consistency with its current rates we estimate the eta-eta'-iota(1460) mixing angles. We also allow the possibility of nonet symmetry breaking in the iota couplings. Our results support a glueball interpretation of the iota with eta,eta' not inconsistent with quarkonium states

  4. Analysis of soft wall AdS/QCD potentials to obtain the melting temperature of scalar hadrons

    Vega, Alfredo; Ibanez, Adolfo [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile)

    2017-11-15

    We consider an analysis of potentials related to Schroedinger-type equations for scalar fields in a 5D AdS black hole background with dilaton in order to obtain melting temperatures for different hadrons in a thermal bath. The approach does not consider calculations of spectral functions, and it is easy to yield results for hadrons with an arbitrary number of constituents. We present results for scalar mesons, glueballs, hybrid mesons and tetraquarks, and we show that mesons are more resistant to being melted in a thermal bath than other scalar hadrons, and in general the melting temperature increases when hadrons contain heavy quarks. (orig.)

  5. Dalitz plot analysis of the decay D(+)-->K(-)pi(+)pi(+) and indication of a low-mass scalar Kpi resonance.

    Aitala, E M; Amato, S; Anjos, J C; Appel, J A; Ashery, D; Banerjee, S; Bediaga, I; Blaylock, G; Bracker, S B; Burchat, P R; Burnstein, R A; Carter, T; Carvalho, H S; Copty, N K; Cremaldi, L M; Darling, C; Denisenko, K; Devmal, S; Fernandez, A; Fox, G F; Gagnon, P; Göbel, C; Gounder, K; Halling, A M; Herrera, G; Hurvits, G; James, C; Kasper, P A; Kwan, S; Langs, D C; Leslie, J; Lundberg, B; Magnin, J; Massafferri, A; MayTal-Beck, S; Meadows, B; de Mello Neto, J R T; Mihalcea, D; Milburn, R H; de Miranda, J M; Napier, A; Nguyen, A; d'Oliveira, A B; O'Shaughnessy, K; Peng, K C; Perera, L P; Purohit, M V; Quinn, B; Radeztsky, S; Rafatian, A; Reay, N W; Reidy, J J; dos Reis, A C; Rubin, H A; Sanders, D A; Santha, A K S; Santoro, A F S; Schwartz, A J; Sheaff, M; Sidwell, R A; Slaughter, A J; Sokoloff, M D; Solano Salinas, C J; Stanton, N R; Stefanski, R J; Stenson, K; Summers, D J; Takach, S; Thorne, K; Tripathi, A K; Watanabe, S; Weiss-Babai, R; Wiener, J; Witchey, N; Wolin, E; Yang, S M; Yi, D; Yoshida, S; Zaliznyak, R; Zhang, C

    2002-09-16

    We study the Dalitz plot of the decay D(+)-->K(-)pi(+)pi(+) with a sample of 15090 events from Fermilab experiment E791. Modeling the decay amplitude as the coherent sum of known Kpi resonances and a uniform nonresonant term, we do not obtain an acceptable fit. If we allow the mass and width of the K(*)(0)(1430) to float, we obtain values consistent with those from PDG but the chi(2) per degree of freedom of the fit is still unsatisfactory. A good fit is found when we allow for the presence of an additional scalar resonance, with mass 797+/-19+/-43 MeV/c(2) and width 410+/-43+/-87 MeV/c(2). The mass and width of the K(*)(0)(1430) become 1459+/-7+/-5 MeV/c(2) and 175+/-12+/-12 MeV/c(2), respectively. Our results provide new information on the scalar sector in hadron spectroscopy.

  6. Anormalous emission of glueball candidates in the reaction anti p + Neon at 607 MeV/c incident momentum

    Breivik, F.O.; Haatuft, A.; Halsteinslid, A.

    1990-11-01

    Two narrow peaks at about 1450 and 1800 MeV/c 2 are seen in the distribution of invariant mass of the assumed six-pion systems in the final states of anti pNe-reactions at 607 MeV/c incident momentum. These systems are emitted also in the backward direction in the laboratory system with momenta near the momentum of the incident antiproton. This observation and the small widths suggest that the peaks are not due to well known baryons or mesons belonging to any Regge-trajectory. The peaks could possibly be due to glueball production. 12 refs., 4 figs

  7. Evidence for explicit glueballs from the reaction π-p → phi phi n+

    Lindenbaum, S.J.

    1982-01-01

    Given QCD as an Ansatz and OZI (with appropriate restrictions) as a second Ansatz, I conclude we have discovered either two glueballs or two states very rich in resonating glue formed from one primary glueball mixing with a nearby quark state of the same quantum numbers, thus forming two states

  8. A theory of scalar mesons

    Hooft, G. t'; Isidori, G.; Maiani, L.; Polosa, A.D.; Riquer, V.

    2008-01-01

    We discuss the effect of the instanton induced, six-fermion effective Lagrangian on the decays of the lightest scalar mesons in the diquark-antidiquark picture. This addition allows for a remarkably good description of light scalar meson decays. The same effective Lagrangian produces a mixing of the lightest scalars with the positive parity qq-bar states. Comparing with previous work where the qq-bar mesons are identified with the nonet at 1200-1700 MeV, we find that the mixing required to fit the mass spectrum is in good agreement with the instanton coupling obtained from light scalar decays. A coherent picture of scalar mesons as a mixture of tetraquark states (dominating in the lightest mesons) and heavy qq-bar states (dominating in the heavier mesons) emerges

  9. Towards an analytic solution of QCD: The glueball mass gap

    West, G.B.

    1987-01-01

    Certain general features and beliefs concerning quantum chromodynamics are reviewed with he view to seeing whether the theory sense and whether its physical spectrum can be determined. A typical Green's function is represented as an expansion around the minima of the action, each term of which is divergent and requires renormalization. It is shown that even after renormalization, each of the series generated by expansion around a minimum is divergent and requires a summability procedure to make sense. The causality and analyticity of the resulting Green's function is then discussed. The ideas thus developed are shown to determine the position of the first singularity of the Green's function

  10. Scalar electron production in e+e- annihilation

    Kuroda, M.; Kobayashi, T.; Yamada, S.; Ishikawa, K.

    1983-05-01

    The single scalar electron production process e + e - -> esup(+-) + Photino + scalar electron (scalar electron -> esup(-+) + Photino), with the detection of e + as well as e - , provides a clean method to detect scalar electrons when their masses are not lighter than the beam energy. We made a complete calculation of the process and evaluated the production cross sections. (orig.)

  11. Scalar production in models with 1 and 2 Higgs doublets

    Campos Carvalho, F.L. de.

    1991-03-01

    A standard electroweak interaction model is studied based on the introduction of an additional scalar doublet which rises two neutral scalars, one pseudoscalar and two charged scalars. The doublet introduction gives the possibility to implement constraints issued by the supersymmetry, restricting therefore those scalar masses. (L.C.J.A.)

  12. Low energy constraints and scalar leptoquarks⋆

    Fajfer Svjetlana

    2014-01-01

    Full Text Available The presence of a colored weak doublet scalar state with mass below 1 TeV can provide an explanation of the observed branching ratios in B → D(∗τντ decays. Constraints coming from Z → bb̄, muon g − 2, lepton flavor violating decays are derived. The colored scalar is accommodated within 45 representation of SU(5 group of unification. We show that presence of color scalar can improve mass relations in the up-type quark sector mass. Impact of the colored scalar embedding in 45-dimensional representation of SU(5 on low-energy phenomenology is also presented.

  13. Hadronic physics of q anti q light quark mesons, quark molecules and glueballs

    Lindenbaum, S.J.

    1980-10-01

    A brief introduction reviews the development of QCD and defines quark molecules and glueballs. This review is concerned primarily with u, d, and s quarks, which provide practically all of the cross section connected with hadronic interactions. The following topics form the bulk of the paper: status of quark model classification for conventional u, d, s quark meson states; status of multiquark or quark molecule state predictions and experiments; glueballs and how to find them; and the OZI rule in decay and production and how glueballs might affect it. 17 figures, 1 table

  14. Phenomenology of supersymmetry with scalar sequestering

    Perez, Gilad; Roy, Tuhin S.; Schmaltz, Martin

    2009-01-01

    The defining feature of scalar sequestering is that the minimal supersymmetric standard model squark and slepton masses as well as all entries of the scalar Higgs mass matrix vanish at some high scale. This ultraviolet boundary condition--scalar masses vanish while gaugino and Higgsino masses are unsuppressed--is independent of the supersymmetry breaking mediation mechanism. It is the result of renormalization group scaling from approximately conformal strong dynamics in the hidden sector. We review the mechanism of scalar sequestering and prove that the same dynamics which suppresses scalar soft masses and the B μ term also drives the Higgs soft masses to -|μ| 2 . Thus the supersymmetric contribution to the Higgs mass matrix from the μ term is exactly canceled by the soft masses. Scalar sequestering has two tell-tale predictions for the superpartner spectrum in addition to the usual gaugino mediation predictions: Higgsinos are much heavier (μ > or approx. TeV) than scalar Higgses (m A ∼few hundred GeV), and third generation scalar masses are enhanced because of new positive contributions from Higgs loops.

  15. On the Occurrence of Mass Inflation for the Einstein-Maxwell-Scalar Field System with a Cosmological Constant and an Exponential Price Law

    Costa, João L.; Girão, Pedro M.; Natário, José; Silva, Jorge Drumond

    2018-03-01

    In this paper we study the spherically symmetric characteristic initial data problem for the Einstein-Maxwell-scalar field system with a positive cosmological constant in the interior of a black hole, assuming an exponential Price law along the event horizon. More precisely, we construct open sets of characteristic data which, on the outgoing initial null hypersurface (taken to be the event horizon), converges exponentially to a reference Reissner-Nördstrom black hole at infinity. We prove the stability of the radius function at the Cauchy horizon, and show that, depending on the decay rate of the initial data, mass inflation may or may not occur. In the latter case, we find that the solution can be extended across the Cauchy horizon with continuous metric and Christoffel symbols in {L^2_{loc}} , thus violating the Christodoulou-Chruściel version of strong cosmic censorship.

  16. Scalar Potential Model progress

    Hodge, John

    2007-04-01

    Because observations of galaxies and clusters have been found inconsistent with General Relativity (GR), the focus of effort in developing a Scalar Potential Model (SPM) has been on the examination of galaxies and clusters. The SPM has been found to be consistent with cluster cellular structure, the flow of IGM from spiral galaxies to elliptical galaxies, intergalactic redshift without an expanding universe, discrete redshift, rotation curve (RC) data without dark matter, asymmetric RCs, galaxy central mass, galaxy central velocity dispersion, and the Pioneer Anomaly. In addition, the SPM suggests a model of past expansion, past contraction, and current expansion of the universe. GR corresponds to the SPM in the limit in which a flat and static scalar potential field replaces the Sources and Sinks such as between clusters and on the solar system scale which is small relative to the distance to a Source. The papers may be viewed at http://web.infoave.net/˜scjh/ .

  17. Search for scalar leptons in $e^+ e^-$ collisions at centre-of-mass energies up to 209 GeV

    Heister, A.; Barate, R.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Maley, P.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Kyriakis, A.; Waananen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Spagnolo, P.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Smith, D.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Stenzel, H.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Loomis, C.; Serin, L.; Veillet, J.J.; de Vivie de Regie, J.B.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Coles, J.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    2002-01-01

    A search for selectron, smuon and stau pair production is performed with the data collected by the ALEPH detector at LEP at centre-of-mass energies up to 209 GeV. The numbers of candidate events are consistent with the background predicted by the Standard Model. Final mass limits from ALEPH are reported.

  18. Symmetry inheritance of scalar fields

    Ivica Smolić

    2015-01-01

    Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair. (paper)

  19. Confinement, glueballs and strings from deformed AdS

    Apreda, Riccardo; Crooks, David E.; Evans, Nick; Petrini, Michela

    2004-01-01

    We study aspects of confinement in two deformed versions of the AdS/CFT correspondence - the GPPZ dual of N = 1* Yang Mills, and the Yang Mills* N 0 dual. Both geometries describe discrete glueball spectra which we calculate numerically. The results agree at the 10% level with previous AdS/CFT computations in the Klebanov Strassler background and AdS Schwarzchild respectively. We also calculate the spectra of bound states of the massive fermions in these geometries and show that they are light, so not decoupled from the dynamics. We then study the behaviour of Wilson loops in the 10d lifts of these geometries. We find a transition from AdS-like strings in the UV to strings that interact with the unknown physics of the central singularity of the space in the IR. (author)

  20. Search for Scalar Bottom Quarks from Gluino Decays in Proton - Anti-proton Collisions at a Center-of-Mass Energy of 1.96-TeV

    Rott, Carsten [Purdue Univ., West Lafayette, IN (United States)

    2004-12-01

    The authors have performed a search for the scalar bottom quark ($\\tilde{b}$1) from gluino ($\\tilde{g}$) decays in an R-parity conserving SUSY scenario with m$\\tilde{g}$ > m$\\tilde{b}1$, by investigating a final state of large missing transverse energy, with three or more jets, and some of them from the hadronization of b-quarks. A data sample of 156 pb-1 collected by the Collider Detector at Fermilab at a center-of-mass energy of √s = 1.96 TeV was used. For the final selection, jets containing secondary displaced vertices were required. This analysis has been performed ''blind'', in that the inspection of the signal region was only made after the Standard Model prediction was finalized. Comparing data with SUSY predictions, they can exclude masses of the gluino and sbottom of up to 280 and 240 GeV/c2 respectively.

  1. Search for scalar mesons

    Pennington, M.R.

    1989-01-01

    The search for I = 0 0 ++ mesons is described. The crucial role played by the states in the 1 GeV region is highlighted. An analysis program that with unimpeachable data would produce definitive results on these is outlined and shown with present data to provide prima facie evidence for dynamics beyond that of the quark model. The authors briefly speculate on the current status of the lowest mass scalar mesons and discuss how experiment can resolve the unanswered issues. 30 references, 6 figures, 1 table

  2. Passive scalar transport mediated by laminar vortex rings

    Hernández, R H; Rodríguez, G, E-mail: rohernan@ing.uchile.cl [LEAF-NL, Depto. Ingeniería Civil Mecánica, Universidad de Chile, Casilla 2777, Santiago (Chile)

    2017-04-15

    Numerical simulations were used to study the dynamics of a passive conserved scalar quantity entrained by a self-propelling viscous vortex ring. The transport and mixing process of the passive scalar variable were studied considering two initial scalar distributions: (i) The scalar substance was introduced into the ring during its formation, further focusing in the shedding into the wake of the ring; (ii) A disk-like scalar layer was placed in the ring’s path where the entrainment of the scalar substance into the ring bubble was studied as a function of the ring strength. In both cases, the scalar concentration inside the vortex bubble exhibits a steady decay with time. In the second case, it was shown that the entrained scalar mass grows with both the Reynolds number of the ring and the thickness of the scalar layer in the propagation direction. The ring can be viewed as a mechanism for scalar transportation along important distances. (paper)

  3. Schwarzschild black holes can wear scalar wigs.

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  4. Top-down holographic G-structure glueball spectroscopy at (N)LO in N and finite coupling

    Sil, Karunava; Yadav, Vikas; Misra, Aalok [Indian Institute of Technology, Department of Physics, Roorkee, Uttaranchal (India)

    2017-06-15

    The top-down type IIB holographic dual of large-N thermal QCD as constructed in Mia et al. (Nucl Phys B 839:187, 2010) involving a fluxed resolved warped deformed conifold, its delocalized type IIA Strominger-Yau-Zaslow-mirror (SYZ-mirror) as well as its M-theory uplift constructed in Dhuria and Misra (JHEP 1311:001, 2013) - both in the finite coupling g{sub s} Glueballs spectra in the finite-gauge-coupling limit (and not just large 't Hooft coupling limit) - a limit expected to be directly relevant to strongly coupled systems at finite temperature such as QGP (Natsuume in String theory and quark-gluon plasma, 2007) - has thus far been missing in the literature. In this paper, we fill this gap by calculating the masses of the 0{sup ++}, 0{sup -+}, 0{sup --}, 1{sup ++}, 2{sup ++} ('glueball') states (which correspond to fluctuations in the dilaton or complexified two-forms or appropriate metric components) in the aforementioned backgrounds of G-structure in the 'MQGP' limit of Dhuria and Misra (JHEP 1311:001, 2013). We use WKB quantization conditions on one hand and impose Neumann/Dirichlet boundary conditions at an IR cut-off ('r{sub 0}')/horizon radius ('r{sub h}') on the solutions to the equations of motion on the other hand. We find that the former technique produces results closer to the lattice results. We also discuss the r{sub h} = 0 limits of all calculations. In this context we also calculate the 0{sup ++}, 0{sup --}, 1{sup ++}, 2{sup ++} glueball masses up to Next to Leading Order (NLO) in N and find a (g{sub s}M{sup 2})/(N)(g{sub s}N{sub f})-suppression similar to and further validating semi-universality of NLO corrections to transport coefficients, observed in Sil and Misra (Eur Phys J C 76(11):618, 2016). (orig.)

  5. Top-down holographic G-structure glueball spectroscopy at (N)LO in N and finite coupling

    Sil, Karunava; Yadav, Vikas; Misra, Aalok

    2017-01-01

    The top-down type IIB holographic dual of large-N thermal QCD as constructed in Mia et al. (Nucl Phys B 839:187, 2010) involving a fluxed resolved warped deformed conifold, its delocalized type IIA Strominger-Yau-Zaslow-mirror (SYZ-mirror) as well as its M-theory uplift constructed in Dhuria and Misra (JHEP 1311:001, 2013) - both in the finite coupling g s Glueballs spectra in the finite-gauge-coupling limit (and not just large 't Hooft coupling limit) - a limit expected to be directly relevant to strongly coupled systems at finite temperature such as QGP (Natsuume in String theory and quark-gluon plasma, 2007) - has thus far been missing in the literature. In this paper, we fill this gap by calculating the masses of the 0 ++ , 0 -+ , 0 -- , 1 ++ , 2 ++ ('glueball') states (which correspond to fluctuations in the dilaton or complexified two-forms or appropriate metric components) in the aforementioned backgrounds of G-structure in the 'MQGP' limit of Dhuria and Misra (JHEP 1311:001, 2013). We use WKB quantization conditions on one hand and impose Neumann/Dirichlet boundary conditions at an IR cut-off ('r 0 ')/horizon radius ('r h ') on the solutions to the equations of motion on the other hand. We find that the former technique produces results closer to the lattice results. We also discuss the r h = 0 limits of all calculations. In this context we also calculate the 0 ++ , 0 -- , 1 ++ , 2 ++ glueball masses up to Next to Leading Order (NLO) in N and find a (g s M 2 )/(N)(g s N f )-suppression similar to and further validating semi-universality of NLO corrections to transport coefficients, observed in Sil and Misra (Eur Phys J C 76(11):618, 2016). (orig.)

  6. Top-down holographic G-structure glueball spectroscopy at (N)LO in N and finite coupling

    Sil, Karunava; Yadav, Vikas; Misra, Aalok

    2017-06-01

    The top-down type IIB holographic dual of large- N thermal QCD as constructed in Mia et al. (Nucl Phys B 839:187, 2010) involving a fluxed resolved warped deformed conifold, its delocalized type IIA Strominger-Yau-Zaslow-mirror (SYZ-mirror) as well as its M-theory uplift constructed in Dhuria and Misra (JHEP 1311:001, 2013) - both in the finite coupling (g_s ˜ \\limits ^{Misra (JHEP 1311:001, 2013) - were shown explicitly to possess a local SU(3)/G_2-structure in Sil and Misra (Nucl Phys B 910:754, 2016). Glueballs spectra in the finite-gauge-coupling limit (and not just large 't Hooft coupling limit) - a limit expected to be directly relevant to strongly coupled systems at finite temperature such as QGP (Natsuume in String theory and quark-gluon plasma, 2007) - has thus far been missing in the literature. In this paper, we fill this gap by calculating the masses of the 0^{++}, 0^{-+},0^{{-}{-}}, 1^{++}, 2^{++} (`glueball') states (which correspond to fluctuations in the dilaton or complexified two-forms or appropriate metric components) in the aforementioned backgrounds of G-structure in the `MQGP' limit of Dhuria and Misra (JHEP 1311:001, 2013). We use WKB quantization conditions on one hand and impose Neumann/Dirichlet boundary conditions at an IR cut-off (`r_0')/horizon radius (`r_h') on the solutions to the equations of motion on the other hand. We find that the former technique produces results closer to the lattice results. We also discuss the r_h=0 limits of all calculations. In this context we also calculate the 0^{++}, 0^{{-}{-}},1^{++}, 2^{++} glueball masses up to Next to Leading Order (NLO) in N and find a g_sM^2/N(g_sN_f)-suppression similar to and further validating semi-universality of NLO corrections to transport coefficients, observed in Sil and Misra (Eur Phys J C 76(11):618, 2016).

  7. Event horizon and scalar potential

    Duruisseau, J.P.; Tonnelat, M.A.

    1977-01-01

    The introduction of a scalar potential with a more general scheme than General Relativity eliminates the event horizon. Among possible solutions, the Schwarzschild one represents a singular case. A study of the geodesic properties of the matching with an approximated interior solution are given. A new definition of the gravitational mass and chi function is deduced. (author)

  8. Mass measurement of right-handed scalar quarks and time measurement of hadronic showers for the compact linear collider

    Weuste, Lars

    The Compact Linear Collider (CLIC) is a concept for a 48.3km long e+ e- accelerator with a center-of-mass energy of 3TeV. Its purpose is the precise measurement of particles discovered by the LHC as well as the discovery of yet unknown particles. The International Large Detector (ILD) is one of its detector concepts which was specifically designed for the usage of the Particle Flow Algorithm. This thesis is divided into two parts, both within the context of CLIC. In the first part of this thesis the unprecedented measurement on time structure of hadronic showers in calorimeters with tungsten absorber material, which is used in the ILD concept for CLIC, will be presented. It shows the development and the construction of a small testbeam experiment called Tungsten Timing Testbeam (T3B) which consists of only 15 scintillator tiles of 30mm x 30mm x 5mm, read out with Silicon Photomultipliers which in turn were connected to USB oscilloscopes. T3B was placed downstream of the CALICE tungsten analog hadron calorimet...

  9. Search for Scalar Leptons and Scalar Quarks at LEP

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2004-01-01

    Scalar partners of quarks and leptons, predicted in supersymmetric models, are searched for in e^+e^- collisions at centre-of-mass energies between 192GeV and 209GeV at LEP. No evidence for any such particle is found in a data sample of 450 pb^-1. Upper limits on their production cross sections are set and lower limits on their masses are derived in the framework of the Minimal Supersymmetric Standard Model.

  10. Exotic nature of scalar G(1590) meson and possibilities for its further experimental study

    Gershtejn, S.S.

    1987-01-01

    It is pointed out that exotic properties of the scalar G(1590)-meson (an enchancement of the G → η'η decay probability as compared with G → ηη and of the GG → ηη decay probability as compared with G → ππ, KK) may be explained if an account is made of the strong coupling between two gluons with η'(η)-mesons in the framework of two different models, I.E. a) G-meson is a glueball, b) G-meson is a hybrid state (an eight component of the SU(3) f octet). Experimental predictions of both models are discussed

  11. Phenomenology of pseudotensor mesons and the pseudotensor glueball

    Koenigstein, Adrian [Johann Wolfgang Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Giacosa, Francesco [Jan Kochanowski University, Institute of Physics, Kielce (Poland); Johann Wolfgang Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany)

    2016-12-15

    We study the decays of the pseudotensor mesons (π{sub 2}(1670), K{sub 2}(1770), η{sub 2}(1645), η{sub 2}(1870)) interpreted as the ground-state nonet of 1{sup 1}D{sub 2} anti qq states using interaction Lagrangians which couple them to pseudoscalar, vector, and tensor mesons. While the decays of π{sub 2}(1670) and K{sub 2}(1770) can be well described, the decays of the isoscalar states η{sub 2}(1645) and η{sub 2}(1870) can be brought in agreement with the present experimental data only if the mixing angle between nonstrange and strange states is surprisingly large (about -42 {sup circle}, similar to the mixing in the pseudoscalar sector, in which the chiral anomaly is active). Such a large mixing angle is however at odd with all other conventional quark-antiquark nonets: if confirmed, a deeper study of its origin will be needed in the future. Moreover, the anti qq assignment of pseudotensor states predicts that the ratio [η{sub 2}(1870) → a{sub 2}(1320) π]/[η{sub 2}(1870) → f{sub 2}(1270) η] is about 23.5. This value is in agreement with Barberis et al., (20.4 ± 6.6), but disagrees with the recent reanalysis of Anisovich et al., (1.7 ± 0.4). Future experimental studies are necessary to understand this puzzle. If Anisovich's value is confirmed, a simple nonet of pseudoscalar mesons cannot be able to describe data (different assignments and/or additional states, such as an hybrid state, will be needed). In the end, we also evaluate the decays of a pseudoscalar glueball into the aforementioned conventional anti qq states: a sizable decay into K{sub 2}{sup *}(1430) K and a{sub 2}(1230) π together with a vanishing decay into pseudoscalar-vector pairs (such as ρ(770) π and K*(892) K) are expected. This information can be helpful in future studies of glueballs at the ongoing BESIII and at the future PANDA experiments. (orig.)

  12. Test of scalar meson structure in φ radiative decays

    Kumano, S.

    1992-12-01

    We show that φ radiative decays into scalar mesons [f 0 (975), a 0 (980) ≡ S] can provide important clues on the internal structures of these mesons. Radiative decay widths vary widely: B.R. = 10 -4 -10 -6 depending on the substructures (qq-bar, qqq-barq-bar, KK-bar, glueball). Hence, we could discriminate among various models by measuring these widths at future φ factories. The understanding of these meson structures is valuable not only in hadron spectroscopy but also in nuclear physics in connection with the widely-used but little-understood σ meson. We also find that the decay φ→S γ →K 0 K-bar 0 γ is not strong enough to pose a significant background problem for studying CP violation via φ→K 0 K-bar 0 at the φ factories. (author)

  13. Excluding scalar gluons

    Koller, K.; Krasemann, H.

    1979-08-01

    We investigate the Dalitz plot population and thrust angular distribution for the Orthoquarkonium decay Q anti Q → 3 scalar gluons. The Dalitz plot for scalar gluons is populated in corners where events are 2 jet like and this disagrees with existing Upsilon data. The scalar gluon thrust angular distribution is also in striking disagreement with the UPSILON data and so scalar gluons are completely ruled out. (orig.)

  14. Symmetry breaking and scalar bosons

    Gildener, E.; Weinberg, S.

    1976-01-01

    There are reasons to suspect that the spontaneous breakdown of the gauge symmetries of the observed weak and electromagnetic interactions may be produced by the vacuum expectation values of massless weakly coupled elementary scalar fields. A method is described for finding the broken-symmetry solutions of such theories even when they contain arbitrary numbers of scalar fields with unconstrained couplings. In any such theory, there should exist a number of heavy Higgs bosons, with masses comparable to the intermediate vector bosons, plus one light Higgs boson, or ''scalon'' with mass of order αG/sub F/sub 1/2/. The mass and couplings of the scalon are calculable in terms of other masses, even without knowing all the details of the theory. For an SU(2) direct-product U(1) model with arbitrary numbers of scalar isodoublets, the scalon mass is greater than 5.26 GeV; a likely value is 7--10 GeV. The production and decay of the scalon are briefly considered. Some comments are offered on the relation between the mass scales associated with the weak and strong interactions

  15. Search for Scalar Diphoton Resonances in the Mass Range $65-600$ GeV with the ATLAS Detector in $pp$ Collision Data at $\\sqrt{s}$ = 8 $TeV$

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibson, Stephen; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morton, Alexander; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sircar, Anirvan; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-10-20

    A search for scalar particles decaying via narrow resonances into two photons in the mass range $65-600$ GeV is performed using 20.3 fb$^{-1}$ of $\\sqrt{s}$ = 8 TeV $pp$ collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95 % confidence level on the production cross-section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches.

  16. Black holes with surrounding matter in scalar-tensor theories.

    Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P

    2013-09-13

    We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.

  17. Inclusive glueball production in high-energy p+p(p) collisions

    Peng Hong An; He Zhen Min

    2001-01-01

    Using the factorizable character of amplitudes for the double diffractive process in the Landshoff-Nachtmann model (1987), we have discussed the inclusive glueball production in high-energy pp collisions via the fusion process of two non-perturbative gluons, and have compared it with the double diffractive alike process. We found that, as the c.m. energy E/sub CMS/ increases from 20 to 20 000 GeV, the cross sections of the latter process are about one to two orders larger than the former. Such an outcome could be explained from the hypothesis of duality between glueballs and pomeron. (7 refs).

  18. SU(2)xSU(2) coupling rule and a tensor glueball candidate

    Lanik, J.

    1984-01-01

    The data on the decay of THETA(1640) particles are considered. It is shown that the SU(2)xSU(2) mechanism for coupling of theta(1640) tensor glueball candidate to pseudoscalar Gold-stone mesons is in a remarkable agreement with existing experimental data

  19. Search for Scalar Top and Scalar Bottom Quarks at $\\sqrt{s}$ = 189 GeV at LEP

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Blobel, V.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hoch, M.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lee, A.M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1999-01-01

    Searches for a scalar top quark and a scalar bottom quark have been performed using a data sample of 182 pb-1 at a centre-of-mass energy of 189 GeV collected with the OPAL detector at LEP. No evidence for a signal was found. The 95% confidence level lower limit on the scalar top quark mass is 90.3 GeV if the mixing angle between the supersymmetric partners of the left- and right-handed states of the top quark is zero. In the worst case, when the scalar top quark decouples from the Z boson, the lower limit is 87.2 GeV. These limits were obtained assuming that the scalar top quark decays into a charm quark and the lightest neutralino, and that the mass difference between the scalar top quark and the lightest neutralino is larger than 10 GeV. The complementary decay mode of the scalar top quark decaying into a bottom quark, a charged lepton and a scalar neutrino has also been studied. From a search for the scalar bottom quark, a mass limit of 88.6 GeV was obtained if the mass difference between the scalar bottom...

  20. Finite-width Gaussian sum rules for 0{sup -+} pseudoscalar glueball based on correction from instanton–gluon interference to correlation function

    Wang, Feng; Chen, Junlong; Liu, Jueping, E-mail: jpliu@whu.edu.cn [Department of Physics, School of Physics Science and Technology, Wuhan University, 430072, Wuhan (China)

    2015-09-28

    Based on a correction from instanton–gluon interference to the correlation function, the properties of the 0{sup -+} pseudoscalar glueball are investigated in a family of finite-width Gaussian sum rules. In the framework of a semiclassical expansion for quantum chromodynamics in the instanton liquid background, the contribution arising from the interference between instantons and the quantum gluon fields is calculated, and it is included in the correlation function together with a pure-classical contribution from instantons and the perturbative one. The interference contribution turns out to be gauge-invariant, to be free from an infrared divergence, and to have a great role to play in restoring the positivity of the spectra of the full correlation function. The negligible contribution from vacuum condensates is excluded in our correlation function to avoid double counting. Instead of the usual zero-width approximation for the resonances, the usual Breit–Wigner form with a suitable threshold behavior for the spectral function of the finite-width resonances is adopted. Consistency between the subtracted and unsubtracted sum rules is very well justified. The values of the mass, decay width, and coupling constants for the 0{sup -+} resonance in which the glueball fraction is dominant are obtained, and they agree with the phenomenological analysis.

  1. Finite-width Gaussian sum rules for 0{sup -+} pseudoscalar glueball based on correction from instanton-gluon interference to correlation function

    Wang, Feng; Chen, Junlong; Liu, Jueping [Wuhan University, Department of Physics, School of Physics Science and Technology, Wuhan (China)

    2015-09-15

    Based on a correction from instanton-gluon interference to the correlation function, the properties of the 0{sup -+} pseudoscalar glueball are investigated in a family of finite-width Gaussian sum rules. In the framework of a semiclassical expansion for quantum chromodynamics in the instanton liquid background, the contribution arising from the interference between instantons and the quantum gluon fields is calculated, and it is included in the correlation function together with a pure-classical contribution from instantons and the perturbative one. The interference contribution turns out to be gauge-invariant, to be free from an infrared divergence, and to have a great role to play in restoring the positivity of the spectra of the full correlation function. The negligible contribution from vacuum condensates is excluded in our correlation function to avoid double counting. Instead of the usual zero-width approximation for the resonances, the usual Breit-Wigner form with a suitable threshold behavior for the spectral function of the finite-width resonances is adopted. Consistency between the subtracted and unsubtracted sum rules is very well justified. The values of the mass, decay width, and coupling constants for the 0{sup -+} resonance in which the glueball fraction is dominant are obtained, and they agree with the phenomenological analysis. (orig.)

  2. Higgs scalar in heavy-vector-meson decays

    Frampton, P.H.; Wada, W.W.

    1979-01-01

    For both UPSILON (9.5,b-barb) and T (t-bart), the decay into Higgs scalar plus photon is calculated, employing a triangle-diagram estimate for the dependence of this decay matrix element on the Higgs-scalar mass. This mass dependence gives a significant supression, but the decay should still be readily observable, if energetically allowed

  3. Extending Chiral Perturbation Theory with an Isosinglet Scalar

    Hansen, Martin; Langaeble, Kasper; Sannino, Francesco

    2017-01-01

    We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology...

  4. Self-gravitating black hole scalar wigs

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Núñez, Darío; Sarbach, Olivier

    2017-07-01

    It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.

  5. Scalar mesons and radiative vector meson decays

    Gokalp, A.; Ylmaz, O

    2002-01-01

    The light scalar mesons with vacuum quantum numbers J p =0 ++ have fundamental importance in understanding low energy QCD phenomenology and the symmetry breaking mechanisms in QCD. The nature and quark substructure of the best known scalar mesons, isoscalar σ(500), f0(980) and isovector a0(980) have been a subject of continuous controversy. The radioactive decay of neutral vector mesons ρ, w and φ into a single photon and a pair of neutral pseudoscalar mesons have been studied in order to obtain information on the nature of these scalar mesons. For such studies, it is essential that a reliable understanding of the mechanisms for these decays should be at hand. In this work, we investigate the particularly interesting mechanism of the exchange of scalar mesons for the radiative vector meson decays by analysing the experimental results such as measured decay rates and invariant mass spectra and compare them with the theoretical prediction of different reaction mechanisms

  6. $K^{0}_{S} K^{0}_{S}$ Final State in Two-Photon Collisions and Implications for Glueballs

    Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Ambrosi, G.; Anderhub, H.; Andreev, Valery P.; Angelescu, T.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, L.; Balandras, A.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Bhattacharya, S.; Biasini, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buffini, A.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Csilling, A.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; D'Alessandro, R.; de Asmundis, R.; Deglon, P.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dova, M.T.; Duchesneau, D.; Dufournaud, D.; Duinker, P.; Duran, I.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Extermann, P.; Fabre, M.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gau, S.S.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hidas, P.; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hoorani, H.; Hou, S.R.; Hu, Y.; Iashvili, I.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Khan, R.A.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, D.; Kim, J.K.; Kirkby, Jasper; Kiss, D.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Kopp, A.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Lugnier, L.; Luminari, L.; Lustermann, W.; Ma, W.G.; Maity, M.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Marian, G.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; von der Mey, M.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Moulik, T.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Oulianov, A.; Palomares, C.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Paramatti, R.; Park, H.K.; Park, I.H.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Raven, G.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Rodin, J.; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Seganti, A.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stone, A.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Sztaricskai, T.; Tang, X.W.; Tauscher, L.; Taylor, L.; Tellili, B.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobov, A.A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, A.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Ye, J.B.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhu, G.Y.; Zhu, R.Y.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2001-01-01

    The $\\mbox{K}^0_{\\rm S}\\mbox{K}^0_{\\rm S}$ final state in two-photon collisions is studied with the L3 detector at LEP. The mass spectrum is dominated by the formation of the $f'_{2}$(1525) tensor meson in the helicity-two state with a two-photon width times the branching ratio into $\\rm K\\bar{K}$ of $76 \\pm\\, 6 \\pm\\, 11\\, {\\rm eV}$. A clear signal for the formation of the f$_{\\rm J}$(1710) is observed and it is found to be dominated by the spin-two helicity-two state. No resonance is observed in the mass region around $2.2 \\,{\\rm GeV}$ and an upper limit of $1.4 \\,{\\rm eV}$ at 95\\% C.L. is derived for the two-photon width times the branching ratio into $\\mbox{K}^0_{\\rm S}\\mbox{K}^0_{\\rm S}$ for the glueball candidate $\\xi(2230)$.

  7. Spontaneous Scalarization of Black Holes and Compact Stars from a Gauss-Bonnet Coupling.

    Silva, Hector O; Sakstein, Jeremy; Gualtieri, Leonardo; Sotiriou, Thomas P; Berti, Emanuele

    2018-03-30

    We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss-Bonnet invariant that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of many narrow bands. We find evidence that scalarization can occur in neutron stars as well.

  8. Identification of θ(f2(1720)) as a tensor glueball

    Liu, K.F.

    1988-01-01

    The energy-momentum tensor matrix element for the tensor glueball is obtained from the tensor dominance model. Branching ratio of θ(f 2 (1720)) in J/ψ radiative decay is thus calculated which is in accord with the observed experimental branching ratio. The decay modes of θ(f 2 (1720)) and results from J/ψ→ γK bar K,ωK bar K, and φK bar K are taken as good indicators for flavor independence of the tensor meson Θ. Suppression of θ(f 2 (1720)) in γγ reaction and K - p → ΛK o s K o s are considered as evidence for the fact that there are no quarks in θ. From the combined theoretical and experimental studies, the authors conclude that θ is by far the best tensor glueball candidate

  9. Glueball candidate iota(1440), anomalous Ward identities, and two-photon decays

    Williams, P.G.

    1984-01-01

    Anomalous Ward identities are given for the U(1) problem, showing that some recent papers have neglected the large topological susceptibility coming from the pure Yang-Mills sector of QCD. A reanalysis of the Ward identities is given, including the pseudoscalar glueball candidate iota(1440) with the pseudoscalar nonet. It is shown that positivity of the topological susceptibility together with other constraints is sufficient to narrow down the permitted range of pseudoscalar axial couplings. In particular the iota(1440) couplings are consistent with those expected for a glueball with the decay iota→γγ probably immeasurably small. Contrary to a recent claim, the results are not sensitive to the branching ratio for iota→KK-barπ, which may be as large as 100%

  10. Search for the first generation scalar leptoquarks with D0

    Cothenet, A.

    2004-05-01

    This work was dedicated to the search for pairs of first generation scalar leptoquarks one decaying into ej and the other into νj. The experimental data used (175,6 pb -1 ) is that collected during the run-II of the D0 experiment at Tevatron. The production cross-sections of scalar leptoquark pairs has been assessed at a 95% confidence level for different values of the mass. The comparison of these values with theoretical values has led us to state that for a branching ratio β = 0.5 the existence of scalar leptoquarks with a mass lower than 194 GeV is not possible. For a branching ratio β = 1, some scalar leptoquarks with mass < 238 GeV may be excluded while for β = 0.5, some scalar leptoquarks with mass < 213 GeV are excluded

  11. Scalar dark matter: real vs complex

    Wu, Hongyan; Zheng, Sibo [Department of Physics, Chongqing University,Chongqing 401331 (China)

    2017-03-27

    We update the parameter spaces for both a real and complex scalar dark matter via the Higgs portal. In the light of constraints arising from the LUX 2016 data, the latest Higgs invisible decay and the gamma ray spectrum, the dark matter resonant mass region is further restricted to a narrow window between 54.9−62.3 GeV in both cases, and its large mass region is excluded until 834 GeV and 3473 GeV for the real and complex scalar, respectively.

  12. Scalar dark matter: real vs complex

    Wu, Hongyan; Zheng, Sibo

    2017-01-01

    We update the parameter spaces for both a real and complex scalar dark matter via the Higgs portal. In the light of constraints arising from the LUX 2016 data, the latest Higgs invisible decay and the gamma ray spectrum, the dark matter resonant mass region is further restricted to a narrow window between 54.9−62.3 GeV in both cases, and its large mass region is excluded until 834 GeV and 3473 GeV for the real and complex scalar, respectively.

  13. Unitarity constraints in the standard model with a singlet scalar field

    Kang, Sin Kyu; Park, Jubin

    2015-01-01

    Motivated by the discovery of a new scalar field and amelioration of the electroweak vacuum stability ascribed to a singlet scalar field embedded in the standard model (SM), we examine the implication of the perturbative unitarity in the SM with a singlet scalar field. Taking into account the full contributions to the scattering amplitudes, we derive unitarity conditions on the scattering matrix which can be translated into bounds on the masses of the scalar fields. In the case that the singlet scalar field develops vacuum expectation value (VEV), we get the upper bound on the singlet scalar mass varying with the mixing between the singlet and Higgs scalars. On the other hand, the mass of the Higgs scalar can be constrained by the unitarity condition in the case that the VEV of the singlet scalar is not generated. Applying the upper bound on the Higgs mass to the scenario of the unitarized Higgs inflation, we discuss how the unitarity condition can constrain the Higgs inflation. The singlet scalar mass is not constrained by the unitarity itself when we impose Z 2 in the model because of no mixing with the Higgs scalar. But, regarding the singlet scalar field as a cold dark matter candidate, we derive upper bound on the singlet scalar mass by combining the observed relic abundance with the unitarity condition.

  14. The OZI rule: A unique selector of glueballs and hadron spectroscopy

    Lindenbaum, S.J.

    1990-01-01

    In the first part of this talk I have reviewed the history of the OZI rule. I then have shown how it is a unique selector glueballs and new quarks in hadron spectroscopy. In particular the only glueball candidates which cannot be explained by other hypotheses within QCD are the I G J PC = 0 + 2 ++ g T (2010), g T ,(2300) and g Tdouble-prime (2340) observed in the OZI suppressed reaction π - p → φφn. The narrowness of the J/ψ and T can only be explained by OZI suppression. I then reminisced about the 1954 Rochester Conference in which our work on π ± p total cross sections and π ± production combined gave convincing evidence for the delta being the first resonance. Described how the 1964 Dubna Conference results on small angle π ± p elastic scattering led to the first critical experimental check of the pion-nucleon forward dispersion relations which showed that the basic axions of modern field theory worked on strong interactions at high energies. I finally reminisced about glueballs in the 1982 and 1988 Rochester Conferences. 52 refs., 17 figs., 3 tabs

  15. The search for scalar mesons

    Pennington, M.R.

    1988-09-01

    The search of I = 0 0 ++ mesons is described. We highlight the crucial role played by the states in the 1 GeV region. An analysis program that with unimpeachable data would produce definitive results on these is outlined and shown with present data to provide prima facie evidence for dynamics beyond that of the quark model. We briefly speculate on the current status of the lowest mass scalar mesons and discuss how experiment can resolve the unanswered issues. 30 refs., 6 figs., 1 tab

  16. The Effective Hamiltonian in the Scalar Electrodynamics

    Dineykhan, M D; Zhaugasheva, S A; Sakhyev, S K

    2002-01-01

    On the basis of an investigation of the asymptotic behaviour of the polarization loop for the scalar particles in the external electromagnetic field the relativistic corrections to the Hamiltonian are determined. The constituent mass of the particles in the bound state is analytically derived. It is shown that the constituent mass of the particles differs from the mass of the particles in the free state. The corrections connected with the Thomas precession have been calculated.

  17. Spinning Kerr black holes with stationary massive scalar clouds: the large-coupling regime

    Hod, Shahar [Marine sciences, The Ruppin Academic Center,Ruppin, Emeq Hefer 40250 (Israel); Biotechnology, The Hadassah Academic College,37 Hanevi’im St., Jerusalem 9101001 (Israel)

    2017-01-09

    We study analytically the Klein-Gordon wave equation for stationary massive scalar fields linearly coupled to spinning Kerr black holes. In particular, using the WKB approximation, we derive a compact formula for the discrete spectrum of scalar field masses which characterize the stationary composed Kerr-black-hole-massive-scalar-field configurations in the large-coupling regime Mμ≫1 (here M and μ are respectively the mass of the central black hole and the proper mass of the scalar field). We confirm our analytically derived formula for the Kerr-scalar-field mass spectrum with numerical data that recently appeared in the literature.

  18. QCD with 2 light quark flavours: thermodynamics on a 163 x 8 lattice and glueballs and topological charge on a 163 x 32 lattice

    Bitar, K.M.; Edwards, R.; Gottlieb, S.; Heller, U.M.; Kennedy, A.D.; Kim, S.; Kogut, J.B.; Krasnitz, A.; Liu, W.; Ogilvie, M.C.; Renken, R.L.; Sinclair, D.K.; Sugar, R.L.; Teper, M.; Toussaint, D.; Wang, K.C.

    1993-01-01

    The HTMCGC collaboration has been simulating lattice QCD with two light staggered quarks with masses m q = 0.0125 and also m q = 0.00625 on a 16 3 x 8 lattice. We have been studying the behaviour of the transition from hadronic matter to a quark-gluon plasma and the properties of that plasma. We have been measuring entropy densities, Debye and hadronic screening lengths, the spacial string tension and topological susceptibility in addition to the standard order parameters. The HEMCGC collaboration has simulated lattice QCD with two light staggered quarks, m q = 0.025 and m q = 0.010 on a 16 3 x 32 lattice. We have measured the glueball spectrum and topological susceptibilities for these runs. (orig.)

  19. QCD with 2 light quark flavours: Thermodynamics on a 163 x 8 lattice and glueballs and topological charge on a 163 x 32 lattice

    Sinclair, D.K.

    1992-01-01

    The HTMCGC collaboration has been simulating lattice QCD with two light staggered quarks with masses m q = 0.0125 and also m q = 0.00625 on a 16 3 x 8 lattice. We have been studying the behavior of the transition from hadronic matter to a quark-gluon plasma and the properties of that plasma. We have been measuring entropy densities, Debye and hadronic screening lengths, the spacial string tension and topological susceptibility in addition to the standard order parameters. The HEMCGC collaboration has simulated lattice QCD with two light staggered quarks,m q = 0.025 and m q = 0.010 on a 16 3 x 32 lattice. We have measured the glueball spectrum and topological susceptibilities for these runs

  20. Can dark matter be a scalar field?

    Jesus, J.F.; Malatrasi, J.L.G. [Universidade Estadual Paulista ' Júlio de Mesquita Filho' , Campus Experimental de Itapeva—R. Geraldo Alckmin, 519, Itapeva, SP (Brazil); Pereira, S.H. [Universidade Estadual Paulista ' Júlio de Mesquita Filho' , Departamento de Física e Química, Campus de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, 12516-410—Guaratinguetá, SP (Brazil); Andrade-Oliveira, F., E-mail: jfjesus@itapeva.unesp.br, E-mail: shpereira@gmail.com, E-mail: malatrasi440@gmail.com, E-mail: felipe.oliveira@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, PO1 3FX, Portsmouth (United Kingdom)

    2016-08-01

    In this paper we study a real scalar field as a possible candidate to explain the dark matter in the universe. In the context of a free scalar field with quadratic potential, we have used Union 2.1 SN Ia observational data jointly with a Planck prior over the dark matter density parameter to set a lower limit on the dark matter mass as m ≥0.12 H {sub 0}{sup -1} eV ( c = h-bar =1). For the recent value of the Hubble constant indicated by the Hubble Space Telescope, namely H {sub 0}=73±1.8 km s{sup -1}Mpc{sup -1}, this leads to m ≥1.56×10{sup -33} eV at 99.7% c.l. Such value is much smaller than m ∼ 10{sup -22} eV previously estimated for some models. Nevertheless, it is still in agreement with them once we have not found evidences for a upper limit on the scalar field dark matter mass from SN Ia analysis. In practice, it confirms free real scalar field as a viable candidate for dark matter in agreement with previous studies in the context of density perturbations, which include scalar field self interaction.

  1. Searches for scalar top and scalar bottom quarks at LEP2

    ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Bazarko, A. O.; Becker, U.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rizzo, G.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J. C.; Machefert, F.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Stacey, A. M.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Diaconu, C.; Ealet, A.; Fouchez, D.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Serin, L.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Cowan, G.; Foss, J.; Grupen, C.; Lutters, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1997-11-01

    Searches for scalar top and bottom quarks have been performed with data collected by the ALEPH detector at LEP. The data sample consists of 21.7 pb-1 taken at sqrt(s) = 161, 170, and 172 GeV and 5.7 pb-1 taken at sqrt(s) = 130 and 136 GeV. No evidence for scalar top quarks or scalar bottom quarks was found in the channels t~-->cχ, t~-->blν~, and b~-->bχ. For the channel t~-->cχ a limit of 67 GeV/c2has been set on the scalar top quark mass, independent of the mixing angle between the supersymmetric partners of the left and right-handed states of the top quark. This limit assumes a mass difference between the t~ and the χ of at least 10 GeV/c2. For the channel t~-->blν~ the mixing-angle independent scalar top limit is 70 GeV/c2, assuming a mass difference between the t~ and the ν~ of at least 10 GeV/c2. For the channel b~-->bχ, a limit of 73 GeV/c2has been set on the mass of the supersymmetric partner of the left-handed state of the bottom quark. This limit is valid if the mass difference between the b~ and the χ is at least 10 GeV/c2.

  2. Scalar self-interactions loosen constraints from fifth force searches

    Gubser, Steven S.; Khoury, Justin

    2004-01-01

    The mass of a scalar field mediating a fifth force is tightly constrained by experiments. We show, however, that adding a quartic self-interaction for such a scalar makes most tests much less constraining: the nonlinear equation of motion masks the coupling of the scalar to matter through the chameleon mechanism. We discuss consequences for fifth force experiments. In particular, we find that, with quartic coupling of order unity, a gravitational strength interaction with matter is allowed by current constraints. We show that our chameleon scalar field results in experimental signatures that could be detected through modest improvements of current laboratory set-ups

  3. Improved methods for computing masses from numerical simulations

    Kronfeld, A.S.

    1989-11-22

    An important advance in the computation of hadron and glueball masses has been the introduction of non-local operators. This talk summarizes the critical signal-to-noise ratio of glueball correlation functions in the continuum limit, and discusses the case of (q{bar q} and qqq) hadrons in the chiral limit. A new strategy for extracting the masses of excited states is outlined and tested. The lessons learned here suggest that gauge-fixed momentum-space operators might be a suitable choice of interpolating operators. 15 refs., 2 tabs.

  4. Scalar-vector bootstrap

    Rejon-Barrera, Fernando [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, Postbus 94485, 1090 GL, Amsterdam (Netherlands); Robbins, Daniel [Department of Physics, Texas A& M University,TAMU 4242, College Station, TX 77843 (United States)

    2016-01-22

    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

  5. Search and study of low-mass scalar mesons in the reaction np → npπ+π- at the impulse of neutron beam Pn=(5.20±0.12) GeV/c

    Troyan, Yu.A.; Arakelyan, S.G.; Belyaev, A.V.; Ierusalimov, A.P.; Plekhanov, E.B.; Troyan, A.Yu.

    2012-01-01

    The results of search and study of resonance effects in the system of π + π - from the reaction np → npπ + π - at the impulse of the quasimonochromatic neutrons P n = (5.20 ± 0.12) GeV/c from the data obtained in an exposure of the 1 m hydrogen bubble chamber of LHE (JINR) are presented. After supplementary sorting out the events where a secondary proton flies forward in the general c.m.s. of reaction (cos θ p * > 0) in the effective mass spectrum of π + π - - combinations, there were nine peculiarities found out at masses (350±3), (408±3), (489±3), (579±5), (676±7), (762±11), (878±7), (1036±13), (1170±11) MeV/c 2 with experimental widths not more than several tens of MeV/c 2 . The direct measurement of the spin of resonances was carried out. Also, other quantum numbers were obtained. All of these peculiarities have a similar set of quantum numbers I G (J PC ) = 0 + (0 ++ ). The sequence of scalar-isoscalar resonances f 0 (σ 0 ) with masses in the range of M ≤ 1200 MeV/c 2 was explored. The phenomenological dependence for the resonance mass on its number was found. This dependence covered not only resonances shown in this paper but also all those which are present in PDG tables with quantum numbers of f 0 (σ 0 )-mesons

  6. Searches for scalar top and scalar bottom quarks at LEP2

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Becker, U; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rizzo, G; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Hühn, T; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Whelan, E P; Williams, M I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Diaconu, C A; Ealet, A; Fouchez, D; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Serin, L; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Bozzi, C; Calderini, G; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Fabbro, B; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Foss, J; Grupen, Claus; Lutters, G; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1997-01-01

    Searches for scalar top and bottom quarks have been performed with data collected by the ALEPH detector at LEP. The data sample consists of 21.7 pb^-1 taken at sqrt{s} = 161, 170, and 172~GeV and 5.7 pb^-1 taken at sqrt{s} = 130 and 136~GeV. No evidence for scalar top quarks or scalar bottom quarks was found in the channels stop --> c chi, stop --> b l snu, and sbottom --> b chi. For the channel stop --> c chi a limit of 67 GeV/c^2 has been set on the scalar top quark mass, independent of the mixing angle between the supersymmetric partners of the left and right-handed states of the top quark. This limit assumes a mass difference between the stop and the chi of at least 10 GeV/c^2. For the channel stop --> b l snu the mixing-angle independent scalar top limit is 70 GeV/c^2, assuming a mass difference between the stop and the snu of at least 10 GeV/c^2. For the channel sbottom --> b chi, a limit of 73 GeV/c^2 has been set on the mass of the supersymmetric partner of the left-handed state of the bottom quark. T...

  7. Astrophysical constraints on scalar field models

    Bertolami, O.; Paramos, J.

    2005-01-01

    We use stellar structure dynamics arguments to extract bounds on the relevant parameters of two scalar field models: the putative scalar field mediator of a fifth force with a Yukawa potential and the new variable mass particle models. We also analyze the impact of a constant solar inbound acceleration, such as the one reported by the Pioneer anomaly, on stellar astrophysics. We consider the polytropic gas model to estimate the effect of these models on the hydrostatic equilibrium equation and fundamental quantities such as the central temperature. The current bound on the solar luminosity is used to constrain the relevant parameters of each model

  8. Charged composite scalar dark matter

    Balkin, Reuven; Ruhdorfer, Maximilian; Salvioni, Ennio; Weiler, Andreas

    2017-11-01

    We consider a composite model where both the Higgs and a complex scalar χ, which is the dark matter (DM) candidate, arise as light pseudo Nambu-Goldstone bosons (pNGBs) from a strongly coupled sector with TeV scale confinement. The global symmetry structure is SO(7)/SO(6), and the DM is charged under an exact U(1)DM ⊂ SO(6) that ensures its stability. Depending on whether the χ shift symmetry is respected or broken by the coupling of the top quark to the strong sector, the DM can be much lighter than the Higgs or have a weak-scale mass. Here we focus primarily on the latter possibility. We introduce the lowest-lying composite resonances and impose calculability of the scalar potential via generalized Weinberg sum rules. Compared to previous analyses of pNGB DM, the computation of the relic density is improved by fully accounting for the effects of the fermionic top partners. This plays a crucial role in relaxing the tension with the current DM direct detection constraints. The spectrum of resonances contains exotic top partners charged under the U(1)DM, whose LHC phenomenology is analyzed. We identify a region of parameters with f = 1.4 TeV and 200 GeV ≲ m χ ≲ 400 GeV that satisfies all existing bounds. This DM candidate will be tested by XENON1T in the near future.

  9. Dynamics of glueball and qq production in the central region of pp collisions

    Sobol, A

    2000-01-01

    A strong dependence of meson production with different J/sup PC/ on the angle between the transverse momentum vectors of the outgoing protons is observed. The phi and t dependences of several resonances with J/sup PC/=0/sup +or-+/, 1/sup ++/, 2/sup +or-+/ can be described by a model of double Pomeron exchange for the soft Pomerons acting as nonconserved vector currents. The 0/sup ++/ and 2/sup ++/ sector reveals a systematic behavior in the data that appears to distinguish between qq and nonqq or glueball candidates. (6 refs).

  10. The mass gap, the confining string and the physics of (lattice) topology

    Teper, M.

    1985-01-01

    The authors summarize some recent (Monte Carlo) calculations of the mass gap and string tension in SU(3) (lattice) gauge theory. In the range of couplings where both are measured, 5.5 ≤ β ≤ 5.9, the authors find no universal β(g) function, but the mass gap shows asymptotic scaling. The authors show how to use the finite lattice-size dependence of these quantities to extract the triple scalar-glueball coupling, g/sup 2//4π, and to obtain evidence for simple string physics at long distances. They then comment on the properties of topology on a lattice - in particular on the breakdown of the index theorem - and its (lack of) impact on quenched fermion physics. The authors construct a method for probing the underlying instanton structure of the full non-perturbative vacuum, and present evidence that such a structure is indeed there once the lattice spacing is small enough [β ≥ 2.7 in SU(2)]. The instantons the authors find are large - order inverse mass gap - and relatively stable against vacuum fluctuations, so that they may influence the non-perturbative physics of the theory

  11. The light scalar mesons as tetraquarks

    Gernot Eichmann

    2016-02-01

    Full Text Available We present a numerical solution of the four-quark Bethe–Salpeter equation for ground-state scalar tetraquarks with JPC=0++. We find that the four-body equation dynamically generates pseudoscalar-meson poles in the Bethe–Salpeter amplitude. The resulting tetraquarks are genuine four-quark states that are dominated by pseudoscalar meson–meson correlations. Diquark–antidiquark contributions are subleading because of their larger mass scale. In the light quark sector, the sensitivity of the tetraquark wave function to the pion poles leads to an isoscalar tetraquark mass Mσ∼350 MeV which is comparable to that of the σ/f0(500. The masses of its multiplet partners κ and a0/f0 follow a similar pattern. This provides support for a tetraquark interpretation of the light scalar meson nonet in terms of ‘meson molecules’.

  12. Scalar multi-wormholes

    Egorov, A I; Kashargin, P E; Sushkov, Sergey V

    2016-01-01

    In 1921 Bach and Weyl derived the method of superposition to construct new axially symmetric vacuum solutions of general relativity. In this paper we extend the Bach–Weyl approach to non-vacuum configurations with massless scalar fields. Considering a phantom scalar field with the negative kinetic energy, we construct a multi-wormhole solution describing an axially symmetric superposition of N wormholes. The solution found is static, everywhere regular and has no event horizons. These features drastically tell the multi-wormhole configuration from other axially symmetric vacuum solutions which inevitably contain gravitationally inert singular structures, such as ‘struts’ and ‘membranes’, that keep the two bodies apart making a stable configuration. However, the multi-wormholes are static without any singular struts. Instead, the stationarity of the multi-wormhole configuration is provided by the phantom scalar field with the negative kinetic energy. Anther unusual property is that the multi-wormhole spacetime has a complicated topological structure. Namely, in the spacetime there exist 2 N asymptotically flat regions connected by throats. (paper)

  13. Are the iota(1440) and theta(1640) glueballs or quarkonia

    Ono, S.; Pene, O.

    1982-01-01

    We study the possibility that the iota (1440) and theta (1640) are radially excited quarkonium states (2S and 2P). Their masses, total decay rates and psi → iotaγ, thetaγ branching ratios are roughly in agreement with this hypothesis but deltaπ dominance in iota decay is difficult to explain. We propose clear tests to check if they are quarkonium states. (orig.)

  14. New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories.

    Doneva, Daniela D; Yazadjiev, Stoytcho S

    2018-03-30

    In the present Letter, we consider a class of extended scalar-tensor-Gauss-Bonnet (ESTGB) theories for which the scalar degree of freedom is excited only in the extreme curvature regime. We show that in the mentioned class of ESTGB theories there exist new black-hole solutions that are formed by spontaneous scalarization of the Schwarzschild black holes in the extreme curvature regime. In this regime, below certain mass, the Schwarzschild solution becomes unstable and a new branch of solutions with a nontrivial scalar field bifurcates from the Schwarzschild one. As a matter of fact, more than one branch with a nontrivial scalar field can bifurcate at different masses, but only the first one is supposed to be stable. This effect is quite similar to the spontaneous scalarization of neutron stars. In contrast to the standard spontaneous scalarization of neutron stars, which is induced by the presence of matter, in our case, the scalarization is induced by the curvature of the spacetime.

  15. Local structure of scalar flux in turbulent passive scalar mixing

    Konduri, Aditya; Donzis, Diego

    2012-11-01

    Understanding the properties of scalar flux is important in the study of turbulent mixing. Classical theories suggest that it mainly depends on the large scale structures in the flow. Recent studies suggest that the mean scalar flux reaches an asymptotic value at high Peclet numbers, independent of molecular transport properties of the fluid. A large DNS database of isotropic turbulence with passive scalars forced with a mean scalar gradient with resolution up to 40963, is used to explore the structure of scalar flux based on the local topology of the flow. It is found that regions of small velocity gradients, where dissipation and enstrophy are small, constitute the main contribution to scalar flux. On the other hand, regions of very small scalar gradient (and scalar dissipation) become less important to the scalar flux at high Reynolds numbers. The scaling of the scalar flux spectra is also investigated. The k - 7 / 3 scaling proposed by Lumley (1964) is observed at high Reynolds numbers, but collapse is not complete. A spectral bump similar to that in the velocity spectrum is observed close to dissipative scales. A number of features, including the height of the bump, appear to reach an asymptotic value at high Schmidt number.

  16. Possible production of glueballs in anti p 4He reactions at 0.6 GeVc-1 incident momentum

    Balestra, F.; Bossolasco, S.; Bussa, M.P.; Busso, L.; Fava, L.; Ferrero, L.; Grasso, A.; Maggiora, A.; Panzieri, D.; Piragino, G.; Piragino, R.; Tosello, F.; Bendiscioli, G.; Filippini, V.; Rotondi, A.; Salvini, P.; Zenoni, A.; Batusov, Yu.; Bunyatov, S.A.; Falomkin, I.V.; Nichitiu, F.; Pontecorvo, G.B.; Rozhdestvensky, A.M.; Sapozhnikov, M.G.; Tretyak, V.I.; Guaraldo, C.; Lodi Rizzini, E.; Haatuft, A.; Halsteinslid, A.; Myklebost, K.; Olsen, J.M.; Breivik, F.O.; Danielsen, K.M.; Jacobsen, T.; Soerensen, S.O.

    1991-01-01

    A sharp peak at 1150 MeV c -2 in the π - π + π - π + -system in the final state of anti p 4 He-reactions at 0.6 GeV c -1 incident momentum is seen. This system probably has spin-parity = 0 + or 2 + , which are possible spin-parity assignments of a glueball. (orig.)

  17. Possible production of glueballs in anti p-4He reactions at 0.6 GeV/c incident momentum

    Breivik, F.O.; Haatuft, A.; Halsteinslid, A.

    1990-08-01

    A fairly sharp peak at 1150 MeV/c 2 in the π - π + π - π + - system in the final state of anti p He-reactions at 0.6 GeV/c incident momentum is seen. The four-pion system may have spin = 0 or 2, which are possible spins of a glueball. 6 refs., 15 figs

  18. Dynamics of Glueball and $q\\overline{q}$ production in the central region of p p collisions

    Close, Francis Edwin; Schuler, G A

    2000-01-01

    We explain the phi and t dependences of mesons with JPC = 0pm +,1^++,2pm +$ produced in the central region of pp collisions. For the 0++ and 2++ sector this reveals a systematic behaviour in the data that appears to distinguish between qqbar and non-qqbar or glueball candidates.

  19. Nucleon and isobar properties in a relativistic Hartree-Fock calculation with vector Richardson potential and various radial forms for scalar mass terms

    Dey, J.; Dey, M.; Mukhopadhyay, G.; Samanta, B.C.

    1989-01-01

    Mean field models of the nucleon and the delta are established with the two-quark vector Richardson potential along with various prescriptions for a running quark mass. This is taken to be a one-particle operator in the Dirac-Hartree Fock formalism. An effective density dependent one body potential U(ρ) for quarks at a given density ρ inside the nucleon is derived. It shows an interesting structure. Asymptotic freedom and confinement properties are built-in at high and low densities in U (ρ) and the model dependence is restricted to the intermediate desnsities. (author) [pt

  20. Scalar and vector Galileons

    Rodríguez, Yeinzon; Navarro, Andrés A.

    2017-01-01

    An alternative for the construction of fundamental theories is the introduction of Galileons. These are fields whose action leads to non higher than second-order equations of motion. As this is a necessary but not sufficient condition to make the Hamiltonian bounded from below, as long as the action is not degenerate, the Galileon construction is a way to avoid pathologies both at the classical and quantum levels. Galileon actions are, therefore, of great interest in many branches of physics, specially in high energy physics and cosmology. This proceedings contribution presents the generalities of the construction of both scalar and vector Galileons following two different but complimentary routes. (paper)

  1. Thermal inflation with a thermal waterfall scalar field coupled to a light spectator scalar field

    Dimopoulos, Konstantinos; Lyth, David H.; Rumsey, Arron

    2017-05-01

    A new model of thermal inflation is introduced, in which the mass of the thermal waterfall field is dependent on a light spectator scalar field. Using the δ N formalism, the "end of inflation" scenario is investigated in order to ascertain whether this model is able to produce the dominant contribution to the primordial curvature perturbation. A multitude of constraints are considered so as to explore the parameter space, with particular emphasis on key observational signatures. For natural values of the parameters, the model is found to yield a sharp prediction for the scalar spectral index and its running, well within the current observational bounds.

  2. Scalar fields nonminimally coupled to pp waves

    Ayon-Beato, Eloy; Hassaiene, Mokhtar

    2005-01-01

    Here, we report pp waves configurations of three-dimensional gravity for which a scalar field nonminimally coupled to them acts as a source. In absence of self-interaction the solutions are gravitational plane waves with a profile fixed in terms of the scalar wave. In the self-interacting case, only power-law potentials parameterized by the nonminimal coupling constant are allowed by the field equations. In contrast with the free case the self-interacting scalar field does not behave like a wave since it depends only on the wave-front coordinate. We address the same problem when gravitation is governed by topologically massive gravity and the source is a free scalar field. From the pp waves derived in this case, we obtain at the zero topological mass limit, new pp waves solutions of conformal gravity for any arbitrary value of the nonminimal coupling parameter. Finally, we extend these solutions to the self-interacting case of conformal gravity

  3. Kerr black holes with scalar hair.

    Herdeiro, Carlos A R; Radu, Eugen

    2014-06-06

    We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.

  4. Relations de Dispersion et Diffusion des Glueballs et des Mesons dans la Theorie de Jauge U(1)(2+1) Compacte

    Ahmed, Chaara El Mouez

    Nous avons etudie les relations de dispersion et la diffusion des glueballs et des mesons dans le modele U(1)_{2+1} compact. Ce modele a ete souvent utilise comme un simple modele de la chromodynamique quantique (QCD), parce qu'il possede le confinement ainsi que les etats de glueballs. Par contre, sa structure mathematique est beaucoup plus simple que la QCD. Notre methode consiste a diagonaliser l'Hamiltonien de ce modele dans une base appropriee de graphes et sur reseau impulsion, afin de generer les relations de dispersion des glueballs et des mesons. Pour la diffusion, nous avons utilise la methode dependante du temps pour calculer la matrice S et la section efficace de diffusion des glueballs et des mesons. Les divers resultats obtenus semblent etre en accord avec les travaux anterieurs de Hakim, Alessandrini et al., Irving et al., qui eux, utilisent plutot la theorie des perturbations en couplage fort, et travaillent sur un reseau espace-temps.

  5. Fermion-scalar conformal blocks

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Kos, Filip [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); Poland, David [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States)

    2016-04-13

    We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.

  6. Scalar tetraquark candidates on the lattice

    Berlin, Joshua

    2017-01-01

    The topic of this thesis is the investigation of scalar tetraquark candidates from lattice QCD. It is motivated by a previous study originating in the twisted mass collaboration. The initial tetraquark candidate of choice is the a 0 (980), an isovector in the nonet of light scalars (J P =0 + ). This channel is still poorly understood. It displays an inverted mass hierarchy to what is expected from the conventional quark model and the a 0 (980) and f 0 (980) feature a surprising mass degeneracy. For this reasons the a 0 (980) is a long assumed tetraquark candidate in the literature. We follow a methodological approach by studying the sensitivity of the scalar spectrum with fully dynamical quarks to a large basis of two-quark and four-quark creation operators. Ultimately, the candidate has to be identified in the direct vicinity of two two-particles states, which is understandably inevitable for a tetraquark candidate. To succeed in this difficult task two-meson creation operators are essential to employ in this channel. By localized four-quark operators we intend to probe the Hamiltonian on eigenstates with a closely bound four-quark structure.

  7. Scalar tetraquark candidates on the lattice

    Berlin, Joshua

    2017-07-01

    The topic of this thesis is the investigation of scalar tetraquark candidates from lattice QCD. It is motivated by a previous study originating in the twisted mass collaboration. The initial tetraquark candidate of choice is the a{sub 0}(980), an isovector in the nonet of light scalars (J{sup P}=0{sup +}). This channel is still poorly understood. It displays an inverted mass hierarchy to what is expected from the conventional quark model and the a{sub 0}(980) and f{sub 0}(980) feature a surprising mass degeneracy. For this reasons the a{sub 0}(980) is a long assumed tetraquark candidate in the literature. We follow a methodological approach by studying the sensitivity of the scalar spectrum with fully dynamical quarks to a large basis of two-quark and four-quark creation operators. Ultimately, the candidate has to be identified in the direct vicinity of two two-particles states, which is understandably inevitable for a tetraquark candidate. To succeed in this difficult task two-meson creation operators are essential to employ in this channel. By localized four-quark operators we intend to probe the Hamiltonian on eigenstates with a closely bound four-quark structure.

  8. Constraining extended scalar sectors at the LHC and beyond

    Ilnicka, Agnieszka; Robens, Tania; Stefaniak, Tim

    2018-04-01

    We give a brief overview of beyond the Standard Model (BSM) theories with an extended scalar sector and their phenomenological status in the light of recent experimental results. We discuss the relevant theoretical and experimental constraints, and show their impact on the allowed parameter space of two specific models: the real scalar singlet extension of the Standard Model (SM) and the Inert Doublet Model. We emphasize the importance of the LHC measurements, both the direct searches for additional scalar bosons, as well as the precise measurements of properties of the Higgs boson of mass 125 GeV. We show the complementarity of these measurements to electroweak and dark matter observables.

  9. Terrestrial Water Storage in African Hydrological Regimes Derived from GRACE Mission Data: Intercomparison of Spherical Harmonics, Mass Concentration, and Scalar Slepian Methods.

    Rateb, Ashraf; Kuo, Chung-Yen; Imani, Moslem; Tseng, Kuo-Hsin; Lan, Wen-Hau; Ching, Kuo-En; Tseng, Tzu-Pang

    2017-03-10

    Spherical harmonics (SH) and mascon solutions are the two most common types of solutions for Gravity Recovery and Climate Experiment (GRACE) mass flux observations. However, SH signals are degraded by measurement and leakage errors. Mascon solutions (the Jet Propulsion Laboratory (JPL) release, herein) exhibit weakened signals at submascon resolutions. Both solutions require a scale factor examined by the CLM4.0 model to obtain the actual water storage signal. The Slepian localization method can avoid the SH leakage errors when applied to the basin scale. In this study, we estimate SH errors and scale factors for African hydrological regimes. Then, terrestrial water storage (TWS) in Africa is determined based on Slepian localization and compared with JPL-mascon and SH solutions. The three TWS estimates show good agreement for the TWS of large-sized and humid regimes but present discrepancies for the TWS of medium and small-sized regimes. Slepian localization is an effective method for deriving the TWS of arid zones. The TWS behavior in African regimes and its spatiotemporal variations are then examined. The negative TWS trends in the lower Nile and Sahara at -1.08 and -6.92 Gt/year, respectively, are higher than those previously reported.

  10. Terrestrial Water Storage in African Hydrological Regimes Derived from GRACE Mission Data: Intercomparison of Spherical Harmonics, Mass Concentration, and Scalar Slepian Methods

    Ashraf Rateb

    2017-03-01

    Full Text Available Spherical harmonics (SH and mascon solutions are the two most common types of solutions for Gravity Recovery and Climate Experiment (GRACE mass flux observations. However, SH signals are degraded by measurement and leakage errors. Mascon solutions (the Jet Propulsion Laboratory (JPL release, herein exhibit weakened signals at submascon resolutions. Both solutions require a scale factor examined by the CLM4.0 model to obtain the actual water storage signal. The Slepian localization method can avoid the SH leakage errors when applied to the basin scale. In this study, we estimate SH errors and scale factors for African hydrological regimes. Then, terrestrial water storage (TWS in Africa is determined based on Slepian localization and compared with JPL-mascon and SH solutions. The three TWS estimates show good agreement for the TWS of large-sized and humid regimes but present discrepancies for the TWS of medium and small-sized regimes. Slepian localization is an effective method for deriving the TWS of arid zones. The TWS behavior in African regimes and its spatiotemporal variations are then examined. The negative TWS trends in the lower Nile and Sahara at −1.08 and −6.92 Gt/year, respectively, are higher than those previously reported.

  11. Cosmology or Catastrophe? A non-minimally coupled scalar in an inhomogeneous universe

    Caputa, Paweł; Haque, Sheikh Shajidul; Olson, Joseph; Underwood, Bret

    2013-01-01

    A non-minimally coupled scalar field can have, in principle, a negative effective Planck mass squared which depends on the scalar field. Surprisingly, an isotropic and homogeneous cosmological universe with a non-minimally coupled scalar field is perfectly smooth as the rolling scalar field causes the effective Planck mass to change sign and pass through zero. However, we show that any small deviations from homogeneity diverge as the effective Planck mass vanishes, with catastrophic consequences for the cosmology. The physical origin of the divergence is due to the presence of non-zero scalar anisotropic stress from the non-minimally coupled scalar field. Thus, while the homogeneous and isotropic cosmology appears surprisingly sensible when the effective Planck mass vanishes, inhomogeneities tell a different story. (paper)

  12. Scalar lepton search with the CELLO detector at PETRA

    Behrend, H.J.; Chen, C.; Fenner, H.; Field, J.H.; Schroeder, V.; Sindt, H.; D'Agostini, G.; Apel, W.D.; Banerjee, S.; Bodenkamp, J.

    1982-04-01

    We report on the search for 'supersymmetric' scalar leptons conducted with the CELLO detector, at the PETRA e + e - storage ring. 11.1 pb -1 of high energy data were analysed (33 GeV < √s < 36.72 GeV). At a 95% C.L., the existence of a scalar e is ruled out for masses between 2 GeV and 16.8 GeV; correspondingly, a scalar μ is excluded between 3.3 GeV and 16 GeV, and a scalar tau between 6 GeV and 15.3 GeV, as well as between the tau mass and 3.8 GeV. (orig.)

  13. An axion-like scalar field environment effect on binary black hole merger

    Yang, Qing; Ji, Li-Wei; Hu, Bin; Cao, Zhou-Jian; Cai, Rong-Gen

    2018-06-01

    The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediate-mass binary black holes by means of an axion-like scalar field and investigate their joint evolution. In detail, we consider equal mass binary black holes surrounded by a shell of axion-like scalar field both in spherically symmetric and non-spherically symmetric cases, and with different strengths of the scalar field. Our result shows that the environmental scalar field could essentially modify the dynamics. Firstly, in the spherically symmetric case, with increase of the scalar field strength, the number of circular orbits for the binary black hole is reduced. This means that the scalar field could significantly accelerate the merger process. Secondly, once the scalar field strength exceeds a certain critical value, the scalar field could collapse into a third black hole with its mass being larger than that of the binary. Consequently, the new black hole that collapses from the environmental scalar field could accrete the binary promptly and the binary collides head-on with each other. In this process, there is almost no quadrupole signal produced, and, consequently, the gravitational wave is greatly suppressed. Thirdly, when the scalar field strength is relatively smaller than the critical value, the black hole orbit could develop eccentricity through accretion of the scalar field. Fourthly, during the initial stage of the inspiral, the gravitational attractive force from the axion-like scalar field could induce a sudden turn in the binary orbits, hence resulting in a transient wiggle in the gravitational waveform. Finally, in the non-spherical case, the scalar field could gravitationally attract the binary moving toward the center of mass for the scalar field and slow down the merger process.

  14. Quasistationary solutions of scalar fields around accreting black holes

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.

    2016-08-01

    Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.

  15. Physics at the J/psi and the status of glueballs

    Perrier, J.

    1984-09-01

    Recent results on the J/psi, iota(1440), and theta(1690) from the Crystal Ball, DM2, and Mark III collaborations are presented together with preliminary results on charmonium states from the CERN-ISR R704 experiment. The J/psi two-body decays into a vector and a pseudoscalar meson are discussed; these results provide information about the quark content of the eta and eta' and are relevant to models in which these states are mixed with glueballs. New spin-parity determinations of the iota(1440) and theta(1690) are presented, as well as several recent branching ratio measurements including evidence for the decay theta(1690) → π + π - . 18 references

  16. Electroweak symmetry breaking in supersymmetric models with heavy scalar superpartners

    Chankowski, Piotr H.; Falkowski, Adam; Pokorski, Stefan; Wagner, Jakub

    2004-01-01

    We propose a novel mechanism of electroweak symmetry breaking in supersymmetric models, as the one recently discussed by Birkedal, Chacko and Gaillard, in which the Standard Model Higgs doublet is a pseudo-Goldstone boson of some global symmetry. The Higgs mass parameter is generated at one-loop level by two different, moderately fine-tuned sources of the global symmetry breaking. The mechanism works for scalar superpartner masses of order 10 TeV, but gauginos can be light. The scale at which supersymmetry breaking is mediated to the visible sector has to be low, of order 100 TeV. Fine-tuning in the scalar potential is at least two orders of magnitude smaller than in the MSSM with similar soft scalar masses. The physical Higgs boson mass is (for tanβ >> 1) in the range 120-135 GeV

  17. Search for scalar electrons at PEP

    Wilson, R.J.

    1983-08-01

    Experimental results from e + e - reactions at the Positron Electron Project (PEP) using the High Resolution Spectrometer (HRS) are presented. Events with two electrons, and no other charged particles, in the final state are studied. Limits are given for the production of scalar-electrons predicted by models based on supersymmetry. In particular the pair production of such particles through s-channel single photon annihilation and t-channel inelastic scattering is considered. The data are well described by quantum electrodynamics (QED) but we observe one event which is also consistent with a supersymmetric model. Using this single event we find that the mass, M/sub se/, of these scalar-electrons es excluded, to 95% CL, in the range 1.8 less than or equal to M/sub se/ less than or equal to 14.2 GeV/c 2 . A description of the HRS detector is given with particular emphasis on the electronic trigger system

  18. Charged black holes with scalar hair

    Fan, Zhong-Ying; Lü, H. [Center for Advanced Quantum Studies, Department of Physics,Beijing Normal University, Beijing 100875 (China)

    2015-09-10

    We consider a class of Einstein-Maxwell-Dilaton theories, in which the dilaton coupling to the Maxwell field is not the usual single exponential function, but one with a stationary point. The theories admit two charged black holes: one is the Reissner-Nordstrøm (RN) black hole and the other has a varying dilaton. For a given charge, the new black hole in the extremal limit has the same AdS{sub 2}×Sphere near-horizon geometry as the RN black hole, but it carries larger mass. We then introduce some scalar potentials and obtain exact charged AdS black holes. We also generalize the results to black p-branes with scalar hair.

  19. NLO corrections to differential cross sections for pseudo-scalar Higgs boson production

    Field, B.; Smith, J.; Tejeda-Yeomans, M.E.; Neerven, W.L. van

    2003-01-01

    We have computed the full next-to-leading (NLO) QCD corrections to the differential distributions d 2 σ/(dp T dy) for pseudo-scalar Higgs (A) production at large hadron colliders. This calculation has been carried out using the effective Lagrangian approach which is valid as long as the mass of the pseudo-scalar Higgs boson m A and its transverse momentum p T do not exceed the top-quark mass m t . The shape of the distributions hardly differ from those obtained for scalar Higgs (H) production because, apart from the overall coupling constant and mass, there are only small differences between the partonic differential distributions for scalar and pseudo-scalar production. Therefore, there are only differences in the magnitudes of the hadronic differential distributions which can be mainly attributed to the unknown mixing angle β describing the pseudo-scalar Higgs coupling to the top quarks

  20. SU(N) gauge theories in 2+1 dimensions: glueball spectra and k-string tensions

    Athenodorou, Andreas [Department of Physics, University of Cyprus,POB 20537, 1678 Nicosia (Cyprus); Computation-based Science and Technology Research Center, The Cyprus Institute,20 Kavafi Str., Nicosia 2121 (Cyprus); Teper, Michael [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2017-02-03

    We calculate the low-lying glueball spectrum and various string tensions in SU(N) lattice gauge theories in 2+1 dimensions, and extrapolate the results to the continuum limit. We do so for for the range N∈[2,16] so as to control the N-dependence with a useful precision. We observe a number of striking near-degeneracies in the various J{sup PC} sectors of the glueball spectrum, in particular between C=+ and C=− states. We calculate the string tensions of flux tubes in a number of representations, and provide evidence that the leading correction to the N-dependence of the k-string tensions is ∝1/N rather than ∝1/N{sup 2}, and that the dominant binding of k fundamental flux tubes into a k-string is via pairwise interactions. We comment on the possible implications of our results for the dynamics of these gauge theories.

  1. Gluonium spectrum in QCD

    Dominguez, C.A.

    1987-02-01

    The scalar (0 ++ ) and the tensor (2 ++ ) gluonium spectrum is analyzed in the framework of QCD sum rules. Stable eigenvalue solutions, consistent with duality and low energy theorems, are obtained for the mass and width of these glueballs. (orig.)

  2. Scalar-metric and scalar-metric-torsion gravitational theories

    Aldersley, S.J.

    1977-01-01

    The techniques of dimensional analysis and of the theory of tensorial concomitants are employed to study field equations in gravitational theories which incorporate scalar fields of the Brans-Dicke type. Within the context of scalar-metric gravitational theories, a uniqueness theorem for the geometric (or gravitational) part of the field equations is proven and a Lagrangian is determined which is uniquely specified by dimensional analysis. Within the context of scalar-metric-torsion gravitational theories a uniqueness theorem for field Lagrangians is presented and the corresponding Euler-Lagrange equations are given. Finally, an example of a scalar-metric-torsion theory is presented which is similar in many respects to the Brans-Dicke theory and the Einstein-Cartan theory

  3. Scalar cosmological perturbations

    Uggla, Claes; Wainwright, John

    2012-01-01

    Scalar perturbations of Friedmann-Lemaitre cosmologies can be analyzed in a variety of ways using Einstein's field equations, the Ricci and Bianchi identities, or the conservation equations for the stress-energy tensor, and possibly introducing a timelike reference congruence. The common ground is the use of gauge invariants derived from the metric tensor, the stress-energy tensor, or from vectors associated with a reference congruence, as basic variables. Although there is a complication in that there is no unique choice of gauge invariants, we will show that this can be used to advantage. With this in mind our first goal is to present an efficient way of constructing dimensionless gauge invariants associated with the tensors that are involved, and of determining their inter-relationships. Our second goal is to give a unified treatment of the various ways of writing the governing equations in dimensionless form using gauge-invariant variables, showing how simplicity can be achieved by a suitable choice of variables and normalization factors. Our third goal is to elucidate the connection between the metric-based approach and the so-called 1 + 3 gauge-invariant approach to cosmological perturbations. We restrict our considerations to linear perturbations, but our intent is to set the stage for the extension to second-order perturbations. (paper)

  4. Anyone for non-scalarity?

    Duffley, Patrick; Larrivée, Pierre

    2010-01-01

    This paper examines the status of scalarity in the analysis of the meaning of the English determiner any. The latter’s position as a prime exemplar of the category of polarity-sensitive items has led it to be generally assumed to have scalar meaning. Scalar effects are absent however from a number of common uses of this word. This suggests that any does not involve scales as part of its core meaning, but produces them as a derived interpretative property. The role of three factors in the deri...

  5. Hierarchal scalar and vector tetrahedra

    Webb, J.P.; Forghani, B.

    1993-01-01

    A new set of scalar and vector tetrahedral finite elements are presented. The elements are hierarchal, allowing mixing of polynomial orders; scalar orders up to 3 and vector orders up to 2 are defined. The vector elements impose tangential continuity on the field but not normal continuity, making them suitable for representing the vector electric or magnetic field. Further, the scalar and vector elements are such that they can easily be used in the same mesh, a requirement of many quasi-static formulations. Results are presented for two 50 Hz problems: the Bath Cube, and TEAM Problem 7

  6. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  7. Spherically symmetric scalar field collapse

    2013-03-01

    Mar 1, 2013 ... The very recent interest in scalar field collapse stems from a cosmological ... The objective of the present investigation is to explore the collapsing modes of a simple ..... The authors thank the BRNS (DAE) for financial support.

  8. Astrophysical constraints on singlet scalars at LHC

    Hertzberg, Mark P.; Masoumi, Ali

    2017-04-01

    We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ~ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

  9. Astrophysical constraints on singlet scalars at LHC

    Hertzberg, Mark P.; Masoumi, Ali, E-mail: mark.hertzberg@tufts.edu, E-mail: ali@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-04-01

    We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ∼ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

  10. Inflation and the Higgs Scalar

    Green, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-12-05

    This note makes a self-contained exposition of the basic facts of big bang cosmology as they relate to inflation. The fundamental problems with that model are then explored. A simple scalar model of inflation is evaluated which provides the solution of those problems and makes predictions which will soon be definitively tested. The possibility that the recently discovered fundamental Higgs scalar field drives inflation is explored.

  11. Integrable scalar cosmologies

    Fré, P.; Sorin, A.S.; Trigiante, M.

    2014-01-01

    The question whether the integrable one-field cosmologies classified in a previous paper by Fré, Sagnotti and Sorin can be embedded as consistent one-field truncations into Extended Gauged Supergravity or in N=1 supergravity gauged by a superpotential without the use of D-terms is addressed in this paper. The answer is that such an embedding is very difficult and rare but not impossible. Indeed, we were able to find two examples of integrable models embedded in supergravity in this way. Both examples are fitted into N=1 supergravity by means of a very specific and interesting choice of the superpotential W(z). The question whether there are examples of such an embedding in Extended Gauged Supergravity remains open. In the present paper, relying on the embedding tensor formalism we classified all gaugings of the N=2 STU model, confirming, in the absence on hypermultiplets, the uniqueness of the stable de Sitter vacuum found several years ago by Fré, Trigiante and Van Proeyen and excluding the embedding of any integrable cosmological model. A detailed analysis of the space of exact solutions of the first supergravity-embedded integrable cosmological model revealed several new features worth an in-depth consideration. When the scalar potential has an extremum at a negative value, the Universe necessarily collapses into a Big Crunch notwithstanding its spatial flatness. The causal structure of these Universes is quite different from that of the closed, positive curved, Universe: indeed, in this case the particle and event horizons do not coincide and develop complicated patterns. The cosmological consequences of this unexpected mechanism deserve careful consideration

  12. Spontaneous Scalarization: Dead or Alive?

    Berti, Emanuele; Crispino, Luis; Gerosa, Davide; Gualtieri, Leonardo; Horbatsch, Michael; Macedo, Caio; Okada da Silva, Hector; Pani, Paolo; Sotani, Hajime; Sperhake, Ulrich

    2015-04-01

    In 1993, Damour and Esposito-Farese showed that a wide class of scalar-tensor theories can pass weak-field gravitational tests and exhibit nonperturbative strong-field deviations away from General Relativity in systems involving neutron stars. These deviations are possible in the presence of ``spontaneous scalarization,'' a phase transition similar in nature to spontaneous magnetization in ferromagnets. More than twenty years after the original proposal, binary pulsar experiments have severely constrained the possibility of spontaneous scalarization occurring in nature. I will show that these experimental constraints have important implications for the torsional oscillation frequencies of neutron stars and for the so-called ``I-Love-Q'' relations in scalar-tensor theories. I will also argue that there is still hope to observe strong scalarization effects, despite the strong experimental bounds on the original mechanism. In particular, I will discuss two mechanisms that could produce strong scalarization in neutron stars: anisotropy and multiscalarization. This work was supported by NSF CAREER Award PHY-1055103.

  13. Analysis of the scalar doubly charmed hexaquark state with QCD sum rules

    Wang, Zhi-Gang [North China Electric Power University, Department of Physics, Baoding (China)

    2017-09-15

    In this article, we study the scalar-diquark-scalar-diquark-scalar-diquark type hexaquark state with the QCD sum rules by carrying out the operator product expansion up to the vacuum condensates of dimension 16. We obtain a lowest hexaquark mass of 6.60{sup +0.12}{sub -0.09} GeV, which can be confronted with the experimental data in the future. (orig.)

  14. Scalar sector of the 3 3 1 model with three Higgs triplets

    Hoang Ngoc Long

    1997-10-01

    A scalar sector of the 3 3 1 model with three Higgs triplets is considered. The mass spectrum, eigenstates and interactions of the Higgs and the SM gauge bosons are derived. We show that one of the neutral scalars can be identified with the standard model Higgs boson, and in the considered potential there is no mixing between scalars having VEV and ones without VEV. (author)

  15. Simple standard model extension by heavy charged scalar

    Boos, E.; Volobuev, I.

    2018-05-01

    We consider a Standard Model (SM) extension by a heavy charged scalar gauged only under the UY(1 ) weak hypercharge gauge group. Such an extension, being gauge invariant with respect to the SM gauge group, is a simple special case of the well-known Zee model. Since the interactions of the charged scalar with the Standard Model fermions turn out to be significantly suppressed compared to the Standard Model interactions, the charged scalar provides an example of a long-lived charged particle being interesting to search for at the LHC. We present the pair and single production cross sections of the charged scalar at different colliders and the possible decay widths for various boson masses. It is shown that the current ATLAS and CMS searches at 8 and 13 TeV collision energy lead to the bounds on the scalar boson mass of about 300-320 GeV. The limits are expected to be much larger for higher collision energies and, assuming 15 a b-1 integrated luminosity, reach about 2.7 TeV at future 27 TeV LHC thus covering the most interesting mass region.

  16. Search for scalar diphoton resonances in the mass range 65−600 GeV with the ATLAS detector in pp collision data at √s = 8 TeV

    Aad, G.; Abbott, B.; Abdallah, J.; Böhm, Jan; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2014-01-01

    Roč. 113, č. 17 (2014), "171801-1"-"171801-18" ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : ATLAS * narrow resonance * scalar particle * branching ratio * Higgs particle * CERN LHC Coll * efficiency * background * topology Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.512, year: 2014

  17. Scalar field dark matter and the Higgs field

    O. Bertolami

    2016-08-01

    Full Text Available We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10−6–10−4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall–Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.

  18. Pulsar timing signal from ultralight scalar dark matter

    Khmelnitsky, Andrei; Rubakov, Valery

    2014-01-01

    An ultralight free scalar field with mass around 10 −23 −10 −22 eV is a viable dark mater candidate, which can help to resolve some of the issues of the cold dark matter on sub-galactic scales. We consider the gravitational field of the galactic halo composed out of such dark matter. The scalar field has oscillating in time pressure, which induces oscillations of gravitational potential with amplitude of the order of 10 −15 and frequency in the nanohertz range. This frequency is in the range of pulsar timing array observations. We estimate the magnitude of the pulse arrival time residuals induced by the oscillating gravitational potential. We find that for a range of dark matter masses, the scalar field dark matter signal is comparable to the stochastic gravitational wave signal and can be detected by the planned SKA pulsar timing array experiment

  19. Search for scalar muons

    Bartel, W.; Becker, L.; Bowdery, C.; Cords, D.; Felst, R.; Haidt, D.; Knies, G.; Krehbiel, H.; Meinke, R.; Naroska, B.; Olsson, J.; Steffen, P.; Junge, H.; Schmidt, D.; Laurikainen, P.; Dietrich, G.; Hagemann, J.; Heinzelmann, G.; Kado, H.; Kleinwort, C.; Kuhlen, M.; Meier, K.; Petersen, A.; Ramcke, R.; Schneekloth, U.; Weber, G.; Allison, J.; Baines, J.; Ball, A.H.; Barlow, R.J.; Chrin, J.; Duerdoth, I.P.; Greenshaw, T.; Hill, P.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mills, H.E.; Murphy, P.G.; Stephens, K.; Warming, P.; Glasser, R.G.; Sechi-Zorn, B.; Skard, J.A.J.; Wagner, S.R.; Zorn, G.T.; Cartwright, S.L.; Clarke, D.; Marshall, R.; Middleton, R.P.; Whittaker, J.B.; Kawamoto, T.; Kobayashi, T.; Mashimo, T.; Minowa, M.; Takeda, H.; Takeshita, T.; Yamada, S.

    1984-12-01

    The supersymmetric partner of the muon was searched for in a systematic way. No candidate was found and 95% CL limits on its mass were given for different cases. If it is stable, the limit is 20.9 GeV/c 2 . If it decays into a muon and an invisible low mass particle, the limit is 20.3 GeV/c 2 . If it decays into a muon and an unstable neutral particle which decays further into a photon and an invisible massless particles, the limit is 19.2 GeV/c 2 . (orig.)

  20. Glueballs in the reaction π-p → phi phi n

    Lindenbaum, S.J.

    1983-01-01

    The BNL/CCNY group has observed and performed a partial wave analysis on 1203 (22 GeV) π - p → phi phi n events. The OZI suppression has been found to be almost completely broken down. The phi phi spectrum is found to be composed almost entirely of two new resonances, the g/sub T/(2160) and the g/sub T/(2320) with K/sup G/J/sup PC/ = 0 + 2 ++ . For g/sub T/ (2160), M = 2.16 +- 0.05 GeV, and GAMMA = 0.31 +- 0.07 GeV. For g/sub T/(2320), M = 2.32 +- 0.04, and GAMMA = 0.22 +- 0.07. Assuming (1) QCD is correct, and (2) the OZI rule is universal for weakly coupled glue in disconnected Zweig diagrams due to the creation or annihilation of new types of quarks; it is concluded that one or two primary glueballs with the above quantum numbers are responsible for the above observed states. 42 references

  1. Experimental limit on iota→γγ and the interpretation of the iota as a glueball

    Aihara, H.; Alston-Garnjost, M.; Avery, R.E.; University of California, Davis, California 95616)

    1986-01-01

    By observing the reaction γγ→K/sub s/ 0 K/sup +-/π/sup minus-or-plus/, the TPC/Two-Gamma experiment at the SLAC e + e - storage ring PEP has obtained a 95%-confidence-level limit of GAMMA/sub iota//sub →//sub γ//sub γ/B(iota→KK-barπ)<1.6 keV for the iota(1450) meson. If, as is likely, the iota decays predominantly into K-K-barπ, the resulting GAMMA/sub iota//sub →//sub γ//sub γ/ limit appears to conflict with previous assignments of an observed rhoγ decay to iota and also with many analyses of eta-eta'-iota mixing. The contrast of this small γγ width with the large rate for J/psi→γiota is evidence that the iota is a glueball with little admixture of q-bar states

  2. Can ι(1440) be a pseudoscalar glueball which appreciably mixes with η'(958) ?

    Teshima, Tadayuki; Oneda, Sadao.

    1987-01-01

    We have studied the η-η'-ι mixing by using the Gell-Mann-Oakes-Renner type approach to the chiral U(3) x U(3) and also U(4) x U(4) algebras involving anomaly and found that η'-ι mixing could be appreciable. The model also predicted (by using PCAC and also sometimes a simple quark counting argument) that while the rate of ι → γγ is relatively small, Γι → ργ) will be rather large ≅ 1 MeV. The η-η'-ι mixing has also been studied by us using the method of ''asymptotic flavor SU(3) symmetry plus the constraint algebras involving the generators of underlying symmetry groups of QCD''. Essentially the same conclusion as derived in the first approach has been obtained for the structures of η-η'-ι mixing. In this paper, we study the ι → γγ and ι → ργ decays in the second approach without using quark counting argument. We find a result which is compatible (at least in flavor SU(3) symmetry studied) with that of the first approach. We conclude that a part of the present experimental situation can be understood with the presence of pseudoscalar glueball ι(1440) which mixes rather appreciably with the η'. Critical experiments for the model are also discussed. (author)

  3. Spontaneous scalarization with an extremely massive field and heavy neutron stars

    Morisaki, Soichiro; Suyama, Teruaki

    2017-10-01

    We investigate the internal structure and the mass-radius relation of neutron stars in a recently proposed scalar-tensor theory dubbed asymmetron in which a massive scalar field undergoes spontaneous scalarization inside neutron stars. We focus on the case where the Compton wavelength is shorter than 10 km, which has not been investigated in the literature. By solving the modified Einstein equations, either purely numerically or by partially using a semianalytic method, we find that not only the weakening of gravity by spontaneous scalarization but also the scalar force affect the internal structure significantly in the massive case. We also find that the maximum mass of neutron stars is larger for certain parameter sets than that in general relativity and reaches 2 M⊙ even if the effect of strange hadrons is taken into account. There is even a range of parameters where the maximum mass of neutron stars largely exceeds the threshold that violates the causality bound in general relativity.

  4. Analytic calculations of masses in Hamiltonian lattice theories

    Horn, D.

    1985-01-01

    The t-expansion of the vacuum energy function is discussed and several relations involving the connected matrix elements of powers of the hamiltonian are established. On the basis of these relations we show that the masses of the lowest lying O ++ states can be expressed as ratios of derivatives of the energy function. Other sectors of Hilbert space are discussed and a recent result for the SU(2) glueball mass, derived by using such relations as described here, is briefly reviewed. (author)

  5. Theory and phenomenology of the MSSM with heavy scalars

    Bernal Hernandez, N.

    2008-09-01

    This work is dedicated to the study of different phenomenological aspects of supersymmetry with on one hand the physics of the Minimal Supersymmetric Standard Model (MSSM) in the case of heavy scalar superparticles and its implications at the LHC and on the other hand the characteristics of black matter particles and their detection in colliders and in astro-particle experiments. The first chapter presents the Standard Model, the supersymmetry theory and how the supersymmetric extension of the Standard Model can solve some concerns of the Standard Model. In the second chapter we present the MSSM with heavy scalars. In this model all the scalar particles have masses beyond the TeV and consequently even next generations of colliders will not be able to detect them. We recall why heavy scalars are necessary. In the third chapter we present the construction of MSSM parameters with heavy scalars and we show that the future ILC (International Linear Collider) will be able to set the value of these parameters with a satisfactory accuracy. The last chapter deals with dark matter particles like WIMPS, their detection sensitivity in the XENON experiment and the reconstruction of their masses will be analyzed. We have also studied the direct detection of WIMPS via the observation of some products of their annihilation

  6. On Scalar Energy: Mathematical Formulation

    Hathout, A.M.

    2011-01-01

    A new kind of electromagnetic waves (EMW), which exists only in vacuum of the empty space, will be discussed and mathematically formulated in this paper. The mathematical existence of this energy was first proposed in a series of groundbreaking equations by Scottish Mathematician, James Clerk Maxwell, in the mid of 1800 and 39;s. This energy is called scalar energy. It is characterized by both particle and wave like. The waves of this energy are called longitudinal EMW to distinguish them from transverse EM, the kind we are familiar with in our daily life. Teslas name of this energy is scalar energy or zero point energy. It is aimed at this paper to explain more details and to verify the scalar EM concept in vacuum.

  7. Comparison between two scalar field models using rotation curves of spiral galaxies

    Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh

    2018-04-01

    Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.

  8. Search for scalar gluons with the ATLAS detector at the LHC

    AUTHOR|(CDS)2079195; Zerwas, Dirk

    This thesis describes the search for new color-octet scalar particles in the ATLAS experiment data at the Large Hadron Collider (LHC). For a wide range of mass, the decay of the scalar to two SM partons dominates. This motivates the search for these new scalars in multijet final states, where they would manifest as dijet resonances. As the new scalars are products in pairs, a final state containing at least four jets is used as a search environment. A method is developed to extract a possible scalar resonance from the multijet QCD background and is used to search for such scalar in the data from the ATLAS experiment collected in 2010 and 2011. The data are in agreement with the estimation of the background and limits are set on the scalar production cross section as a function of the scalar mass. Interpreting these limits in models of supersymmetry, the scalar gluon of the MRSSM and of the hybrid N=1/N=2 model is excluded at the 95 % CL between 100 and 287 GeV. Limits are also interpreted in a model of gauge ...

  9. The scalar wave equation in a Schwarzschild spacetime

    Stewart, J.M.; Schmidt, B.G.

    1978-09-01

    This paper studies the asymptotic behaviour of solutions of the zero rest mass scalar wave equation in the Schwarzschild spacetime in a neighbourhood of spatial infinity, which includes parts of future and past null infinity. The behaviour of such fields is essentially different from that which accurs in a flat spacetime. (orig.) [de

  10. Scalar strong interaction hadron theory

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  11. Scalar potentials and the Dirac equation

    Bergerhoff, B.; Soff, G.

    1994-01-01

    The Dirac equation is solved for various types of scalar potentials. Energy eigenvalues and normalized bound-state wave functions are calculated analytically for a scalar 1/r-potential as well as for a mixed scalar and Coulomb 1/r-potential. Also continuum wave functions for positive and negative energies are derived. Similarly, we investigate the solutions of the Dirac equation for a scalar square-well potential. Relativistic wave functions for scalar Yukawa and exponential potentials are determined numerically. Finally, we also discuss solutions of the Dirac equation for scalar linear and quadratic potentials which are frequently used to simulate quark confinement. (orig.)

  12. Scalar dark matter with type II seesaw

    Arnab Dasgupta

    2014-12-01

    Full Text Available We study the possibility of generating tiny neutrino mass through a combination of type I and type II seesaw mechanism within the framework of an abelian extension of standard model. The model also provides a naturally stable dark matter candidate in terms of the lightest neutral component of a scalar doublet. We compute the relic abundance of such a dark matter candidate and also point out how the strength of type II seesaw term can affect the relic abundance of dark matter. Such a model which connects neutrino mass and dark matter abundance has the potential of being verified or ruled out in the ongoing neutrino, dark matter, as well as accelerator experiments.

  13. Scalar Dark Matter From Theory Space

    Birkedal-Hansen, Andreas; Wacker, Jay G.

    2003-12-26

    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass {Omicron}(100 GeV), the second region has a candidate with a mass greater than {Omicron}(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible WIMP (weakly interacting massive particle).

  14. Scalar dark matter from theory space

    Birkedal-Hansen, Andreas; Wacker, Jay G.

    2004-01-01

    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass O(100 GeV), the second region has a candidate with a mass greater than O(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible weakly interacting massive particle

  15. Scalar Dissipation Modeling for Passive and Active Scalars: a priori Study Using Direct Numerical Simulation

    Selle, L. C.; Bellan, Josette

    2006-01-01

    Transitional databases from Direct Numerical Simulation (DNS) of three-dimensional mixing layers for single-phase flows and two-phase flows with evaporation are analyzed and used to examine the typical hypothesis that the scalar dissipation Probability Distribution Function (PDF) may be modeled as a Gaussian. The databases encompass a single-component fuel and four multicomponent fuels, two initial Reynolds numbers (Re), two mass loadings for two-phase flows and two free-stream gas temperatures. Using the DNS calculated moments of the scalar-dissipation PDF, it is shown, consistent with existing experimental information on single-phase flows, that the Gaussian is a modest approximation of the DNS-extracted PDF, particularly poor in the range of the high scalar-dissipation values, which are significant for turbulent reaction rate modeling in non-premixed flows using flamelet models. With the same DNS calculated moments of the scalar-dissipation PDF and making a change of variables, a model of this PDF is proposed in the form of the (beta)-PDF which is shown to approximate much better the DNS-extracted PDF, particularly in the regime of the high scalar-dissipation values. Several types of statistical measures are calculated over the ensemble of the fourteen databases. For each statistical measure, the proposed (beta)-PDF model is shown to be much superior to the Gaussian in approximating the DNS-extracted PDF. Additionally, the agreement between the DNS-extracted PDF and the (beta)-PDF even improves when the comparison is performed for higher initial Re layers, whereas the comparison with the Gaussian is independent of the initial Re values. For two-phase flows, the comparison between the DNS-extracted PDF and the (beta)-PDF also improves with increasing free-stream gas temperature and mass loading. The higher fidelity approximation of the DNS-extracted PDF by the (beta)-PDF with increasing Re, gas temperature and mass loading bodes well for turbulent reaction rate

  16. Search for scalar top quarks decaying into scalar tau leptons with ATLAS at sqrt{s} =8 TeV

    AUTHOR|(INSPIRE)INSPIRE-00358725; Colijn, Auke Pieter

    2017-10-06

    This thesis presents a search for Supersymmetry carried out in a particular scenario arising from the Gauge Mediated Supersymmetry breaking mechanism that assumes a massless gravitino as lightest supersymmetric particle, a scalar tau lepton as next-to-lightest supersymmetric particle and the top squark as the lightest among the quark superpartners. The analysis is performed using the data collected by ATLAS at a centre-of-mass energy √s = 8 TeV during 2012 data taking, for a total of 20.3 fb−1 of integrated luminosity of proton-proton collisions. Scalar top quark candidates are searched for in events with either two light leptons, one hadronically decaying tau and one light lepton or two hadronically decaying taus in the final state. No significant excess over the Standard Model expectation is found and the results are interpreted as 95% confidence lower limits not top squark and scalar tau masses. Depending on the scalar tau mass, lower limits between 490 and 650 GeV are placed on the top squark mass wit...

  17. Manifestations of quantum gravity in scalar QED phenomena

    Elizalde, E.; Odintsov, S.D.; Romeo, A.

    1995-01-01

    Quantum gravitational corrections to the effective potential, at the one-loop level and in the leading-log approximation, for scalar quantum electrodynamics with higher-derivative gravity, which is taken as an effective theory for quantum gravity (QG), are calculated. We point out the appearance of relevant phenomena caused by quantum gravity, such as dimensional transmutation, QG-driven instabilities of the potential, QG corrections to scalar-to-vector mass ratios, and curvature-induced phase transitions, whose existence is shown by means of analytical and numerical study

  18. Scalar field localization on a brane with cosmological constant

    Ghoroku, Kazuo; Yahiro, Masanobu

    2003-01-01

    We investigate the localization of a massive scalar for both dS and AdS branes, where the scalar mass is varied from the massive-particle region to the tachyon region. We find that the eigenmass m of the localized mode satisfies a simple relation m 2 = cM 2 with a positive constant c for the dS brane, and m 2 = c 1 M 2 + c 2 with positive constants c 1 and c 2 for the AdS brane. We discuss the relation of these results to the stability of the brane and also some cosmological problems

  19. N-body simulations for coupled scalar-field cosmology

    Li Baojiu; Barrow, John D.

    2011-01-01

    We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled-scalar-field models, including background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled-scalar-field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not work. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulation works for similar models. We then study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to see the agreement and places where the nonlinear treatment deviates from the linear approximation. We also propose an algorithm to identify gravitationally virialized matter halos, trying to take account of the fact that the virialization itself is also modified by the scalar-field coupling. We use the algorithm to measure the mass function and study the properties of dark-matter halos. We find that the net effect of the scalar coupling helps produce more heavy halos in our simulation boxes and suppresses the inner (but not the outer) density profile of halos compared with the ΛCDM prediction, while the suppression weakens as the coupling between the scalar field and dark-matter particles increases in strength.

  20. Scalar Calibration of Vector Magnetometers

    Merayo, José M.G.; Brauer, Peter; Primdahl, Fritz

    2000-01-01

    The calibration parameters of a vector magnetometer are estimated only by the use of a scalar reference magnetometer. The method presented in this paper differs from those previously reported in its linearized parametrization. This allows the determination of three offsets or signals in the absence...

  1. Scalar particles in superstring models

    Binetruy, P.

    1989-01-01

    The role played by scalar fields in superstring models is reviewed, with an emphasis on recent developments. The case of the dilaton and moduli fields is discussed in connection with the issues of spacetime duality and supersymmetry breaking. Constraints on the Higgs sector are reviewed in the different classes of models

  2. Geometry of the Scalar Sector

    Alonso, Rodrigo; Manohar, Aneesh V.

    2016-01-01

    The $S$-matrix of a quantum field theory is unchanged by field redefinitions, and so only depends on geometric quantities such as the curvature of field space. Whether the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a subtle question since one can make a coordinate change to convert a field that transforms linearly into one that transforms non-linearly. Renormalizability of the Standard Model (SM) does not depend on the choice of scalar fields or whether the scalar fields transform linearly or non-linearly under the gauge group, but only on the geometric requirement that the scalar field manifold ${\\mathcal M}$ is flat. We explicitly compute the one-loop correction to scalar scattering in the SM written in non-linear Callan-Coleman-Wess-Zumino (CCWZ) form, where it has an infinite series of higher dimensional operators, and show that the $S$-matrix is finite. Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT) have curved ${\\mathcal M}$, ...

  3. Manifolds of positive scalar curvature

    Stolz, S [Department of Mathematics, University of Notre Dame, Notre Dame (United States)

    2002-08-15

    This lecture gives an survey on the problem of finding a positive scalar curvature metric on a closed manifold. The Gromov-Lawson-Rosenberg conjecture and its relation to the Baum-Connes conjecture are discussed and the problem of finding a positive Ricci curvature metric on a closed manifold is explained.

  4. Goldstone pion and other mesons using a scalar confining interaction

    Gross, F.; Milana, J.

    1994-01-01

    A covariant wave equation for q bar q interactions with an interaction kernel composed of the sum of constant vector and linear scalar confining interactions is solved for states with two quarks with identical mass. The model includes an NJL-like mechanism which links the dynamical breaking of chiral symmetry to the spontaneous generation of quark mass and the appearance of a low mass Goldstone pion. A novel feature of this approach is that it automatically explains the small mass of the pion even though the linear potential is a scalar interaction in Dirac space, and hence breaks chiral symmetry. Solutions for mesons composed of light quarks (π,ρ, and low lying excited states) and heavy quarks (ρ c , J/Ψ, and low lying excited states) are presented and discussed

  5. The ηc → pp-bar decay and a quark-diquark model of the nucleon: the contribution of scalar-vector diquark transition

    Anselmino, M.; Soares, J.; Caruso, F.; Joffily, S.

    1991-01-01

    The η c decay into proton-antiproton cannot be explained by a lowest order perturbative QCD quark scheme. Trying to improve a previous result where diquarks were also considered as nucleon's constituents, the contribution of the spin-flip transition between scalar and vector diquarks inside the nucleon is computed and is shown to be strictly zero. This result excludes the possibility of understanding why this decay is experimentally observed with a branching ratio much greater than those of other charmonium decays into the same final state, X0,1,2 → pp-bar, successfully described by pQCD in terms of quark and diquark components of the protons. A theoretical explanation of this decay rate is then still lacking and it is suggested that pseudoscalar glueballs might play an important role in solving the puzzle. The experimental results are also briefly discussed. (author)

  6. Search for scalar bottom quarks from gluino decays in collisions at.

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cruz, A; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Dituro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciverez, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; di Giovanni, G P; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Kordas, K; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Muller, Th; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J L; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Dennis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, Y; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-05-05

    We searched for scalar bottom quarks 156 pb(-1) of pp collisions at radicalS = 1.96 recorded by the Collider Detector at Fermilab II experiment at the Tevatron. Scalar bottom quarks can be produced from gluino decays in -parity conserving models of supersymmetry when the mass of the gluino exceeds that of the scalar bottom quark. Then, a scalar bottom quark can decay into a bottom quark and a neutralino. To search for this scenario, we investigated events with large missing transverse energy and at least three jets, two or more of which were identified as containing a secondary vertex from the hadronization of quarks. We found four candidate events, where 2.6 +/- 0.7 are expected from standard model processes, and placed 95% confidence level lower limits on gluino and scalar bottom quark masses of up to 280 and 240 GeV/c(2), respectively.

  7. Interference effects of two scalar boson propagators on the LHC search for the singlet fermion DM

    Ko, P., E-mail: pko@kias.re.kr; Li, Jinmian, E-mail: jmli@kias.re.kr

    2017-02-10

    A gauge invariant UV-completion for singlet fermion DM interacting with the standard model (SM) particles involves a new singlet scalar. Therefore the model contains two scalar mediators, mixtures of the SM Higgs boson and a singlet scalar boson. Collider phenomenology of the interference effect between these two scalar propagators is studied in this work. This interference effect can be either constructive or destructive in the DM production cross section depending on both singlet scalar and DM masses, and it will soften the final state jets in the full mass region. Applying the CMS mono-jet search to our model, we find the interference effect plays a very important role in the DM search sensitivity, and the DM production cross section of our model is more than one order of magnitude below the LHC sensitivity at current stage.

  8. Direct Searches for Scalar Leptoquarks at the Run II Tevatron

    Ryan, Daniel Edward [Tufts Univ., Medford, MA (United States)

    2004-08-01

    This dissertation sets new limits on the mass of the scalar leptoquark from direct searches carried out at the Run II CDF detector using data from March 2001 to October 2003. The data analyzed has a total time-integrated measured luminosity of 198 pb-1 of p$\\bar{p}$ collisions with √s = 1.96 TeV. Leptoquarks are assumed to be pair-produced and to decay into a lepton and a quark of the same generation. They consider two possible leptoquark decays: (1) β = BR(LQ → μq) = 1.0, and (2) β = BR(LQ → μq) = 0.5. For the β = 1 channel, they focus on the signature represented by two isolated high-pT muons and two isolated high-pT jets. For the β = 1/2 channel, they focus on the signature represented by one isolated high-pT muon, large missing transverse energy, and two isolated high-pT jets. No leptoquark signal is experimentally detected for either signature. Using the next to leading order theoretical cross section for scalar leptoquark production in p$\\bar{p}$ collisions [1], they set new mass limits on second generation scalar leptoquarks. They exclude the existence of second generation scalar leptoquarks with masses below 221(175) GeV/c2 for the β = 1(1/2) channels.

  9. Iron Kα line of Kerr black holes with scalar hair

    Ni, Yueying; Zhou, Menglei; Bambi, Cosimo [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Cárdenas-Avendaño, Alejandro [Programa de Matemática, Fundación Universitaria Konrad Lorenz, Carrera 9 Bis No. 62-43, 110231 Bogotá (Colombia); Herdeiro, Carlos A R; Radu, Eugen, E-mail: yyni13@fudan.edu.cn, E-mail: mlzhou13@fudan.edu.cn, E-mail: alejandro.cardenasa@konradlorenz.edu.co, E-mail: bambi@fudan.edu.cn, E-mail: herdeiro@ua.pt, E-mail: eugen.radu@ua.pt [Departamento de Física da Universidade de Aveiro and Center for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro (Portugal)

    2016-07-01

    Recently, a family of hairy black holes in 4-dimensional Einstein gravity minimally coupled to a complex, massive scalar field was discovered [1]. Besides the mass M and spin angular momentum J , these objects are characterized by a Noether charge Q , measuring the amount of scalar hair, which is not associated to a Gauss law and cannot be measured at spatial infinity. Introducing a dimensionless scalar hair parameter q , ranging from 0 to 1, we recover (a subset of) Kerr black holes for q = 0 and a family of rotating boson stars for q = 1. In the present paper, we explore the possibility of measuring q for astrophysical black holes with current and future X-ray missions. We study the iron Kα line expected in the reflection spectrum of such hairy black holes and we simulate observations with Suzaku and eXTP. As a proof of concept, we point out, by analyzing a sample of hairy black holes, that current observations can already constrain the scalar hair parameter q , because black holes with q close to 1 would have iron lines definitively different from those we observe in the available data. We conclude that a detailed scanning of the full space of solutions, together with data from the future X-ray missions, like eXTP, will be able to put relevant constraints on the astrophysical realization of Kerr black holes with scalar hair.

  10. Probing new charged scalars with neutrino trident production

    Magill, Gabriel; Plestid, Ryan

    2018-03-01

    We investigate the possibility of using neutrino trident production to probe leptophilic charged scalars at future high intensity neutrino experiments. We show that under specific assumptions, this production process can provide competitive sensitivity for generic charged scalars as compared to common existing bounds. We also investigate how the recently proposed mixed-flavor production—where the two oppositely charged leptons in the final state need not be muon flavored—can give a 20%-50% increase in sensitivity for certain configurations of new physics couplings as compared to traditional trident modes. We then categorize all renormalizable leptophilic scalar extensions based on their representation under SU (2 )×U (1 ), and discuss the Higgs triplet and Zee-Babu models as explicit UV realizations. We find that the inclusion of additional doubly charged scalars and the need to reproduce neutrino masses make trident production uncompetitive with current bounds for these specific UV completions. Our work represents the first application of neutrino trident production to study charged scalars. Additionally, it is the first application of mixed-flavor trident production to study physics beyond the standard model more generally.

  11. Phenomenological signatures of additional scalar bosons at the LHC

    Buddenbrock, Stefan von; Kar, Deepak; Mellado, Bruce; Reed, Robert G.; Ruan, Xifeng [University of the Witwatersrand, School of Physics, Johannesburg, Wits (South Africa); Chakrabarty, Nabarun; Mukhopadhyaya, Biswarup [Harish-Chandra Research Institute, Regional Centre for Accelerator-Based Particle Physics, Jhunsi, Allahabad (India); Cornell, Alan S.; Kumar, Mukesh [University of the Witwatersrand, National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, Johannesburg, Wits (South Africa); Mandal, Tanumoy [Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden)

    2016-10-15

    We investigate the search prospects for new scalars beyond the standard model at the large hadron collider (LHC). In these studies two real scalars S and χ have been introduced in a two Higgs-doublet model (2HDM), where S is a portal to dark matter (DM) through its interaction with χ, a DM candidate and a possible source of missing transverse energy (E{sub T}{sup miss}). Previous studies focussed on a heavy scalar H decay mode H → hχχ, which was studied using an effective theory in order to explain a distortion in the Higgs boson (h) transverse momentum spectrum (von Buddenbrock et al. in arXiv:1506.00612 [hep-ph], 2015). In this work, the effective decay is understood more deeply by including a mediator S, and the focus is changed to H → hS, SS with S → χχ. Phenomenological signatures of all the new scalars in the proposed 2HDM are discussed in the energy regime of the LHC, and their mass bounds have been set accordingly. Additionally, we have performed several analyses with final states including leptons and E{sub T}{sup miss}, with H → 4W, t(t)H → 6 W and A → ZH channels, in order to understand the impact these scalars have on current searches. (orig.)

  12. Constraining scalar fields with stellar kinematics and collisional dark matter

    Amaro-Seoane, Pau; Barranco, Juan; Bernal, Argelia; Rezzolla, Luciano

    2010-01-01

    The existence and detection of scalar fields could provide solutions to long-standing puzzles about the nature of dark matter, the dark compact objects at the centre of most galaxies, and other phenomena. Yet, self-interacting scalar fields are very poorly constrained by astronomical observations, leading to great uncertainties in estimates of the mass m φ and the self-interacting coupling constant λ of these fields. To counter this, we have systematically employed available astronomical observations to develop new constraints, considerably restricting this parameter space. In particular, by exploiting precise observations of stellar dynamics at the centre of our Galaxy and assuming that these dynamics can be explained by a single boson star, we determine an upper limit for the boson star compactness and impose significant limits on the values of the properties of possible scalar fields. Requiring the scalar field particle to follow a collisional dark matter model further narrows these constraints. Most importantly, we find that if a scalar dark matter particle does exist, then it cannot account for both the dark-matter halos and the existence of dark compact objects in galactic nuclei

  13. Reggeon, Pomeron and Glueball, Odderon-Hadron-Hadron Interaction at High Energies--From Regge Theory to Quantum Chromodynamics

    XIONG Wen-Yuan; HU Zhao-Hui; WANG Xin-Wen; ZHOU Li-Juan; XIA Li-Xin; MA Wei-Xing

    2008-01-01

    that the Reggeon exchange is an exchange of multigluon, the color singlet gluon bound state. In particular, the Pomeron could be a Reggeized tensor glueba11 ξ(2230) with mass of 2.23 GeV, quantum numbers IG, JPC = 0+, 2++ and decay width of about 100 MeV. The glueball exchange theory reproduces data quite well. Accordingly, we believe that the Odderon, consisting of three Reggeized gluons, and predicted by QCD, should also contribute to hadron-hadron scattering and many other diffractive processes. We search for the Odderon by studying pp and pp elastic scatterings at high energies. Our investigations on the differential cross section da / dt of hadron-hadron scattering at various energies and comparisons with experimental data show that the Odderon plays an essential role in fitting to data. Therefore, we suggest that the measurements should be urgently done in order to confirm the existences of the Odderon and to test QCD.

  14. The trace anomaly and massless scalar degrees of freedom

    Gianotti, Maurizio [Los Alamos National Laboratory; Mottola, Emil [Los Alamos National Laboratory

    2008-01-01

    The trace anomaly of quantum fields in electromagnetic or gravitational backgrounds implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. Considering first the axial anomaly and using QED as an example, we compute the full one-loop triangle amplitude of the fermionic stress tensor with two current vertices, {open_square}T{sup {mu}{nu}}J{sup {alpha}}J{sup {beta}}, and exhibit the scalar pole in this amplitude associated with the trace anomaly, in the limit of zero electron mass m{yields}0. To emphasize the infrared aspect of the anomaly, we use a dispersive approach and show that this amplitude and the existence of the massless scalar pole is determined completely by its ultraviolet finite terms, together with the requirements of Poincare invariance of the vacuum, Bose symmetry under interchange of J{sup {alpha}} and J{sup {beta}}, and vector current and stress-tensor conservation. We derive a sum rule for the appropriate positive spectral function corresponding to the discontinuity of the triangle amplitude, showing that it becomes proportional to {delta}(k{sup 2}) and therefore contains a massless scalar intermediate state in the conformal limit of zero electron mass. The effective action corresponding to the trace of the triangle amplitude can be expressed in local form by the introduction of two scalar auxiliary fields which satisfy massless wave equations. These massless scalar degrees of freedom couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects.

  15. Passive Scalar Evolution in Peripheral Region

    Lebedev, V. V.; Turitsyn, K. S.

    2003-01-01

    We consider evolution of a passive scalar (concentration of pollutants or temperature) in a chaotic (turbulent) flow. A universal asymptotic behavior of the passive scalar decay (homogenization) related to peripheral regions (near walls) is established. The passive scalar moments and its pair correlation function in the peripheral region are analyzed. A special case investigated in our paper is the passive scalar decay along a pipe.

  16. Toward a Strongly Interacting Scalar Higgs Particle

    Shalaby, Abouzeid M.; El-Houssieny, M.

    2008-01-01

    We calculate the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory. Rather than the corresponding Hermitian theory and due to the asymptotic freedom property of the theory, the vacuum energy does not blow up for large energy scales which is a good sign to solve the hierarchy problem when using this model to break the U(1)xSU(2) symmetry in the standard model. The theory is strongly interacting and in fact, all the dimensionful parameters in the theory like mass and energy are finite even for very high energy scales. Moreover, relative to the vacuum energy for the Hermitian φ 4 theory, the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 theory is tiny, which is a good sign toward the solution of the cosmological constant problem. Remarkably, these features of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory make it very plausible to be employed as a Higgs mechanism in the standard model instead of the problematic Hermitian Higgs mechanism

  17. Right handed neutrinos in scalar leptonic interactions

    Fleury, N.; Barroso, M.; Magalhaes, M.E.; Martins Simoes, J.A.

    1985-01-01

    In this note we propose that right handed neutrinos can behave as singlets. Their interaction properties could be revealed through scalar couplings. Signatures and branching ratios for this hypothesis are discussed. In particular we discuss angular asymmetries in ν μ e #-> # ν e μ due to scalar exchange and z 0 decay in two scalars

  18. CP violating scalar Dark Matter

    Cordero-Cid, A.; Hernández-Sánchez, J.; Keus, V.; King, S. F.; Moretti, S.; Rojas, D.; Sokołowska, D.

    2016-12-01

    We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z 2 symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.

  19. Partial twisting for scalar mesons

    Agadjanov, Dimitri; Meißner, Ulf-G.; Rusetsky, Akaki

    2014-01-01

    The possibility of imposing partially twisted boundary conditions is investigated for the scalar sector of lattice QCD. According to the commonly shared belief, the presence of quark-antiquark annihilation diagrams in the intermediate state generally hinders the use of the partial twisting. Using effective field theory techniques in a finite volume, and studying the scalar sector of QCD with total isospin I=1, we however demonstrate that partial twisting can still be performed, despite the fact that annihilation diagrams are present. The reason for this are delicate cancellations, which emerge due to the graded symmetry in partially quenched QCD with valence, sea and ghost quarks. The modified Lüscher equation in case of partial twisting is given

  20. Scalar-tensor linear inflation

    Artymowski, Michał [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Racioppi, Antonio, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Antonio.Racioppi@kbfi.ee [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia)

    2017-04-01

    We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f (φ) R /2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead to linear inflation in the strong coupling limit.

  1. The phenomenology of scalar colour octets

    Krasnikov, N.V.

    1995-01-01

    The phenomenology of color scalar octet particles is discussed. Namely, the discovery potential of scalar octets at LEP, FNAL and LHC is discussed. It appears that new hadrons composed from scalar colour octets are rather longlived (Γ≤O(10) keV). The current experimental data don't contradict to the existence of light (M∼O(1) GeV) scalar octets. Light scalar colour octets give additional contribution to the QCD β-function and allow to improve agreement between deep inelastic and LEP data. 10 refs.; 2 figs

  2. Scalar field cosmology in three-dimensions

    Oliveira Neto, G.

    2001-01-01

    We study an analytical solution to the Einstein's equations in 2 + 1-dimensions. The space-time is dynamical and has a line symmetry. The matter content is a minimally coupled, massless, scalar field. Depending on the value of certain parameters, this solution represents three distinct space-times. The first one is at space-time. Then, we have a big bang model with a negative curvature scalar and a real scalar field. The last case is a big bang model with event horizons where the curvature scalar vanishes and the scalar field changes from real to purely imaginary. (author)

  3. XXZ scalar products and KP

    Foda, O.; Wheeler, M.; Zuparic, M.

    2009-01-01

    Using a Jacobi-Trudi-type identity, we show that the scalar product of a general state and a Bethe eigenstate in a finite-length XXZ spin-1/2 chain is (a restriction of) a KP τ function. This leads to a correspondence between the eigenstates and points on Sato's Grassmannian. Each of these points is a function of the rapidities of the corresponding eigenstate, the inhomogeneity variables of the spin chain and the crossing parameter.

  4. XXZ scalar products and KP

    Foda, O. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: foda@ms.unimelb.edu.au; Wheeler, M. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: mwheeler@ms.unimelb.edu.au; Zuparic, M. [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)], E-mail: mzup@ms.unimelb.edu.au

    2009-10-21

    Using a Jacobi-Trudi-type identity, we show that the scalar product of a general state and a Bethe eigenstate in a finite-length XXZ spin-1/2 chain is (a restriction of) a KP {tau} function. This leads to a correspondence between the eigenstates and points on Sato's Grassmannian. Each of these points is a function of the rapidities of the corresponding eigenstate, the inhomogeneity variables of the spin chain and the crossing parameter.

  5. Random scalar fields and hyperuniformity

    Ma, Zheng; Torquato, Salvatore

    2017-06-01

    Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystals and liquids. Hyperuniform systems have attracted recent attention because they are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has been generalized to characterize two-phase media, scalar fields, and random vector fields. In this paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we analyze spatial patterns generated from Gaussian random fields, which have been used to model the microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spinodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pattern formation, including Rayleigh-Bénard convection. We show that the Gaussian random scalar fields can be constructed to be hyperuniform. We also numerically study the time evolution of spinodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime. Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian random field to produce a two-phase random medium tends to destroy the hyperuniformity of the progenitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase media derived from thresholded non-Gaussian fields. Our investigation paves the way for new research directions to characterize the large-structure spatial patterns that arise in physics, chemistry, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists to synthesize new classes of hyperuniform materials with novel physical properties via coarsening processes and using state-of-the-art techniques, such as stereolithography and 3D printing.

  6. Scalar perturbations and conformal transformation

    Fabris, J.C.; Tossa, J.

    1995-11-01

    The non-minimal coupling of gravity to a scalar field can be transformed into a minimal coupling through a conformal transformation. We show how to connect the results of a perturbation calculation, performed around a Friedman-Robertson-Walker background solution, before and after the conformal transformation. We work in the synchronous gauge, but we discuss the implications of employing other frames. (author). 16 refs

  7. Global structure of exact scalar hairy dynamical black holes

    Fan, Zhong-Ying [Center for High Energy Physics, Peking University,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Chen, Bin [Center for High Energy Physics, Peking University,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University, No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Collaborative Innovation Center of Quantum Matter,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Lü, H. [Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University,Beijing, 100875 P.R. (China)

    2016-05-30

    We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the 1/(n−1) power of the final black hole mass, where n is the space-time dimension. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.

  8. Observability of inert scalars at the LHC

    Hashemi, Majid [Shiraz University, Physics Department, College of Sciences, Shiraz (Iran, Islamic Republic of); Najjari, Saereh [University of Warsaw, Faculty of Physics, Warsaw (Poland)

    2017-09-15

    In this work we investigate the observability of inert doublet model scalars at the LHC operating at the center of mass energy of 14 TeV. The signal production process is pp → AH{sup ±} → ZHW{sup ±}H leading to two different final states of l{sup +}l{sup -}HjjH and l{sup +}l{sup -}Hl{sup ±}νH based on the hadronic and leptonic decay channels of the W boson. All the relevant background processes are considered and an event selection is designed to distinguish the signal from the large Standard Model background. We found that signals of the selected search channels are well observable at the LHC with an integrated luminosity of 300 fb{sup -1}. (orig.)

  9. Grassmann scalar fields and asymptotic freedom

    Palumbo, F [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1996-03-01

    The authors extend previous results about scalar fields whose Fourier components are even elements of a Grassmann algebra with given index of nilpotency. Their main interest in particle physics is related to the possibility that they describe fermionic composites analogous to the Copper pairs of superconductivity. The authors evaluate the free propagators for arbitrary index of nilpotency and they investigate a {phi}{sup 4} model to one loop. Due to the nature of the integral over even Grassmann fields such as a model exists for repulsive as well as attractive self interaction. In the first case the {beta}-function is equal to that of the ordinary theory, while in the second one the model is asymptotically free. The bare mass has a peculiar dependence on the cutoff, being quadratically decreasing/increasing for attractive/repulsive self interaction.

  10. Asymptotic behavior and Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2007-01-01

    We examine anti-de Sitter gravity minimally coupled to a self-interacting scalar field in D>=4 dimensions when the mass of the scalar field is in the range m * 2 = 2 * 2 +l -2 . Here, l is the AdS radius, and m * 2 is the Breitenlohner-Freedman mass. We show that even though the scalar field generically has a slow fall-off at infinity which back reacts on the metric so as to modify its standard asymptotic behavior, one can still formulate asymptotic conditions (i) that are anti-de Sitter invariant; and (ii) that allows the construction of well-defined and finite Hamiltonian generators for all elements of the anti-de Sitter algebra. This requires imposing a functional relationship on the coefficients a, b that control the two independent terms in the asymptotic expansion of the scalar field. The anti-de Sitter charges are found to involve a scalar field contribution. Subtleties associated with the self-interactions of the scalar field as well as its gravitational back reaction, not discussed in previous treatments, are explicitly analyzed. In particular, it is shown that the fields develop extra logarithmic branches for specific values of the scalar field mass (in addition to the known logarithmic branch at the B-F bound)

  11. Physics of the interior of a black hole with an exotic scalar matter

    Doroshkevich, Andrey; Shatskiy, Alexander; Hansen, Jakob; Novikov, Dmitriy; Novikov, Igor; Park, Dong-Ho

    2010-01-01

    We use a numerical code to consider the nonlinear processes arising when a Reissner-Nordstroem black hole is irradiated by an exotic scalar field ( modeled as a free massless scalar field with an opposite sign for its energy-momentum tensor). These processes are quite different from the processes arising in the case of the same black hole being irradiated by a pulse of a normal scalar field. In our case, we did not observe the creation of a spacelike strong singularity in the T region of the space-time. We investigate the antifocusing effects in the gravity field of the exotic scalar field with the negative energy density and the evolution of the mass function. We demonstrate the process of the vanishing of the black hole when it is irradiated by a strong pulse of an exotic scalar field.

  12. Is Sextans dwarf galaxy in a scalar field dark matter halo?

    Lora, V.; Magaña, Juan

    2014-01-01

    The Bose-Einstein condensate/scalar field dark matter model, considers that the dark matter is composed by spinless-ultra-light particles which can be described by a scalar field. This model is an alternative model to the Λ-cold dark matter paradigm, and therefore should be studied at galactic and cosmological scales. Dwarf spheroidal galaxies have been very useful when studying any dark matter theory, because the dark matter dominates their dynamics. In this paper we study the Sextans dwarf spheroidal galaxy, embedded in a scalar field dark matter halo. We explore how the dissolution time-scale of the stellar substructures in Sextans, constrain the mass, and the self-interacting parameter of the scalar field dark matter boson. We find that for masses in the range (0.12< m φ <8) ×10 -22 eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the stellar substructures in Sextans, and small enough mass to be compatible with dynamical limits. If the self-interacting parameter is distinct to zero, then the mass of the boson could be as high as m φ ≈2×10 -21 eV, but it would correspond to an unrealistic low mass for the Sextans dark matter halo . Therefore, the Sextans dwarf galaxy could be embedded in a scalar field/BEC dark matter halo with a preferred self-interacting parameter equal to zero

  13. Cosmological evolution and Solar System consistency of massive scalar-tensor gravity

    de Pirey Saint Alby, Thibaut Arnoulx; Yunes, Nicolás

    2017-09-01

    The scalar-tensor theory of Damour and Esposito-Farèse recently gained some renewed interest because of its ability to suppress modifications to general relativity in the weak field, while introducing large corrections in the strong field of compact objects through a process called scalarization. A large sector of this theory that allows for scalarization, however, has been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study an extension of this theory by endowing the scalar field with a mass to determine whether this allows the theory to pass Solar System constraints upon cosmological evolution for a larger sector of coupling parameter space. We show that the cosmological scalar field goes first through a quiescent phase, similar to the behavior of a massless field, but then it enters an oscillatory phase, with an amplitude (and frequency) that decays (and grows) exponentially. We further show that after the field enters the oscillatory phase, its effective energy density and pressure are approximately those of dust, as expected from previous cosmological studies. Due to these oscillations, we show that the scalar field cannot be treated as static today on astrophysical scales, and so we use time-dependent perturbation theory to compute the scalar-field-induced modifications to Solar System observables. We find that these modifications are suppressed when the mass of the scalar field and the coupling parameter of the theory are in a wide range, allowing the theory to pass Solar System constraints, while in principle possibly still allowing for scalarization.

  14. Mass

    Quigg, Chris

    2007-01-01

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  15. Entropic quantization of scalar fields

    Ipek, Selman; Caticha, Ariel

    2015-01-01

    Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation

  16. Entropic quantization of scalar fields

    Ipek, Selman; Caticha, Ariel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States)

    2015-01-13

    Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.

  17. Glueballs in the reaction π-p → phi phi n at 22 GeV/C

    Longacre, R.S.

    1983-01-01

    The BNL/CCNY group has observed and performed a partial wave analysis on approx. 4000 (22 GeV) π - p → phi phi n events. The OZI suppression has been found to be almost completely broken down. The phi phi spectrum is found to be composed almost entirely of I/sup G/J/sup PC/ = 0 + 2 ++ partially waves which occur in S and D-waves with spin zero and spin two. Assuming (1) QCD is correct, and (2) the OZI rule is universal for weakly coupled glue in disconnected Zweig diagrams due to the creation or annihilation of new types of quarks; it is concluded that one to three primary glueballs with the above quantum numbers are responsible for the observed data. 23 references

  18. Conformal standard model with an extended scalar sector

    Latosiński, Adam [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany); Lewandowski, Adrian; Meissner, Krzysztof A. [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Nicolai, Hermann [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany)

    2015-10-26

    We present an extended version of the Conformal Standard Model (characterized by the absence of any new intermediate scales between the electroweak scale and the Planck scale) with an enlarged scalar sector coupling to right-chiral neutrinos. The scalar potential and the Yukawa couplings involving only right-chiral neutrinos are invariant under a new global symmetry SU(3){sub N} that complements the standard U(1){sub B−L} symmetry, and is broken explicitly only by the Yukawa interaction, of order O(10{sup −6}), coupling right-chiral neutrinos and the electroweak lepton doublets. We point out four main advantages of this enlargement, namely: (1) the economy of the (non-supersymmetric) Standard Model, and thus its observational success, is preserved; (2) thanks to the enlarged scalar sector the RG improved one-loop effective potential is everywhere positive with a stable global minimum, thereby avoiding the notorious instability of the Standard Model vacuum; (3) the pseudo-Goldstone bosons resulting from spontaneous breaking of the SU(3){sub N} symmetry are natural Dark Matter candidates with calculable small masses and couplings; and (4) the Majorana Yukawa coupling matrix acquires a form naturally adapted to leptogenesis. The model is made perturbatively consistent up to the Planck scale by imposing the vanishing of quadratic divergences at the Planck scale (‘softly broken conformal symmetry’). Observable consequences of the model occur mainly via the mixing of the new scalars and the standard model Higgs boson.

  19. Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions

    Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.

    1979-01-01

    Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given

  20. Energy momentum tensor in theories with scalar field

    Joglekar, S.D.

    1992-01-01

    The renormalization of energy momentum tensor in theories with scalar fields and two coupling constants is considered. The need for addition of an improvement term is shown. Two possible forms for the improvement term are: (i) One in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be derived from an action that is a finite function of bare quantities), (ii) One in which the improvement coefficient is a finite quantity, i.e. finite function of the renormalized quantities are considered. Four possible model of such theories are (i) Scalar Q.E.D. (ii) Non-Abelian theory with scalars, (iii) Yukawa theory, (iv) A model with two scalars. In all these theories a negative conclusion is established: neither forms for the improvement terms lead to a finite energy momentum tensor. Physically this means that when interaction with external gravity is incorporated in such a model, additional experimental input in the form of root mean square mass radius must be given to specify the theory completely, and the flat space parameters are insufficient. (author). 12 refs

  1. Scalar conservation and boundedness in simulations of compressible flow

    Subbareddy, Pramod K.; Kartha, Anand; Candler, Graham V.

    2017-11-01

    With the proper combination of high-order, low-dissipation numerical methods, physics-based subgrid-scale models, and boundary conditions it is becoming possible to simulate many combustion flows at relevant conditions. However, non-premixed flows are a particular challenge because the thickness of the fuel/oxidizer interface scales inversely with Reynolds number. Sharp interfaces can also be present in the initial or boundary conditions. When higher-order numerical methods are used, there are often aphysical undershoots and overshoots in the scalar variables (e.g. passive scalars, species mass fractions or progress variable). These numerical issues are especially prominent when low-dissipation methods are used, since sharp jumps in flow variables are not always coincident with regions of strong variation in the scalar fields: consequently, special detection mechanisms and dissipative fluxes are needed. Most numerical methods diffuse the interface, resulting in artificial mixing and spurious reactions. In this paper, we propose a numerical method that mitigates this issue. We present methods for passive and active scalars, and demonstrate their effectiveness with several examples.

  2. Supplying Dark Energy from Scalar Field Dark Matter

    Gogberashvili, Merab; Sakharov, Alexander S.

    2017-01-01

    We consider the hypothesis that dark matter and dark energy consists of ultra-light self-interacting scalar particles. It is found that the Klein-Gordon equation with only two free parameters (mass and self-coupling) on a Schwarzschild background, at the galactic length-scales has the solution which corresponds to Bose-Einstein condensate, behaving as dark matter, while the constant solution at supra-galactic scales can explain dark energy.

  3. Deconstructing scalar QED at zero and finite temperature

    Kan, N.; Sakamoto, K.; Shiraishi, K.

    2003-01-01

    We calculate the effective potential for the WLPNGB in a world with a circular latticized extra dimension. The mass of the Wilson line pseudo-Nambu-Goldstone boson (WLPNGB) is calculated from the one-loop quantum effect of scalar fields at zero and finite temperature. We show that a series expansion by the modified Bessel functions is useful to calculate the one-loop effective potentials. (orig.)

  4. Scalar Similarity for Relaxed Eddy Accumulation Methods

    Ruppert, Johannes; Thomas, Christoph; Foken, Thomas

    2006-07-01

    The relaxed eddy accumulation (REA) method allows the measurement of trace gas fluxes when no fast sensors are available for eddy covariance measurements. The flux parameterisation used in REA is based on the assumption of scalar similarity, i.e., similarity of the turbulent exchange of two scalar quantities. In this study changes in scalar similarity between carbon dioxide, sonic temperature and water vapour were assessed using scalar correlation coefficients and spectral analysis. The influence on REA measurements was assessed by simulation. The evaluation is based on observations over grassland, irrigated cotton plantation and spruce forest. Scalar similarity between carbon dioxide, sonic temperature and water vapour showed a distinct diurnal pattern and change within the day. Poor scalar similarity was found to be linked to dissimilarities in the energy contained in the low frequency part of the turbulent spectra ( definition.

  5. Dynamical origin of the electroweak scale and the 125 GeV scalar

    Stefano Di Chiara

    2015-11-01

    Full Text Available We consider a fully dynamical origin for the masses of weak gauge bosons and heavy quarks of the Standard Model. Electroweak symmetry breaking and the gauge boson masses arise from new strong dynamics, which leads to the appearance of a composite scalar in the spectrum of excitations. In order to generate mass for the Standard Model fermions, we consider extended gauge dynamics, effectively represented by four fermion interactions at presently accessible energies. By systematically treating these interactions, we show that they lead to a large reduction of the mass of the scalar resonance. Therefore, interpreting the scalar as the recently observed 125 GeV state implies that the mass originating solely from new strong dynamics can be much heavier, i.e. of the order of 1 TeV. In addition to reducing the mass of the scalar resonance, we show that the four-fermion interactions allow for contributions to the oblique corrections in agreement with the experimental constraints. The couplings of the scalar resonance with the Standard Model gauge bosons and fermions are evaluated, and found to be compatible with the current LHC results. Additional new resonances are expected to be heavy, with masses of the order of a few TeVs, and hence accessible in future experiments.

  6. Dynamical origin of the electroweak scale and the 125 GeV scalar

    Di Chiara, Stefano; Foadi, Roshan; Tuominen, Kimmo; Tähtinen, Sara

    2015-01-01

    We consider a fully dynamical origin for the masses of weak gauge bosons and heavy quarks of the Standard Model. Electroweak symmetry breaking and the gauge boson masses arise from new strong dynamics, which leads to the appearance of a composite scalar in the spectrum of excitations. In order to generate mass for the Standard Model fermions, we consider extended gauge dynamics, effectively represented by four fermion interactions at presently accessible energies. By systematically treating these interactions, we show that they lead to a large reduction of the mass of the scalar resonance. Therefore, interpreting the scalar as the recently observed 125 GeV state implies that the mass originating solely from new strong dynamics can be much heavier, i.e. of the order of 1 TeV. In addition to reducing the mass of the scalar resonance, we show that the four-fermion interactions allow for contributions to the oblique corrections in agreement with the experimental constraints. The couplings of the scalar resonance with the Standard Model gauge bosons and fermions are evaluated, and found to be compatible with the current LHC results. Additional new resonances are expected to be heavy, with masses of the order of a few TeVs, and hence accessible in future experiments.

  7. Scalar-tetrad theories of gravity

    Hayward, J.

    1981-01-01

    A general theory of gravitation is constructed using a tetrad and a scalar field. The resulting theory, called a scalar-tetrad theory, does not contain Einstein's or the Brans-Dicke theories as special cases. However, there is a range of scalar-tetrad theories with the same post-Newtonian limit as Einstein's theory. Two particular models are interesting because of their simplicity. (author)

  8. Quark-gluon mixing in scalar mesons

    Eremyan, Sh.S.; Nazaryan, A.E.

    1986-01-01

    Scalar mesons are considered within the quark-gluon mixing model. It is shown that there exists decouplet of scalar particles consisting of S* (975), ε (1400), S*' (1700), δ (980) and κ (1350) resonances. It has turned out that the long ago known S* (975)-resonance is a nearly pure glouball. A good description of all available experimental data on scalar meson decays is obtained

  9. Scalar dark matter in the B−L model

    Rodejohann, Werner; Yaguna, Carlos E.

    2015-01-01

    The U(1) B−L extension of the Standard Model requires the existence of right-handed neutrinos and naturally realizes the seesaw mechanism of neutrino mass generation. We study the possibility of explaining the dark matter in this model with an additional scalar field, ϕ DM , that is a singlet of the Standard Model but charged under U(1) B−L . An advantage of this scenario is that the stability of ϕ DM can be guaranteed by appropriately choosing its B−L charge, without the need of an extra ad hoc discrete symmetry. We investigate in detail the dark matter phenomenology of this model. We show that the observed dark matter density can be obtained via gauge or scalar interactions, and that semi-annihilations could play an important role in the latter case. The regions consistent with the dark matter density are determined in each instance and the prospects for detection in future experiments are analyzed. If dark matter annihilations are controlled by the B−L gauge interaction, the mass of the dark matter particle should lie below 5 TeV and its direct detection cross section can be easily probed by XENON1T; if instead they are controlled by scalar interactions, the dark matter mass can be much larger and the detection prospects are less certain. Finally, we show that this scenario can be readily extended to accommodate multiple dark matter particles

  10. On scalar condensate baryogenesis model

    Kiriloval, D.P.; Valchanov, T.V.

    2004-09-01

    We discuss the scalar field condensate baryogenesis model, which is among the baryogenesis scenarios preferred today, compatible with inflation. According to that model a complex scalar field φ, carrying baryon charge B≠0 is generated at inflation. The baryon excess in the Universe results from the φ decay at later stages of Universe evolution (T 15 GeV). We updated the model's parameters range according to the current observational cosmological constraints and analyzed numerically φ evolution after the inflationary stage till its decay φ → qq-barlγ. During that period oscillated with a decreasing amplitude due to Universe expansion and particle production processes due to the coupling of the field to fermions gφf 1 f 2 . It was shown that particle creation processes play an essential role for evolution and its final value. It may lead to a considerable decrease of the field's amplitude for large g and/or large H values, which reflects finally into strong damping of the baryon charge carried by the condensate. The analysis suggests that for a natural range of the model's parameters the observed value of the baryon asymmetry can be obtained and the model can serve as a successful baryogenesis model, compatible with inflation. (author)

  11. Time dependent black holes and scalar hair

    Chadburn, Sarah; Gregory, Ruth

    2014-01-01

    We show how to correctly account for scalar accretion onto black holes in scalar field models of dark energy by a consistent expansion in terms of a slow roll parameter. At leading order, we find an analytic solution for the scalar field within our Hubble volume, which is regular on both black hole and cosmological event horizons, and compute the back reaction of the scalar on the black hole, calculating the resulting expansion of the black hole. Our results are independent of the relative size of black hole and cosmological event horizons. We comment on the implications for more general black hole accretion, and the no hair theorems. (paper)

  12. Flapping model of scalar mixing in turbulence

    Kerstein, A.R.

    1991-01-01

    Motivated by the fluctuating plume model of turbulent mixing downstream of a point source, a flapping model is formulated for application to other configurations. For the scalar mixing layer, simple expressions for single-point scalar fluctuation statistics are obtained that agree with measurements. For a spatially homogeneous scalar mixing field, the family of probability density functions previously derived using mapping closure is reproduced. It is inferred that single-point scalar statistics may depend primarily on large-scale flapping motions in many cases of interest, and thus that multipoint statistics may be the principal indicators of finer-scale mixing effects

  13. Scalar resonances as two-quark states

    Shabalin, E.P.

    1984-01-01

    On the base of the theory with U(3)xU(3) symmetric chiral Lagrangian the properties of the two-quark scalar mesons are considered. It is shown, that the scalar resonances delta (980) and K(1240) may be treated as the p-wave states of anti qq system. The properties of the isovector and strange scalar mesons, obtained as a propetrties of the two-quark states, turn out to be very close to the properties of the isovector scalar resonance delta (980) and strange resonance K(1240)

  14. Scalar perturbations of two-dimensional Horava-Lifshitz black holes

    Cruz, Miguel; Gonzalez-Espinoza, Manuel; Saavedra, Joel; Vargas-Arancibia, Diego

    2016-01-01

    In this article, we study the stability of black hole solutions found in the context of dilatonic Horava-Lifshitz gravity in 1 + 1 dimensions by means of the quasinormal modes approach. In order to find the corresponding quasinormal modes, we consider the perturbations of massive and massless scalar fields minimally coupled to gravity. In both cases, we found that the quasinormal modes have a discrete spectrum and are completely imaginary, which leads to damping modes. For a massive scalar field and a non-vanishing cosmological constant, our results suggest unstable behavior for large values of the scalar field mass. (orig.)

  15. Status of the scalar singlet dark matter model

    Athron, Peter; Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Bringmann, Torsten; Dal, Lars A.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Chrzaszcz, Marcin [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Jackson, Paul; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kahlhoefer, Felix [DESY, Hamburg (Germany); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); McKay, James; Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Mahmoudi, Farvah [Univ. Lyon, Univ. Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); CERN, Theoretical Physics Department, Geneva (Switzerland); Martinez, Gregory D. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Centre for Translational Data Science, Faculty of Engineering and Information Technologies, School of Physics, Sydney, NSW (Australia); Serra, Nicola [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Collaboration

    2017-08-15

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z{sub 2} symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ∝ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned. (orig.)

  16. Status of the scalar singlet dark matter model

    Athron, Peter; Balázs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Kahlhoefer, Felix; Krislock, Abram; Kvellestad, Anders; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin

    2017-08-01

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z_2 symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ˜ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.

  17. Dark matter and electroweak phase transition in the mixed scalar dark matter model

    Liu, Xuewen; Bian, Ligong

    2018-03-01

    We study the electroweak phase transition in the framework of the scalar singlet-doublet mixed dark matter model, in which the particle dark matter candidate is the lightest neutral Higgs that comprises the C P -even component of the inert doublet and a singlet scalar. The dark matter can be dominated by the inert doublet or singlet scalar depending on the mixing. We present several benchmark models to investigate the two situations after imposing several theoretical and experimental constraints. An additional singlet scalar and the inert doublet drive the electroweak phase transition to be strongly first order. A strong first-order electroweak phase transition and a viable dark matter candidate can be accomplished in two benchmark models simultaneously, for which a proper mass splitting among the neutral and charged Higgs masses is needed.

  18. Exotic colored scalars at the LHC

    Blum, Kfir; Efrati, Aielet; Frugiuele, Claudia; Nir, Yosef [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, 7610001 (Israel)

    2017-02-21

    We study the phenomenology of exotic color-triplet scalar particles X with charge |Q|=2/3,4/3,5/3,7/3,8/3 and 10/3. If X is an SU(2){sub W}-non-singlet, mass splitting within the multiplet allows for cascade decays of the members into the lightest state. We study examples where the lightest state, in turn, decays into a three-body W{sup ±}jj final state, and show that in such case the entire multiplet is compatible with indirect precision tests and with direct collider searches for continuum pair production of X down to m{sub X}∼250 GeV. However, bound states S, made of XX{sup †} pairs at m{sub S}≈2m{sub X}, form under rather generic conditions and their decay to diphoton can be the first discovery channel of the model. Furthermore, for SU(2){sub W}-non-singlets, the mode S→W{sup +}W{sup −} may be observable and the width of S→γγ and S→jj may appear large as a consequence of mass splittings within the X-multiplet. As an example we study in detail the case of an SU(2){sub W}-quartet, finding that m{sub X}≃450 GeV is allowed by all current searches.

  19. Limit on the Two-Photon Production of the Glueball Candidate fJ(2220) at the Cornell Electron Storage Ring

    Godang, R.; Kinoshita, K.; Lai, I.C.; Pomianowski, P.; Schrenk, S.; Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L.P.; Zhou, G.J.; Barish, B.; Chadha, M.; Chan, S.; Eigen, G.; Miller, J.S.; OGrady, C.; Schmidtler, M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F.; Asner, D.M.; Bliss, D.W.; Brower, W.S.; Masek, G.; Paar, H.P.; Prell, S.; Sivertz, M.; Sharma, V.; Gronberg, J.; Hill, T.S.; Kutschke, R.; Lange, D.J.; Menary, S.; Morrison, R.J.; Nelson, H.N.; Nelson, T.K.; Qiao, C.; Richman, J.D.; Roberts, D.; Ryd, A.; Witherell, M.S.; Balest, R.; Behrens, B.H.; Cho, K.; Ford, W.T.; Park, H.; Rankin, P.; Roy, J.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berger, B.E.; Berkelman, K.; Bloom, K.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Crowcroft, D.S.; Dickson, M.; Drell, P.S.; Ecklund, K.M.; Ehrlich, R.; Elia, R.; Foland, A.D.; Gaidarev, P.; Galik, R.S.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Hopman, P.I.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Lee, T.; Liu, Y.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; Patterson, J.R.; Peterson, D.; Riley, D.; Soffer, A.; Ward, C.; Athanas, M.; Avery, P.; Jones, C.D.; Lohner, M.; Prescott, C.; Yelton, J.; Zheng, J.; Brandenburg, G.; Briere, R.A.; Gao, Y.S.; Kim, D.Y.; Wilson, R.; Yamamoto, H.

    1997-01-01

    We use the CLEO detector at the Cornell e + e - storage ring, CESR, to search for the two-photon production of the glueball candidate f J (2220) in its decay to K s K s . We present a restrictive upper limit on the product of the two-photon partial width and the K s K s branching fraction, (Γ γγ B K s K s ) f J(2220) . We use this limit to calculate a lower limit on the stickiness, which is a measure of the two-gluon coupling relative to the two-photon coupling. This limit on stickiness indicates that the f J (2220) has substantial glueball content. copyright 1997 The American Physical Society

  20. Possible production of glueballs in anti p sup 4 He reactions at 0. 6 GeVc sup -1 incident momentum

    Balestra, F.; Bossolasco, S.; Bussa, M.P.; Busso, L.; Fava, L.; Ferrero, L.; Grasso, A.; Maggiora, A.; Panzieri, D.; Piragino, G.; Piragino, R.; Tosello, F. (Ist. di Fisica Generale ' A. Avogadro' , Univ. of Turin and INFN (Italy)); Bendiscioli, G.; Filippini, V.; Rotondi, A.; Salvini, P.; Zenoni, A. (Dipt. di Fisica Nucleare e Teorica, Univ. of Pavia and INFN, Sezione di Pavia (Italy)); Batusov, Yu.; Bunyatov, S.A.; Falomkin, I.V.; Nichitiu, F.; Pontecorvo, G.B.; Rozhdestvensky, A.M.; Sapozhnikov, M.G.; Tretyak, V.I. (Joint Inst. for Nuclear Research, Dubna (USSR)); Guaraldo, C. (Lab. Nazionali di Frascati, INFN (Italy)); Lodi Rizzini, E. (Dipt. di Automazione Industriale, Univ. of Brescia and INFN, Turin (Italy)); Haatuft, A.; Halsteinslid, A.; Myklebost, K.; Olsen, J.M. (Physics Dept., Univ. of Bergen (Norway)); Breivik, F.O.; Danielsen, K.M.; Jacobsen, T.; Soerensen, S.O. (Inst. of Physics, Univ. of Oslo (Norway))

    1991-05-01

    A sharp peak at 1150 MeV c{sup -2} in the {pi}{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup +}-system in the final state of anti p {sup 4}He-reactions at 0.6 GeV c{sup -1} incident momentum is seen. This system probably has spin-parity = 0{sup +} or 2{sup +}, which are possible spin-parity assignments of a glueball. (orig.).

  1. Scalar formalism for quantum electrodynamics

    Hostler, L.C.

    1985-01-01

    A set of Feynman rules, similar to the rules of scalar electrodynamics, is derived for a full quantum electrodynamics based on the relativistic Klein--Gordon--type wave equation ]Pi/sub μ/Pi/sub μ/+m 2 +ie sigma x (E +iB)]phi = 0, Pi/sub μ/ equivalent-i partial/sub μ/-eA/sub μ/, for spin- 1/2 particles [J. Math. Phys. 23, 1179 (1982); J. Math. Phys. 24, 2366 (1983)]. In this equation, phi is a 2 x 1 Pauli spinor and sigma/sub a/, a = 1,2,3, are the usual 2 x 2 Pauli spin matrices. The irreducible self-energy parts are compared to those of conventional quantum electrodynamics

  2. Anomalous coupling of scalars to gauge fields

    Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Geneve Univ. (Switzerland). Dept. de Physique Theorique; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, Anne-Christine [Centre for Mathematical Sciences, Cambridge (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Seery, David [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Weltman, Amanda [Cape Town Univ., Rondebosch (South Africa). Astronomy, Cosmology and Gravity Centre

    2010-10-15

    We study the transformation properties of a scalar-tensor theory, coupled to fermions, under the Weyl rescaling associated with a transition from the Jordan to the Einstein frame. We give a simple derivation of the corresponding modification to the gauge couplings. After changing frames, this gives rise to a direct coupling between the scalar and the gauge fields. (orig.)

  3. Anomalous coupling of scalars to gauge fields

    Brax, Philippe; Davis, Anne-Christine; Seery, David; Weltman, Amanda

    2010-10-01

    We study the transformation properties of a scalar-tensor theory, coupled to fermions, under the Weyl rescaling associated with a transition from the Jordan to the Einstein frame. We give a simple derivation of the corresponding modification to the gauge couplings. After changing frames, this gives rise to a direct coupling between the scalar and the gauge fields. (orig.)

  4. Scalar field dark matter in hybrid approach

    Friedrich, Pavel; Prokopec, Tomislav

    2017-01-01

    We develop a hybrid formalism suitable for modeling scalar field dark matter, in which the phase-space distribution associated to the real scalar field is modeled by statistical equal-time two-point functions and gravity is treated by two stochastic gravitational fields in the longitudinal gauge (in

  5. Scalar Quantum Electrodynamics: Perturbation Theory and Beyond

    Bashir, A.; Gutierrez-Guerrero, L. X.; Concha-Sanchez, Y.

    2006-01-01

    In this article, we calculate scalar propagator in arbitrary dimensions and gauge and the three-point scalar-photon vertex in arbitrary dimensions and Feynman gauge, both at the one loop level. We also discuss constraints on their non perturbative structure imposed by requirements of gauge invariance and perturbation theory

  6. A note on perfect scalar fields

    Unnikrishnan, Sanil; Sriramkumar, L.

    2010-01-01

    We derive a condition on the Lagrangian density describing a generic, single, noncanonical scalar field, by demanding that the intrinsic, nonadiabatic pressure perturbation associated with the scalar field vanishes identically. Based on the analogy with perfect fluids, we refer to such fields as perfect scalar fields. It is common knowledge that models that depend only on the kinetic energy of the scalar field (often referred to as pure kinetic models) possess no nonadiabatic pressure perturbation. While we are able to construct models that seemingly depend on the scalar field and also do not contain any nonadiabatic pressure perturbation, we find that all such models that we construct allow a redefinition of the field under which they reduce to pure kinetic models. We show that, if a perfect scalar field drives inflation, then, in such situations, the first slow roll parameter will always be a monotonically decreasing function of time. We point out that this behavior implies that these scalar fields cannot lead to features in the inflationary, scalar perturbation spectrum.

  7. Neutrino Oscillations as a Probe of Light Scalar Dark Matter.

    Berlin, Asher

    2016-12-02

    We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.

  8. Instantons in QCD 2. Correlators of pseudoscalar and scalar currents

    Shuryak, E.V.

    1988-01-01

    The instanton-induced contributions to correlation functions in the QCD vacuum using numerical data on the ensemble of pseudoparticles (PPs) obtained previously are calculated. The hierarchy of the π, K, η, η' masses are explained, as well as the sign and (approximately) the magnitude of the η-η' mixing. All octet members have about the same coupling constants, while that for η' seems to be larger by about 50%. The results for the I=1 scalar channel is consistent with the meson mass around 1 GeV and the coupling close to that of the pion

  9. Search for scalar leptoquarks with the ATLAS experiment

    Pleskot, Vojtech; Tapprogge, Stefan [Institut fur Physik, JGU Mainz, Staudinger Weg 7, D-55099 Mainz (Germany)

    2016-07-01

    Scalar leptoquarks are hypothetical particles predicted by many theories beyond the Standard Model. They carry both color and electric charge. They couple to leptons and quarks via a Yukawa interaction lagrangian term. In a minimalistic Buchmueller-Rueckl-Wyler model, there are three generations of leptoquarks each of which couple to one lepton family only. In proton-proton collisions, leptoquarks can be produced in pairs. The talk will summarize recent efforts of the ATLAS collaboration in the search for the pair production of scalar leptoquarks in proton-proton collisions at a centre-of-mass energy of 13 TeV. The detector signature searched for are two electrons (muons) and two jets in the case of a first (second) generation leptoquark pair production.

  10. Infrared and ultraviolet behaviour of effective scalar field theory

    Ball, R.D.; Thorne, R.S.

    1995-01-01

    We consider the infrared and ultraviolet behaviour of the effective quantum field theory of a single Z 2 symmetric scalar field. In a previous paper we proved to all orders in perturbation theory the renormalizability of massive effective scalar field theory using Wilson's exact renormalization group equation. Here we show that away from exceptional momenta the massless theory is similarly renormalizable, and we prove detailed bounds on Green's functions as arbitrary combinations of exceptional Euclidean momenta are approached. As a corollary we also Weinberg's Theorem for the massive effective theory, n the form of bounds on Green's functions at Euclidean momenta much greater than the particle mass but below the naturalness scale of theory. 12 refs

  11. Infrared and ultraviolet behaviour of effective scalar field theory

    Ball, R D

    1995-01-01

    We consider the infrared and ultraviolet behaviour of the effective quantum field theory of a single Z_2 symmetric scalar field. In a previous paper we proved to all orders in perturbation theory the renormalizability of massive effective scalar field theory using Wilson's exact renormalization group equation. Here we show that away from exceptional momenta the massless theory is similarly renormalizable, and we prove detailed bounds on Green's functions as arbitrary combinations of exceptional Euclidean momenta are approached. As a corollary we also prove Weinberg's Theorem for the massive effective theory, in the form of bounds on Green's functions at Euclidean momenta much greater than the particle mass but below the naturalness scale of the theory.

  12. Cosmic variance in inflation with two light scalars

    Bonga, Béatrice; Brahma, Suddhasattwa; Deutsch, Anne-Sylvie; Shandera, Sarah, E-mail: bpb165@psu.edu, E-mail: suddhasattwa.brahma@gmail.com, E-mail: asdeutsch@psu.edu, E-mail: shandera@gravity.psu.edu [Institute for Gravitation and the Cosmos and Physics Department, The Pennsylvania State University, University Park, PA, 16802 (United States)

    2016-05-01

    We examine the squeezed limit of the bispectrum when a light scalar with arbitrary non-derivative self-interactions is coupled to the inflaton. We find that when the hidden sector scalar is sufficiently light ( m ∼< 0.1 H ), the coupling between long and short wavelength modes from the series of higher order correlation functions (from arbitrary order contact diagrams) causes the statistics of the fluctuations to vary in sub-volumes. This means that observations of primordial non-Gaussianity cannot be used to uniquely reconstruct the potential of the hidden field. However, the local bispectrum induced by mode-coupling from these diagrams always has the same squeezed limit, so the field's locally determined mass is not affected by this cosmic variance.

  13. Search for scalar quarks in $e^{+}e^{-}$ collisions at $\\sqrt{s}$ up to 209 GeV

    Heister, A.; Barate, R.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.G.; Settles, R.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Loomis, C.; Serin, L.; Veillet, J.J.; de Vivie de Regie, J.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.

    2002-01-01

    Search for Scalar Quarks in e+e- Collisions at sqrt(s) up to 209 GeV Searches for scalar top, scalar bottom and mass-degenerate scalar quarks are performed in the data collected by the ALEPH detector at LEP, at centre-of-mass energies up to 209 GeV, corresponding to an integrated luminosity of 675 pb-1. No evidence for the production of such particles is found in the decay channels stop->c/u chi, stop->b l snu, sbottom-> b chi, squark-> q chi or in the stop four-body decay channel stop-> b chi f f' studied for the first time at LEP. The results of these searches yield improved mass lower limits. In particular, an absolute lower limit of 63GeV/c2 is obtained for the stop mass, at 95% confidence level, irrespective of stop lifetime and decay branching ratios.

  14. Search for scalar leptons at LEP with the L3 detector

    Xia, Lei

    2002-01-01

    In this thesis, I present a search for scalar leptons in e+e- annihilation using the L3 detector at LEP. Data collected in 1999 and 2000, at center-of-mass energies between 192 GeV and 208 GeV, was used in this analysis. This work covered the scalar lepton searches in both SUGRA and GMSB models. To achieve this analysis, a parametrized selection was developed to handle the different event signatures in SUGRA models. Improvement of the L3 simulation and reconstruction program packages was carried out so that one can simulated the scalar leptons in GMSB models correctly. The simulation of the L3 Time Expansion Chamber (TEC) dE/dx measurement was rewritten to facilitate the analysis for a stable slepton signal, which is relevant in some parts of the parameter space in GMSB models. In this analysis, we didn't abserve any significant indication of scalar lepton production of any type. We achieved the following mass exclusion limits for scalar leptons in SUGRA models, for large dM: M(scalar e) > 97 GeV (expected 97...

  15. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2016-01-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.

  16. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    Doneva, Daniela D.; Yazadjiev, Stoytcho S., E-mail: daniela.doneva@uni-tuebingen.de, E-mail: yazad@phys.uni-sofia.bg [Theoretical Astrophysics, Eberhard Karls University of Tübingen, Tübingen 72076 (Germany)

    2016-11-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.

  17. Excited scalar and pseudoscalar mesons in the extended linear sigma model

    Parganlija, Denis [Technische Universitaet Wien, Institut fuer Theoretische Physik, Vienna (Austria); Giacosa, Francesco [Jan Kochanowski University, Institute of Physics, Kielce (Poland); Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany)

    2017-07-15

    We present an in-depth study of masses and decays of excited scalar and pseudoscalar anti qq states in the Extended Linear Sigma Model (eLSM). The model also contains ground-state scalar, pseudoscalar, vector and axial-vector mesons. The main objective is to study the consequences of the hypothesis that the f{sub 0}(1790) resonance, observed a decade ago by the BES Collaboration and recently by LHCb, represents an excited scalar quarkonium. In addition we also analyse the possibility that the new a{sub 0}(1950) resonance, observed recently by BABAR, may also be an excited scalar state. Both hypotheses receive justification in our approach although there appears to be some tension between the simultaneous interpretation of f{sub 0}(1790)/a{sub 0}(1950) and pseudoscalar mesons η(1295), π(1300), η(1440) and K(1460) as excited anti qq states. (orig.)

  18. Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons

    Hees, A.; Guéna, J.; Abgrall, M.; Bize, S.; Wolf, P.

    2016-01-01

    We use six years of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but pr...

  19. Inert doublet dark matter with an additional scalar singlet and 125 GeV Higgs boson

    Dutta Banik, Amit; Majumdar, Debasish [Saha Institute of Nuclear Physics, Astroparticle Physics and Cosmology Division, Kolkata (India)

    2014-11-15

    In this work we consider a model for particle dark matter where an extra inert Higgs doublet and an additional scalar singlet is added to the Standard Model (SM) Lagrangian. The dark matter candidate is obtained from only the inert doublet. The stability of this one component dark matter is ensured by imposing a Z{sub 2} symmetry on this additional inert doublet. The additional singlet scalar has a vacuum expectation value (VEV) and mixes with the Standard Model Higgs doublet, resulting in two CP even scalars h{sub 1} and h{sub 2}. We treat one of these scalars, h{sub 1}, to be consistent with the SM Higgs-like boson of mass around 125 GeV reported by the LHC experiment. These two CP even scalars contribute to the annihilation cross section of this inert doublet dark matter, resulting in a larger dark matter mass region that satisfies the observed relic density. We also investigate the h{sub 1} → γγ and h{sub 1} → γ Z processes and compared these with LHC results. This is also used to constrain the dark matter parameter space in the present model. We find that the dark matter candidate in the mass region 60-80 GeV (m{sub 1} = 125 GeV, mass of h{sub 1}) satisfies the recent bound from LUX direct detection experiment. (orig.)

  20. Adaptive scalarization methods in multiobjective optimization

    Eichfelder, Gabriele

    2008-01-01

    This book presents adaptive solution methods for multiobjective optimization problems based on parameter dependent scalarization approaches. Readers will benefit from the new adaptive methods and ideas for solving multiobjective optimization.

  1. Exotic Material as Interactions Between Scalar Fields

    Robertson G. A.

    2015-10-01

    Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as “wormholes” and “warp drives”. However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg- Landau (GL scalar fields associated with superconductor junctions is investigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energy fluctuations, cosmological scalar (i. e., Higgs fields, and gravity.

  2. Exotic Material as Interactions Between Scalar Fields

    Robertson G. A.

    2006-04-01

    Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as "wormholes" and "warp drives". However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg-Landau (GL scalar fields associated with superconductor junctions isinvestigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energyfluctuations, cosmological scalar (i.e., Higgs fields, and gravity.

  3. Oscillating scalar fields in extended quintessence

    Li, Dan; Pi, Shi; Scherrer, Robert J.

    2018-01-01

    We study a rapidly oscillating scalar field with potential V (ϕ )=k |ϕ |n nonminimally coupled to the Ricci scalar R via a term of the form (1 -8 π G0ξ ϕ2)R in the action. In the weak coupling limit, we calculate the effect of the nonminimal coupling on the time-averaged equation of state parameter γ =(p +ρ )/ρ . The change in ⟨γ ⟩ is always negative for n ≥2 and always positive for n change to be infinitesimally small at the present time whenever the scalar field dominates the expansion, but constraints in the early universe are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show that, under reasonable assumptions, this effective energy density is always smaller than the density of the scalar field itself.

  4. Covariant formulation of scalar-torsion gravity

    Hohmann, Manuel; Järv, Laur; Ualikhanova, Ulbossyn

    2018-05-01

    We consider a generalized teleparallel theory of gravitation, where the action contains an arbitrary function of the torsion scalar and a scalar field, f (T ,ϕ ) , thus encompassing the cases of f (T ) gravity and a nonminimally coupled scalar field as subclasses. The action is manifestly Lorentz invariant when besides the tetrad one allows for a flat but nontrivial spin connection. We derive the field equations and demonstrate how the antisymmetric part of the tetrad equations is automatically satisfied when the spin connection equation holds. The spin connection equation is a vital part of the covariant formulation, since it determines the spin connection associated with a given tetrad. We discuss how the spin connection equation can be solved in general and provide the cosmological and spherically symmetric examples. Finally, we generalize the theory to an arbitrary number of scalar fields.

  5. Cosmic inflation constrains scalar dark matter

    Tommi Tenkanen

    2015-12-01

    Full Text Available In a theory containing scalar fields, a generic consequence is a formation of scalar condensates during cosmic inflation. The displacement of scalar fields out from their vacuum values sets specific initial conditions for post-inflationary dynamics and may lead to significant observational ramifications. In this work, we investigate how these initial conditions affect the generation of dark matter in the class of portal scenarios where the standard model fields feel new physics only through Higgs-mediated couplings. As a representative example, we will consider a $ Z_2 $ symmetric scalar singlet $ s $ coupled to Higgs via $ \\lambda \\Phi ^\\dagger \\Phi s^2 $. This simple extension has interesting consequences as the singlet constitutes a dark matter candidate originating from non-thermal production of singlet particles out from a singlet condensate, leading to a novel interplay between inflationary dynamics and dark matter properties.

  6. Symmetry Breaking in a random passive scalar

    Kilic, Zeliha; McLaughlin, Richard; Camassa, Roberto

    2017-11-01

    We consider the evolution of a decaying passive scalar in the presence of a gaussian white noise fluctuating shear flow. We focus on deterministic initial data and establish the short, intermediate, and long time symmetry properties of the evolving point wise probability measure for the random passive scalar. Analytical results are compared directly to Monte Carlo simulations. Time permitting we will compare the predictions to experimental observations.

  7. μ- conversion via doubly charged Higgs scalar

    Picciotto, C.E.; Zahir, M.S.

    1982-10-01

    A new mechanism is used to calculate μ - → e + conversion in nuclei, based on the existence of a doubly charged Higgs scalar. The scalar is part of a triplet which generates the spontaneous breakdown of B-L symmetry in an extension of the standard model, as proposed by Gelmini and Roncadelli. We find a limit for conversion rates which is comparable to those of earlier calculations

  8. Leading quantum gravitational corrections to scalar QED

    Bjerrum-Bohr, N. E. J.

    2002-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged scalars in the combined theory of general relativity and scalar QED. The combined theory is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The n...

  9. Leptonic Dark Matter with Scalar Dilepton Mediator

    Ma, Ernest

    2018-01-01

    A simple and elegant mechanism is proposed to resolve the problem of having a light scalar mediator for self-interacting dark matter and the resulting disruption to the cosmic microwave background (CMB) at late times by the former's enhanced Sommerfeld production and decay. The crucial idea is to have Dirac neutrinos with the conservation of U(1) lepton number extended to the dark sector. The simplest scenario consists of scalar or fermion dark matter with unit lepton number accompanied by a ...

  10. Symmetries of noncommutative scalar field theory

    De Goursac, Axel; Wallet, Jean-Christophe

    2011-01-01

    We investigate symmetries of the scalar field theory with a harmonic term on the Moyal space with the Euclidean scalar product and general symplectic form. The classical action is invariant under the orthogonal group if this group acts also on the symplectic structure. We find that the invariance under the orthogonal group can also be restored at the quantum level by restricting the symplectic structures to a particular orbit.

  11. Quantization of scalar-spinor instanton

    Inagaki, H.

    1977-04-01

    A systematic quantization to the scalar-spinor instanton is given in a canonical formalism of Euclidean space. A basic idea is in the repair of the symmetries of the 0(5) covariant system in the presence of the instanton. The quantization of the fermion is carried through in such a way that the fermion number should be conserved. Our quantization enables us to get well-defined propagators for both the scalar and the fermion, which are free from unphysical poles

  12. Search for the first generation scalar leptoquarks with D0; Recherche de leptoquarks scalaires de premiere generation aupres de D0

    Cothenet, A

    2004-05-15

    This work was dedicated to the search for pairs of first generation scalar leptoquarks one decaying into ej and the other into {nu}j. The experimental data used (175,6 pb{sup -1}) is that collected during the run-II of the D0 experiment at Tevatron. The production cross-sections of scalar leptoquark pairs has been assessed at a 95% confidence level for different values of the mass. The comparison of these values with theoretical values has led us to state that for a branching ratio {beta} = 0.5 the existence of scalar leptoquarks with a mass lower than 194 GeV is not possible. For a branching ratio {beta} = 1, some scalar leptoquarks with mass < 238 GeV may be excluded while for {beta} = 0.5, some scalar leptoquarks with mass < 213 GeV are excluded.

  13. Search for Chameleon Scalar Fields with the Axion Dark Matter Experiment

    Rybka, G.; Hotz, M.; Rosenberg, L. J; Asztalos, S. J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hoskins, J.; Martin, C.; Sikivie, P.; Tanner, D. B.; Bradley, R.; Clarke, J.

    2010-01-01

    Scalar fields with a 'chameleon' property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the afterglow effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling β γ excluding values between 2x10 9 and 5x10 14 for effective chameleon masses between 1.9510 and 1.9525 μeV.

  14. Electroweak phase transition in an extension of the standard model with scalar color octet

    Ham, S. W.; Shim, Seong-A; Oh, S. K.

    2010-01-01

    In an extension of the standard model with a scalar color octet, the possibility of the strongly first-order electroweak phase transition is studied by examining the finite-temperature effective Higgs potential at the one-loop level. It is found that there are wide regions in the parameter space that allow the strongly first-order electroweak phase transition, where the Higgs boson mass is larger than the experimental lower bound of 115 GeV, and the masses of the scalar color octet is around 200 GeV. The parameter regions may be explored at the LHC with respect to the electroweak phase transition.

  15. Two component WIMP-FImP dark matter model with singlet fermion, scalar and pseudo scalar

    Dutta Banik, Amit; Pandey, Madhurima; Majumdar, Debasish [Saha Institute of Nuclear Physics, HBNI, Astroparticle Physics and Cosmology Division, Kolkata (India); Biswas, Anirban [Harish Chandra Research Institute, Allahabad (India)

    2017-10-15

    We explore a two component dark matter model with a fermion and a scalar. In this scenario the Standard Model (SM) is extended by a fermion, a scalar and an additional pseudo scalar. The fermionic component is assumed to have a global U(1){sub DM} and interacts with the pseudo scalar via Yukawa interaction while a Z{sub 2} symmetry is imposed on the other component - the scalar. These ensure the stability of both dark matter components. Although the Lagrangian of the present model is CP conserving, the CP symmetry breaks spontaneously when the pseudo scalar acquires a vacuum expectation value (VEV). The scalar component of the dark matter in the present model also develops a VEV on spontaneous breaking of the Z{sub 2} symmetry. Thus the various interactions of the dark sector and the SM sector occur through the mixing of the SM like Higgs boson, the pseudo scalar Higgs like boson and the singlet scalar boson. We show that the observed gamma ray excess from the Galactic Centre as well as the 3.55 keV X-ray line from Perseus, Andromeda etc. can be simultaneously explained in the present two component dark matter model and the dark matter self interaction is found to be an order of magnitude smaller than the upper limit estimated from the observational results. (orig.)

  16. Analytical study of a Kerr-Sen black hole and a charged massive scalar field

    Bernard, Canisius

    2017-11-01

    It is reported that Kerr-Newman and Kerr-Sen black holes are unstable to perturbations of charged massive scalar field. In this paper, we study analytically the complex frequencies which characterize charged massive scalar fields in a near-extremal Kerr-Sen black hole. For near-extremal Kerr-Sen black holes and for charged massive scalar fields in the eikonal large-mass M ≫μ regime, where M is the mass of the black hole, and μ is the mass of the charged scalar field, we have obtained a simple expression for the dimensionless ratio ωI/(ωR-ωc) , where ωI and ωR are, respectively, the imaginary and real parts of the frequency of the modes, and ωc is the critical frequency for the onset of super-radiance. We have also found our expression is consistent with the result of Hod [Phys. Rev. D 94, 044036 (2016), 10.1103/PhysRevD.94.044036] for the case of a near-extremal Kerr-Newman black hole and the result of Zouros and Eardly [Ann. Phys. (N.Y.) 118, 139 (1979), 10.1016/0003-4916(79)90237-9] for the case of neutral scalar fields in the background of a near-extremal Kerr black hole.

  17. Gravitino and scalar {tau}-lepton decays in supersymmetric models with broken R-parity

    Hajer, Jan

    2010-06-15

    Mildly broken R-parity is known to provide a solution to the cosmological gravitino problem in supergravity extensions of the Standard Model. In this work we consider new effects occurring in the R-parity breaking Minimal Supersymmetric Standard Model including right-handed neutrino superfields. We calculate the most general vacuum expectation values of neutral scalar fields including left- and right-handed scalar neutrinos. Additionally, we derive the corresponding mass mixing matrices of the scalar sector. We recalculate the neutrino mass generation mechanisms due to right- handed neutrinos as well as by cause of R-parity breaking. Furthermore, we obtain a, so far, unknown formula for the neutrino masses for the case where both mechanisms are effective. We then constrain the couplings to bilinear R-parity violating couplings in order to accommodate R-parity breaking to experimental results. In order to constrain the family structure with a U(1){sub Q} flavor symmetry we furthermore embed the particle content into an SU(5) Grand Unified Theory. In this model we calculate the signal of decaying gravitino dark matter as well as the dominant decay channel of a likely NLSP, the scalar {tau}-lepton. Comparing the gravitino signal with results of the Fermi Large Area Telescope enables us to find a lower bound on the decay length of scalar {tau}-leptons in collider experiments. (orig.)

  18. Gravitino and scalar τ-lepton decays in supersymmetric models with broken R-parity

    Hajer, Jan

    2010-01-01

    Mildly broken R-parity is known to provide a solution to the cosmological gravitino problem in supergravity extensions of the Standard Model. In this work we consider new effects occurring in the R-parity breaking Minimal Supersymmetric Standard Model including right-handed neutrino superfields. We calculate the most general vacuum expectation values of neutral scalar fields including left- and right-handed scalar neutrinos. Additionally, we derive the corresponding mass mixing matrices of the scalar sector. We recalculate the neutrino mass generation mechanisms due to right- handed neutrinos as well as by cause of R-parity breaking. Furthermore, we obtain a, so far, unknown formula for the neutrino masses for the case where both mechanisms are effective. We then constrain the couplings to bilinear R-parity violating couplings in order to accommodate R-parity breaking to experimental results. In order to constrain the family structure with a U(1) Q flavor symmetry we furthermore embed the particle content into an SU(5) Grand Unified Theory. In this model we calculate the signal of decaying gravitino dark matter as well as the dominant decay channel of a likely NLSP, the scalar τ-lepton. Comparing the gravitino signal with results of the Fermi Large Area Telescope enables us to find a lower bound on the decay length of scalar τ-leptons in collider experiments. (orig.)

  19. Stability of a collapsed scalar field and cosmic censorship

    Abe, S.

    1988-01-01

    The static and asymptotically flat solution to the Einstein-massless-scalar model with spherical symmetry describes the spacetime with a naked singularity when it has a nonvanishing scalar charge. We show that such a solution is unstable against the spherical scalar monopole perturbation. This suggests the validity of the cosmic censorship hypothesis in the spherical collapse of the scalar field

  20. The scalar wave equation in a Schwarzschild space-time

    Schmidt, B.G.; Stewart, J.M.

    1979-01-01

    This paper studies the asymptotic behaviour of solutions of the zero rest mass scalar wave equation in the Schwarzschild space-time in a neighbourhood of spatial infinity which includes parts of future and pass null infinity. The behaviour of such fields is essentially different from that which occurs in a flat space-time. In particular fields which have a Bondi-type expansion in powers of 'r(-1)' near past null infinity do not have such an expansion near future null infinity. Further solutions which have physically reasonable Cauchy data probably fail to have Bondi-type expansions near null infinity. (author)

  1. Neutral Scalar Higgs searches using Vector Boson Fusion at ATLAS

    De Jong, J K; Pinfold, J L

    2005-01-01

    The Higgs boson is the last undiscovered particle predicted by the Standard Model. Its discovery is key to our understanding of the electroweak symmetry breaking process and the origin of mass. The primary purpose of the ATLAS detector at the Large Hadron Collider is the discovery of this particle. This thesis evaluates the discovery potential of the ATLAS experiment for a Heavy Neutral Scalar Higgs boson, $\\text{M}_{H} \\ge 170 ~\\text{\\GEVCC}$, produced through vector boson fusion and decaying through the four physics channels : H$\\rightarrow$ZZ$\\rightarrow l^{+}l^{-}$+jj and H$\\rightarrow$WW$\\rightarrow l\

  2. On particle creation by a time-dependent scalar field

    Dolgov, A.D.; Kirilova, D.P.

    1989-01-01

    The probability of particles creation by a homogeneous scalar field Χ (t) is calculated. Explicit analytical expressions are obtained in two limiting cases in the quasiclassical approximation and in the framework of perturbation theory. In the case when the mass of the created particles is defined by the time-dependent field Χ (t) according to the expression g Χ (t) Ψ-barΨ, where Χ (t) =Χ 0 cos (ωt), it is shown that the creation probability is suppresed not exponentially, but as ω 1/2 . Some cosmological consequences of the results are discussed. 13 refs

  3. Scalar electrodynamics in three dimensions with topological man terms

    Mello, E.R.B. de

    1987-01-01

    The interaction between a charged scalar field and a gauge field in a three-dimensional space-time is studied. The topological mass term (the Chern-Simons term) is added to the system and it is investigated how this term, odd by P and T symmetry, modified the corrections to the propagators and vertices of this theory. These corrections are obtained to order e 2 in pertubation theory. In the correction of the linear vertex a new type of term arises. Although this new term, which comes from the topological one, presents an abnormal parity, Ward's identity is still valid. (Author) [pt

  4. Production of particles by a variable scalar field

    Dolgov, A.D.; Kirilova, D.P.

    1990-01-01

    The probability of particle production by a spatially homogeneous scalar field χ(t) is calculated. Explicit analytic expressions are obtained in two opposite limiting cases: in perturbation theory and in the quasiclassical approximation. It is shown that if the mass of the produced particles is determined by the field χ(t) is accordance with the expression gχ(t) anti ψψ, then for an oscillatory field χ(t) = χ 0 cos(ωt) the production probability in the limit of small ω is suppressed not exponentially, but only as ω 1/2 . Cosmological applications of these results are discussed

  5. Third generation masses from a two Higgs model fixed point

    Froggatt, C.D.; Knowles, I.G.; Moorhouse, R.G.

    1990-01-01

    The large mass ratio between the top and bottom quarks may be attributed to a hierarchy in the vacuum expectation values of scalar doublets. We consider an effective renormalisation group fixed point determination of the quartic scalar and third generation Yukawa couplings in such a two doublet model. This predicts a mass m t =220 GeV and a mass ratio m b /m τ =2.6. In its simplest form the model also predicts the scalar masses, including a light scalar with a mass of order the b quark mass. Experimental implications are discussed. (orig.)

  6. Wilson loop, Regge trajectory and hadron masses in a Yang-Mills theory from semiclassical strings

    Bigazzi, F.; Cotrone, A.L.; Martucci, L.; Pando Zayas, L.A.

    2004-07-01

    We compute the one-loop string corrections to the Wilson loop, glueball Regge trajectory and stringy hadron masses in the Witten model of non supersymmetric, large-N Yang-Mills theory. The classical string configurations corresponding to the above field theory objects are respectively: open straight strings, folded closed spinning strings, and strings orbiting in the internal part of the supergravity background. For the rectangular Wilson loop we show that besides the standard Luscher term, string corrections provide a rescaling of the field theory string tension. The one-loop corrections to the linear glueball Regge trajectories render them nonlinear with a positive intercept, as in the experimental soft Pomeron trajectory. Strings orbiting in the internal space predict a spectrum of hadronic-like states charged under global flavor symmetries which falls in the same universality class of other confining models. (author)

  7. Vector and scalar charmonium resonances with lattice QCD

    Lang, C. B.; Leskovec, Luka; Mohler, Daniel; Prelovsek, Sasa

    2015-01-01

    We perform an exploratory lattice QCD simulation of DD¯ scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for DD¯ scattering in p-wave yields the well-known vector resonance ψ(3770). For m π = 156 MeV, the extracted resonance mass and the decay width agree with experiment within large statistical uncertainty. The scalar charmonium resonances present a puzzle, since only the ground state χ c0 (1P) is well understood, while there is no commonly accepted candidate for its first excitation. We simulate DD¯ scattering in s-wave in order to shed light on this puzzle. The resulting phase shift supports the existence of a yet-unobserved narrow resonance with a mass slightly below 4 GeV. A scenario with this narrow resonance and a pole at χ c0 (1P) agrees with the energy-dependence of our phase shift. In addition, further lattice QCD simulations and experimental efforts are needed to resolve the puzzle of the excited scalar charmonia

  8. A new two-faced scalar solution and cosmological SUSY breaking

    Shmakova, Marina

    2010-01-01

    We propose a possible new way to resolve the long standing problem of strong supersymmetry breaking coexisting with a small cosmological constant. We consider a scalar component of a minimally coupled N = 1 supermultiplet in a general Friedmann-Robertson-Walker (FRW) expanding universe. We argue that a tiny term, proportional to H 2 ∼ 10 -122 in Plank's units, appearing in the field equations due to this expansion will provide both, the small vacuum energy and the heavy mass of the scalar supersymmetric partner. We present a non-perturbative solution for the scalar field with an unusual dual-frequency behavior. This solution has two characteristic mass scales related to the Hubble parameter as H 1/4 and H 1/2 measured in Plank's units.

  9. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    Chowdhury, Debika; Sreenath, V.; Sriramkumar, L.

    2016-11-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  10. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    Chowdhury, Debika; Sriramkumar, L.; Sreenath, V.

    2016-01-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  11. Fundamental and composite scalars from extra dimensions

    Aranda, Alfredo; Diaz-Cruz, J.L.; Hernandez-Sanchez, J.; Noriega-Papaqui, R.

    2007-01-01

    We discuss a scenario consisting of an effective 4D theory containing fundamental and composite fields. The strong dynamics sector responsible for the compositeness is assumed to be of extra dimensional origin. In the 4D effective theory the SM fermion and gauge fields are taken as fundamental fields. The scalar sector of the theory resembles a bosonic topcolor in the sense there are two scalar Higgs fields, a composite scalar field and a fundamental gauge-Higgs unification scalar. A detailed analysis of the scalar spectrum is presented in order to explore the parameter space consistent with experiment. It is found that, under the model assumptions, the acceptable parameter space is quite constrained. As a part of our phenomenological study of the model, we evaluate the branching ratio of the lightest Higgs boson and find that our model predicts a large FCNC mode h→tc, which can be as large as O(10 -3 ). Similarly, a large BR for the top FCNC decay is obtained, namely BR(t→c+H)≅10 -4

  12. Heavy quark masses

    Testa, Massimo

    1990-01-01

    In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.

  13. Metric reconstruction from Weyl scalars

    Whiting, Bernard F; Price, Larry R [Department of Physics, PO Box 118440, University of Florida, Gainesville, FL 32611 (United States)

    2005-08-07

    The Kerr geometry has remained an elusive world in which to explore physics and delve into the more esoteric implications of general relativity. Following the discovery, by Kerr in 1963, of the metric for a rotating black hole, the most major advance has been an understanding of its Weyl curvature perturbations based on Teukolsky's discovery of separable wave equations some ten years later. In the current research climate, where experiments across the globe are preparing for the first detection of gravitational waves, a more complete understanding than concerns just the Weyl curvature is now called for. To understand precisely how comparatively small masses move in response to the gravitational waves they emit, a formalism has been developed based on a description of the whole spacetime metric perturbation in the neighbourhood of the emission region. Presently, such a description is not available for the Kerr geometry. While there does exist a prescription for obtaining metric perturbations once curvature perturbations are known, it has become apparent that there are gaps in that formalism which are still waiting to be filled. The most serious gaps include gauge inflexibility, the inability to include sources-which are essential when the emitting masses are considered-and the failure to describe the l = 0 and 1 perturbation properties. Among these latter properties of the perturbed spacetime, arising from a point mass in orbit, are the perturbed mass and axial component of angular momentum, as well as the very elusive Carter constant for non-axial angular momentum. A status report is given on recent work which begins to repair these deficiencies in our current incomplete description of Kerr metric perturbations.

  14. Metric reconstruction from Weyl scalars

    Whiting, Bernard F; Price, Larry R

    2005-01-01

    The Kerr geometry has remained an elusive world in which to explore physics and delve into the more esoteric implications of general relativity. Following the discovery, by Kerr in 1963, of the metric for a rotating black hole, the most major advance has been an understanding of its Weyl curvature perturbations based on Teukolsky's discovery of separable wave equations some ten years later. In the current research climate, where experiments across the globe are preparing for the first detection of gravitational waves, a more complete understanding than concerns just the Weyl curvature is now called for. To understand precisely how comparatively small masses move in response to the gravitational waves they emit, a formalism has been developed based on a description of the whole spacetime metric perturbation in the neighbourhood of the emission region. Presently, such a description is not available for the Kerr geometry. While there does exist a prescription for obtaining metric perturbations once curvature perturbations are known, it has become apparent that there are gaps in that formalism which are still waiting to be filled. The most serious gaps include gauge inflexibility, the inability to include sources-which are essential when the emitting masses are considered-and the failure to describe the l = 0 and 1 perturbation properties. Among these latter properties of the perturbed spacetime, arising from a point mass in orbit, are the perturbed mass and axial component of angular momentum, as well as the very elusive Carter constant for non-axial angular momentum. A status report is given on recent work which begins to repair these deficiencies in our current incomplete description of Kerr metric perturbations

  15. Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons.

    Hees, A; Guéna, J; Abgrall, M; Bize, S; Wolf, P

    2016-08-05

    We use 6 yrs of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions, and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but provide improved constraints on the coupling of the putative scalar field to standard matter. Our limits are complementary to previous results that were only sensitive to the fine structure constant and improve them by more than an order of magnitude when only a coupling to electromagnetism is assumed.

  16. One-loop renormalization of a gravity-scalar system

    Park, I.Y. [Philander Smith College, Department of Applied Mathematics, Little Rock, AR (United States)

    2017-05-15

    Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the ''mass'' term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information. (orig.)

  17. One-loop renormalization of a gravity-scalar system

    Park, I.Y.

    2017-01-01

    Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the ''mass'' term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information. (orig.)

  18. One-loop renormalization of a gravity-scalar system

    Park, I. Y.

    2017-05-01

    Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the "mass" term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information.

  19. Long-lived quintessential scalar hair

    Caldwell, Robert R; Yu Pengpeng

    2006-01-01

    We investigate static configurations of a vacuumless scalar field as 'hair' on a black hole. The vacuumless field has run-away behaviour, meaning the scalar potential vanishes only at infinite field strength, and is also responsible for a cosmic acceleration horizon. The classic no-hair theorems do not prevent the existence of static configurations, in the form of a spherical domain wall, trapped between the two horizons. We study the properties of such configurations and show that, although the configurations are ultimately unstable, long-lived solutions are possible. We make a perturbation study to estimate the instability time scale, which can be as large as 6 x 10 7 times the black hole crossing time. We identify classes of observers who can never observe the scalar field become unstable, because they pass beyond the cosmological event horizon in a time interval shorter than the instability time scale

  20. Leading quantum gravitational corrections to scalar QED

    Bjerrum-Bohr, N.E.J.

    2002-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged scalars in the combined theory of general relativity and scalar QED. The combined theory is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The non-analytical parts of the scattering amplitude, which are known to give the long range, low energy, leading quantum corrections, are used to construct the leading post-Newtonian and quantum corrections to the two-particle non-relativistic scattering matrix potential for two charged scalars. The result is discussed in relation to experimental verifications

  1. Scalar one-loop integrals for QCD

    Ellis, R. Keith; Zanderighi, Giulia

    2008-01-01

    We construct a basis set of infra-red and/or collinearly divergent scalar one-loop integrals and give analytic formulas, for tadpole, bubble, triangle and box integrals, regulating the divergences (ultra-violet, infra-red or collinear) by regularization in D = 4-2ε dimensions. For scalar triangle integrals we give results for our basis set containing 6 divergent integrals. For scalar box integrals we give results for our basis set containing 16 divergent integrals. We provide analytic results for the 5 divergent box integrals in the basis set which are missing in the literature. Building on the work of van Oldenborgh, a general, publicly available code has been constructed, which calculates both finite and divergent one-loop integrals. The code returns the coefficients of 1/ε 2 ,1/ε 1 and 1/ε 0 as complex numbers for an arbitrary tadpole, bubble, triangle or box integral

  2. Transient accelerating scalar models with exponential potentials

    Cui Wen-Ping; Zhang Yang; Fu Zheng-Wen

    2013-01-01

    We study a known class of scalar dark energy models in which the potential has an exponential term and the current accelerating era is transient. We find that, although a decelerating era will return in the future, when extrapolating the model back to earlier stages (z ≳ 4), scalar dark energy becomes dominant over matter. So these models do not have the desired tracking behavior, and the predicted transient period of acceleration cannot be adopted into the standard scenario of the Big Bang cosmology. When couplings between the scalar field and matter are introduced, the models still have the same problem; only the time when deceleration returns will be varied. To achieve re-deceleration, one has to turn to alternative models that are consistent with the standard Big Bang scenario.

  3. SU(2) with fundamental fermions and scalars

    Hansen, Martin; Janowski, Tadeusz; Pica, Claudio; Toniato, Arianna

    2018-03-01

    We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness models featuring strongly interacting scalar fields in addition to fermions. Here we describe the lattice setup for our study of this class of models and a first exploration of the lattice phase diagram. In particular we then investigate how the presence of a strongly coupled scalar field affects the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90

  4. The scalar spectrum of the triple seesaw mechanism

    Caetano, Wellington; Pires, Carlos

    2011-01-01

    Full text: The Triple seesaw mechanism provides an expression to the neutrino masses which get suppressed by high-scale M 3 in its denominator. Thus, we have a seesaw mechanism which works naturally at TeV scale, presenting, in this way, a great potential of being probed at LHC. In order to generate the small left-handed neutrino masses, the triple seesaw mechanism also requires only heavy right-handed neutrinos as extra fermionic content as the type I seesaw. The minimum Higgs sector required by the mechanism is composed by the standard Higgs doublet plus another Higgs doublet and a Higgs singlet. In this work we obtain the mass spectrum and the eigenvectors of the scalar sector that realizes the Triple seesaw mechanism. As our results, we recover the standard Higgs boson with mass in a region at 116 H < 151 GeV. We analyzed the expression given in the Triple seesaw mechanism for the neutrino mass in a scenario that is consistent with the small mass from the neutrino oscillation data and compatible with the requirements for a WIMP (weakly interacting massive particles) candidate. Finally, we obtain, as our main result, a neutral pseudoscalar with mass around 8-10 GeV which is stable and can be a possible WIMP dark matter candidate. (author)

  5. Search of glueballs in the J/Ψ #-> # γΦΦ decay

    Bisello, D.; Busetto, G.; Castro, A.

    1986-07-01

    In a study of the radiative decay J/Ψ #-> # γΦΦ #-> # γK + K - K + K - , from the 8.6 million J/Ψ produced in the DM2 experiment at DCI, we found a large production of events with ΦΦ mass below the η c . The branching ratio, for m ΦΦ 2 , is BR(J/Ψ #-> # γΦΦ) = (3.1± 0.3± 0.6) x 10 -4 . The angular analysis of the events with Φ Φ mass below 2.5 GeV/c 2 is consistent with a 2 ++ assignment. An enhancement near 2.2 GeV/c 2 shows a preferred spin-parity J P = 0 -

  6. Quantum Scalar Corrections to the Gravitational Potentials on de Sitter Background

    Park, Sohyun; Prokopec, Tomislav; Woodard, R. P.

    We employ the graviton self-energy induced by a massless, minimally coupled (MMC) scalar on de Sitter background to compute the quantum corrections to the gravitational potentials of a static point particle with a mass $M$. The Schwinger-Keldysh formalism is used to derive real and causal effective

  7. 125 GeV Higgs from a not so light Technicolor Scalar

    Foadi, Roshan; Frandsen, Mads Toudal; Sannino, Francesco

    2013-01-01

    Assuming that the observed Higgs-like resonance at the Large Hadron Collider is a technicolor isosinglet scalar (the technicolor Higgs), we argue that the standard model top-induced radiative corrections reduce its dynamical mass towards the desired experimental value. We then discuss conditions...

  8. Stability of extended scalar diquark stars vis-à-vis soliton stars

    Motivated by relatively large values of the maximum mass ( M = 8 : 92 M ⊙ ) and radius ( = 50.7 km) obtained for an extended scalar diquark star within the framework of an effective 4-theory (S K Karn et al [1]) some interesting observations are made with regard to the stability of stellar objects describable in general in ...

  9. Thermodynamics of AdS black holes in Einstein-Scalar gravity

    Lü, H. [Department of Physics, Beijing Normal University,Beijing 100875 (China); Pope, C.N. [George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843 (United States); DAMTP, Centre for Mathematical Sciences, Cambridge University,Wilberforce Road, Cambridge CB3 OWA (United Kingdom); Wen, Qiang [Department of Physics, Renmin University of China,Beijing 100872 (China)

    2015-03-31

    We study the thermodynamics of n-dimensional static asymptotically AdS black holes in Einstein gravity coupled to a scalar field with a potential admitting a stationary point with an AdS vacuum. Such black holes with non-trivial scalar hair can exist provided that the mass-squared of the scalar field is negative, and above the Breitenlohner-Freedman bound. We use the Wald procedure to derive the first law of thermodynamics for these black holes, showing how the scalar hair (or “charge”) contributes non-trivially in the expression. We show in general that a black hole mass can be deduced by isolating an integrable contribution to the (non-integrable) variation of the Hamiltonian arising in the Wald construction, and that this is consistent with the mass calculated using the renormalised holographic stress tensor and also, in those cases where it is defined, with the mass calculated using the conformal method of Ashtekar, Magnon and Das. Similar arguments can also be given for the smooth solitonic solutions in these theories. Neither the black hole nor the soliton solutions can be constructed explicitly, and we carry out a numerical analysis to demonstrate their existence and to provide approximate checks on some of our thermodynamic results.

  10. Appell functions and the scalar one-loop three-point integrals in Feynman diagrams

    Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico); Sanchis-Lozano, M A [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, 46100 Burjassot, Valencia (Spain)

    2006-05-15

    The scalar three-point function appearing in one-loop Feynman diagrams is compactly expressed in terms of a generalized hypergeometric function of two variables. Use is made of the connection between such Appell function and dilogarithms coming from a previous investigation. Special cases are obtained for particular values of internal masses and external momenta.

  11. Anisotropic scalar field with cosmological time

    Kleber, A.; Teixeira, A.F.F.

    1978-04-01

    A static, nonsingular, plane-symmetric scalar field of long range is considered under the general relativity, and a one-parametric class of exact solutions with cosmological time is obtained, in harmonic coordinates. In the absence of any material source, the gravitation originated by the pure scalar field can be studied in detail. A velocity-dependent acceleration field is found, acting attractively on the component of the velocity normal to the plane of symmetry, and repulsively on the component parallel to that plane. Particles at rest are insensitive to the gravitation, although the time component of the energy momentum tensor is point dependent and positive definite

  12. Scalar fields: at the threshold of astrophysics

    Guzman, F S [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo. Edificio C-3, Cd. Universitaria, A. P. 2-82, 58040 Morelia, Michoacan (Mexico)

    2007-11-15

    In this manuscript the potential existence of self-gravitating complex scalar field configurations is explored. Stable boson stars are presented as potential black hole candidates, and the strengths and weaknesses of such idea are described. On the other hand, Newtonian boson systems are also studied because they are the bricks of the structure within the scalar field dark matter model or the Bose condensate dark matter; the collapse of density fluctuations is described; also the interaction between two structures is shown to allow solitonic behavior, which in turn allows the formation of ripples of dark matter. The processes related to potential observations are also discussed.

  13. Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-04-01

    In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole solutions with scalar hair. Based on a previous theoretical analysis, which studied the evasion of the old and novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field, satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically flat black-hole solutions with nontrivial scalar hair. The solution for the scalar field and the profile of the corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a nonmonotonic behavior, an unusual feature that highlights the limitations of the existing no-hair theorems. We also determine and study in detail the scalar charge, horizon area, and entropy of our solutions.

  14. The mixing of scalar mesons and the baryon-baryon interaction

    Dai, L.R.

    2011-01-01

    By introducing the mixing of scalar mesons in the chiral SU(3) quark model, we dynamically investigate the baryon-baryon interaction. The hyperon-nucleon and nucleon-nucleon interactions are studied by solving the resonating group method (RGM) equation in a coupled-channel calculation. In our present work, the experimental lightest pseudoscalar π, K, η, η' mesons correspond exactly to the chiral nonet pseudoscalar fields π, K, η, η' in the chiral SU(3) quark model. The η, η' mesons are considered as the mixing of singlet and octet mesons, and the mixing angle θ ps is taken to be -23 . For scalar nonet mesons, we suppose that there exists a correspondence between the experimental lightest scalar f 0 (600), κ, a 0 (980), f 0 (980) mesons and the theoretical scalar nonet σ, κ, σ', ε fields in the chiral SU(3) quark model. For scalar mesons, we consider two different mixing cases: one is the ideal mixing and another is the θ s = 19 mixing. The masses of the σ' and ε mesons are taken to be 980MeV, which are just the masses of the experimental a 0 (980), f 0 (980) mesons. The mass of the σ meson is an adjustable parameter and is decided by fitting the binding energy of the deuteron, the masses of 560MeV and 644MeV are obtained for the ideal mixing and the θ s = 19 mixing, respectively. We find that, in order to reasonably describe the YN interactions, the mass of the κ meson is near 780MeV for the ideal mixing. However, we must enhance the mass of the κ meson for the θ s = 19 mixing, the 1050MeV is favorably used in the present work. The experimental σ and κ scalar mesons are very strange, both have larger widths. Hence, no matter what kind of mixing is considered, all the masses of scalar mesons we used in the present work seem to be consistent with the present PDG information. (orig.)

  15. The mixing of scalar mesons and the baryon-baryon interaction

    Dai, L.R. [Liaoning Normal University, Department of Physics, Dalian (China)

    2011-02-15

    By introducing the mixing of scalar mesons in the chiral SU(3) quark model, we dynamically investigate the baryon-baryon interaction. The hyperon-nucleon and nucleon-nucleon interactions are studied by solving the resonating group method (RGM) equation in a coupled-channel calculation. In our present work, the experimental lightest pseudoscalar {pi}, K, {eta}, {eta}' mesons correspond exactly to the chiral nonet pseudoscalar fields {pi}, K, {eta}, {eta}' in the chiral SU(3) quark model. The {eta}, {eta}' mesons are considered as the mixing of singlet and octet mesons, and the mixing angle {theta}{sub ps} is taken to be -23 . For scalar nonet mesons, we suppose that there exists a correspondence between the experimental lightest scalar f{sub 0}(600), {kappa}, a{sub 0}(980), f{sub 0}(980) mesons and the theoretical scalar nonet {sigma}, {kappa}, {sigma}', {epsilon} fields in the chiral SU(3) quark model. For scalar mesons, we consider two different mixing cases: one is the ideal mixing and another is the {theta}{sub s} = 19 mixing. The masses of the {sigma}' and {epsilon} mesons are taken to be 980MeV, which are just the masses of the experimental a{sub 0}(980), f{sub 0}(980) mesons. The mass of the {sigma} meson is an adjustable parameter and is decided by fitting the binding energy of the deuteron, the masses of 560MeV and 644MeV are obtained for the ideal mixing and the {theta}{sub s} = 19 mixing, respectively. We find that, in order to reasonably describe the YN interactions, the mass of the {kappa} meson is near 780MeV for the ideal mixing. However, we must enhance the mass of the {kappa} meson for the {theta}{sub s} = 19 mixing, the 1050MeV is favorably used in the present work. The experimental {sigma} and {kappa} scalar mesons are very strange, both have larger widths. Hence, no matter what kind of mixing is considered, all the masses of scalar mesons we used in the present work seem to be consistent with the present PDG information

  16. Scalar Hidden-Charm Tetraquark States with QCD Sum Rules

    Di, Zun-Yan; Wang, Zhi-Gang; Zhang, Jun-Xia; Yu, Guo-Liang

    2018-02-01

    In this article, we study the masses and pole residues of the pseudoscalar-diquark-pseudoscalar-antidiquark type and vector-diquark-vector-antidiquark type scalar hidden-charm cu\\bar{c}\\bar{d} (cu\\bar{c}\\bar{s}) tetraquark states with QCD sum rules by taking into account the contributions of the vacuum condensates up to dimension-10 in the operator product expansion. The predicted masses can be confronted with the experimental data in the future. Possible decays of those tetraquark states are also discussed. Supported by the National Natural Science Foundation of China under Grant No. 11375063, the Fundamental Research Funds for the Central Universities under Grant Nos. 2016MS155 and 2016MS133

  17. An improved mixing model providing joint statistics of scalar and scalar dissipation

    Meyer, Daniel W. [Department of Energy Resources Engineering, Stanford University, Stanford, CA (United States); Jenny, Patrick [Institute of Fluid Dynamics, ETH Zurich (Switzerland)

    2008-11-15

    For the calculation of nonpremixed turbulent flames with thin reaction zones the joint probability density function (PDF) of the mixture fraction and its dissipation rate plays an important role. The corresponding PDF transport equation involves a mixing model for the closure of the molecular mixing term. Here, the parameterized scalar profile (PSP) mixing model is extended to provide the required joint statistics. Model predictions are validated using direct numerical simulation (DNS) data of a passive scalar mixing in a statistically homogeneous turbulent flow. Comparisons between the DNS and the model predictions are provided, which involve different initial scalar-field lengthscales. (author)

  18. Physics performances for Scalar Electron, Scalar Muon and Scalar Neutrino searches at 3 TeV and 1.4 TeV at CLIC

    Battaglia, M.; Marshall, J.S.; Poss, S.; Sailer, A.; Thomson, M.; van der Kraaij, E.

    2013-01-01

    The determination of scalar lepton and gaugino masses is an important part of the programme of spectroscopic studies of Supersymmetry at a high energy e+e- linear collider. In this article we present results of a study of the processes: e+e- -> eR eR -> e+e- chi0 chi, e+e- -> muR muR -> mu mu- chi0 chi0, e+e- -> eL eL -> e e chi0 chi0 and e+e- -> snu_e snu_e -> e e chi+ chi-in two Supersymmetric benchmark scenarios at 3 TeV and 1.4 TeV at CLIC. We characterize the detector performance, lepton energy resolution and boson mass resolution. We report the accuracy of the production cross section measurements and the eR muR, snu_e, chi+ and chi0 mass determination, estimate the systematic errors affecting the mass measurement and discuss the requirements on the detector time stamping capability and beam polarization. The analysis accounts for the CLIC beam energy spectrum and the dominant beam-induced background. The detector performances are incorporated by full simulation and reconstruction of the events within t...

  19. Production of a Scalar Boson and a Fermion Pair in Arbitrarily Polarized e - e + Beams

    Abdullayev, S. K.; Gojayev, M. Sh.; Nasibova, N. A.

    2018-05-01

    Within the framework of the Standard Model (Minimal Supersymmetric Standard Model) we consider the production of the scalar boson HSM (h; H) and a fermion pair ff- in arbitrarily polarized, counterpropagating electron-positron beams e - e + ⇒ HSM (h; H) ff-. Characteristic features of the behavior of the cross sections and polarization characteristics (right-left spin asymmetry, degree of longitudinal polarization of the fermion, and transverse spin asymmetry) are investigated and elucidated as functions of the energy of the electron-positron beams and the mass of the scalar boson.

  20. A search for scalar leptoquarks at the CERN anti pp collider

    Alitti, J.; Ambrosini, G.; Ansari, R.; Autiero, D.; Bareyre, P.; Bertram, I.A.; Blaylock, G.; Bonamy, P.; Borer, K.; Bourliaud, M.; Buskulic, D.; Carboni, G.; Cavalli, D.; Cavasinni, V.; Cenci, P.; Chollet, J.C.; Conta, C.; Costa, G.; Costantini, F.; Cozzi, L.; Cravero, A.; Curatolo, M.; Dell'Acqua, A.; DelPrete, T.; DeWolf, R.S.; DiLella, L.; Ducros, Y.; Egan, G.F.; Einsweiler, K.F.; Esposito, B.; Fayard, L.; Federspiel, A.; Ferrari, R.; Fraternali, M.; Froidevaux, D.; Fumagalli, G.; Gaillard, J.M.; Gianotti, F.; Gildemeister, O.; Goessling, C.; Goggi, V.G.; Gruenendahl, S.; Hara, K.; Hellman, S.; Hrivnac, J.; Hufnagel, H.; Hugentobler, E.; Hultqvist, K.; Iacopini, E.; Incandela, J.; Jakobs, K.; Jenni, P.; Kluge, E.E.; Kurz, N.; Lami, S.; Lariccia, P.; Lefebvre, M.; Linssen, L.; Livan, M.; Lubrano, P.; Magneville, C.; Mandelli, L.; Mapelli, L.; Mazzanti, M.; Meier, K.; Merkel, B.; Meyer, J.P.; Moniez, M.; Moning, R.; Morganti, M.; Mueller, L.; Munday, D.J.; Nessi, M.; Nessi-Tedaldi, F.; Onions, C.; Pal, T.; Parker, M.A.; Parrour, G.; Pastore, F.; Pennacchio, E.; Pentney, J.M.; Pepe, M.; Perini, L.; Petridou, C.; Petroff, P.; Plothow-Besch, H.; Polesello, G.; Poppleton, A.; Pretzl, K.; Primavera, M.; Punturo, M.; Repellin, J.P.; Rimoldi, A.; Sacchi, M.; Scampoli, P.; Schacher, J.; Schmidt, B.; Simak, V.; Singh, S.L.; Sondermann, V.; Spiwoks, R.; Stapnes, S.; Talamonti, C.; Tondini, F.; Tovey, S.N.; Tsesmelis, E.; Unal, G.; Valdata-Nappi, M.; Vercesi, V.; Weidberg, A.R.; Wells, P.S.; White, T.O.; Wood, D.R.; Wotton, S.A.; Zaccone, H.; Zylberstejn, A.

    1992-01-01

    A search has been made for scalar leptoquark pair production with the upgraded UA2 detector at the CERN anti pp Collider at √s=630 GeV, investigating decays of the leptoquark into a quark and either an electron or an electron neutrino. From an event sample corresponding to an integrated luminosity of 13 pb -1 a lower limit has been determined for the mass of first generation leptoquarks, yielding 67 GeV (95% CL) for a scalar leptoquark decaying with a 50% branching ratio into a quark and an electron. (orig.)

  1. Neutral and charged scalar mesons, pseudoscalar mesons, and diquarks in magnetic fields

    Liu, Hao; Wang, Xinyang; Yu, Lang; Huang, Mei

    2018-04-01

    We investigate both (pseudo)scalar mesons and diquarks in the presence of external magnetic field in the framework of the two-flavored Nambu-Jona-Lasinio (NJL) model, where mesons and diquarks are constructed by infinite sum of quark-loop chains by using random phase approximation. The polarization function of the quark-loop is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in the Landau level representation. We systematically investigate the masses behaviors of scalar σ meson, neutral and charged pions as well as the scalar diquarks, with respect to the magnetic field strength at finite temperature and chemical potential. It is shown that the numerical results of both neutral and charged pions are consistent with the lattice QCD simulations. The mass of the charge neutral pion keeps almost a constant under the magnetic field, which is preserved by the remnant symmetry of QCD ×QED in the vacuum. The mass of the charge neutral scalar σ is around two times quark mass and increases with the magnetic field due to the magnetic catalysis effect, which is an typical example showing that the polarized internal quark structure cannot be neglected when we consider the meson properties under magnetic field. For the charged particles, the one quark-antiquark loop contribution to the charged π± increases essentially with the increase of magnetic fields due to the magnetic catalysis of the polarized quarks. However, the one quark-quark loop contribution to the scalar diquark mass is negative comparing with the point-particle result and the loop effect is small.

  2. Dark sector impact on gravitational collapse of an electrically charged scalar field

    Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences,Doświadczalna 4, 20-290 Lublin (Poland); Rogatko, Marek [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warszawa (Poland)

    2015-11-04

    Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.

  3. Gravitational waves from scalar field accretion

    Nunez, Dario; Degollado, Juan Carlos; Moreno, Claudia

    2011-01-01

    Our aim in this work is to outline some physical consequences of the interaction between black holes and scalar field halos in terms of gravitational waves. In doing so, the black hole is taken as a static and spherically symmetric gravitational source, i.e. the Schwarzschild black hole, and we work within the test field approximation, considering that the scalar field lives in the curved space-time outside the black hole. We focused on the emission of gravitational waves when the black hole is perturbed by the surrounding scalar field matter. The symmetries of the space-time and the simplicity of the matter source allow, by means of a spherical harmonic decomposition, to study the problem by means of a one-dimensional description. Some properties of such gravitational waves are discussed as a function of the parameters of the infalling scalar field, and allow us to make the conjecture that the gravitational waves carry information on the type of matter that generated them.

  4. Dark energy in scalar-tensor theories

    Moeller, J.

    2007-12-15

    We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of {sigma}-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)

  5. Minimally coupled scalar field cosmology in anisotropic ...

    2017-01-03

    Jan 3, 2017 ... So far, a large class of scalar field dark energy mod- els have been ... gains a lot of interest, under the light of the recently announced Planck Probe ...... Figure 1. wm vs. t for c2 = 1, V0 = 1 and some values of λ and α. Figure 2.

  6. Kundt spacetimes minimally coupled to scalar field

    Tahamtan, T. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic); Astronomical Institute, Czech Academy of Sciences, Prague (Czech Republic); Svitek, O. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic)

    2017-06-15

    We derive an exact solution belonging to the Kundt class of spacetimes both with and without a cosmological constant that are minimally coupled to a free massless scalar field. We show the algebraic type of these solutions and give interpretation of the results. Subsequently, we look for solutions additionally containing an electromagnetic field satisfying nonlinear field equations. (orig.)

  7. Free massless scalar fields in two dimensions

    Hadjiivanov, L.K.

    1980-01-01

    A common Fock space for two free massless scalar fields, nonlocal with respect to each other, is constructed. The operators corresponding to the two formal charges are correctly defined and it is shown that they generate translationally invariant states from the vacuum

  8. Reconstructing bidimensional scalar field theory models

    Flores, Gabriel H.; Svaiter, N.F.

    2001-07-01

    In this paper we review how to reconstruct scalar field theories in two dimensional spacetime starting from solvable Scrodinger equations. Theree different Schrodinger potentials are analyzed. We obtained two new models starting from the Morse and Scarf II hyperbolic potencials, the U (θ) θ 2 In 2 (θ 2 ) model and U (θ) = θ 2 cos 2 (In(θ 2 )) model respectively. (author)

  9. Experiments on scalar mixing and transport

    Warhaft, Z.

    1993-01-01

    The author provides an overview of his recent work on passive (temperature) scalar mixing in both homogeneous and inhomogeneous turbulent flows. He shows that for homogeneous grid generated turbulence, in the presence of a linear temperature profile, the probability density function (pdf) of the temperature fluctuations has broad exponential tails, while the pdf of velocity is Gaussian. However, in the absence of a scalar gradient the pdf of temperature is Gaussian. This new result sheds insight into the fundamentals of turbulent mixing as well as to the nature of the velocity field. It is also shown that the spectrum of the temperature fluctuations has a scaling region that is consistent with Kolmogorov scaling although a similar scaling region is absent for the velocity field in this low Reynolds number flow. Finally, results concerning the mixing and dispersion of scalars in a jet are shown. Although initially the scalar mixing is strongly dependent on input conditions, the mixing is shown to be rapid and the correlation coefficient asymptotes to unity by x/D ∼ 20

  10. Update on scalar singlet dark matter

    Cline, J.M.; Scott, P.; Kainulainen, K.; Weniger, C.

    2013-01-01

    One of the simplest models of dark matter is where a scalar singlet field S comprises some or all of the dark matter and interacts with the standard model through an vertical bar H vertical bar S-2(2) coupling to the Higgs boson. We update the present limits on the model from LHC searches for

  11. Exploring extra dimensions with scalar fields

    Brown, Katherine; Mathur, Harsh; Verostek, Mike

    2018-05-01

    This paper provides a pedagogical introduction to the physics of extra dimensions by examining the behavior of scalar fields in three landmark models: the ADD, Randall-Sundrum, and DGP spacetimes. Results of this analysis provide qualitative insights into the corresponding behavior of gravitational fields and elementary particles in each of these models. In these "brane world" models, the familiar four dimensional spacetime of everyday experience is called the brane and is a slice through a higher dimensional spacetime called the bulk. The particles and fields of the standard model are assumed to be confined to the brane, while gravitational fields are assumed to propagate in the bulk. For all three spacetimes, we calculate the spectrum of propagating scalar wave modes and the scalar field produced by a static point source located on the brane. For the ADD and Randall-Sundrum models, at large distances, the field looks like that of a point source in four spacetime dimensions, but at short distances, it crosses over to a form appropriate to the higher dimensional spacetime. For the DGP model, the field has the higher dimensional form at long distances rather than short. The behavior of these scalar fields, derived using only undergraduate level mathematics, closely mirror the results that one would obtain by performing the far more difficult task of analyzing the behavior of gravitational fields in these spacetimes.

  12. Dark energy in scalar-tensor theories

    Moeller, J.

    2007-12-01

    We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of σ-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)

  13. Gravitational peculiarities of a scalar field

    Kleber, A.; Fonseca Teixeira, A.F. da

    1979-11-01

    The zero-adjoint of a time-static Ricci-flat solution to Einstein's field equations is investigated. It represents a spacetime curved solely by a massless scalar field. The cylindrical symmetry is assumed to permit both planar and non-planar geodetic motions. Unusual, velocity-dependent gravitational features are encountered from these geodesics. (Author) [pt

  14. Vast Antimatter Regions and Scalar Condensate Baryogenesis

    Kirilova, D.; Panayotova, M.; Valchanov, T.

    2002-01-01

    The possibility of natural and abundant creation of antimatter in the Universe in a SUSY-baryogenesis model with a scalar field condensate is described. This scenario predicts vast quantities of antimatter, corresponding to galaxy and galaxy cluster scales today, separated from the matter ones by baryonically empty voids. Theoretical and observational constraints on such antimatter regions are discussed.

  15. Scalar Condensation of Holographic Superconductors using ...

    Abstract. We study holographic superconductors analytically by using the Ginzburg–Landau action with the γ-quartic term | |4. Our results show that γ-term plays a role in the scalar condensation. It is found that the system displays two kinds of critical temperatures. One is independent of γ. But the other increases with ...

  16. Primordial black holes from scalar field evolution in the early universe

    Cotner, Eric; Kusenko, Alexander

    2017-11-01

    Scalar condensates with large expectation values can form in the early universe, for example, in theories with supersymmetry. The condensate can undergo fragmentation into Q-balls before decaying. If the Q-balls dominate the energy density for some period of time, statistical fluctuations in their number density can lead to formation of primordial black holes (PBH). In the case of supersymmetry the mass range is limited from above by 1 023 g . For a general charged scalar field, this robust mechanism can generate black holes over a much broader mass range, including the black holes with masses of 1-100 solar masses, which is relevant for LIGO observations of gravitational waves. Topological defects can lead to formation of PBH in a similar fashion.

  17. Black holes and asymptotics of 2+1 gravity coupled to a scalar field

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2002-01-01

    We consider 2+1 gravity minimally coupled to a self-interacting scalar field. The case in which the fall-off of the fields at infinity is slower than that of a localized distribution of matter is analyzed. It is found that the asymptotic symmetry group remains the same as in pure gravity (i.e., the conformal group). The generators of the asymptotic symmetries, however, acquire a contribution from the scalar field, but the algebra of the canonical generators possesses the standard central extension. In this context, new massive black hole solutions with a regular scalar field are found for a one-parameter family of potentials. These black holes are continuously connected to the standard zero mass black hole

  18. Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2004-01-01

    We consider a self-interacting scalar field whose mass saturates the Breitenlohner-Freedman bound, minimally coupled to Einstein gravity with a negative cosmological constant in D≥3 dimensions. It is shown that the asymptotic behavior of the metric has a slower fall-off than that of pure gravity with a localized distribution of matter, due to the back-reaction of the scalar field, which has a logarithmic branch decreasing as r -(D-1)/2 ln r for large radius r. We find the asymptotic conditions on the fields which are invariant under the same symmetry group as pure gravity with negative cosmological constant (conformal group in D-1 dimensions). The generators of the asymptotic symmetries are finite even when the logarithmic branch is considered but acquire, however, a contribution from the scalar field

  19. Entanglement growth after a global quench in free scalar field theory

    Cotler, Jordan S. [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305 (United States); Hertzberg, Mark P. [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Mezei, Márk [Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544 (United States); Mueller, Mark T. [Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-11-28

    We compute the entanglement and Rényi entropy growth after a global quench in various dimensions in free scalar field theory. We study two types of quenches: a boundary state quench and a global mass quench. Both of these quenches are investigated for a strip geometry in 1, 2, and 3 spatial dimensions, and for a spherical geometry in 2 and 3 spatial dimensions. We compare the numerical results for massless free scalars in these geometries with the predictions of the analytical quasiparticle model based on EPR pairs, and find excellent agreement in the limit of large region sizes. At subleading order in the region size, we observe an anomalous logarithmic growth of entanglement coming from the zero mode of the scalar.

  20. Behaviour of scalar perturbations of a Reissner-Nordstroem black hole inside the event horizon

    McNamara, J.M.

    1978-01-01

    This paper considers general scalar perturbations of a Reissner-Nordstrom black hole and examines the qualitative behaviour of these perturbations in the region between and on the inner and outer horizons. Initial data are specified in terms of the ingoing radiation crossing the outer (event) horizon. The only essential restriction on these data is that the radiation should not die away too slowly on this horizon. The resultant perturbations are shown to be bounded and continuous. In particular, these properties hold for perturbations on the inner horizon. For certain types of scalar field (including the zero rest mass scalar field) perturbations vanish at the cross-over point on the inner horizon. (author)

  1. WIMP Dark Matter and Unitarity-Conserving Inflation via a Gauge Singlet Scalar

    Kahlhoefer, Felix; McDonald, John

    2015-07-01

    A gauge singlet scalar with non-minimal coupling to gravity can drive inflation and later freeze out to become cold dark matter. We explore this idea by revisiting inflation in the singlet direction (S-inflation) and Higgs Portal Dark Matter in light of the Higgs discovery, limits from LUX and observations by Planck. We show that large regions of parameter space remain viable, so that successful inflation is possible and the dark matter relic abundance can be reproduced. Moreover, the scalar singlet can stabilise the electroweak vacuum and at the same time overcome the problem of unitarity-violation during inflation encountered by Higgs Inflation, provided the singlet is a real scalar. The 2-σ Planck upper bound on n s imposes that the singlet mass is below 2 TeV, so that almost the entire allowed parameter range can be probed by XENON1T.

  2. Dark matter relics and the expansion rate in scalar-tensor theories

    Dutta, Bhaskar; Jimenez, Esteban [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Zavala, Ivonne, E-mail: dutta@physics.tamu.edu, E-mail: este1985@physics.tamu.edu, E-mail: e.i.zavalacarrasco@swansea.ac.uk [Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2017-06-01

    We study the impact of a modified expansion rate on the dark matter relic abundance in a class of scalar-tensor theories. The scalar-tensor theories we consider are motivated from string theory constructions, which have conformal as well as disformally coupled matter to the scalar. We investigate the effects of such a conformal coupling to the dark matter relic abundance for a wide range of initial conditions, masses and cross-sections. We find that exploiting all possible initial conditions, the annihilation cross-section required to satisfy the dark matter content can differ from the thermal average cross-section in the standard case. We also study the expansion rate in the disformal case and find that physically relevant solutions require a nontrivial relation between the conformal and disformal functions. We study the effects of the disformal coupling in an explicit example where the disformal function is quadratic.

  3. Scalar Implicatures: The psychological reality of scales

    Alex de Carvalho

    2016-10-01

    Full Text Available Scalar implicatures, the phenomena where a sentence like The pianist played some Mozart sonatas is interpreted as The pianist did not play all Mozart sonatas have been given two different analyses. Neo-Griceans claim that this interpretation is based on lexical scales (e.g. , where the stronger term (e.g. all implies the weaker term (e.g. some, but the weaker term (e.g., some implicates the negation of the stronger term (i.e., some = not all. Post-Griceans deny that this is the case and offer a context-based inferential account for scalar implicatures. While scalar implicatures have been extensively investigated, with results apparently in favor of post-Gricean accounts, the psychological reality of lexical scales has not been put to the test. This is what we have done in the present experiment, with a lexical decision task using lexical scales in a masked priming paradigm. While Post-Gricean accounts do not attribute any role for lexical scales in the computation of scalar implicatures, Neo-Gricean accounts suggest that lexical scales are the core mechanism behind the computation of scalar implicatures, and predict that weaker terms in a scale should prime stronger terms more than the reverse because stronger words are necessary to the interpretation of weaker words, while stronger words can be interpreted independently of weaker words. Our results provided evidence in favor of the psychological existence of scales, leading to the first clear experimental support for the Neo-Gricean account.

  4. Dissipation element analysis of turbulent scalar fields

    Wang Lipo; Peters, Norbert

    2008-01-01

    Dissipation element analysis is a new approach for studying turbulent scalar fields. Gradient trajectories starting from each material point in a scalar field Φ'(x-vector,t) in ascending directions will inevitably reach a maximal and a minimal point. The ensemble of material points sharing the same pair ending points is named a dissipation element. Dissipation elements can be parameterized by the length scale l and the scalar difference Δφ ', which are defined as the straight line connecting the two extremal points and the scalar difference at these points, respectively. The decomposition of a turbulent field into dissipation elements is space-filling. This allows us to reconstruct certain statistical quantities of fine scale turbulence which cannot be obtained otherwise. The marginal probability density function (PDF) of the length scale distribution based on a Poisson random cutting-reconnection process shows satisfactory agreement with the direct numerical simulation (DNS) results. In order to obtain the further information that is needed for the modeling of scalar mixing in turbulence, such as the marginal PDF of the length of elements and all conditional moments as well as their scaling exponents, there is a need to model the joint PDF of l and Δφ ' as well. A compensation-defect model is put forward in this work to show the dependence of Δφ ' on l. The agreement between the model prediction and DNS results is satisfactory, which may provide another explanation of the Kolmogorov scaling and help to improve turbulent mixing models. Furthermore, intermittency and cliff structure can also be related to and explained from the joint PDF.

  5. Brane solutions sourced by a scalar with vanishing potential and classification of scalar branes

    Cadoni, Mariano [Dipartimento di Fisica, Università di Cagliari,Cittadella Universitaria, 09042 Monserrato (Italy); INFN, Sezione di Cagliari,Cagliari (Italy); Franzin, Edgardo [Dipartimento di Fisica, Università di Cagliari,Cittadella Universitaria, 09042 Monserrato (Italy); INFN, Sezione di Cagliari,Cagliari (Italy); CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Serra, Matteo [Dipartimento di Matematica, Sapienza Università di Roma,Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2016-01-20

    We derive exact brane solutions of minimally coupled Einstein-Maxwell-scalar gravity in d+2 dimensions with a vanishing scalar potential and we show that these solutions are conformal to the Lifshitz spacetime whose dual QFT is characterized by hyperscaling violation. These solutions, together with the AdS brane and the domain wall sourced by an exponential potential, give the complete list of scalar branes sourced by a generic potential having simple (scale-covariant) scaling symmetries not involving Galilean boosts. This allows us to give a classification of both simple and interpolating brane solution of minimally coupled Einstein-Maxwell-scalar gravity having no Schrödinger isometries, which may be very useful for holographic applications.

  6. Heavy Scalar, Vector, and Axial-Vector Mesons in Hot and Dense Nuclear Medium

    Arvind Kumar

    2014-01-01

    Full Text Available In this work we shall investigate the mass modifications of scalar mesons (D0; B0, vector mesons (D*; B*, and axial-vector mesons (D1; B1 at finite density and temperature of the nuclear medium. The above mesons are modified in the nuclear medium through the modification of quark and gluon condensates. We will find the medium modification of quark and gluon condensates within chiral SU(3 model through the medium modification of scalar-isoscalar fields σ and ζ at finite density and temperature. These medium modified quark and gluon condensates will further be used through QCD sum rules for the evaluation of in-medium properties of the above mentioned scalar, vector, and axial vector mesons. We will also discuss the effects of density and temperature of the nuclear medium on the scattering lengths of the above scalar, vector, and axial-vector mesons. The study of the medium modifications of the above mesons may be helpful for understanding their production rates in heavy-ion collision experiments. The results of present investigations of medium modifications of scalar, vector, and axial-vector mesons at finite density and temperature can be verified in the compressed baryonic matter (CBM experiment of FAIR facility at GSI, Germany.

  7. Self-consistent Dark Matter simplified models with an s-channel scalar mediator

    Bell, Nicole F.; Busoni, Giorgio; Sanderson, Isaac W., E-mail: n.bell@unimelb.edu.au, E-mail: giorgio.busoni@unimelb.edu.au, E-mail: isanderson@student.unimelb.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Melbourne, Victoria 3010 (Australia)

    2017-03-01

    We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an s -channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models with two scalar mediators which mix and interfere. The minimal gauge invariant scenario involves the mixing of a new singlet scalar with the Standard Model Higgs boson, and is tightly constrained. We construct two Higgs doublet model (2HDM) extensions of this scenario, where the singlet mixes with the 2nd Higgs doublet. Compared with the one doublet model, this provides greater freedom for the masses and mixing angle of the scalar mediators, and their coupling to SM fermions. We outline constraints on these models, and discuss Yukawa structures that allow enhanced couplings, yet keep potentially dangerous flavour violating processes under control. We examine the direct detection phenomenology of these models, accounting for interference of the scalar mediators, and interference of different quarks in the nucleus. Regions of parameter space consistent with direct detection measurements are determined.

  8. Self-consistent Dark Matter simplified models with an s-channel scalar mediator

    Bell, Nicole F.; Busoni, Giorgio; Sanderson, Isaac W.

    2017-01-01

    We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an s -channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models with two scalar mediators which mix and interfere. The minimal gauge invariant scenario involves the mixing of a new singlet scalar with the Standard Model Higgs boson, and is tightly constrained. We construct two Higgs doublet model (2HDM) extensions of this scenario, where the singlet mixes with the 2nd Higgs doublet. Compared with the one doublet model, this provides greater freedom for the masses and mixing angle of the scalar mediators, and their coupling to SM fermions. We outline constraints on these models, and discuss Yukawa structures that allow enhanced couplings, yet keep potentially dangerous flavour violating processes under control. We examine the direct detection phenomenology of these models, accounting for interference of the scalar mediators, and interference of different quarks in the nucleus. Regions of parameter space consistent with direct detection measurements are determined.

  9. Minimal extension of the standard model scalar sector

    O'Connell, Donal; Wise, Mark B.; Ramsey-Musolf, Michael J.

    2007-01-01

    The minimal extension of the scalar sector of the standard model contains an additional real scalar field with no gauge quantum numbers. Such a field does not couple to the quarks and leptons directly but rather through its mixing with the standard model Higgs field. We examine the phenomenology of this model focusing on the region of parameter space where the new scalar particle is significantly lighter than the usual Higgs scalar and has small mixing with it. In this region of parameter space most of the properties of the additional scalar particle are independent of the details of the scalar potential. Furthermore the properties of the scalar that is mostly the standard model Higgs can be drastically modified since its dominant branching ratio may be to a pair of the new lighter scalars

  10. The Rainich problem for coupled gravitational and scalar meson fields

    Hyde, J.M.

    1975-01-01

    The equations of the coupled gravitational and scalar meson fields in general relativity are considered. It is shown that the wave equation for the scalar meson field which is usually specified explicitly in addition to the Einstein field equations is implied by Einstein's equations. Using this result it is then shown how the scalar field may be eliminated explicitly from the field equations, thus solving the Rainich problem for the coupled gravitational and scalar meson fields. (author) [fr

  11. Asymptotic safety of quantum gravity beyond Ricci scalars

    Falls, Kevin; King, Callum R.; Litim, Daniel F.; Nikolakopoulos, Kostas; Rahmede, Christoph

    2018-04-01

    We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from f (R ) -type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated.

  12. Lepton-number-charged scalars and neutrino beamstrahlung

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Zhang, Yue

    2018-04-01

    Experimentally, baryon number minus lepton number, B -L , appears to be a good global symmetry of nature. We explore the consequences of the existence of gauge-singlet scalar fields charged under B -L -dubbed lepton-number-charged scalars (LeNCSs)—and postulate that these couple to the standard model degrees of freedom in such a way that B -L is conserved even at the nonrenormalizable level. In this framework, neutrinos are Dirac fermions. Including only the lowest mass-dimension effective operators, some of the LeNCSs couple predominantly to neutrinos and may be produced in terrestrial neutrino experiments. We examine several existing constraints from particle physics, astrophysics, and cosmology to the existence of a LeNCS carrying B -L charge equal to two, and discuss the emission of LeNCSs via "neutrino beamstrahlung," which occurs every once in a while when neutrinos scatter off of ordinary matter. We identify regions of the parameter space where existing and future neutrino experiments, including the Deep Underground Neutrino Experiment, are at the frontier of searches for such new phenomena.

  13. Reconciling tensor and scalar observables in G-inflation

    Ramírez, Héctor; Passaglia, Samuel; Motohashi, Hayato; Hu, Wayne; Mena, Olga

    2018-04-01

    The simple m2phi2 potential as an inflationary model is coming under increasing tension with limits on the tensor-to-scalar ratio r and measurements of the scalar spectral index ns. Cubic Galileon interactions in the context of the Horndeski action can potentially reconcile the observables. However, we show that this cannot be achieved with only a constant Galileon mass scale because the interactions turn off too slowly, leading also to gradient instabilities after inflation ends. Allowing for a more rapid transition can reconcile the observables but moderately breaks the slow-roll approximation leading to a relatively large and negative running of the tilt αs that can be of order ns‑1. We show that the observables on CMB and large scale structure scales can be predicted accurately using the optimized slow-roll approach instead of the traditional slow-roll expansion. Upper limits on |αs| place a lower bound of rgtrsim 0.005 and, conversely, a given r places a lower bound on |αs|, both of which are potentially observable with next generation CMB and large scale structure surveys.

  14. A Riemannian scalar measure for diffusion tensor images

    Astola, L.J.; Fuster, A.; Florack, L.M.J.

    2010-01-01

    We study a well-known scalar quantity in Riemannian geometry, the Ricci scalar, in the context of Diffusion Tensor Imaging (DTI), which is an emerging non-invasive medical imaging modality. We derive a physical interpretation for the Ricci scalar and explore experimentally its significance in DTI.

  15. Search for massive colored scalars in four-jet final states in √s = 7 TeV proton-proton collisions with the ATLAS detector

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.

    2011-01-01

    A search for pair-produced scalar particles decaying to a four-jet final state is presented. The analysis is performed using an integrated luminosity of 34 pb -1 recorded by the ATLAS detector in 2010. No deviation from the Standard Model is observed. For a scalar mass of 100 GeV (190 GeV) the limit on the scalar gluon pair production cross section at 95% confidence level is 1 nb (0.28 nb). When these results are interpreted as mass limits, scalar-gluons (hyperpions) with masses of 100 to 185 GeV (100 to 155 GeV) are excluded at 95% confidence level with the exception of a mass window of width about 5 GeV (15 GeV) around 140 GeV.

  16. Production of inert scalars at the high energy e+e− colliders

    Hashemi, Majid; Krawczyk, Maria; Najjari, Saereh; Żarnecki, Aleksander Filip

    2016-01-01

    We investigate the phenomenology of the light charged and neutral scalars in Inert Doublet Model at future e + e − colliders with center of mass energies of 0.5 and 1 TeV, and integrated luminosity of 500 fb −1 . The analysis covers two production processes, e + e − →H + H − and e + e − →AH, and consists of signal selections, cross section determinations as well as dark matter mass measurements. Several benchmark points are studied with focus on H ± →W ± H and A→ZH decays. It is concluded that the signal will be well observable in different final states allowing for mass determination of all new scalars with statistical precision of the order of few hundred MeV.

  17. Anisotropic inflation from charged scalar fields

    Emami, Razieh; Firouzjahi, Hassan; Movahed, S.M. Sadegh; Zarei, Moslem

    2011-01-01

    We consider models of inflation with U(1) gauge fields and charged scalar fields including symmetry breaking potential, chaotic inflation and hybrid inflation. We show that there exist attractor solutions where the anisotropies produced during inflation becomes comparable to the slow-roll parameters. In the models where the inflaton field is a charged scalar field the gauge field becomes highly oscillatory at the end of inflation ending inflation quickly. Furthermore, in charged hybrid inflation the onset of waterfall phase transition at the end of inflation is affected significantly by the evolution of the background gauge field. Rapid oscillations of the gauge field and its coupling to inflaton can have interesting effects on preheating and non-Gaussianities

  18. Scalar geons in Born-Infeld gravity

    Afonso, V.I. [Unidade Acadêmica de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, PB (Brazil); Olmo, Gonzalo J. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia—CSIC, Universidad de Valencia, Burjassot-46100, Valencia (Spain); Rubiera-Garcia, D., E-mail: viafonso@df.ufcg.edu.br, E-mail: gonzalo.olmo@uv.es, E-mail: drgarcia@fc.ul.pt [Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, P-1749-016 Lisbon (Portugal)

    2017-08-01

    The existence of static, spherically symmetric, self-gravitating scalar field solutions in the context of Born-Infeld gravity is explored. Upon a combination of analytical approximations and numerical methods, the equations for a free scalar field (without a potential term) are solved, verifying that the solutions recover the predictions of General Relativity far from the center but finding important new effects in the central regions. We find two classes of objects depending on the ratio between the Schwarzschild radius and a length scale associated to the Born-Infeld theory: massive solutions have a wormhole structure, with their throat at r ≈ 2 M , while for the lighter configurations the topology is Euclidean. The total energy density of these solutions exhibits a solitonic profile with a maximum peaked away from the center, and located at the throat whenever a wormhole exists. The geodesic structure and curvature invariants are analyzed for the various configurations considered.

  19. Scalar fields in black hole spacetimes

    Thuestad, Izak; Khanna, Gaurav; Price, Richard H.

    2017-07-01

    The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.

  20. Euclidean wormholes with minimally coupled scalar fields

    Ruz, Soumendranath; Modak, Bijan; Debnath, Subhra; Sanyal, Abhik Kumar

    2013-01-01

    A detailed study of quantum and semiclassical Euclidean wormholes for Einstein's theory with a minimally coupled scalar field has been performed for a class of potentials. Massless, constant, massive (quadratic in the scalar field) and inverse (linear) potentials admit the Hawking and Page wormhole boundary condition both in the classically forbidden and allowed regions. An inverse quartic potential has been found to exhibit a semiclassical wormhole configuration. Classical wormholes under a suitable back-reaction leading to a finite radius of the throat, where the strong energy condition is satisfied, have been found for the zero, constant, quadratic and exponential potentials. Treating such classical Euclidean wormholes as an initial condition, a late stage of cosmological evolution has been found to remain unaltered from standard Friedmann cosmology, except for the constant potential which under the back-reaction produces a term like a negative cosmological constant. (paper)

  1. Atomic precision tests and light scalar couplings

    Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geneve Univ. (Switzerland). Dept. de Physique Theorique

    2010-10-15

    We calculate the shift in the atomic energy levels induced by the presence of a scalar field which couples to matter and photons. We find that a combination of atomic measurements can be used to probe both these couplings independently. A new and stringent bound on the matter coupling springs from the precise measurement of the 1s to 2s energy level difference in the hydrogen atom, while the coupling to photons is essentially constrained by the Lamb shift. Combining these constraints with current particle physics bounds we find that the contribution of a scalar field to the recently claimed discrepancy in the proton radius measured using electronic and muonic atoms is negligible. (orig.)

  2. Scalar field cosmologies with inverted potentials

    Boisseau, B.; Giacomini, H. [Université de Tours, Laboratoire de Mathématiques et Physique Théorique, CNRS/UMR 7350, 37200 Tours (France); Polarski, D., E-mail: bruno.boisseau@lmpt.univ-tours.fr, E-mail: hector.giacomini@lmpt.univ-tours.fr, E-mail: david.polarski@umontpellier.fr [Université Montpellier and CNRS, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France)

    2015-10-01

    Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.

  3. On Climbing Scalars in String Theory

    Dudas, E; Sagnotti, A

    2010-01-01

    In string models with "brane supersymmetry breaking" exponential potentials emerge at (closed-string) tree level but are not accompanied by tachyons. Potentials of this type have long been a source of embarrassment in flat space, but can have interesting implications for Cosmology. For instance, in ten dimensions the logarithmic slope |V'/V| lies precisely at a "critical" value where the Lucchin--Matarrese attractor disappears while the scalar field is \\emph{forced} to climb up the potential when it emerges from the Big Bang. This type of behavior is in principle perturbative in the string coupling, persists after compactification, could have trapped scalar fields inside potential wells as a result of the cosmological evolution and could have also injected the inflationary phase of our Universe.

  4. Scalar field cosmologies with inverted potentials

    Boisseau, B.; Giacomini, H.; Polarski, D.

    2015-01-01

    Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF

  5. SU (2) with fundamental fermions and scalars

    Hansen, Martin; Janowski, Tadeusz; Pica, Claudio

    2018-01-01

    We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness...... the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90...

  6. Primordial perturbations in multi-scalar inflation

    Abedi, Habib; Abbassi, Amir M., E-mail: h.abedi@ut.ac.ir, E-mail: amabasi@khayam.ut.ac.ir [Department of Physics, University of Tehran, North Kargar Ave, Tehran (Iran, Islamic Republic of)

    2017-07-01

    Multiple field models of inflation exhibit new features than single field models. In this work, we study the hierarchy of parameters based on Hubble expansion rate in curved field space and derive the system of flow equations that describe their evolutions. Then we focus on obtaining derivatives of number of e-folds with respect to scalar fields during inflation and at hypersurface of the end of inflation.

  7. Scalar contribution to the BFKL kernel

    Gerasimov, R. E.; Fadin, V. S.

    2010-01-01

    The contribution of scalar particles to the kernel of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation is calculated. A great cancellation between the virtual and real parts of this contribution, analogous to the cancellation in the quark contribution in QCD, is observed. The reason of this cancellation is discovered. This reason has a common nature for particles with any spin. Understanding of this reason permits to obtain the total contribution without the complicated calculations, which are necessary for finding separate pieces.

  8. Scalar and pseudoscalar susceptibilities in nuclei

    Ericson, Magda; Chanfray, Guy; Chanfray, Guy

    2003-01-01

    We study the two QCD susceptibilities of the nuclear medium in the linear σ model. The magnitude of the scalar one increases due to the mixing with the softer modes of the nucleon-hole excitations. The pseudoscalar susceptibility, follows the density evolution of the quark condensate and thus decreases in magnitude. At normal nuclear matter density the two susceptibilities become much close than in the vacuum, a consequence of the partial chiral symmetry restoration. (author)

  9. Scalar meson in dynamical and partially quenched two-flavor QCD: Lattice results and chiral loops

    Prelovsek, S.; Dawson, C.; Izubuchi, T.; Orginos, K.; Soni, A.

    2004-01-01

    This is an exploratory study of the lightest nonsinglet scalar qq state on the lattice with two dynamical quarks. Domain wall fermions are used for both sea and valence quarks on a 16 3 x32 lattice with an inverse lattice spacing of 1.7 GeV. We extract the scalar meson mass 1.58±0.34 GeV from the exponential time dependence of the dynamical correlators with m val =m sea and N f =2. Since this statistical error bar from dynamical correlators is rather large, we analyze also the partially quenched lattice correlators with m val ≠m sea . They are positive for m val ≥m sea and negative for m val sea . In order to understand this striking effect of partial quenching, we derive the scalar correlator within the partially quenched chiral perturbation theory (ChPT) and find it describes lattice correlators well. The leading unphysical contribution in partially quenched ChPT comes from the exchange of the two pseudoscalar fields and is also positive for m val ≥m sea and negative for m val sea at large t. After the subtraction of this unphysical contribution from the partially quenched lattice correlators, the correlators are positive and exponentially falling. The resulting scalar meson mass 1.51±0.19 GeV from the partially quenched correlators is consistent with the dynamical result and has an appreciably smaller error bar

  10. Stationary bound-state massive scalar field configurations supported by spherically symmetric compact reflecting stars

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-12-15

    It has recently been demonstrated that asymptotically flat neutral reflecting stars are characterized by an intriguing no-hair property. In particular, it has been proved that these horizonless compact objects cannot support spatially regular static matter configurations made of scalar (spin-0) fields, vector (spin-1) fields and tensor (spin-2) fields. In the present paper we shall explicitly prove that spherically symmetric compact reflecting stars can support stationary (rather than static) bound-state massive scalar fields in their exterior spacetime regions. To this end, we solve analytically the Klein-Gordon wave equation for a linearized scalar field of mass μ and proper frequency ω in the curved background of a spherically symmetric compact reflecting star of mass M and radius R{sub s}. It is proved that the regime of existence of these stationary composed star-field configurations is characterized by the simple inequalities 1 - 2M/R{sub s} < (ω/μ){sup 2} < 1. Interestingly, in the regime M/R{sub s} << 1 of weakly self-gravitating stars we derive a remarkably compact analytical equation for the discrete spectrum {ω(M,R_s, μ)}{sup n=∞}{sub n=1} of resonant oscillation frequencies which characterize the stationary composed compact-reflecting-star-linearized-massive-scalar-field configurations. Finally, we verify the accuracy of the analytically derived resonance formula of the composed star-field configurations with direct numerical computations. (orig.)

  11. Pseudo-scalar Higgs boson production at N"3LO_A+N"3LL"'

    Ahmed, Taushif; Rana, Narayan; Ravindran, V.; Bonvini, Marco; Rottoli, Luca; Kumar, M.C.; Mathews, Prakash

    2016-01-01

    We consider the production of a pseudo-scalar particle A at the LHC, and present accurate theoretical predictions for its inclusive cross section in gluon fusion. The prediction is based on combining fixed-order perturbation theory and all-order threshold resummation. At fixed order we include the exact next-to-next-to-leading order (NNLO) plus an approximate next-to-next-to-next-to-leading order (N"3LO_A) which is based on the recent computation at this order for the scalar case. We then add threshold resummation at next-to-next-to-next-to leading logarithmic accuracy (N"3LL"'). Various forms of threshold resummation are considered, differing by the treatment of subleading terms, allowing a robust estimate of the theoretical uncertainties due to missing higher orders. With particular attention to pseudo-scalar masses of 200 and 750 GeV, we also observe that perturbative convergence is much improved when resummation is included. Additionally, results obtained with threshold resummation in direct QCD are compared with analogous results as computed in soft-collinear effective theory, which turn out to be in good agreement. We provide precise predictions for pseudo-scalar inclusive cross section at 13 TeV LHC for a wide range of masses. The results are available through updated versions of the public codes ggHiggs and TROLL. (orig.)

  12. Scalar mesons in φ radiative decay

    Close, F.E.; Isgur, N.; Kumano, S.

    1992-06-01

    Existing predictions for the branching ratio for φ → KK γ via φ → S γ (where S denotes one of the scalar mesons f o (975) and a o (980)) vary by several orders of magnitude. Given the importance of these processes for both hadron spectroscopy and charge-parity-violation studies at φ factories (where φ→ K o K-bar o γ poses a possible background problem), this state of affairs is very undesirable. We show that the variety of predictions is due in part to errors and in part to differences in modelling. The latter variation leads us to argue that the radiative decays of these scalar states are interesting in their own right and may offer unique insights into the nature of the scalar mesons. As a byproduct we find that the branching ratio for φ → K o K-bar o γ is approx. -7 ) and will pose no significant background to proposed studies of CP-violation. (Author)

  13. In a search for scalar gluonium

    Novikov, V.A.; Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I.

    1979-01-01

    The problem of a scalar meson coupled strongly to gluons is discussed. Radiative decays of the J/psi are taken as a source of gluons. The aim of the paper is to calculate the GITA(J/psi→σγ) decay width where σ is the presumed scalar luonium. QCD sum rules was used to find both , (where Gsub(μν)sup(a) is the gluon field strength tensor and αsub(s) is the quark-gluon coupling constant) and GITA(J/psi→σγ) in terms of . The final prediction for the width is expected to be valid within a factor of two and gives GITA(J/psi→σγ→ two pions in S wave + γ) approximately equal to 25 eV for Msub(σ)=700 MeV. Nonperturbative QCD naturally explains the observed asymmetry between scalar and pseudoscalar states in the radiative decays of the J/psi. Some general remarks on gluonium in QCD are made

  14. Anisotropic hydrodynamics with a scalar collisional kernel

    Almaalol, Dekrayat; Strickland, Michael

    2018-04-01

    Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.

  15. Scalar field Green functions on causal sets

    Nomaan Ahmed, S; Surya, Sumati; Dowker, Fay

    2017-01-01

    We examine the validity and scope of Johnston’s models for scalar field retarded Green functions on causal sets in 2 and 4 dimensions. As in the continuum, the massive Green function can be obtained from the massless one, and hence the key task in causal set theory is to first identify the massless Green function. We propose that the 2d model provides a Green function for the massive scalar field on causal sets approximated by any topologically trivial 2-dimensional spacetime. We explicitly demonstrate that this is indeed the case in a Riemann normal neighbourhood. In 4d the model can again be used to provide a Green function for the massive scalar field in a Riemann normal neighbourhood which we compare to Bunch and Parker’s continuum Green function. We find that the same prescription can also be used for de Sitter spacetime and the conformally flat patch of anti-de Sitter spacetime. Our analysis then allows us to suggest a generalisation of Johnston’s model for the Green function for a causal set approximated by 3-dimensional flat spacetime. (paper)

  16. Mono-jet signatures of gluphilic scalar dark matter

    Rohini M. Godbole

    2017-09-01

    Full Text Available A gluphilic scalar dark matter (GSDM model has recently been proposed as an interesting vision for WIMP dark matter communicating dominantly with the Standard Model via gluons. We discuss the collider signature of a hard jet recoiling against missing momentum (“mono-jet” in such a construction, whose leading contribution is at one-loop. We compare the full one-loop computation with an effective field theory (EFT treatment, and find (as expected that EFT does not accurately describe regions of parameter space where mass of the colored mediator particles are comparable to the experimental cuts on the missing energy. We determine bounds (for several choices of SU(3 representation of the mediator from the s=8 TeV data, and show the expected reach of the s=13 TeV LHC and a future 100 TeV pp collider to constrain or discover GSDM models.

  17. Signal for a light singlet scalar at the LHC

    Chang, We-Fu; Modak, Tanmoy; Ng, John N.

    2018-03-01

    In the general Higgs portal-like models, the extra neutral scalar, S , can mix with the Standard Model (SM) Higgs boson, H . We perform an exploratory study focusing on the direct search for such a light singlet S at the Large Hadron Collider (LHC). After careful study of the SM background, we find the process p p →t t ¯ S followed by S →b b ¯ can be used to investigate S with mass in the 20 Higgs factories. With similar luminosity, the current Large Electron-Positron Collider (LEP) limits on the mixing between S and H can be improved by at least one or two order of magnitudes.

  18. A DNS study of turbulent mixing of two passive scalars

    Juneja, A.; Pope, S.B.

    1996-01-01

    We employ direct numerical simulations to study the mixing of two passive scalars in stationary, homogeneous, isotropic turbulence. The present work is a direct extension of that of Eswaran and Pope from one scalar to two scalars and the focus is on examining the evolution states of the scalar joint probability density function (jpdf) and the conditional expectation of the scalar diffusion to motivate better models for multi-scalar mixing. The initial scalar fields are chosen to conform closely to a open-quote open-quote triple-delta function close-quote close-quote jpdf corresponding to blobs of fluid in three distinct states. The effect of the initial length scales and diffusivity of the scalars on the evolution of the jpdf and the conditional diffusion is investigated in detail as the scalars decay from their prescribed initial state. Also examined is the issue of self-similarity of the scalar jpdf at large times and the rate of decay of the scalar variance and dissipation. copyright 1996 American Institute of Physics

  19. Search for the glueball candidates $f_{0}$(1500) and $f_{J}$(1710) in $\\gamma\\gamma$ collisions in ALEPH Detector

    Barate, R.; Ghez, Philippe; Goy, C.; Lees, J.P.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Alemany, R.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Riu, I.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Greening, T.C.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Teixeira-Dias, P.; Thompson, A.S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Goodsir, S.; Martin, E.B.; Marinelli, N.; Sciaba, A.; Sedgbeer, J.K.; Thomson, Evelyn J.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C.K.; Buck, P.G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Williams, M.I.; Giehl, I.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Wachsmuth, H.; Zeitnitz, C.; Aubert, J.J.; Bonissent, A.; Carr, J.; Coyle, P.; Payre, P.; Rousseau, D.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Buescher, Volker; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Le Diberder, F.; Lefrancois, J.; Lutz, A.M.; Schune, M.H.; Veillet, J.J.; Videau, I.; Zerwas, D.; Bagliesi, Giuseppe; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Ferrante, I.; Foa, L.; Giassi, A.; Gregorio, A.; Ligabue, F.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Cowan, G.; Green, M.G.; Medcalf, T.; Strong, J.A.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Thompson, J.C.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Colas, P.; Emery, S.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S.N.; Dann, J.H.; Johnson, R.P.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Giannini, G.; Gobbo, B.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; von Wimmersperg-Toeller, J.H.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    2000-01-01

    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95\\-onfidence level.

  20. Search for the glueball candidates f/sub 0/(1500) and f/sub J/(1710) in gamma gamma collisions

    Shan, Jin

    2001-01-01

    Summary form only given. Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f/sub 0/(1500) and f/sub J/(1710) via their decay to pi /sup +/ pi /sup -//sub ./ No signal is observed and upper limits to the product of gamma gamma width and pi /sup +/ pi /sup b/ranching ratio of the f/sub 0/(1500) and the f/sub J/(1710) have been measured to be Gamma ( gamma gamma to f/sub 0/(1500)) BR(f/sub 0/(1500) to pi /sup +/ pi /sup -/) < 0 31keV and Gamma ( gamma gamma to f/sub J /(1710)) BR(f/sub J/(1710) to pi /sup +/ pi /sup -/) < 0 55keV at 95% confidence level.

  1. Gravitational generation of mass in soliton theory

    Kozhevnikov, I.R.; Rybakov, Yu.P.

    1985-01-01

    It is shown that in the framework of a simple scalar field model, that admits soliton solutions, with gravitational field interactions being specially included, one succeeds in ensuring for a scalar field a correct spacial asymptotics that depends on the system mass. Theory, the quantum relation of a corpuscular-wave dualism is fulfilled for soliton solutions in such a model

  2. Masses in the Weinberg-Salam model

    Flores, F.A.

    1984-01-01

    This thesis is a detailed discussion of the currently existing limits on the masses of Higgs scalars and fermions in the Weinberg-Salam model. The spontaneous breaking of the gauge symmetry of the model generates arbitrary masses for Higgs scalars and fermions, which for the known fermions have to be set to their experimentally known values. In this thesis, the authors discuss in detail both the theoretical and experimental constraints on these otherwise arbitrary masses

  3. The scalar-photon 3-point vertex in massless quenched scalar QED

    Concha-Sánchez, Y; Gutiérrez-Guerrero, L X; Fernández-Rangel, L A

    2016-01-01

    Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the scalar-photon three point vertex can be expressed in terms of only two independent form factors, longitudinal and transverse. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green- Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we propose the transverse part of the non perturbative scalar-photon vertex. (paper)

  4. Squark and slepton mass relations in grand unified theories

    Cheng, H.; Hall, L.J.

    1995-01-01

    In the minimal supersymmetric standard model, assuming universal scalar masses at large energies, there are four intragenerational relations between the masses of the squarks and sleptons for each light generation. In this paper we study the scalar mass relations which follow only from the assumption that at large energies there is a grand unified theory which leads to a significant prediction of the weak mixing angle. Two new intragenerational mass relations for each of the light generations are derived. In addition, a third mass relation is found which relates the Higgs boson masses, the masses of the third generation scalars, and the masses of the scalars of the lighter generations. Verification of a fourth mass relation, involving only the charged slepton masses, provides a signal for SO(10) unification

  5. On the power law of passive scalars in turbulence

    Gotoh, Toshiyuki; Watanabe, Takeshi

    2015-11-01

    It has long been considered that the moments of the scalar increment with separation distance r obey power law with scaling exponents in the inertial convective range and the exponents are insensitive to variation of pumping of scalar fluctuations at large scales, thus the scaling exponents are universal. We examine the scaling behavior of the moments of increments of passive scalars 1 and 2 by using DNS up to the grid points of 40963. They are simultaneously convected by the same isotropic steady turbulence atRλ = 805 , but excited by two different methods. Scalar 1 is excited by the random scalar injection which is isotropic, Gaussian and white in time at law wavenumber band, while Scalar 2 is excited by the uniform mean scalar gradient. It is found that the local scaling exponents of the scalar 1 has a logarithmic correction, meaning that the moments of the scalar 1 do not obey simple power law. On the other hand, the moments of the scalar 2 is found to obey the well developed power law with exponents consistent with those in the literature. Physical reasons for the difference are explored. Grants-in-Aid for Scientific Research 15H02218 and 26420106, NIFS14KNSS050, HPCI project hp150088 and hp140024, JHPCN project jh150012.

  6. Neutron star mergers as a probe of modifications of general relativity with finite-range scalar forces

    Sagunski, Laura; Zhang, Jun; Johnson, Matthew C.; Lehner, Luis; Sakellariadou, Mairi; Liebling, Steven L.; Palenzuela, Carlos; Neilsen, David

    2018-03-01

    Observations of gravitational radiation from compact binary systems provide an unprecedented opportunity to test general relativity in the strong field dynamical regime. In this paper, we investigate how future observations of gravitational radiation from binary neutron star mergers might provide constraints on finite-range forces from a universally coupled massive scalar field. Such scalar degrees of freedom (d.o.f.) are a characteristic feature of many extensions of general relativity. For concreteness, we work in the context of metric f (R ) gravity, which is equivalent to general relativity and a universally coupled scalar field with a nonlinear potential whose form is fixed by the choice of f (R ). In theories where neutron stars (or other compact objects) obtain a significant scalar charge, the resulting attractive finite-range scalar force has implications for both the inspiral and merger phases of binary systems. We first present an analysis of the inspiral dynamics in Newtonian limit, and forecast the constraints on the mass of the scalar and charge of the compact objects for the Advanced LIGO gravitational wave observatory. We then perform a comparative study of binary neutron star mergers in general relativity with those of a one-parameter model of f (R ) gravity using fully relativistic hydrodynamical simulations. These simulations elucidate the effects of the scalar on the merger and postmerger dynamics. We comment on the utility of the full waveform (inspiral, merger, postmerger) to probe different regions of parameter space for both the particular model of f (R ) gravity studied here and for finite-range scalar forces more generally.

  7. Effects of isodoublet colour-octet scalar bosons on oblique electroweak parameters

    Bhattacharyya, G.; Kundu, A.; De, T.; Dutta-Roy, B.

    1995-01-01

    Isodoublet colour-octet scalar bosons appear in a natural extension of the minimal dynamical symmetry breaking model triggered by a tt condensate, which is geared to yield the top mass in the phenomenologically expected region. We study the effect of these bosons on oblique electroweak parameters S and T, and constrain the mass splitting between the neutral and the charged member of the colour octet. It is also shown that S can be substantially negative, depending on the way the masses in the coloured doublet are split. (author)

  8. Relaxation and kinetics in scalar field theories

    Boyanovsky, D.; Lawrie, I.D.; Lee, D.

    1996-01-01

    A new approach to the dynamics of relaxation and kinetics of thermalization in a scalar field theory is presented that incorporates the relevant time scales through the resummation of hard thermal loops. An alternative derivation of the kinetic equations for the open-quote open-quote quasiparticle close-quote close-quote distribution functions is obtained that allows a clear understanding of the different open-quote open-quote coarse-graining close-quote close-quote approximations usually involved in a kinetic description. This method leads to a systematic perturbative expansion to obtain the kinetic equations including hard thermal loop resummation and to an improvement including renormalization, off-shell effects, and contributions that change chemical equilibrium on short time scales. As a by-product of these methods we establish the equivalence between the relaxation time scale in the linearized equation of motion of the quasiparticles and the thermalization time scale of the quasiparticle distribution function in the open-quote open-quote relaxation time approximation close-quote close-quote including hard thermal loop effects. Hard thermal loop resummation dramatically modifies the scattering rate for long wavelength modes as compared to the usual (semi)classical estimate. Relaxation and kinetics are studied both in the unbroken and broken symmetry phases of the theory. The broken symmetry phase also provides the setting to obtain the contribution to the kinetic equations from processes that involve decay of a heavy scalar into light scalar particles in the medium. copyright 1996 The American Physical Society

  9. Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics

    Gibbons, G.; Kallosh, R.; Kol, B.

    1996-01-01

    We show that under variation of moduli fields φ the first law of black hole thermodynamics becomes dM=κdA/8π +ΩdJ+ψdq+χdp-Σdφ, where Σ are the scalar charges. Also the ADM mass is extremized at fixed A, J, (p,q) when the moduli fields take the fixed value φ fix (p,q) which depend only on electric and magnetic charges. Thus the double-extreme black hole minimizes the mass for fixed conserved charges. We can now explain the fact that extreme black holes fix the moduli fields at the horizon φ=φ fix (p,q): φ fix is such that the scalar charges vanish: Σ(φ fix ,(p,q))=0. copyright 1996 The American Physical Society

  10. Thermal dark matter co-annihilating with a strongly interacting scalar

    Biondini, S.; Laine, M.

    2018-04-01

    Recently many investigations have considered Majorana dark matter co-annihilating with bound states formed by a strongly interacting scalar field. However only the gluon radiation contribution to bound state formation and dissociation, which at high temperatures is subleading to soft 2 → 2 scatterings, has been included. Making use of a non-relativistic effective theory framework and solving a plasma-modified Schrödinger equation, we address the effect of soft 2 → 2 scatterings as well as the thermal dissociation of bound states. We argue that the mass splitting between the Majorana and scalar field has in general both a lower and an upper bound, and that the dark matter mass scale can be pushed at least up to 5…6TeV.

  11. $SU(2)$ gauge theory with two fundamental flavours: scalar and pseudoscalar spectrum

    Arthur, Rudy; Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    2016-01-01

    We investigate the scalar and pseudoscalar spectrum of the $SU(2)$ gauge theory with $N_f=2$ flavours of fermions in the fundamental representation using non perturbative lattice simulations. We provide first benchmark estimates of the mass of the lightest $0(0^{+})$ ($\\sigma$), $0(0^{-})$ ($\\eta'$) and $1(0^+)$ ($a_0$) states, including estimates of the relevant disconnected contributions. We find $m_{a_0}/F_{\\rm{PS}}= 16.7(4.9)$, $m_\\sigma/F_{\\rm{PS}}=19.2(10.8)$ and $m_{\\eta'}/F_{\\rm{PS}} = 12.8(4.7)$. These values for the masses of light scalar states provide crucial information for composite extensions of the Standard Model from the unified Fundamental Composi te Higgs-Technicolor theory \\cite{Cacciapaglia:2014uja} to models of composite dark matter.

  12. MICROSCOPE Mission: First Constraints on the Violation of the Weak Equivalence Principle by a Light Scalar Dilaton

    Bergé, Joel; Brax, Philippe; Métris, Gilles; Pernot-Borràs, Martin; Touboul, Pierre; Uzan, Jean-Philippe

    2018-04-01

    The existence of a light or massive scalar field with a coupling to matter weaker than gravitational strength is a possible source of violation of the weak equivalence principle. We use the first results on the Eötvös parameter by the MICROSCOPE experiment to set new constraints on such scalar fields. For a massive scalar field of mass smaller than 10-12 eV (i.e., range larger than a few 1 05 m ), we improve existing constraints by one order of magnitude to |α |baryon number and to |α |baryon and the lepton numbers. We also consider a model describing the coupling of a generic dilaton to the standard matter fields with five parameters, for a light field: We find that, for masses smaller than 10-12 eV , the constraints on the dilaton coupling parameters are improved by one order of magnitude compared to previous equivalence principle tests.

  13. Gaussian processes and constructive scalar field theory

    Benfatto, G.; Nicolo, F.

    1981-01-01

    The last years have seen a very deep progress of constructive euclidean field theory, with many implications in the area of the random fields theory. The authors discuss an approach to super-renormalizable scalar field theories, which puts in particular evidence the connections with the theory of the Gaussian processes associated to the elliptic operators. The paper consists of two parts. Part I treats some problems in the theory of Gaussian processes which arise in the approach to the PHI 3 4 theory. Part II is devoted to the discussion of the ultraviolet stability in the PHI 3 4 theory. (Auth.)

  14. Renormalization group study of scalar field theories

    Hasenfratz, A.; Hasenfratz, P.

    1986-01-01

    An approximate RG equation is derived and studied in scalar quantum field theories in d dimensions. The approximation allows for an infinite number of different couplings in the potential, but excludes interactions containing derivatives. The resulting non-linear partial differential equation can be studied by simple means. Both the gaussian and the non-gaussian fixed points are described qualitatively correctly by the equation. The RG flows in d=4 and the problem of defining an ''effective'' field theory are discussed in detail. (orig.)

  15. Global integrability of cosmological scalar fields

    Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz; Szydłowski, Marek

    2008-11-01

    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain.

  16. Force field refinement from NMR scalar couplings

    Huang Jing [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland); Meuwly, Markus, E-mail: m.meuwly@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2012-03-02

    Graphical abstract: We show that two classes of H-bonds are sufficient to quantitatively describe scalar NMR coupling constants in small proteins. Highlights: Black-Right-Pointing-Pointer We present force field refinements based on explicit MD simulations using scalar couplings across hydrogen bonds. Black-Right-Pointing-Pointer This leads to {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.03 Hz at best compared to experiment. Black-Right-Pointing-Pointer A classification of H-bonds according to secondary structure is not sufficiently robust. Black-Right-Pointing-Pointer Grouping H-bonds into two classes and reparametrization yields an RMSD of 0.07 Hz. Black-Right-Pointing-Pointer This is an improvement of 50. - Abstract: NMR observables contain valuable information about the protein dynamics sampling a high-dimensional potential energy surface. Depending on the observable, the dynamics is sensitive to different time-windows. Scalar coupling constants {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} reflect the pico- to nanosecond motions associated with the intermolecular hydrogen bond network. Including an explicit H-bond in the molecular mechanics with proton transfer (MMPT) potential allows us to reproduce experimentally determined {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.02 Hz at best for ubiquitin and protein G. This is based on taking account of the chemically changing environment by grouping the H-bonds into up to seven classes. However, grouping them into two classes already reduces the RMSD between computed and observed {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings by almost 50%. Thus, using ensemble-averaged data with two classes of H-bonds leads to substantially improved scalar couplings from simulations with accurate force fields.

  17. Scalar-tensor cosmology with cosmological constant

    Maslanka, K.

    1983-01-01

    The equations of scalar-tensor theory of gravitation with cosmological constant in the case of homogeneous and isotropic cosmological model can be reduced to dynamical system of three differential equations with unknown functions H=R/R, THETA=phi/phi, S=e/phi. When new variables are introduced the system becomes more symmetrical and cosmological solutions R(t), phi(t), e(t) are found. It is shown that when cosmological constant is introduced large class of solutions which depend also on Dicke-Brans parameter can be obtained. Investigations of these solutions give general limits for cosmological constant and mean density of matter in plane model. (author)

  18. Pre-inflation physics and scalar perturbations

    Hirai, Shiro

    2005-01-01

    The effect of pre-inflation physics on the power spectrum of scalar perturbations is investigated. Considering various pre-inflation models with radiation-dominated or matter-dominated periods before inflation, the power spectra of curvature perturbations for large scales are calculated, and the spectral index and running spectral index are derived. It is shown that pre-inflation models in which the length of inflation is near 60 e-folds may reproduce some key properties implied by the Wilkinson microwave anisotropy probe data

  19. Global integrability of cosmological scalar fields

    Maciejewski, Andrzej J; Przybylska, Maria; Stachowiak, Tomasz; Szydlowski, Marek

    2008-01-01

    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain

  20. Weakly dynamic dark energy via metric-scalar couplings with torsion

    Sur, Sourav; Bhatia, Arshdeep Singh, E-mail: sourav.sur@gmail.com, E-mail: arshdeepsb@gmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi, 110 007 (India)

    2017-07-01

    We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the torsion pseudo-trace provides a mass term for the scalar field in the effective action. In the equivalent scalar-tensor framework, we find explicit cosmological solutions representing dark energy in both Einstein and Jordan frames. We demand the dynamical evolution of the dark energy to be weak enough, so that the present-day values of the cosmological parameters could be estimated keeping them within the confidence limits set for the standard LCDM model from recent observations. For such estimates, we examine the variations of the effective matter density and the dark energy equation of state parameters over different redshift ranges. In spite of being weakly dynamic, the dark energy component differs significantly from the cosmological constant, both in characteristics and features, for e.g. it interacts with the cosmological (dust) fluid in the Einstein frame, and crosses the phantom barrier in the Jordan frame. We also obtain the upper bounds on the torsion mode parameters and the lower bound on the effective Brans-Dicke parameter. The latter turns out to be fairly large, and in agreement with the local gravity constraints, which therefore come in support of our analysis.