WorldWideScience

Sample records for scalar field cosmologies

  1. Anisotropic scalar field with cosmological time

    Kleber, A.; Teixeira, A.F.F.

    1978-04-01

    A static, nonsingular, plane-symmetric scalar field of long range is considered under the general relativity, and a one-parametric class of exact solutions with cosmological time is obtained, in harmonic coordinates. In the absence of any material source, the gravitation originated by the pure scalar field can be studied in detail. A velocity-dependent acceleration field is found, acting attractively on the component of the velocity normal to the plane of symmetry, and repulsively on the component parallel to that plane. Particles at rest are insensitive to the gravitation, although the time component of the energy momentum tensor is point dependent and positive definite

  2. Scalar field cosmologies with inverted potentials

    Boisseau, B.; Giacomini, H. [Université de Tours, Laboratoire de Mathématiques et Physique Théorique, CNRS/UMR 7350, 37200 Tours (France); Polarski, D., E-mail: bruno.boisseau@lmpt.univ-tours.fr, E-mail: hector.giacomini@lmpt.univ-tours.fr, E-mail: david.polarski@umontpellier.fr [Université Montpellier and CNRS, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France)

    2015-10-01

    Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.

  3. Scalar field cosmologies with inverted potentials

    Boisseau, B.; Giacomini, H.; Polarski, D.

    2015-01-01

    Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF

  4. Global integrability of cosmological scalar fields

    Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz; Szydłowski, Marek

    2008-11-01

    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain.

  5. Global integrability of cosmological scalar fields

    Maciejewski, Andrzej J; Przybylska, Maria; Stachowiak, Tomasz; Szydlowski, Marek

    2008-01-01

    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain

  6. Exact solutions in string-motivated scalar-field cosmology

    Oezer, M.; Taha, M.O.

    1992-01-01

    Two exact cosmological solutions to a scalar-field potential motivated by six-dimensional (6D) Einstein-Maxwell theory are given. The resulting pure scalar-field cosmology is free of singularity and causality problems but conserves entropy. These solutions are then extended into exact cosmological solutions for a decaying scalar field with an approximate two-loop 4D string potential. The resulting cosmology is, for both solutions, free of cosmological problems and close to the standard cosmology of the radiation era

  7. Regular and Chaotic Regimes in Scalar Field Cosmology

    Alexey V. Toporensky

    2006-03-01

    Full Text Available A transient chaos in a closed FRW cosmological model with a scalar field is studied. We describe two different chaotic regimes and show that the type of chaos in this model depends on the scalar field potential. We have found also that for sufficiently steep potentials or for potentials with large cosmological constant the chaotic behavior disappears.

  8. Scalar field cosmology in three-dimensions

    Oliveira Neto, G.

    2001-01-01

    We study an analytical solution to the Einstein's equations in 2 + 1-dimensions. The space-time is dynamical and has a line symmetry. The matter content is a minimally coupled, massless, scalar field. Depending on the value of certain parameters, this solution represents three distinct space-times. The first one is at space-time. Then, we have a big bang model with a negative curvature scalar and a real scalar field. The last case is a big bang model with event horizons where the curvature scalar vanishes and the scalar field changes from real to purely imaginary. (author)

  9. Minimally coupled scalar field cosmology in anisotropic ...

    2017-01-03

    Jan 3, 2017 ... So far, a large class of scalar field dark energy mod- els have been ... gains a lot of interest, under the light of the recently announced Planck Probe ...... Figure 1. wm vs. t for c2 = 1, V0 = 1 and some values of λ and α. Figure 2.

  10. Arbitrary scalar-field and quintessence cosmological models

    Harko, Tiberiu; Lobo, Francisco S.N.; Mak, M.K.

    2014-01-01

    The mechanism of the initial inflationary scenario of the Universe and of its late-time acceleration can be described by assuming the existence of some gravitationally coupled scalar fields φ, with the inflaton field generating inflation and the quintessence field being responsible for the late accelerated expansion. Various inflationary and late-time accelerated scenarios are distinguished by the choice of an effective self-interaction potential V(φ), which simulates a temporarily non-vanishing cosmological term. In this work, we present a new formalism for the analysis of scalar fields in flat isotropic and homogeneous cosmological models. The basic evolution equation of the models can be reduced to a first-order non-linear differential equation. Approximate solutions of this equation can be constructed in the limiting cases of the scalar-field kinetic energy and potential energy dominance, respectively, as well as in the intermediate regime. Moreover, we present several new accelerating and decelerating exact cosmological solutions, based on the exact integration of the basic evolution equation for scalar-field cosmologies. More specifically, exact solutions are obtained for exponential, generalized cosine hyperbolic, and power-law potentials, respectively. Cosmological models with power-law scalar field potentials are also analyzed in detail. (orig.)

  11. Scalar fields and their applications in astrophysics and cosmology

    Mbelek, Jean-Paul

    2003-01-01

    This research thesis reports an analysis of the different existing theoretical contexts of occurrence of scalar fields in unified field theories, astrophysics and cosmology. More particularly, most of unified theories (Grand Unified Theories of GUTs, string theories, and so on) can be reduced, within astrophysical and cosmological conditions, to the form of effective theories such as Kaluza-Klein (multi-dimensional theories) or Brans-Dicke (four-dimensional theories) theories which comprise scalar fields. After a presentation of these theories, the author discusses the concept of scalar fields in field quantum theories and in cosmology. He proposes a stabilised model of the Kaluza-Klein theory in 5D, and several experiments designed to measure G. The thesis is completed by several published articles and contributions [fr

  12. Stability of a Noncanonical Scalar Field Model during Cosmological Date

    Z. Ossoulian

    2016-01-01

    Full Text Available Using the noncanonical model of scalar field, the cosmological consequences of a pervasive, self-interacting, homogeneous, and rolling scalar field are studied. In this model, the scalar field potential is “nonlinear” and decreases in magnitude with increasing the value of the scalar field. A special solution of the nonlinear field equations of ϕ that has time dependency as fixed point is obtained. The fixed point relies on the noncanonical term of action and γ-parameter; this parameter appeared in energy density of scalar field redshift. By means of such fixed point the different eigenvalues of the equation of motion will be obtained. In different epochs in the evolution of the Universe for different values of q and n, the potentials as a function of scalar field are attained. The behavior of baryonic perturbations in linear perturbation scenario as a considerable amount of energy density of scalar field at low redshifts prevents the growth of perturbations in the ordinary matter fluid. The energy density in the scalar field is not appreciably perturbed by nonrelativistic gravitational fields, in either the radiation or matter dominant or scalar field dominated epoch.

  13. Ermakov-Pinney equation in scalar field cosmologies

    Hawkins, Rachael M.; Lidsey, James E.

    2002-01-01

    It is shown that the dynamics of cosmologies sourced by a mixture of perfect fluids and self-interacting scalar fields are described by the nonlinear, Ermakov-Pinney equation. The general solution of this equation can be expressed in terms of particular solutions to a related, linear differential equation. This characteristic is employed to derive exact cosmologies in the inflationary and quintessential scenarios. The relevance of the Ermakov-Pinney equation to the braneworld scenario is discussed

  14. N-body simulations for coupled scalar-field cosmology

    Li Baojiu; Barrow, John D.

    2011-01-01

    We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled-scalar-field models, including background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled-scalar-field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not work. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulation works for similar models. We then study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to see the agreement and places where the nonlinear treatment deviates from the linear approximation. We also propose an algorithm to identify gravitationally virialized matter halos, trying to take account of the fact that the virialization itself is also modified by the scalar-field coupling. We use the algorithm to measure the mass function and study the properties of dark-matter halos. We find that the net effect of the scalar coupling helps produce more heavy halos in our simulation boxes and suppresses the inner (but not the outer) density profile of halos compared with the ΛCDM prediction, while the suppression weakens as the coupling between the scalar field and dark-matter particles increases in strength.

  15. Coupled oscillators as models of phantom and scalar field cosmologies

    Faraoni, Valerio

    2004-01-01

    We study a toy model for phantom cosmology recently introduced in the literature and consisting of two oscillators, one of which carries negative kinetic energy. The results are compared with the exact phase space picture obtained for similar dynamical systems describing, respectively, a massive canonical scalar field conformally coupled to the spacetime curvature and a conformally coupled massive phantom. Finally, the dynamical system describing exactly a minimally coupled phantom is studied and compared with the toy model

  16. Scalar field localization on a brane with cosmological constant

    Ghoroku, Kazuo; Yahiro, Masanobu

    2003-01-01

    We investigate the localization of a massive scalar for both dS and AdS branes, where the scalar mass is varied from the massive-particle region to the tachyon region. We find that the eigenmass m of the localized mode satisfies a simple relation m 2 = cM 2 with a positive constant c for the dS brane, and m 2 = c 1 M 2 + c 2 with positive constants c 1 and c 2 for the AdS brane. We discuss the relation of these results to the stability of the brane and also some cosmological problems

  17. Effect of the chameleon scalar field on brane cosmological evolution

    Bisabr, Y.; Ahmadi, F.

    2017-11-01

    We have investigated a brane world model in which the gravitational field in the bulk is described both by a metric tensor and a minimally coupled scalar field. This scalar field is taken to be a chameleon with an appropriate potential function. The scalar field interacts with matter and there is an energy transfer between the two components. We find a late-time asymptotic solution which exhibits late-time accelerating expansion. We also show that the Universe recently crosses the phantom barrier without recourse to any exotic matter. We provide some thermodynamic arguments which constrain both the direction of energy transfer and dynamics of the extra dimension.

  18. Effect of the chameleon scalar field on brane cosmological evolution

    Y. Bisabr

    2017-11-01

    Full Text Available We have investigated a brane world model in which the gravitational field in the bulk is described both by a metric tensor and a minimally coupled scalar field. This scalar field is taken to be a chameleon with an appropriate potential function. The scalar field interacts with matter and there is an energy transfer between the two components. We find a late-time asymptotic solution which exhibits late-time accelerating expansion. We also show that the Universe recently crosses the phantom barrier without recourse to any exotic matter. We provide some thermodynamic arguments which constrain both the direction of energy transfer and dynamics of the extra dimension.

  19. Possible evolution of a bouncing universe in cosmological models with non-minimally coupled scalar fields

    Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Skugoreva, Maria A.; Toporensky, Alexey V.

    2016-01-01

    We explore dynamics of cosmological models with bounce solutions evolving on a spatially flat Friedmann-Lemaître-Robertson-Walker background. We consider cosmological models that contain the Hilbert-Einstein curvature term, the induced gravity term with a negative coupled constant, and even polynomial potentials of the scalar field. Bounce solutions with non-monotonic Hubble parameters have been obtained and analyzed. The case when the scalar field has the conformal coupling and the Higgs-like potential with an opposite sign is studied in detail. In this model the evolution of the Hubble parameter of the bounce solution essentially depends on the sign of the cosmological constant.

  20. Wheeler-DeWitt equation and Lie symmetries in Bianchi scalar-field cosmology

    Paliathanasis, A. [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Karpathopoulos, L. [University of Athens, Faculty of Physics, Department of Astronomy-Astrophysics-Mechanics, Athens (Greece); Wojnar, A. [Institute for Theoretical Physics, Wroclaw (Poland); Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sez. di Napoli, Naples (Italy); Capozziello, S. [Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); Gran Sasso Science Institute (INFN), L' Aquila (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sez. di Napoli, Naples (Italy)

    2016-04-15

    Lie symmetries are discussed for the Wheeler-De Witt equation in Bianchi Class A cosmologies. In particular, we consider general relativity, minimally coupled scalar-field gravity and hybrid gravity as paradigmatic examples of the approach. Several invariant solutions are determined and classified according to the form of the scalar-field potential. The approach gives rise to a suitable method to select classical solutions and it is based on the first principle of the existence of symmetries. (orig.)

  1. Solar System constraints on massless scalar-tensor gravity with positive coupling constant upon cosmological evolution of the scalar field

    Anderson, David; Yunes, Nicolás

    2017-09-01

    Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.

  2. Exact Kantowski-Sachs and Bianchi types I and III cosmological models with a conformally invariant scalar field

    Accioly, A.J.

    1985-01-01

    Exact solutions of the Einstein-Conformally Invariant Scalar Field Equations are obtained for Kantowski-Sachs and Bianchi types I and III cosmologies. The presence of the conformally invariant scalar field is responsible for some interesting features of the solutions. In particular it is found that the Bianchi I model is consistent with the big-bang theory of cosmology. (Author) [pt

  3. Integrable scalar cosmologies

    Fré, P.; Sorin, A.S.; Trigiante, M.

    2014-01-01

    The question whether the integrable one-field cosmologies classified in a previous paper by Fré, Sagnotti and Sorin can be embedded as consistent one-field truncations into Extended Gauged Supergravity or in N=1 supergravity gauged by a superpotential without the use of D-terms is addressed in this paper. The answer is that such an embedding is very difficult and rare but not impossible. Indeed, we were able to find two examples of integrable models embedded in supergravity in this way. Both examples are fitted into N=1 supergravity by means of a very specific and interesting choice of the superpotential W(z). The question whether there are examples of such an embedding in Extended Gauged Supergravity remains open. In the present paper, relying on the embedding tensor formalism we classified all gaugings of the N=2 STU model, confirming, in the absence on hypermultiplets, the uniqueness of the stable de Sitter vacuum found several years ago by Fré, Trigiante and Van Proeyen and excluding the embedding of any integrable cosmological model. A detailed analysis of the space of exact solutions of the first supergravity-embedded integrable cosmological model revealed several new features worth an in-depth consideration. When the scalar potential has an extremum at a negative value, the Universe necessarily collapses into a Big Crunch notwithstanding its spatial flatness. The causal structure of these Universes is quite different from that of the closed, positive curved, Universe: indeed, in this case the particle and event horizons do not coincide and develop complicated patterns. The cosmological consequences of this unexpected mechanism deserve careful consideration

  4. Holographic dark energy in Brans-Dicke cosmology with chameleon scalar field

    Setare, M.R.; Jamil, Mubasher

    2010-01-01

    We study a cosmological implication of holographic dark energy in the Brans-Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter α (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans-Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans-Dicke cosmology framework.

  5. Holographic dark energy in Brans-Dicke cosmology with chameleon scalar field

    Setare, M.R., E-mail: rezakord@ipm.i [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: mjamil@camp.edu.p [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, Rawalpindi 46000 (Pakistan)

    2010-06-07

    We study a cosmological implication of holographic dark energy in the Brans-Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter {alpha} (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans-Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans-Dicke cosmology framework.

  6. Noncommutative conformally coupled scalar field cosmology and its commutative counterpart

    Barbosa, G.D.

    2005-01-01

    We study the implications of a noncommutative geometry of the minisuperspace variables for the Friedmann-Robertson-Walker universe with a conformally coupled scalar field. The investigation is carried out by means of a comparative study of the universe evolution in four different scenarios: classical commutative, classical noncommutative, quantum commutative, and quantum noncommutative, the last two employing the Bohmian formalism of quantum trajectories. The role of noncommutativity is discussed by drawing a parallel between its realizations in two possible frameworks for physical interpretation: the NC frame, where it is manifest in the universe degrees of freedom, and in the C frame, where it is manifest through θ-dependent terms in the Hamiltonian. As a result of our comparative analysis, we find that noncommutative geometry can remove singularities in the classical context for sufficiently large values of θ. Moreover, under special conditions, the classical noncommutative model can admit bouncing solutions characteristic of the commutative quantum Friedmann-Robertson-Walker universe. In the quantum context, we find nonsingular universe solutions containing bounces or being periodic in the quantum commutative model. When noncommutativity effects are turned on in the quantum scenario, they can introduce significant modifications that change the singular behavior of the universe solutions or that render them dynamical whenever they are static in the commutative case. The effects of noncommutativity are completely specified only when one of the frames for its realization is adopted as the physical one. Nonsingular solutions in the NC frame can be mapped into singular ones in the C frame

  7. Horizon-preserving dualities and perturbations in non-canonical scalar field cosmologies

    Geshnizjani, Ghazal; Kinney, William H.; Dizgah, Azadeh Moradinezhad

    2012-01-01

    We generalize the cosmological duality between inflation and cyclic contraction under the interchange a↔H to the case of non-canonical scalar field theories with varying speed of sound. The single duality in the canonical case generalizes to a family of three dualities constructed to leave the cosmological acoustic horizon invariant. We find three classes of models: (I) DBI inflation, (II) the non-canonical generalization of cyclic contraction, and (III) a new cosmological solution with rapidly decreasing speed of sound and relatively slowly growing scale factor, which we dub stalled cosmology. We construct dual analogs to the inflationary slow roll approximation, and solve for the curvature perturbation in all three cases. Both cyclic contraction and stalled cosmology predict a strongly blue spectrum for the curvature perturbations inconsistent with observations

  8. Scalar cosmological perturbations

    Uggla, Claes; Wainwright, John

    2012-01-01

    Scalar perturbations of Friedmann-Lemaitre cosmologies can be analyzed in a variety of ways using Einstein's field equations, the Ricci and Bianchi identities, or the conservation equations for the stress-energy tensor, and possibly introducing a timelike reference congruence. The common ground is the use of gauge invariants derived from the metric tensor, the stress-energy tensor, or from vectors associated with a reference congruence, as basic variables. Although there is a complication in that there is no unique choice of gauge invariants, we will show that this can be used to advantage. With this in mind our first goal is to present an efficient way of constructing dimensionless gauge invariants associated with the tensors that are involved, and of determining their inter-relationships. Our second goal is to give a unified treatment of the various ways of writing the governing equations in dimensionless form using gauge-invariant variables, showing how simplicity can be achieved by a suitable choice of variables and normalization factors. Our third goal is to elucidate the connection between the metric-based approach and the so-called 1 + 3 gauge-invariant approach to cosmological perturbations. We restrict our considerations to linear perturbations, but our intent is to set the stage for the extension to second-order perturbations. (paper)

  9. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    Kamenshchik, A. Yu. [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46, 40126 Bologna (Italy) and L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow (Russian Federation); Manti, S. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2013-02-21

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  10. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    Kamenshchik, A. Yu.; Manti, S.

    2013-01-01

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  11. A kinetic theory of diffusion in general relativity with cosmological scalar field

    Calogero, Simone

    2011-01-01

    A new model to describe the dynamics of particles undergoing diffusion in general relativity is proposed. The evolution of the particle system is described by a Fokker-Planck equation without friction on the tangent bundle of spacetime. It is shown that the energy-momentum tensor for this matter model is not divergence-free, which makes it inconsistent to couple the Fokker-Planck equation to the Einstein equations. This problem can be solved by postulating the existence of additional matter fields in spacetime or by modifying the Einstein equations. The case of a cosmological scalar field term added to the left hand side of the Einstein equations is studied in some details. For the simplest cosmological model, namely the flat Robertson-Walker spacetime, it is shown that, depending on the initial value of the cosmological scalar field, which can be identified with the present observed value of the cosmological constant, either unlimited expansion or the formation of a singularity in finite time will occur in the future. Future collapse into a singularity also takes place for a suitable small but positive present value of the cosmological constant, in contrast to the standard diffusion-free scenario

  12. Analysis of Scalar Field Cosmology with Phase Space Deformations

    Sinuhe Perez-Payan

    2014-01-01

    modifying the symplectic structure of the minisuperspace variables. The effects of the deformation are studied in the “C-frame” and the “NC-frame.” In order to remove the ambiguities of working on different frames, a new principle is introduced. When we impose that both frames should be physically equivalent, we conclude that the only possibility for this model, is to have an effective cosmological constant Λeff≥0. Finally we bound the parameter space for θ and β.

  13. Future evolution in a backreaction model and the analogous scalar field cosmology

    Ali, Amna; Majumdar, A.S., E-mail: amnaalig@gmail.com, E-mail: archan@bose.res.in [S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700106 (India)

    2017-01-01

    We investigate the future evolution of the universe using the Buchert framework for averaged backreaction in the context of a two-domain partition of the universe. We show that this approach allows for the possibility of the global acceleration vanishing at a finite future time, provided that none of the subdomains accelerate individually. The model at large scales is analogously described in terms of a homogeneous scalar field emerging with a potential that is fixed and free from phenomenological parametrization. The dynamics of this scalar field is explored in the analogous FLRW cosmology. We use observational data from Type Ia Supernovae, Baryon Acoustic Oscillations, and Cosmic Microwave Background to constrain the parameters of the model for a viable cosmology, providing the corresponding likelihood contours.

  14. Dynamical system of scalar field from 2-dimension to 3-D and its cosmological implications

    Fang, Wei [Shanghai Normal University, Department of Physics, Shanghai (China); The Shanghai Key Lab for Astrophysics, Shanghai (China); Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Tu, Hong [Shanghai Normal University, Department of Physics, Shanghai (China); The Shanghai Key Lab for Astrophysics, Shanghai (China); Huang, Jiasheng [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Shu, Chenggang [The Shanghai Key Lab for Astrophysics, Shanghai (China)

    2016-09-15

    We give the three-dimensional dynamical autonomous systems for most of the popular scalar field dark energy models including (phantom) quintessence, (phantom) tachyon, K-essence, and general non-canonical scalar field models, change the dynamical variables from variables (x, y, λ) to observable related variables (w{sub φ}, Ω{sub φ}, λ), and show the intimate relationships between those scalar fields that the three-dimensional system of K-essence can reduce to (phantom) tachyon, general non-canonical scalar field can reduce to (phantom) quintessence and K-essence can also reduce to (phantom) quintessence for some special cases. For the applications of the three-dimensional dynamical systems, we investigate several special cases and give the exactly dynamical solutions in detail. In the end of this paper, we argue that it is more convenient and also has more physical meaning to express the differential equations of dynamical systems in (w{sub φ}, Ω{sub φ}, λ) instead of variables (x, y, λ) and to investigate the dynamical system in three dimensions instead of two dimensions. We also raise a question about the possibility of the chaotic behavior in the spatially flat single scalar field FRW cosmological models in the presence of ordinary matter. (orig.)

  15. Exact solutions for scalar field cosmology in f(R) gravity

    Maharaj, S. D.; Goswami, R.; Chervon, S. V.; Nikolaev, A. V.

    2017-09-01

    We study scalar field FLRW cosmology in the content of f(R) gravity. Our consideration is restricted to the spatially flat Friedmann universe. We derived the general evolution equations of the model, and showed that the scalar field equation is automatically satisfied for any form of the f(R) function. We also derived representations for kinetic and potential energies, as well as for the acceleration in terms of the Hubble parameter and the form of the f(R) function. Next we found the exact cosmological solutions in modified gravity without specifying the f(R) function. With negligible acceleration of the scalar curvature, we found that the de Sitter inflationary solution is always attained. Also we obtained new solutions with special restrictions on the integration constants. These solutions contain oscillating, accelerating, decelerating and even contracting universes. For further investigation, we selected special cases which can be applied with early or late inflation. We also found exact solutions for the general case for the model with negligible acceleration of the scalar curvature in terms of special Airy functions. Using initial conditions which represent the universe at the present epoch, we determined the constants of integration. This allows for the comparison of the scale factor in the new solutions with that for current stage of the universe evolution in the ΛCDM model.

  16. Experimental constraints on light scalar field models in cosmology and particle physics (SNLS and CMS experiments)

    Neveu, Jeremy

    2014-01-01

    The nature of dark energy and dark matter is still unknown today. Light scalar field models have been proposed to explain the late-time accelerated expansion of the Universe and the apparent abundance of non-baryonic matter. In the first part of this thesis, the Galileon theory, a well-posed modified gravity theory preserving the local gravitation thanks to the Vainshtein screening effect, is accurately tested against recent cosmological data. Observational constraints are derived on the model parameters using cosmological distance and growth rate of structure measurements. A good agreement is observed between data and theory predictions. The Galileon theory appears therefore as a promising alternative to the cosmological constant scenario. In the second part, the dark matter question is explored through an extra-dimension theory containing massive and stable scalar fields called Branons. Branon production is searched for in the proton-proton collisions that were collected by the Compact Muon Solenoid experiment in 2012 at the Large Hadron Collider. Events with a single photon and transverse missing energy are selected in this data set and compared to the Standard Model and instrumental background estimates. No signature of new physics is observed, so experimental limits on the Branon model parameters are derived. This thesis concludes with some ideas to reach an unified description of both models in the frame of extra-dimension theories. (author) [fr

  17. Uniqueness of the Fock quantization of scalar fields in spatially flat cosmological spacetimes

    Gomar, Laura Castelló [Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Cortez, Jerónimo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico D.F. 04510 (Mexico); Blas, Daniel Martín-de; Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: laucaste@estumail.ucm.es, E-mail: jacq@ciencias.unam.mx, E-mail: daniel.martin@iem.cfmac.csic.es, E-mail: jvelhi@ubi.pt [Departamento de Física, Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D' Ávila e Bolama, 6201-001 Covilhã (Portugal)

    2012-11-01

    We study the Fock quantization of scalar fields in (generically) time dependent scenarios, focusing on the case in which the field propagation occurs in –either a background or effective– spacetime with spatial sections of flat compact topology. The discussion finds important applications in cosmology, like e.g. in the description of test Klein-Gordon fields and scalar perturbations in Friedmann-Robertson-Walker spacetime in the observationally favored flat case. Two types of ambiguities in the quantization are analyzed. First, the infinite ambiguity existing in the choice of a Fock representation for the canonical commutation relations, understandable as the freedom in the choice of inequivalent vacua for a given field. Besides, in cosmological situations, it is customary to scale the fields by time dependent functions, which absorb part of the evolution arising from the spacetime, which is treated classically. This leads to an additional ambiguity, this time in the choice of a canonical pair of field variables. We show that both types of ambiguities are removed by the requirements of (a) invariance of the vacuum under the symmetries of the three-torus, and (b) unitary implementation of the dynamics in the quantum theory. In this way, one arrives at a unique class of unitarily equivalent Fock quantizations for the system. This result provides considerable robustness to the quantum predictions and renders meaningful the confrontation with observation.

  18. Scalar field cosmology: I. Asymptotic freedom and the initial-value problem

    Huang, Kerson; Low, Hwee-Boon; Tung, Roh-Suan

    2012-01-01

    The purpose of this work is to use a renormalized quantum scalar field to investigate very early cosmology, in the Planck era immediately following the big bang. Renormalization effects make the field potential dependent on length scale, and are important during the big bang era. We use the asymptotically free Halpern-Huang scalar field, which is derived from renormalization-group analysis, and solve Einstein's equation with Robertson-Walker metric as an initial-value problem. The main prediction is that the Hubble parameter follows a power law: H≡ a-dot /a∼t -p , and the universe expands at an accelerated rate: a ∼ expt 1-p . This gives 'dark energy', with an equivalent cosmological constant that decays in time like t -2p , which avoids the 'fine-tuning' problem. The power law predicts a simple relation for the galactic redshift. Comparison with data leads to the speculation that the universe experienced a crossover transition, which was completed about seven billion years ago. (paper)

  19. Scalar-tensor cosmology with cosmological constant

    Maslanka, K.

    1983-01-01

    The equations of scalar-tensor theory of gravitation with cosmological constant in the case of homogeneous and isotropic cosmological model can be reduced to dynamical system of three differential equations with unknown functions H=R/R, THETA=phi/phi, S=e/phi. When new variables are introduced the system becomes more symmetrical and cosmological solutions R(t), phi(t), e(t) are found. It is shown that when cosmological constant is introduced large class of solutions which depend also on Dicke-Brans parameter can be obtained. Investigations of these solutions give general limits for cosmological constant and mean density of matter in plane model. (author)

  20. Combined cosmological tests of a bivalent tachyonic dark energy scalar field model

    Keresztes, Zoltán; Gergely, László Á.

    2014-01-01

    A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (Ω b h 2  = 0.022161, where the Hubble constant is fixed as h = 0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates into a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1σ confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for Ω CDM  = 0.22. The fit is as good as for the ΛCDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model

  1. On bounded and unbounded dynamics of the Hamiltonian system for unified scalar field cosmology

    Starkov, Konstantin E.

    2016-01-01

    This paper is devoted to the research of global dynamics for the Hamiltonian system formed by the unified scalar field cosmology. We prove that this system possesses only unbounded dynamics in the space of negative curvature. It is found the invariant domain filled only by unbounded dynamics for the space with positive curvature. Further, we construct a set of polytopes depending on the Hamiltonian level surface that contain all compact invariant sets. Besides, one invariant two dimensional plane is described. Finally, we establish nonchaoticity of dynamics in one special case. - Highlights: • Unbounded dynamics is stated in case of negative curvature. • Domain with unbounded dynamics is got in case of positive curvature. • Localization polytope for compact invariant sets is computed. • One two dimensional invariant plane is described. • Nonchaotic dynamics is stated in one special case.

  2. On bounded and unbounded dynamics of the Hamiltonian system for unified scalar field cosmology

    Starkov, Konstantin E., E-mail: kstarkov@ipn.mx

    2016-05-27

    This paper is devoted to the research of global dynamics for the Hamiltonian system formed by the unified scalar field cosmology. We prove that this system possesses only unbounded dynamics in the space of negative curvature. It is found the invariant domain filled only by unbounded dynamics for the space with positive curvature. Further, we construct a set of polytopes depending on the Hamiltonian level surface that contain all compact invariant sets. Besides, one invariant two dimensional plane is described. Finally, we establish nonchaoticity of dynamics in one special case. - Highlights: • Unbounded dynamics is stated in case of negative curvature. • Domain with unbounded dynamics is got in case of positive curvature. • Localization polytope for compact invariant sets is computed. • One two dimensional invariant plane is described. • Nonchaotic dynamics is stated in one special case.

  3. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    Hrycyna, Orest; Szydłowski, Marek

    2015-01-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory

  4. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    Hrycyna, Orest [Theoretical Physics Division, National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Kraków (Poland)

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.

  5. Long wavelength limit of evolution of cosmological perturbations in the universe where scalar fields and fluids coexist

    Hamazaki, Takashi

    2008-01-01

    We present the LWL formula which represents the long wavelength limit of the solutions of evolution equations of cosmological perturbations in terms of the exactly homogeneous solutions in the most general case where multiple scalar fields and multiple perfect fluids coexist. We find the conserved quantity which has origin in the adiabatic decaying mode, and by regarding this quantity as the source term we determine the correction term which corrects the discrepancy between the exactly homogeneous perturbations and the k→0 limit of the evolutions of cosmological perturbations. This LWL formula is useful for investigating the evolutions of cosmological perturbations in the early stage of our universe such as reheating after inflation and the curvaton decay in the curvaton scenario. When we extract the long wavelength limits of evolutions of cosmological perturbations from the exactly homogeneous perturbations by the LWL formula, it is more convenient to describe the corresponding exactly homogeneous system with not the cosmological time but the scale factor as the evolution parameter. By applying the LWL formula to the reheating model and the curvaton model with multiple scalar fields and multiple radiation fluids, we obtain the S formula representing the final amplitude of the Bardeen parameter in terms of the initial adiabatic and isocurvature perturbations

  6. Gauss–Bonnet cosmology with induced gravity and a non-minimally coupled scalar field on the brane

    Nozari, Kourosh; Fazlpour, Behnaz

    2008-01-01

    We construct a cosmological model with a non-minimally coupled scalar field on the brane, where Gauss–Bonnet and induced gravity effects are taken into account. This model has 5D character at both high and low energy limits but reduces to 4D gravity for intermediate scales. While induced gravity is a manifestation of the IR limit of the model, the Gauss–Bonnet term and non-minimal coupling of the scalar field and induced gravity are essentially related to the UV limit of the scenario. We study the cosmological implications of this scenario focusing on the late time behavior of the solutions. In this setup, non-minimal coupling plays the role of an additional fine-tuning parameter that controls the initial density of the predicted finite density big bang. Also, non-minimal coupling has important implications for the bouncing nature of the solutions

  7. Is the cosmological dark sector better modeled by a generalized Chaplygin gas or by a scalar field?

    Campo, Sergio del; Herrera, Ramon [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Fabris, Julio C. [Universidade Federal do Espirito Santo, Departamento de Fisica, Vitoria, Espirito Santo (Brazil); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Zimdahl, Winfried [Universidade Federal do Espirito Santo, Departamento de Fisica, Vitoria, Espirito Santo (Brazil)

    2017-07-15

    Both scalar fields and (generalized) Chaplygin gases have been widely used separately to characterize the dark sector of the universe. Here we investigate the cosmological background dynamics for a mixture of both these components and quantify the fractional abundances that are admitted by observational data from supernovae of type Ia and from the evolution of the Hubble rate. Moreover, we study how the growth rate of (baryonic) matter perturbations is affected by the dark-sector perturbations. (orig.)

  8. New holographic reconstruction of scalar-field dark-energy models in the framework of chameleon Brans-Dicke cosmology

    Chattopadhyay, Surajit; Pasqua, Antonio; Khurshudyan, Martiros

    2014-01-01

    Motivated by the work of Yang et al. (Mod. Phys. Lett. A 26:191, 2011), we report on a study of the new holographic dark energy (NHDE) model with energy density given by ρ D = (3φ 2 )/(4ω)(μH 2 + νH) in the framework of chameleon Brans-Dicke cosmology. We have studied the correspondence between the quintessence, the DBI-essence, and the tachyon scalar-field models with the NHDE model in the framework of chameleon Brans-Dicke cosmology. Deriving an expression of the Hubble parameter H and, accordingly, ρ D in the context of chameleon Brans-Dicke chameleon cosmology, we have reconstructed the potentials and dynamics for these scalar-field models. Furthermore, we have examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields, and we have seen that the quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. It has also been noted that the potential increases as the matter. chameleon coupling gets stronger with the evolution of the universe. (orig.)

  9. New holographic reconstruction of scalar-field dark-energy models in the framework of chameleon Brans-Dicke cosmology

    Chattopadhyay, Surajit [Pailan College of Management and Technology, Kolkata (India); Pasqua, Antonio [University of Trieste, Department of Physics, Trieste (Italy); Khurshudyan, Martiros [Yerevan State University, Department of Theoretical Physics, Yerevan (Armenia); Potsdam-Golm Science Park, Max Planck Institute of Colloids and Interfaces, Potsdam (Germany)

    2014-09-15

    Motivated by the work of Yang et al. (Mod. Phys. Lett. A 26:191, 2011), we report on a study of the new holographic dark energy (NHDE) model with energy density given by ρ{sub D} = (3φ{sup 2})/(4ω)(μH{sup 2} + νH) in the framework of chameleon Brans-Dicke cosmology. We have studied the correspondence between the quintessence, the DBI-essence, and the tachyon scalar-field models with the NHDE model in the framework of chameleon Brans-Dicke cosmology. Deriving an expression of the Hubble parameter H and, accordingly, ρ{sub D} in the context of chameleon Brans-Dicke chameleon cosmology, we have reconstructed the potentials and dynamics for these scalar-field models. Furthermore, we have examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields, and we have seen that the quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. It has also been noted that the potential increases as the matter. chameleon coupling gets stronger with the evolution of the universe. (orig.)

  10. Anisotropic Bianchi Type-I and Type-II Bulk Viscous String Cosmological Models Coupled with Zero Mass Scalar Field

    Venkateswarlu, R.; Sreenivas, K.

    2014-06-01

    The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.

  11. Spherically symmetric scalar field collapse

    2013-03-01

    Mar 1, 2013 ... The very recent interest in scalar field collapse stems from a cosmological ... The objective of the present investigation is to explore the collapsing modes of a simple ..... The authors thank the BRNS (DAE) for financial support.

  12. Fate of oscillating scalar fields in a thermal bath and their cosmological implications

    Yokoyama, Jun'ichi

    2004-11-01

    Relaxation process of a coherent scalar field oscillation in the thermal bath is investigated using nonequilibrium quantum field theory. The Langevin-type equation of motion is obtained which has a memory term and both additive and multiplicative noise terms. The dissipation rate of the oscillating scalar field is calculated for various interactions such as Yukawa coupling, three-body scalar interaction, and biquadratic interaction. When the background temperature is larger than the oscillation frequency, the dissipation rate arising from the interactions with fermions is suppressed due to the Pauli-blocking, while it is enhanced for interactions with bosons due to the induced effect. In both cases, we find that the microphysical detailed-balance relation drives the oscillating field to a thermal equilibrium state. That is, for low-momentum modes, the classical fluctuation-dissipation theorem holds and they relax to a state the equipartition law is satisfied, while higher-momentum modes reach the state the number density of each quanta consists of the thermal boson distribution function and zero-point vacuum contribution. The temperature-dependent dissipation rates obtained here are applied to the late reheating phase of inflationary universe. It is found that in some cases the reheat temperature may take a somewhat different value from the conventional estimates, and in an extreme case the inflaton can dissipate its energy without linear interactions that leads to its decay. Furthermore the evaporation rate of the Affleck-Dine field at the onset of its oscillation is calculated.

  13. Metric-affine formalism of higher derivative scalar fields in cosmology

    Li, Mingzhe; Wang, Xiulian

    2012-01-01

    Higher derivative scalar field theories have received considerable attention for the potentially explanations of the initial state of the universe or the current cosmic acceleration which they might offer. They have also attracted many interests in the phenomenological studies of infrared modifications of gravity. These theories are mostly studied by the metric variational approach in which only the metric is the fundamental field to account for the gravitation. In this paper we study the higher derivative scalar fields with the metric-affine formalism where the affine connection is treated arbitrarily at the beginning. Because the higher derivative scalar fields couple to the connection directly in a covariant theory these two formalisms will lead to different results. These differences are suppressed by the powers of the Planck mass and are usually expected to have small effects. But in some cases they may cause non-negligible deviations. We show by a higher derivative dark energy model that the two formalisms lead to significantly different pictures of the future universe

  14. Cosmology and a general scalar-tensor theory of gravity

    Bishop, N.T.

    1976-01-01

    The cosmological models resulting from a general scalar-tensor theory of gravity are discussed. Those models for which the scalar field varies as a power of the cosmological expansion factor (i.e. phi varies as Rsup(n)) are considered in detail, leading to a set of such models compatible with observation. This set includes models in which the scalar coupling parameter ω is negative. The models described here are similar to those of Newtonian cosmology obtained from an impotence principle. (author)

  15. Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints

    Akarsu, Özgür; Kumar, Suresh; Myrzakulov, R.; Sami, M.; Xu, Lixin

    2014-01-01

    In this paper, we consider a simple form of expansion history of Universe referred to as the hybrid expansion law - a product of power-law and exponential type of functions. The ansatz by construction mimics the power-law and de Sitter cosmologies as special cases but also provides an elegant description of the transition from deceleration to cosmic acceleration. We point out the Brans-Dicke realization of the cosmic history under consideration. We construct potentials for quintessence, phantom and tachyon fields, which can give rise to the hybrid expansion law in general relativity. We investigate observational constraints on the model with hybrid expansion law applied to late time acceleration as well as to early Universe a la nucleosynthesis

  16. A scalar-tensor bimetric brane world cosmology

    Youm, Donam

    2001-08-01

    We study a scalar-tensor bimetric cosmology in the Randall-Sundrum model with one positive tension brane, where the biscalar field is assumed to be confined on the brane. The effective Friedmann equations on the brane are obtained and analyzed. We comment on resolution of cosmological problems in this bimetric model. (author)

  17. Comment on 'Effects of quantized scalar fields in cosmological spacetimes with big rip singularities'

    Haro, Jaume; Amoros, Jaume

    2011-01-01

    There are two nonequivalent ways to check if quantum effects in the context of semiclassical gravity can moderate or even cancel the final singularity appearing in a universe filled with dark energy: The method followed in [J. D. Bates and P. R. Anderson, Phys. Rev. D 82, 024018 (2010).] is to introduce the classical Friedmann solution in the energy density of the quantum field, and to compare the result with the density of dark energy determined by the Friedmann equation. The method followed in this comment is to solve directly the semiclassical equations. The results obtained by either method are very different, leading to opposed conclusions. The authors of [J. D. Bates and P. R. Anderson, Phys. Rev. D 82, 024018 (2010)] find that for a perfect fluid with state equation p=ωρ and ω<-1 (phantom fluid), considering realistic values of ω leads to a quantum field energy density that remains small compared to the dark energy density until the curvature reaches the Planck scale or higher, at which point the semiclassical approach stops being valid. The conclusion is that quantum effects do not affect significantly the expansion of the universe until the scalar curvature reaches the Planck scale. In this comment we will show by numerical integration of the semiclassical equations that quantum effects modify drastically the expansion of the universe from an early point. We also present an analytic argument explaining why the method of [J. D. Bates and P. R. Anderson, Phys. Rev. D 82, 024018 (2010)] fails to detect this. The units employed are the same as in [J. D. Bates and P. R. Anderson, Phys. Rev. D 82, 024018 (2010)] (c=(ℎ/2π)=G=1).

  18. Cosmological simulations using a static scalar-tensor theory

    RodrIguez-Meza, M A [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Gonzalez-Morales, A X [Departamento Ingenierias, Universidad Iberoamericana, Prol. Paseo de la Reforma 880 Lomas de Santa Fe, Mexico D.F. Mexico (Mexico); Gabbasov, R F [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Cervantes-Cota, Jorge L [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico)

    2007-11-15

    We present {lambda}CDM N-body cosmological simulations in the framework of of a static general scalar-tensor theory of gravity. Due to the influence of the non-minimally coupled scalar field, the gravitational potential is modified by a Yukawa type term, yielding a new structure formation dynamics. We present some preliminary results and, in particular, we compute the density and velocity profiles of the most massive group.

  19. Closed-form solutions of the Wheeler-DeWitt equation in a scalar-vector field cosmological model by Lie symmetries

    Paliathanasis, Andronikos; Vakili, Babak

    2016-01-01

    We apply as selection rule to determine the unknown functions of a cosmological model the existence of Lie point symmetries for the Wheeler-DeWitt equation of quantum gravity. Our cosmological setting consists of a flat Friedmann-Robertson-Walker metric having the scale factor a( t), a scalar field with potential function V(φ ) minimally coupled to gravity and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(φ ). Then, the Lie symmetries of this dynamical system are investigated by utilizing the behavior of the corresponding minisuperspace under the infinitesimal generator of the desired symmetries. It is shown that by applying the Lie symmetry condition the form of the coupling function and also the scalar field potential function may be explicitly determined so that we are able to solve the Wheeler-DeWitt equation. Finally, we show how we can use the Lie symmetries in order to construct conservation laws and exact solutions for the field equations.

  20. Dependence of cosmological energy-density irregularities on the shape of the scalar-field potential during inflation and ''reheating''

    Ratra, B.

    1991-01-01

    Estimates for the baryon-dominated epoch form of the large-scale adiabatic energy-density irregularities generated during an early scalar-field-dominated inflation epoch, in simple inflation-modified hot-big-bang models, are compared to the widely used approximate general expression, which is proportional to the large-scale, gauge-invariant part of H 2 left-angle φφ * right-angle/(Φ b ) 2 evaluated at the first Hubble radius crossing (here Φ b and φ are the spatially homogeneous and inhomogeneous parts of the scalar field, H is the Hubble parameter, and an overdot represents a derivative with respect to time). In the de Sitter inflation limit, if the inflation-epoch background scalar-field solution is an ''attractor,'' or if there is sufficient inflation before the scale of interest leaves the Hubble radius, the approximate general expression identically reproduces what we have found. It is also less than an order of magnitude away from our expression in a large fraction of the parameter space of the inflation model we study and is within 2 orders of magnitude of our result in almost all of parameter space. We also show that the more accurate general expression (which the above formula is an approximation of) identically reproduces our results in the simple models studied, provided the inflation-epoch background scalar-field solution is an ''attractor'' or if there is sufficient inflation. The approximate general formula is used to restudy energy-density inhomogeneities in the quartic-potential scalar-field de Sitter inflation model; the difference between the standard result in this model and our result in related models is traced to a difference in the form of the part of the potential used to model ''reheating'' and the end of inflation

  1. Interacting viscous entropy-corrected holographic scalar field models of dark energy with time-varying G in modified FRW cosmology

    Adabi, Farzin; Karami, Kayoomars; Felegary, Fereshte; Azarmi, Zohre

    2012-01-01

    We study the entropy-corrected version of the holographic dark energy (HDE) model in the framework of modified Friedmann-Robertson-Walker cosmology. We consider a non-flat universe filled with an interacting viscous entropy-corrected HDE (ECHDE) with dark matter. Also included in our model is the case of the variable gravitational constant G. We obtain the equation of state and the deceleration parameters of the interacting viscous ECHDE. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting viscous ECHDE model with time-varying G. (research papers)

  2. Scalar potential from de Sitter brane in 5D and effective cosmological constant

    Ito, Masato

    2004-01-01

    We derive the scalar potential in zero mode effective action arising from a de Sitter brane embedded in five dimensions with bulk cosmological constant Λ. The scalar potential for a scalar field canonically normalized is given by the sum of exponential potentials. In the case of Λ = 0 and Λ > 0, we point out that the scalar potential has an unstable maximum at the origin and exponentially vanishes for large positive scalar field. In the case of Λ < 0, the scalar potential has an unstable maximum at the origin and a local minimum. It is shown that the positive cosmological constant in dS brane is reduced by negative potential energy of scalar at minimum and that effective cosmological constant depends on a dimensionless quantity. Furthermore, we discuss the fate of our universe including the potential energy of the scalar. (author)

  3. Cosmology or Catastrophe? A non-minimally coupled scalar in an inhomogeneous universe

    Caputa, Paweł; Haque, Sheikh Shajidul; Olson, Joseph; Underwood, Bret

    2013-01-01

    A non-minimally coupled scalar field can have, in principle, a negative effective Planck mass squared which depends on the scalar field. Surprisingly, an isotropic and homogeneous cosmological universe with a non-minimally coupled scalar field is perfectly smooth as the rolling scalar field causes the effective Planck mass to change sign and pass through zero. However, we show that any small deviations from homogeneity diverge as the effective Planck mass vanishes, with catastrophic consequences for the cosmology. The physical origin of the divergence is due to the presence of non-zero scalar anisotropic stress from the non-minimally coupled scalar field. Thus, while the homogeneous and isotropic cosmology appears surprisingly sensible when the effective Planck mass vanishes, inhomogeneities tell a different story. (paper)

  4. Unified cosmology with scalar-tensor theory of gravity

    Tajahmad, Behzad [Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Sanyal, Abhik Kumar [Jangipur College, Department of Physics, Murshidabad (India)

    2017-04-15

    Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)

  5. Unified cosmology with scalar-tensor theory of gravity

    Tajahmad, Behzad; Sanyal, Abhik Kumar

    2017-01-01

    Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)

  6. Kundt spacetimes minimally coupled to scalar field

    Tahamtan, T. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic); Astronomical Institute, Czech Academy of Sciences, Prague (Czech Republic); Svitek, O. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic)

    2017-06-15

    We derive an exact solution belonging to the Kundt class of spacetimes both with and without a cosmological constant that are minimally coupled to a free massless scalar field. We show the algebraic type of these solutions and give interpretation of the results. Subsequently, we look for solutions additionally containing an electromagnetic field satisfying nonlinear field equations. (orig.)

  7. On the cosmology of scalar-tensor-vector gravity theory

    Jamali, Sara; Roshan, Mahmood; Amendola, Luca

    2018-01-01

    We consider the cosmological consequences of a special scalar-tensor-vector theory of gravity, known as MOG (for MOdified Gravity), proposed to address the dark matter problem. This theory introduces two scalar fields G(x) and μ(x), and one vector field phiα(x), in addition to the metric tensor. We set the corresponding self-interaction potentials to zero, as in the standard form of MOG. Then using the phase space analysis in the flat Friedmann-Robertson-Walker background, we show that the theory possesses a viable sequence of cosmological epochs with acceptable time dependency for the cosmic scale factor. We also investigate MOG's potential as a dark energy model and show that extra fields in MOG cannot provide a late time accelerated expansion. Furthermore, using a dynamical system approach to solve the non-linear field equations numerically, we calculate the angular size of the sound horizon, i.e. θs, in MOG. We find that 8× 10‑3rad<θs<8.2× 10‑3 rad which is way outside the current observational bounds. Finally, we generalize MOG to a modified form called mMOG, and we find that mMOG passes the sound-horizon constraint. However, mMOG also cannot be considered as a dark energy model unless one adds a cosmological constant, and more importantly, the matter dominated era is still slightly different from the standard case.

  8. On the Occurrence of Mass Inflation for the Einstein-Maxwell-Scalar Field System with a Cosmological Constant and an Exponential Price Law

    Costa, João L.; Girão, Pedro M.; Natário, José; Silva, Jorge Drumond

    2018-03-01

    In this paper we study the spherically symmetric characteristic initial data problem for the Einstein-Maxwell-scalar field system with a positive cosmological constant in the interior of a black hole, assuming an exponential Price law along the event horizon. More precisely, we construct open sets of characteristic data which, on the outgoing initial null hypersurface (taken to be the event horizon), converges exponentially to a reference Reissner-Nördstrom black hole at infinity. We prove the stability of the radius function at the Cauchy horizon, and show that, depending on the decay rate of the initial data, mass inflation may or may not occur. In the latter case, we find that the solution can be extended across the Cauchy horizon with continuous metric and Christoffel symbols in {L^2_{loc}} , thus violating the Christodoulou-Chruściel version of strong cosmic censorship.

  9. Running of the scalar spectral index in bouncing cosmologies

    Lehners, Jean-Luc; Wilson-Ewing, Edward, E-mail: jean-luc.lehners@aei.mpg.de, E-mail: wilson-ewing@aei.mpg.de [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Golm (Germany)

    2015-10-01

    We calculate the running of the scalar index in the ekpyrotic and matter bounce cosmological scenarios, and find that it is typically negative for ekpyrotic models, while it is typically positive for realizations of the matter bounce where multiple fields are present. This can be compared to inflation, where the observationally preferred models typically predict a negative running. The magnitude of the running is expected to be between 10{sup −4} and up to 10{sup −2}, leading in some cases to interesting expectations for near-future observations.

  10. Running vacuum cosmological models: linear scalar perturbations

    Perico, E.L.D. [Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP (Brazil); Tamayo, D.A., E-mail: elduartep@usp.br, E-mail: tamayo@if.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, SP (Brazil)

    2017-08-01

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ( H {sup 2}) or Λ( R ). Such models assume an equation of state for the vacuum given by P-bar {sub Λ} = - ρ-bar {sub Λ}, relating its background pressure P-bar {sub Λ} with its mean energy density ρ-bar {sub Λ} ≡ Λ/8π G . This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely ρ-bar {sub Λ} = Σ {sub i} ρ-bar {sub Λ} {sub i} . Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ( H {sup 2}) scenario the vacuum is coupled with every matter component, whereas the Λ( R ) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

  11. Exotic Material as Interactions Between Scalar Fields

    Robertson G. A.

    2015-10-01

    Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as “wormholes” and “warp drives”. However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg- Landau (GL scalar fields associated with superconductor junctions is investigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energy fluctuations, cosmological scalar (i. e., Higgs fields, and gravity.

  12. Exotic Material as Interactions Between Scalar Fields

    Robertson G. A.

    2006-04-01

    Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as "wormholes" and "warp drives". However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg-Landau (GL scalar fields associated with superconductor junctions isinvestigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energyfluctuations, cosmological scalar (i.e., Higgs fields, and gravity.

  13. Euclidean wormholes with minimally coupled scalar fields

    Ruz, Soumendranath; Modak, Bijan; Debnath, Subhra; Sanyal, Abhik Kumar

    2013-01-01

    A detailed study of quantum and semiclassical Euclidean wormholes for Einstein's theory with a minimally coupled scalar field has been performed for a class of potentials. Massless, constant, massive (quadratic in the scalar field) and inverse (linear) potentials admit the Hawking and Page wormhole boundary condition both in the classically forbidden and allowed regions. An inverse quartic potential has been found to exhibit a semiclassical wormhole configuration. Classical wormholes under a suitable back-reaction leading to a finite radius of the throat, where the strong energy condition is satisfied, have been found for the zero, constant, quadratic and exponential potentials. Treating such classical Euclidean wormholes as an initial condition, a late stage of cosmological evolution has been found to remain unaltered from standard Friedmann cosmology, except for the constant potential which under the back-reaction produces a term like a negative cosmological constant. (paper)

  14. Cosmological evolution and Solar System consistency of massive scalar-tensor gravity

    de Pirey Saint Alby, Thibaut Arnoulx; Yunes, Nicolás

    2017-09-01

    The scalar-tensor theory of Damour and Esposito-Farèse recently gained some renewed interest because of its ability to suppress modifications to general relativity in the weak field, while introducing large corrections in the strong field of compact objects through a process called scalarization. A large sector of this theory that allows for scalarization, however, has been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study an extension of this theory by endowing the scalar field with a mass to determine whether this allows the theory to pass Solar System constraints upon cosmological evolution for a larger sector of coupling parameter space. We show that the cosmological scalar field goes first through a quiescent phase, similar to the behavior of a massless field, but then it enters an oscillatory phase, with an amplitude (and frequency) that decays (and grows) exponentially. We further show that after the field enters the oscillatory phase, its effective energy density and pressure are approximately those of dust, as expected from previous cosmological studies. Due to these oscillations, we show that the scalar field cannot be treated as static today on astrophysical scales, and so we use time-dependent perturbation theory to compute the scalar-field-induced modifications to Solar System observables. We find that these modifications are suppressed when the mass of the scalar field and the coupling parameter of the theory are in a wide range, allowing the theory to pass Solar System constraints, while in principle possibly still allowing for scalarization.

  15. Unique Fock quantization of scalar cosmological perturbations

    Fernández-Méndez, Mikel; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.

    2012-05-01

    We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lemaître-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter-field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.

  16. Bose-Einstein-condensed scalar field dark matter and the gravitational wave background from inflation: New cosmological constraints and its detectability by LIGO

    Li, Bohua; Shapiro, Paul R.; Rindler-Daller, Tanja

    2017-09-01

    We consider an alternative to weakly interacting massive particle (WIMP) cold dark matter (CDM)—ultralight bosonic dark matter (m ≳10-22 eV /c2) described by a complex scalar field (SFDM) with a global U (1 ) symmetry—for which the comoving particle number density or charge density is conserved after particle production during standard reheating. We allow for a repulsive self-interaction. In a Λ SFDM universe, SFDM starts out relativistic, evolving from stiff (w =1 ) to radiation-like (w =1 /3 ), before becoming nonrelativistic at late times (w =0 ). Thus, before the familiar radiation-dominated era, there is an earlier era of stiff-SFDM domination. During both the stiff-SFDM-dominated and radiation-dominated eras, the expansion rate is higher than in Λ CDM . The SFDM particle mass m and quartic self-interaction coupling strength λ are therefore constrained by cosmological observables, particularly Neff, the effective number of neutrino species during big bang nucleosynthesis, and zeq, the redshift of matter-radiation equality. Furthermore, since the stochastic gravitational-wave background (SGWB) from inflation is amplified during the stiff-SFDM-dominated era, it can contribute a radiation-like component large enough to affect these observables by further boosting the expansion rate after the stiff era ends. Remarkably, this same amplification makes detection of the SGWB possible at high frequencies by current laser interferometer experiments, e.g., aLIGO/Virgo and LISA. For SFDM particle parameters that satisfy these cosmological constraints, the amplified SGWB is detectable by LIGO for a broad range of reheat temperatures Treheat, for values of the tensor-to-scalar ratio r currently allowed by cosmic microwave background polarization measurements. For a given r and λ /(m c2)2, the marginally allowed Λ SFDM model for each Treheat has the smallest m that satisfies the cosmological constraints, and maximizes the present SGWB energy density for that

  17. Quantum scalar-metric cosmology with Chaplygin gas

    Majumder, Barun

    2011-01-01

    A spatially flat Friedmann-Robertson-Walker (FRW) cosmological model with generalized Chaplygin gas is studied in the context of scalar-metric formulation of cosmology. Schutz's mechanism for the perfect fluid is applied with generalized Chaplygin gas and the classical and quantum dynamics for this model is studied. It is found that the only surviving matter degree of freedom played the role of cosmic time. For the quantum mechanical description it is possible to find the wave packet which resulted from the linear superposition of the wave functions of the Schroedinger-Wheeler-DeWitt (SWD) equation, which is a consequence of the above formalism. The wave packets show two distinct dominant peaks and propagate in the direction of increasing scale factor. It may happen that our present universe originated from one of those peaks. The many-world and ontological interpretation of quantum mechanics is applied to investigate about the behavior of the scale factor and the scalar field (considered for this model). In both the cases the scale factor avoids singularity and a bouncing non-singular universe is found.

  18. On the Backreaction of Scalar and Spinor Quantum Fields in Curved Spacetimes - From the Basic Foundations to Cosmological Applications

    Hack, Thomas-Paul

    2010-01-01

    First, the present work is concerned with generalising constructions and results in quantum field theory on curved spacetimes from the well-known case of the Klein-Gordon field to Dirac fields. To this end, the enlarged algebra of observables of the Dirac field is constructed in the algebraic framework. This algebra contains normal-ordered Wick polynomials in particular, and an extended analysis of one of its elements, the stress-energy tensor, is performed. Based on detailed calculations of ...

  19. f(R) gravity cosmology in scalar degree of freedom

    Goswami, Umananda Dev; Deka, Kabita

    2014-01-01

    The models of f(R) gravity belong to an important class of modified gravity models where the late time cosmic accelerated expansion is considered as the manifestation of the large scale modification of the force of gravity. f(R) gravity models can be expressed in terms of a scalar degree of freedom by explicit redefinition of model's variable. Here we report about the study of the features of cosmological parameters and hence the cosmological evolution using the scalar degree of freedom of the f(R) = ξR n gravity model in the Friedmann-Lemaître-Robertson-Walker (FLRW) background

  20. Cosmology of a covariant Galilean field.

    De Felice, Antonio; Tsujikawa, Shinji

    2010-09-10

    We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time. We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of state exhibits a peculiar phantomlike behavior along the tracker, which allows a possibility to observationally distinguish the Galileon gravity from the cold dark matter model with a cosmological constant.

  1. Cosmological three-coupled scalar theory for the dS/LCFT correspondence

    Myung, Yun Soo; Moon, Taeyoon, E-mail: ysmyung@inje.ac.kr, E-mail: tymoon@inje.ac.kr [Institute of Basic Science and Department of Computer Simulation, Inje University, Gimhae 621-749 (Korea, Republic of)

    2015-01-01

    We investigate cosmological perturbations generated during de Sitter inflation in the three-coupled scalar theory. This theory is composed of three coupled scalars φ{sub p},p=1,2,3) to give a sixth-order derivative scalar theory for φ{sub 3}, in addition to tensor. Recovering the power spectra between scalars from the LCFT correlators in momentum space indicates that the de Sitter/logarithmic conformal field theory (dS/LCFT) correspondence works in the superhorizon limit. We use LCFT correlators derived from the dS/LCFT differentiate dictionary to compare cosmological correlators (power spectra) and find also LCFT correlators by making use of extrapolate dictionary. This is because the former approach is more conventional than the latter. A bulk version dual to the truncation process to find a unitary CFT in the LCFT corresponds to selecting a physical field φ{sub 2} with positive norm propagating on the dS spacetime.

  2. Anisotropic cosmological models and generalized scalar tensor theory

    Abstract. In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–. Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been stud- ied and some assumptions ...

  3. Anisotropic cosmological models and generalized scalar tensor theory

    In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been studied and some assumptions among the ...

  4. Symmetry inheritance of scalar fields

    Ivica Smolić

    2015-01-01

    Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair. (paper)

  5. Super-group field cosmology

    Faizal, Mir

    2012-01-01

    In this paper, we construct a model for group field cosmology. The classical equations of motion for the non-interactive part of this model generate the Hamiltonian constraint of loop quantum gravity for a homogeneous isotropic universe filled with a scalar matter field. The interactions represent topology changing processes that occur due to joining and splitting of universes. These universes in the multiverse are assumed to obey both bosonic and fermionic statistics, and so a supersymmetric multiverse is constructed using superspace formalism. We also introduce gauge symmetry in this model. The supersymmetry and gauge symmetry are introduced at the level of third quantized fields, and not the second quantized ones. This is the first time that supersymmetry has been discussed at the level of third quantized fields. (paper)

  6. On symmetry inheritance of nonminimally coupled scalar fields

    Barjašić, Irena; Smolić, Ivica

    2018-04-01

    We present the first symmetry inheritance analysis of fields non-minimally coupled to gravity. In this work we are focused on the real scalar field ϕ with nonminimal coupling of the form ξφ2 R . Possible cases of symmetry noninheriting fields are constrained by the properties of the Ricci tensor and the scalar potential. Examples of such spacetimes can be found among those which are ‘dressed’ with the stealth scalar field, a nontrivial scalar field configuration with the vanishing energy–momentum tensor. We classify the scalar field potentials which allow symmetry noninheriting stealth field configurations on top of the exact solutions of the Einstein’s gravitational field equation with the cosmological constant.

  7. Integrable Scalar Cosmologies I. Foundations and links with String Theory

    Fré, P.; Sagnotti, A.; Sorin, A. S.

    2013-12-01

    We build a number of integrable one-scalar spatially flat cosmologies, which play a natural role in inflationary scenarios, examine their behavior in several cases and draw from them some general lessons on this type of systems, whose potentials involve combinations of exponential functions, and on similar non-integrable ones. These include the impossibility for the scalar to emerge from the initial singularity descending along asymptotically exponential potentials with logarithmic slopes exceeding a critical value (“climbing phenomenon”) and the inevitable collapse in a Big Crunch whenever the scalar tries to settle at negative extrema of the potential. We also elaborate on the links between these types of potentials and “brane supersymmetry breaking”, a mechanism that ties together string scale and scale of supersymmetry breaking in a class of orientifold models. Our Universe is highly isotropic and homogeneous at large scales, while its current state of acceleration is well accounted for by a small positive cosmological constant; Our Universe is spatially flat, which brings to the forefront metrics of the form ds2=e dt2-a2(t) dxṡdx. Special “gauge functions” B(t) can result in simpler expressions for the scale factor a(t), which becomes a quantity of utmost interest for Theoretical Physics; Vacuum energy accounts for about 70% of the present contents of the Universe, dark matter of unknown origin for another 24%, so that only 6% is left for conventional baryonic matter in the form of luminous stars and galaxies. The climbing phenomenon, whereby the scalar field cannot emerge from the initial singularity climbing down potentials that are asymptotically exponential with logarithmic slopes exceeding a critical value. Or, if you will, the impossibility for scalar fields to overcome, in a contracting phase, the attractive force of such potential ends. The physical meaning of this phenomenon was first elucidated in [18] in the simple exponential

  8. Local transformations of units in scalar-tensor cosmology

    Catena, R.; Pietroni, M.; Scarabello, L.; Padua Univ.

    2006-10-01

    The physical equivalence of Einstein and Jordan frame in Scalar Tensor theories has been explained by Dicke in 1962: they are related by a local transformation of units. We discuss this point in a cosmological framework. Our main result is the construction of a formalism in which all the physical observables are frame-invariant. The application of this approach to CMB codes is at present under analysis. (orig.)

  9. Building analytical three-field cosmological models

    Santos, J.R.L. [Universidade de Federal de Campina Grande, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Moraes, P.H.R.S. [ITA-Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil); Ferreira, D.A. [Universidade de Federal de Campina Grande, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Neta, D.C.V. [Universidade de Federal de Campina Grande, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Universidade Estadual da Paraiba, Departamento de Fisica, Campina Grande, PB (Brazil)

    2018-02-15

    A difficult task to deal with is the analytical treatment of models composed of three real scalar fields, as their equations of motion are in general coupled and hard to integrate. In order to overcome this problem we introduce a methodology to construct three-field models based on the so-called ''extension method''. The fundamental idea of the procedure is to combine three one-field systems in a non-trivial way, to construct an effective three scalar field model. An interesting scenario where the method can be implemented is with inflationary models, where the Einstein-Hilbert Lagrangian is coupled with the scalar field Lagrangian. We exemplify how a new model constructed from our method can lead to non-trivial behaviors for cosmological parameters. (orig.)

  10. Random scalar fields and hyperuniformity

    Ma, Zheng; Torquato, Salvatore

    2017-06-01

    Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystals and liquids. Hyperuniform systems have attracted recent attention because they are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has been generalized to characterize two-phase media, scalar fields, and random vector fields. In this paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we analyze spatial patterns generated from Gaussian random fields, which have been used to model the microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spinodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pattern formation, including Rayleigh-Bénard convection. We show that the Gaussian random scalar fields can be constructed to be hyperuniform. We also numerically study the time evolution of spinodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime. Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian random field to produce a two-phase random medium tends to destroy the hyperuniformity of the progenitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase media derived from thresholded non-Gaussian fields. Our investigation paves the way for new research directions to characterize the large-structure spatial patterns that arise in physics, chemistry, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists to synthesize new classes of hyperuniform materials with novel physical properties via coarsening processes and using state-of-the-art techniques, such as stereolithography and 3D printing.

  11. Cosmological effects of scalar-photon couplings: dark energy and varying-α Models

    Avgoustidis, A. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Vielzeuf, P.E. [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Luzzi, G., E-mail: tavgoust@gmail.com, E-mail: Carlos.Martins@astro.up.pt, E-mail: mmonteiro@fc.up.pt, E-mail: up110370652@alunos.fc.up.pt, E-mail: gluzzi@lal.in2p3.fr [Laboratoire de l' Accélérateur Linéaire, Université de Paris-Sud, CNRS/IN2P3, Bâtiment 200, BP 34, 91898 Orsay Cedex (France)

    2014-06-01

    We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.

  12. A new two-faced scalar solution and cosmological SUSY breaking

    Shmakova, Marina

    2010-01-01

    We propose a possible new way to resolve the long standing problem of strong supersymmetry breaking coexisting with a small cosmological constant. We consider a scalar component of a minimally coupled N = 1 supermultiplet in a general Friedmann-Robertson-Walker (FRW) expanding universe. We argue that a tiny term, proportional to H 2 ∼ 10 -122 in Plank's units, appearing in the field equations due to this expansion will provide both, the small vacuum energy and the heavy mass of the scalar supersymmetric partner. We present a non-perturbative solution for the scalar field with an unusual dual-frequency behavior. This solution has two characteristic mass scales related to the Hubble parameter as H 1/4 and H 1/2 measured in Plank's units.

  13. Non-decoupling of heavy scalars in cosmology

    Hardeman, Sjoerd Reimer

    2012-01-01

    The theory describing physics at the highest energy scales likely contains extra dimensions, whose internal degrees of freedom result in many massive field and particles. At accelerator experiments these fields and particles generally decouple from the low energy physics. However, in cosmology

  14. Effective field theory of cosmological perturbations

    Piazza, Federico; Vernizzi, Filippo

    2013-01-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu–Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy. (paper)

  15. Effective field theory of cosmological perturbations

    Piazza, Federico; Vernizzi, Filippo

    2013-11-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.

  16. Entropic quantization of scalar fields

    Ipek, Selman; Caticha, Ariel

    2015-01-01

    Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation

  17. Entropic quantization of scalar fields

    Ipek, Selman; Caticha, Ariel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States)

    2015-01-13

    Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.

  18. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    Babak Vakili

    2014-11-01

    Full Text Available We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–Robertson–Walker (FRW model, a scalar field with potential function V(ϕ with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(ϕ. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion. Keywords: Noether symmetry, Scalar field cosmology, Vector field cosmology

  19. Hydrodynamic fluctuations from a weakly coupled scalar field

    Jackson, G.; Laine, M.

    2018-04-01

    Studies of non-equilibrium dynamics of first-order cosmological phase transitions may involve a scalar field interacting weakly with the energy-momentum tensor of a thermal plasma. At late times, when the scalar field is approaching equilibrium, it experiences both damping and thermal fluctuations. We show that thermal fluctuations induce a shear viscosity and a gravitational wave production rate, and propose that including this tunable contribution may help in calibrating the measurement of the gravitational wave production rate in hydrodynamic simulations. Furthermore it may enrich their physical scope, permitting in particular for a study of the instability of growing bubbles.

  20. Classical and quantum dynamics of a perfect fluid scalar-metric cosmology

    Vakili, Babak

    2010-01-01

    We study the classical and quantum models of a Friedmann-Robertson-Walker (FRW) cosmology, coupled to a perfect fluid, in the context of the scalar-metric gravity. Using the Schutz' representation for the perfect fluid, we show that, under a particular gauge choice, it may lead to the identification of a time parameter for the corresponding dynamical system. It is shown that the evolution of the universe based on the classical cosmology represents a late time power law expansion coming from a big-bang singularity in which the scale factor goes to zero while the scalar field blows up. Moreover, this formalism gives rise to a Schroedinger-Wheeler-DeWitt (SWD) equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the wave function of the universe. We use the resulting wave function in order to investigate the possibility of the avoidance of classical singularities due to quantum effects by means of the many-worlds and ontological interpretation of quantum cosmology.

  1. Scalar field critical collapse in 2+1 dimensions

    Jałmużna, Joanna; Gundlach, Carsten; Chmaj, Tadeusz

    2015-01-01

    We carry out numerical experiments in the critical collapse of a spherically symmetric massless scalar field in 2+1 spacetime dimensions in the presence of a negative cosmological constant and compare them against a new theoretical model. We approximate the true critical solution as the $n=4$ Garfinkle solution, matched at the lightcone to a Vaidya-like solution, and corrected to leading order for the effect of $\\Lambda

  2. Scalar field dark matter in hybrid approach

    Friedrich, Pavel; Prokopec, Tomislav

    2017-01-01

    We develop a hybrid formalism suitable for modeling scalar field dark matter, in which the phase-space distribution associated to the real scalar field is modeled by statistical equal-time two-point functions and gravity is treated by two stochastic gravitational fields in the longitudinal gauge (in

  3. General scalar-tensor cosmology: analytical solutions via noether symmetry

    Massaeli, Erfan; Motaharfar, Meysam; Sepangi, Hamid Reza [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of)

    2017-02-15

    We analyze the cosmology of a general scalar-tensor theory which encompasses generalized Brans-Dicke theory, Gauss-Bonnet gravity, non-minimal derivative gravity, generalized Galilean gravity and also the general k-essence type models. Instead of taking into account phenomenological considerations we adopt a Noether symmetry approach, as a physical criterion, to single out the form of undetermined functions in the action. These specified functions symmetrize equations of motion in the simplest possible form which result in exact solutions. Demanding de Sitter, power-law and bouncing universe solutions in the absence and presence of matter density leads to exploring new as well as well-investigated models. We show that there are models for which the dynamics of the system allows a transition from a decelerating phase (matter dominated era) to an accelerating phase (dark energy epoch) and could also lead to general Brans-Dicke with string correction without a self-interaction potential. Furthermore, we classify the models based on a phantom or quintessence dark energy point of view. Finally, we obtain the condition for stability of a de Sitter solution for which the solution is an attractor of the system. (orig.)

  4. A note on perfect scalar fields

    Unnikrishnan, Sanil; Sriramkumar, L.

    2010-01-01

    We derive a condition on the Lagrangian density describing a generic, single, noncanonical scalar field, by demanding that the intrinsic, nonadiabatic pressure perturbation associated with the scalar field vanishes identically. Based on the analogy with perfect fluids, we refer to such fields as perfect scalar fields. It is common knowledge that models that depend only on the kinetic energy of the scalar field (often referred to as pure kinetic models) possess no nonadiabatic pressure perturbation. While we are able to construct models that seemingly depend on the scalar field and also do not contain any nonadiabatic pressure perturbation, we find that all such models that we construct allow a redefinition of the field under which they reduce to pure kinetic models. We show that, if a perfect scalar field drives inflation, then, in such situations, the first slow roll parameter will always be a monotonically decreasing function of time. We point out that this behavior implies that these scalar fields cannot lead to features in the inflationary, scalar perturbation spectrum.

  5. Tachyon field in cosmology

    This report is based on a recent work in collaboration with Bagla and Padmanabhan. [1]. In this paper, we construct cosmological models with homogeneous tachyon matter [2] to provide the dark energy component which drives acceleration of the universe (for a recent review of dark energy models, see [3]). We assume that.

  6. Global effects of scalar matter production in quantum cosmology

    Barvinskij, A.O.; Ponomarev, V.N.

    1978-01-01

    Within the framework of the geometrodynamical approach global effects of the production of scalar matter filling the closed uniform Friedman Universe are considered. The physical situation is discussed, which corresponds to such a scale of space-time intervals and energies, at which the matter is essentially quantum and the quantized gravitational field is within the quasi-classical limits when its spatial inhomogeneities are small and only global quantum effects are considerable. The only dynamic variable of the gravitational field is the Friedman Universe radius. The main principles of the formalism of the canonical superspace quantization of gravitational and material fields are considered. The method shows the applicability limits of the field theory on the background of classical geometry and leads to the principally new types of interaction

  7. Quasistationary solutions of scalar fields around accreting black holes

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.

    2016-08-01

    Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.

  8. Scalar field mass in generalized gravity

    Faraoni, Valerio

    2009-01-01

    The notions of mass and range of a Brans-Dicke-like scalar field in scalar-tensor and f(R) gravity are subject to an ambiguity that hides a potential trap. We spell out this ambiguity and identify a physically meaningful and practical definition for these quantities. This is relevant when giving a mass to this scalar in order to circumvent experimental limits on the PPN parameters coming from solar system experiments.

  9. Phase Transitions in the Early Universe: The Cosmology of Non-Minimal Scalar Sectors

    Kost, Jeffrey D.

    Light scalar fields such as axions and string moduli can play an important role in early-universe cosmology. However, many factors can significantly impact their late-time cosmological abundances. For example, in cases where the potentials for these fields are generated dynamically--such as during cosmological mass-generating phase transitions--the duration of the time interval required for these potentials to fully develop can have significant repercussions. Likewise, in scenarios with multiple scalars, mixing amongst the fields can also give rise to an effective timescale that modifies the resulting late-time abundances. Previous studies have focused on the effects of either the first or the second timescale in isolation. In this thesis, by contrast, we examine the new features that arise from the interplay between these two timescales when both mixing and time-dependent phase transitions are introduced together. First, we find that the effects of these timescales can conspire to alter not only the total late-time abundance of the system--often by many orders of magnitude--but also its distribution across the different fields. Second, we find that these effects can produce large parametric resonances which render the energy densities of the fields highly sensitive to the degree of mixing as well as the duration of the time interval over which the phase transition unfolds. Finally, we find that these effects can even give rise to a "re-overdamping" phenomenon which causes the total energy density of the system to behave in novel ways that differ from those exhibited by pure dark matter or vacuum energy. All of these features therefore give rise to new possibilities for early-universe phenomenology and cosmological evolution. They also highlight the importance of taking into account the time dependence associated with phase transitions in cosmological settings. In the second part of this thesis, we proceed to study the early-universe cosmology of a Kaluza-Klein (KK

  10. Anomalous coupling of scalars to gauge fields

    Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Geneve Univ. (Switzerland). Dept. de Physique Theorique; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, Anne-Christine [Centre for Mathematical Sciences, Cambridge (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Seery, David [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Weltman, Amanda [Cape Town Univ., Rondebosch (South Africa). Astronomy, Cosmology and Gravity Centre

    2010-10-15

    We study the transformation properties of a scalar-tensor theory, coupled to fermions, under the Weyl rescaling associated with a transition from the Jordan to the Einstein frame. We give a simple derivation of the corresponding modification to the gauge couplings. After changing frames, this gives rise to a direct coupling between the scalar and the gauge fields. (orig.)

  11. Anomalous coupling of scalars to gauge fields

    Brax, Philippe; Davis, Anne-Christine; Seery, David; Weltman, Amanda

    2010-10-01

    We study the transformation properties of a scalar-tensor theory, coupled to fermions, under the Weyl rescaling associated with a transition from the Jordan to the Einstein frame. We give a simple derivation of the corresponding modification to the gauge couplings. After changing frames, this gives rise to a direct coupling between the scalar and the gauge fields. (orig.)

  12. Production of particles by a variable scalar field

    Dolgov, A.D.; Kirilova, D.P.

    1990-01-01

    The probability of particle production by a spatially homogeneous scalar field χ(t) is calculated. Explicit analytic expressions are obtained in two opposite limiting cases: in perturbation theory and in the quasiclassical approximation. It is shown that if the mass of the produced particles is determined by the field χ(t) is accordance with the expression gχ(t) anti ψψ, then for an oscillatory field χ(t) = χ 0 cos(ωt) the production probability in the limit of small ω is suppressed not exponentially, but only as ω 1/2 . Cosmological applications of these results are discussed

  13. Scalar trace anomaly and anti-gravitational interaction in a perturbative approach to self-consistent cosmologies

    Gunzig, E.; Nardone, P.

    1984-01-01

    We present a perturbative approach to the equations controlling the behavior of the recently proposed self-consistent, causal, singularity-free cosmologies. This approach sheds a new light on the threshold mass which governs both the (in)stability of empty Minkowski space and the existence of these cosmologies. An unexpected fact arises at the lower order of this perturbative scheme: the mass of the massive (scalar) field coupled non-minimally to gravitation is completely absorbed in a rescaling of the gravitational constant. The latter becomes negative, thereby causing an effective anti-gravitational interaction when the corresponding mass exceeds the minkowskian instability threshold. Moreover, the source of this effective antigravitational interaction is the usual scalar trace anomaly associated with the residual massless part of the matter field. (orig.)

  14. [Field theoretic investigations on particle physics and cosmology]. Annual technical progress report

    Pi, S.Y.

    1985-01-01

    Topics covered include topics bridging particle physics and cosmology, superconducting universe, inflationary universe, density fluctuations in the new inflationary universe, a realistic inflationary model, and the quantum mechanics of the scalar field in the new inflationary universe

  15. On particle creation by a time-dependent scalar field

    Dolgov, A.D.; Kirilova, D.P.

    1989-01-01

    The probability of particles creation by a homogeneous scalar field Χ (t) is calculated. Explicit analytical expressions are obtained in two limiting cases in the quasiclassical approximation and in the framework of perturbation theory. In the case when the mass of the created particles is defined by the time-dependent field Χ (t) according to the expression g Χ (t) Ψ-barΨ, where Χ (t) =Χ 0 cos (ωt), it is shown that the creation probability is suppresed not exponentially, but as ω 1/2 . Some cosmological consequences of the results are discussed. 13 refs

  16. The dark sector from interacting canonical and non-canonical scalar fields

    De Souza, Rudinei C; Kremer, Gilberto M

    2010-01-01

    In this work general models with interactions between two canonical scalar fields and between one non-canonical (tachyon type) and one canonical scalar field are investigated. The potentials and couplings to the gravity are selected through the Noether symmetry approach. These general models are employed to describe interactions between dark energy and dark matter, with the fields being constrained by the astronomical data. The cosmological solutions of some cases are compared with the observed evolution of the late Universe.

  17. Perturbative analysis of multiple-field cosmological inflation

    Lahiri, Joydev; Bhattacharya, Gautam

    2006-01-01

    We develop a general formalism for analyzing linear perturbations in multiple-field cosmological inflation based on the gauge-ready approach. Our inflationary model consists of an arbitrary number of scalar fields with non-minimal kinetic terms. We solve the equations for scalar- and tensor-type perturbations during inflation to the first order in slow roll, and then obtain the super-horizon solutions for adiabatic and isocurvature perturbations after inflation. Analytic expressions for power-spectra and spectral indices arising from multiple-field inflation are presented

  18. Oscillating scalar fields in extended quintessence

    Li, Dan; Pi, Shi; Scherrer, Robert J.

    2018-01-01

    We study a rapidly oscillating scalar field with potential V (ϕ )=k |ϕ |n nonminimally coupled to the Ricci scalar R via a term of the form (1 -8 π G0ξ ϕ2)R in the action. In the weak coupling limit, we calculate the effect of the nonminimal coupling on the time-averaged equation of state parameter γ =(p +ρ )/ρ . The change in ⟨γ ⟩ is always negative for n ≥2 and always positive for n change to be infinitesimally small at the present time whenever the scalar field dominates the expansion, but constraints in the early universe are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show that, under reasonable assumptions, this effective energy density is always smaller than the density of the scalar field itself.

  19. Cosmological magnetic fields - V

    Magnetic fields seem to be everywhere that we can look in the universe, from our own ... The field tensor is observer-independent, while the electric and magnetic .... based on string theory [11], in which vacuum fluctuations of the field are ...

  20. Magnetic fields in cosmology

    Madsen, M.S.

    1989-01-01

    The possible role of a large-scale relic magnetic field in the history of the Universe is considered. The perturbation of the cosmic microwave back-ground radiation on large angular scales due to a homogeneous magnetic field is estimated in a simple relativistic model. This allows corresponding limits to be placed on the magnitude of any such large-scale relic magnetic field at the present time. These limits are essentially the strongest which can be set on the largest scales. A corresponding bound is obtained by use of the requirement that the field should not spoil the predictions of primordial nucleosynthesis. It is noted that the existence of large-scale cosmic magnetic fields would circumvent the limits previously set - also on the basis of nucleosynthesis considerations - on the large-scale anisotropy now present in the Universe. (author)

  1. Symmetries of noncommutative scalar field theory

    De Goursac, Axel; Wallet, Jean-Christophe

    2011-01-01

    We investigate symmetries of the scalar field theory with a harmonic term on the Moyal space with the Euclidean scalar product and general symplectic form. The classical action is invariant under the orthogonal group if this group acts also on the symplectic structure. We find that the invariance under the orthogonal group can also be restored at the quantum level by restricting the symplectic structures to a particular orbit.

  2. On the integrability of Friedmann-Robertson-Walker models with conformally coupled massive scalar fields

    Coelho, L A A [Programa de Pos-Graduacao em Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana, Rio de Janeiro, RJ, 20550-900 (Brazil); Skea, J E F [Departamento de Fisica Teorica, Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana, Rio de Janeiro, RJ, 20550-900 (Brazil); Stuchi, T J [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68528, Rio de Janeiro, RJ, 21945-970 (Brazil)], E-mail: luis@dft.if.uerj.br, E-mail: jimsk@dft.if.uerj.br, E-mail: tstuchi@if.ufrj.br

    2008-02-22

    In this paper, we use a nonintegrability theorem by Morales and Ramis to analyse the integrability of Friedmann-Robertson-Walker cosmological models with a conformally coupled massive scalar field. We answer the long-standing question of whether these models with a vanishing cosmological constant and non-self-interacting scalar field are integrable: by applying Kovacic's algorithm to the normal variational equations, we prove analytically and rigorously that these equations and, consequently, the Hamiltonians are nonintegrable. We then address the models with a self-interacting massive scalar field and cosmological constant and show that, with the exception of a set of measure zero, the models are nonintegrable. For the spatially curved cases, we prove that there are no additional integrable cases other than those identified in the previous work based on the non-rigorous Painleve analysis. In our study of the spatially flat model, we explicitly obtain a new possibly integrable case.

  3. Scalar-metric quantum cosmology with Chaplygin gas and perfect fluid

    Ghosh, Saumya; Panigrahi, Prasanta K. [Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal (India); Gangopadhyay, Sunandan [Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal (India); S.N. Bose National Centre for Basic Sciences, Kolkata (India)

    2018-01-15

    In this paper we consider the flat FRW cosmology with a scalar field coupled with the metric along with generalized Chaplygin gas and perfect fluid comprising the matter sector. We use the Schutz's formalism to deal with the generalized Chaplygin gas sector. The full theory is then quantized canonically using the Wheeler-DeWitt Hamiltonian formalism. We then solve the WD equation with appropriate boundary conditions. Then by defining a proper completeness relation for the self-adjointness of the WD equation we arrive at the wave packet for the universe. It is observed that the peak in the probability density gets affected due to both fluids in the matter sector, namely, the Chaplygin gas and perfect fluid. (orig.)

  4. Gravitational Field Shielding by Scalar Field and Type II Superconductors

    Zhang B. J.

    2013-01-01

    Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.

  5. Can dark matter be a scalar field?

    Jesus, J.F.; Malatrasi, J.L.G. [Universidade Estadual Paulista ' Júlio de Mesquita Filho' , Campus Experimental de Itapeva—R. Geraldo Alckmin, 519, Itapeva, SP (Brazil); Pereira, S.H. [Universidade Estadual Paulista ' Júlio de Mesquita Filho' , Departamento de Física e Química, Campus de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, 12516-410—Guaratinguetá, SP (Brazil); Andrade-Oliveira, F., E-mail: jfjesus@itapeva.unesp.br, E-mail: shpereira@gmail.com, E-mail: malatrasi440@gmail.com, E-mail: felipe.oliveira@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, PO1 3FX, Portsmouth (United Kingdom)

    2016-08-01

    In this paper we study a real scalar field as a possible candidate to explain the dark matter in the universe. In the context of a free scalar field with quadratic potential, we have used Union 2.1 SN Ia observational data jointly with a Planck prior over the dark matter density parameter to set a lower limit on the dark matter mass as m ≥0.12 H {sub 0}{sup -1} eV ( c = h-bar =1). For the recent value of the Hubble constant indicated by the Hubble Space Telescope, namely H {sub 0}=73±1.8 km s{sup -1}Mpc{sup -1}, this leads to m ≥1.56×10{sup -33} eV at 99.7% c.l. Such value is much smaller than m ∼ 10{sup -22} eV previously estimated for some models. Nevertheless, it is still in agreement with them once we have not found evidences for a upper limit on the scalar field dark matter mass from SN Ia analysis. In practice, it confirms free real scalar field as a viable candidate for dark matter in agreement with previous studies in the context of density perturbations, which include scalar field self interaction.

  6. Exploring extra dimensions with scalar fields

    Brown, Katherine; Mathur, Harsh; Verostek, Mike

    2018-05-01

    This paper provides a pedagogical introduction to the physics of extra dimensions by examining the behavior of scalar fields in three landmark models: the ADD, Randall-Sundrum, and DGP spacetimes. Results of this analysis provide qualitative insights into the corresponding behavior of gravitational fields and elementary particles in each of these models. In these "brane world" models, the familiar four dimensional spacetime of everyday experience is called the brane and is a slice through a higher dimensional spacetime called the bulk. The particles and fields of the standard model are assumed to be confined to the brane, while gravitational fields are assumed to propagate in the bulk. For all three spacetimes, we calculate the spectrum of propagating scalar wave modes and the scalar field produced by a static point source located on the brane. For the ADD and Randall-Sundrum models, at large distances, the field looks like that of a point source in four spacetime dimensions, but at short distances, it crosses over to a form appropriate to the higher dimensional spacetime. For the DGP model, the field has the higher dimensional form at long distances rather than short. The behavior of these scalar fields, derived using only undergraduate level mathematics, closely mirror the results that one would obtain by performing the far more difficult task of analyzing the behavior of gravitational fields in these spacetimes.

  7. Gravitational peculiarities of a scalar field

    Kleber, A.; Fonseca Teixeira, A.F. da

    1979-11-01

    The zero-adjoint of a time-static Ricci-flat solution to Einstein's field equations is investigated. It represents a spacetime curved solely by a massless scalar field. The cylindrical symmetry is assumed to permit both planar and non-planar geodetic motions. Unusual, velocity-dependent gravitational features are encountered from these geodesics. (Author) [pt

  8. Vacuum Expectation Value Profiles of the Bulk Scalar Field in the Generalized Randall-Sundrum Model

    Moazzen, M.; Tofighi, A.; Farokhtabar, A.

    2015-01-01

    In the generalized Randall-Sundrum warped brane-world model the cosmological constant induced on the visible brane can be positive or negative. In this paper we investigate profiles of vacuum expectation value of the bulk scalar field under general Dirichlet and Neumann boundary conditions in the generalized warped brane-world model. We show that the VEV profiles generally depend on the value of the brane cosmological constant. We find that the VEV profiles of the bulk scalar field for a visible brane with negative cosmological constant and positive tension are quite distinct from those of Randall-Sundrum model. In addition we show that the VEV profiles for a visible brane with large positive cosmological constant are also different from those of the Randall-Sundrum model. We also verify that Goldberger and Wise mechanism can work under nonzero Dirichlet boundary conditions in the generalized Randall-Sundrum model.

  9. Astrophysical constraints on scalar field models

    Bertolami, O.; Paramos, J.

    2005-01-01

    We use stellar structure dynamics arguments to extract bounds on the relevant parameters of two scalar field models: the putative scalar field mediator of a fifth force with a Yukawa potential and the new variable mass particle models. We also analyze the impact of a constant solar inbound acceleration, such as the one reported by the Pioneer anomaly, on stellar astrophysics. We consider the polytropic gas model to estimate the effect of these models on the hydrostatic equilibrium equation and fundamental quantities such as the central temperature. The current bound on the solar luminosity is used to constrain the relevant parameters of each model

  10. Scalar fields: at the threshold of astrophysics

    Guzman, F S [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo. Edificio C-3, Cd. Universitaria, A. P. 2-82, 58040 Morelia, Michoacan (Mexico)

    2007-11-15

    In this manuscript the potential existence of self-gravitating complex scalar field configurations is explored. Stable boson stars are presented as potential black hole candidates, and the strengths and weaknesses of such idea are described. On the other hand, Newtonian boson systems are also studied because they are the bricks of the structure within the scalar field dark matter model or the Bose condensate dark matter; the collapse of density fluctuations is described; also the interaction between two structures is shown to allow solitonic behavior, which in turn allows the formation of ripples of dark matter. The processes related to potential observations are also discussed.

  11. Cosmological evolution as squeezing: a toy model for group field cosmology

    Adjei, Eugene; Gielen, Steffen; Wieland, Wolfgang

    2018-05-01

    We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat Friedmann–Lemaître–Robertson–Walker universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton’s constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application.

  12. Non-Gaussianity from self-ordering scalar fields

    Figueroa, Daniel G.; Caldwell, Robert R.; Kamionkowski, Marc

    2010-01-01

    The Universe may harbor relics of the post-inflationary epoch in the form of a network of self-ordered scalar fields. Such fossils, while consistent with current cosmological data at trace levels, may leave too weak an imprint on the cosmic microwave background and the large-scale distribution of matter to allow for direct detection. The non-Gaussian statistics of the density perturbations induced by these fields, however, permit a direct means to probe for these relics. Here we calculate the bispectrum that arises in models of self-ordered scalar fields. We find a compact analytic expression for the bispectrum, evaluate it numerically, and provide a simple approximation that may be useful for data analysis. The bispectrum is largest for triangles that are aligned (have edges k 1 ≅2k 2 ≅2k 3 ) as opposed to the local-model bispectrum, which peaks for squeezed triangles (k 1 ≅k 2 >>k 3 ), and the equilateral bispectrum, which peaks at k 1 ≅k 2 ≅k 3 . We estimate that this non-Gaussianity should be detectable by the Planck satellite if the contribution from self-ordering scalar fields to primordial perturbations is near the current upper limit.

  13. Anisotropic inflation from charged scalar fields

    Emami, Razieh; Firouzjahi, Hassan; Movahed, S.M. Sadegh; Zarei, Moslem

    2011-01-01

    We consider models of inflation with U(1) gauge fields and charged scalar fields including symmetry breaking potential, chaotic inflation and hybrid inflation. We show that there exist attractor solutions where the anisotropies produced during inflation becomes comparable to the slow-roll parameters. In the models where the inflaton field is a charged scalar field the gauge field becomes highly oscillatory at the end of inflation ending inflation quickly. Furthermore, in charged hybrid inflation the onset of waterfall phase transition at the end of inflation is affected significantly by the evolution of the background gauge field. Rapid oscillations of the gauge field and its coupling to inflaton can have interesting effects on preheating and non-Gaussianities

  14. Nonsingular solutions and instabilities in Einstein-scalar-Gauss-Bonnet cosmology

    Sberna, Laura; Pani, Paolo

    2017-12-01

    It is generically believed that higher-order curvature corrections to the Einstein-Hilbert action might cure the curvature singularities that plague general relativity. Here we consider Einstein-scalar-Gauss-Bonnet gravity, the only four-dimensional, ghost-free theory with quadratic curvature terms. For any choice of the coupling function and of the scalar potential, we show that the theory does not allow for bouncing solutions in the flat and open Friedmann universe. For the case of a closed universe, using a reverse-engineering method, we explicitly provide a bouncing solution which is nevertheless linearly unstable in the scalar gravitational sector. Moreover, we show that the expanding, singularity-free, early-time cosmologies allowed in the theory are unstable. These results rely only on analyticity and finiteness of cosmological variables at early times.

  15. Gravitational waves from scalar field accretion

    Nunez, Dario; Degollado, Juan Carlos; Moreno, Claudia

    2011-01-01

    Our aim in this work is to outline some physical consequences of the interaction between black holes and scalar field halos in terms of gravitational waves. In doing so, the black hole is taken as a static and spherically symmetric gravitational source, i.e. the Schwarzschild black hole, and we work within the test field approximation, considering that the scalar field lives in the curved space-time outside the black hole. We focused on the emission of gravitational waves when the black hole is perturbed by the surrounding scalar field matter. The symmetries of the space-time and the simplicity of the matter source allow, by means of a spherical harmonic decomposition, to study the problem by means of a one-dimensional description. Some properties of such gravitational waves are discussed as a function of the parameters of the infalling scalar field, and allow us to make the conjecture that the gravitational waves carry information on the type of matter that generated them.

  16. Free massless scalar fields in two dimensions

    Hadjiivanov, L.K.

    1980-01-01

    A common Fock space for two free massless scalar fields, nonlocal with respect to each other, is constructed. The operators corresponding to the two formal charges are correctly defined and it is shown that they generate translationally invariant states from the vacuum

  17. Reconstructing bidimensional scalar field theory models

    Flores, Gabriel H.; Svaiter, N.F.

    2001-07-01

    In this paper we review how to reconstruct scalar field theories in two dimensional spacetime starting from solvable Scrodinger equations. Theree different Schrodinger potentials are analyzed. We obtained two new models starting from the Morse and Scarf II hyperbolic potencials, the U (θ) θ 2 In 2 (θ 2 ) model and U (θ) = θ 2 cos 2 (In(θ 2 )) model respectively. (author)

  18. Scalar fields nonminimally coupled to pp waves

    Ayon-Beato, Eloy; Hassaiene, Mokhtar

    2005-01-01

    Here, we report pp waves configurations of three-dimensional gravity for which a scalar field nonminimally coupled to them acts as a source. In absence of self-interaction the solutions are gravitational plane waves with a profile fixed in terms of the scalar wave. In the self-interacting case, only power-law potentials parameterized by the nonminimal coupling constant are allowed by the field equations. In contrast with the free case the self-interacting scalar field does not behave like a wave since it depends only on the wave-front coordinate. We address the same problem when gravitation is governed by topologically massive gravity and the source is a free scalar field. From the pp waves derived in this case, we obtain at the zero topological mass limit, new pp waves solutions of conformal gravity for any arbitrary value of the nonminimal coupling parameter. Finally, we extend these solutions to the self-interacting case of conformal gravity

  19. Complete set of homogeneous isotropic analytic solutions in scalar-tensor cosmology with radiation and curvature

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-10-01

    We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configurations of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the Universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the Universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null-energy condition. There is a special subset of geodesically complete nongeneric solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine-tuning the initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.

  20. Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2004-01-01

    We consider a self-interacting scalar field whose mass saturates the Breitenlohner-Freedman bound, minimally coupled to Einstein gravity with a negative cosmological constant in D≥3 dimensions. It is shown that the asymptotic behavior of the metric has a slower fall-off than that of pure gravity with a localized distribution of matter, due to the back-reaction of the scalar field, which has a logarithmic branch decreasing as r -(D-1)/2 ln r for large radius r. We find the asymptotic conditions on the fields which are invariant under the same symmetry group as pure gravity with negative cosmological constant (conformal group in D-1 dimensions). The generators of the asymptotic symmetries are finite even when the logarithmic branch is considered but acquire, however, a contribution from the scalar field

  1. Scalar fields in black hole spacetimes

    Thuestad, Izak; Khanna, Gaurav; Price, Richard H.

    2017-07-01

    The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.

  2. The Rainich problem for coupled gravitational and scalar meson fields

    Hyde, J.M.

    1975-01-01

    The equations of the coupled gravitational and scalar meson fields in general relativity are considered. It is shown that the wave equation for the scalar meson field which is usually specified explicitly in addition to the Einstein field equations is implied by Einstein's equations. Using this result it is then shown how the scalar field may be eliminated explicitly from the field equations, thus solving the Rainich problem for the coupled gravitational and scalar meson fields. (author) [fr

  3. AdS collapse of a scalar field in higher dimensions

    Jalmuzna, Joanna; Rostworowski, Andrzej; Bizon, Piotr

    2011-01-01

    We show that the weakly turbulent instability of anti-de Sitter space, recently found in P. Bizon and A. Rostworowski, Phys. Rev. Lett. 107, 031102 (2011) for 3+1-dimensional spherically symmetric Einstein-massless-scalar field equations with negative cosmological constant, is present in all dimensions d+1 for d≥3.

  4. A comment on AdS collapse of a scalar field in higher dimensions

    Jałmużna, Joanna; Rostworowski, Andrzej; Bizoń, Piotr

    2011-01-01

    We point out that the weakly turbulent instability of anti-de Sitter space, recently found in arXiv:1104.3702 for four dimensional spherically symmetric Einstein-massless-scalar field equations with negative cosmological constant, is present in all dimensions $d+1$ for $d\\geq 3$, contrary to a claim made in arXiv:1106.2339.

  5. Dissipation element analysis of turbulent scalar fields

    Wang Lipo; Peters, Norbert

    2008-01-01

    Dissipation element analysis is a new approach for studying turbulent scalar fields. Gradient trajectories starting from each material point in a scalar field Φ'(x-vector,t) in ascending directions will inevitably reach a maximal and a minimal point. The ensemble of material points sharing the same pair ending points is named a dissipation element. Dissipation elements can be parameterized by the length scale l and the scalar difference Δφ ', which are defined as the straight line connecting the two extremal points and the scalar difference at these points, respectively. The decomposition of a turbulent field into dissipation elements is space-filling. This allows us to reconstruct certain statistical quantities of fine scale turbulence which cannot be obtained otherwise. The marginal probability density function (PDF) of the length scale distribution based on a Poisson random cutting-reconnection process shows satisfactory agreement with the direct numerical simulation (DNS) results. In order to obtain the further information that is needed for the modeling of scalar mixing in turbulence, such as the marginal PDF of the length of elements and all conditional moments as well as their scaling exponents, there is a need to model the joint PDF of l and Δφ ' as well. A compensation-defect model is put forward in this work to show the dependence of Δφ ' on l. The agreement between the model prediction and DNS results is satisfactory, which may provide another explanation of the Kolmogorov scaling and help to improve turbulent mixing models. Furthermore, intermittency and cliff structure can also be related to and explained from the joint PDF.

  6. Stability of a collapsed scalar field and cosmic censorship

    Abe, S.

    1988-01-01

    The static and asymptotically flat solution to the Einstein-massless-scalar model with spherical symmetry describes the spacetime with a naked singularity when it has a nonvanishing scalar charge. We show that such a solution is unstable against the spherical scalar monopole perturbation. This suggests the validity of the cosmic censorship hypothesis in the spherical collapse of the scalar field

  7. Scalar and electromagnetic fields in the Kazner metric. Interaction as a mechanism of isotronization

    Krechet, V.G.; Shikin, G.N.

    1981-01-01

    Within the framework of the Willer-de Vitt superspatial quantization the quantum anisotropic cosmological model with interacting, scalar and electromagnetic fields is considered. It is shown that as a result of direct interaction of the scalar and electromagnetic fields isotropization of the model occurs as in the classical case. While comparing the classical and quantum approaches the conclusion is made that in the quantum approach there are states without initial singularity, that fails in the classical approach; both in the quantum and classical approaches there is isotropization of evolution of the interacting field system (in the quantum approach in α, and β), and in both approaches this process is a consequence of direct interaction of the scalar and electromagnetic fields; in the quantum approach, unlike the classical one, there exists isotropization of the considered model at an infinite growth of the scalar field [ru

  8. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk

    2017-01-10

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  9. Evolution of perturbations in distinct classes of canonical scalar field models of dark energy

    Jassal, H. K.

    2010-01-01

    Dark energy must cluster in order to be consistent with the equivalence principle. The background evolution can be effectively modeled by either a scalar field or by a barotropic fluid. The fluid model can be used to emulate perturbations in a scalar field model of dark energy, though this model breaks down at large scales. In this paper we study evolution of dark energy perturbations in canonical scalar field models: the classes of thawing and freezing models. The dark energy equation of state evolves differently in these classes. In freezing models, the equation of state deviates from that of a cosmological constant at early times. For thawing models, the dark energy equation of state remains near that of the cosmological constant at early times and begins to deviate from it only at late times. Since the dark energy equation of state evolves differently in these classes, the dark energy perturbations too evolve differently. In freezing models, since the equation of state deviates from that of a cosmological constant at early times, there is a significant difference in evolution of matter perturbations from those in the cosmological constant model. In comparison, matter perturbations in thawing models differ from the cosmological constant only at late times. This difference provides an additional handle to distinguish between these classes of models and this difference should manifest itself in the integrated Sachs-Wolfe effect.

  10. On the Uniqueness of the Fock Quantization of the Dirac Field in the Closed FRW Cosmology

    Jerónimo Cortez

    2018-01-01

    Full Text Available The Fock quantization of free fields propagating in cosmological backgrounds is in general not unambiguously defined due to the nonstationarity of the space-time. For the case of a scalar field in cosmological scenarios, it is known that the criterion of unitary implementation of the dynamics serves to remove the ambiguity in the choice of Fock representation (up to unitary equivalence. Here, applying the same type of arguments and methods previously used for the scalar field case, we discuss the issue of the uniqueness of the Fock quantization of the Dirac field in the closed FRW space-time proposed by D’Eath and Halliwell.

  11. Scalar field Green functions on causal sets

    Nomaan Ahmed, S; Surya, Sumati; Dowker, Fay

    2017-01-01

    We examine the validity and scope of Johnston’s models for scalar field retarded Green functions on causal sets in 2 and 4 dimensions. As in the continuum, the massive Green function can be obtained from the massless one, and hence the key task in causal set theory is to first identify the massless Green function. We propose that the 2d model provides a Green function for the massive scalar field on causal sets approximated by any topologically trivial 2-dimensional spacetime. We explicitly demonstrate that this is indeed the case in a Riemann normal neighbourhood. In 4d the model can again be used to provide a Green function for the massive scalar field in a Riemann normal neighbourhood which we compare to Bunch and Parker’s continuum Green function. We find that the same prescription can also be used for de Sitter spacetime and the conformally flat patch of anti-de Sitter spacetime. Our analysis then allows us to suggest a generalisation of Johnston’s model for the Green function for a causal set approximated by 3-dimensional flat spacetime. (paper)

  12. Thermodynamics of de Sitter black holes with a conformally coupled scalar field

    Barlow, Anne-Marie; Doherty, Daniel; Winstanley, Elizabeth

    2005-01-01

    We study the thermodynamics of de Sitter black holes with a conformally coupled scalar field. The geometry is that of the lukewarm Reissner-Nordstroem-de Sitter black holes, with the event and cosmological horizons at the same temperature. This means that the region between the event and cosmological horizons can form a regular Euclidean instanton. The entropy is modified by the nonminimal coupling of the scalar field to the geometry, but can still be derived from the Euclidean action, provided suitable modifications are made to deal with the electrically charged case. We use the first law as derived from the isolated horizons formalism to compute the local horizon energies for the event and cosmological horizons

  13. Gaussian processes and constructive scalar field theory

    Benfatto, G.; Nicolo, F.

    1981-01-01

    The last years have seen a very deep progress of constructive euclidean field theory, with many implications in the area of the random fields theory. The authors discuss an approach to super-renormalizable scalar field theories, which puts in particular evidence the connections with the theory of the Gaussian processes associated to the elliptic operators. The paper consists of two parts. Part I treats some problems in the theory of Gaussian processes which arise in the approach to the PHI 3 4 theory. Part II is devoted to the discussion of the ultraviolet stability in the PHI 3 4 theory. (Auth.)

  14. Gravitational waves in bouncing cosmologies from gauge field production

    Ben-Dayan, Ido, E-mail: ido.bendayan@gmail.com [Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Be' er-Sheva 8410500 (Israel)

    2016-09-01

    We calculate the gravitational waves (GW) spectrum produced in various Early Universe scenarios from gauge field sources, thus generalizing earlier inflationary calculations to bouncing cosmologies. We consider generic couplings between the gauge fields and the scalar field dominating the energy density of the Universe. We analyze the requirements needed to avoid a backreaction that will spoil the background evolution. When the scalar is coupled only to F F-tilde term, the sourced GW spectrum is exponentially enhanced and parametrically the square of the vacuum fluctuations spectrum, P {sup s} {sub T} ∼ (P {sup v} {sub T} ){sup 2}, giving an even bluer spectrum than the standard vacuum one. When the scalar field is also coupled to F {sup 2} term, the amplitude is still exponentially enhanced, but the spectrum can be arbitrarily close to scale invariant (still slightly blue), n {sub T} ∼> 0, that is distinguishable form the slightly red inflationary one. Hence, we have a proof of concept of observable GW on CMB scales in a bouncing cosmology.

  15. Mass change and motion of a scalar charge in cosmological spacetimes

    Haas, Roland; Poisson, Eric

    2005-01-01

    Continuing previous work reported in an earlier paper (Burko, Harte and Poisson 2002 Phys. Rev. D 65 124006), we calculate the self-force acting on a point scalar charge in a wide class of cosmological spacetimes. The self-force produces two types of effect. The first is a time-changing inertial mass, and this is calculated exactly for a particle at rest relative to the cosmological fluid. We show that for certain cosmological models, the mass decreases and then increases back to its original value. For all other models except de Sitter spacetime, the mass is restored only to a fraction of its original value. For de Sitter spacetime the mass steadily decreases. The second effect is a deviation relative to geodesic motion, and we calculate this for a charge that moves slowly relative to the dust in a matter-dominated cosmology. We show that the net effect of the self-force is to push on the particle. We show that this is not an artefact of the scalar theory: the electromagnetic self-force acting on an electrically charged particle also pushes on the particle. The paper concludes with a demonstration that the pushing effect can also occur in the context of slow-motion electrodynamics in flat spacetime

  16. Imprint of thawing scalar fields on the large scale galaxy overdensity

    Dinda, Bikash R.; Sen, Anjan A.

    2018-04-01

    We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. We consider the full general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single autonomous system of equations containing both the background and the perturbed equations of motion which we subsequently solve for different scalar field potentials. First we study the percentage deviation from the Λ CDM model for different cosmological parameters as well as in the observed galaxy power spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly the difference in background expansion results from the enhancement of power from Λ CDM on small scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power from Λ CDM on large scales. This can be useful to distinguish scalar field models from Λ CDM with future optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types of scalar field using some particular choices for the scalar field potentials. We show that thawing and tracking models can have large differences in observed galaxy power spectra on large scales and for smaller redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small and is mainly due to the difference in background expansion.

  17. Renormalization group study of scalar field theories

    Hasenfratz, A.; Hasenfratz, P.

    1986-01-01

    An approximate RG equation is derived and studied in scalar quantum field theories in d dimensions. The approximation allows for an infinite number of different couplings in the potential, but excludes interactions containing derivatives. The resulting non-linear partial differential equation can be studied by simple means. Both the gaussian and the non-gaussian fixed points are described qualitatively correctly by the equation. The RG flows in d=4 and the problem of defining an ''effective'' field theory are discussed in detail. (orig.)

  18. The Effective Field Theory of nonsingular cosmology

    Cai, Yong [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Wan, Youping [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui 230026 (China); Li, Hai-Guang [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Qiu, Taotao [Institute of Astrophysics, Central China Normal University,Wuhan 430079 (China); Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University,Wuhan 430079 (China); Piao, Yun-Song [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Institute of Theoretical Physics, Chinese Academy of Sciences,P.O. Box 2735, Beijing 100190 (China)

    2017-01-20

    In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory (EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.

  19. The Effective Field Theory of nonsingular cosmology

    Cai, Yong; Wan, Youping; Li, Hai-Guang; Qiu, Taotao; Piao, Yun-Song

    2017-01-01

    In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory (EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.

  20. Quantum fields in cosmological space-times: a soluble example

    Costa, I.; Novello, M.; Svaiter, N.F.; Deruelle, N.

    1988-01-01

    The Klein-Gordon equation for a massive real scalar field in the Novello-Salim Eternal Universe, i.e., non singular spatial homogeneous and isotropic cosmological background which is tangent to Milne universes in the distant past and future (and hence asymptotically flat) and evolves between these two geometries via a phase of contraction to a point of maximum curvature followed by expansion is solved. This allows a computation of the Bogolyubov coefficients of the scalar field, usually interpreted as the rate of creation of matter by the time varying gravitational field, either when the vacuum is defined at the moment of maximum curvature (the false Big-Bang) or at the far beginning of the cosmic evolution. This new exact solution is compared to the results obtained when the geometry is that of the Milne universe. (author) [pt

  1. Scalar fields and higher-derivative gravity in brane worlds

    Pichler, S.

    2004-01-01

    We consider the brane world picture in the context of higher-derivative theories of gravity and tackle the problematic issues fine-tuning and brane-embedding. First, we give an overview of extra-dimensional physics, from the Kaluza-Klein picture up to modern brane worlds with large extra dimensions. We describe the different models and their physical impact on future experiments. We work within the framework of Randall-Sundrum models in which the brane is a gravitating object, which warps the background metric. We add scalar fields to the original model and find new and self-consistent solutions for quadratic potentials of the fields. This gives us the tools to investigate higher-derivative gravity theories in brane world models. Specifically, we take gravitational Lagrangians that depend on an arbitrary function of the Ricci scalar only, so-called f(R)-gravity. We make use of the conformal equivalence between f(R)-gravity and Einstein-Hilbert gravity with an auxiliary scalar field. We find that the solutions in the higher-derivative gravity framework behave very differently from the original Randall-Sundrum model: the metric functions do not have the typical kink across the brane. Furthermore, we present solutions that do not rely on a cosmological constant in the bulk and so avoid the fine-tuning problem. We address the issue of brane-embedding, which is important in perturbative analyses. We consider the embedding of codimension one hypersurfaces in general and derive a new equation of motion with which the choice for the embedding has to comply. In particular, this allows for a consistent consideration of brane world perturbations in the case of higher-derivative gravity. We use the newly found background solutions for quadratic potentials and find that gravity is still effectively localized on the brane, i.e that the Newtonian limit holds

  2. Thermal inflation with a thermal waterfall scalar field coupled to a light spectator scalar field

    Dimopoulos, Konstantinos; Lyth, David H.; Rumsey, Arron

    2017-05-01

    A new model of thermal inflation is introduced, in which the mass of the thermal waterfall field is dependent on a light spectator scalar field. Using the δ N formalism, the "end of inflation" scenario is investigated in order to ascertain whether this model is able to produce the dominant contribution to the primordial curvature perturbation. A multitude of constraints are considered so as to explore the parameter space, with particular emphasis on key observational signatures. For natural values of the parameters, the model is found to yield a sharp prediction for the scalar spectral index and its running, well within the current observational bounds.

  3. Cosmological models with positive scalar spatial curvature and Λ>0

    Ponce de Leon, J.

    1987-12-01

    Some exact spherically symmetric solutions of the Einstein field equations with Λ>0 and positive three-curvature are given. They have reasonable physical properties and represent universes which do not undergo inflation but have a non-de Sitter behaviour for large times. This paper extends some previous results in the literature. Permanent address: Apartado 2816, Caracas 1010-A, Venezuela.

  4. Duality property for a hermitian scalar field

    Bisognano, J.J.

    1975-01-01

    A general hermitian scalar Wightman field is considered. On the Hilbert space of physical states ''natural'' domains for certain complex Lorentz transformations are constructed, and a theorem relating these transformations to the TCP symmetry is stated and proved. Under the additional assumption that the field is ''locally'' essentially self-adjoint, duality is considered for the algebras generated by spectral projections of smeared fields. For a class of unbounded regions duality is proved, and for certain bounded regions ''local'' extensions of the algebras are constructed which satisfy duality. The relationship of the arguments presented to the Tomita--Takesaki theory of modular Hilbert algebras is discussed. A separate analysis for the free field is also given. (auth)

  5. Boundaries immersed in a scalar quantum field

    Actor, A.A.; Bender, I.

    1996-01-01

    We study the interaction between a scalar quantum field φ(x), and many different boundary configurations constructed from (parallel and orthogonal) thin planar surfaces on which φ(x) is constrained to vanish, or to satisfy Neumann conditions. For most of these boundaries the Casimir problem has not previously been investigated. We calculate the canonical and improved vacuum stress tensors left angle T μv (x) right angle and left angle direct difference μv (x) right angle of φ(x) for each example. From these we obtain the local Casimir forces on all boundary planes. For massless fields, both vacuum stress tensors yield identical attractive local Casimir forces in all Dirichlet examples considered. This desirable outcome is not a priori obvious, given the quite different features of left angle T μv (x) right angle and left angle direct difference μv (x) right angle. For Neumann conditions, left angle T μv (x) right angle and left angle direct difference μv (x) right angle lead to attractive Casimir stresses which are not always the same. We also consider Dirichlet and Neumann boundaries immersed in a common scalar quantum field, and find that these repel. The extensive catalogue of worked examples presented here belongs to a large class of completely solvable Casimir problems. Casimir forces previously unknown are predicted, among them ones which might be measurable. (orig.)

  6. Force field refinement from NMR scalar couplings

    Huang Jing [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland); Meuwly, Markus, E-mail: m.meuwly@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2012-03-02

    Graphical abstract: We show that two classes of H-bonds are sufficient to quantitatively describe scalar NMR coupling constants in small proteins. Highlights: Black-Right-Pointing-Pointer We present force field refinements based on explicit MD simulations using scalar couplings across hydrogen bonds. Black-Right-Pointing-Pointer This leads to {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.03 Hz at best compared to experiment. Black-Right-Pointing-Pointer A classification of H-bonds according to secondary structure is not sufficiently robust. Black-Right-Pointing-Pointer Grouping H-bonds into two classes and reparametrization yields an RMSD of 0.07 Hz. Black-Right-Pointing-Pointer This is an improvement of 50. - Abstract: NMR observables contain valuable information about the protein dynamics sampling a high-dimensional potential energy surface. Depending on the observable, the dynamics is sensitive to different time-windows. Scalar coupling constants {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} reflect the pico- to nanosecond motions associated with the intermolecular hydrogen bond network. Including an explicit H-bond in the molecular mechanics with proton transfer (MMPT) potential allows us to reproduce experimentally determined {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.02 Hz at best for ubiquitin and protein G. This is based on taking account of the chemically changing environment by grouping the H-bonds into up to seven classes. However, grouping them into two classes already reduces the RMSD between computed and observed {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings by almost 50%. Thus, using ensemble-averaged data with two classes of H-bonds leads to substantially improved scalar couplings from simulations with accurate force fields.

  7. Scalar field dark matter and the Higgs field

    O. Bertolami

    2016-08-01

    Full Text Available We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10−6–10−4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall–Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.

  8. Topics in quantum field theory and cosmology

    Brandenberger, R.H.

    1983-01-01

    This thesis contains a study of topics in quantum field theory and cosmology in the context of the new inflationary universe scenario. It presents a review of the quantum field theory methods used in the new cosmological models. The following chapters are a detailed study of energy density fluctuations in the early universe. Hawking radiation is derived as the source of initial perturbations in two complementary ways. The following section presents a new gauge invariant framework to study the growth of fluctuations outside the horizon. This framework is applied to the new inflationary universe in the final chapter. The introduction gives a brief outline of the new cosmological models

  9. Relaxation and kinetics in scalar field theories

    Boyanovsky, D.; Lawrie, I.D.; Lee, D.

    1996-01-01

    A new approach to the dynamics of relaxation and kinetics of thermalization in a scalar field theory is presented that incorporates the relevant time scales through the resummation of hard thermal loops. An alternative derivation of the kinetic equations for the open-quote open-quote quasiparticle close-quote close-quote distribution functions is obtained that allows a clear understanding of the different open-quote open-quote coarse-graining close-quote close-quote approximations usually involved in a kinetic description. This method leads to a systematic perturbative expansion to obtain the kinetic equations including hard thermal loop resummation and to an improvement including renormalization, off-shell effects, and contributions that change chemical equilibrium on short time scales. As a by-product of these methods we establish the equivalence between the relaxation time scale in the linearized equation of motion of the quasiparticles and the thermalization time scale of the quasiparticle distribution function in the open-quote open-quote relaxation time approximation close-quote close-quote including hard thermal loop effects. Hard thermal loop resummation dramatically modifies the scattering rate for long wavelength modes as compared to the usual (semi)classical estimate. Relaxation and kinetics are studied both in the unbroken and broken symmetry phases of the theory. The broken symmetry phase also provides the setting to obtain the contribution to the kinetic equations from processes that involve decay of a heavy scalar into light scalar particles in the medium. copyright 1996 The American Physical Society

  10. Vacuum instability in scalar field theories

    McKane, A.J.

    1978-09-01

    Scalar field theories with an interaction of the form gphisup(N) have no stable vacuum state for some range of values of their coupling constant, g. This thesis reports calculations of vacuum instability in such theories. Using the idea that the tunnelling out of the vacuum state is described by the instanton solutions of the theory, the imaginary part of the vertex functions is calculated for the massless theory in the one-loop approximation, near the dimension dsub(c) = 2N/N-2, where the theory is just renormalisable. The calculation differs from previous treatments in that dimensional regularisation is used to control the ultra-violet divergences of the theory. In this way previous analytic calculations in conformally invariant field theories are extended to the case where the theory is almost conformally invariant, since it is now defined in dsub(c) - epsilon dimensions (epsilon > 0). (author)

  11. Grassmann scalar fields and asymptotic freedom

    Palumbo, F [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1996-03-01

    The authors extend previous results about scalar fields whose Fourier components are even elements of a Grassmann algebra with given index of nilpotency. Their main interest in particle physics is related to the possibility that they describe fermionic composites analogous to the Copper pairs of superconductivity. The authors evaluate the free propagators for arbitrary index of nilpotency and they investigate a {phi}{sup 4} model to one loop. Due to the nature of the integral over even Grassmann fields such as a model exists for repulsive as well as attractive self interaction. In the first case the {beta}-function is equal to that of the ordinary theory, while in the second one the model is asymptotically free. The bare mass has a peculiar dependence on the cutoff, being quadratically decreasing/increasing for attractive/repulsive self interaction.

  12. Massive scalar field evolution in de Sitter

    Markkanen, Tommi [Department of Physics, King’s College London,Strand, London WC2R 2LS (United Kingdom); Rajantie, Arttu [Department of Physics, Imperial College London,London SW7 2AZ (United Kingdom)

    2017-01-30

    The behaviour of a massive, non-interacting and non-minimally coupled quantised scalar field in an expanding de Sitter background is investigated by solving the field evolution for an arbitrary initial state. In this approach there is no need to choose a vacuum in order to provide a definition for particle states, nor to introduce an explicit ultraviolet regularization. We conclude that the expanding de Sitter space is a stable equilibrium configuration under small perturbations of the initial conditions. Depending on the initial state, the energy density can approach its asymptotic value from above or below, the latter of which implies a violation of the weak energy condition. The backreaction of the quantum corrections can therefore lead to a phase of super-acceleration also in the non-interacting massive case.

  13. Is Sextans dwarf galaxy in a scalar field dark matter halo?

    Lora, V.; Magaña, Juan

    2014-01-01

    The Bose-Einstein condensate/scalar field dark matter model, considers that the dark matter is composed by spinless-ultra-light particles which can be described by a scalar field. This model is an alternative model to the Λ-cold dark matter paradigm, and therefore should be studied at galactic and cosmological scales. Dwarf spheroidal galaxies have been very useful when studying any dark matter theory, because the dark matter dominates their dynamics. In this paper we study the Sextans dwarf spheroidal galaxy, embedded in a scalar field dark matter halo. We explore how the dissolution time-scale of the stellar substructures in Sextans, constrain the mass, and the self-interacting parameter of the scalar field dark matter boson. We find that for masses in the range (0.12< m φ <8) ×10 -22 eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the stellar substructures in Sextans, and small enough mass to be compatible with dynamical limits. If the self-interacting parameter is distinct to zero, then the mass of the boson could be as high as m φ ≈2×10 -21 eV, but it would correspond to an unrealistic low mass for the Sextans dark matter halo . Therefore, the Sextans dwarf galaxy could be embedded in a scalar field/BEC dark matter halo with a preferred self-interacting parameter equal to zero

  14. Revisitation of chaos in Bianchi IX Universe and in generalized scalar-tensor cosmologies

    Lehner, Thierry; Di Menza, Laurent

    2003-01-01

    We show that there is a threshold for the onset of chaos in cosmology for the Universe described as a dynamical system derived from the Einstein equations of general relativity (GR). In the case of the mixmaster model (homogeneous and anisotropic cosmology with a Bianchi IX metric) the chaos occurs precisely at the prescribed necessary value H vac =0 of the GR for the energy of the Universe while the system is found regular for H vac >0 and chaotic for H vac <0 with respect to its pure vacuum part. In the case of generalized scalar tensor theories within the Bianchi IX model we show using the ADM formalism and a conformal transformation that the energy of the dynamical system as compared to vacuum lies below the threshold thus the system is not exhibiting chaos and the conclusion still holds in the presence of ordinary matter as well. The suppression of chaos occurs in a similar way for stiff matter alone

  15. Are black holes a serious threat to scalar field dark matter models?

    Barranco, Juan; Degollado, Juan Carlos; Bernal, Argelia; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Nunez, Dario; Sarbach, Olivier

    2011-01-01

    Classical scalar fields have been proposed as possible candidates for the dark matter component of the universe. Given the fact that supermassive black holes seem to exist at the center of most galaxies, in order to be a viable candidate for the dark matter halo a scalar field configuration should be stable in the presence of a central black hole, or at least be able to survive for cosmological time scales. In the present work we consider a scalar field as a test field on a Schwarzschild background, and study under which conditions one can obtain long-lived configurations. We present a detailed study of the Klein-Gordon equation in the Schwarzschild space-time, both from an analytical and numerical point of view, and show that indeed there exist quasistationary solutions that can remain surrounding a black hole for large time scales.

  16. Decoherence and disentanglement of qubits detecting scalar fields in an expanded spacetime

    Li, Yujie; Dai, Yue; Shi, Yu

    2017-01-01

    We consider Unruh-Wald qubit detector model adopted for the far future region of an exactly solvable 1 + 1 dimensional scalar field theory in a toy model of Robertson-Walker expanding spacetime. It is shown that the expansion of the spacetime in its history enhances the decoherence of the qubit coupled with a scalar field. Moreover, we consider two entangled qubits, each locally coupled with a scalar field. The expansion of the spacetime in its history degrades the entanglement between the qubits, and it can lead to entanglement's sudden death if the initial entanglement is small enough. The details depend on the parameters characterizing the expansion of the spacetime. This work, on a toy model, suggests that the history of the spacetime might be probed through the coherent and entanglement behavior of the future detectors of quantum fields. In the present toy model, the two cosmological parameters can be determined from the quantum informational quantities of the detectors. (orig.)

  17. Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology

    Singh, Parampreet; Wilson-Ewing, Edward

    2014-01-01

    We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann–Lemaître–Robertson–Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar–Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann–Lemaître–Robertson–Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role. (paper)

  18. Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology

    Singh, Parampreet; Wilson-Ewing, Edward

    2014-02-01

    We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaître-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaître-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.

  19. Cosmological horizons and reconstruction of quantum field theories

    Dappiaggi, C.; Pinamonti, N.

    2007-12-01

    As a starting point for this manuscript, we remark how the cosmological horizon of a certain class of Friedmann-Robertson-Walker backgrounds shares some non trivial geometric properties with null infinity in an asymptotically flat spacetime. Such a feature is generalized to a larger class of expanding spacetimes M admitting a geodesically complete cosmological horizon J - common to all co-moving observers. This property is later exploited in order to recast, in a cosmological background, some recent results for a linear scalar quantum field theory in spacetimes asymptotically flat at null infinity. Under suitable hypotheses on M - valid for de Sitter spacetime and some other FRW spacetimes obtained by perturbing deSitter space - the algebra of observables for a Klein-Gordon field is mapped into a subalgebra of the algebra of observables W(J - ) constructed on the cosmological horizon. There is exactly one pure quasifree state λ on W(J - ) which fulfills a suitable energy positivity condition with respect to a generator related with the cosmological time displacements. Furthermore λ induces a preferred physically meaningful quantum state λ M for the quantum theory in the bulk. If M admits a timelike Killing generator preserving J - , then the associated self-adjoint generator in the GNS representation of λ M has positive spectrum (i.e. energy). Moreover λ M turns out to be invariant under every symmetry of the bulk metric which preserves the cosmological horizon. In the case of an expanding de Sitter spacetime, λ M coincides with the Euclidean (Bunch-Davies) vacuum state, hence being Hadamard in this case. Remarks on the validity of the Hadamard property for λ M in more general spacetimes are presented. (orig.)

  20. Cosmological horizons and reconstruction of quantum field theories

    Dappiaggi, C.; Pinamonti, N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Trento Univ., Povo (Italy). Istituto Nazionale di Alta Matematica ' ' F. Severi' ' - GNFM; Moretti, V. [Trento Univ. (Italy). Dipt. di Matematica]|[Istituto Nazionale di Fisica Nucleare - Gruppo Collegato di Trento, Povo (Italy)

    2007-12-15

    As a starting point for this manuscript, we remark how the cosmological horizon of a certain class of Friedmann-Robertson-Walker backgrounds shares some non trivial geometric properties with null infinity in an asymptotically flat spacetime. Such a feature is generalized to a larger class of expanding spacetimes M admitting a geodesically complete cosmological horizon J{sup -} common to all co-moving observers. This property is later exploited in order to recast, in a cosmological background, some recent results for a linear scalar quantum field theory in spacetimes asymptotically flat at null infinity. Under suitable hypotheses on M - valid for de Sitter spacetime and some other FRW spacetimes obtained by perturbing deSitter space - the algebra of observables for a Klein-Gordon field is mapped into a subalgebra of the algebra of observables W(J{sup -}) constructed on the cosmological horizon. There is exactly one pure quasifree state {lambda} on W(J{sup -}) which fulfills a suitable energy positivity condition with respect to a generator related with the cosmological time displacements. Furthermore {lambda} induces a preferred physically meaningful quantum state {lambda}{sub M} for the quantum theory in the bulk. If M admits a timelike Killing generator preserving J{sup -}, then the associated self-adjoint generator in the GNS representation of {lambda}{sub M} has positive spectrum (i.e. energy). Moreover {lambda}{sub M} turns out to be invariant under every symmetry of the bulk metric which preserves the cosmological horizon. In the case of an expanding de Sitter spacetime, {lambda}{sub M} coincides with the Euclidean (Bunch-Davies) vacuum state, hence being Hadamard in this case. Remarks on the validity of the Hadamard property for {lambda}{sub M} in more general spacetimes are presented. (orig.)

  1. Chameleon scalar fields in relativistic gravitational backgrounds

    Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza

    2009-01-01

    We study the field profile of a scalar field φ that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential Φ c at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V(φ) = M 4+n φ −n by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential Φ c is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for Φ c ∼< O(0.1)

  2. Chameleon scalar fields in relativistic gravitational backgrounds

    Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Tamaki, Takashi [Department of Physics, Waseda University, Okubo 3-4-1, Tokyo 169-8555 (Japan); Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, London E1 4NS (United Kingdom)

    2009-05-15

    We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}

  3. Phantom cosmologies and fermions

    Chimento, Luis P; Forte, Monica; Devecchi, Fernando P; Kremer, Gilberto M

    2008-01-01

    Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the 'phantomization' process exhibits a new class of possible accelerated regimes. As an application we analyze the cosmological constant group for a fermionic seed fluid

  4. On a quantized scalar field in the de Sitter and Nariai universes

    Nariai, Hidekazu.

    1984-08-01

    After canonical quantization of a massive or massless scalar field in the de Sitter and Nariai universes (both of which satisfy the same Einstein equations with a non-vanishing cosmological constant, Rsub(μν)=Agsub(μν), but their topological structures differ from each other), the uniquely obtained 4-dimensional commutation functions in both universes are comparatively studied with due emphasis on their topological structures, as well as the difference of couplings to the background universe. (author)

  5. Decoding the hologram: Scalar fields interacting with gravity

    Kabat, Daniel; Lifschytz, Gilad

    2014-03-01

    We construct smeared conformal field theory (CFT) operators which represent a scalar field in anti-de Sitter (AdS) space interacting with gravity. The guiding principle is microcausality: scalar fields should commute with themselves at spacelike separation. To O(1/N) we show that a correct and convenient criterion for constructing the appropriate CFT operators is to demand microcausality in a three-point function with a boundary Weyl tensor and another boundary scalar. The resulting bulk observables transform in the correct way under AdS isometries and commute with boundary scalar operators at spacelike separation, even in the presence of metric perturbations.

  6. Scalar field collapse in Gauss-Bonnet gravity

    Banerjee, Narayan; Paul, Tanmoy

    2018-02-01

    We consider a "scalar-Einstein-Gauss-Bonnet" theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon.

  7. Scalar field collapse in Gauss-Bonnet gravity

    Banerjee, Narayan [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Nadia, West Bengal (India); Paul, Tanmoy [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2018-02-15

    We consider a ''scalar-Einstein-Gauss-Bonnet'' theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon. (orig.)

  8. Locally extracting scalar, vector and tensor modes in cosmological perturbation theory

    Clarkson, Chris; Osano, Bob

    2011-01-01

    Cosmological perturbation theory relies on the decomposition of perturbations into so-called scalar, vector and tensor modes. This decomposition is non-local and depends on unknowable boundary conditions. The non-locality is particularly important at second and higher order because perturbative modes are sourced by products of lower order modes, which must be integrated over all space in order to isolate each mode. However, given a trace-free rank-2 tensor, a locally defined scalar mode may be trivially derived by taking two divergences, which knocks out the vector and tensor degrees of freedom. A similar local differential operation will return a pure vector mode. This means that scalar and vector degrees of freedom have local descriptions. The corresponding local extraction of the tensor mode is unknown however. We give it here. The operators we define are useful for defining gauge-invariant quantities at second order. We perform much of our analysis using an index-free 'vector-calculus' approach which makes manipulating tensor equations considerably simpler. (papers)

  9. Scalar field dark matter: behavior around black holes

    Cruz-Osorio, Alejandro; Guzmán, F. Siddhartha; Lora-Clavijo, Fabio D., E-mail: alejandro@ifm.umich.mx, E-mail: guzman@ifm.umich.mx, E-mail: fadulora@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán (Mexico)

    2011-06-01

    We present the numerical evolution of a massive test scalar fields around a Schwarzschild space-time. We proceed by using hyperboloidal slices that approach future null infinity, which is the boundary of scalar fields, and also demand the slices to penetrate the event horizon of the black hole. This approach allows the scalar field to be accreted by the black hole and to escape toward future null infinity. We track the evolution of the energy density of the scalar field, which determines the rate at which the scalar field is being diluted. We find polynomial decay of the energy density of the scalar field, and use it to estimate the rate of dilution of the field in time. Our findings imply that the energy density of the scalar field decreases even five orders of magnitude in time scales smaller than a year. This implies that if a supermassive black hole is the Schwarzschild solution, then scalar field dark matter would be diluted extremely fast.

  10. Scalar field dark matter: behavior around black holes

    Cruz-Osorio, Alejandro; Guzmán, F. Siddhartha; Lora-Clavijo, Fabio D.

    2011-01-01

    We present the numerical evolution of a massive test scalar fields around a Schwarzschild space-time. We proceed by using hyperboloidal slices that approach future null infinity, which is the boundary of scalar fields, and also demand the slices to penetrate the event horizon of the black hole. This approach allows the scalar field to be accreted by the black hole and to escape toward future null infinity. We track the evolution of the energy density of the scalar field, which determines the rate at which the scalar field is being diluted. We find polynomial decay of the energy density of the scalar field, and use it to estimate the rate of dilution of the field in time. Our findings imply that the energy density of the scalar field decreases even five orders of magnitude in time scales smaller than a year. This implies that if a supermassive black hole is the Schwarzschild solution, then scalar field dark matter would be diluted extremely fast

  11. Post-Newtonian celestial dynamics in cosmology: Field equations

    Kopeikin, Sergei M.; Petrov, Alexander N.

    2013-02-01

    Post-Newtonian celestial dynamics is a relativistic theory of motion of massive bodies and test particles under the influence of relatively weak gravitational forces. The standard approach for development of this theory relies upon the key concept of the isolated astronomical system supplemented by the assumption that the background spacetime is flat. The standard post-Newtonian theory of motion was instrumental in the explanation of the existing experimental data on binary pulsars, satellite, and lunar laser ranging, and in building precise ephemerides of planets in the Solar System. Recent studies of the formation of large-scale structures in our Universe indicate that the standard post-Newtonian mechanics fails to describe more subtle dynamical effects in motion of the bodies comprising the astronomical systems of larger size—galaxies and clusters of galaxies—where the Riemann curvature of the expanding Friedmann-Lemaître-Robertson-Walker universe interacts with the local gravitational field of the astronomical system and, as such, cannot be ignored. The present paper outlines theoretical principles of the post-Newtonian mechanics in the expanding Universe. It is based upon the gauge-invariant theory of the Lagrangian perturbations of cosmological manifold caused by an isolated astronomical N-body system (the Solar System, a binary star, a galaxy, and a cluster of galaxies). We postulate that the geometric properties of the background manifold are described by a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker metric governed by two primary components—the dark matter and the dark energy. The dark matter is treated as an ideal fluid with the Lagrangian taken in the form of pressure along with the scalar Clebsch potential as a dynamic variable. The dark energy is associated with a single scalar field with a potential which is hold unspecified as long as the theory permits. Both the Lagrangians of the dark matter and the scalar field are

  12. Cosmological equivalence principle and the weak-field limit

    Wiltshire, David L.

    2008-01-01

    The strong equivalence principle is extended in application to averaged dynamical fields in cosmology to include the role of the average density in the determination of inertial frames. The resulting cosmological equivalence principle is applied to the problem of synchronization of clocks in the observed universe. Once density perturbations grow to give density contrasts of order 1 on scales of tens of megaparsecs, the integrated deceleration of the local background regions of voids relative to galaxies must be accounted for in the relative synchronization of clocks of ideal observers who measure an isotropic cosmic microwave background. The relative deceleration of the background can be expected to represent a scale in which weak-field Newtonian dynamics should be modified to account for dynamical gradients in the Ricci scalar curvature of space. This acceleration scale is estimated using the best-fit nonlinear bubble model of the universe with backreaction. At redshifts z -10 ms -2 , is small, when integrated over the lifetime of the universe it amounts to an accumulated relative difference of 38% in the rate of average clocks in galaxies as compared to volume-average clocks in the emptiness of voids. A number of foundational aspects of the cosmological equivalence principle are also discussed, including its relation to Mach's principle, the Weyl curvature hypothesis, and the initial conditions of the universe.

  13. Anisotropic Bulk Viscous String Cosmological Model in a Scalar-Tensor Theory of Gravitation

    D. R. K. Reddy

    2013-01-01

    Full Text Available Spatially homogeneous, anisotropic, and tilted Bianchi type-VI0 model is investigated in a new scalar-tensor theory of gravitation proposed by Saez and Ballester (1986 when the source for energy momentum tensor is a bulk viscous fluid containing one-dimensional cosmic strings. Exact solution of the highly nonlinear field equations is obtained using the following plausible physical conditions: (i scalar expansion of the space-time which is proportional to the shear scalar, (ii the barotropic equations of state for pressure and energy density, and (iii a special law of variation for Hubble’s parameter proposed by Berman (1983. Some physical and kinematical properties of the model are also discussed.

  14. Einstein and Jordan frames reconciled: A frame-invariant approach to scalar-tensor cosmology

    Catena, Riccardo; Pietroni, Massimo; Scarabello, Luca

    2007-01-01

    Scalar-tensor theories of gravity can be formulated in different frames, most notably, the Einstein and the Jordan one. While some debate still persists in the literature on the physical status of the different frames, a frame transformation in scalar-tensor theories amounts to a local redefinition of the metric, and then should not affect physical results. We analyze the issue in a cosmological context. In particular, we define all the relevant observables (redshift, distances, cross sections, ...) in terms of frame-independent quantities. Then, we give a frame-independent formulation of the Boltzmann equation, and outline its use in relevant examples such as particle freeze-out and the evolution of the cosmic microwave background photon distribution function. Finally, we derive the gravitational equations for the frame-independent quantities at first order in perturbation theory. From a practical point of view, the present approach allows the simultaneous implementation of the good aspects of the two frames in a clear and straightforward way

  15. Tensor-vector-scalar-modified gravity: from small scale to cosmology.

    Bekenstein, Jacob D

    2011-12-28

    The impressive success of the standard cosmological model has suggested to many that its ingredients are all that one needs to explain galaxies and their systems. I summarize a number of known problems with this programme. They might signal the failure of standard gravity theory on galaxy scales. The requisite hints as to the alternative gravity theory may lie with the modified Newtonian dynamics (MOND) paradigm, which has proved to be an effective summary of galaxy phenomenology. A simple nonlinear modified gravity theory does justice to MOND at the non-relativistic level, but cannot be consistently promoted to relativistic status. The obstacles were first side-stepped with the formulation of tensor-vector-scalar theory (TeVeS), a covariant-modified gravity theory. I review its structure, its MOND and Newtonian limits, and its performance in the face of galaxy phenomenology. I also summarize features of TeVeS cosmology and describe the confrontation with data from strong and weak gravitational lensing.

  16. Gravitational lens optical scalars in terms of energy-momentum distributions in the cosmological framework

    Boero, Ezequiel F.; Moreschi, Osvaldo M.

    2018-04-01

    We present new results on gravitational lensing over cosmological Robertson-Walker backgrounds which extend and generalize previous works. Our expressions show the presence of new terms and factors which have been neglected in the literature on the subject. The new equations derived here for the optical scalars allow to deal with more general matter content including sources with non-Newtonian components of the energy-momentum tensor and arbitrary motion. Our treatment is within the framework of weak gravitational lenses in which first-order effects of the curvature are considered. We have been able to make all calculations without referring to the concept of deviation angle. This in turn, makes the presentation shorter but also allows for the consideration of global effects on the Robertson-Walker background that have been neglected in the literature. We also discuss two intensity magnifications that we define in this article; one coming from a natural geometrical construction in terms of the affine distance, that we here call \\tilde{μ }, and the other adapted to cosmological discussions in terms of the redshift, that we call μ΄. We show that the natural intensity magnification \\tilde{μ } coincides with the standard angular magnification (μ).

  17. Impact of stochastic primordial magnetic fields on the scalar contribution to cosmic microwave background anisotropies

    Finelli, Fabio; Paci, Francesco; Paoletti, Daniela

    2008-01-01

    We study the impact of a stochastic background of primordial magnetic fields on the scalar contribution of cosmic microwave background (CMB) anisotropies and on the matter power spectrum. We give the correct initial conditions for cosmological perturbations and the exact expressions for the energy density and Lorentz force associated to the stochastic background of primordial magnetic fields, given a power-law for their spectra cut at a damping scale. The dependence of the CMB temperature and polarization spectra on the relevant parameters of the primordial magnetic fields is illustrated.

  18. A sensitive search for dark energy through chameleon scalar fields using neutron interferometry

    Snow, W M; Li, K; Skavysh, V; Arif, M; Huber, M; Heacock, B; Young, A R; Pushin, D

    2015-01-01

    The physical origin of the dark energy, which is postulated to cause the accelerated expansion rate of the universe, is one of the major open questions of cosmology. A large subset of theories postulate the existence of a scalar field with a nonlinear coupling to matter chosen so that the effective range and/or strength of the field is greatly suppressed unless the source is placed in vacuum. We describe a measurement using neutron interferometry which can place a stringent upper bound on chameleon fields proposed as a solution to the problem of the origin of dark energy of the universe in the regime with a strongly-nolinear coupling term. In combination with other experiments searching for exotic short-range forces and laser-based measurements, slow neutron experiments are capable of eliminating this and many similar types of scalar-field-based dark energy models by laboratory experiments

  19. The 5D Standing Wave Braneworld with Real Scalar Field

    Merab Gogberashvili; Pavle Midodashvili

    2013-01-01

    We introduce the new 5D braneworld with the real scalar field in the bulk. The model represents the brane which bounds collective oscillations of gravitational and scalar field standing waves. These waves are out of phase; that is, the energy of oscillations passes back and forth between the scalar and gravitational waves. When the amplitude of the standing waves is small, the brane width and the size of the horizon in extra space are of a same order of magnitude, and matter fields are locali...

  20. Scalar field vacuum expectation value induced by gravitational wave background

    Jones, Preston; McDougall, Patrick; Ragsdale, Michael; Singleton, Douglas

    2018-06-01

    We show that a massless scalar field in a gravitational wave background can develop a non-zero vacuum expectation value. We draw comparisons to the generation of a non-zero vacuum expectation value for a scalar field in the Higgs mechanism and with the dynamical Casimir vacuum. We propose that this vacuum expectation value, generated by a gravitational wave, can be connected with particle production from gravitational waves and may have consequences for the early Universe where scalar fields are thought to play an important role.

  1. Hybrid Inflation: Multi-field Dynamics and Cosmological Constraints

    Clesse, Sébastien

    2011-09-01

    The dynamics of hybrid models is usually approximated by the evolution of a scalar field slowly rolling along a nearly flat valley. Inflation ends with a waterfall phase, due to a tachyonic instability. This final phase is usually assumed to be nearly instantaneous. In this thesis, we go beyond these approximations and analyze the exact 2-field dynamics of hybrid models. Several effects are put in evidence: 1) the possible slow-roll violations along the valley induce the non existence of inflation at small field values. Provided super-planckian fields, the scalar spectrum of the original model is red, in agreement with observations. 2) The initial field values are not fine-tuned along the valley but also occupy a considerable part of the field space exterior to it. They form a structure with fractal boundaries. Using bayesian methods, their distribution in the whole parameter space is studied. Natural bounds on the potential parameters are derived. 3) For the original model, inflation is found to continue for more than 60 e-folds along waterfall trajectories in some part of the parameter space. The scalar power spectrum of adiabatic perturbations is modified and is generically red, possibly in agreement with CMB observations. Topological defects are conveniently stretched outside the observable Universe. 4) The analysis of the initial conditions is extended to the case of a closed Universe, in which the initial singularity is replaced by a classical bounce. In the third part of the thesis, we study how the present CMB constraints on the cosmological parameters could be ameliorated with the observation of the 21cm cosmic background, by future giant radio-telescopes. Forecasts are determined for a characteristic Fast Fourier Transform Telescope, by using both Fisher matrix and MCMC methods.

  2. Einstein gravity with torsion induced by the scalar field

    Özçelik, H. T.; Kaya, R.; Hortaçsu, M.

    2018-06-01

    We couple a conformal scalar field in (2+1) dimensions to Einstein gravity with torsion. The field equations are obtained by a variational principle. We could not solve the Einstein and Cartan equations analytically. These equations are solved numerically with 4th order Runge-Kutta method. From the numerical solution, we make an ansatz for the rotation parameter in the proposed metric, which gives an analytical solution for the scalar field for asymptotic regions.

  3. Classical behavior of a scalar field in the inflationary universe

    Sasaki, Misao; Nambu, Yasusada; Nakao, Ken-ichi.

    1987-09-01

    Extending the coarse-graining approach of Starobinsky, we formulate a theory to deal with the dynamics of a scalar field in inflationary universe models. We find a set of classical Langevin equations which describes the large scale behavior of the scalar field, provided that the coarse-grained size is greater than the effective compton wavelength of the scalar field. The corresponding Fokker-Planck equation is also derived which is defined on the phase space of the scalar field. We show that our theory is essentially equivalent to the one-loop field theory in de Sitter space and reduces to that of Starobinsky in a strong limit of the slow roll-over condition. Analysis of a simple Higgs potential model is done and the implications are discussed. (author)

  4. Finite action for three dimensional gravity with a minimally coupled scalar field

    Gegenberg, Jack; Martinez, Cristian; Troncoso, Ricardo

    2003-01-01

    Three-dimensional gravity with a minimally coupled self-interacting scalar is considered. The falloff of the fields at infinity is assumed to be slower than that of a localized distribution of matter in the presence of a negative cosmological constant. However, the asymptotic symmetry group remains to be the conformal group. The counterterm Lagrangian needed to render the action finite is found by demanding that the action attain an extremum for the boundary conditions implied by the above falloff of the fields at infinity. These counterterms explicitly depend on the scalar field. As a consequence, the Brown-York stress-energy tensor acquires a nontrivial contribution from the matter sector. Static circularly symmetric solutions with a regular scalar field are explored for a one-parameter family of potentials. Their masses are computed via the Brown-York quasilocal stress-energy tensor, and they coincide with the values obtained from the Hamiltonian approach. The thermal behavior, including the transition between different configurations, is analyzed, and it is found that the scalar black hole can decay into the Banados-Teitelboim-Zanelli solution irrespective of the horizon radius. It is also shown that the AdS conformal field theory correspondence yields the same central charge as for pure gravity

  5. A nonlinear dynamics for the scalar field in Randers spacetime

    Silva, J.E.G. [Universidade Federal do Cariri (UFCA), Instituto de formação de professores, Rua Olegário Emídio de Araújo, Brejo Santo, CE, 63.260.000 (Brazil); Maluf, R.V. [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil)

    2017-03-10

    We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.

  6. Spontaneously broken symmetry of vacuum in external gravitational fields of isotropic cosmological models

    Veryaskin, A.V.; Lapchinskij, V.G.; Nekrasov, V.I.; Rubakov, V.A.

    1981-01-01

    Behaviour of vacuum symmetry in the model of self-acting scalar field in the open and closed isotropic cosmological spaces is investigated. Considered are the cases with the mass squared of the scalar field m 2 >0, m 2 =0 and m 2 2 2 =0 at exponentially large scale factors the study of the problem on the behaviour of the symmetry requires exceeding the limits of the perturbation theory. The final behaviour of the vacuum symmetry in the open model at small radii depends on combined effect of all the external factors [ru

  7. Creation-field cosmology: A possible solution to singularity, horizon, and flatness problems

    Narlikar, J.V.; Padmanabhan, T.

    1985-01-01

    A solution of Einstein's equations which admits radiation and a negative-energy massless scalar creation field as a source is presented. It is shown that the cosmological model based on this solution satisfies all the observational tests and thus is a viable alternative to the standard big-bang model. The present model is free from singularity and particle horizon and provides a natural explanation for the flatness problem. We argue that these features make the creation-field cosmological model theoretically superior to the big-bang model

  8. Differentiating G-inflation from string gas cosmology using the effective field theory approach

    He, Minxi; Liu, Junyu; Lu, Shiyun; Cai, Yi-Fu [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Zhou, Siyi; Wang, Yi [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Brandenberger, Robert, E-mail: hmxz0@mail.ustc.edu.cn, E-mail: jliu2@caltech.edu, E-mail: shiyun@mail.ustc.edu.cn, E-mail: zhousiyi1@gmail.com, E-mail: yifucai@ustc.edu.cn, E-mail: phyw@ust.hk, E-mail: rhb@physics.mcgill.ca [Department of Physics, McGill University, Montréal, Quebec H3A 2T8 (Canada)

    2016-12-01

    A characteristic signature of String Gas Cosmology is primordial power spectra for scalar and tensor modes which are almost scale-invariant but with a red tilt for scalar modes but a blue tilt for tensor modes. This feature, however, can also be realized in the so-called G-inflation model, in which Horndeski operators are introduced which leads to a blue tensor tilt by softly breaking the Null Energy Condition. In this article we search for potential observational differences between these two cosmologies by performing detailed perturbation analyses based on the Effective Field Theory approach. Our results show that, although both two models produce blue tilted tensor perturbations, they behave differently in three aspects. Firstly, String Gas Cosmology predicts a specific consistency relation between the index of the scalar modes n {sub s} and that of tensor ones n {sub t} , which is hard to be reproduced by G-inflation. Secondly, String Gas Cosmology typically predicts non-Gaussianities which are highly suppressed on observable scales, while G-inflation gives rise to observationally large non-Gaussianities because the kinetic terms in the action become important during inflation. However, after finely tuning the model parameters of G-inflation it is possible to obtain a blue tensor spectrum and negligible non-Gaussianities with a degeneracy between the two models. This degeneracy can be broken by a third observable, namely the scale dependence of the nonlinearity parameter, which vanishes for G-inflation but has a blue tilt in the case of String Gas Cosmology. Therefore, we conclude that String Gas Cosmology is in principle observationally distinguishable from the single field inflationary cosmology, even allowing for modifications such as G-inflation.

  9. Constraints on Interacting Scalars in 2T Field Theory and No Scale Models in 1T Field Theory

    Bars, Itzhak

    2010-01-01

    In this paper I determine the general form of the physical and mathematical restrictions that arise on the interactions of gravity and scalar fields in the 2T field theory setting, in d+2 dimensions, as well as in the emerging shadows in d dimensions. These constraints on scalar fields follow from an underlying Sp(2,R) gauge symmetry in phase space. Determining these general constraints provides a basis for the construction of 2T supergravity, as well as physical applications in 1T-field theory, that are discussed briefly here, and more detail elsewhere. In particular, no scale models that lead to a vanishing cosmological constant at the classical level emerge naturally in this setting.

  10. Barbero-Immirzi parameter as a scalar field: K-inflation from loop quantum gravity?

    Taveras, Victor; Yunes, Nicolas

    2008-01-01

    We consider a loop-quantum gravity inspired modification of general relativity, where the Holst action is generalized by making the Barbero-Immirzi (BI) parameter a scalar field, whose value could be dynamically determined. The modified theory leads to a nonzero torsion tensor that corrects the field equations through quadratic first derivatives of the BI field. Such a correction is equivalent to general relativity in the presence of a scalar field with nontrivial kinetic energy. This stress energy of this field is automatically covariantly conserved by its own dynamical equations of motion, thus satisfying the strong equivalence principle. Every general relativistic solution remains a solution to the modified theory for any constant value of the BI field. For arbitrary time-varying BI fields, a study of cosmological solutions reduces the scalar-field stress energy to that of a pressureless perfect fluid in a comoving reference frame, forcing the scale-factor dynamics to be equivalent to those of a stiff equation of state. Upon ultraviolet completion, this model could provide a natural mechanism for k inflation, where the role of the inflaton is played by the BI field and inflation is driven by its nontrivial kinetic energy instead of a potential.

  11. Magnetic monopoles in field theory and cosmology.

    Rajantie, Arttu

    2012-12-28

    The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems.

  12. Non-singular bounce scenarios in loop quantum cosmology and the effective field description

    Cai, Yi-Fu; Wilson-Ewing, Edward

    2014-01-01

    A non-singular bouncing cosmology is generically obtained in loop quantum cosmology due to non-perturbative quantum gravity effects. A similar picture can be achieved in standard general relativity in the presence of a scalar field with a non-standard kinetic term such that at high energy densities the field evolves into a ghost condensate and causes a non-singular bounce. During the bouncing phase, the perturbations can be stabilized by introducing a Horndeski operator. Taking the matter content to be a dust field and an ekpyrotic scalar field, we compare the dynamics in loop quantum cosmology and in a non-singular bouncing effective field model with a non-standard kinetic term at both the background and perturbative levels. We find that these two settings share many important properties, including the result that they both generate scale-invariant scalar perturbations. This shows that some quantum gravity effects of the very early universe may be mimicked by effective field models

  13. Non-singular string-cosmologies from exact conformal field theories

    Vega, H.J. de; Larsen, A.L.; Sanchez, N.

    2001-01-01

    Non-singular two and three dimensional string cosmologies are constructed using the exact conformal field theories corresponding to SO(2,1)/SO(1,1) and SO(2,2)/SO(2,1). All semi-classical curvature singularities are canceled in the exact theories for both of these cosets, but some new quantum curvature singularities emerge. However, considering different patches of the global manifolds, allows the construction of non-singular space-times with cosmological interpretation. In both two and three dimensions, we construct non-singular oscillating cosmologies, non-singular expanding and inflationary cosmologies including a de Sitter (exponential) stage with positive scalar curvature as well as non-singular contracting and deflationary cosmologies. Similarities between the two and three dimensional cases suggest a general picture for higher dimensional coset cosmologies: Anisotropy seems to be a generic unavoidable feature, cosmological singularities are generically avoided and it is possible to construct non-singular cosmologies where some spatial dimensions are experiencing inflation while the others experience deflation

  14. Exact spinor-scalar bound states in a quantum field theory with scalar interactions

    Shpytko, Volodymyr; Darewych, Jurij

    2001-01-01

    We study two-particle systems in a model quantum field theory in which scalar particles and spinor particles interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green's functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown to have Dirac and Klein-Gordon one-particle limits. Analytical solutions for the bound state energy spectrum are obtained for the case of massless mediating fields

  15. Interacting massless scalar and source-free electromagnetic fields

    Ayyangar, B.R.N.; Mohanty, G.

    1985-01-01

    The relativistic field equations for interacting massless attractive scalar and source-free electromagnetic fields in a cylindrically symmetric spacetime of one degree of freedom with reflection symmetry have been reduced to a first order implicit differential equation depending on time which enables one to generate a class of solution to the field equations. The nature of the scalar and electromagnetic fields is discussed. It is shown that the geometry of the spacetime admits of an irrotational stiff fluid distribution without prejudice to the interacting electromagnetic fields. 10 refs. (author)

  16. Physics on all scales. Scalar-tensor theories of quantum gravity in particle physics and cosmology

    Henz, Tobias

    2016-05-10

    In this thesis, we investigate dilaton quantum gravity using a functional renormalization group approach. We derive and discuss flow equations both in the background field approximation and using a vertex expansion as well as solve the fixed point equations globally to show how realistic gravity, connecting ultraviolet and infrared physics, can be realized on a pure fixed point trajectory by virtue of spontaneous breaking of scale invariance. The emerging physical system features a dynamically generated moving Planck scale resembling the Newton coupling as well as slow roll inflation with an exponentially decreasing effective cosmological constant that vanishes completely in the infrared. The moving Planck scale might make quantum gravity experimentally accessible at a different energy scale than previously believed. We therefore not only provide further evidence for the existence of a consistent quantum theory of gravity based on general relativity, but also offer potential solutions towards the hierarchy and cosmological constant problems, thereby opening up exciting opportunities for further research.

  17. Initial conditions for cosmological N-body simulations of the scalar sector of theories of Newtonian, Relativistic and Modified Gravity

    Valkenburg, Wessel; Hu, Bin

    2015-01-01

    We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zel'dovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond Λ-Cold Dark Matter initial conditions for modifications of gravity outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology

  18. Cosmological bound from the neutron star merger GW170817 in scalar-tensor and F(R) gravity theories

    Nojiri, Shin'ichi; Odintsov, Sergei D.

    2018-04-01

    We consider the evolution of cosmological gravitational waves in scalar-tensor theory and F (R) gravity theory as typical models of the modified gravity. Although the propagation speed is not changed from the speed of light, the propagation phase changes when we compare the propagation in these modified gravity theories with the propagation in the ΛCDM model. The phase change might be detected in future observations.

  19. Thermodynamics of perfect fluids from scalar field theory

    Ballesteros, Guillermo; Pilo, Luigi

    2016-01-01

    The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.

  20. Critical collapse of a rotating scalar field in $2+1$ dimensions

    Jałmużna, Joanna; Gundlach, Carsten

    2017-01-01

    We carry out numerical simulations of the collapse of a complex rotating scalar field of the form $\\Psi(t,r,\\theta)=e^{im\\theta}\\Phi(t,r)$, giving rise to an axisymmetric metric, in 2+1 spacetime dimensions with cosmological constant $\\Lambda0$ is very different from the case $m=0$ we have considered before: the thresholds for mass scaling and Ricci scaling are significantly different (for the same family), scaling stops well above the scale set by $\\Lambda$, and the exponents depend strongly...

  1. Pedagogical systematic derivation of Noether point symmetries in special relativistic field theories and extended gravity cosmology

    Haas, Fernando

    2016-01-01

    A didactic and systematic derivation of Noether point symmetries and conserved currents is put forward in special relativistic field theories, without a priori assumptions about the transformation laws. Given the Lagrangian density, the invariance condition develops as a set of partial differential equations determining the symmetry transformation. The solution is provided in the case of real scalar, complex scalar, free electromagnetic, and charged electromagnetic fields. Besides the usual conservation laws, a less popular symmetry is analyzed: the symmetry associated with the linear superposition of solutions, whenever applicable. The role of gauge invariance is emphasized. The case of the charged scalar particle under external electromagnetic fields is considered, and the accompanying Noether point symmetries determined. Noether point symmetries for a dynamical system in extended gravity cosmology are also deduced. (paper)

  2. Pedagogical systematic derivation of Noether point symmetries in special relativistic field theories and extended gravity cosmology

    Haas, Fernando

    2016-11-01

    A didactic and systematic derivation of Noether point symmetries and conserved currents is put forward in special relativistic field theories, without a priori assumptions about the transformation laws. Given the Lagrangian density, the invariance condition develops as a set of partial differential equations determining the symmetry transformation. The solution is provided in the case of real scalar, complex scalar, free electromagnetic, and charged electromagnetic fields. Besides the usual conservation laws, a less popular symmetry is analyzed: the symmetry associated with the linear superposition of solutions, whenever applicable. The role of gauge invariance is emphasized. The case of the charged scalar particle under external electromagnetic fields is considered, and the accompanying Noether point symmetries determined. Noether point symmetries for a dynamical system in extended gravity cosmology are also deduced.

  3. Constraining scalar fields with stellar kinematics and collisional dark matter

    Amaro-Seoane, Pau; Barranco, Juan; Bernal, Argelia; Rezzolla, Luciano

    2010-01-01

    The existence and detection of scalar fields could provide solutions to long-standing puzzles about the nature of dark matter, the dark compact objects at the centre of most galaxies, and other phenomena. Yet, self-interacting scalar fields are very poorly constrained by astronomical observations, leading to great uncertainties in estimates of the mass m φ and the self-interacting coupling constant λ of these fields. To counter this, we have systematically employed available astronomical observations to develop new constraints, considerably restricting this parameter space. In particular, by exploiting precise observations of stellar dynamics at the centre of our Galaxy and assuming that these dynamics can be explained by a single boson star, we determine an upper limit for the boson star compactness and impose significant limits on the values of the properties of possible scalar fields. Requiring the scalar field particle to follow a collisional dark matter model further narrows these constraints. Most importantly, we find that if a scalar dark matter particle does exist, then it cannot account for both the dark-matter halos and the existence of dark compact objects in galactic nuclei

  4. Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions

    Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.

    1979-01-01

    Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given

  5. Dark fluid: A complex scalar field to unify dark energy and dark matter

    Arbey, Alexandre

    2006-01-01

    In this article, we examine a model which proposes a common explanation for the presence of additional attractive gravitational effects - generally considered to be due to dark matter - in galaxies and in clusters, and for the presence of a repulsive effect at cosmological scales - generally taken as an indication of the presence of dark energy. We therefore consider the behavior of a so-called dark fluid based on a complex scalar field with a conserved U(1)-charge and associated to a specific potential, and show that it can at the same time account for dark matter in galaxies and in clusters, and agree with the cosmological observations and constraints on dark energy and dark matter

  6. Topological black holes dressed with a conformally coupled scalar field and electric charge

    Martinez, Cristian; Troncoso, Ricardo; Staforelli, Juan Pablo

    2006-01-01

    Electrically charged solutions for gravity with a conformally coupled scalar field are found in four dimensions in the presence of a cosmological constant. If a quartic self-interaction term for the scalar field is considered, there is a solution describing an asymptotically locally AdS charged black hole dressed with a scalar field that is regular on and outside the event horizon, which is a surface of negative constant curvature. This black hole can have negative mass, which is bounded from below for the extremal case, and its causal structure shows that the solution describes a ''black hole inside a black hole''. The thermodynamics of the nonextremal black hole is analyzed in the grand canonical ensemble. The entropy does not follow the area law, and there is an effective Newton constant which depends on the value of the scalar field at the horizon. If the base manifold is locally flat, the solution has no electric charge, and the scalar field has a vanishing stress-energy tensor so that it dresses a locally AdS spacetime with a nut at the origin. In the case of vanishing self interaction, the solutions also dress locally AdS spacetimes, and if the base manifold is of negative constant curvature a massless electrically charged hairy black hole is obtained. The thermodynamics of this black hole is also analyzed. It is found that the bounds for the black holes parameters in the conformal frame obtained from requiring the entropy to be positive are mapped into the ones that guarantee cosmic censorship in the Einstein frame

  7. Equivalence between Born–Infeld tachyon and effective real scalar field theories for brane structures in warped geometry

    Bernardini, A.E.; Bertolami, O.

    2013-01-01

    An equivalence between Born–Infeld and effective real scalar field theories for brane structures is built in some specific warped space–time scenarios. Once the equations of motion for tachyon fields related to the Born–Infeld action are written as first-order equations, a simple analytical connection with a particular class of real scalar field superpotentials can be found. This equivalence leads to the conclusion that, for a certain class of superpotentials, both systems can support identical thick brane solutions as well as brane structures described through localized energy densities, T 00 (y), in the 5th dimension, y. Our results indicate that thick brane solutions realized by the Born–Infeld cosmology can be connected to real scalar field brane scenarios which can be used to effectively map the tachyon condensation mechanism

  8. Interacting scalar tensor cosmology in light of SNeIa, CMB, BAO and OHD observational data sets

    Rabiei, Sayed Wrya; Saaidi, Khaled [Faculty of Science University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Sheikhahmadi, Haidar [Faculty of Science University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Institute for Advance Studies in Basic Sciences (IASBS) Gava Zang, Zanjan (Iran, Islamic Republic of); Aghamohammadi, Ali [Sanandaj Branch Islamic Azad University, Sanandaj (Iran, Islamic Republic of)

    2016-02-15

    In this work, an interacting chameleon-like scalar field scenario, by considering SNeIa, CMB, BAO, and OHD data sets, is investigated. In fact, the investigation is realized by introducing an ansatz for the effective dark energy equation of state, which mimics the behavior of chameleon-like models. Based on this assumption, some cosmological parameters, including the Hubble, deceleration, and coincidence parameters, in such a mechanism are analyzed. It is realized that, to estimate the free parameters of a theoretical model, by regarding the systematic errors it is better that the whole of the above observational data sets would be considered. In fact, if one considers SNeIa, CMB, and BAO, but disregards OHD, it maybe leads to different results. Also, to get a better overlap between the contours with the constraint χ{sub m}{sup 2} ≤ 1, the χ{sub T}{sup 2} function could be re-weighted. The relative probability functions are plotted for marginalized likelihood L(Ω{sub m0}, ω{sub 1}, β) according to the two dimensional confidence levels 68.3, 90, and 95.4%. Meanwhile, the value of the free parameters which maximize the marginalized likelihoods using the above confidence levels are obtained. In addition, based on these calculations the minimum value of χ{sup 2} based on the free parameters of the ansatz for the effective dark energy equation of state is achieved. (orig.)

  9. Interacting scalar tensor cosmology in light of SNeIa, CMB, BAO and OHD observational data sets

    Rabiei, Sayed Wrya; Saaidi, Khaled; Sheikhahmadi, Haidar; Aghamohammadi, Ali

    2016-01-01

    In this work, an interacting chameleon-like scalar field scenario, by considering SNeIa, CMB, BAO, and OHD data sets, is investigated. In fact, the investigation is realized by introducing an ansatz for the effective dark energy equation of state, which mimics the behavior of chameleon-like models. Based on this assumption, some cosmological parameters, including the Hubble, deceleration, and coincidence parameters, in such a mechanism are analyzed. It is realized that, to estimate the free parameters of a theoretical model, by regarding the systematic errors it is better that the whole of the above observational data sets would be considered. In fact, if one considers SNeIa, CMB, and BAO, but disregards OHD, it maybe leads to different results. Also, to get a better overlap between the contours with the constraint χ m 2 ≤ 1, the χ T 2 function could be re-weighted. The relative probability functions are plotted for marginalized likelihood L(Ω m0 , ω 1 , β) according to the two dimensional confidence levels 68.3, 90, and 95.4%. Meanwhile, the value of the free parameters which maximize the marginalized likelihoods using the above confidence levels are obtained. In addition, based on these calculations the minimum value of χ 2 based on the free parameters of the ansatz for the effective dark energy equation of state is achieved. (orig.)

  10. Quintessence and the cosmological constant

    Doran, M.; Wetterich, C.

    2003-01-01

    Quintessence -- the energy density of a slowly evolving scalar field -- may constitute a dynamical form of the homogeneous dark energy in the universe. We review the basic idea in the light of the cosmological constant problem. Cosmological observations or a time variation of fundamental 'constants' can distinguish quintessence from a cosmological constant

  11. Detecting chameleons: The astronomical polarization produced by chameleonlike scalar fields

    Burrage, Clare; Davis, Anne-Christine; Shaw, Douglas J.

    2009-01-01

    We show that a coupling between chameleonlike scalar fields and photons induces linear and circular polarization in the light from astrophysical sources. In this context chameleonlike scalar fields include those of the Olive-Pospelov (OP) model, which describes a varying fine structure constant. We determine the form of this polarization numerically and give analytic expressions in two useful limits. By comparing the predicted signal with current observations we are able to improve the constraints on the chameleon-photon coupling and the coupling in the OP model by over 2 orders of magnitude. It is argued that, if observed, the distinctive form of the chameleon induced circular polarization would represent a smoking gun for the presence of a chameleon. We also report a tentative statistical detection of a chameleonlike scalar field from observations of starlight polarization in our galaxy.

  12. Nonminimally coupled scalar fields may not curve spacetime

    Ayon-Beato, Eloy; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2005-01-01

    It is shown that flat spacetime can be dressed with a real scalar field that satisfies the nonlinear Klein-Gordon equation without curving spacetime. Surprisingly, this possibility arises from the nonminimal coupling of the scalar field with the curvature, since a footprint of the coupling remains in the energy-momentum tensor even when gravity is switched off. Requiring the existence of solutions with vanishing energy-momentum tensor fixes the self-interaction potential as a local function of the scalar field depending on two coupling constants. The solutions describe shock waves and, in the Euclidean continuation, instanton configurations in any dimension. As a consequence of this effect, the tachyonic solutions of the free massive Klein-Gordon equation become part of the vacuum

  13. Quantum Prisoners' Dilemma in Fluctuating Massless Scalar Field

    Huang, Zhiming

    2017-12-01

    Quantum systems are easily affected by external environment. In this paper, we investigate the influences of external massless scalar field to quantum Prisoners' Dilemma (QPD) game. We firstly derive the master equation that describes the system evolution with initial maximally entangled state. Then, we discuss the effects of a fluctuating massless scalar field on the game's properties such as payoff, Nash equilibrium, and symmetry. We find that for different game strategies, vacuum fluctuation has different effects on payoff. Nash equilibrium is broken but the symmetry of the game is not violated.

  14. Decoherence and disentanglement of qubits detecting scalar fields in an expanded spacetime

    Li, Yujie; Dai, Yue [Fudan University, Department of Physics and State Key Laboratory of Surface Physics, Shanghai (China); Shi, Yu [Fudan University, Department of Physics and State Key Laboratory of Surface Physics, Shanghai (China); Fudan University, Collaborative Innovation Center of Advanced Microstructures, Shanghai (China)

    2017-09-15

    We consider Unruh-Wald qubit detector model adopted for the far future region of an exactly solvable 1 + 1 dimensional scalar field theory in a toy model of Robertson-Walker expanding spacetime. It is shown that the expansion of the spacetime in its history enhances the decoherence of the qubit coupled with a scalar field. Moreover, we consider two entangled qubits, each locally coupled with a scalar field. The expansion of the spacetime in its history degrades the entanglement between the qubits, and it can lead to entanglement's sudden death if the initial entanglement is small enough. The details depend on the parameters characterizing the expansion of the spacetime. This work, on a toy model, suggests that the history of the spacetime might be probed through the coherent and entanglement behavior of the future detectors of quantum fields. In the present toy model, the two cosmological parameters can be determined from the quantum informational quantities of the detectors. (orig.)

  15. Quasiclassical approximation for ultralocal scalar fields

    Francisco, G.

    1984-01-01

    It is shown how to obtain the quasiclassical evolution of a class of field theories called ultralocal fields. Coherent states that follow the 'classical' orbit as defined by Klauder's weak corespondence principle and restricted action principle is explicitly shown to approximate the quantum evolutions as (h/2π) → o. (Author) [pt

  16. Anisotropic Bianchi-I universe with phantom field and cosmological ...

    We study an anisotropic Bianchi-I universe in the presence of a phantom field and a cosmological constant. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of anisotropy and dominates over the potential energy of the field. The anisotropy of the universe decreases and the ...

  17. Green's function for the scalar field in the early Universe

    Chowdhury, A.; Mallik, S.

    1987-01-01

    We derive the thermal Green's function for the scalar field in a de Sitter space-time and apply it to the problem of the early Universe. Field fluctuations relevant for inflation arise predominantly from wavelengths of the order of the inverse Hubble constant. Sufficient inflation is obtained in a Coleman-Weinberg model, provided the coupling constant is small enough. The results are insensitive to the choice of the vacuum of the field theory

  18. Remarks on the spherical scalar field halo in galaxies

    Nandi, Kamal K.; Valitov, Ildar; Migranov, Nail G.

    2009-01-01

    Matos, Guzman, and Nunez proposed a model for the galactic halo within the framework of scalar field theory. We argue that an analysis involving the full metric can reveal the true physical nature of the halo only when a certain condition is maintained. We fix that condition and also calculate its impact on observable parameters of the model.

  19. Superconvergent perturbation theory for euclidean scalar field theories

    Ushveridze, A.G.

    1984-01-01

    It is shown that the bare (unrenormalized) correlation functions in the euclidean scalar field theories can be expanded in a series whose terms, being computable in a relatively simple way, are free from ultraviolet and infrared divergencies. This series is convergent (divergent) for finite (infinite) values of the correlation functions. (orig.)

  20. Scalar fields and cosmic censorship hypothesis in general relativity

    Parnovs'kij, S.L.; Gajdamaka, O.Z.

    2004-01-01

    We discuss an influence of the presence of some nonstandard scalar fields in the vicinity of naked time-like singularity on the type and properties of this singularity. The main goal is to study the validity of the Penrose's Cosmic Censorship hypothesis in the General Relativity

  1. Absorption of massive scalar field by a charged black hole

    Nakamura, T [Kyoto Univ. (Japan). Dept. of Physics; Sato, H [Kyoto Univ. (Japan). Research Inst. for Fundamental Physics

    1976-04-12

    Absorption and reflection of charged, massive scalar field by the Reisner-Nordstrom black hole are investigated through a numerical computation. The absorption is suppressed when (Schwarzschild radius)<(Compton wave length) and the amplification of the wave occurs when the level crossing condition is satisfied.

  2. Quantum Cramer–Rao Bound for a Massless Scalar Field in de Sitter Space

    Marcello Rotondo

    2017-10-01

    Full Text Available How precisely can we estimate cosmological parameters by performing a quantum measurement on a cosmological quantum state? In quantum estimation theory, the variance of an unbiased parameter estimator is bounded from below by the inverse of measurement-dependent Fisher information and ultimately by quantum Fisher information, which is the maximization of the former over all positive operator-valued measurements. Such bound is known as the quantum Cramer –Rao bound. We consider the evolution of a massless scalar field with Bunch–Davies vacuum in a spatially flat FLRW spacetime, which results in a two-mode squeezed vacuum out-state for each field wave number mode. We obtain the expressions of the quantum Fisher information as well as the Fisher informations associated to occupation number measurement and power spectrum measurement, and show the specific results of their evolution for pure de Sitter expansion and de Sitter expansion followed by a radiation-dominated phase as examples. We will discuss these results from the point of view of the quantum-to-classical transition of cosmological perturbations and show quantitatively how this transition and the residual quantum correlations affect the bound on the precision.

  3. Cosmology

    Vittorio, Nicola

    2018-01-01

    Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives.

  4. Ultraviolet stability in euclidean scalar field theories

    Benfatto, G; Cassandro, M; Gallavotti, G; Nicolo, F; Olivieri, E; Presutti, E; Scacciatelli, E [Rome Univ. (Italy). Istituto di Matematica; Rome Univ. (Italy). Istituto di Fisica)

    1980-01-01

    We develop a technique for reducing the problem of the ultraviolet divergences and their removal to a free field problem. This work is an example of a problem to which a rather general method can be applied. It can be thought as an attempt towards a rigorous version (in 2 or 3 space-time dimensions) of the analysis of the structure of the functional integrals, the underlying mechanism being essentially the same as in Glimms approach.

  5. Electromagnetic fields with vanishing scalar invariants

    Ortaggio, Marcello; Pravda, Vojtěch

    2016-01-01

    Roč. 33, č. 11 (2016), s. 115010 ISSN 0264-9381 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : electromagnetic fields * n-dimensional spacetime * Einstein-Maxwell equations Subject RIV: BA - General Mathematics Impact factor: 3.119, year: 2016 http://dx.doi.org/10.1088/0264-9381/33/11/115010

  6. Non equilibrium quantum fields in cosmology

    Paz, J.P.

    1991-01-01

    The authors discuss the general framework used to construct a quantum mechanical model of the inflationary phase transition. The emer-gence of classical behavior in the longwavelength modes of the inflation is one of the facts that these models should address. For some toy examples (in which the inflation interacts with an environment consti-tuted by other fields) decoherence is shown of the modes with physical wavelength greater than the horizon. The authors use an approach based on a master equation. They take advantage of the similarities that exist between the master equation for the toy cosmological models and the one for the simple Quantum Brownian Motion. Recent results are discussed obtained for the general QBM problem (in which the environment has a generic spectral density). (author). 10 refs

  7. Nilpotent symmetries in supergroup field cosmology

    Upadhyay, Sudhaker

    2015-06-01

    In this paper, we study the gauge invariance of the third quantized supergroup field cosmology which is a model for multiverse. Further, we propose both the infinitesimal (usual) as well as the finite superfield-dependent BRST symmetry transformations which leave the effective theory invariant. The effects of finite superfield-dependent BRST transformations on the path integral (so-called void functional in the case of third quantization) are implemented. Within the finite superfield-dependent BRST formulation, the finite superfield-dependent BRST transformations with specific parameter switch the void functional from one gauge to another. We establish this result for the most general gauge with the help of explicit calculations which holds for all possible sets of gauge choices at both the classical and the quantum levels.

  8. Perturbative Gaussianizing transforms for cosmological fields

    Hall, Alex; Mead, Alexander

    2018-01-01

    Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher order moments to recover information which would otherwise be lost. We construct quantities based on non-linear and non-local transformations of weakly non-Gaussian fields that Gaussianize the full multivariate distribution at a given order in perturbation theory. Our approach does not require a model of the fields themselves and takes as input only the first few polyspectra, which could be modelled or measured from simulations or data, making our method particularly suited to observables lacking a robust perturbative description such as the weak-lensing shear. We apply our method to simulated density fields, finding a significantly reduced bispectrum and an enhanced correlation with the initial field. We demonstrate that our method reconstructs a large proportion of the linear baryon acoustic oscillations, improving the information content over the raw field by 35 per cent. We apply the transform to toy 21 cm intensity maps, showing that our method still performs well in the presence of complications such as redshift-space distortions, beam smoothing, pixel noise and foreground subtraction. We discuss how this method might provide a route to constructing a perturbative model of the fully non-Gaussian multivariate likelihood function.

  9. Accretion of a symmetry-breaking scalar field by a Schwarzschild black hole.

    Traykova, Dina; Braden, Jonathan; Peiris, Hiranya V

    2018-03-06

    We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential and a toy model for the time-dependent evolution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry-breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory.This article is part of the Theo Murphy meeting issue 'Higgs Cosmology'. © 2018 The Author(s).

  10. Entanglement entropy in scalar field theory on the fuzzy sphere

    Okuno, Shizuka; Suzuki, Mariko; Tsuchiya, Asato

    2016-01-01

    We study entanglement entropy on the fuzzy sphere. We calculate it in a scalar field theory on the fuzzy sphere, which is given by a matrix model. We use a method that is based on the replica method and applicable to interacting fields as well as free fields. For free fields, we obtain results consistent with the previous study, which serves as a test of the validity of the method. For interacting fields, we perform Monte Carlo simulations at strong coupling and see a novel behavior of entanglement entropy

  11. Infrared and ultraviolet behaviour of effective scalar field theory

    Ball, R.D.; Thorne, R.S.

    1995-01-01

    We consider the infrared and ultraviolet behaviour of the effective quantum field theory of a single Z 2 symmetric scalar field. In a previous paper we proved to all orders in perturbation theory the renormalizability of massive effective scalar field theory using Wilson's exact renormalization group equation. Here we show that away from exceptional momenta the massless theory is similarly renormalizable, and we prove detailed bounds on Green's functions as arbitrary combinations of exceptional Euclidean momenta are approached. As a corollary we also Weinberg's Theorem for the massive effective theory, n the form of bounds on Green's functions at Euclidean momenta much greater than the particle mass but below the naturalness scale of theory. 12 refs

  12. Infrared and ultraviolet behaviour of effective scalar field theory

    Ball, R D

    1995-01-01

    We consider the infrared and ultraviolet behaviour of the effective quantum field theory of a single Z_2 symmetric scalar field. In a previous paper we proved to all orders in perturbation theory the renormalizability of massive effective scalar field theory using Wilson's exact renormalization group equation. Here we show that away from exceptional momenta the massless theory is similarly renormalizable, and we prove detailed bounds on Green's functions as arbitrary combinations of exceptional Euclidean momenta are approached. As a corollary we also prove Weinberg's Theorem for the massive effective theory, in the form of bounds on Green's functions at Euclidean momenta much greater than the particle mass but below the naturalness scale of the theory.

  13. On the stability of the asymptotically free scalar field theories

    Shalaby, A M. [Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha (Qatar); Physics Department, Faculty of Science, Mansoura University, Egypt. amshalab@qu.edu.qa (Egypt)

    2015-03-30

    Asymptotic freedom plays a vital role in our understanding of the theory of particle interactions. To have this property, one has to resort to a Non-abelian gauge theory with the number of colors equal to or greater than three (QCD). However, recent studies have shown that simple scalar field theories can possess this interesting property. These theories have non-Hermitian effective field forms but their classical potentials are bounded from above. In this work, we shall address the stability of the vacua of the bounded from above (−Φ{sup 4+n}) scalar field theories. Moreover, we shall cover the effect of the distribution of the Stokes wedges in the complex Φ-plane on the features of the vacuum condensate within these theories.

  14. Compatibility of the Chameleon-Field Model with Fifth-Force Experiments, Cosmology, and PVLAS and CAST Results

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2007-01-01

    We analyze the PVLAS results using a chameleon field whose properties depend on the environment. We find that, assuming a runaway bare potential V(φ) and a universal coupling to matter, the chameleon potential is such that the scalar field can act as dark energy. Moreover, the chameleon-field model is compatible with the CERN Axion Solar Telescope results, fifth-force experiments, and cosmology

  15. Time dependent black holes and scalar hair

    Chadburn, Sarah; Gregory, Ruth

    2014-01-01

    We show how to correctly account for scalar accretion onto black holes in scalar field models of dark energy by a consistent expansion in terms of a slow roll parameter. At leading order, we find an analytic solution for the scalar field within our Hubble volume, which is regular on both black hole and cosmological event horizons, and compute the back reaction of the scalar on the black hole, calculating the resulting expansion of the black hole. Our results are independent of the relative size of black hole and cosmological event horizons. We comment on the implications for more general black hole accretion, and the no hair theorems. (paper)

  16. Quantization of a scalar field in the Kerr spacetime

    Ford, L.H.

    1974-01-01

    A discussion of field quantization in a curved background spacetime is presented, with emphasis on the quantization of a scalar field in the Kerr spacetime. The ambiguity in the choice of a Fock space is discussed. The example of quantized fields in a rotating frame of reference in Minkowski space is analyzed, and it is shown that there is a preferred choice of states which makes particle number an invariant under transformation to the rotating frame. This choice allows the existence of negative energy quanta of the field

  17. Energy momentum tensor in theories with scalar field

    Joglekar, S.D.

    1992-01-01

    The renormalization of energy momentum tensor in theories with scalar fields and two coupling constants is considered. The need for addition of an improvement term is shown. Two possible forms for the improvement term are: (i) One in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be derived from an action that is a finite function of bare quantities), (ii) One in which the improvement coefficient is a finite quantity, i.e. finite function of the renormalized quantities are considered. Four possible model of such theories are (i) Scalar Q.E.D. (ii) Non-Abelian theory with scalars, (iii) Yukawa theory, (iv) A model with two scalars. In all these theories a negative conclusion is established: neither forms for the improvement terms lead to a finite energy momentum tensor. Physically this means that when interaction with external gravity is incorporated in such a model, additional experimental input in the form of root mean square mass radius must be given to specify the theory completely, and the flat space parameters are insufficient. (author). 12 refs

  18. New techniques in 3D scalar and vector field visualization

    Max, N.; Crawfis, R.; Becker, B.

    1993-01-01

    At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ''splatting'' scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ''flow volume'' of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity

  19. Background independent quantizations-the scalar field: II

    Kaminski, Wojciech; Lewandowski, Jerzy; Okolow, Andrzej

    2006-01-01

    We are concerned with the issue of the quantization of a scalar field in a diffeomorphism invariant manner. We apply the method used in loop quantum gravity. It relies on the specific choice of scalar field variables referred to as the polymer variables. The quantization, in our formulation, amounts to introducing the 'quantum' polymer *-star algebra and looking for positive linear functionals, called states. As assumed in our paper, homeomorphism invariance allows us to derive the complete class of the states. They are determined by the homeomorphism invariant states defined on the CW-complex *-algebra. The corresponding GNS representations of the polymer *-algebra and their self-adjoint extensions are derived, the equivalence classes are found, and invariant subspaces characterized. In part I we outlined those results. Here, we present the technical details

  20. New techniques in 3D scalar and vector field visualization

    Max, N.; Crawfis, R.; Becker, B.

    1993-05-05

    At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.

  1. Structures of conserved currents and mass spectra for scalar fields

    Shintani, Meiun.

    1979-05-01

    Considering the commutators between a scalar field and a conserved current, we shall clarify the connection between the mass spectrum for a scalar field and the structures of a current. For a special form of currents involving c-number functions, non-invariance of the vacuum under the corresponding transformation entails the existence of a massive mode. It is shown that once a type of currents is specified, the pole structures for sub(o) depend only on c-number parts of J sub(μ)(x). We shall show that non-vanishing Goldstone commutator does not automatically imply the degeneracy of the vacuum state, and discuss the applicability of the Goldstone theorem. (author)

  2. Higgs particles interacting via a scalar Dark Matter field

    Bhattacharya Yajnavalkya

    2016-01-01

    Full Text Available We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.

  3. On dipole interaction of the oxcillator with a scalar field

    Razumov, A.V.; Taranov, A.Yu.

    1979-01-01

    Dipole interaction of the oscillator with scalar field in one-dimensional case is studied. Solutions of the classical equations of motion are found and the conditions of the boundedness of the classical Hamiltonian from below are obtained. In the quantum theory the problem of choosing the zeroth approximation of perturbation theory in the case when the spectra of the free and complete Hamiltonian do not coincide with each other, is analysed

  4. Functional equations and Green's functions for augmented scalar fields

    Klauder, J.R.

    1977-01-01

    Certain noncanonical self-coupled scalar quantum field theories, previously formulated by means of functional integration, are herein recast into the form of functional differential equations for the Green's functional. From these expressions the set of coupled equations relating the Green's functions is obtained. The new equations are compared with those of the conventional formulation, and are proposed as alternatives, especially for nonrenormalizable models when the conventional equations fail

  5. Cosmological field theory for observational astronomers

    Zel'Dovich, Y.B.

    1987-01-01

    Theories of the very early Universe that use scalar fields (i.e., the so-called inflationary models of the Universe) have now come into wide use. The inflationary universe approach may perhaps solve some of the most difficult enigmas about the Universe as a whole. The inflationary universe forms a good bridge between the quantum theory of the birth of the Universe (which is still in the initial stages of development) and the standard hot Big Bang theory (which is well established, at least qualitatively). Therefore, an understanding of the basic ideas of inflation is a must for astronomers interested in the broad picture of the science. Astronomers are mathematically oriented enough (via celestial mechanics, electromagnetic theory, magnetohydrodynamics, nuclear reactions,etc.) that there is no negative attitude towards formulae in general. What the astronomer lacks is a knowledge of recent developments in particle physics and field theory. The astronomer should not be blamed for this, because these branches of physics are developing in a very peculiar fashion: some subfields of it are progressing comparatively slowly, with experimental verifications at each and every step, while other subfields progress rapidly

  6. Higgs field and cosmological parameters in the fractal quantum system

    Abramov Valeriy

    2017-01-01

    Full Text Available For the fractal model of the Universe the relations of cosmological parameters and the Higgs field are established. Estimates of the critical density, the expansion and speed-up parameters of the Universe (the Hubble constant and the cosmological redshift; temperature and anisotropy of the cosmic microwave background radiation were performed.

  7. String cosmology. Large-field inflation in string theory

    Westphal, Alexander

    2014-09-01

    This is a short review of string cosmology. We wish to connect string-scale physics as closely as possible to observables accessible to current or near-future experiments. Our possible best hope to do so is a description of inflation in string theory. The energy scale of inflation can be as high as that of Grand Unification (GUT). If this is the case, this is the closest we can possibly get in energy scales to string-scale physics. Hence, GUT-scale inflation may be our best candidate phenomenon to preserve traces of string-scale dynamics. Our chance to look for such traces is the primordial gravitational wave, or tensor mode signal produced during inflation. For GUT-scale inflation this is strong enough to be potentially visible as a B-mode polarization of the cosmic microwave background (CMB). Moreover, a GUT-scale inflation model has a trans-Planckian excursion of the inflaton scalar field during the observable amount of inflation. Such large-field models of inflation have a clear need for symmetry protection against quantum corrections. This makes them ideal candidates for a description in a candidate fundamental theory like string theory. At the same time the need of large-field inflation models for UV completion makes them particularly susceptible to preserve imprints of their string-scale dynamics in the inflationary observables, the spectral index n s and the fractional tensor mode power r. Hence, we focus this review on axion monodromy inflation as a mechanism of large-field inflation in string theory.

  8. Study of inflationary generalized cosmic Chaplygin gas for standard and tachyon scalar fields

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-07-15

    We consider an inflationary universe model in the context of the generalized cosmic Chaplygin gas by taking the matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during the intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index, and the important observational parameter, the tensor-scalar ratio in terms of inflation. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case. (orig.)

  9. Study of inflationary generalized cosmic Chaplygin gas for standard and tachyon scalar fields

    Sharif, M.; Saleem, Rabia

    2014-01-01

    We consider an inflationary universe model in the context of the generalized cosmic Chaplygin gas by taking the matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during the intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index, and the important observational parameter, the tensor-scalar ratio in terms of inflation. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case. (orig.)

  10. Graviton fluctuations erase the cosmological constant

    Wetterich, C.

    2017-10-01

    Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  11. Computing the scalar field couplings in 6D supergravity

    Saidi, El Hassan

    2008-11-01

    Using non-chiral supersymmetry in 6D space-time, we compute the explicit expression of the metric the scalar manifold SO(1,1)×{SO(4,20)}/{SO(4)×SO(20)} of the ten-dimensional type IIA superstring on generic K3. We consider as well the scalar field self-couplings in the general case where the non-chiral 6D supergravity multiplet is coupled to generic n vector supermultiplets with moduli space SO(1,1)×{SO(4,n)}/{SO(4)×SO(n)}. We also work out a dictionary giving a correspondence between hyper-Kähler geometry and the Kähler geometry of the Coulomb branch of 10D type IIA on Calabi-Yau threefolds. Others features are also discussed.

  12. Synthesis of magnetic systems producing field with maximal scalar characteristics

    Klevets, Nickolay I.

    2005-01-01

    A method of synthesis of the magnetic systems (MSs) consisting of uniformly magnetized blocks is proposed. This method allows to synthesize MSs providing maximum value of any magnetic field scalar characteristic. In particular, it is possible to synthesize the MSs providing the maximum of a field projection on a given vector, a gradient of a field modulus and a gradient of a field energy on a given directing vector, a field magnitude, a magnetic flux through a given surface, a scalar product of a field or a force by a directing function given in some area of space, etc. The synthesized MSs provide maximal efficiency of permanent magnets utilization. The usage of the proposed method of MSs synthesis allows to change a procedure of projecting in principal, namely, to execute it according to the following scheme: (a) to choose the sizes, a form and a number of blocks of a system proceeding from technological (economical) reasons; (b) using the proposed synthesis method, to find an orientation of site magnetization providing maximum possible effect of magnet utilization in a system obtained in (a). Such approach considerably reduces a time of MSs projecting and guarantees maximal possible efficiency of magnets utilization. Besides it provides absolute assurance in 'ideality' of a MS design and allows to obtain an exact estimate of the limit parameters of a field in a working area of a projected MS. The method is applicable to a system containing the components from soft magnetic material with linear magnetic properties

  13. Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes

    Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Pinamonti, Nicola [Roma ' ' Tor Vergata' ' Univ. (Italy). Dipt. di Matematica

    2010-09-15

    We construct and discuss Hadamard states for both scalar and Dirac spinor fields in a large class of spatially flat Friedmann-Robertson-Walker spacetimes characterised by an initial phase either of exponential or of power-law expansion. The states we obtain can be interpreted as being in thermal equilibrium at the time when the scale factor a has a specific value a = a{sub 0}. In the case a{sub 0} = 0, these states fulfil a strict KMS condition on the boundary of the spacetime, which is either a cosmological horizon, or a Big Bang hypersurface. Furthermore, in the conformally invariant case, they are conformal KMS states on the full spacetime. However, they provide a natural notion of an approximate KMS state also in the remaining cases, especially for massive fields. On the technical side, our results are based on a bulk-to-boundary reconstruction technique already successfully applied in the scalar case and here proven to be suitable also for spinor fields. The potential applications of the states we find range over a broad spectrum, but they appear to be suited to discuss in particular thermal phenomena such as the cosmic neutrino background or the quantum state of dark matter. (orig.)

  14. Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes

    Dappiaggi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola

    2010-09-01

    We construct and discuss Hadamard states for both scalar and Dirac spinor fields in a large class of spatially flat Friedmann-Robertson-Walker spacetimes characterised by an initial phase either of exponential or of power-law expansion. The states we obtain can be interpreted as being in thermal equilibrium at the time when the scale factor a has a specific value a = a 0 . In the case a 0 = 0, these states fulfil a strict KMS condition on the boundary of the spacetime, which is either a cosmological horizon, or a Big Bang hypersurface. Furthermore, in the conformally invariant case, they are conformal KMS states on the full spacetime. However, they provide a natural notion of an approximate KMS state also in the remaining cases, especially for massive fields. On the technical side, our results are based on a bulk-to-boundary reconstruction technique already successfully applied in the scalar case and here proven to be suitable also for spinor fields. The potential applications of the states we find range over a broad spectrum, but they appear to be suited to discuss in particular thermal phenomena such as the cosmic neutrino background or the quantum state of dark matter. (orig.)

  15. Isotropic LQC and LQC-inspired models with a massless scalar field as generalised Brans-Dicke theories

    Rama, S. Kalyana

    2018-06-01

    We explore whether generalised Brans-Dicke theories, which have a scalar field Φ and a function ω (Φ ), can be the effective actions leading to the effective equations of motion of the LQC and the LQC-inspired models, which have a massless scalar field σ and a function f( m). We find that this is possible for isotropic cosmology. We relate the pairs (σ , f) and (Φ , ω ) and, using examples, illustrate these relations. We find that near the bounce of the LQC evolutions for which f(m) = sin m, the corresponding field Φ → 0 and the function ω (Φ ) ∝ Φ ^2. We also find that the class of generalised Brans-Dicke theories, which we had found earlier to lead to non singular isotropic evolutions, may be written as an LQC-inspired model. The relations found here in the isotropic cases do not apply to the anisotropic cases, which perhaps require more general effective actions.

  16. Classical limit for scalar fields at high temperature

    Buchmueller, W.; Jakovac, A.

    1998-01-01

    We study real-time correlation functions in scalar quantum field theories at temperature T=1/β. We show that the behaviour of soft, long-wavelength modes is determined by classical statistical field theory. The loss of quantum coherence is due to interactions with the soft modes of the thermal bath. The soft modes are separated from the hard modes by an infrared cutoff Λ<<1/(ℎβ). Integrating out the hard modes yields an effective theory for the soft modes. The infrared cutoff Λ controls corrections to the classical limit which are O(ℎβΛ). As an application, the plasmon damping rate is calculated. (orig.)

  17. Conformal conservation laws for second-order scalar fields

    Blakeskee, J.S.; Logan, J.D.

    1976-01-01

    It is considered an action integral over space-time whose Lagrangian depends upon a scalar field an upon derivatives of the field function up to second order. From invariance identities obtained by the authors in an earlier work it is shown how a new proof of Noether's theorem for this second-order problem follows in the multiple integral case. Finally, conservation laws are written down in the case that the given action integral be invariant under the fifteen-parameter special conformal group

  18. Unitarity constraints in the standard model with a singlet scalar field

    Kang, Sin Kyu; Park, Jubin

    2015-01-01

    Motivated by the discovery of a new scalar field and amelioration of the electroweak vacuum stability ascribed to a singlet scalar field embedded in the standard model (SM), we examine the implication of the perturbative unitarity in the SM with a singlet scalar field. Taking into account the full contributions to the scattering amplitudes, we derive unitarity conditions on the scattering matrix which can be translated into bounds on the masses of the scalar fields. In the case that the singlet scalar field develops vacuum expectation value (VEV), we get the upper bound on the singlet scalar mass varying with the mixing between the singlet and Higgs scalars. On the other hand, the mass of the Higgs scalar can be constrained by the unitarity condition in the case that the VEV of the singlet scalar is not generated. Applying the upper bound on the Higgs mass to the scenario of the unitarized Higgs inflation, we discuss how the unitarity condition can constrain the Higgs inflation. The singlet scalar mass is not constrained by the unitarity itself when we impose Z 2 in the model because of no mixing with the Higgs scalar. But, regarding the singlet scalar field as a cold dark matter candidate, we derive upper bound on the singlet scalar mass by combining the observed relic abundance with the unitarity condition.

  19. Relativistic gravitation from massless systems of scalar and vector fields

    Fonseca Teixeira, A.F. da.

    1979-01-01

    Under the laws of Einstein's gravitational theory, a massless system consisting of the diffuse sources of two fields is discussed. One fields is scalar, of long range, the other is a vector field of short range. A proportionality between the sources is assumed. Both fields are minimally coupled to gravitation, and contribute positive definitely to the time component of the energy momentum tensor. A class of static, spherically symmetric solutions of the equations is obtained, in the weak field limit. The solutions are regular everywhere, stable, and can represent large or small physical systems. The gravitational field presents a Schwarzschild-type asymptotic behavior. The dependence of the energy on the various parameters characterizing the system is discussed in some detail. (Author) [pt

  20. Scalar-field amplitudes in black-hole evaporation

    Farley, A.N.St.J.; D'Eath, P.D.

    2004-01-01

    We consider the quantum-mechanical decay of a Schwarzschild-like black hole into almost-flat space and weak radiation at a very late time. That is, we are concerned with evaluating quantum amplitudes (not just probabilities) for transitions from initial to final states. In this quantum description, no information is lost because of the black hole. The Lagrangian is taken, in the first instance, to consist of the simplest locally supersymmetric generalization of Einstein gravity and a massless scalar field. The quantum amplitude to go from given initial to final bosonic data in a slightly complexified time-interval T=τexp(-iθ) at infinity may be approximated by the form constxexp(-I), where I is the (complex) Euclidean action of the classical solution filling in between the boundary data. Additionally, in a pure supergravity theory, the amplitude constxexp(-I) is exact. Suppose that Dirichlet boundary data for gravity and the scalar field are posed on an initial spacelike hypersurface extending to spatial infinity, just prior to collapse, and on a corresponding final spacelike surface, sufficiently far to the future of the initial surface to catch all the Hawking radiation. Only in an averaged sense will this radiation have an approximately spherically-symmetric distribution. If the time-interval T had been taken to be exactly real, then the resulting 'hyperbolic Dirichlet boundary-value problem' would, as is well known, not be well posed. Provided instead ('Euclidean strategy') that one takes T complex, as above (0<θ=<π/2), one expects that the field equations become strongly elliptic, and that there exists a unique solution to the classical boundary-value problem. Within this context, by expanding the bosonic part of the action to quadratic order in perturbations about the classical solution, one obtains the quantum amplitude for weak-field final configurations, up to normalization. Such amplitudes are here calculated for weak final scalar fields

  1. Fermionic cosmologies

    Chimento, L P; Forte, M; Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L

    2011-01-01

    In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.

  2. Can Effective Field Theory of inflation generate large tensor-to-scalar ratio within Randall–Sundrum single braneworld?

    Choudhury, Sayantan

    2015-01-01

    In this paper my prime objective is to explain the generation of large tensor-to-scalar ratio from the single field sub-Planckian inflationary paradigm within Randall–Sundrum (RS) single braneworld scenario in a model independent fashion. By explicit computation I have shown that the effective field theory prescription of brane inflation within RS single brane setup is consistent with sub-Planckian excursion of the inflaton field, which will further generate large value of tensor-to-scalar ratio, provided the energy density for inflaton degrees of freedom is high enough compared to the brane tension in high energy regime. Finally, I have mentioned the stringent theoretical constraint on positive brane tension, cut-off of the quantum gravity scale and bulk cosmological constant to get sub-Planckian field excursion along with large tensor-to-scalar ratio as recently observed by BICEP2 or at least generates the tensor-to-scalar ratio consistent with the upper bound of Planck (2013 and 2015) data and Planck+BICEP2+Keck Array joint constraint

  3. Cosmology

    Novikov, I.D.

    1979-01-01

    Progress made by this Commission over the period 1976-1978 is reviewed. Topics include the Hubble constant, deceleration parameter, large-scale distribution of matter in the universe, radio astronomy and cosmology, space astronomy and cosmology, formation of galaxies, physics near the cosmological singularity, and unconventional cosmological models. (C.F.)

  4. Inflation, the Higgs field and the resolution of the Cosmological Constant Paradox

    De Martini, Francesco

    2017-08-01

    The nature of the scalar field responsible for the cosmological inflation, the ”inflaton”, is found to be rooted in the most fundamental concept of the Weyl’s differential geometry: the parallel displacement of vectors in curved space-time. Within this novel dynamical scenario, the standard electroweak theory of leptons based on the SU(2) L ⊗ U(1) Y as well as on the conformal groups of spacetime Weyl’s transformations is analyzed within the framework of a general-relativistic, co-covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An ”Effective Cosmological Potential”: Veff is expressed in terms of the dark energy potential: {V}{{Λ }}\\equiv {M}{{Λ }}2 via the ”mass reduction parameter”: \\zeta \\equiv \\sqrt{\\frac{|{V}eff|}{|{V}{{Λ }}|}}, a general property of the Universe. The mass of the Higgs boson, which is considered a ”free parameter” by the standard electroweak theory, by our theory is found to be proportional to the geometrical mean: {M}H\\propto \\sqrt{{M}eff× {M}P} of the Planck mass, MP and of the mass {M}eff\\equiv \\sqrt{|{V}eff|} which accounts for the measured Cosmological Constant, i.e. the measured content of vacuum-energy in the Universe. The experimental result obtained by the ATLAS and CMS Collaborations at CERN in the year 2012: MH = 125.09(GeV/c 2) leads by our theory to a value: Meff ~ 3.19 · 10-6(eV/c 2). The peculiar mathematical structure of Veff offers a clue towards the resolution of a most intriguing puzzle of modern quantum field theory, the ”Cosmological Constant Paradox”.

  5. An axion-like scalar field environment effect on binary black hole merger

    Yang, Qing; Ji, Li-Wei; Hu, Bin; Cao, Zhou-Jian; Cai, Rong-Gen

    2018-06-01

    The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediate-mass binary black holes by means of an axion-like scalar field and investigate their joint evolution. In detail, we consider equal mass binary black holes surrounded by a shell of axion-like scalar field both in spherically symmetric and non-spherically symmetric cases, and with different strengths of the scalar field. Our result shows that the environmental scalar field could essentially modify the dynamics. Firstly, in the spherically symmetric case, with increase of the scalar field strength, the number of circular orbits for the binary black hole is reduced. This means that the scalar field could significantly accelerate the merger process. Secondly, once the scalar field strength exceeds a certain critical value, the scalar field could collapse into a third black hole with its mass being larger than that of the binary. Consequently, the new black hole that collapses from the environmental scalar field could accrete the binary promptly and the binary collides head-on with each other. In this process, there is almost no quadrupole signal produced, and, consequently, the gravitational wave is greatly suppressed. Thirdly, when the scalar field strength is relatively smaller than the critical value, the black hole orbit could develop eccentricity through accretion of the scalar field. Fourthly, during the initial stage of the inspiral, the gravitational attractive force from the axion-like scalar field could induce a sudden turn in the binary orbits, hence resulting in a transient wiggle in the gravitational waveform. Finally, in the non-spherical case, the scalar field could gravitationally attract the binary moving toward the center of mass for the scalar field and slow down the merger process.

  6. Topological geons with self-gravitating phantom scalar field

    Kratovitch, P. V.; Potashov, I. M.; Tchemarina, Ju V.; Tsirulev, A. N.

    2017-12-01

    A topological geon is the quotient manifold M/Z 2 where M is a static spherically symmetric wormhole having the reflection symmetry with respect to its throat. We distinguish such asymptotically at solutions of the Einstein equations according to the form of the time-time metric function by using the quadrature formulas of the so-called inverse problem for self-gravitating spherically symmetric scalar fields. We distinguish three types of geon spacetimes and illustrate them by simple examples. We also study possible observational effects associated with bounded geodesic motion near topological geons.

  7. Non-relativistic scalar field on the quantum plane

    Jahan, A.

    2005-01-01

    We apply the coherent state approach to the non-commutative plane to check the one-loop finiteness of the two-point and four-point functions of a non-relativistic scalar field theory in 2+1 dimensions. We show that the two-point and four-point functions of the model are finite at one-loop level and one recovers the divergent behavior of the model in the limit θ->0 + by appropriate redefinition of the non-commutativity parameter

  8. On the stability of solitary waves for classical scalar fields

    Blanchard, P.; Stubbe, J.; Vazquez, L.

    1986-01-01

    We study the stability for the bound states of lowest action of certain nonlinear Klein-Gordon and Schroedinger equations by applying the Shatah-Strauss formalism. We extend the range of application of this formalism by using a recent existence theorem for minimum action solutions to a large class of equations including logarithmic Klein-Gordon equation and logarithmic Schroedinger equation and scalar fields with fractional non-linearities. Furthermore we discuss the relation between different stability criteria considered in the literature. (orig.)

  9. Scalar field collapse in a conformally flat spacetime

    Chakrabarti, Soumya; Banerjee, Narayan [Indian Institute of Science Education and Research, Kolkata, Department of Physical Sciences, Mohanpur, West Bengal (India)

    2017-03-15

    The collapse scenario of a scalar field along with a perfect fluid distribution was investigated for a conformally flat spacetime. The theorem for the integrability of an anharmonic oscillator has been utilized. For a pure power-law potential of the form φ{sup n+1}, it was found that a central singularity is formed which is covered by an apparent horizon for n > 0 and n < -3. Some numerical results have also been presented for a combination of two different powers of φ in the potential. (orig.)

  10. Observational constraints on scalar field models of dark energy with barotropic equation of state

    Sergijenko, Olga; Novosyadlyj, Bohdan; Durrer, Ruth

    2011-01-01

    We constrain the parameters of dynamical dark energy in the form of a classical or tachyonic scalar field with barotropic equation of state jointly with other cosmological parameters using the following datasets: the CMB power spectra from WMAP7, the baryon acoustic oscillations in the space distribution of galaxies from SDSS DR7, the power spectrum of luminous red galaxies from SDSS DR7 and the light curves of SN Ia from 2 different compilations: Union2 (SALT2 light curve fitting) and SDSS (SALT2 and MLCS2k2 light curve fittings). It has been found that the initial value of dark energy equation of state parameter is constrained very weakly by most of the data while the other cosmological parameters are well constrained: their likelihoods and posteriors are similar, their forms are close to Gaussian (or half-Gaussian) and the confidence ranges are narrow. The most reliable determinations of the best-fit value and 1σ confidence range for the initial value of the dark energy equation of state parameter are obtained from the combined datasets including SN Ia data from the full SDSS compilation with MLCS2k2 light curve fitting. In all such cases the best-fit value of this parameter is lower than the value of corresponding parameter for current epoch. Such dark energy loses its repulsive properties and in future the expansion of the Universe changes into contraction. We also perform a forecast for the Planck mock data and show that they narrow significantly the confidence ranges of cosmological parameters values, moreover, their combination with SN SDSS compilation with MLCS2k2 light curve fitting may exclude the fields with initial equation of state parameter > −0.1 at 2σ confidence level

  11. Effects of heavy fields on inflationary cosmology

    Ortiz, Pablo

    2014-01-01

    Cosmological inflation is the most successful theory that explains the homogeneity and flatness of the early universe. It also provides a quantum origin for the primordial perturbations that we observe in the Cosmic Microwave Background Radiation (CMB). The simplest models make use of a single

  12. Unified Dark Matter scalar field models with fast transition

    Bertacca, Daniele [Dipartimento di Fisica Galileo Galilei, Università di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Bruni, Marco [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Piattella, Oliver F. [Department of Physics, Universidade Federal do Espírito Santo, avenida Ferrari 514, 29075-910, Vitória, ES (Brazil); Pietrobon, Davide, E-mail: daniele.bertacca@pd.infn.it, E-mail: marco.bruni@port.ac.uk, E-mail: oliver.piattella@gmail.com, E-mail: davide.pietrobon@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 91109 Pasadena CA U.S.A. (United States)

    2011-02-01

    We investigate the general properties of Unified Dark Matter (UDM) scalar field models with Lagrangians with a non-canonical kinetic term, looking specifically for models that can produce a fast transition between an early Einstein-de Sitter CDM-like era and a later Dark Energy like phase, similarly to the barotropic fluid UDM models in JCAP01(2010)014. However, while the background evolution can be very similar in the two cases, the perturbations are naturally adiabatic in fluid models, while in the scalar field case they are necessarily non-adiabatic. The new approach to building UDM Lagrangians proposed here allows to escape the common problem of the fine-tuning of the parameters which plague many UDM models. We analyse the properties of perturbations in our model, focusing on the the evolution of the effective speed of sound and that of the Jeans length. With this insight, we can set theoretical constraints on the parameters of the model, predicting sufficient conditions for the model to be viable. An interesting feature of our models is that what can be interpreted as w{sub DE} can be < −1 without violating the null energy conditions.

  13. Conserved charges of minimal massive gravity coupled to scalar field

    Setare, M. R.; Adami, H.

    2018-02-01

    Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected.

  14. Scalar meson field and many-body forces. Chapter 23

    Nyman, E.M.

    1979-01-01

    In applications of field theory to the theory of the nuclear forces, one has frequently assumed that there is a scalar meson. It will then be responsible for most of the medium-range attraction between the nucleons. According to current ideas, however, it is possible to account for the medium-range attraction without an elementary sigma meson. This approach requires a careful treatment of the exchange of interacting pairs of π mesons, such as to include those ππ interactions which are responsible for the formation and decay of the sigma meson. Recently, the scalar field in the nuclear many-body problem has begun to receive more attention. There are two reasons for this change of philosophy. One reason is the discovery of neutron stars. In neutron stars, the nucleon number density can be much higher than in nuclei. One therefore wants to derive the equation of state from a relativistic many-body theory. This forces one to deal explicitly with a set of mesons, such that in the non-relativistic limit one recovers the one-boson-exchange potential. (Auth.)

  15. Conserved charges of minimal massive gravity coupled to scalar field

    Setare, M.R.; Adami, H.

    2018-01-01

    Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected. (orig.)

  16. Spikes and matter inhomogeneities in massless scalar field models

    Coley, A A; Lim, W C

    2016-01-01

    We shall discuss the general relativistic generation of spikes in a massless scalar field or stiff perfect fluid model. We first investigate orthogonally transitive (OT) G 2 stiff fluid spike models both heuristically and numerically, and give a new exact OT G 2 stiff fluid spike solution. We then present a new two-parameter family of non-OT G 2 stiff fluid spike solutions, obtained by the generalization of non-OT G 2 vacuum spike solutions to the stiff fluid case by applying Geroch’s transformation on a Jacobs seed. The dynamics of these new stiff fluid spike solutions is qualitatively different from that of the vacuum spike solutions in that the matter (stiff fluid) feels the spike directly and the stiff fluid spike solution can end up with a permanent spike. We then derive the evolution equations of non-OT G 2 stiff fluid models, including a second perfect fluid, in full generality, and briefly discuss some of their qualitative properties and their potential numerical analysis. Finally, we discuss how a fluid, and especially a stiff fluid or massless scalar field, affects the physics of the generation of spikes. (paper)

  17. Conserved charges of minimal massive gravity coupled to scalar field

    Setare, M.R.; Adami, H. [University of Kurdistan, Department of Science, Sanandaj (Iran, Islamic Republic of)

    2018-02-15

    Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected. (orig.)

  18. Coupled scalar fields in a flat FRW universe. Renormalisation

    Baacke, Juergen [Technische Univ. Dortmund (Germany). Fakultaet Physik; Covi, Laura [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kevlishvili, Nina [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Andronikashvili Institute of Physics, Tbilisi (Georgia)

    2010-06-15

    We study the non-equilibrium dynamics of a system of coupled scalar fields in a Friedmann-Robertson-Walker (FRW) universe. We consider the evolution of spatially homogeneous ''classical'' fields and of their quantum fluctuations including the quantum backreaction in the one-loop approximation. We discuss in particular the dimensional regularisation of the coupled system and a special subtraction procedure in order to obtain the renormalised equations of motion and the renormalised energy-momentum tensor and ensure that the energy is well-defined and covariantly conserved. These results represent at the same time a theoretical analysis and a viable scheme for stable numerical simulations. As an example for an application of the general formalism, we present simulations for a hybrid inflationary model. (orig.)

  19. Massless Interacting Scalar Fields in de Sitter space

    López Nacir, Diana

    2016-10-28

    We present a method to compute the two-point functions for an $O(N)$ scalar field model in de Sitter spacetime, avoiding the well known infrared problems for massless fields. The method is based on an exact treatment of the Euclidean zero modes and a perturbative one of the nonzero modes, and involves a partial resummation of the leading secular terms. This resummation, crucial to obtain a decay of the correlation functions, is implemented along with a double expansion in an effective coupling constant $\\sqrt\\lambda$ and in $1/N$. The results reduce to those known in the leading infrared approximation and coincide with the ones obtained directly in Lorentzian de Sitter spacetime in the large $N$ limit. The new method allows for a systematic calculation of higher order corrections both in $\\sqrt\\lambda$ and in $1/N$.

  20. Solitons of scalar field with induced nonlinearity and their stability

    Saha, B.

    1999-09-01

    Exact particle-like static, spherically and/or cylindrically symmetric solutions to the equations of interacting scalar and electromagnetic field system have been obtained. We considered FRW and Goedel universes as external gravitational field with spherical and cylindrical symmetry respectively. Beside the usual solitons some special regular solutions known as droplets, anti-droplets and hats (confined in finite interval and having trivial value beyond it) have been obtained. It has been shown that in FRW space-time equations with different interaction terms may have stable solutions while within the scope of Goedel model only the droplet-like and the hat-like configurations may be stable, providing that they are located in the region where g 00 > 0. (author)

  1. Schwarzschild black holes can wear scalar wigs.

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  2. AdS Black Hole with Phantom Scalar Field

    Limei Zhang

    2017-01-01

    Full Text Available We present an AdS black hole solution with Ricci flat horizon in Einstein-phantom scalar theory. The phantom scalar fields just depend on the transverse coordinates x and y, which are parameterized by the parameter α. We study the thermodynamics of the AdS phantom black hole. Although its horizon is a Ricci flat Euclidean space, we find that the thermodynamical properties of the black hole solution are qualitatively the same as those of AdS Schwarzschild black hole. Namely, there exists a minimal temperature and the large black hole is thermodynamically stable, while the smaller one is unstable, so there is a so-called Hawking-Page phase transition between the large black hole and the thermal gas solution in the AdS space-time in Poincare coordinates. We also calculate the entanglement entropy for a strip geometry dual to the AdS phantom black holes and find that the behavior of the entanglement entropy is qualitatively the same as that of the black hole thermodynamical entropy.

  3. Hawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild-de Sitter black hole

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-07-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.

  4. Matter bounce cosmology with a generalized single field: non-Gaussianity and an extended no-go theorem

    Li, Yu-Bin; Cai, Yi-Fu [CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Quintin, Jerome [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 (Canada); Wang, Dong-Gang, E-mail: lyb2166@mail.ustc.edu.cn, E-mail: jquintin@physics.mcgill.ca, E-mail: wdgang@strw.leidenuniv.nl, E-mail: yifucai@ustc.edu.cn [Leiden Observatory, Leiden University, 2300 RA Leiden (Netherlands)

    2017-03-01

    We extend the matter bounce scenario to a more general theory in which the background dynamics and cosmological perturbations are generated by a k -essence scalar field with an arbitrary sound speed. When the sound speed is small, the curvature perturbation is enhanced, and the tensor-to-scalar ratio, which is excessively large in the original model, can be sufficiently suppressed to be consistent with observational bounds. Then, we study the primordial three-point correlation function generated during the matter-dominated contraction stage and find that it only depends on the sound speed parameter. Similar to the canonical case, the shape of the bispectrum is mainly dominated by a local form, though for some specific sound speed values a new shape emerges and the scaling behaviour changes. Meanwhile, a small sound speed also results in a large amplitude of non-Gaussianities, which is disfavored by current observations. As a result, it does not seem possible to suppress the tensor-to-scalar ratio without amplifying the production of non-Gaussianities beyond current observational constraints (and vice versa). This suggests an extension of the previously conjectured no-go theorem in single field nonsingular matter bounce cosmologies, which rules out a large class of models. However, the non-Gaussianity results remain as a distinguishable signature of matter bounce cosmology and have the potential to be detected by observations in the near future.

  5. Stability of braneworlds with non-minimally coupled multi-scalar fields

    Chen, Feng-Wei; Gu, Bao-Min [Lanzhou University, Institute of Theoretical Physics, Lanzhou (China); Lanzhou University, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou (China); Liu, Yu-Xiao [Lanzhou University, Research Center of Gravitation, Lanzhou (China)

    2018-02-15

    Linear stability of braneworld models constructed with multi-scalar fields is very different from that of single-scalar field models. It is well known that both the tensor and the scalar perturbations of the latter are stable at linear level. However, in general there is no effective method to deal with the stability problem of the scalar perturbations for braneworld models constructed with non-minimally coupled multi-scalar fields. In this work we present a systematic covariant approach to deal with the scalar perturbations. By introducing the orthonormal bases in field space and making the Kaluza-Klein decomposition, we get a set of coupled Schroedinger-like equations of the scalar perturbation modes. Using the nodal theorem, we show that the result is model-dependent. For superpotential derived brane models, the scalar perturbations are stable, but there exist normalizable scalar zero modes, which will result in unacceptable fifth force on the brane. We also use this method to analyze the f(R) braneworld model with an explicit solution and find that the scalar perturbations are stable and the scalar zero modes cannot be localized on the brane, which ensures that there is no extra long-range force and the Newtonian potential on the brane can be recovered. (orig.)

  6. Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map

    Rosales, Carlos

    2011-07-01

    A method for simple but realistic generation of three-dimensional synthetic turbulent passive scalar fields is presented. The method is an extension of the minimal turnover Lagrangian map approach (MTLM) [C. Rosales and C. Meneveau, Phys. Rev. E 78, 016313 (2008)] formulated for the generation of synthetic turbulent velocity fields. In this development, the minimal Lagrangian map is applied to deform simultaneously a vector field and an advected scalar field. This deformation takes place over a hierarchy of spatial scales encompassing a range from integral to dissipative scales. For each scale, fluid particles are mapped transporting the scalar property, without interaction or diffusional effects, from their initial configuration to new positions determined only by their velocity at the beginning of the motion and a parameter chosen to accumulate deformation for the equivalent of the phenomenological "turn-over" time scale. The procedure is studied for the case of inertial-convective regime. It is found that many features of passive scalar turbulence are well reproduced by this simple kinematical construction. Fundamental statistics of the resulting synthetic scalar fields, evaluated through the flatness and probability density functions of the scalar gradient and scalar increments, reproduce quite well the known statistical characteristics of passive scalars in turbulent fields. High-order statistics are also consistent with those observed in real hydrodynamic turbulence. The anomalous scaling of real turbulence is well reproduced for different kind of structure functions, with good quantitative agreement in general, for the scaling exponents. The spatial structure of the scalar field is also quite realistic, as well as several characteristics of the dissipation fields for the scalar variance and kinetic energy. Similarly, the statistical geometry at dissipative scales that ensues from the coupling of velocity and scalar gradients behaves in agreement with what is

  7. A Note on Equivalence Among Various Scalar Field Models of Dark Energies

    Mandal, Jyotirmay Das; Debnath, Ujjal

    2017-08-01

    In this work, we have tried to find out similarities between various available models of scalar field dark energies (e.g., quintessence, k-essence, tachyon, phantom, quintom, dilatonic dark energy, etc). We have defined an equivalence relation from elementary set theory between scalar field models of dark energies and used fundamental ideas from linear algebra to set up our model. Consequently, we have obtained mutually disjoint subsets of scalar field dark energies with similar properties and discussed our observation.

  8. Inflation and the Higgs Scalar

    Green, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-12-05

    This note makes a self-contained exposition of the basic facts of big bang cosmology as they relate to inflation. The fundamental problems with that model are then explored. A simple scalar model of inflation is evaluated which provides the solution of those problems and makes predictions which will soon be definitively tested. The possibility that the recently discovered fundamental Higgs scalar field drives inflation is explored.

  9. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  10. Greybody factor of scalar fields from black strings

    Ahmed, Jamil; Saifullah, K.

    2017-12-01

    The greybody factor of massless, uncharged scalar fields is studied in the background of cylindrically symmetric spacetimes, in the low-energy approximation. We discuss two cases. In the first case we derive analytical expression for the absorption probability when the spacetime is kinetically coupled with the Einstein tensor. In the second case we do the analysis in the absence of the coupling constant. For this purpose we analyze the wave equation which is obtained from Klein-Gordon equation. The radial part of the wave equation is solved in the form of the hypergeometric function in the near horizon region, whereas in the far region the solution is of the form of Bessel's function. Finally, considering continuity of the wave function we smoothly match the two solutions in the low-energy approximation to get the formula for the absorption probability.

  11. Free ◻{sup k} scalar conformal field theory

    Brust, Christopher [Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario N2L 2Y5 (Canada); Hinterbichler, Kurt [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2017-02-13

    We consider the generalizations of the free U(N) and O(N) scalar conformal field theories to actions with higher powers of the Laplacian ◻{sup k}, in general dimension d. We study the spectra, Verma modules, anomalies and OPE of these theories. We argue that in certain d and k, the spectrum contains zero norm operators which are both primary and descendant, as well as extension operators which are neither primary nor descendant. In addition, we argue that in even dimensions d≤2k, there are well-defined operator algebras which are related to the ◻{sup k} theories and are novel in that they have a finite number of single-trace states.

  12. Greybody factor of scalar fields from black strings

    Ahmed, Jamil [Quaid-i-Azam University, Department of Mathematics, Islamabad (Pakistan); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Saifullah, K. [Quaid-i-Azam University, Department of Mathematics, Islamabad (Pakistan); Harvard University, Center for the Fundamental Laws of Nature, Cambridge, MA (United States)

    2017-12-15

    The greybody factor of massless, uncharged scalar fields is studied in the background of cylindrically symmetric spacetimes, in the low-energy approximation. We discuss two cases. In the first case we derive analytical expression for the absorption probability when the spacetime is kinetically coupled with the Einstein tensor. In the second case we do the analysis in the absence of the coupling constant. For this purpose we analyze the wave equation which is obtained from Klein-Gordon equation. The radial part of the wave equation is solved in the form of the hypergeometric function in the near horizon region, whereas in the far region the solution is of the form of Bessel's function. Finally, considering continuity of the wave function we smoothly match the two solutions in the low-energy approximation to get the formula for the absorption probability. (orig.)

  13. Extended BPH renormalization of cutoff scalar field theories

    Chalmers, G.

    1996-01-01

    We show through the use of diagrammatic techniques and a newly adapted BPH renormalization method that general momentum cutoff scalar field theories in four dimensions are perturbatively renormalizable. Weinberg close-quote s convergence theorem is used to show that operators in the Lagrangian with dimension greater than four, which are divided by powers of the cutoff, produce perturbatively only local divergences in the two-, three-, and four-point correlation functions. The naive use of the convergence theorem together with the BPH method is not appropriate for understanding the local divergences and renormalizability of these theories. We also show that the renormalized Green close-quote s functions are the same as in ordinary Φ 4 theory up to corrections suppressed by inverse powers of the cutoff. These conclusions are consistent with those of existing proofs based on the renormalization group. copyright 1996 The American Physical Society

  14. Nonequlibrium dynamics of scalar fields in a thermal bath

    Anisimov, A.; Buchmueller, W.; Drewes, M.; Mendizabal, S.

    2008-12-01

    We study the approach to equilibrium for a scalar field which is coupled to a large thermal bath. Our analysis of the initial value problem is based on Kadanoff-Baym equations which are shown to be equivalent to a stochastic Langevin equation. The interaction with the thermal bath generates a temperature-dependent spectral density, either through decay and inverse decay processes or via Landau damping. In equilibrium, energy density and pressure are determined by the Bose-Einstein distribution function evaluated at a complex quasi-particle pole. The time evolution of the statistical propagator is compared with solutions of the Boltzmann equations for particles as well as quasi-particles. The dependence on initial conditions and the range of validity of the Boltzmann approximation are determined. (orig.)

  15. Simultaneous dense coding affected by fluctuating massless scalar field

    Huang, Zhiming; Ye, Yiyong; Luo, Darong

    2018-04-01

    In this paper, we investigate the simultaneous dense coding (SDC) protocol affected by fluctuating massless scalar field. The noisy model of SDC protocol is constructed and the master equation that governs the SDC evolution is deduced. The success probabilities of SDC protocol are discussed for different locking operators under the influence of vacuum fluctuations. We find that the joint success probability is independent of the locking operators, but other success probabilities are not. For quantum Fourier transform and double controlled-NOT operators, the success probabilities drop with increasing two-atom distance, but SWAP operator is not. Unlike the SWAP operator, the success probabilities of Bob and Charlie are different. For different noisy interval values, different locking operators have different robustness to noise.

  16. BQP-completeness of scattering in scalar quantum field theory

    Stephen P. Jordan

    2018-01-01

    Full Text Available Recent work has shown that quantum computers can compute scattering probabilities in massive quantum field theories, with a run time that is polynomial in the number of particles, their energy, and the desired precision. Here we study a closely related quantum field-theoretical problem: estimating the vacuum-to-vacuum transition amplitude, in the presence of spacetime-dependent classical sources, for a massive scalar field theory in (1+1 dimensions. We show that this problem is BQP-hard; in other words, its solution enables one to solve any problem that is solvable in polynomial time by a quantum computer. Hence, the vacuum-to-vacuum amplitude cannot be accurately estimated by any efficient classical algorithm, even if the field theory is very weakly coupled, unless BQP=BPP. Furthermore, the corresponding decision problem can be solved by a quantum computer in a time scaling polynomially with the number of bits needed to specify the classical source fields, and this problem is therefore BQP-complete. Our construction can be regarded as an idealized architecture for a universal quantum computer in a laboratory system described by massive phi^4 theory coupled to classical spacetime-dependent sources.

  17. Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter

    Bernal, T.; Fernández-Hernández, L. M.; Matos, T.; Rodríguez-Meza, M. A.

    2018-04-01

    Cold dark matter (CDM) has shown to be an excellent candidate for the dark matter (DM) of the Universe at large scales; however, it presents some challenges at the galactic level. The scalar field dark matter (SFDM), also called fuzzy, wave, Bose-Einstein condensate, or ultralight axion DM, is identical to CDM at cosmological scales but different at the galactic ones. SFDM forms core haloes, it has a natural cut-off in its matter power spectrum, and it predicts well-formed galaxies at high redshifts. In this work we reproduce the rotation curves of high-resolution low surface brightness (LSB) and SPARC galaxies with two SFDM profiles: (1) the soliton+NFW profile in the fuzzy DM (FDM) model, arising empirically from cosmological simulations of real, non-interacting scalar field (SF) at zero temperature, and (2) the multistate SFDM (mSFDM) profile, an exact solution to the Einstein-Klein-Gordon equations for a real, self-interacting SF, with finite temperature into the SF potential, introducing several quantum states as a realistic model for an SFDM halo. From the fits with the soliton+NFW profile, we obtained for the boson mass 0.212 motivated framework additional or alternative to the FDM profile.

  18. Cosmological applications of algebraic quantum field theory in curved spacetimes

    Hack, Thomas-Paul

    2016-01-01

    This book provides a largely self-contained and broadly accessible exposition on two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology; and a fundamental study of the perturbations in inflation. The two central sections of the book dealing with these applications are preceded by sections providing a pedagogical introduction to the subject. Introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation is also given. The reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but no background in QFT on curved spacetimes or the algebraic approach to QFT is required.

  19. Cosmology

    Contopoulos, G.; Kotsakis, D.

    1987-01-01

    An extensive first part on a wealth of observational results relevant to cosmology lays the foundation for the second and central part of the book; the chapters on general relativity, the various cosmological theories, and the early universe. The authors present in a complete and almost non-mathematical way the ideas and theoretical concepts of modern cosmology including the exciting impact of high-energy particle physics, e.g. in the concept of the ''inflationary universe''. The final part addresses the deeper implications of cosmology, the arrow of time, the universality of physical laws, inflation and causality, and the anthropic principle

  20. Homogenization and isotropization of an inflationary cosmological model

    Barrow, J.D.; Groen, Oe.; Oslo Univ.

    1986-01-01

    A member of the class of anisotropic and inhomogeneous cosmological models constructed by Wainwright and Goode is investigated. It is shown to describe a universe containing a scalar field which is minimally coupled to gravitation and a positive cosmological constant. It is shown that this cosmological model evolves exponentially rapidly towards the homogeneous and isotropic de Sitter universe model. (orig.)

  1. Quasiperiodical orbits in the scalar classical lambdaphi4 field theory

    Belova, T.I.; Kudryavtsev, A.E.

    1985-01-01

    New numerical and theoretical results of resonance kink-antikink (Kanti K) interactions in the classical one-dimentional space Higgs theory are presented. Earlier studies of these interactions revealed nine initial relative velocity-intervals with two-bounce Kanti K-collisions followed by the escape of kinks to infinite separations, the breathing solution was formed outside those intervals. Two-bounce Kanti K-interactions with the number of small oscillations between Kanti K-bounces up to 35 in the initial kink velocity interval 0.18 <= Vsub(infinite) <= 0.26 were found. Several examples for n-bounces Kanti K-interaction (n <= 6) are also found. The observed phenomenon can be explaned by the existence of quasi-two-periodical solutions of the nonlinear wave equation. The simple Hamiltonian with two degrees of freedom is studied. This model supplies quantitative descrtiptions of all numerical results for the field theory considered above. The considered phenomenon may be called ''autoquantization'' of a nonlinear classical scalar selfinteracting field

  2. Super-Group Field Cosmology in Batalin-Vilkovisky Formulation

    Upadhyay, Sudhaker

    2016-09-01

    In this paper we study the third quantized super-group field cosmology, a model in multiverse scenario, in Batalin-Vilkovisky (BV) formulation. Further, we propose the superfield/super-antifield dependent BRST symmetry transformations. Within this formulation we establish connection between the two different solutions of the quantum master equation within the BV formulation.

  3. Perturbation Theory of the Cosmological Log-Density Field

    Wang, Xin; Neyrinck, Mark; Szapudi, István

    2011-01-01

    , motivating an analytic study of it. In this paper, we develop cosmological perturbation theory for the power spectrum of this field. Our formalism is developed in the context of renormalized perturbation theory, which helps to regulate the convergence behavior of the perturbation series, and of the Taylor...

  4. The effective field theory of nonsingular cosmology: II

    Cai, Yong; Li, Hai-Guang [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Qiu, Taotao [Central China Normal University, Institute of Astrophysics, Wuhan (China); Piao, Yun-Song [University of Chinese Academy of Sciences, School of Physics, Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China)

    2017-06-15

    Based on the effective field theory (EFT) of cosmological perturbations, we explicitly clarify the pathology in nonsingular cubic Galileon models and show how to cure it in EFT with new insights into this issue. With the least set of EFT operators that are capable to avoid instabilities in nonsingular cosmologies, we construct a nonsingular model dubbed the Genesis-inflation model, in which a slowly expanding phase (namely, Genesis) with increasing energy density is followed by slow-roll inflation. The spectrum of the primordial perturbation may be simulated numerically, which shows itself a large-scale cutoff, as the large-scale anomalies in CMB might be a hint for. (orig.)

  5. Bianchi type-I model with conformally invariant scalar and electromagnetic field

    Accioly, A.J.; Vaidya, A.N.; Som, M.M.

    1983-01-01

    A Bianchi type-I exact solution of the Einstein theory representing the homogeneous anisotropic models with the electromagnetic field and the conformally invariant scalar field is studied. The solution contains Kasner model, pure electromagnetic and pure scalar models as special cases. It is found that the models evolve from an initial Kasner type to a final open Friedmann type universe. (Author) [pt

  6. The continuous tower of scalar fields as a system of interacting dark matter–dark energy

    Santos, Paulo

    2015-01-01

    This paper aims to introduce a new parameterisation for the coupling Q in interacting dark matter and dark energy models by connecting said models with the Continuous Tower of Scalar Fields model. Based upon the existence of a dark matter and a dark energy sectors in the Continuous Tower of Scalar Fields, a simplification is considered for the evolution of a single scalar field from the tower, validated in this paper. This allows for the results obtained with the Continuous Tower of Scalar Fields model to match those of an interacting dark matter–dark energy system, considering that the energy transferred from one fluid to the other is given by the energy of the scalar fields that start oscillating at a given time, rather than considering that the energy transference depends on properties of the whole fluids that are interacting.

  7. Linearized interactions of scalar and vector fields with the higher spin field in AdSD

    Mkrtchyan, K.

    2011-01-01

    The explicit form of linearized gauge and generalized 'Weyl invariant' interactions of scalar and general higher even spin fields in the AdS D space is reviewed. Also a linearized interaction of vector field with general higher even spin gauge field is obtained. It is shown that the gauge-invariant action of linearized vector field interacting with the higher spin field also includes the whole tower of invariant actions for couplings of the same vector field with the gauge fields of smaller even spin

  8. Class of Exact Solutions for a Cosmological Model of Unified Gravitational and Quintessence Fields

    Asenjo, Felipe A.; Hojman, Sergio A.

    2017-07-01

    A new approach to tackle Einstein equations for an isotropic and homogeneous Friedmann-Robertson-Walker Universe in the presence of a quintessence scalar field is devised. It provides a way to get a simple exact solution to these equations. This solution determines the quintessence potential uniquely and it differs from solutions which have been used to study inflation previously. It relays on a unification of geometry and dark matter implemented through the definition of a functional relation between the scale factor of the Universe and the quintessence field. For a positive curvature Universe, this solution produces perpetual accelerated expansion rate of the Universe, while the Hubble parameter increases abruptly, attains a maximum value and decreases thereafter. The behavior of this cosmological solution is discussed and its main features are displayed. The formalism is extended to include matter and radiation.

  9. Comparison between two scalar field models using rotation curves of spiral galaxies

    Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh

    2018-04-01

    Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.

  10. Extended pure Yang-Mills gauge theories with scalar and tensor gauge fields

    Gabrielli, E.

    1991-01-01

    The usual abelian gauge theory is extended to an interacting Yang-Mills-like theory containing vector, scalar and tensor gauge fields. These gauge fields are seen as components along the Clifford algebra basis of a gauge vector-spinorial field. Scalar fields φ naturally coupled to vector and tensor fields have been found, leading to a natural φ 4 coupling in the lagrangian. The full expression of the lagrangian for the euclidean version of the theory is given. (orig.)

  11. The generalized Fenyes-Nelson model for free scalar field theory

    Davidson, M.

    1980-01-01

    The generalized Fenyes-Nelson model of quantum mechanics is applied to the free scalar field. The resulting Markov field is equivalent to the Euclidean Markov field with the times scaled by a common factor which depends on the diffusion parameter. This result is consistent with Guerra's earlier work on stochastic quantization of scalar fields. It suggests a deep connection between Euclidean field theory and the stochastic interpretation of quantum mechanics. The question of Lorentz covariance is also discussed. (orig.)

  12. Intermediate inflation from a non-canonical scalar field

    Rezazadeh, K.; Karami, K. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Karimi, P., E-mail: rezazadeh86@gmail.com, E-mail: KKarami@uok.ac.ir, E-mail: parvin.karimi67@yahoo.com [Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2015-09-01

    We study the intermediate inflation in a non-canonical scalar field framework with a power-like Lagrangian. We show that in contrast with the standard canonical intermediate inflation, our non-canonical model is compatible with the observational results of Planck 2015. Also, we estimate the equilateral non-Gaussianity parameter which is in well agreement with the prediction of Planck 2015. Then, we obtain an approximation for the energy scale at the initial time of inflation and show that it can be of order of the Planck energy scale, i.e. M{sub P} ∼ 10{sup 18}GeV. We will see that after a short period of time, inflation enters in the slow-roll regime that its energy scale is of order M{sub P}/100 ∼ 10{sup 16}GeV and the horizon exit takes place in this energy scale. We also examine an idea in our non-canonical model to overcome the central drawback of intermediate inflation which is the fact that inflation never ends. We solve this problem without disturbing significantly the nature of the intermediate inflation until the time of horizon exit.

  13. Gravitational waves from self-ordering scalar fields

    Fenu, Elisa; Durrer, Ruth; Figueroa, Daniel G.; García-Bellido, Juan

    2009-01-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as Ω GW (f) ∝ f 3 with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer time, until a given mode which is initially superhorizon (kη * 1, we find that the gravitational wave energy density is frequency independent, i.e. scale invariant. Moreover, its amplitude for a GUT scale scenario turns out to be within the range and sensitivity of BBO and marginally detectable by LIGO and LISA. This new gravitational wave background can compete with the one generated during inflation, and distinguishing both may require extra information

  14. Self-interacting scalar fields at high-temperature

    Deur, Alexandre [University of Virginia, Charlottesville, VA (United States)

    2017-06-15

    We study two self-interacting scalar field theories in their high-temperature limit using path integrals on a lattice. We first discuss the formalism and recover known potentials to validate the method. We then discuss how these theories can model, in the high-temperature limit, the strong interaction and General Relativity. For the strong interaction, the model recovers the known phenomenology of the nearly static regime of heavy quarkonia. The model also exposes a possible origin for the emergence of the confinement scale from the approximately conformal Lagrangian. Aside from such possible insights, the main purpose of addressing the strong interaction here - given that more sophisticated approaches already exist - is mostly to further verify the pertinence of the model in the more complex case of General Relativity for which non-perturbative methods are not as developed. The results have important implications on the nature of Dark Matter. In particular, non-perturbative effects naturally provide flat rotation curves for disk galaxies, without need for non-baryonic matter, and explain as well other observations involving Dark Matter such as cluster dynamics or the dark mass of elliptical galaxies. (orig.)

  15. Three-dimensional Casimir piston for massive scalar fields

    Lim, S.C.; Teo, L.P.

    2009-01-01

    We consider Casimir force acting on a three-dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy. It is shown that the divergent terms do not contribute to the Casimir force acting on the piston, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a - the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like 1/a 4 when a→0 + and decays exponentially when a→∞. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand, passing from massless to massive, we find that the effect of the mass is insignificant when a is small, but the magnitude of the force is decreased for large a in the massive case.

  16. Gravitational waves from self-ordering scalar fields

    Fenu, Elisa; Durrer, Ruth; Garcia-Bellido, Juan

    2009-01-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as $\\Omega_{\\rm GW}(f) \\propto f^3$ with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer tim...

  17. Dark Energy vs. Dark Matter: Towards a Unifying Scalar Field?

    Arbey, A.

    2008-01-01

    The standard model of cosmology suggests the existence of two components, "dark matter" and "dark energy", which determine the fate of the Universe. Their nature is still under investigation, and no direct proof of their existences has emerged yet. There exist alternative models which reinterpret the cosmological observations, for example by replacing the dark energy/dark matter hypothesis by the existence of a unique dark component, the dark fluid, which is able to mimic the behaviour of bot...

  18. Holography for cosmology

    McFadden, P.; Skenderis, K.

    2010-01-01

    We propose a holographic description of four-dimensional single-scalar inflationary universes, and show how cosmological observables, such as the primordial power spectrum, are encoded in the correlation functions of a three-dimensional quantum field theory (QFT). The holographic description

  19. Cosmology

    García-Bellido, J

    2015-01-01

    In these lectures I review the present status of the so-called Standard Cosmological Model, based on the hot Big Bang Theory and the Inflationary Paradigm. I will make special emphasis on the recent developments in observational cosmology, mainly the acceleration of the universe, the precise measurements of the microwave background anisotropies, and the formation of structure like galaxies and clusters of galaxies from tiny primordial fluctuations generated during inflation.

  20. Different faces of chaos in FRW models with scalar fields-geometrical point of view

    Hrycyna, Orest; Szydlowski, Marek

    2006-01-01

    FRW cosmologies with conformally coupled scalar fields are investigated in a geometrical way by the means of geodesics of the Jacobi metric. In this model of dynamics, trajectories in the configuration space are represented by geodesics. Because of the singular nature of the Jacobi metric on the boundary set -bar D of the domain of admissible motion, the geodesics change the cone sectors several times (or an infinite number of times) in the neighborhood of the singular set -bar D. We show that this singular set contains interesting information about the dynamical complexity of the model. Firstly, this set can be used as a Poincare surface for construction of Poincare sections, and the trajectories then have the recurrence property. We also investigate the distribution of the intersection points. Secondly, the full classification of periodic orbits in the configuration space is performed and existence of UPO is demonstrated. Our general conclusion is that, although the presented model leads to several complications, like divergence of curvature invariants as a measure of sensitive dependence on initial conditions, some global results can be obtained and some additional physical insight is gained from using the conformal Jacobi metric. We also study the complex behavior of trajectories in terms of symbolic dynamics

  1. Anisotropic Bianchi II cosmological models with matter and electromagnetic fields

    Soares, D.

    1978-01-01

    A class of solutions of Einstein-Maxwell equations is presented, which corresponds to anisotropic Bianchi II spatially homogeneous cosmological models with perfect fluid and electromagnetic field. A particular model is examined and shown to be unstable for perturbations of the electromagnetic field strength parameter about a particular value. This value defines a limiar unstable case in which the ratio epsilon, of the fluid density to the e.m. energy density is monotonically increasing with a minimum finite value at the singularity. Beyond this limiar, the model has a matter dominated singularity, and a characteristic stage appears where epsilon has a minimum, at a finite time from the singularity. For large times, the models tend to an exact solution for zero electromagnetic field and fluid with p = (1/5)p. Some cosmological features of the models are calculated, as the effect of anisotropy on matter density and expansion time scale factors, as compared to the corresponding Friedmann model [pt

  2. Cosmological viability of theories with massive spin-2 fields

    Koennig, Frank

    2017-03-30

    Theories of spin-2 fields take on a particular role in modern physics. They do not only describe the mediation of gravity, the only theory of fundamental interactions of which no quantum field theoretical description exists, it furthermore was thought that they necessarily predict massless gauge bosons. Just recently, a consistent theory of a massive graviton was constructed and, subsequently, generalized to a bimetric theory of two interacting spin-2 fields. This thesis studies both the viability and consequences at cosmological scales in massive gravity as well as bimetric theories. We show that all consistent models that are free of gradient and ghost instabilities behave like the cosmological standard model, LCDM. In addition, we construct a new theory of massive gravity which is stable at both classical background and quantum level, even though it suffers from the Boulware-Deser ghost.

  3. Asymptotic behavior and Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2007-01-01

    We examine anti-de Sitter gravity minimally coupled to a self-interacting scalar field in D>=4 dimensions when the mass of the scalar field is in the range m * 2 = 2 * 2 +l -2 . Here, l is the AdS radius, and m * 2 is the Breitenlohner-Freedman mass. We show that even though the scalar field generically has a slow fall-off at infinity which back reacts on the metric so as to modify its standard asymptotic behavior, one can still formulate asymptotic conditions (i) that are anti-de Sitter invariant; and (ii) that allows the construction of well-defined and finite Hamiltonian generators for all elements of the anti-de Sitter algebra. This requires imposing a functional relationship on the coefficients a, b that control the two independent terms in the asymptotic expansion of the scalar field. The anti-de Sitter charges are found to involve a scalar field contribution. Subtleties associated with the self-interactions of the scalar field as well as its gravitational back reaction, not discussed in previous treatments, are explicitly analyzed. In particular, it is shown that the fields develop extra logarithmic branches for specific values of the scalar field mass (in addition to the known logarithmic branch at the B-F bound)

  4. Cosmology in Gauge Field Theory and String Theory

    Garcia Compean, H

    2005-01-01

    This new book is intended for students and researchers who want to go into the interplay between cosmology and high-energy physics. It assumes a prior knowledge of these subjects such as some of the topics contained in the previous books by the authors, Introduction to Gauge Field Theory (1993 Bristol: Institute of Physics Publishing) and Supersymmetric Gauge Field Theory and String Theory (1994 Bristol: Institute of Physics Publishing). However, the book is intended to be self-contained, explaining, from a modern perspective, some background material mainly in standard cosmology, topological defects, baryogenesis, inflationary cosmology and, at the end of the book, some of the basics of string theory. What is distinctively new about this book is that it lies in the interplay between cosmology and high-energy physics typically above 100 GeV (10 15 K). Often these subjects are presented in regular textbooks in a disconnected way, or in research papers, proceedings and review papers but usually not in a pedagogical style. Thus, in this sense, the book is unique and deserves a special place in the recent literature. The book starts by reviewing the standard material of the early universe. The standard model of cosmology from a modern perspective is revised in chapter 1. In chapter 2, phase transitions in different models are discussed, Higgs, electroweak, GUTs, supersymmetric GUTs and supergravity, by using quantum field theory at finite temperature. Chapter 3 is devoted to a general account of topological defects and discusses how they arise as possible remnants of these phase transitions in GUTs. Other relics, such as neutrinos and axions, are introduced in chapter 5 and their impact in cosmology is assessed. In chapter 4, some of the most relevant mechanisms of baryogenesis are discussed in the context of the different GUTs and the minimal supersymmetric standard model (MSSM). Inflation is also discussed in the context of GUTs. In chapter 6, the authors introduce

  5. Interacting diffusive unified dark energy and dark matter from scalar fields

    Benisty, David; Guendelman, E.I. [Ben Gurion University of the Negev, Department of Physics, Beersheba (Israel)

    2017-06-15

    Here we generalize ideas of unified dark matter-dark energy in the context of two measure theories and of dynamical space time theories. In two measure theories one uses metric independent volume elements and this allows one to construct unified dark matter-dark energy, where the cosmological constant appears as an integration constant associated with the equation of motion of the measure fields. The dynamical space-time theories generalize the two measure theories by introducing a vector field whose equation of motion guarantees the conservation of a certain Energy Momentum tensor, which may be related, but in general is not the same as the gravitational Energy Momentum tensor. We propose two formulations of this idea: (I) by demanding that this vector field be the gradient of a scalar, (II) by considering the dynamical space field appearing in another part of the action. Then the dynamical space time theory becomes a theory of Diffusive Unified dark energy and dark matter. These generalizations produce non-conserved energy momentum tensors instead of conserved energy momentum tensors which leads at the end to a formulation of interacting DE-DM dust models in the form of a diffusive type interacting Unified dark energy and dark matter scenario. We solved analytically the theories for perturbative solution and asymptotic solution, and we show that the ΛCDM is a fixed point of these theories at large times. Also a preliminary argument as regards the good behavior of the theory at the quantum level is proposed for both theories. (orig.)

  6. Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy

    Karami, K; Fahimi, K

    2013-01-01

    We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar field models. (paper)

  7. Marginally bound resonances of charged massive scalar fields in the background of a charged reflecting shell

    Hod, Shahar, E-mail: shaharhod@gmail.com [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Academic College, Jerusalem 91010 (Israel)

    2017-05-10

    We study analytically the characteristic resonance spectrum of charged massive scalar fields linearly coupled to a spherically symmetric charged reflecting shell. In particular, we use analytical techniques in order to solve the Klein–Gordon wave equation for the composed charged-shell–charged-massive-scalar-field system. Interestingly, it is proved that the resonant oscillation frequencies of this composed physical system are determined by the characteristic zeroes of the confluent hypergeometric function. Following this observation, we derive a remarkably compact analytical formula for the resonant oscillation frequencies which characterize the marginally-bound charged massive scalar field configurations. The analytically derived resonance spectrum is confirmed by numerical computations.

  8. Transport equation for the time scale of a turbulent scalar field

    Kurbatskij, A.F.

    1999-01-01

    The two-parametric turbulence models cause serious difficulties by modeling the near-wall flows due to absence of the natural boundary condition on the wall for dissipation of the ε turbulence energy and the ε θ scalar field destruction. This difficulty may be overcome, if instead of the ε and ε θ , as the second parameter of the model, to apply the time scales of the turbulent dynamic and scalar fields. The equation of the scalar field is derived and numerical coefficients included therein, are determined from the simplest problems on the turbulent heat transfer [ru

  9. arXiv Tensor to scalar ratio from single field magnetogenesis

    Giovannini, Massimo

    2017-08-10

    The tensor to scalar ratio is affected by the evolution of the large-scale gauge fields potentially amplified during an inflationary stage of expansion. After deriving the exact evolution equations for the scalar and tensor modes of the geometry in the presence of dynamical gauge fields, it is shown that the tensor to scalar ratio is bounded from below by the dominance of the adiabatic contribution and it cannot be smaller than one thousands whenever the magnetogenesis is driven by a single inflaton field.

  10. Conformal scalar field on the hyperelliptic curve and critical Ashkin-Teller multipoint correlation functions

    Zamolodchikov, A.B.

    1987-01-01

    A multipoint conformal block of Ramond states of the two-dimensional free scalar field is calculated. This function is related to the free energy of the scalar field on the hyperelliptic Riemann surface under a particular choice of boundary conditions. Being compactified on the circle this field leads to the crossing symmetric correlation functions with a discrete spectrum of scale dimensions. These functions are supposed to describe multipoint spin correlations of the critical Ashkin-Teller model. (orig.)

  11. A natural cosmological constant from chameleons

    Nastase, Horatiu; Weltman, Amanda

    2015-01-01

    We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)

  12. A natural cosmological constant from chameleons

    Horatiu Nastase

    2015-07-01

    Full Text Available We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero and the coincidence problem (why Λ is comparable to the matter density now.

  13. A natural cosmological constant from chameleons

    Nastase, Horatiu, E-mail: nastase@ift.unesp.br [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Weltman, Amanda, E-mail: amanda.weltman@uct.ac.za [Astrophysics, Cosmology & Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa)

    2015-07-30

    We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)

  14. K -essence model from the mechanical approach point of view: coupled scalar field and the late cosmic acceleration

    Bouhmadi-López, Mariam; Kumar, K. Sravan; Marto, João [Departamento de Física, Universidade da Beira Interior, Rua Marquês D' Ávila e Bolama, 6201-001 Covilhã (Portugal); Morais, João [Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain); Zhuk, Alexander, E-mail: mbl@ubi.pt, E-mail: sravan@ubi.pt, E-mail: jmarto@ubi.pt, E-mail: jviegas001@ikasle.ehu.eus, E-mail: ai.zhuk2@gmail.com [Astronomical Observatory, Odessa National University, Street Dvoryanskaya 2, Odessa 65082 (Ukraine)

    2016-07-01

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we can consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a K -essence scalar field, playing the role of dark energy, and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as the fluctuations of the other perfect fluids are non-relativistic. Such fluids are designated as coupled because they are concentrated around the inhomogeneities. In the present paper, we investigate the conditions under which the K -essence scalar field with the most general form for its action can become coupled. We investigate at the background level three particular examples of the K -essence models: (i) the pure kinetic K -essence field, (ii) a K -essence with a constant speed of sound and (iii) the K -essence model with the Lagrangian bX + cX {sup 2}− V (φ). We demonstrate that if the K -essence is coupled, all these K -essence models take the form of multicomponent perfect fluids where one of the component is the cosmological constant. Therefore, they can provide the late-time cosmic acceleration and be simultaneously compatible with the mechanical approach.

  15. Cosmology from group field theory formalism for quantum gravity.

    Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo

    2013-07-19

    We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.

  16. Correspondence of f(R,∇R) Modified Gravity with Scalar Field Models

    Jawad, Abdul; Debnath, Ujjal

    2014-01-01

    This paper is devoted to study the scalar field dark energy models by taking its different aspects in the framework of f(R,∇R) gravity. We consider flat FRW universe to construct the equation of state parameter governed by f(R,∇R) gravity. The stability of the model is discussed with the help of squared speed of sound parameter. It is found that models show quintessence behavior of the universe in stable as well as unstable modes. We also develop the correspondence of f(R,∇R) model with some scalar field dark energy models like quintessence, tachyonic field, k-essence, dilaton, hessence, and DBI-essence. The nature of scalar fields and corresponding scalar potentials is being analyzed in f(R,∇R) gravity graphically which show consistency with the present day observations about accelerated phenomenon

  17. Spontaneous scalarization with an extremely massive field and heavy neutron stars

    Morisaki, Soichiro; Suyama, Teruaki

    2017-10-01

    We investigate the internal structure and the mass-radius relation of neutron stars in a recently proposed scalar-tensor theory dubbed asymmetron in which a massive scalar field undergoes spontaneous scalarization inside neutron stars. We focus on the case where the Compton wavelength is shorter than 10 km, which has not been investigated in the literature. By solving the modified Einstein equations, either purely numerically or by partially using a semianalytic method, we find that not only the weakening of gravity by spontaneous scalarization but also the scalar force affect the internal structure significantly in the massive case. We also find that the maximum mass of neutron stars is larger for certain parameter sets than that in general relativity and reaches 2 M⊙ even if the effect of strange hadrons is taken into account. There is even a range of parameters where the maximum mass of neutron stars largely exceeds the threshold that violates the causality bound in general relativity.

  18. Reconstruction of scalar field theories realizing inflation consistent with the Planck and BICEP2 results

    Kazuharu Bamba

    2014-10-01

    Full Text Available We reconstruct scalar field theories to realize inflation compatible with the BICEP2 result as well as the Planck. In particular, we examine the chaotic inflation model, natural (or axion inflation model, and an inflationary model with a hyperbolic inflaton potential. We perform an explicit approach to find out a scalar field model of inflation in which any observations can be explained in principle.

  19. Hawking radiation of five-dimensional charged black holes with scalar fields

    Yan-Gang Miao

    2017-09-01

    Full Text Available We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.

  20. Holographic Bound in Quantum Field Energy Density and Cosmological Constant

    Castorina, Paolo

    2012-01-01

    The cosmological constant problem is reanalyzed by imposing the limitation of the number of degrees of freedom (d.o.f.) due to entropy bounds directly in the calculation of the energy density of a field theory. It is shown that if a quantum field theory has to be consistent with gravity and holography, i.e. with an upper limit of storing information in a given area, the ultraviolet momentum cut-off is not the Planck mass, M_p, as naively expected, but M_p/N_U^(1/4) where N_U is the number of ...

  1. Supplying Dark Energy from Scalar Field Dark Matter

    Gogberashvili, Merab; Sakharov, Alexander S.

    2017-01-01

    We consider the hypothesis that dark matter and dark energy consists of ultra-light self-interacting scalar particles. It is found that the Klein-Gordon equation with only two free parameters (mass and self-coupling) on a Schwarzschild background, at the galactic length-scales has the solution which corresponds to Bose-Einstein condensate, behaving as dark matter, while the constant solution at supra-galactic scales can explain dark energy.

  2. Dark sector impact on gravitational collapse of an electrically charged scalar field

    Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences,Doświadczalna 4, 20-290 Lublin (Poland); Rogatko, Marek [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warszawa (Poland)

    2015-11-04

    Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.

  3. One-loop masses of open-string scalar fields in string theory

    Kitazawa, Noriaki

    2008-01-01

    In phenomenological models with D-branes, there are in general open-string massless scalar fields, in addition to closed-string massless moduli fields corresponding to the compactification. It is interesting to focus on the fate of such scalar fields in models with broken supersymmetry, because no symmetry forbids their masses. The one-loop effect may give non-zero masses to them, and in some cases mass squared may become negative, which means the radiative gauge symmetry breaking. In this article we investigate and propose a simple method for calculating the one-loop corrections using the boundary state formalism. There are two categories of massless open-string scalar fields. One consists the gauge potential fields corresponding to compactified directions, which can be understood as scalar fields in uncompactified space-time (related with Wilson line degrees of freedom). The other consists 'gauge potential fields' corresponding to transverse directions of D-brane, which emerge as scalar fields in D-brane world-volume (related with brane moduli fields). The D-brane boundary states with constant backgrounds of these scalar fields are constructed, and one-loop scalar masses are calculated in the closed string picture. Explicit calculations are given in the following four concrete models: one D25-brane with a circle compactification in bosonic string theory, one D9-brane with a circle compactification in superstring theory, D3-branes at a supersymmetric C 3 /Z 3 orbifold singularity, and a model of brane supersymmetry breaking with D3-branes and anti-D7-branes at a supersymmetric C 3 /Z 3 orbifold singularity. We show that the sign of the mass squared has a strong correlation with the sign of the related open-string one-loop vacuum amplitude.

  4. Λ( t ) cosmology induced by a slowly varying Elko field

    Pereira, S.H.; Pinho, A.S.S.; Silva, J.M. Hoff da [Universidade Estadual Paulista (Unesp), Faculdade de Engenharia, Guaratinguetá, Departamento de Física e Química Av. Dr. Ariberto Pereira da Cunha 333, 12516-410—Guaratinguetá, SP (Brazil); Jesus, J.F., E-mail: shpereira@feg.unesp.br, E-mail: alexandre.pinho510@gmail.com, E-mail: hoff@feg.unesp.br, E-mail: jfjesus@itapeva.unesp.br [Universidade Estadual Paulista (Unesp), Campus Experimental de Itapeva, R. Geraldo Alckmin, 519 Itapeva, SP (Brazil)

    2017-01-01

    In this work the exact Friedmann-Robertson-Walker equations for an Elko spinor field coupled to gravity in an Einstein-Cartan framework are presented. The torsion functions coupling the Elko field spin-connection to gravity can be exactly solved and the FRW equations for the system assume a relatively simple form. In the limit of a slowly varying Elko spinor field there is a relevant contribution to the field equations acting exactly as a time varying cosmological model Λ( t )=Λ{sub *}+3β H {sup 2}, where Λ{sub *} and β are constants. Observational data using distance luminosity from magnitudes of supernovae constraint the parameters Ω {sub m} and β, which leads to a lower limit to the Elko mass. Such model mimics, then, the effects of a dark energy fluid, here sourced by the Elko spinor field. The density perturbations in the linear regime were also studied in the pseudo-Newtonian formalism.

  5. Non-minimal derivative coupling scalar field and bulk viscous dark energy

    Mostaghel, Behrang [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Moshafi, Hossein [Institute for Advanced Studies in Basic Sciences, Department of Physics, Zanjan (Iran, Islamic Republic of); Movahed, S.M.S. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-08-15

    Inspired by thermodynamical dissipative phenomena, we consider bulk viscosity for dark fluid in a spatially flat two-component Universe. Our viscous dark energy model represents phantom-crossing which avoids big-rip singularity. We propose a non-minimal derivative coupling scalar field with zero potential leading to accelerated expansion of the Universe in the framework of bulk viscous dark energy model. In this approach, the coupling constant, κ, is related to viscosity coefficient, γ, and the present dark energy density, Ω{sub DE}{sup 0}. This coupling is bounded as κ element of [-1/9H{sub 0}{sup 2}(1 - Ω{sub DE}{sup 0}), 0]. We implement recent observational data sets including a joint light-curve analysis (JLA) for SNIa, gamma ray bursts (GRBs) for most luminous astrophysical objects at high redshifts, baryon acoustic oscillations (BAO) from different surveys, Hubble parameter from HST project, Planck CMB power spectrum and lensing to constrain model free parameters. The joint analysis of JLA + GRBs + BAO + HST shows that Ω{sub DE}{sup 0} = 0.696 ± 0.010, γ = 0.1404 ± 0.0014 and H{sub 0} = 68.1 ± 1.3. Planck TT observation provides γ = 0.32{sup +0.31}{sub -0.26} in the 68% confidence limit for the viscosity coefficient. The cosmographic distance ratio indicates that current observed data prefer to increase bulk viscosity. The competition between phantom and quintessence behavior of the viscous dark energy model can accommodate cosmological old objects reported as a sign of age crisis in the ΛCDM model. Finally, tension in the Hubble parameter is alleviated in this model. (orig.)

  6. Cosmological coevolution of Yang-Mills fields and perfect fluids

    Barrow, John D.; Jin, Yoshida; Maeda, Kei-ichi

    2005-01-01

    We study the coevolution of Yang-Mills fields and perfect fluids in Bianchi type I universes. We investigate numerically the evolution of the universe and the Yang-Mills fields during the radiation and dust eras of a universe that is almost isotropic. The Yang-Mills field undergoes small amplitude chaotic oscillations, as do the three expansion scale factors which are also displayed by the expansion scale factors of the universe. The results of the numerical simulations are interpreted analytically and compared with past studies of the cosmological evolution of magnetic fields in radiation and dust universes. We find that, whereas magnetic universes are strongly constrained by the microwave background anisotropy, Yang-Mills universes are principally constrained by primordial nucleosynthesis but the bound is comparatively weak with Ω YM rad

  7. Dynamic field theory and equations of motion in cosmology

    Kopeikin, Sergei M., E-mail: kopeikins@missouri.edu [Department of Physics and Astronomy, University of Missouri, 322 Physics Bldg., Columbia, MO 65211 (United States); Petrov, Alexander N., E-mail: alex.petrov55@gmail.com [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskij Prospect 13, Moscow 119992 (Russian Federation)

    2014-11-15

    We discuss a field-theoretical approach based on general-relativistic variational principle to derive the covariant field equations and hydrodynamic equations of motion of baryonic matter governed by cosmological perturbations of dark matter and dark energy. The action depends on the gravitational and matter Lagrangian. The gravitational Lagrangian depends on the metric tensor and its first and second derivatives. The matter Lagrangian includes dark matter, dark energy and the ordinary baryonic matter which plays the role of a bare perturbation. The total Lagrangian is expanded in an asymptotic Taylor series around the background cosmological manifold defined as a solution of Einstein’s equations in the form of the Friedmann–Lemaître–Robertson–Walker (FLRW) metric tensor. The small parameter of the decomposition is the magnitude of the metric tensor perturbation. Each term of the series expansion is gauge-invariant and all of them together form a basis for the successive post-Friedmannian approximations around the background metric. The approximation scheme is covariant and the asymptotic nature of the Lagrangian decomposition does not require the post-Friedmannian perturbations to be small though computationally it works the most effectively when the perturbed metric is close enough to the background FLRW metric. The temporal evolution of the background metric is governed by dark matter and dark energy and we associate the large scale inhomogeneities in these two components as those generated by the primordial cosmological perturbations with an effective matter density contrast δρ/ρ≤1. The small scale inhomogeneities are generated by the condensations of baryonic matter considered as the bare perturbations of the background manifold that admits δρ/ρ≫1. Mathematically, the large scale perturbations are given by the homogeneous solution of the linearized field equations while the small scale perturbations are described by a particular solution of

  8. Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole

    Huang, Lu; Chen, Juhua; Wang, Yongjiu

    2018-06-01

    In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.

  9. Conformal scalar fields and chiral splitting on super Riemann surfaces

    D'Hoker, E.; Phong, D.H.

    1989-01-01

    We provide a complete description of correlation functions of scalar superfields on a super Riemann surface, taking into account zero modes and non-trivial topology. They are built out of chirally split correlation functions, or conformal blocks at fixed internal momenta. We formulate effective rules which determine these completely in terms of geometric invariants of the super Riemann surface. The chirally split correlation functions have non-trivial monodromy and produce single-valued amplitudes only upon integration over loop momenta. Our discussion covers the even spin structure as well as the odd spin structure case which had been the source of many difficulties in the past. Super analogues of Green's functions, holomorphic spinors, and prime forms emerge which should pave the way to function theory on super Riemann surfaces. In superstring theories, chirally split amplitudes for scalar superfields are crucial in enforcing the GSO projection required for consistency. However one really knew how to carry this out only in the operator formalism to one-loop order. Our results provide a way of enforcing the GSO projection to any loop. (orig.)

  10. The Scalar, Vector and Tensor Fields in Theory of Elasticity and Plasticity

    František FOJTÍK

    2014-06-01

    Full Text Available This article is devoted to an analysis of scalar, vector and tensor fields, which occur in the loaded and deformed bodies. The aim of this article is to clarify and simplify the creation of an understandable idea of some elementary concepts and quantities in field theories, such as, for example equiscalar levels, scalar field gradient, Hamilton operator, divergence, rotation and gradient of vector or tensor and others. Applications of those mathematical terms are shown in simple elasticity and plasticity tasks. We hope that content of our article might help technicians to make their studies of necessary mathematical chapters of vector and tensor analysis and field theories easier.

  11. Master formulas for the dressed scalar propagator in a constant field

    Aftab Ahmad

    2017-06-01

    Full Text Available The worldline formalism has previously been used for deriving compact master formulas for the one-loop N-photon amplitudes in both scalar and spinor QED, and in the vacuum as well as in a constant external field. For scalar QED, there is also an analogous master formula for the propagator dressed with N photons in the vacuum. Here, we extend this master formula to include a constant field. The two-photon case is worked out explicitly, yielding an integral representation for the Compton scattering cross section in the field suitable for numerical integration in the full range of electric and magnetic field strengths.

  12. Master formulas for the dressed scalar propagator in a constant field

    Ahmad, Aftab [Department of Physics, Gomal University, 29220 D.I. Khan, K.P.K (Pakistan); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, Morelia 58040, Michoacán (Mexico); Ahmadiniaz, Naser, E-mail: Ahmadiniaz@ibs.re.kr [Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005 (Korea, Republic of); Department of Physics, Kunsan National University, Kunsan 54150 (Korea, Republic of); Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via Campi 213/A, I-41125 Modena (Italy); INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Kim, Sang Pyo [Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005 (Korea, Republic of); Department of Physics, Kunsan National University, Kunsan 54150 (Korea, Republic of); Schubert, Christian [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, Morelia 58040, Michoacán (Mexico)

    2017-06-15

    The worldline formalism has previously been used for deriving compact master formulas for the one-loop N-photon amplitudes in both scalar and spinor QED, and in the vacuum as well as in a constant external field. For scalar QED, there is also an analogous master formula for the propagator dressed with N photons in the vacuum. Here, we extend this master formula to include a constant field. The two-photon case is worked out explicitly, yielding an integral representation for the Compton scattering cross section in the field suitable for numerical integration in the full range of electric and magnetic field strengths.

  13. Conversion of Gravitons into Dark Photons in Cosmological Dark Magnetic Fields

    Masaki, Emi; Soda, Jiro

    2018-01-01

    It is well known that gravitons can convert into photons, and vice versa, in the presence of cosmological magnetic fields. We study this conversion process in the context of atomic dark matter scenario. In this scenario, we can expect cosmological dark magnetic fields, which are free from the stringent constraint from the cosmic microwave observations. We find that gravitons can effectively convert into dark photons in the presence of cosmological dark magnetic fields. The graviton-dark photo...

  14. Cosmological models in globally geodesic coordinates. II. Near-field approximation

    Liu Hongya

    1987-01-01

    A near-field approximation dealing with the cosmological field near a typical freely falling observer is developed within the framework established in the preceding paper [J. Math. Phys. 28, xxxx(1987)]. It is found that for the matter-dominated era the standard cosmological model of general relativity contains the Newtonian cosmological model, proposed by Zel'dovich, as its near-field approximation in the observer's globally geodesic coordinate system

  15. Relativistic n-body wave equations in scalar quantum field theory

    Emami-Razavi, Mohsen

    2006-01-01

    The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields

  16. A mapping closure for turbulent scalar mixing using a time-evolving reference field

    Girimaji, Sharath S.

    1992-01-01

    A general mapping-closure approach for modeling scalar mixing in homogeneous turbulence is developed. This approach is different from the previous methods in that the reference field also evolves according to the same equations as the physical scalar field. The use of a time-evolving Gaussian reference field results in a model that is similar to the mapping closure model of Pope (1991), which is based on the methodology of Chen et al. (1989). Both models yield identical relationships between the scalar variance and higher-order moments, which are in good agreement with heat conduction simulation data and can be consistent with any type of epsilon(phi) evolution. The present methodology can be extended to any reference field whose behavior is known. The possibility of a beta-pdf reference field is explored. The shortcomings of the mapping closure methods are discussed, and the limit at which the mapping becomes invalid is identified.

  17. Turbulence and transport of passive scalar in magnetohydrodynamic channel flows with different orientations of magnetic field

    Dey, Prasanta K.; Zikanov, Oleg

    2012-01-01

    Highlights: ► Turbulent passive scalar transport in an MHD flow in a channel is studied using DNS. ► Magnetic fields of wall-normal, spanwise, and streamwise orientations are considered. ► Magnetic fields suppress turbulent transport and modifies scalar distribution. ► The effect is particularly strong at wall-normal and spanwise magnetic fields. ► Decrease of Nusselt number is approximated by a linear function of magnetic interaction parameter. - Abstract: DNS of turbulent flow and passive scalar transport in a channel are conducted for the situation when the fluid is electrically conducting (for example, a liquid metal) and the flow is affected by an imposed magnetic field. The cases of wall-normal, spanwise, and streamwise orientation of the magnetic field are considered. As main results, we find that the magnetic fields, especially those in the wall-normal and spanwise directions, significantly reduce the turbulent scalar transport and modify the properties of the scalar distribution.

  18. The effective field theory of cosmological large scale structures

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  19. Primordial magnetic fields from a non-singular bouncing cosmology

    Membiela, Federico Agustín

    2014-08-01

    Although inflation is a natural candidate to generate the lengths of coherence of magnetic fields needed to explain current observations, it needs to break conformal invariance of electromagnetism to obtain significant magnetic amplitudes. Of the simplest realizations are the kinetically-coupled theories f2(ϕ)FμνF (or IFF theories). However, these are known to suffer from electric fields backreaction or the strong coupling problem. In this work we shall confirm that such class of theories are problematic to support magnetogenesis during inflationary cosmology. On the contrary, we show that a bouncing cosmology with a contracting phase dominated by an equation of state with p>-ρ/3 can support magnetogenesis, evading the backreaction/strong-coupling problem. Finally, we study safe magnetogenesis in a particular bouncing model with an ekpyrotic-like contracting phase. In this case we found that f2(ϕ)F2-instabilities might arise during the final kinetic-driven expanding phase for steep ekpyrotic potentials.

  20. Primordial magnetic fields from a non-singular bouncing cosmology

    Membiela, Federico Agustín, E-mail: membiela@mdp.edu.ar [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud, 150, Rio de Janeiro (Brazil); Departamento de Física, Facultad de Ciencias Exactas y Naturales, UNMdP, Deán Funes 3350, 7600 Mar del Plata (Argentina)

    2014-08-15

    Although inflation is a natural candidate to generate the lengths of coherence of magnetic fields needed to explain current observations, it needs to break conformal invariance of electromagnetism to obtain significant magnetic amplitudes. Of the simplest realizations are the kinetically-coupled theories f{sup 2}(ϕ)F{sub μν}F{sup μν} (or IFF theories). However, these are known to suffer from electric fields backreaction or the strong coupling problem. In this work we shall confirm that such class of theories are problematic to support magnetogenesis during inflationary cosmology. On the contrary, we show that a bouncing cosmology with a contracting phase dominated by an equation of state with p>−ρ/3 can support magnetogenesis, evading the backreaction/strong-coupling problem. Finally, we study safe magnetogenesis in a particular bouncing model with an ekpyrotic-like contracting phase. In this case we found that f{sup 2}(ϕ)F{sup 2}-instabilities might arise during the final kinetic-driven expanding phase for steep ekpyrotic potentials.

  1. Primordial magnetic fields from a non-singular bouncing cosmology

    Membiela, Federico Agustín

    2014-01-01

    Although inflation is a natural candidate to generate the lengths of coherence of magnetic fields needed to explain current observations, it needs to break conformal invariance of electromagnetism to obtain significant magnetic amplitudes. Of the simplest realizations are the kinetically-coupled theories f 2 (ϕ)F μν F μν (or IFF theories). However, these are known to suffer from electric fields backreaction or the strong coupling problem. In this work we shall confirm that such class of theories are problematic to support magnetogenesis during inflationary cosmology. On the contrary, we show that a bouncing cosmology with a contracting phase dominated by an equation of state with p>−ρ/3 can support magnetogenesis, evading the backreaction/strong-coupling problem. Finally, we study safe magnetogenesis in a particular bouncing model with an ekpyrotic-like contracting phase. In this case we found that f 2 (ϕ)F 2 -instabilities might arise during the final kinetic-driven expanding phase for steep ekpyrotic potentials

  2. Exact Solution and Exotic Fluid in Cosmology

    Phillial Oh

    2012-09-01

    Full Text Available We investigate cosmological consequences of nonlinear sigma model coupled with a cosmological fluid which satisfies the continuity equation. The target space action is of the de Sitter type and is composed of four scalar fields. The potential which is a function of only one of the scalar fields is also introduced. We perform a general analysis of the ensuing cosmological equations and give various critical points and their properties. Then, we show that the model exhibits an exact cosmological solution which yields a transition from matter domination into dark energy epoch and compare it with the Λ-CDM behavior. Especially, we calculate the age of the Universe and show that it is consistent with the observational value if the equation of the state ωf of the cosmological fluid is within the range of 0.13 < ωf < 0.22. Some implication of this result is also discussed.

  3. Analytical study of a Kerr-Sen black hole and a charged massive scalar field

    Bernard, Canisius

    2017-11-01

    It is reported that Kerr-Newman and Kerr-Sen black holes are unstable to perturbations of charged massive scalar field. In this paper, we study analytically the complex frequencies which characterize charged massive scalar fields in a near-extremal Kerr-Sen black hole. For near-extremal Kerr-Sen black holes and for charged massive scalar fields in the eikonal large-mass M ≫μ regime, where M is the mass of the black hole, and μ is the mass of the charged scalar field, we have obtained a simple expression for the dimensionless ratio ωI/(ωR-ωc) , where ωI and ωR are, respectively, the imaginary and real parts of the frequency of the modes, and ωc is the critical frequency for the onset of super-radiance. We have also found our expression is consistent with the result of Hod [Phys. Rev. D 94, 044036 (2016), 10.1103/PhysRevD.94.044036] for the case of a near-extremal Kerr-Newman black hole and the result of Zouros and Eardly [Ann. Phys. (N.Y.) 118, 139 (1979), 10.1016/0003-4916(79)90237-9] for the case of neutral scalar fields in the background of a near-extremal Kerr black hole.

  4. Propagators for a scalar field in some Bianchi-type I universe

    Nariai, Hidekazu.

    1976-05-01

    As a sequel to previous papers on bi-scalar propagators in the Friedmann universes and a special Kasner universe (whose underlying space-time is flat), their counterparts for a massless scalar field in some Bianchi-type I universe (which is intrinsically curved and anisotropic) are derived by means of Hadamard's procedure and ours, the latter of which becomes inevitable in the realm of quantized field. The retarded propagator thus obtained is applied to the generation of the scalar field from a point source and a spatially uniform distribution of sources, respectively. In the former case, the luminosity formula for a point source is derived, which is an anisotropic version of Robertson's formula in the Friedmann universes. In the latter case, it is shown that the scalar field may behave as either a perfect fluid obeying Zel'dovich's hardest equation of state or an imperfect fluid whose equation of state violates the energy condition. Implication of the above three works on the occasion of quantizing the scalar field is also touched upon. (auth.)

  5. Black holes and asymptotics of 2+1 gravity coupled to a scalar field

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2002-01-01

    We consider 2+1 gravity minimally coupled to a self-interacting scalar field. The case in which the fall-off of the fields at infinity is slower than that of a localized distribution of matter is analyzed. It is found that the asymptotic symmetry group remains the same as in pure gravity (i.e., the conformal group). The generators of the asymptotic symmetries, however, acquire a contribution from the scalar field, but the algebra of the canonical generators possesses the standard central extension. In this context, new massive black hole solutions with a regular scalar field are found for a one-parameter family of potentials. These black holes are continuously connected to the standard zero mass black hole

  6. Cosmological aspects of spontaneous baryogenesis

    Simone, Andrea De; Kobayashi, Takeshi [SISSA,Via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy)

    2016-08-24

    We investigate cosmological aspects of spontaneous baryogenesis driven by a scalar field, and present general constraints that are independent of the particle physics model. The relevant constraints are obtained by studying the backreaction of the produced baryons on the scalar field, the cosmological expansion history after baryogenesis, and the baryon isocurvature perturbations. We show that cosmological considerations alone provide powerful constraints, especially for the minimal scenario with a quadratic scalar potential. Intriguingly, we find that for a given inflation scale, the other parameters including the reheat temperature, decoupling temperature of the baryon violating interactions, and the mass and decay constant of the scalar are restricted to lie within ranges of at most a few orders of magnitude. We also discuss possible extensions to the minimal setup, and propose two ideas for evading constraints on isocurvature perturbations: one is to suppress the baryon isocurvature with nonquadratic scalar potentials, another is to compensate the baryon isocurvature with cold dark matter isocurvature by making the scalar survive until the present.

  7. Einstein-Cartan Gravity with Torsion Field Serving as an Origin for the Cosmological Constant or Dark Energy Density

    Ivanov, A. N.; Wellenzohn, M.

    2016-09-01

    We analyse the Einstein-Cartan gravity in its standard form { R }=R+{{ K }}2, where { R } {and} R are the Ricci scalar curvatures in the Einstein-Cartan and Einstein gravity, respectively, and {{ K }}2 is the quadratic contribution of torsion in terms of the contorsion tensor { K }. We treat torsion as an external (or background) field and show that its contribution to the Einstein equations can be interpreted in terms of the torsion energy-momentum tensor, local conservation of which in a curved spacetime with an arbitrary metric or an arbitrary gravitational field demands a proportionality of the torsion energy-momentum tensor to a metric tensor, a covariant derivative of which vanishes owing to the metricity condition. This allows us to claim that torsion can serve as an origin for the vacuum energy density, given by the cosmological constant or dark energy density in the universe. This is a model-independent result that may explain the small value of the cosmological constant, which is a long-standing problem in cosmology. We show that the obtained result is valid also in the Poincaré gauge gravitational theory of Kibble, where the Einstein-Hilbert action can be represented in the same form: { R }=R+{{ K }}2.

  8. CosmoTransitions: Computing cosmological phase transition temperatures and bubble profiles with multiple fields

    Wainwright, Carroll L.

    2012-09-01

    I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot

  9. Quantum mechanics of Klein-Gordon-type fields and quantum cosmology

    Mostafazadeh, Ali

    2004-01-01

    With a view to address some of the basic problems of quantum cosmology, we formulate the quantum mechanics of the solutions of a Klein-Gordon-type field equation: (∂ t 2 +D)ψ(t)=0, where t is an element of R and D is a positive-definite operator acting in a Hilbert space H-tilde. In particular, we determine all the positive-definite inner products on the space H of the solutions of such an equation and establish their physical equivalence. This specifies the Hilbert space structure of H uniquely. We use a simple realization of the latter to construct the observables of the theory explicitly. The field equation does not fix the choice of a Hamiltonian operator unless it is supplemented by an underlying classical system and a quantization scheme supported by a correspondence principle. In general, there are infinitely many choices for the Hamiltonian each leading to a different notion of time-evolution in H. Among these is a particular choice that generates t-translations in H and identifies t with time whenever D is t-independent. For a t-dependent D, we show that regardless of the choice of the inner product the t-translations do not correspond to unitary evolutions in H, and t cannot be identified with time. We apply these ideas to develop a formulation of quantum cosmology based on the Wheeler-DeWitt equation for a Friedman-Robertson-Walker model coupled to a real scalar field with an arbitrary positive confining potential. In particular, we offer a complete solution of the Hilbert space problem, construct the observables, use a position-like observable to introduce the wave functions of the universe (which differ from the Wheeler-DeWitt fields), reformulate the corresponding quantum theory in terms of the latter, reduce the problem of the identification of time to the determination of a Hamiltonian operator acting in L 2 R+L 2 R, show that the factor-ordering problem is irrelevant for the kinematics of the quantum theory, and propose a formulation of the

  10. Quantum mechanics of Klein-Gordon-type fields and quantum cosmology

    Mostafazadeh, Ali

    2004-01-01

    With a view to address some of the basic problems of quantum cosmology, we formulate the quantum mechanics of the solutions of a Klein-Gordon-type field equation: (∂t2+D)ψ(t)=0, where t∈R and D is a positive-definite operator acting in a Hilbert space H~. In particular, we determine all the positive-definite inner products on the space H of the solutions of such an equation and establish their physical equivalence. This specifies the Hilbert space structure of H uniquely. We use a simple realization of the latter to construct the observables of the theory explicitly. The field equation does not fix the choice of a Hamiltonian operator unless it is supplemented by an underlying classical system and a quantization scheme supported by a correspondence principle. In general, there are infinitely many choices for the Hamiltonian each leading to a different notion of time-evolution in H. Among these is a particular choice that generates t-translations in H and identifies t with time whenever D is t-independent. For a t-dependent D, we show that regardless of the choice of the inner product the t-translations do not correspond to unitary evolutions in H, and t cannot be identified with time. We apply these ideas to develop a formulation of quantum cosmology based on the Wheeler-DeWitt equation for a Friedman-Robertson-Walker model coupled to a real scalar field with an arbitrary positive confining potential. In particular, we offer a complete solution of the Hilbert space problem, construct the observables, use a position-like observable to introduce the wave functions of the universe (which differ from the Wheeler-DeWitt fields), reformulate the corresponding quantum theory in terms of the latter, reduce the problem of the identification of time to the determination of a Hamiltonian operator acting in L2(R)⊕L2(R), show that the factor-ordering problem is irrelevant for the kinematics of the quantum theory, and propose a formulation of the dynamics. Our method is

  11. Radiation reaction for the classical relativistic spinning particle in scalar, tensor and linearized gravitational fields

    Barut, A.O.; Cruz, M.G.

    1992-08-01

    We use the method of analytic continuation of the equation of motion including the self-fields to evaluate the radiation reaction for a classical relativistic spinning point particle in interaction with scalar, tensor and linearized gravitational fields in flat spacetime. In the limit these equations reduce to those of spinless particles. We also show the renormalizability of these theories. (author). 10 refs

  12. Stationary bound-state massive scalar field configurations supported by spherically symmetric compact reflecting stars

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-12-15

    It has recently been demonstrated that asymptotically flat neutral reflecting stars are characterized by an intriguing no-hair property. In particular, it has been proved that these horizonless compact objects cannot support spatially regular static matter configurations made of scalar (spin-0) fields, vector (spin-1) fields and tensor (spin-2) fields. In the present paper we shall explicitly prove that spherically symmetric compact reflecting stars can support stationary (rather than static) bound-state massive scalar fields in their exterior spacetime regions. To this end, we solve analytically the Klein-Gordon wave equation for a linearized scalar field of mass μ and proper frequency ω in the curved background of a spherically symmetric compact reflecting star of mass M and radius R{sub s}. It is proved that the regime of existence of these stationary composed star-field configurations is characterized by the simple inequalities 1 - 2M/R{sub s} < (ω/μ){sup 2} < 1. Interestingly, in the regime M/R{sub s} << 1 of weakly self-gravitating stars we derive a remarkably compact analytical equation for the discrete spectrum {ω(M,R_s, μ)}{sup n=∞}{sub n=1} of resonant oscillation frequencies which characterize the stationary composed compact-reflecting-star-linearized-massive-scalar-field configurations. Finally, we verify the accuracy of the analytically derived resonance formula of the composed star-field configurations with direct numerical computations. (orig.)

  13. The Higgs field and the resolution of the Cosmological Constant Paradox in the Weyl-geometrical Universe

    De Martini, Francesco

    2017-10-01

    The nature of the scalar field responsible for the cosmological inflation is found to be rooted in the most fundamental concept of Weyl's differential geometry: the parallel displacement of vectors in curved space-time. Within this novel geometrical scenario, the standard electroweak theory of leptons based on the SU(2)L⊗U(1)Y as well as on the conformal groups of space-time Weyl's transformations is analysed within the framework of a general-relativistic, conformally covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An `effective cosmological potential': Veff is expressed in terms of the dark energy potential: via the `mass reduction parameter': , a general property of the Universe. The mass of the Higgs boson, which is considered a `free parameter' by the standard electroweak theory, by our theory is found to be proportional to the mass which accounts for the measured cosmological constant, i.e. the measured content of vacuum-energy in the Universe. The non-integrable application of Weyl's geometry leads to a Proca equation accounting for the dynamics of a φρ-particle, a vector-meson proposed as an an optimum candidate for dark matter. On the basis of previous cosmic microwave background results our theory leads, in the condition of cosmological `critical density', to the assessment of the average energy content of the φρ-excitation. The peculiar mathematical structure of Veff offers a clue towards a very general resolution of a most intriguing puzzle of modern quantum field theory, the `Cosmological Constant Paradox' (here referred to as the `Λ-Paradox'). Indeed, our `universal' theory offers a resolution of the Λ-Paradox for all exponential inflationary potentials: VΛ(T,φ)∝e-nφ, and for all

  14. The Higgs field and the resolution of the Cosmological Constant Paradox in the Weyl-geometrical Universe.

    De Martini, Francesco

    2017-11-13

    The nature of the scalar field responsible for the cosmological inflation is found to be rooted in the most fundamental concept of Weyl's differential geometry: the parallel displacement of vectors in curved space-time. Within this novel geometrical scenario, the standard electroweak theory of leptons based on the SU (2) L ⊗ U (1) Y as well as on the conformal groups of space-time Weyl's transformations is analysed within the framework of a general-relativistic, conformally covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An 'effective cosmological potential': V eff is expressed in terms of the dark energy potential: [Formula: see text] via the 'mass reduction parameter': [Formula: see text], a general property of the Universe. The mass of the Higgs boson, which is considered a 'free parameter' by the standard electroweak theory, by our theory is found to be proportional to the mass [Formula: see text] which accounts for the measured cosmological constant, i.e. the measured content of vacuum-energy in the Universe. The non-integrable application of Weyl's geometry leads to a Proca equation accounting for the dynamics of a ϕ ρ -particle, a vector-meson proposed as an an optimum candidate for dark matter. On the basis of previous cosmic microwave background results our theory leads, in the condition of cosmological 'critical density', to the assessment of the average energy content of the ϕ ρ -excitation. The peculiar mathematical structure of V eff offers a clue towards a very general resolution of a most intriguing puzzle of modern quantum field theory, the 'Cosmological Constant Paradox' (here referred to as the ' Λ -Paradox'). Indeed, our 'universal' theory offers a resolution of the Λ -Paradox

  15. An iterative reconstruction of cosmological initial density fields

    Hada, Ryuichiro; Eisenstein, Daniel J.

    2018-05-01

    We present an iterative method to reconstruct the linear-theory initial conditions from the late-time cosmological matter density field, with the intent of improving the recovery of the cosmic distance scale from the baryon acoustic oscillations (BAOs). We present tests using the dark matter density field in both real and redshift space generated from an N-body simulation. In redshift space at z = 0.5, we find that the reconstructed displacement field using our iterative method are more than 80% correlated with the true displacement field of the dark matter particles on scales k < 0.10h Mpc-1. Furthermore, we show that the two-point correlation function of our reconstructed density field matches that of the initial density field substantially better, especially on small scales (<40h-1 Mpc). Our redshift-space results are improved if we use an anisotropic smoothing so as to account for the reduced small-scale information along the line of sight in redshift space.

  16. Some impacts of Lorentz violation on cosmology

    Arianto; Zen, Freddy P.; Gunara, Bobby E.; Triyanta; Supardi

    2007-01-01

    The impact of Lorentz violation on the dynamics of a scalar field is investigated. In particular, we study the dynamics of a scalar field in the scalar-vector-tensor theory where the vector field is constrained to be unity and time like. By taking a generic form of the scalar field action, a generalized dynamical equation for the scalar-vector-tensor theory of gravity is obtained to describe the cosmological solutions. We present a class of exact solutions for an ordinary scalar field or phantom field corresponding to a power law coupling vector and the Hubble parameter. As the results, we find a constant equation of state in de Sitter space-time and power law expansion with the quadratic of coupling vector, while a dynamic equation of state is obtained for n > 2. Then, we consider the inflationary scenario based on the Lorentz violating scalar-vector-tensor theory of gravity with general power-law coupling vector and two typical potentials: inverse power-law and power-law potentials. In fact, both the coupling vector and the potential models affect the dynamics of the inflationary solutions. Finally, we use the dynamical system formalism to study the attractor behavior of a cosmological model containing a scalar field endowed with a quadratic coupling vector and a chaotic potential

  17. New holographic scalar field models of dark energy in non-flat universe

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Fehri, J. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-02-08

    Motivated by the work of Granda and Oliveros [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199], we generalize their work to the non-flat case. We study the correspondence between the quintessence, tachyon, K-essence and dilaton scalar field models with the new holographic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe. In the limiting case of a flat universe, i.e. k=0, all results given in [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199] are obtained.

  18. New holographic scalar field models of dark energy in non-flat universe

    Karami, K.; Fehri, J.

    2010-01-01

    Motivated by the work of Granda and Oliveros [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199], we generalize their work to the non-flat case. We study the correspondence between the quintessence, tachyon, K-essence and dilaton scalar field models with the new holographic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe. In the limiting case of a flat universe, i.e. k=0, all results given in [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199] are obtained.

  19. Search for Chameleon Scalar Fields with the Axion Dark Matter Experiment

    Rybka, G.; Hotz, M.; Rosenberg, L. J; Asztalos, S. J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hoskins, J.; Martin, C.; Sikivie, P.; Tanner, D. B.; Bradley, R.; Clarke, J.

    2010-01-01

    Scalar fields with a 'chameleon' property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the afterglow effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling β γ excluding values between 2x10 9 and 5x10 14 for effective chameleon masses between 1.9510 and 1.9525 μeV.

  20. Scalar and vector Galileons

    Rodríguez, Yeinzon; Navarro, Andrés A.

    2017-01-01

    An alternative for the construction of fundamental theories is the introduction of Galileons. These are fields whose action leads to non higher than second-order equations of motion. As this is a necessary but not sufficient condition to make the Hamiltonian bounded from below, as long as the action is not degenerate, the Galileon construction is a way to avoid pathologies both at the classical and quantum levels. Galileon actions are, therefore, of great interest in many branches of physics, specially in high energy physics and cosmology. This proceedings contribution presents the generalities of the construction of both scalar and vector Galileons following two different but complimentary routes. (paper)

  1. CIFOG: Cosmological Ionization Fields frOm Galaxies

    Hutter, Anne

    2018-03-01

    CIFOG is a versatile MPI-parallelised semi-numerical tool to perform simulations of the Epoch of Reionization. From a set of evolving cosmological gas density and ionizing emissivity fields, it computes the time and spatially dependent ionization of neutral hydrogen (HI), neutral (HeI) and singly ionized helium (HeII) in the intergalactic medium (IGM). The code accounts for HII, HeII, HeIII recombinations, and provides different descriptions for the photoionization rate that are used to calculate the residual HI fraction in ionized regions. This tool has been designed to be coupled to semi-analytic galaxy formation models or hydrodynamical simulations. The modular fashion of the code allows the user to easily introduce new descriptions for recombinations and the photoionization rate.

  2. Study of the cosmological evolution of the magnetic field

    Dubois, Yohan

    2008-01-01

    In numerical models within the standard hierarchical structure formation, galaxies contain too much stars in comparison with observations. That is called the over-cooling dilemma. I have studied the galactic wind formation produced by the supernovae explosions using the numerical code RAMSES and a bunch of analytical tools. I have underlined the central role of the infalling gas accreting on galactic disks, and I have determined the conditions under which this accretion can prevent any gas ejection on large scales. It appears that winds are unable to elucidate the over-cooling problem in quiescent star forming galaxies. On the other hand, dwarf galaxies, capable to form such super-winds, are responsible for the metallic and magnetic enrichment of the extra-galactic medium. Using the same numerical tool, I performed the first simulation of the formation of a galactic win with magnetic fields. Numerical simulations of galactic wind formation with magnetic fields show the necessity of some amplification process occurring in galaxies: associated to a strong stellar dynamo, supernovae explosions can originate the residual magnetic field of the Universe. The magnetic field present on large scales is therefore amplified when the hot gas of the galaxy cluster collapses. By achieving the first magnetic cosmological simulation of the formation of a cluster and its galaxies, I was able to point out the necessity of accounting for the cooling processes to properly describe the magnetic field evolution inside the cluster core and to reconcile simulations with observational values. (author) [fr

  3. Reconstruction of the Scalar Field Potential in Inflationary Models with a Gauss-Bonnet term

    Koh, Seoktae; Lee, Bum-Hoon; Tumurtushaa, Gansukh

    2017-06-01

    We consider inflationary models with a Gauss-Bonnet term to reconstruct the scalar-field potentials and the Gauss-Bonnet coupling functions. Both expressions are derived from the observationally favored configurations of ns and r . Our result implies that, for the reconstructed potentials and coupling functions, the blue tilt of inflationary tensor fluctuations can be realized. To achieve a blue tilt for the inflationary tensor fluctuations, a scalar field must climb up its potential before rolling down. We further investigate the properties of propagation of the perturbation modes in Friedmann-Robertson-Walker spacetime. For the reconstructed configurations that give rise to the blue tilt for the inflationary tensor fluctuations, we show that the ghosts and instabilities are absent with the superluminal propagation speeds for the scalar perturbation modes, whereas the propagation speeds of the tensor perturbations are subluminal.

  4. Open Wilson lines and generalized star product in noncommutative scalar field theories

    Kiem, Youngjai; Sato, Haru-Tada; Rey, Soo-Jong; Yee, Jung-Tay

    2002-01-01

    Open Wilson line operators and a generalized star product have been studied extensively in noncommutative gauge theories. We show that they also show up in noncommutative scalar field theories as universal structures. We first point out that the dipole picture of noncommutative geometry provides an intuitive argument for the robustness of the open Wilson lines and generalized star products therein. We calculate the one-loop effective action of noncommutative scalar field theory with a cubic self-interaction and show explicitly that the generalized star products arise in the nonplanar part. It is shown that, at the low-energy, large noncommutativity limit, the nonplanar part is expressible solely in terms of the scalar open Wilson line operator and descendants

  5. Propagators for a quantized scalar field in a static closed universe

    Nariai, Hidekazu; Azuma, Takahiro.

    1978-07-01

    In a previous paper, a massive scalar field in an expanding closed universe was canonically quantized by taking full account of its coupling-type with the background universe and of the latter's topological (spherical or elliptic) nature. General formulae (including the parts of vacuum fluctuation which should after all be removed by a suitable regularization) for the energy density and pressure of the quantized medium were derived. Various propagators for the quantized scalar field were also dealt with, because the Feynman propagator in particular became important as soon as the pair-creation of those particles was called for. However, there will be an intimate relation between the former hydrodynamic quantities and the pair-creation of their constituents. Accordingly, this problem is studied in detail by adopting a static closed universe (for simplicity in the reduction of various expressions derived in the previous paper) and examining the behavior of various bi-scalar propagators in the universe. (author)

  6. Finite size effects in the thermodynamics of a free neutral scalar field

    Parvan, A. S.

    2018-04-01

    The exact analytical lattice results for the partition function of the free neutral scalar field in one spatial dimension in both the configuration and the momentum space were obtained in the framework of the path integral method. The symmetric square matrices of the bilinear forms on the vector space of fields in both configuration space and momentum space were found explicitly. The exact lattice results for the partition function were generalized to the three-dimensional spatial momentum space and the main thermodynamic quantities were derived both on the lattice and in the continuum limit. The thermodynamic properties and the finite volume corrections to the thermodynamic quantities of the free real scalar field were studied. We found that on the finite lattice the exact lattice results for the free massive neutral scalar field agree with the continuum limit only in the region of small values of temperature and volume. However, at these temperatures and volumes the continuum physical quantities for both massive and massless scalar field deviate essentially from their thermodynamic limit values and recover them only at high temperatures or/and large volumes in the thermodynamic limit.

  7. Linear spin-zero quantum fields in external gravitational and scalar fields

    Kay, B.S.

    1977-10-01

    Mathematically rigorous results are given on the quantization of the covariant Klein-Gordon field with an external stationary scalar interaction in a stationary curved space-time. It is shown how, following Segal, Weinless etc., the problem reduces to finding a ''one-particle structure'' for the corresponding classical system. The main result is an existence theorem for such a one-particle structure for a precisely specified class of stationary space-times. Byproducts of our approach are (1)a discussion of when the equal-time hypersurfaces in a given stationary space-time are Cauchy; (2)a proof that when a one-particle structure exists it is unique a result of general interest for the quantization of linear systems; (3)a modification and extension of the methods of Chernoff [3] for proving the essential self-adjointness of ceratin partial differential operators

  8. Covariant formulation of scalar-torsion gravity

    Hohmann, Manuel; Järv, Laur; Ualikhanova, Ulbossyn

    2018-05-01

    We consider a generalized teleparallel theory of gravitation, where the action contains an arbitrary function of the torsion scalar and a scalar field, f (T ,ϕ ) , thus encompassing the cases of f (T ) gravity and a nonminimally coupled scalar field as subclasses. The action is manifestly Lorentz invariant when besides the tetrad one allows for a flat but nontrivial spin connection. We derive the field equations and demonstrate how the antisymmetric part of the tetrad equations is automatically satisfied when the spin connection equation holds. The spin connection equation is a vital part of the covariant formulation, since it determines the spin connection associated with a given tetrad. We discuss how the spin connection equation can be solved in general and provide the cosmological and spherically symmetric examples. Finally, we generalize the theory to an arbitrary number of scalar fields.

  9. The most general cosmological dynamics for ELKO matter fields

    Fabbri, Luca

    2011-01-01

    Not long ago, the definition of eigenspinors of charge-conjugation belonging to a special Wigner class has lead to the unexpected theoretical discovery of a form of matter with spin 1/2 and mass dimension 1, called ELKO matter field; ELKO matter fields defined in flat spacetimes have been later extended to curved and twisted spacetimes, in order to include in their dynamics the coupling to gravitational fields possessing both metric and torsional degrees of freedom: the inclusion of non-commuting spinorial covariant derivatives allows for the introduction of more general dynamical terms influencing the behaviour of ELKO matter fields. In this Letter, we shall solve the theoretical problem of finding the most general dynamics for ELKO matter, and we will face the phenomenological issue concerning how the new dynamical terms may affect the behavior of ELKO matter; we will see that new effects will arise for which the very existence of ELKO matter will be endangered, due to the fact that ELKOs will turn incompatible with the cosmological principle. Thus we have that anisotropic universes must be taken into account if ELKOs are to be considered in their most general form.

  10. Bianchi type II brane-world cosmologies (U≥0)

    Hoogen, R.J. van den; Ibanez, J.

    2003-01-01

    The asymptotic properties of the Bianchi type II cosmological model in the brane-world scenario are investigated. The matter content is assumed to be a combination of a perfect fluid and a minimally coupled scalar field that is restricted to the brane. The isotropic brane-world solution is determined to represent the initial singularity in all brane-world cosmologies. Additionally, it is shown that it is the kinetic energy of the scalar field which dominates the initial dynamics in these brane-world cosmologies. It is important to note that the dynamics of these brane-world cosmologies is not necessarily asymptotic to general relativistic cosmologies to the future in the case of a zero four-dimensional cosmological constant

  11. Anomalous scaling of a scalar field advected by turbulence

    Kraichnan, R.H. [Robert H. Kraichnan, Inc., Santa Fe, NM (United States)

    1995-12-31

    Recent work leading to deduction of anomalous scaling exponents for the inertial range of an advected passive field from the equations of motion is reviewed. Implications for other turbulence problems are discussed.

  12. Wormhole solutions with a complex ghost scalar field and their instability

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta

    2018-01-01

    We study compact configurations with a nontrivial wormholelike spacetime topology supported by a complex ghost scalar field with a quartic self-interaction. For this case, we obtain regular asymptotically flat equilibrium solutions possessing reflection symmetry. We then show their instability with respect to linear radial perturbations.

  13. Stochastic quantum inflation for a canonical scalar field with linear self-interaction potential

    Panotopoulos, Grigoris [CENTRA, Instituto Superior Tecnico, Universidade de Lisboa, Lisboa (Portugal)

    2017-10-15

    We apply Starobinsky's formalism of stochastic inflation to the case of a massless minimally coupled scalar field with linear self-interaction potential. We solve the corresponding Fokker-Planck equation exactly, and we obtain analytical expressions for the stochastic expectation values. (orig.)

  14. Green's functions for a scalar fields in a class of Robertson-Walker space-times

    Mankin, Romi; Ainsaar, Ain

    1997-01-01

    The retarded and advanced Green's functions for a massless non conformally-coupled scalar field in a class of Robertson-Walker space-times are calculated analytically. The results are applied to the calculation of the Hadamard fundamental solutions in some special cases. (author)

  15. Note on the evolution of the gravitational potential in Rastall scalar field theories

    Fabris, J.C.; Hamani Daouda, M.; Piattella, O.F.

    2012-01-01

    We investigate the evolution of the gravitational potential in Rastall scalar field theories. In a single component model a consistent perturbation theory, formulated in the Newtonian gauge, is possible only for γ=1, which is the General Relativity limit. On the other hand, the addition of another canonical fluid component allows to consider the case γ≠1.

  16. Solar system tests of scalar field models with an exponential potential

    Paramos, J.; Bertolami, O.

    2008-01-01

    We consider a scenario where the dynamics of a scalar field is ruled by an exponential potential, such as those arising from some quintessence-type models, and aim at obtaining phenomenological manifestations of this entity within our Solar System. To do so, we assume a perturbative regime, derive the perturbed Schwarzschild metric, and extract the relevant post-Newtonian parameters.

  17. Propagators for a scalar field in a homogeneous expanding universe, 1

    Nariai, Hidekazu; Tanabe, Kenji.

    1975-11-01

    In view of a recent interest in the quantum field-theoretical creation of particles in a big-bang universe (which, via the problem how their vacuum state should be defined, will be connected with their propagators whose structure depends also on that of the universe), our previous formulae for bi-scalar Green's functions corresponding to a massless scalar field in the radiation- and matter-dominated stages of the Friedmann universe with flat 3-space are extended in a classical level. One is to derive the formulae for a massive scalar field in the same universe, and another lies in deriving the ones applicable to the respective stages of a closed universe with spherical topology. As an application, we discuss a massless scalar field (e.g., photons or gravitons defined suitably) and its physical property in the cases where its source distribution is spatially uniform and where that is of a delta-singularity. It is shown that the energy-momentum tensor in the first case is formally the same as a perfect fluid whose sound velocity relative to the light velocity is unity, while the tensor in the second case leads naturally to Robertson's formula for the apparent luminosity of a receding galaxy. The behavior of photons or gravitons generated from a turbulent medium in an early universe is also dealt with. (auth.)

  18. Hawking temperature and scalar field fluctuations in the de-Sitter space

    Rozhanskij, L.V.

    1988-01-01

    It is shown that diffusion equation for scalar field fluctuations in the de-Sitter space corresponds to Hawking temperature. The relationship between stationary solution of the equation and Hartle-Hawking instanton at random space dimensionality and any type of gravitational effect has been established

  19. Alternative mechanism of avoiding the big rip or little rip for a scalar phantom field

    Xi Ping; Zhai Xianghua; Li Xinzhou

    2012-01-01

    Depending on the choice of its potential, the scalar phantom field φ (the equation of state parameter w 2 correction. The singularity is avoidable under all these potentials. Hence, we conclude that the avoidance of big or little rip is hardly dependent on special potential.

  20. Relating double field theory to the scalar potential of N=2 gauged supergravity

    Blumenhagen, Ralph [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, München, 80805 (Germany); Font, Anamaria [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, München, 80805 (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU,Theresienstr. 37, München, 80333 (Germany); Plauschinn, Erik [Arnold Sommerfeld Center for Theoretical Physics, LMU,Theresienstr. 37, München, 80333 (Germany)

    2015-12-18

    The double field theory action in the flux formulation is dimensionally reduced on a Calabi-Yau three-fold equipped with non-vanishing type IIB geometric and non-geometric fluxes. First, we rewrite the metric-dependent reduced DFT action in terms of quantities that can be evaluated without explicitly knowing the metric on the Calabi-Yau manifold. Second, using properties of special geometry we obtain the scalar potential of N=2 gauged supergravity. After an orientifold projection, this potential is consistent with the scalar potential arising from the flux-induced superpotential, plus an additional D-term contribution.

  1. Initial behavior of a quantized scalar field the associated pair-creation in several anisotropic universes

    Nariai, Hidekazu

    1981-01-01

    As a sequel to previous works on the definition of a positive frequency part of a quantized scalar field near an initial stage of several Robertson-Walker universes with flat, open or closed 3-space and the associated pair-creation of those particles, an attempt is made to seek for the same concept in several Bianchi-type I anisotropic universes. It is shown that, if the positive frequency part is introduced, the pair-creation of scalar particles and their spectral law are uniquely determined, as in the case of isotropic universes. (author)

  2. Revisiting the conformal invariance of the scalar field: From Minkowski space to de Sitter space

    Huguet, E.; Queva, J.; Renaud, J.

    2008-01-01

    In this article, we clarify the link between the conformal (i.e. Weyl) correspondence from the Minkowski space to the de Sitter space and the conformal [i.e. SO(2,d)] invariance of the conformal scalar field on both spaces. We exhibit the realization on de Sitter space of the massless scalar representation of SO(2,d). It is obtained from the corresponding representation in Minkowski space through an intertwining operator inherited from the Weyl relation between the two spaces. The de Sitter representation is written in a form which allows one to take the point of view of a Minkowskian observer who sees the effect of curvature through additional terms

  3. Neutral and charged scalar mesons, pseudoscalar mesons, and diquarks in magnetic fields

    Liu, Hao; Wang, Xinyang; Yu, Lang; Huang, Mei

    2018-04-01

    We investigate both (pseudo)scalar mesons and diquarks in the presence of external magnetic field in the framework of the two-flavored Nambu-Jona-Lasinio (NJL) model, where mesons and diquarks are constructed by infinite sum of quark-loop chains by using random phase approximation. The polarization function of the quark-loop is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in the Landau level representation. We systematically investigate the masses behaviors of scalar σ meson, neutral and charged pions as well as the scalar diquarks, with respect to the magnetic field strength at finite temperature and chemical potential. It is shown that the numerical results of both neutral and charged pions are consistent with the lattice QCD simulations. The mass of the charge neutral pion keeps almost a constant under the magnetic field, which is preserved by the remnant symmetry of QCD ×QED in the vacuum. The mass of the charge neutral scalar σ is around two times quark mass and increases with the magnetic field due to the magnetic catalysis effect, which is an typical example showing that the polarized internal quark structure cannot be neglected when we consider the meson properties under magnetic field. For the charged particles, the one quark-antiquark loop contribution to the charged π± increases essentially with the increase of magnetic fields due to the magnetic catalysis of the polarized quarks. However, the one quark-quark loop contribution to the scalar diquark mass is negative comparing with the point-particle result and the loop effect is small.

  4. Singularity, initial conditions and quantum tunneling in modern cosmology

    Khalatnikov, I M; Kamenshchik, A Yu

    1998-01-01

    The key problems of modern cosmology, such as the cosmological singularity, initial conditions, and the quantum tunneling hypothesis, are discussed. The relationship between the latest cosmological trends and L D Landau's old ideas is analyzed. Particular attention is given to the oscillatory approach to singularity; quantum tunneling processes determining wave function of the Universe in the presence of a compex scalar field; and the role of quantum corrections in these processes. The classical dynamics of closed models with a real scalar field is investigated from the standpoint of chaotic, fractal, and singularity-avoiding properties. (special issue)

  5. Entanglement growth after a global quench in free scalar field theory

    Cotler, Jordan S. [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305 (United States); Hertzberg, Mark P. [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Mezei, Márk [Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544 (United States); Mueller, Mark T. [Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-11-28

    We compute the entanglement and Rényi entropy growth after a global quench in various dimensions in free scalar field theory. We study two types of quenches: a boundary state quench and a global mass quench. Both of these quenches are investigated for a strip geometry in 1, 2, and 3 spatial dimensions, and for a spherical geometry in 2 and 3 spatial dimensions. We compare the numerical results for massless free scalars in these geometries with the predictions of the analytical quasiparticle model based on EPR pairs, and find excellent agreement in the limit of large region sizes. At subleading order in the region size, we observe an anomalous logarithmic growth of entanglement coming from the zero mode of the scalar.

  6. Vacuum stability of a general scalar potential of a few fields

    Kannike, Kristjan [NICPB, Tallinn (Estonia)

    2016-06-15

    We calculate analytical vacuum stability or bounded from below conditions for general scalar potentials of a few fields. After a brief review of copositivity, we show how to find positivity conditions for more complicated potentials. We discuss the vacuum stability conditions of the general potential of two real scalars, without and with the Higgs boson included in the potential. As further examples, we give explicit vacuum stability conditions for the two Higgs doublet model with no explicit CP breaking, and for the Z{sub 3} scalar dark matter with an inert doublet and a complex singlet. We give a short overview of positivity conditions for tensors of quartic couplings via tensor eigenvalues. (orig.)

  7. PDF approach for turbulent scalar field: Some recent developments

    Gao, Feng

    1993-01-01

    The probability density function (PDF) method has been proven a very useful approach in turbulence research. It has been particularly effective in simulating turbulent reacting flows and in studying some detailed statistical properties generated by a turbulent field There are, however, some important questions that have yet to be answered in PDF studies. Our efforts in the past year have been focused on two areas. First, a simple mixing model suitable for Monte Carlo simulations has been developed based on the mapping closure. Secondly, the mechanism of turbulent transport has been analyzed in order to understand the recently observed abnormal PDF's of turbulent temperature fields generated by linear heat sources.

  8. Inhomogenous loop quantum cosmology with matter

    Martín-de Bias, D; Mena Marugán, G A; Martín-Benito, M

    2012-01-01

    The linearly polarized Gowdy T 3 model with a massless scalar field with the same symmetries as the metric is quantized by applying a hybrid approach. The homogeneous geometry degrees of freedom are loop quantized, fact which leads to the resolution of the cosmological singularity, while a Fock quantization is employed for both matter and gravitational inhomogeneities. Owing to the inclusion of the massless scalar field this system allows us to modelize flat Friedmann-Robertson-Walker cosmologies filled with inhomogeneities propagating in one direction. It provides a perfect scenario to study the quantum back-reaction between the inhomogeneities and the polymeric homogeneous and isotropic background.

  9. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Khaledian, M.S.; Felegary, F.; Azarmi, Z. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-03-29

    We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.

  10. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe

    Karami, K.; Khaledian, M.S.; Felegary, F.; Azarmi, Z.

    2010-01-01

    We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.

  11. Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential

    Huang, Qing-Guo; Pi, Shi

    2018-04-01

    The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(phi)~ phin. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.

  12. Gravitational self-interactions of a degenerate quantum scalar field

    Chakrabarty, Sankha S.; Enomoto, Seishi; Han, Yaqi; Sikivie, Pierre; Todarello, Elisa M.

    2018-02-01

    We develop a formalism to help calculate in quantum field theory the departures from the description of a system by classical field equations. We apply the formalism to a homogeneous condensate with attractive contact interactions and to a homogeneous self-gravitating condensate in critical expansion. In their classical descriptions, such condensates persist forever. We show that in their quantum description, parametric resonance causes quanta to jump in pairs out of the condensate into all modes with wave vector less than some critical value. We calculate, in each case, the time scale over which the homogeneous condensate is depleted and after which a classical description is invalid. We argue that the duration of classicality of inhomogeneous condensates is shorter than that of homogeneous condensates.

  13. The average action for scalar fields near phase transitions

    Wetterich, C.

    1991-08-01

    We compute the average action for fields in two, three and four dimensions, including the effects of wave function renormalization. A study of the one loop evolution equations for the scale dependence of the average action gives a unified picture of the qualitatively different behaviour in various dimensions for discrete as well as abelian and nonabelian continuous symmetry. The different phases and the phase transitions can be infered from the evolution equation. (orig.)

  14. Cosmological problems with multiple axion-like fields

    Mack, Katherine J.; Steinhardt, Paul J.

    2011-01-01

    Incorporating the QCD axion and simultaneously satisfying current constraints on the dark matter density and isocurvature fluctuations requires non-minimal fine-tuning of inflationary parameters or the axion misalignment angle (or both) for Peccei-Quinn symmetry-breaking scales f a > 10 12 GeV. To gauge the degree of tuning in models with many axion-like fields at similar symmetry-breaking scales and masses, as may occur in string theoretic models that include a QCD axion, we introduce a figure of merit F that measures the fractional volume of allowed parameter space: the product of the slow roll parameter ε and each of the axion misalignment angles, θ 0 . For a single axion, F∼ −11 is needed to avoid conflict with observations. We show that the fine tuning of F becomes exponentially more extreme in the case of numerous axion-like fields. Anthropic arguments are insufficient to explain the fine tuning because the bulk of the anthropically allowed parameter space is observationally ruled out by limits on the cosmic microwave background isocurvature modes. Therefore, this tuning presents a challenge to the compatibility of string-theoretic models with light axions and inflationary cosmology

  15. Cosmological perturbations in antigravity

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  16. Hamiltonian description of the parametrized scalar field in bounded spatial regions

    Barbero G, J Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J S

    2016-01-01

    We study the Hamiltonian formulation for a parametrized scalar field in a regular bounded spatial region subject to Dirichlet, Neumann and Robin boundary conditions. We generalize the work carried out by a number of authors on parametrized field systems to the interesting case where spatial boundaries are present. The configuration space of our models contains both smooth scalar fields defined on the spatial manifold and spacelike embeddings from the spatial manifold to a target spacetime endowed with a fixed Lorentzian background metric. We pay particular attention to the geometry of the infinite dimensional manifold of embeddings and the description of the relevant geometric objects: the symplectic form on the primary constraint submanifold and the Hamiltonian vector fields defined on it. (paper)

  17. Theoretical cosmology

    Raychaudhuri, A.K.

    1979-01-01

    The subject is covered in chapters, entitled; introduction; Newtonian gravitation and cosmology; general relativity and relativistic cosmology; analysis of observational data; relativistic models not obeying the cosmological principle; microwave radiation background; thermal history of the universe and nucleosynthesis; singularity of cosmological models; gravitational constant as a field variable; cosmological models based on Einstein-Cartan theory; cosmological singularity in two recent theories; fate of perturbations of isotropic universes; formation of galaxies; baryon symmetric cosmology; assorted topics (including extragalactic radio sources; Mach principle). (U.K.)

  18. Matrix model approximations of fuzzy scalar field theories and their phase diagrams

    Tekel, Juraj [Department of Theoretical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava, 842 48 (Slovakia)

    2015-12-29

    We present an analysis of two different approximations to the scalar field theory on the fuzzy sphere, a nonperturbative and a perturbative one, which are both multitrace matrix models. We show that the former reproduces a phase diagram with correct features in a qualitative agreement with the previous numerical studies and that the latter gives a phase diagram with features not expected in the phase diagram of the field theory.

  19. Massive spin-one fields from couplings with five massless real scalars

    Bizdadea, Constantin; Cioroianu, Eugen-Mihaita; Saliu, Solange-Odile

    2017-12-01

    In this paper we implement a new procedure by which one may generate mass for a vector field in the context of its interactions to a system of five real scalar fields. This purpose will be achieved by means of the general multi-step program from [1] adapted to the present situation: (1) we begin with a free theory in four space-time dimensions whose Lagrangian action is given by the sum between the standard Maxwell action and that for a collection consisting in five massless real scalar fields; (2) we construct a general class of gauge theories whose free limit is that from step (1) by means of the deformation of the solution to the master equation [2, 3] with the help of local BRST cohomology [4-6]; (3) we perform some suitable redefinitions of the free parameters that label interacting theories from (2) such that the mass terms become manifest in the new free limit. The outputs of our procedure can be synthesized in: (A) the vector field acquires mass; (B) the scalar fields gain gauge transformations; (C) the gauge algebras of the interacting theories are Abelian; (D) the propagator of the massive vector field emerging from the gauge-fixed actions behaves, in the limit of large Euclidean momenta, like that from the massless case.

  20. Final Scientific/Technical Report-Quantum Field Theories for Cosmology

    Nicolis, Alberto [Columbia Univ., New York, NY (United States). Physics Dept.

    2018-03-10

    The research funded by this award spanned a wide range of subjects in theoretical cosmology and in field theory. In the first part, the PI and his collaborators applied effective field theory techniques to the study of macroscopic media and of cosmological perturbations. Such an approach—now standard in particle physics—is quite unconventional for theoretical cosmology. They addressed several concrete questions where this formalism proved valuable, both within and outside the cosmological context, concerning for instance macroscopic physical phenomena for fluids, superfluids, and solids, and their relationship to the dynamics of cosmological perturbations. A particularly successful outcome of this line of research has been the development of “solid inflation”: a cosmological model for primordial inflation where the expansion of the universe is driven by an exotic solid substance. In the second part, the PI and his collaborators investigated more fundamental questions and ideas, for the present universe as well as for the very early one, using quantum field theory as a guide. The questions addressed include: Is the present cosmic acceleration due to a new, ‘dark’ form of energy, or are we instead observing a breakdown of Einstein’s general relativity at cosmological distances? Is the cosmic acceleration accelerating? Is the Big Bang unavoidable? Related to this, is early inflation the only sensible cure for the shortcomings of the standard Big Bang model, and the only possible source for the observed scale-invariant cosmological perturbations?

  1. Some aspects of reconstruction using a scalar field in f(T) gravity

    Chakrabarti, Soumya [Indian Institute of Technology, Centre for Theoretical Studies, Kharagpur (India); Said, Jackson Levi [University of Malta, Institute of Space Sciences and Astronomy, Msida, MSD (Malta); Farrugia, Gabriel [University of Malta, Department of Physics, Msida, MSD (Malta)

    2017-12-15

    General relativity characterizes gravity as a geometric property exhibited on spacetime by massive objects, while teleparallel gravity achieves the same results at the level of equations, by taking a torsional perspective of gravity. Similar to the f(R) theory teleparallel gravity can also be generalized to f(T), with the resulting field equations being inherently distinct from f(R) gravity in that they are second order, while in the former case they turn out to be fourth order. In the present case, a minimally coupled scalar field is investigated in the f(T) gravity context for several forms of the scalar field potential. A number of new f(T) solutions are found for these potentials. Their respective state parameters are also being examined. (orig.)

  2. Nonconformal scalar field in uniform isotropic space and the method of Hamiltonian diagonalization

    Pavlov, Yu.V.

    2001-01-01

    One diagonalized metric Hamiltonian of scalar field with arbitrary relation with curvature in N-dimensional uniform isotropic space. One derived spectrum of energies of the appropriate quasi-particles. One calculated energy of quasi-particle appropriate to the canonical Hamiltonian diagonal shape. One structured a modified tensor of energy-pulse with the following features. In case of conformal scalar field it coincides with the metric tensor of energy-pulse. When it is diagonalized the energies of the appropriate particles of nonconformal field are equal to oscillation frequency and the number of such particles produced in non-stationary metric is the finite one. It is shown that Hamiltonian calculated on the basis of the modified tensor of energy-pulse may be derived as a canonical one at certain selection of variables [ru

  3. Radiation tails of the scalar wave equation in a weak gravitational field

    Mankin, R.; Piir, I.

    1974-01-01

    A class of solutions of the linearized Einstein equations is found making use of the Newman-Penrose spin coefficient formalism. These solutions describe a weak retarded gravitational field with an arbitrary multipole structure. The study of the radial propagation of the scalar waves in this gravitational field shows that in the first approximation the tails of the scalar outgoing radiation appear either in the presence of a gravitational mass or in the case of a nonzero linear momentum of the gravitational source. The quadrupole moment and the higher multipole moments of the gravitational field as well as the constant dipole moment and the angular moment of the source do not contribute to the tail

  4. Bose-Einstein condensation and symmetry breaking of a complex charged scalar field

    Matos, Tonatiuh; Castellanos, Elias; Suarez, Abril

    2017-01-01

    In this work the Klein-Gordon equation for a complex scalar field with U(1) symmetry endowed in a mexican-hat scalar field potential with thermal and electromagnetic contributions is written as a Gross-Pitaevskii (GP)-like equation. This equation is interpreted as a charged generalization of the GP equation at finite temperatures found in previous works. Its hydrodynamical representation is obtained and the corresponding thermodynamical properties are derived and related to measurable quantities. The condensation temperature in the non-relativistic regime associated with the aforementioned system within the semiclassical approximation is calculated. Also, a generalized equation for the conservation of energy for a charged bosonic gas is found when electromagnetic fields are introduced, and it is studied how under certain circumstances its breaking of symmetry can give some insight on the phase transition of the system not just into the condensed phase but also on other related systems. (orig.)

  5. Bose-Einstein condensation and symmetry breaking of a complex charged scalar field

    Matos, Tonatiuh [Centro de Investigacion y de Estudios Avanzados del IPN, Departamento de Fisica, Mexico, DF (Mexico); Castellanos, Elias [Centro de Investigacion y de Estudios Avanzados del IPN, Departamento de Fisica, Mexico, DF (Mexico); Universidad Autonoma de Chiapas, Mesoamerican Centre for Theoretical Physics, Tuxtla Gutierrez, Chiapas (Mexico); Suarez, Abril [Centro de Investigacion y de Estudios Avanzados del IPN, Departamento de Fisica, Mexico, DF (Mexico); Universidad Politecnica Metropolitana de Hidalgo, Departamento de Aeronautica, Tolcayuca, Hidalgo (Mexico)

    2017-08-15

    In this work the Klein-Gordon equation for a complex scalar field with U(1) symmetry endowed in a mexican-hat scalar field potential with thermal and electromagnetic contributions is written as a Gross-Pitaevskii (GP)-like equation. This equation is interpreted as a charged generalization of the GP equation at finite temperatures found in previous works. Its hydrodynamical representation is obtained and the corresponding thermodynamical properties are derived and related to measurable quantities. The condensation temperature in the non-relativistic regime associated with the aforementioned system within the semiclassical approximation is calculated. Also, a generalized equation for the conservation of energy for a charged bosonic gas is found when electromagnetic fields are introduced, and it is studied how under certain circumstances its breaking of symmetry can give some insight on the phase transition of the system not just into the condensed phase but also on other related systems. (orig.)

  6. Phenomenology of a pseudo-scalar inflaton: naturally large nongaussianity

    Barnaby, Neil; Namba, Ryo; Peloso, Marco

    2011-01-01

    Many controlled realizations of chaotic inflation employ pseudo-scalar axions. Pseudo-scalars φ are naturally coupled to gauge fields through cφF F-tilde . In the presence of this coupling, gauge field quanta are copiously produced by the rolling inflaton. The produced gauge quanta, in turn, source inflaton fluctuations via inverse decay. These new cosmological perturbations add incoherently with the ''vacuum'' perturbations, and are highly nongaussian. This provides a natural mechanism to generate large nongaussianity in single or multi field slow-roll inflation. The resulting phenomenological signatures are highly distinctive: large nongaussianity of (nearly) equilateral shape, in addition to detectably large values of both the scalar spectral tilt and tensor-to-scalar ratio (both being typical of large field inflation). The WMAP bound on nongaussianity implies that the coupling c of the pseudo-scalar inflaton to any gauge field must be smaller than about 10 2 M p −1

  7. Dynamical system approach to running Λ cosmological models

    Stachowski, Aleksander; Szydlowski, Marek

    2016-01-01

    We study the dynamics of cosmological models with a time dependent cosmological term. We consider five classes of models; two with the non-covariant parametrization of the cosmological term Λ: Λ(H)CDM cosmologies, Λ(a)CDM cosmologies, and three with the covariant parametrization of Λ: Λ(R)CDM cosmologies, where R(t) is the Ricci scalar, Λ(φ)-cosmologies with diffusion, Λ(X)-cosmologies, where X = (1)/(2)g"α"β∇_α∇_βφ is a kinetic part of the density of the scalar field. We also consider the case of an emergent Λ(a) relation obtained from the behaviour of trajectories in a neighbourhood of an invariant submanifold. In the study of the dynamics we used dynamical system methods for investigating how an evolutionary scenario can depend on the choice of special initial conditions. We show that the methods of dynamical systems allow one to investigate all admissible solutions of a running Λ cosmology for all initial conditions. We interpret Alcaniz and Lima's approach as a scaling cosmology. We formulate the idea of an emergent cosmological term derived directly from an approximation of the exact dynamics. We show that some non-covariant parametrization of the cosmological term like Λ(a), Λ(H) gives rise to the non-physical behaviour of trajectories in the phase space. This behaviour disappears if the term Λ(a) is emergent from the covariant parametrization. (orig.)

  8. On scalar and vector fields coupled to the energy-momentum tensor

    Jiménez, Jose Beltrán; Cembranos, Jose A. R.; Sánchez Velázquez, Jose M.

    2018-05-01

    We consider theories for scalar and vector fields coupled to the energy-momentum tensor. Since these fields also carry a non-trivial energy-momentum tensor, the coupling prescription generates self-interactions. In analogy with gravity theories, we build the action by means of an iterative process that leads to an infinite series, which can be resumed as the solution of a set of differential equations. We show that, in some particular cases, the equations become algebraic and that is also possible to find solutions in the form of polynomials. We briefly review the case of the scalar field that has already been studied in the literature and extend the analysis to the case of derivative (disformal) couplings. We then explore theories with vector fields, distinguishing between gauge-and non-gauge-invariant couplings. Interactions with matter are also considered, taking a scalar field as a proxy for the matter sector. We also discuss the ambiguity introduced by superpotential (boundary) terms in the definition of the energy-momentum tensor and use them to show that it is also possible to generate Galileon-like interactions with this procedure. We finally use collider and astrophysical observations to set constraints on the dimensionful coupling which characterises the phenomenology of these models.

  9. Non-Maximal Tripartite Entanglement Degradation of Dirac and Scalar Fields in Non-Inertial Frames

    Khan, Salman; Khan, Niaz Ali; Khan, M.K.

    2014-01-01

    The π-tangle is used to study the behavior of entanglement of a nonmaximal tripartite state of both Dirac and scalar fields in accelerated frame. For Dirac fields, the degree of degradation with acceleration of both one-tangle of accelerated observer and π-tangle, for the same initial entanglement, is different by just interchanging the values of probability amplitudes. A fraction of both one-tangles and the π-tangle always survives for any choice of acceleration and the degree of initial entanglement. For scalar field, the one-tangle of accelerated observer depends on the choice of values of probability amplitudes and it vanishes in the range of infinite acceleration, whereas for π-tangle this is not always true. The dependence of π-tangle on probability amplitudes varies with acceleration. In the lower range of acceleration, its behavior changes by switching between the values of probability amplitudes and for larger values of acceleration this dependence on probability amplitudes vanishes. Interestingly, unlike bipartite entanglement, the degradation of π-tangle against acceleration in the case of scalar fields is slower than for Dirac fields. (general)

  10. Bouncing Cosmologies with Dark Matter and Dark Energy

    Yi-Fu Cai

    2016-12-01

    Full Text Available We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence, could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.

  11. Effect of electromagnetic fields on the creation of scalar particles in a flat Robertson-Walker space-time

    Haouat, S.; Chekireb, R.

    2012-01-01

    The influence of electromagnetic fields on the creation of scalar particles from vacuum in a flat Robertson-Walker space-time is studied. The Klein-Gordon equation with varying electric field and constant magnetic one is solved. The Bogoliubov transformation method is applied to calculate the pair creation probability and the number density of created particles. It is shown that the electric field amplifies the creation of scalar particles while the magnetic field minimizes it. (orig.)

  12. Averaging of the Equations of the Standard Cosmological Model over Rapid Oscillations

    Ignat'ev, Yu. G.; Samigullina, A. R.

    2017-11-01

    An averaging of the equations of the standard cosmological model (SCM) is carried out. It is shown that the main contribution to the macroscopic energy density of the scalar field comes from its microscopic oscillations with the Compton period. The effective macroscopic equation of state of the oscillations of the scalar field corresponds to the nonrelativistic limit.

  13. Scalar field propagation in the ϕ 4 κ-Minkowski model

    Meljanac, S.; Samsarov, A.; Trampetić, J.; Wohlgenannt, M.

    2011-12-01

    In this article we use the noncommutative (NC) κ-Minkowski ϕ 4 model based on the κ-deformed star product, (★ h ). The action is modified by expanding up to linear order in the κ-deformation parameter a, producing an effective model on commutative spacetime. For the computation of the tadpole diagram contributions to the scalar field propagation/self-energy, we anticipate that statistics on the κ-Minkowski is specifically κ-deformed. Thus our prescription in fact represents hybrid approach between standard quantum field theory (QFT) and NCQFT on the κ-deformed Minkowski spacetime, resulting in a κ-effective model. The propagation is analyzed in the framework of the two-point Green's function for low, intermediate, and for the Planckian propagation energies, respectively. Semiclassical/hybrid behavior of the first order quantum correction do show up due to the κ-deformed momentum conservation law. For low energies, the dependence of the tadpole contribution on the deformation parameter a drops out completely, while for Planckian energies, it tends to a fixed finite value. The mass term of the scalar field is shifted and these shifts are very different at different propagation energies. At the Planck-ian energies we obtain the direction dependent κ-modified dispersion relations. Thus our κ-effective model for the massive scalar field shows a birefringence effect.

  14. Distributed Sensor Fusion for Scalar Field Mapping Using Mobile Sensor Networks.

    La, Hung Manh; Sheng, Weihua

    2013-04-01

    In this paper, autonomous mobile sensor networks are deployed to measure a scalar field and build its map. We develop a novel method for multiple mobile sensor nodes to build this map using noisy sensor measurements. Our method consists of two parts. First, we develop a distributed sensor fusion algorithm by integrating two different distributed consensus filters to achieve cooperative sensing among sensor nodes. This fusion algorithm has two phases. In the first phase, the weighted average consensus filter is developed, which allows each sensor node to find an estimate of the value of the scalar field at each time step. In the second phase, the average consensus filter is used to allow each sensor node to find a confidence of the estimate at each time step. The final estimate of the value of the scalar field is iteratively updated during the movement of the mobile sensors via weighted average. Second, we develop the distributed flocking-control algorithm to drive the mobile sensors to form a network and track the virtual leader moving along the field when only a small subset of the mobile sensors know the information of the leader. Experimental results are provided to demonstrate our proposed algorithms.

  15. Generalized second law of thermodynamics for non-canonical scalar field model with corrected-entropy

    Das, Sudipta; Mamon, Abdulla Al; Debnath, Ujjal

    2015-01-01

    In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. For this purpose, we have assumed two types of horizons viz apparent horizon and event horizon for the universe and using first law of thermodynamics, we have examined the validity of GSL on both apparent and event horizons. Next, we have considered two types of entropy-corrections on apparent and event horizons. Using the modified area law, we have examined the validity of GSL of thermodynamics on apparent and event horizons under some restrictions of model parameters. (orig.)

  16. The phase diagram of scalar field theory on the fuzzy disc

    Rea, Simone; Sämann, Christian [Maxwell Institute for Mathematical Sciences, Department of Mathematics,Heriot-Watt University,Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom)

    2015-11-17

    Using a recently developed bootstrapping method, we compute the phase diagram of scalar field theory on the fuzzy disc with quartic even potential. We find three distinct phases with second and third order phase transitions between them. In particular, we find that the second order phase transition happens approximately at a fixed ratio of the two coupling constants defining the potential. We compute this ratio analytically in the limit of large coupling constants. Our results qualitatively agree with previously obtained numerical results.

  17. LATTICEEASY A Program for Lattice Simulations of Scalar Fields in an Expanding Universe

    Felder, G; Tkachev, Igor; Felder, Gary

    2008-01-01

    We describe a C++ program that we have written and made available for calculating the evolution of interacting scalar fields in an expanding universe. The program is particularly useful for the study of reheating and thermalization after inflation. The program and its full documentation are available on the Web at http://physics.stanford.edu/gfelder/latticeeasy. In this paper we provide a brief overview of what the program does and what it is useful for.

  18. Alternative integral equations and perturbation expansions for self-coupled scalar fields

    Ford, L.H.

    1985-01-01

    It is shown that the theory of a self-coupled scalar field may be expressed in terms of a class of integral equations which include the Yang-Feldman equation as a particular case. Other integral equations in this class could be used to generate alternative perturbation expansions which contain a nonanalytic dependence upon the coupling constant and are less ultraviolet divergent than the conventional perturbation expansion. (orig.)

  19. Resonant frequencies of massless scalar field in rotating black-brane spacetime

    Jing Ji-Liang; Pan Qi-Yuan

    2008-01-01

    This paper investigates the resonant frequencies of the massless scalar field in the near extremal Kerr-like black-brahe spacetime. It is shown that the different angular quantum number will present different resonant frequencies. It is also shown that the real part of the resonant frequencies increases as the compact dimensions parameter μi increases, but the magnitude of the imaginary part decreases as μi increases.

  20. Isosurface Display of 3-D Scalar Fields from a Meteorological Model on Google Earth

    2013-07-01

    facets to four, we have chosen to adopt and implement a revised method discussed and made available by Bourke (1994), which can accommodate up to...five facets for a given grid cube. While the published code from Bourke (1994) is in the public domain, it was originally implemented in the C...and atmospheric temperatures. 17 4. References Bourke , P. Polygonising a Scalar Field. http://paulbourke.net/geometry/polygonise

  1. Scalar field propagation in the phi^4 kappa-Minkowski model

    Meljanac, S.; Samsarov, A.; Trampetic, J.; Wohlgenannt, M.

    2011-01-01

    In this article we use the noncommutative (NC) kappa-Minkowski phi^4 model based on the kappa-deformed star product, ({*}_h). The action is modified by expanding up to linear order in the kappa-deformation parameter a, producing an effective model on commutative spacetime. For the computation of the tadpole diagram contributions to the scalar field propagation/self-energy, we anticipate that statistics on the kappa-Minkowski is specifically kappa-deformed. Thus our prescription in fact repres...

  2. Massless scalar field in de Sitter spacetime: unitary quantum time evolution

    Cortez, Jerónimo; Blas, Daniel Martín-de; Marugán, Guillermo A Mena; Velhinho, José M

    2013-01-01

    We prove that, under the standard conformal scaling, a free scalar field in de Sitter spacetime admits an O(4)-invariant Fock quantization such that time evolution is unitarily implemented. Since this applies in particular to the massless case, this result disproves previous claims in the literature. We discuss the relationship between this quantization with unitary dynamics and the family of O(4)-invariant Hadamard states given by Allen and Folacci, as well as with the Bunch–Davies vacuum. (paper)

  3. Scalar-tensor theory of fourth-order gravity

    Accioly, A.J.; Goncalves, A.T.

    1986-04-01

    A scalar-tensor theory of fourth-order gravity is considered. Some cosmological consequences, due to the presence of the scalar field, as well as of metric derivatives higher than second order, are analysed. In particular, upperbpunds are obtained for the coupling constant α and for the scale factor of the universe, respectively. The discussion is restricted to Robertson-Walker universes. (Author) [pt

  4. Kolmogorov similarity hypotheses for scalar fields: sampling intermittent turbulent mixing in the ocean and galaxy

    Gibson, C.H.

    1991-01-01

    Kolmogorov's three universal similarity hypotheses are extrapolated to describe scalar fields like temperature mixed by turbulence. The analogous first and second hypotheses for scalars include the effects of Prandtl number and rate-of-strain mixing. Application of velocity and scalar similarity hypotheses to the ocean must take into account the damping of active turbulence by density stratification and the Earth's rotation to form fossil turbulence. By the analogous Kolmogorov third hypothesis for scalars, temperature dissipation rates χ averaged over lengths r > L K should be lognormally distributed with intermittency factors σ 2 that increase with increasing turbulence energy length scales L O as σ ln r 2 approx = μ θ ln(L O /r). Tests of kolmogorovian velocity and scalar universal similarity hypotheses for very large ranges of turbulence length and timescales are provided by data from the ocean and the galactic interstellar medium. These ranges are from 1 to 9 decades in the ocean, and over 12 decades in the interstellar medium. The universal constant for turbulent mixing intermittency μ θ is estimated from oceanic data to be 0.44±0.01, which is remarkably close to estimates for Kolmorgorov's turbulence intermittency constant μ of 0.45±0.05 from galactic as well as atmospheric data. Extreme intermittency complicates the oceanic sampling problem, and may lead to quantitative and qualitative undersampling errors in estimates of mean oceanic dissipation rates and fluxes. Intermittency of turbulence and mixing in the interstellar medium may be a factor in the formation of stars. (author)

  5. Detailed balance condition and ultraviolet stability of scalar field in Horava-Lifshitz gravity

    Borzou, Ahmad; Lin, Kai; Wang, Anzhong

    2011-01-01

    Detailed balance and projectability conditions are two main assumptions when Horava recently formulated his theory of quantum gravity - the Horava-Lifshitz (HL) theory. While the latter represents an important ingredient, the former often believed needs to be abandoned, in order to obtain an ultraviolet stable scalar field, among other things. In this paper, because of several attractive features of this condition, we revisit it, and show that the scalar field can be stabilized, if the detailed balance condition is allowed to be softly broken. Although this is done explicitly in the non-relativistic general covariant setup of Horava-Melby-Thompson with an arbitrary coupling constant λ, generalized lately by da Silva, it is also true in other versions of the HL theory. With the detailed balance condition softly breaking, the number of independent coupling constants can be still significantly reduced. It is remarkable to note that, unlike other setups, in this da Silva generalization, there exists a master equation for the linear perturbations of the scalar field in the flat Friedmann-Robertson-Walker background

  6. Closed star product on noncommutative ℝ{sup 3} and scalar field dynamics

    Jurić, Tajron [Ruđer Bošković Institute, Theoretical Physics Division,Bijenička c. 54, HR-10002 Zagreb (Croatia); Poulain, Timothé; Wallet, Jean-Christophe [Laboratoire de Physique Théorique, CNRS,University of Paris-Sud, University of Paris-Saclay,Bât. 210, 91405 Orsay (France)

    2016-05-25

    We consider the noncommutative space ℝ{sub θ}{sup 3}, a deformation of ℝ{sup 3} for which the star product is closed for the trace functional. We study one-loop IR and UV properties of the 2-point function for real and complex noncommutative scalar field theories with quartic interactions and Laplacian on ℝ{sup 3} as kinetic operator. We find that the 2-point functions for these noncommutative scalar field theories have no IR singularities in the external momenta, indicating the absence of UV/IR mixing. We also find that the 2-point functions are UV finite with the deformation parameter θ playing the role of a natural UV cut-off. The possible origin of the absence of UV/IR mixing in noncommutative scalar field theories on ℝ{sub θ}{sup 3} as well as on ℝ{sub λ}{sup 3}, another deformation of ℝ{sup 3}, is discussed.

  7. Derivation of equations for scalar and fermion fields using properties of dispersion-codispersion operators

    Raoelina Andriambololona; Ranaivoson, R.T.R; Hanitriarivo, R.; Harison, V.

    2014-01-01

    We establish equations for scalar and fermion fields using results obtained from a study on a phase space representation of quantum theory that we have performed in a previous work. Our approaches are similar to the historical ones to obtain Klein-Gordon and Dirac equations but the main difference is that ours are based on the use of properties of operators called dispersion-codispersion operators. We begin with a brief recall about the dispersion-codispersion operators. Then, introducing a mass operator with its canonical conjugate coordinate and applying rules of quantization, based on the use of dispersion - codispersion operators , we deduce a second order differential operator relation from the relativistic expression relying energy, momentum and mass. Using Dirac matrices, we derive from this second order differential operator relation a first order one. The application of the second order differential operator relation on a scalar function gives the equation for the scalar field and the use of the first order differential operator relation leads to the equation for fermion field.

  8. Nonsingular bouncing cosmologies in light of BICEP2

    Cai, Yi-Fu; Quintin, Jerome; Saridakis, Emmanuel N.; Wilson-Ewing, Edward

    2014-01-01

    We confront various nonsingular bouncing cosmologies with the recently released BICEP2 data and investigate the observational constraints on their parameter space. In particular, within the context of the effective field approach, we analyze the constraints on the matter bounce curvaton scenario with a light scalar field, and the new matter bounce cosmology model in which the universe successively experiences a period of matter contraction and an ekpyrotic phase. Additionally, we consider three nonsingular bouncing cosmologies obtained in the framework of modified gravity theories, namely the Hořava-Lifshitz bounce model, the f(T) bounce model, and loop quantum cosmology

  9. Invariant gauge families inherent in Abelian-gauge field theory. [Scalar dipole ghost field, free-field equations

    Yokoyama, Kan-ichi; Kubo, Reijiro

    1974-12-01

    The framework of the Nakanishi-Lautrup formalism should be enlarged by introducing a scalar dipole ghost field B(x), which is called gauge on field, together with its pair field. By taking free Lagrangian density, Free-field equations can be described. The vacuum is defined by using a neutral vector field U..mu..(x). The state-vector space is generated by the adjoining conjugates of U..mu..sup((+))(x), and auxiliary fields B(x), B/sub 1/(x) and B/sub 2/(x), which were introduced in the form of the Lagrangian density. The physical states can be defined by the supplementary conditions of the form B/sub 1/sup((+))(x) 1 phys>=B/sub 2/sup((+))(x) 1 phys>=0. It is seen that all the field equations and all the commutators are kept form-invariant, and that the gauge parameter ..cap alpha.. is transformed into ..cap alpha..' given by ..cap alpha..'=..cap alpha..+lambda, with epsilon unchanged. The Lagrangian density is specified only by the gauge invariant parameter epsilon. The gauge structure of theory has universal meaning over whole Abelian-gauge field. C-number gauge transformation and the gauge structure in the presence of interaction are also discussed.

  10. Scalar boson emission by electrons in the Weinberg-Salam theory under a constant electromagnetic field

    Rodionov, V.N.; Studenikin, A.I.

    1985-01-01

    Consideration of processes with the assistance of virtual and real Higgs scalar neutral σ-bosons in the presence of a constant external crossed electromagnetic field is conducted. In the second order of the perturbation theory in the Weinberg-Jalam model corresponding contribution into mass lepton operator in this base probability dependence of σ-boson emission and radiation field σ-bosn effects on the crossed field parameter is investigated: x=√(eFsub(μν)psup(ν)sup(2)/msup(3)

  11. The quantum Higgs field and the resolution of the cosmological constant paradox in the Weyl-geometrical Universe

    de Martini, Francesco

    The nature of the scalar field responsible for the cosmological inflation is found to be rooted in the most fundamental concept of the Weyl’s differential geometry: the parallel displacement of vectors in curved spacetime. Within this novel geometrical scenario, the standard electroweak theory of leptons based on the SU(2)L⊗U(1)Y as well as on the conformal groups of spacetime Weyl’s transformations is analyzed within the framework of a general-relativistic, conformally-covariant scalar-tensor theory that includes the electromagnetic and the Yang-Mills fields. A Higgs mechanism within a spontaneous symmetry breaking process is identified and this offers formal connections between some relevant properties of the elementary particles and the dark energy content of the Universe. An “effective cosmological potential”: Veff is expressed in terms of the dark energy potential: |VΛ| via the “mass reduction parameter”: |ζ|≡|Veff||VΛ|, a general property of the Universe. The mass of the Higgs boson, which is considered a “free parameter” by the standard electroweak theory, by our theory is found to be proportional to the mass MU≡|Veff| which contributes to the measured Cosmological Constant, i.e. the measured content of vacuum-energy in the Universe. The nonintegrable application of the Weyl’s geometry leads to a Proca equation accounting for the dynamics of a ϕρ-particle, a vector-meson proposed as an optimum candidate for Dark Matter. The peculiar mathematical structure of Veff offers a clue towards a very general resolution in 4-D of a most intriguing puzzle of modern quantum field theory, the “cosmological constant paradox”(here referred to as: “Λ-paradox”). Indeed, our “universal” theory offers a resolution of the “Λ-paradox” for all exponential inflationary potentials: VΛ(ϕ)∝e‑nϕ, and for all linear superpositions of these potentials, where n belongs to the mathematical set of the “real numbers”. An explicit

  12. Weak-field limit of Kaluza-Klein models with spherically symmetric static scalar field. Observational constraints

    Zhuk, Alexander [The International Center of Future Science of the Jilin University, Changchun City (China); Odessa National University, Astronomical Observatory, Odessa (Ukraine); Chopovsky, Alexey; Fakhr, Seyed Hossein [Odessa National University, Astronomical Observatory, Odessa (Ukraine); Shulga, Valerii [The International Center of Future Science of the Jilin University, Changchun City (China); Institut of Radio Astronomy of National Academy of Sciences of Ukraine, Kharkov (Ukraine); Wei, Han [The International Center of Future Science of the Jilin University, Changchun City (China)

    2017-11-15

    In a multidimensional Kaluza-Klein model with Ricci-flat internal space, we study the gravitational field in the weak-field limit. This field is created by two coupled sources. First, this is a point-like massive body which has a dust-like equation of state in the external space and an arbitrary parameter Ω of equation of state in the internal space. The second source is a static spherically symmetric massive scalar field centered at the origin where the point-like massive body is. The found perturbed metric coefficients are used to calculate the parameterized post-Newtonian (PPN) parameter γ. We define under which conditions γ can be very close to unity in accordance with the relativistic gravitational tests in the solar system. This can take place for both massive or massless scalar fields. For example, to have γ ∼ 1 in the solar system, the mass of scalar field should be μ >or similar 5.05 x 10{sup -49} g ∝ 2.83 x 10{sup -16} eV. In all cases, we arrive at the same conclusion that to be in agreement with the relativistic gravitational tests, the gravitating mass should have tension: Ω = -1/2. (orig.)

  13. A search for neutral Higgs bosons in the MSSM and models with two scalar field doublets

    Ackerstaff, K.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Clarke, P.E.L.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; del Pozo, L.A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M.S.; Doucet, M.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Evans, M.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Feld, L.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Fong, D.G.; Foucher, M.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Geddes, N.I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Goodrick, M.J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Hargrove, C.K.; Hart, P.A.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Hocker, James Andrew; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Hutchcroft, D.E.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jawahery, A.; Jeffreys, P.W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jones, M.; Jost, U.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kirk, J.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G.D.; Lahmann, R.; Lai, W.P.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; List, B.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Markus, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mincer, A.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Oldershaw, N.J.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Rembser, C.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rooke, A.; Rossi, A.M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schleper, P.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Springer, Robert Wayne; Sproston, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, David M.; Strohmer, R.; Szymanski, P.; Tafirout, R.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Utzat, P.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Vikas, P.; Vokurka, E.H.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-01-01

    A search is described for the neutral Higgs bosons h^0 and A^0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z^0 h^0 and h^0 A^0 production channels is based on data corresponding to an integrated luminosity of 25 pb^{-1} from e^+e^- collisions at centre-of-mass energies between 130 and 172GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z^0 resonance to set limits on m_h and m_A in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan(beta) > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits m_h > 59.0 GeV and m_A > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan.

  14. Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets

    Pouransari, Z.; Biferale, L.; Johansson, A. V.

    2015-02-01

    The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar, and reactive species fields are studied using their probability density functions (PDFs) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor, the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damköhler numbers are examined and the comparison revealed that the Damköhler number effects are most dominant in the near-wall region, where the wall cooling effects are influential. In addition, with the aid of PDFs conditioned on the mixture fraction, the significance of the reactive scalar characteristics in the reaction zone is illustrated. We argue that the combined effects of strong intermittency and strong persistency of anisotropy at the small scales in the entire domain can affect mixing and ultimately the combustion characteristics of the reacting flow.

  15. Nuclear matter in relativistic mean field theory with isovector scalar meson.

    Kubis, S.; Kutschera, M. [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-01

    Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)] is studied. While the {delta}-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to {delta}-field to the nuclear symmetry energy is negative. To fit the empirical value, E{sub s}{approx}30 MeV, a stronger {rho}-meson coupling is required than in absence of the {delta}-field. The energy per particle of neutron star matter is than larger at high densities than the one with no {delta}-field included. Also, the proton fraction of {beta}-stable matter increases. Splitting of proton and neutron effective masses due to the {delta}-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs.

  16. Nuclear matter in relativistic mean field theory with isovector scalar meson

    Kubis, S.; Kutschera, M.

    1996-12-01

    Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)] is studied. While the δ-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to δ-field to the nuclear symmetry energy is negative. To fit the empirical value, E s ∼30 MeV, a stronger ρ-meson coupling is required than in absence of the δ-field. The energy per particle of neutron star matter is than larger at high densities than the one with no δ-field included. Also, the proton fraction of β-stable matter increases. Splitting of proton and neutron effective masses due to the δ-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs

  17. JDiffraction: A GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields

    Piedrahita-Quintero, Pablo; Trujillo, Carlos; Garcia-Sucerquia, Jorge

    2017-05-01

    JDiffraction, a GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields, is presented. Angular spectrum, Fresnel transform, and Fresnel-Bluestein transform are the numerical algorithms implemented in the methods and functions of the library to compute the scalar propagation of the complex wavefield. The functionality of the library is tested with the modeling of easy to forecast numerical experiments and also with the numerical reconstruction of a digitally recorded hologram. The performance of JDiffraction is contrasted with a library written for C++, showing great competitiveness in the apparently less complex environment of JAVA language. JDiffraction also includes JAVA easy-to-use methods and functions that take advantage of the computation power of the graphic processing units to accelerate the processing times of 2048×2048 pixel images up to 74 frames per second.

  18. Primordial black holes from scalar field evolution in the early universe

    Cotner, Eric; Kusenko, Alexander

    2017-11-01

    Scalar condensates with large expectation values can form in the early universe, for example, in theories with supersymmetry. The condensate can undergo fragmentation into Q-balls before decaying. If the Q-balls dominate the energy density for some period of time, statistical fluctuations in their number density can lead to formation of primordial black holes (PBH). In the case of supersymmetry the mass range is limited from above by 1 023 g . For a general charged scalar field, this robust mechanism can generate black holes over a much broader mass range, including the black holes with masses of 1-100 solar masses, which is relevant for LIGO observations of gravitational waves. Topological defects can lead to formation of PBH in a similar fashion.

  19. Evolution in bouncing quantum cosmology

    Mielczarek, Jakub; Piechocki, Włodzimierz

    2012-01-01

    We present the method of describing an evolution in quantum cosmology in the framework of the reduced phase space quantization of loop cosmology. We apply our method to the flat Friedmann-Robertson-Walker model coupled to a massless scalar field. We identify the physical quantum Hamiltonian that is positive-definite and generates globally a unitary evolution of the considered quantum system. We examine the properties of expectation values of physical observables in the process of the quantum big bounce transition. The dispersion of evolved observables is studied for the Gaussian state. Calculated relative fluctuations enable an examination of the semi-classicality conditions and possible occurrence of the cosmic forgetfulness. Preliminary estimations based on the cosmological data suggest that there was no cosmic amnesia. Presented results are analytical, and numerical computations are only used for the visualization purposes. Our method may be generalized to sophisticated cosmological models including the Bianchi-type universes. (paper)

  20. Effect of reheating on predictions following multiple-field inflation

    Hotinli, Selim C.; Frazer, Jonathan; Jaffe, Andrew H.; Meyers, Joel; Price, Layne C.; Tarrant, Ewan R. M.

    2018-01-01

    We study the sensitivity of cosmological observables to the reheating phase following inflation driven by many scalar fields. We describe a method which allows semianalytic treatment of the impact of perturbative reheating on cosmological perturbations using the sudden decay approximation. Focusing on N -quadratic inflation, we show how the scalar spectral index and tensor-to-scalar ratio are affected by the rates at which the scalar fields decay into radiation. We find that for certain choices of decay rates, reheating following multiple-field inflation can have a significant impact on the prediction of cosmological observables.

  1. Does there exist a sensible quantum theory of an ''algebra-valued'' scalar field?

    Anco, S.C.; Wald, R.M.

    1989-01-01

    Consider a scalar field phi in Minkowski spacetime, but let phi be valued in an associative, commutative algebra openA rather than openR. One may view the resulting theory as describing a collection of coupled real scalar fields. At the classical level, theories of this type are completely well behaved and have a global symmetry group which is a nontrivial enlargement of the Poincare group. (They are analogs of the new class of gauge theories for massless spin-2 fields found recently by one of us, whose gauge group is a nontrivial enlargement of the usual diffeomorphism group.) We investigate the quantization of such scalar field theories here by studying the case of a λphi 4 field, with phi valued in the two-dimensional algebra generated by an identity element e and a nilpotent element v satisfying v 2 = 0. The Coleman-Mandula theorem, which states that the symmetry group of a nontrivial quantum field theory cannot be a nontrivial enlargement of the Poincare group, is evaded here because the finite ''extra'' symmetries of the classical theory fail to be implemented in the quantum theory by unitary operators and the infinitesimal symmetries (which can be represented in the quantum theory by quadratic forms) connect the one-particle Hilbert space to multiparticle states. Nevertheless, we find that the conventional Feynman rules for this theory lead to vacuum decay at the tree level and fail to yield a well-defined S matrix. Some alternative approaches are investigated, but these also appear to fail

  2. Long-lived quintessential scalar hair

    Caldwell, Robert R; Yu Pengpeng

    2006-01-01

    We investigate static configurations of a vacuumless scalar field as 'hair' on a black hole. The vacuumless field has run-away behaviour, meaning the scalar potential vanishes only at infinite field strength, and is also responsible for a cosmic acceleration horizon. The classic no-hair theorems do not prevent the existence of static configurations, in the form of a spherical domain wall, trapped between the two horizons. We study the properties of such configurations and show that, although the configurations are ultimately unstable, long-lived solutions are possible. We make a perturbation study to estimate the instability time scale, which can be as large as 6 x 10 7 times the black hole crossing time. We identify classes of observers who can never observe the scalar field become unstable, because they pass beyond the cosmological event horizon in a time interval shorter than the instability time scale

  3. Finite canonical measure for nonsingular cosmologies

    Page, Don N.

    2011-01-01

    The total canonical (Liouville-Henneaux-Gibbons-Hawking-Stewart) measure is finite for completely nonsingular Friedmann-Lemaître-Robertson-Walker classical universes with a minimally coupled massive scalar field and a positive cosmological constant. For a cosmological constant very small in units of the square of the scalar field mass, most of the measure is for nearly de Sitter solutions with no inflation at a much more rapid rate. However, if one restricts to solutions in which the scalar field energy density is ever more than twice the equivalent energy density of the cosmological constant, then the number of e-folds of rapid inflation must be large, and the fraction of the measure is low in which the spatial curvature is comparable to the cosmological constant at the time when it is comparable to the energy density of the scalar field. The measure for such classical FLRWΛ-φ models with both a big bang and a big crunch is also finite. Only the solutions with a big bang that expand forever, or the time-reversed ones that contract from infinity to a big crunch, have infinite measure

  4. On holography for (pseudo-)conformal cosmology

    Libanov, M. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, 117312, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Rubakov, V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, 117312, Moscow (Russian Federation); Department of Particle Physics and Cosmology, Physics Faculty, Moscow State University, Vorobjevy Gory, 119991, Moscow (Russian Federation); Sibiryakov, S., E-mail: sibir@ms2.inr.ac.ru [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, 117312, Moscow (Russian Federation); Theory Group, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); FSB/ITP/LPPC, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    2015-02-04

    We propose a holographic dual for (pseudo-)conformal cosmological scenario, with a scalar field that forms a moving domain wall in adS{sub 5}. The domain wall separates two vacua with unequal energy densities. Unlike in the existing construction, the 5d solution is regular in the relevant space–time domain.

  5. The case for the cosmological constant

    A time dependent cosmological A-term can be generated by scalar field ... Perlmutter et al (1999) indicate that the joint probability distribution of ΩС ΩA is well .... and С must be adjusted to very high levels of accuracy in order to ensure. С.

  6. On holography for (pseudo-)conformal cosmology

    Libanov, M.; Sibiryakov, S.

    2015-01-01

    We propose a holographic dual for (pseudo-)conformal cosmological scenario, with a scalar field that forms a moving domain wall in adS_5. The domain wall separates two vacua with unequal energy densities. Unlike in the existing construction, the 5d solution is regular in the relevant space-time domain.

  7. Anisotropic Bianchi-I universe with phantom field and cosmological ...

    India. *Corresponding author. E-mail: bcpaul@iucaa.ernet.in. MS received 23 May ... We study an anisotropic Bianchi-I universe in the presence of a phantom ... The phantom cosmology has been analysed adopting phase space analysis ... the second part we study the critical points corresponding to the set of autonomous.

  8. Problems in quantum cosmology

    Amsterdamski, P.

    1986-01-01

    The standard cosmological model is reviewed and shown not to be self-sufficient in that it requires initial conditions most likely to be supplied by quantum cosmology. The possible approaches to the issue of initial conditions for cosmology are then discussed. In this thesis, the author considers three separate problems related to this issue. First, the possibility of inflation is investigated in detail by analyzing the evolution of metric perturbations and fluctuations in the expectation value of a scalar field prior to a phase transition; finite temperature effects are also included. Since the inhomogeneities were damped well before the onset of a phase transition. It is concluded that an inflation was possible. Next, the effective action of neutrino and photon fields is calculated for homogeneous spacetimes with small anisotropy; it is shown that quantum corrections to the action due to these fields influence the evolution of an early Universe in the Same way as do the analogous correction terms arising from a conformally invariant scalar which has been previously studied. Finally, the question of an early anisotropy is also discussed in a framework of Hartle-Hawking wave function of the Universe. A wave function of a Bianchi IX type Universe is calculated in a semiclassical approximation

  9. Charged Compact Boson Stars in a Theory of Massless Scalar Field

    Kumar, Sanjeev

    2018-05-01

    In this work we present some new results obtained in a study of the phase diagram of charged compact boson stars in a theory involving a complex scalar field with a conical potential coupled to a U(1) gauge field and gravity. We obtain new bifurcation points in this model. We present a detailed discussion of the various regions of the phase diagram with respect to the bifurcation points. The theory is seen to contain rich physics in a particular domain of the phase diagram.

  10. Development of Techniques for Visualization of Scalar and Vector Fields in the Immersive Environment

    Bidasaria, Hari B.; Wilson, John W.; Nealy, John E.

    2005-01-01

    Visualization of scalar and vector fields in the immersive environment (CAVE - Cave Automated Virtual Environment) is important for its application to radiation shielding research at NASA Langley Research Center. A complete methodology and the underlying software for this purpose have been developed. The developed software has been put to use for the visualization of the earth s magnetic field, and in particular for the study of the South Atlantic Anomaly. The methodology has also been put to use for the visualization of geomagnetically trapped protons and electrons within Earth's magnetosphere.

  11. Virtual particle-antiparticle pair formation by a scalar particle bound in an external Coulomb field

    Darewych, J.W.; Horbatsch, M.; Lev, B.I.; Shapoval, D.V.

    1995-01-01

    A Hamiltonian variational Fock-space method is used to describe scalar massive particles in an external Coulomb field with strength f=Zα. The use of an ansatz that includes a three-particle state in addition to a single-particle state built on the field-free vacuum enables one to highlight the role played by particle-antiparticle pair formation. Comparison is made with the Klein-Gordon equation in the Feshbach-Villars representation and it is shown explicitly how the virtual pair contribution corrects an O(f 5 ) deficiency present in the energy spectrum of the naive Schroedinger-type single-particle equation. ((orig.))

  12. Dimensional reduction of the Standard Model coupled to a new singlet scalar field

    Brauner, Tomáš [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Tenkanen, Tuomas V.I. [Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland); Tranberg, Anders [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Vuorinen, Aleksi [Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland); Weir, David J. [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland)

    2017-03-01

    We derive an effective dimensionally reduced theory for the Standard Model augmented by a real singlet scalar. We treat the singlet as a superheavy field and integrate it out, leaving an effective theory involving only the Higgs and SU(2){sub L}×U(1){sub Y} gauge fields, identical to the one studied previously for the Standard Model. This opens up the possibility of efficiently computing the order and strength of the electroweak phase transition, numerically and nonperturbatively, in this extension of the Standard Model. Understanding the phase diagram is crucial for models of electroweak baryogenesis and for studying the production of gravitational waves at thermal phase transitions.

  13. Effective action for scalar fields and generalized zeta-function regularization

    Cognola, Guido; Zerbini, Sergio

    2004-01-01

    Motivated by the study of quantum fields in a Friedmann-Robertson-Walker space-time, the one-loop effective action for a scalar field defined in the ultrastatic manifold RxH 3 /Γ, H 3 /Γ being the finite volume, noncompact, hyperbolic spatial section, is investigated by a generalization of zeta-function regularization. It is shown that additional divergences may appear at the one-loop level. The one-loop renormalizability of the model is discussed and, making use of a generalization of zeta-function regularization, the one-loop renormalization group equations are derived

  14. Hawking Radiation Spectra for Scalar Fields by a Higher-Dimensional Schwarzschild-de-Sitter Black Hole

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-01-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de-Sitter black hole as well as on the projected-on-the-brane 4-dimensional background. The scalar fields have also a non-minimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then pro...

  15. Zero cosmological constant from normalized general relativity

    Davidson, Aharon; Rubin, Shimon

    2009-01-01

    Normalizing the Einstein-Hilbert action by the volume functional makes the theory invariant under constant shifts in the Lagrangian. The associated field equations then resemble unimodular gravity whose otherwise arbitrary cosmological constant is now determined as a Machian universal average. We prove that an empty space-time is necessarily Ricci tensor flat, and demonstrate the vanishing of the cosmological constant within the scalar field paradigm. The cosmological analysis, carried out at the mini-superspace level, reveals a vanishing cosmological constant for a universe which cannot be closed as long as gravity is attractive. Finally, we give an example of a normalized theory of gravity which does give rise to a non-zero cosmological constant.

  16. REM - the Shape of Potentials for f(R) Theories in Cosmology and Tachyons

    Vulcanov, Dumitru N; Sporea, Ciprian A

    2014-01-01

    We investigated the reverse engineering method (REM) for constructing the potential of the scalar field in cosmological theories based on metric f(R) gravity and Friedman Robertson Walker (FRW) metric. Then transposing the new field and Friedman equations in an algebraic computing special library (in Maple + GrTennsorII platform) we graphically investigate the shape of the potentials in terms of the scalar field in at least two type of cosmology with exponential and linear scale factor expansion. Some perspectives and conclusions relating these results with tachyonic cosmology theories are noticed.

  17. Brane cosmology with curvature corrections

    Kofinas, Georgios; Maartens, Roy; Papantonopoulos, Eleftherios

    2003-01-01

    We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflation field or negative pressures. At late times, conventional cosmology is recovered. (author)

  18. Effect of a chameleon scalar field on the cosmic microwave background

    Davis, Anne-Christine; Schelpe, Camilla A. O.; Shaw, Douglas J.

    2009-01-01

    We show that a direct coupling between a chameleonlike scalar field and photons can give rise to a modified Sunyaev-Zel'dovich (SZ) effect in the cosmic microwave background (CMB). The coupling induces a mixing between chameleon particles and the CMB photons when they pass through the magnetic field of a galaxy cluster. Both the intensity and the polarization of the radiation are modified. The degree of modification depends strongly on the properties of the galaxy cluster such as magnetic field strength and electron number density. Existing SZ measurements of the Coma cluster enable us to place constraints on the photon-chameleon coupling. The constrained conversion probability in the cluster is P Coma (204 GHz) -5 at 95% confidence, corresponding to an upper bound on the coupling strength of g eff (cell) -8 GeV -1 or g eff (Kolmo) -10 GeV -1 , depending on the model that is assumed for the cluster magnetic field structure. We predict the radial profile of the chameleonic CMB intensity decrement. We find that the chameleon effect extends farther toward the edges of the cluster than the thermal SZ effect. Thus we might see a discrepancy between the x-ray emission data and the observed SZ intensity decrement. We further predict the expected change to the CMB polarization arising from the existence of a chameleonlike scalar field. These predictions could be verified or constrained by future CMB experiments.

  19. On Climbing Scalars in String Theory

    Dudas, E; Sagnotti, A

    2010-01-01

    In string models with "brane supersymmetry breaking" exponential potentials emerge at (closed-string) tree level but are not accompanied by tachyons. Potentials of this type have long been a source of embarrassment in flat space, but can have interesting implications for Cosmology. For instance, in ten dimensions the logarithmic slope |V'/V| lies precisely at a "critical" value where the Lucchin--Matarrese attractor disappears while the scalar field is \\emph{forced} to climb up the potential when it emerges from the Big Bang. This type of behavior is in principle perturbative in the string coupling, persists after compactification, could have trapped scalar fields inside potential wells as a result of the cosmological evolution and could have also injected the inflationary phase of our Universe.

  20. Emission of massive scalar fields by a higher-dimensional rotating black hole

    Kanti, P.; Pappas, N.

    2010-01-01

    We perform a comprehensive study of the emission of massive scalar fields by a higher-dimensional, simply rotating black hole both in the bulk and on the brane. We derive approximate, analytic results as well as exact numerical ones for the absorption probability, and demonstrate that the two sets agree very well in the low and intermediate-energy regime for scalar fields with mass m Φ ≤1 TeV in the bulk and m Φ ≤0.5 TeV on the brane. The numerical values of the absorption probability are then used to derive the Hawking radiation power emission spectra in terms of the number of extra dimensions, angular-momentum of the black hole and mass of the emitted field. We compute the total emissivities in the bulk and on the brane, and demonstrate that, although the brane channel remains the dominant one, the bulk-over-brane energy ratio is considerably increased (up to 34%) when the mass of the emitted field is taken into account.