WorldWideScience

Sample records for scalable quantum register

  1. Scalable optical quantum computer

    Energy Technology Data Exchange (ETDEWEB)

    Manykin, E A; Mel' nichenko, E V [Institute for Superconductivity and Solid-State Physics, Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2014-12-31

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  2. Scalable optical quantum computer

    International Nuclear Information System (INIS)

    Manykin, E A; Mel'nichenko, E V

    2014-01-01

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr 3+ , regularly located in the lattice of the orthosilicate (Y 2 SiO 5 ) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  3. Decoherence in large NMR quantum registers

    International Nuclear Information System (INIS)

    Krojanski, Hans Georg; Suter, Dieter

    2006-01-01

    Decoherence causes the decay of the quantum information that is stored in highly correlated states during quantum computation. It is thus a limiting factor for all implementations of a quantum computer. Because a scalable quantum computer with hundreds or thousands of qubits is not available yet, experimental data about decoherence rates was restricted to small quantum registers. With solid state nuclear magnetic resonance we create highly correlated multiqubit states that serve as a model quantum register and measure their decay. By measuring the decay as a function of the system size, we determined the scaling of the decoherence rate with the number of qubits. Using the same system, we also used decoupling techniques to reduce the coupling between system and environment and thereby the decoherence rate by more than an order of magnitude, independent of the system size. For the free decay as well as for the decoupled case, we found a relatively weak scaling with system size, which could be fitted to a power law ∝K p with an exponent p≅1/2. This raises the prospect for large-scale quantum computation

  4. Towards scalable quantum communication and computation: Novel approaches and realizations

    Science.gov (United States)

    Jiang, Liang

    Quantum information science involves exploration of fundamental laws of quantum mechanics for information processing tasks. This thesis presents several new approaches towards scalable quantum information processing. First, we consider a hybrid approach to scalable quantum computation, based on an optically connected network of few-qubit quantum registers. Specifically, we develop a novel scheme for scalable quantum computation that is robust against various imperfections. To justify that nitrogen-vacancy (NV) color centers in diamond can be a promising realization of the few-qubit quantum register, we show how to isolate a few proximal nuclear spins from the rest of the environment and use them for the quantum register. We also demonstrate experimentally that the nuclear spin coherence is only weakly perturbed under optical illumination, which allows us to implement quantum logical operations that use the nuclear spins to assist the repetitive-readout of the electronic spin. Using this technique, we demonstrate more than two-fold improvement in signal-to-noise ratio. Apart from direct application to enhance the sensitivity of the NV-based nano-magnetometer, this experiment represents an important step towards the realization of robust quantum information processors using electronic and nuclear spin qubits. We then study realizations of quantum repeaters for long distance quantum communication. Specifically, we develop an efficient scheme for quantum repeaters based on atomic ensembles. We use dynamic programming to optimize various quantum repeater protocols. In addition, we propose a new protocol of quantum repeater with encoding, which efficiently uses local resources (about 100 qubits) to identify and correct errors, to achieve fast one-way quantum communication over long distances. Finally, we explore quantum systems with topological order. Such systems can exhibit remarkable phenomena such as quasiparticles with anyonic statistics and have been proposed as

  5. Wavefunctions for topological quantum registers

    International Nuclear Information System (INIS)

    Ardonne, E.; Schoutens, K.

    2007-01-01

    We present explicit wavefunctions for quasi-hole excitations over a variety of non-abelian quantum Hall states: the Read-Rezayi states with k ≥ 3 clustering properties and a paired spin-singlet quantum Hall state. Quasi-holes over these states constitute a topological quantum register, which can be addressed by braiding quasi-holes. We obtain the braid properties by direct inspection of the quasi-hole wavefunctions. We establish that the braid properties for the paired spin-singlet state are those of 'Fibonacci anyons', and thus suitable for universal quantum computation. Our derivations in this paper rely on explicit computations in the parafermionic conformal field theories that underly these particular quantum Hall states

  6. Scalable on-chip quantum state tomography

    Science.gov (United States)

    Titchener, James G.; Gräfe, Markus; Heilmann, René; Solntsev, Alexander S.; Szameit, Alexander; Sukhorukov, Andrey A.

    2018-03-01

    Quantum information systems are on a path to vastly exceed the complexity of any classical device. The number of entangled qubits in quantum devices is rapidly increasing, and the information required to fully describe these systems scales exponentially with qubit number. This scaling is the key benefit of quantum systems, however it also presents a severe challenge. To characterize such systems typically requires an exponentially long sequence of different measurements, becoming highly resource demanding for large numbers of qubits. Here we propose and demonstrate a novel and scalable method for characterizing quantum systems based on expanding a multi-photon state to larger dimensionality. We establish that the complexity of this new measurement technique only scales linearly with the number of qubits, while providing a tomographically complete set of data without a need for reconfigurability. We experimentally demonstrate an integrated photonic chip capable of measuring two- and three-photon quantum states with statistical reconstruction fidelity of 99.71%.

  7. Quantum logic between remote quantum registers

    Science.gov (United States)

    Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.

    2013-02-01

    We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.

  8. Scalable quantum search using trapped ions

    International Nuclear Information System (INIS)

    Ivanov, S. S.; Ivanov, P. A.; Linington, I. E.; Vitanov, N. V.

    2010-01-01

    We propose a scalable implementation of Grover's quantum search algorithm in a trapped-ion quantum information processor. The system is initialized in an entangled Dicke state by using adiabatic techniques. The inversion-about-average and oracle operators take the form of single off-resonant laser pulses. This is made possible by utilizing the physical symmetries of the trapped-ion linear crystal. The physical realization of the algorithm represents a dramatic simplification: each logical iteration (oracle and inversion about average) requires only two physical interaction steps, in contrast to the large number of concatenated gates required by previous approaches. This not only facilitates the implementation but also increases the overall fidelity of the algorithm.

  9. Architectures and Applications for Scalable Quantum Information Systems

    Science.gov (United States)

    2007-01-01

    Gershenfeld and I. Chuang. Quantum computing with molecules. Scientific American, June 1998. [16] A. Globus, D. Bailey, J. Han, R. Jaffe, C. Levit , R...AFRL-IF-RS-TR-2007-12 Final Technical Report January 2007 ARCHITECTURES AND APPLICATIONS FOR SCALABLE QUANTUM INFORMATION SYSTEMS...NUMBER 5b. GRANT NUMBER FA8750-01-2-0521 4. TITLE AND SUBTITLE ARCHITECTURES AND APPLICATIONS FOR SCALABLE QUANTUM INFORMATION SYSTEMS 5c

  10. Modular Universal Scalable Ion-trap Quantum Computer

    Science.gov (United States)

    2016-06-02

    SECURITY CLASSIFICATION OF: The main goal of the original MUSIQC proposal was to construct and demonstrate a modular and universally- expandable ion...Distribution Unlimited UU UU UU UU 02-06-2016 1-Aug-2010 31-Jan-2016 Final Report: Modular Universal Scalable Ion-trap Quantum Computer The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Ion trap quantum computation, scalable modular architectures REPORT DOCUMENTATION PAGE 11

  11. Scalable quantum memory in the ultrastrong coupling regime.

    Science.gov (United States)

    Kyaw, T H; Felicetti, S; Romero, G; Solano, E; Kwek, L-C

    2015-03-02

    Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z2 parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances.

  12. Scalable Quantum Simulation of Molecular Energies

    Directory of Open Access Journals (Sweden)

    P. J. J. O’Malley

    2016-07-01

    Full Text Available We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient implementation predicts the correct dissociation energy to within chemical accuracy of the numerically exact result. Second, we experimentally demonstrate the canonical quantum algorithm for chemistry, which consists of Trotterization and quantum phase estimation. We compare the experimental performance of these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors. This error tolerance inspires hope that variational quantum simulations of classically intractable molecules may be viable in the near future.

  13. Engineering scalable fault-tolerant quantum computation

    Science.gov (United States)

    Kimchi-Schwartz, Mollie; Danna, Rosenberg; Kim, David; Yoder, Jonilyn; Kjaergaard, Morten; Das, Rabindra; Grover, Jeff; Gustavsson, Simon; Oliver, William

    Recent demonstrations of quantum protocols comprising on the order of 5-10 superconducting qubits are foundational to the future development of quantum information processors. A next critical step in the development of resilient quantum processors will be the integration of coherent quantum circuits with a hardware platform that is amenable to extending the system size to hundreds of qubits and beyond. In this talk, we will discuss progress toward integrating coherent superconducting qubits with signal routing via the third dimension. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  14. Scalable quantum information processing with atomic ensembles and flying photons

    International Nuclear Information System (INIS)

    Mei Feng; Yu Yafei; Feng Mang; Zhang Zhiming

    2009-01-01

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could much relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.

  15. A small trapped-ion quantum register

    International Nuclear Information System (INIS)

    Kielpinski, D

    2003-01-01

    We review experiments performed at the National Institute of Standards and Technology on entanglement, Bell's inequality and decoherence-free subspaces (DFSs) in a quantum register of trapped 9 Be + ions. The group of Dr David Wineland has demonstrated entanglement of up to four ions using the technique of Molmer and Sorensen. This method produces the state (|↓↓> + |↑↑>)/√2 for two ions and the state (|↓↓↓↓> + |↑↑↑↑>)/√2 for four ions. The entanglement was generated deterministically in each shot of the experiment. Measurements on the two-ion entangled state violate Bell's inequality at the 8σ level. Because of the high detector efficiency of the apparatus, this experiment closes the detector loophole for Bell's inequality measurements for the first time. This measurement is also the first violation of Bell's inequality by massive particles that does not implicitly assume results from quantum mechanics. The group also demonstrated measurement of an interferometric phase with precision better than the shot-noise limit using a two-ion entangled state. A large-scale version of this scheme could improve the signal-to-noise ratio of atomic clocks by orders of magnitude. Further experiments demonstrated reversible encoding of an arbitrary qubit, originally contained in one ion, into a DFS of two ions. The DFS-encoded qubit resists applied collective dephasing noise and retains coherence under ambient conditions 3.6 times longer than does an unencoded qubit. The encoding method, which uses single-ion gates and the two-ion entangling gate, demonstrates all the elements required for two-qubit universal quantum logic. Finally, we describe an architecture for a large-scale ion trap quantum computer. By performing logic gates on small numbers of ions trapped in separate regions of the array, we take advantage of existing techniques for manipulating small trapped-ion quantum registers while enabling massively parallel gate operation. Encoding the

  16. Photonic Architecture for Scalable Quantum Information Processing in Diamond

    Directory of Open Access Journals (Sweden)

    Kae Nemoto

    2014-08-01

    Full Text Available Physics and information are intimately connected, and the ultimate information processing devices will be those that harness the principles of quantum mechanics. Many physical systems have been identified as candidates for quantum information processing, but none of them are immune from errors. The challenge remains to find a path from the experiments of today to a reliable and scalable quantum computer. Here, we develop an architecture based on a simple module comprising an optical cavity containing a single negatively charged nitrogen vacancy center in diamond. Modules are connected by photons propagating in a fiber-optical network and collectively used to generate a topological cluster state, a robust substrate for quantum information processing. In principle, all processes in the architecture can be deterministic, but current limitations lead to processes that are probabilistic but heralded. We find that the architecture enables large-scale quantum information processing with existing technology.

  17. Decoherence in a scalable adiabatic quantum computer

    International Nuclear Information System (INIS)

    Ashhab, S.; Johansson, J. R.; Nori, Franco

    2006-01-01

    We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks

  18. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    Science.gov (United States)

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  19. Robust and scalable optical one-way quantum computation

    International Nuclear Information System (INIS)

    Wang Hefeng; Yang Chuiping; Nori, Franco

    2010-01-01

    We propose an efficient approach for deterministically generating scalable cluster states with photons. This approach involves unitary transformations performed on atoms coupled to optical cavities. Its operation cost scales linearly with the number of qubits in the cluster state, and photon qubits are encoded such that single-qubit operations can be easily implemented by using linear optics. Robust optical one-way quantum computation can be performed since cluster states can be stored in atoms and then transferred to photons that can be easily operated and measured. Therefore, this proposal could help in performing robust large-scale optical one-way quantum computation.

  20. Scalable quantum information processing with photons and atoms

    Science.gov (United States)

    Pan, Jian-Wei

    Over the past three decades, the promises of super-fast quantum computing and secure quantum cryptography have spurred a world-wide interest in quantum information, generating fascinating quantum technologies for coherent manipulation of individual quantum systems. However, the distance of fiber-based quantum communications is limited due to intrinsic fiber loss and decreasing of entanglement quality. Moreover, probabilistic single-photon source and entanglement source demand exponentially increased overheads for scalable quantum information processing. To overcome these problems, we are taking two paths in parallel: quantum repeaters and through satellite. We used the decoy-state QKD protocol to close the loophole of imperfect photon source, and used the measurement-device-independent QKD protocol to close the loophole of imperfect photon detectors--two main loopholes in quantum cryptograph. Based on these techniques, we are now building world's biggest quantum secure communication backbone, from Beijing to Shanghai, with a distance exceeding 2000 km. Meanwhile, we are developing practically useful quantum repeaters that combine entanglement swapping, entanglement purification, and quantum memory for the ultra-long distance quantum communication. The second line is satellite-based global quantum communication, taking advantage of the negligible photon loss and decoherence in the atmosphere. We realized teleportation and entanglement distribution over 100 km, and later on a rapidly moving platform. We are also making efforts toward the generation of multiphoton entanglement and its use in teleportation of multiple properties of a single quantum particle, topological error correction, quantum algorithms for solving systems of linear equations and machine learning. Finally, I will talk about our recent experiments on quantum simulations on ultracold atoms. On the one hand, by applying an optical Raman lattice technique, we realized a two-dimensional spin-obit (SO

  1. Ultracold molecules: vehicles to scalable quantum information processing

    International Nuclear Information System (INIS)

    Brickman Soderberg, Kathy-Anne; Gemelke, Nathan; Chin Cheng

    2009-01-01

    In this paper, we describe a novel scheme to implement scalable quantum information processing using Li-Cs molecular states to entangle 6 Li and 133 Cs ultracold atoms held in independent optical lattices. The 6 Li atoms will act as quantum bits to store information and 133 Cs atoms will serve as messenger bits that aid in quantum gate operations and mediate entanglement between distant qubit atoms. Each atomic species is held in a separate optical lattice and the atoms can be overlapped by translating the lattices with respect to each other. When the messenger and qubit atoms are overlapped, targeted single-spin operations and entangling operations can be performed by coupling the atomic states to a molecular state with radio-frequency pulses. By controlling the frequency and duration of the radio-frequency pulses, entanglement can be either created or swapped between a qubit messenger pair. We estimate operation fidelities for entangling two distant qubits and discuss scalability of this scheme and constraints on the optical lattice lasers. Finally we demonstrate experimental control of the optical potentials sufficient to translate atoms in the lattice.

  2. Silicon nanophotonics for scalable quantum coherent feedback networks

    Energy Technology Data Exchange (ETDEWEB)

    Sarovar, Mohan; Brif, Constantin [Sandia National Laboratories, Livermore, CA (United States); Soh, Daniel B.S. [Sandia National Laboratories, Livermore, CA (United States); Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States); Cox, Jonathan; DeRose, Christopher T.; Camacho, Ryan; Davids, Paul [Sandia National Laboratories, Albuquerque, NM (United States)

    2016-12-15

    The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism. (orig.)

  3. Silicon nanophotonics for scalable quantum coherent feedback networks

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Brif, Constantin; Soh, Daniel B.S.; Cox, Jonathan; DeRose, Christopher T.; Camacho, Ryan; Davids, Paul

    2016-01-01

    The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism. (orig.)

  4. High-fidelity projective read-out of a solid-state spin quantum register.

    Science.gov (United States)

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  5. Scalable Quantum Information Transfer between Individual Nitrogen-Vacancy Centers by a Hybrid Quantum Interface

    International Nuclear Information System (INIS)

    Pei Pei; He-Fei Huang; Yan-Qing Guo; He-Shan Song

    2016-01-01

    We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanomechanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy centers as the solid qubits, while capacitively coupled with a coplanar waveguide resonator as the quantum data bus. We describe the Hamiltonian of the model, and analytically demonstrate the QIT for both the resonant interaction and large detuning cases. The hybrid quantum interface allows for QIT between arbitrarily selected individual nitrogen-vacancy centers, and has advantages of the scalability and controllability. Our methods open an alternative perspective for implementing QIT, which is important during quantum storing or processing procedures in quantum computing. (paper)

  6. Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-07-29

    We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.

  7. Scalable effective-temperature reduction for quantum annealers via nested quantum annealing correction

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel A.

    2018-02-01

    Nested quantum annealing correction (NQAC) is an error-correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. The encoding replaces each logical qubit by a complete graph of degree C . The nesting level C represents the distance of the error-correcting code and controls the amount of protection against thermal and control errors. Theoretical mean-field analyses and empirical data obtained with a D-Wave Two quantum annealer (supporting up to 512 qubits) showed that NQAC has the potential to achieve a scalable effective-temperature reduction, Teff˜C-η , with 0 temperature of a quantum annealer. Such effective-temperature reduction is relevant for machine-learning applications. Since we demonstrate that NQAC achieves error correction via a reduction of the effective-temperature of the quantum annealing device, our results address the problem of the "temperature scaling law for quantum annealers," which requires the temperature of quantum annealers to be reduced as problems of larger sizes are attempted to be solved.

  8. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  9. Scalable architecture for a room temperature solid-state quantum information processor.

    Science.gov (United States)

    Yao, N Y; Jiang, L; Gorshkov, A V; Maurer, P C; Giedke, G; Cirac, J I; Lukin, M D

    2012-04-24

    The realization of a scalable quantum information processor has emerged over the past decade as one of the central challenges at the interface of fundamental science and engineering. Here we propose and analyse an architecture for a scalable, solid-state quantum information processor capable of operating at room temperature. Our approach is based on recent experimental advances involving nitrogen-vacancy colour centres in diamond. In particular, we demonstrate that the multiple challenges associated with operation at ambient temperature, individual addressing at the nanoscale, strong qubit coupling, robustness against disorder and low decoherence rates can be simultaneously achieved under realistic, experimentally relevant conditions. The architecture uses a novel approach to quantum information transfer and includes a hierarchy of control at successive length scales. Moreover, it alleviates the stringent constraints currently limiting the realization of scalable quantum processors and will provide fundamental insights into the physics of non-equilibrium many-body quantum systems.

  10. A scalable quantum computer with ions in an array of microtraps

    Science.gov (United States)

    Cirac; Zoller

    2000-04-06

    Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).

  11. A quantum CISC compiler and scalable assembler for quantum computing on large systems

    Energy Technology Data Exchange (ETDEWEB)

    Schulte-Herbrueggen, Thomas; Spoerl, Andreas; Glaser, Steffen [Dept. Chemistry, Technical University of Munich (TUM), 85747 Garching (Germany)

    2008-07-01

    Using the cutting edge high-speed parallel cluster HLRB-II (with a total LINPACK performance of 63.3 TFlops/s) we present a quantum CISC compiler into time-optimised or decoherence-protected complex instruction sets. They comprise effective multi-qubit interactions with up to 10 qubits. We show how to assemble these medium-sized CISC-modules in a scalable way for quantum computation on large systems. Extending the toolbox of universal gates by optimised complex multi-qubit instruction sets paves the way to fight decoherence in realistic Markovian and non-Markovian settings. The advantage of quantum CISC compilation over standard RISC compilations into one- and two-qubit universal gates is demonstrated inter alia for the quantum Fourier transform (QFT) and for multiply-controlled NOT gates. The speed-up is up to factor of six thus giving significantly better performance under decoherence. - Implications for upper limits to time complexities are also derived.

  12. Universal shift register implementation using quantum dot cellular automata

    Directory of Open Access Journals (Sweden)

    Tamoghna Purkayastha

    2018-06-01

    Full Text Available Quantum-dot Cellular Automata (QCA demands to be a promising alternative of CMOS in ultra large scale circuit integration. Arithmetic and logic unit designs using QCA are of high research interest. A layout of four and eight bit universal shift register (USR has been proposed. Initially QCA layouts of D flip-flop with clear and 4 to 1 multiplexer are designed, which are extended to design 4 and 8-bit parallel in parallel out (PIPO shift register. Finally the PIPO is utilized to design 4-bit and 8-bit USR. By the comparative analysis it is observed that the proposed D Flip-flop achieved 40% clock delay improvement, whereas the modified layout of 4 to 1 multiplexer achieved 30% cell count reduction and 17% clock delay reduction from the previous works. This results in 31% reduction in cell count, 45% reduction in area and 55% reduction in clock cycle delay in 8 bit USR layout.

  13. Scalable quantum computation via local control of only two qubits

    International Nuclear Information System (INIS)

    Burgarth, Daniel; Maruyama, Koji; Murphy, Michael; Montangero, Simone; Calarco, Tommaso; Nori, Franco; Plenio, Martin B.

    2010-01-01

    We apply quantum control techniques to a long spin chain by acting only on two qubits at one of its ends, thereby implementing universal quantum computation by a combination of quantum gates on these qubits and indirect swap operations across the chain. It is shown that the control sequences can be computed and implemented efficiently. We discuss the application of these ideas to physical systems such as superconducting qubits in which full control of long chains is challenging.

  14. Young Investigator Program: Modular Paradigm for Scalable Quantum Information

    Science.gov (United States)

    2016-03-04

    actuator When both direct driving and a quantum controller are available, one can take advantage of both to achieve faster driving of the qubit. In...pointing to advantages to be found in particular geometries for larger quantum information architectures. • We investigated the effect of dephasing and...Montangero, T. Calarco, F. Nori, and M. B. Plenio, “Scal- able quantum computation via local control of only two qubits,” Phys. Rev. A, vol. 81, no. 4, p

  15. Novel Quantum Encryption Algorithm Based on Multiqubit Quantum Shift Register and Hill Cipher

    International Nuclear Information System (INIS)

    Khalaf, Rifaat Zaidan; Abdullah, Alharith Abdulkareem

    2014-01-01

    Based on a quantum shift register, a novel quantum block cryptographic algorithm that can be used to encrypt classical messages is proposed. The message is encoded and decoded by using a code generated by the quantum shift register. The security of this algorithm is analysed in detail. It is shown that, in the quantum block cryptographic algorithm, two keys can be used. One of them is the classical key that is used in the Hill cipher algorithm where Alice and Bob use the authenticated Diffie Hellman key exchange algorithm using the concept of digital signature for the authentication of the two communicating parties and so eliminate the man-in-the-middle attack. The other key is generated by the quantum shift register and used for the coding of the encryption message, where Alice and Bob share the key by using the BB84 protocol. The novel algorithm can prevent a quantum attack strategy as well as a classical attack strategy. The problem of key management is discussed and circuits for the encryption and the decryption are suggested

  16. Scalable Spin-Qubit Circuits with Quantum Dots

    Science.gov (United States)

    2006-12-31

    Anisotropic Heisenberg Spin Rings” cond-mat/0608642. 13. Karyn Le Hur (Yale), Pascal Simon, and Daniel Loss, “Transport through a quantum dot with SU(4...Daniel Loss, “Nuclear spin state narrowing via gate--controlled Rabi oscillations in a double quantum dot” Phys. Rev. B 73, 205302 (2006). 27. Jörg...single spin read out (Delft), sqrt-of-swap (Harvard) and single spin Rabi oscillations. At the end of this program and based on our theoretical

  17. Utilizing encoding in scalable linear optics quantum computing

    International Nuclear Information System (INIS)

    Hayes, A J F; Gilchrist, A; Myers, C R; Ralph, T C

    2004-01-01

    We present a scheme which offers a significant reduction in the resources required to implement linear optics quantum computing. The scheme is a variation of the proposal of Knill, Laflamme and Milburn, and makes use of an incremental approach to the error encoding to boost probability of success

  18. Numerical analysis of boosting scheme for scalable NMR quantum computation

    International Nuclear Information System (INIS)

    SaiToh, Akira; Kitagawa, Masahiro

    2005-01-01

    Among initialization schemes for ensemble quantum computation beginning at thermal equilibrium, the scheme proposed by Schulman and Vazirani [in Proceedings of the 31st ACM Symposium on Theory of Computing (STOC'99) (ACM Press, New York, 1999), pp. 322-329] is known for the simple quantum circuit to redistribute the biases (polarizations) of qubits and small time complexity. However, our numerical simulation shows that the number of qubits initialized by the scheme is rather smaller than expected from the von Neumann entropy because of an increase in the sum of the binary entropies of individual qubits, which indicates a growth in the total classical correlation. This result--namely, that there is such a significant growth in the total binary entropy--disagrees with that of their analysis

  19. Molecular engineering with artificial atoms: designing a material platform for scalable quantum spintronics and photonics

    Science.gov (United States)

    Doty, Matthew F.; Ma, Xiangyu; Zide, Joshua M. O.; Bryant, Garnett W.

    2017-09-01

    Self-assembled InAs Quantum Dots (QDs) are often called "artificial atoms" and have long been of interest as components of quantum photonic and spintronic devices. Although there has been substantial progress in demonstrating optical control of both single spins confined to a single QD and entanglement between two separated QDs, the path toward scalable quantum photonic devices based on spins remains challenging. Quantum Dot Molecules, which consist of two closely-spaced InAs QDs, have unique properties that can be engineered with the solid state analog of molecular engineering in which the composition, size, and location of both the QDs and the intervening barrier are controlled during growth. Moreover, applied electric, magnetic, and optical fields can be used to modulate, in situ, both the spin and optical properties of the molecular states. We describe how the unique photonic properties of engineered Quantum Dot Molecules can be leveraged to overcome long-standing challenges to the creation of scalable quantum devices that manipulate single spins via photonics.

  20. Scalable Arbitrated Quantum Signature of Classical Messages with Multi-Signers

    International Nuclear Information System (INIS)

    Yang Yuguang; Wang Yuan; Teng Yiwei; Chai Haiping; Wen Qiaoyan

    2010-01-01

    Unconditionally secure signature is an important part of quantum cryptography. Usually, a signature scheme only provides an environment for a single signer. Nevertheless, in real applications, many signers may collaboratively send a message to the verifier and convince the verifier that the message is actually transmitted by them. In this paper, we give a scalable arbitrated signature protocol of classical messages with multi-signers. Its security is analyzed and proved to be secure even with a compromised arbitrator. (general)

  1. Memory-built-in quantum cloning in a hybrid solid-state spin register

    Science.gov (United States)

    Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.

    2015-07-01

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.

  2. The engineering of a scalable multi-site communications system utilizing quantum key distribution (QKD)

    Science.gov (United States)

    Tysowski, Piotr K.; Ling, Xinhua; Lütkenhaus, Norbert; Mosca, Michele

    2018-04-01

    Quantum key distribution (QKD) is a means of generating keys between a pair of computing hosts that is theoretically secure against cryptanalysis, even by a quantum computer. Although there is much active research into improving the QKD technology itself, there is still significant work to be done to apply engineering methodology and determine how it can be practically built to scale within an enterprise IT environment. Significant challenges exist in building a practical key management service (KMS) for use in a metropolitan network. QKD is generally a point-to-point technique only and is subject to steep performance constraints. The integration of QKD into enterprise-level computing has been researched, to enable quantum-safe communication. A novel method for constructing a KMS is presented that allows arbitrary computing hosts on one site to establish multiple secure communication sessions with the hosts of another site. A key exchange protocol is proposed where symmetric private keys are granted to hosts while satisfying the scalability needs of an enterprise population of users. The KMS operates within a layered architectural style that is able to interoperate with various underlying QKD implementations. Variable levels of security for the host population are enforced through a policy engine. A network layer provides key generation across a network of nodes connected by quantum links. Scheduling and routing functionality allows quantum key material to be relayed across trusted nodes. Optimizations are performed to match the real-time host demand for key material with the capacity afforded by the infrastructure. The result is a flexible and scalable architecture that is suitable for enterprise use and independent of any specific QKD technology.

  3. Phonon-based scalable platform for chip-scale quantum computing

    Directory of Open Access Journals (Sweden)

    Charles M. Reinke

    2016-12-01

    Full Text Available We present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.

  4. A scalable, self-analyzing digital locking system for use on quantum optics experiments.

    Science.gov (United States)

    Sparkes, B M; Chrzanowski, H M; Parrain, D P; Buchler, B C; Lam, P K; Symul, T

    2011-07-01

    Digital control of optics experiments has many advantages over analog control systems, specifically in terms of the scalability, cost, flexibility, and the integration of system information into one location. We present a digital control system, freely available for download online, specifically designed for quantum optics experiments that allows for automatic and sequential re-locking of optical components. We show how the inbuilt locking analysis tools, including a white-noise network analyzer, can be used to help optimize individual locks, and verify the long term stability of the digital system. Finally, we present an example of the benefits of digital locking for quantum optics by applying the code to a specific experiment used to characterize optical Schrödinger cat states.

  5. Towards Scalable Entangled Photon Sources with Self-Assembled InAs /GaAs Quantum Dots

    Science.gov (United States)

    Wang, Jianping; Gong, Ming; Guo, G.-C.; He, Lixin

    2015-08-01

    The biexciton cascade process in self-assembled quantum dots (QDs) provides an ideal system for realizing deterministic entangled photon-pair sources, which are essential to quantum information science. The entangled photon pairs have recently been generated in experiments after eliminating the fine-structure splitting (FSS) of excitons using a number of different methods. Thus far, however, QD-based sources of entangled photons have not been scalable because the wavelengths of QDs differ from dot to dot. Here, we propose a wavelength-tunable entangled photon emitter mounted on a three-dimensional stressor, in which the FSS and exciton energy can be tuned independently, thereby enabling photon entanglement between dissimilar QDs. We confirm these results via atomistic pseudopotential calculations. This provides a first step towards future realization of scalable entangled photon generators for quantum information applications.

  6. A compact T-shaped nanodevice for charge sensing of a tunable double quantum dot in scalable silicon technology

    Energy Technology Data Exchange (ETDEWEB)

    Tagliaferri, M.L.V., E-mail: marco.tagliaferri@mdm.imm.cnr.it [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); Crippa, A. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); De Michielis, M. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Mazzeo, G.; Fanciulli, M. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); Prati, E. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2016-03-11

    We report on the fabrication and the characterization of a tunable complementary-metal oxide semiconductor (CMOS) system consisting of two quantum dots and a MOS single electron transistor (MOSSET) charge sensor. By exploiting a compact T-shaped design and few gates fabricated by electron beam lithography, the MOSSET senses the charge state of either a single or double quantum dot at 4.2 K. The CMOS compatible fabrication process, the simplified control over the number of quantum dots and the scalable geometry make such architecture exploitable for large scale fabrication of multiple spin-based qubits in circuital quantum information processing. - Highlights: • Charge sensing of tunable, by position and number, quantum dots is demonstrated. • A compact T-shaped design with five gates at a single metalization level is proposed. • The electrometer is a silicon-etched nanowire acting as a disorder tolerant MOSSET.

  7. Scalable implementation of ancilla-free optimal 1→M phase-covariant quantum cloning by combining quantum Zeno dynamics and adiabatic passage

    International Nuclear Information System (INIS)

    Shao, Xiao-Qiang; Zheng, Tai-Yu; Zhang, Shou

    2011-01-01

    A scalable way for implementation of ancilla-free optimal 1→M phase-covariant quantum cloning (PCC) is proposed by combining quantum Zeno dynamics and adiabatic passage. An optimal 1→M PCC can be achieved directly from the existed optimal 1→(M-1) PCC without excited states population during the whole process. The cases for optimal 1→3 (4) PCCs are discussed detailedly to show that the scheme is robust against the effect of decoherence. Moreover, the time for carrying out each cloning transformation is regular, which may reduce the complexity for achieving the optimal PCC in experiment. -- Highlights: → We implement the ancilla-free optimal 1→M phase-covariant quantum cloning machine. → This scheme is robust against the cavity decay and the spontaneous emission of atom. → The time for carrying out each cloning transformation is regular.

  8. Scalable implementation of ancilla-free optimal 1→M phase-covariant quantum cloning by combining quantum Zeno dynamics and adiabatic passage

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Xiao-Qiang, E-mail: xqshao83@yahoo.cn [School of Physics, Northeast Normal University, Changchun 130024 (China); Zheng, Tai-Yu, E-mail: zhengty@nenu.edu.cn [School of Physics, Northeast Normal University, Changchun 130024 (China); Zhang, Shou [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China)

    2011-09-19

    A scalable way for implementation of ancilla-free optimal 1→M phase-covariant quantum cloning (PCC) is proposed by combining quantum Zeno dynamics and adiabatic passage. An optimal 1→M PCC can be achieved directly from the existed optimal 1→(M-1) PCC without excited states population during the whole process. The cases for optimal 1→3 (4) PCCs are discussed detailedly to show that the scheme is robust against the effect of decoherence. Moreover, the time for carrying out each cloning transformation is regular, which may reduce the complexity for achieving the optimal PCC in experiment. -- Highlights: → We implement the ancilla-free optimal 1→M phase-covariant quantum cloning machine. → This scheme is robust against the cavity decay and the spontaneous emission of atom. → The time for carrying out each cloning transformation is regular.

  9. Electron-phonon thermalization in a scalable method for real-time quantum dynamics

    Science.gov (United States)

    Rizzi, Valerio; Todorov, Tchavdar N.; Kohanoff, Jorge J.; Correa, Alfredo A.

    2016-01-01

    We present a quantum simulation method that follows the dynamics of out-of-equilibrium many-body systems of electrons and oscillators in real time. Its cost is linear in the number of oscillators and it can probe time scales from attoseconds to hundreds of picoseconds. Contrary to Ehrenfest dynamics, it can thermalize starting from a variety of initial conditions, including electronic population inversion. While an electronic temperature can be defined in terms of a nonequilibrium entropy, a Fermi-Dirac distribution in general emerges only after thermalization. These results can be used to construct a kinetic model of electron-phonon equilibration based on the explicit quantum dynamics.

  10. Quantum measurement and real-time feedback with a spin-register in diamond

    NARCIS (Netherlands)

    Blok, M.S.

    2015-01-01

    Gaining precise control over quantum systems is crucial for applications in quantum information processing and quantum sensing and to perform experimental tests of quantum mechanics. The experiments presented in this thesis implement quantum measurements and real-time feedback protocols that can

  11. Solving the scalability issue in quantum-based refinement: Q|R#1.

    Science.gov (United States)

    Zheng, Min; Moriarty, Nigel W; Xu, Yanting; Reimers, Jeffrey R; Afonine, Pavel V; Waller, Mark P

    2017-12-01

    Accurately refining biomacromolecules using a quantum-chemical method is challenging because the cost of a quantum-chemical calculation scales approximately as n m , where n is the number of atoms and m (≥3) is based on the quantum method of choice. This fundamental problem means that quantum-chemical calculations become intractable when the size of the system requires more computational resources than are available. In the development of the software package called Q|R, this issue is referred to as Q|R#1. A divide-and-conquer approach has been developed that fragments the atomic model into small manageable pieces in order to solve Q|R#1. Firstly, the atomic model of a crystal structure is analyzed to detect noncovalent interactions between residues, and the results of the analysis are represented as an interaction graph. Secondly, a graph-clustering algorithm is used to partition the interaction graph into a set of clusters in such a way as to minimize disruption to the noncovalent interaction network. Thirdly, the environment surrounding each individual cluster is analyzed and any residue that is interacting with a particular cluster is assigned to the buffer region of that particular cluster. A fragment is defined as a cluster plus its buffer region. The gradients for all atoms from each of the fragments are computed, and only the gradients from each cluster are combined to create the total gradients. A quantum-based refinement is carried out using the total gradients as chemical restraints. In order to validate this interaction graph-based fragmentation approach in Q|R, the entire atomic model of an amyloid cross-β spine crystal structure (PDB entry 2oNA) was refined.

  12. Scalability of a Low-Cost Multi-Teraflop Linux Cluster for High-End Classical Atomistic and Quantum Mechanical Simulations

    Science.gov (United States)

    Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash

    2003-01-01

    Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.

  13. Control, measurement and entanglement of remote quantum spin registers in diamond

    NARCIS (Netherlands)

    Bernien, H.

    2014-01-01

    A quantum network is the essential resource for distributed quantum computation and the enabling technology for secure quantum communication over large distances. Setting up such a network would require establishing quantum connections between local nodes which are capable of generating, processing

  14. Quantum cost optimized design of 4-bit reversible universal shift register using reduced number of logic gate

    Science.gov (United States)

    Maity, H.; Biswas, A.; Bhattacharjee, A. K.; Pal, A.

    In this paper, we have proposed the design of quantum cost (QC) optimized 4-bit reversible universal shift register (RUSR) using reduced number of reversible logic gates. The proposed design is very useful in quantum computing due to its low QC, less no. of reversible logic gate and less delay. The QC, no. of gates, garbage outputs (GOs) are respectively 64, 8 and 16 for proposed work. The improvement of proposed work is also presented. The QC is 5.88% to 70.9% improved, no. of gate is 60% to 83.33% improved with compared to latest reported result.

  15. Implementing a strand of a scalable fault-tolerant quantum computing fabric.

    Science.gov (United States)

    Chow, Jerry M; Gambetta, Jay M; Magesan, Easwar; Abraham, David W; Cross, Andrew W; Johnson, B R; Masluk, Nicholas A; Ryan, Colm A; Smolin, John A; Srinivasan, Srikanth J; Steffen, M

    2014-06-24

    With favourable error thresholds and requiring only nearest-neighbour interactions on a lattice, the surface code is an error-correcting code that has garnered considerable attention. At the heart of this code is the ability to perform a low-weight parity measurement of local code qubits. Here we demonstrate high-fidelity parity detection of two code qubits via measurement of a third syndrome qubit. With high-fidelity gates, we generate entanglement distributed across three superconducting qubits in a lattice where each code qubit is coupled to two bus resonators. Via high-fidelity measurement of the syndrome qubit, we deterministically entangle the code qubits in either an even or odd parity Bell state, conditioned on the syndrome qubit state. Finally, to fully characterize this parity readout, we develop a measurement tomography protocol. The lattice presented naturally extends to larger networks of qubits, outlining a path towards fault-tolerant quantum computing.

  16. A quantum search algorithm of two entangled registers to realize quantum discrete Fourier transform of signal processing

    International Nuclear Information System (INIS)

    Pang Chaoyang; Hu Benqiong

    2008-01-01

    The discrete Fourier transform (DFT) is the base of modern signal processing. 1-dimensional fast Fourier transform (ID FFT) and 2D FFT have time complexity O (N log N) and O (N 2 log N) respectively. Since 1965, there has been no more essential breakthrough for the design of fast DFT algorithm. DFT has two properties. One property is that DFT is energy conservation transform. The other property is that many DFT coefficients are close to zero. The basic idea of this paper is that the generalized Grover's iteration can perform the computation of DFT which acts on the entangled states to search the big DFT coefficients until these big coefficients contain nearly all energy. One-dimensional quantum DFT (ID QDFT) and two-dimensional quantum DFT (2D QDFT) are presented in this paper. The quantum algorithm for convolution estimation is also presented in this paper. Compared with FFT, ID and 2D QDFT have time complexity O(√N) and O (N) respectively. QDFT and quantum convolution demonstrate that quantum computation to process classical signal is possible. (general)

  17. Spin texture readout of a Moore-Read topological quantum register

    NARCIS (Netherlands)

    Romers, J.C.; Schoutens, K.

    2012-01-01

    We study the composite charged spin texture (CST) over the Moore-Read quantum Hall state that arises when a collection of elementary CSTs is moved to the same location. Following an algebraic approach based on the characteristic pair correlations of the Moore-Read state, we find that the spin

  18. A quantum byte with 10{sup -4} crosstalk for fault-tolerant quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Piltz, Christian; Sriarunothai, Theeraphot; Varon, Andres; Wunderlich, Christof [Department Physik, Universitaet Siegen, 57068 Siegen (Germany)

    2014-07-01

    A prerequisite for fault-tolerant and thus scalable operation of a quantum computer is the use of quantum error correction protocols. Such protocols come with a maximum tolerable gate error, and there is consensus that an error of order 10{sup -4} is an important threshold. This threshold was already breached for single-qubit gates with trapped ions using microwave radiation. However, crosstalk - the error that is induced in qubits within a quantum register, when one qubit (or a subset of qubits) is coherently manipulated, still prevents the realization of a scalable quantum computer. The application of a quantum gate - even if the gate error itself is low - induces errors in other qubits within the quantum register. We present an experimental study using quantum registers consisting of microwave-driven trapped {sup 171}Yb{sup +} ions in a static magnetic gradient. We demonstrate a quantum register of three qubits with a next-neighbour crosstalk of 6(1) . 10{sup -5} that for the first time breaches the error correction threshold. Furthermore, we present a quantum register of eight qubits - a quantum byte - with a next-neighbour crosstalk error better than 2.9(4) . 10{sup -4}. Importantly, our results are obtained with thermally excited ions far above the motional ground state.

  19. Scalable devices

    KAUST Repository

    Krü ger, Jens J.; Hadwiger, Markus

    2014-01-01

    In computer science in general and in particular the field of high performance computing and supercomputing the term scalable plays an important role. It indicates that a piece of hardware, a concept, an algorithm, or an entire system scales

  20. Scalable devices

    KAUST Repository

    Krüger, Jens J.

    2014-01-01

    In computer science in general and in particular the field of high performance computing and supercomputing the term scalable plays an important role. It indicates that a piece of hardware, a concept, an algorithm, or an entire system scales with the size of the problem, i.e., it can not only be used in a very specific setting but it\\'s applicable for a wide range of problems. From small scenarios to possibly very large settings. In this spirit, there exist a number of fixed areas of research on scalability. There are works on scalable algorithms, scalable architectures but what are scalable devices? In the context of this chapter, we are interested in a whole range of display devices, ranging from small scale hardware such as tablet computers, pads, smart-phones etc. up to large tiled display walls. What interests us mostly is not so much the hardware setup but mostly the visualization algorithms behind these display systems that scale from your average smart phone up to the largest gigapixel display walls.

  1. Mixed Precision Solver Scalable to 16000 MPI Processes for Lattice Quantum Chromodynamics Simulations on the Oakforest-PACS System

    OpenAIRE

    Boku, Taisuke; Ishikawa, Ken-Ichi; Kuramashi, Yoshinobu; Meadows, Lawrence

    2017-01-01

    Lattice Quantum Chromodynamics (Lattice QCD) is a quantum field theory on a finite discretized space-time box so as to numerically compute the dynamics of quarks and gluons to explore the nature of subatomic world. Solving the equation of motion of quarks (quark solver) is the most compute-intensive part of the lattice QCD simulations and is one of the legacy HPC applications. We have developed a mixed-precision quark solver for a large Intel Xeon Phi (KNL) system named "Oakforest-PACS", empl...

  2. Scalable Creation of Long-Lived Multipartite Entanglement

    Science.gov (United States)

    Kaufmann, H.; Ruster, T.; Schmiegelow, C. T.; Luda, M. A.; Kaushal, V.; Schulz, J.; von Lindenfels, D.; Schmidt-Kaler, F.; Poschinger, U. G.

    2017-10-01

    We demonstrate the deterministic generation of multipartite entanglement based on scalable methods. Four qubits are encoded in 40Ca+, stored in a microstructured segmented Paul trap. These qubits are sequentially entangled by laser-driven pairwise gate operations. Between these, the qubit register is dynamically reconfigured via ion shuttling operations, where ion crystals are separated and merged, and ions are moved in and out of a fixed laser interaction zone. A sequence consisting of three pairwise entangling gates yields a four-ion Greenberger-Horne-Zeilinger state |ψ ⟩=(1 /√{2 })(|0000 ⟩+|1111 ⟩) , and full quantum state tomography reveals a state fidelity of 94.4(3)%. We analyze the decoherence of this state and employ dynamic decoupling on the spatially distributed constituents to maintain 69(5)% coherence at a storage time of 1.1 sec.

  3. Das sprachliche Register (Speech Registers)

    Science.gov (United States)

    Hess-Luttich, Ernest W. B.

    1974-01-01

    The linguistic behavior of a given individual varies; he will on different occasions speak (or write) differently according to what may be roughly described as different social situations: he will use a number of different registers. The application of such registers both in the field of text analysis and in the preparation of teaching materials…

  4. Scalable coherent interface

    International Nuclear Information System (INIS)

    Alnaes, K.; Kristiansen, E.H.; Gustavson, D.B.; James, D.V.

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs

  5. Registered partnerships

    CERN Multimedia

    Staff Association

    2015-01-01

    In recent decades, family patterns have changed significantly. National laws have taken these changes into account, recognizing new forms of unions, different to heterosexual marriage. Indeed, recently some countries have given the possibility to same-sex couples to enter into various forms of unions. Staff regulations of international organizations are not directly affected by national laws, but in the context of diversity policies, the lack of recognition of these new forms of unions, may appear to discriminate based on sexual orientation and to limit the freedom of choosing marital status. A study by the International Service for Remunerations and Pensions (iSRP) of the OECD in January 2015 (PROS Report (1015) 04) shows that in comparison with other international organizations, CERN offers the least favorable social conditions for its Staff with in a registered partnership. As part of the Five-year review in 2015, it is important that CERN aligns itself with the practice of these other organizations...

  6. PKI Scalability Issues

    OpenAIRE

    Slagell, Adam J; Bonilla, Rafael

    2004-01-01

    This report surveys different PKI technologies such as PKIX and SPKI and the issues of PKI that affect scalability. Much focus is spent on certificate revocation methodologies and status verification systems such as CRLs, Delta-CRLs, CRS, Certificate Revocation Trees, Windowed Certificate Revocation, OCSP, SCVP and DVCS.

  7. Integrated System Technologies for Modular Trapped Ion Quantum Information Processing

    Science.gov (United States)

    Crain, Stephen G.

    Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

  8. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  9. Scalable Atomistic Simulation Algorithms for Materials Research

    Directory of Open Access Journals (Sweden)

    Aiichiro Nakano

    2002-01-01

    Full Text Available A suite of scalable atomistic simulation programs has been developed for materials research based on space-time multiresolution algorithms. Design and analysis of parallel algorithms are presented for molecular dynamics (MD simulations and quantum-mechanical (QM calculations based on the density functional theory. Performance tests have been carried out on 1,088-processor Cray T3E and 1,280-processor IBM SP3 computers. The linear-scaling algorithms have enabled 6.44-billion-atom MD and 111,000-atom QM calculations on 1,024 SP3 processors with parallel efficiency well over 90%. production-quality programs also feature wavelet-based computational-space decomposition for adaptive load balancing, spacefilling-curve-based adaptive data compression with user-defined error bound for scalable I/O, and octree-based fast visibility culling for immersive and interactive visualization of massive simulation data.

  10. Scalable Resolution Display Walls

    KAUST Repository

    Leigh, Jason; Johnson, Andrew; Renambot, Luc; Peterka, Tom; Jeong, Byungil; Sandin, Daniel J.; Talandis, Jonas; Jagodic, Ratko; Nam, Sungwon; Hur, Hyejung; Sun, Yiwen

    2013-01-01

    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  11. Dilution Refrigerator Technology for Scalable Quantum Computing

    Science.gov (United States)

    2014-05-22

    Faraday cage but we did not do this for vibration concerns. 3. 90 degree Aeroquip fitting This elbow can be used (or not) depending upon where you...place. 4. Gas ballast tanks We have them mounted inside of the Faraday cage 5. Gas handling system Everything in this picture is...lines will work for your installation. 11. Cryostat test stand and faraday cage We were not planning on sending the test stand because it is

  12. Scalable photoreactor for hydrogen production

    KAUST Repository

    Takanabe, Kazuhiro; Shinagawa, Tatsuya

    2017-01-01

    Provided herein are scalable photoreactors that can include a membrane-free water- splitting electrolyzer and systems that can include a plurality of membrane-free water- splitting electrolyzers. Also provided herein are methods of using the scalable photoreactors provided herein.

  13. Scalable photoreactor for hydrogen production

    KAUST Repository

    Takanabe, Kazuhiro

    2017-04-06

    Provided herein are scalable photoreactors that can include a membrane-free water- splitting electrolyzer and systems that can include a plurality of membrane-free water- splitting electrolyzers. Also provided herein are methods of using the scalable photoreactors provided herein.

  14. Noise-Resilient Quantum Computing with a Nitrogen-Vacancy Center and Nuclear Spins.

    Science.gov (United States)

    Casanova, J; Wang, Z-Y; Plenio, M B

    2016-09-23

    Selective control of qubits in a quantum register for the purposes of quantum information processing represents a critical challenge for dense spin ensembles in solid-state systems. Here we present a protocol that achieves a complete set of selective electron-nuclear gates and single nuclear rotations in such an ensemble in diamond facilitated by a nearby nitrogen-vacancy (NV) center. The protocol suppresses internuclear interactions as well as unwanted coupling between the NV center and other spins of the ensemble to achieve quantum gate fidelities well exceeding 99%. Notably, our method can be applied to weakly coupled, distant spins representing a scalable procedure that exploits the exceptional properties of nuclear spins in diamond as robust quantum memories.

  15. Scalable Frequent Subgraph Mining

    KAUST Repository

    Abdelhamid, Ehab

    2017-06-19

    A graph is a data structure that contains a set of nodes and a set of edges connecting these nodes. Nodes represent objects while edges model relationships among these objects. Graphs are used in various domains due to their ability to model complex relations among several objects. Given an input graph, the Frequent Subgraph Mining (FSM) task finds all subgraphs with frequencies exceeding a given threshold. FSM is crucial for graph analysis, and it is an essential building block in a variety of applications, such as graph clustering and indexing. FSM is computationally expensive, and its existing solutions are extremely slow. Consequently, these solutions are incapable of mining modern large graphs. This slowness is caused by the underlying approaches of these solutions which require finding and storing an excessive amount of subgraph matches. This dissertation proposes a scalable solution for FSM that avoids the limitations of previous work. This solution is composed of four components. The first component is a single-threaded technique which, for each candidate subgraph, needs to find only a minimal number of matches. The second component is a scalable parallel FSM technique that utilizes a novel two-phase approach. The first phase quickly builds an approximate search space, which is then used by the second phase to optimize and balance the workload of the FSM task. The third component focuses on accelerating frequency evaluation, which is a critical step in FSM. To do so, a machine learning model is employed to predict the type of each graph node, and accordingly, an optimized method is selected to evaluate that node. The fourth component focuses on mining dynamic graphs, such as social networks. To this end, an incremental index is maintained during the dynamic updates. Only this index is processed and updated for the majority of graph updates. Consequently, search space is significantly pruned and efficiency is improved. The empirical evaluation shows that the

  16. Scalable Nanomanufacturing—A Review

    Directory of Open Access Journals (Sweden)

    Khershed Cooper

    2017-01-01

    Full Text Available This article describes the field of scalable nanomanufacturing, its importance and need, its research activities and achievements. The National Science Foundation is taking a leading role in fostering basic research in scalable nanomanufacturing (SNM. From this effort several novel nanomanufacturing approaches have been proposed, studied and demonstrated, including scalable nanopatterning. This paper will discuss SNM research areas in materials, processes and applications, scale-up methods with project examples, and manufacturing challenges that need to be addressed to move nanotechnology discoveries closer to the marketplace.

  17. Scalable Nonlinear Compact Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  18. Photonic Quantum Information Processing

    International Nuclear Information System (INIS)

    Walther, P.

    2012-01-01

    The advantage of the photon's mobility makes optical quantum system ideally suited for delegated quantum computation. I will present results for the realization for a measurement-based quantum network in a client-server environment, where quantum information is securely communicated and computed. Related to measurement-based quantum computing I will discuss a recent experiment showing that quantum discord can be used as resource for the remote state preparation, which might shine new light on the requirements for quantum-enhanced information processing. Finally, I will briefly review recent photonic quantum simulation experiments of four frustrated Heisenberg-interactions spins and present an outlook of feasible simulation experiments with more complex interactions or random walk structures. As outlook I will discuss the current status of new quantum technology for improving the scalability of photonic quantum systems by using superconducting single-photon detectors and tailored light-matter interactions. (author)

  19. Quantum networks based on spins in diamond

    International Nuclear Information System (INIS)

    Ronald Hanson

    2014-01-01

    Entanglement of spatially separated objects is one of the most intriguing phenomena that can occur in physics. Besides being of fundamental interest, entanglement is also a valuable resource in quantum information technology enabling secure quantum communication networks and distributed quantum computing. Here we present our most recent results towards the realization of scalable quantum networks with solid-state qubits. (author)

  20. Parallel scalability of Hartree-Fock calculations

    Science.gov (United States)

    Chow, Edmond; Liu, Xing; Smelyanskiy, Mikhail; Hammond, Jeff R.

    2015-03-01

    Quantum chemistry is increasingly performed using large cluster computers consisting of multiple interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases as more nodes are used, due to the cost of communication between the nodes. This paper empirically investigates the parallel scalability of Hartree-Fock calculations. The construction of the Fock matrix and the density matrix calculation are analyzed separately. For the former, we use a parallelization of Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For the latter, we use density matrix purification from the linear scaling methods literature, but without using sparsity. When using large numbers of nodes for moderately sized problems, density matrix computations are network-bandwidth bound, making purification methods potentially faster than eigendecomposition methods.

  1. National Register Historic Districts

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The National Register Historic District layer is a shape file showing the boundaries of Historic Districts that are listed on the National Register of Historic Places.

  2. Coherent control of diamond defects for quantum information science and quantum sensing

    Science.gov (United States)

    Maurer, Peter

    Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. Nitrogen Vacancy (NV) color centers in diamond have recently attracted attention as a room temperature solid state spin system that expresses long coherence times. The electronic spin associated with NV centers can be efficiently manipulated, initialized and readout using microwave and optical techniques. Inspired by these extraordinary properties, much effort has been dedicated to use NV centers as a building block for scalable room temperature quantum information processing and quantum communication as well as a quantum sensing. In the first part of this thesis we demonstrate that by decoupling the spin from the local environment the coherence time of a NV quantum register can be extended by three order of magnitudes. Employing a novel dissipative mechanism in combination with dynamical decoupling, memory times exceeding one second are observed. The second part shows that, based on quantum control, NV centers in nano-diamonds provide a nanoscale temperature sensor with unprecedented accuracy enabling local temperature measurements in living biological cells

  3. Implementing quantum Ricci curvature

    Science.gov (United States)

    Klitgaard, N.; Loll, R.

    2018-05-01

    Quantum Ricci curvature has been introduced recently as a new, geometric observable characterizing the curvature properties of metric spaces, without the need for a smooth structure. Besides coordinate invariance, its key features are scalability, computability, and robustness. We demonstrate that these properties continue to hold in the context of nonperturbative quantum gravity, by evaluating the quantum Ricci curvature numerically in two-dimensional Euclidean quantum gravity, defined in terms of dynamical triangulations. Despite the well-known, highly nonclassical properties of the underlying quantum geometry, its Ricci curvature can be matched well to that of a five-dimensional round sphere.

  4. Microscopic Characterization of Scalable Coherent Rydberg Superatoms

    Directory of Open Access Journals (Sweden)

    Johannes Zeiher

    2015-08-01

    Full Text Available Strong interactions can amplify quantum effects such that they become important on macroscopic scales. Controlling these coherently on a single-particle level is essential for the tailored preparation of strongly correlated quantum systems and opens up new prospects for quantum technologies. Rydberg atoms offer such strong interactions, which lead to extreme nonlinearities in laser-coupled atomic ensembles. As a result, multiple excitation of a micrometer-sized cloud can be blocked while the light-matter coupling becomes collectively enhanced. The resulting two-level system, often called a “superatom,” is a valuable resource for quantum information, providing a collective qubit. Here, we report on the preparation of 2 orders of magnitude scalable superatoms utilizing the large interaction strength provided by Rydberg atoms combined with precise control of an ensemble of ultracold atoms in an optical lattice. The latter is achieved with sub-shot-noise precision by local manipulation of a two-dimensional Mott insulator. We microscopically confirm the superatom picture by in situ detection of the Rydberg excitations and observe the characteristic square-root scaling of the optical coupling with the number of atoms. Enabled by the full control over the atomic sample, including the motional degrees of freedom, we infer the overlap of the produced many-body state with a W state from the observed Rabi oscillations and deduce the presence of entanglement. Finally, we investigate the breakdown of the superatom picture when two Rydberg excitations are present in the system, which leads to dephasing and a loss of coherence.

  5. Efficient one-way quantum computations for quantum error correction

    International Nuclear Information System (INIS)

    Huang Wei; Wei Zhaohui

    2009-01-01

    We show how to explicitly construct an O(nd) size and constant quantum depth circuit which encodes any given n-qubit stabilizer code with d generators. Our construction is derived using the graphic description for stabilizer codes and the one-way quantum computation model. Our result demonstrates how to use cluster states as scalable resources for many multi-qubit entangled states and how to use the one-way quantum computation model to improve the design of quantum algorithms.

  6. Demonstration of two-qubit algorithms with a superconducting quantum processor.

    Science.gov (United States)

    DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2009-07-09

    Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.

  7. Scalable algorithms for contact problems

    CERN Document Server

    Dostál, Zdeněk; Sadowská, Marie; Vondrák, Vít

    2016-01-01

    This book presents a comprehensive and self-contained treatment of the authors’ newly developed scalable algorithms for the solutions of multibody contact problems of linear elasticity. The brand new feature of these algorithms is theoretically supported numerical scalability and parallel scalability demonstrated on problems discretized by billions of degrees of freedom. The theory supports solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca’s friction, and transient contact problems. It covers BEM discretization, jumping coefficients, floating bodies, mortar non-penetration conditions, etc. The exposition is divided into four parts, the first of which reviews appropriate facets of linear algebra, optimization, and analysis. The most important algorithms and optimality results are presented in the third part of the volume. The presentation is complete, including continuous formulation, discretization, decomposition, optimality results, and numerical experimen...

  8. Scalable cloud without dedicated storage

    Science.gov (United States)

    Batkovich, D. V.; Kompaniets, M. V.; Zarochentsev, A. K.

    2015-05-01

    We present a prototype of a scalable computing cloud. It is intended to be deployed on the basis of a cluster without the separate dedicated storage. The dedicated storage is replaced by the distributed software storage. In addition, all cluster nodes are used both as computing nodes and as storage nodes. This solution increases utilization of the cluster resources as well as improves fault tolerance and performance of the distributed storage. Another advantage of this solution is high scalability with a relatively low initial and maintenance cost. The solution is built on the basis of the open source components like OpenStack, CEPH, etc.

  9. Scalable shared-memory multiprocessing

    CERN Document Server

    Lenoski, Daniel E

    1995-01-01

    Dr. Lenoski and Dr. Weber have experience with leading-edge research and practical issues involved in implementing large-scale parallel systems. They were key contributors to the architecture and design of the DASH multiprocessor. Currently, they are involved with commercializing scalable shared-memory technology.

  10. Arthroplasty register for Germany

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2009-10-01

    Full Text Available Scientific background: The annual number of joint replacement operations in Germany is high. The introduction of an arthroplasty register promises an important contribution to the improvement of the quality of patient’s care. Research questions: The presented report addresses the questions on organization and functioning, benefits and cost-benefits as well as on legal, ethical and social aspects of the arthroplasty registers. Methods: A systematic literature search was conducted in September 2008 in the medical databases MEDLINE, EMBASE etc. and was complemented with a hand search. Documents describing arthroplasty registers and/or their relevance as well as papers on legal, ethical and social aspects of such registers were included in the evaluation. The most important information was extracted and analysed. Results: Data concerning 30 arthroplasty registers in 19 countries as well as one international arthroplasty register were identified. Most of the arthroplasty registers are maintained by national orthopedic societies, others by health authorities or by their cooperation. Mostly, registries are financially supported by governments and rarely by other sources.The participation of the orthopedists in the data collection process of the arthroplasty registry is voluntary in most countries. The consent of the patients is usually required. The unique patient identification is ensured in nearly all registers.Each data set consists of patient and clinic identification numbers, data on diagnosis, the performed intervention, the operation date and implanted prostheses. The use of clinical scores, patient-reported questionnaires and radiological documentation is rare. Methods for data documentation and transfer are paper form, electronic entry as well as scanning of the data using bar codes. The data are mostly being checked for their completeness and validity. Most registers offer results of the data evaluation to the treating orthopedists and

  11. Layered Architectures for Quantum Computers and Quantum Repeaters

    Science.gov (United States)

    Jones, Nathan C.

    This chapter examines how to organize quantum computers and repeaters using a systematic framework known as layered architecture, where machine control is organized in layers associated with specialized tasks. The framework is flexible and could be used for analysis and comparison of quantum information systems. To demonstrate the design principles in practice, we develop architectures for quantum computers and quantum repeaters based on optically controlled quantum dots, showing how a myriad of technologies must operate synchronously to achieve fault-tolerance. Optical control makes information processing in this system very fast, scalable to large problem sizes, and extendable to quantum communication.

  12. The Danish Pathology Register

    DEFF Research Database (Denmark)

    Bjerregaard, Beth; Larsen, Ole B

    2011-01-01

    The National Board of Health, Denmark in 1997 published guidelines for reporting of pathology data and the Danish Pathology Register (DPR) was established.......The National Board of Health, Denmark in 1997 published guidelines for reporting of pathology data and the Danish Pathology Register (DPR) was established....

  13. Registered Nurse (Associate Degree).

    Science.gov (United States)

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of registered nurse (with an associate degree), lists technical competencies and competency builders for 19 units pertinent to the health technologies cluster in general and 5 units specific to the occupation of registered nurse. The following…

  14. The Danish Adoption Register

    DEFF Research Database (Denmark)

    Petersen, Liselotte; Sørensen, Thorkild I A

    2011-01-01

    The Danish Adoption Register was established in 1963-1964 to explore the genetic and environmental contribution to familial aggregation of schizophrenia.......The Danish Adoption Register was established in 1963-1964 to explore the genetic and environmental contribution to familial aggregation of schizophrenia....

  15. Josephson shift registers

    International Nuclear Information System (INIS)

    Przybysz, J.X.

    1989-01-01

    This paper gives a review of Josephson shift register circuits that were designed, fabricated, or tested, with emphasis on work in the 1980s. Operating speed is most important, since it often limits system performance. Older designs used square-wave clocks, but most modern designs use offset sine waves, with either two or three phases. Operating margins and gate bias uniformity are key concerns. The fastest measured Josephson shift register operated at 2.3 GHz, which compares well with a GaAs shift register that consumes 250 times more power. The difficulties of high-speed testing have prevented many Josephson shift registers from being operated at their highest speeds. Computer simulations suggest that 30-GHz operation is possible with current Nb/Al 2 O 3 /Nb technology. Junctions with critical current densities near 10 kA/cm 2 would make 100-GHz shift registers feasible

  16. Federal Register in XML

    Data.gov (United States)

    National Archives and Records Administration — The Federal Register is the official daily publication for rules, proposed rules, and notices of Federal agencies and organizations, as well as executive orders and...

  17. The Danish Adoption Register.

    Science.gov (United States)

    Petersen, Liselotte; Sørensen, Thorkild I A

    2011-07-01

    The Danish Adoption Register was established in 1963-1964 to explore the genetic and environmental contribution to familial aggregation of schizophrenia. The register encompass information on all 14,425 non-familial adoptions of Danish children legally granted in Denmark 1924-1947. It includes name and date of birth of each adoptee and his or her biological and adoptive parents, date of transfer to adoptive parents and date of formal adoption. The linkage to biological and adoptive parents is close to complete, even biological fathers are registered for 91.4% of the adoptees. Adoption registers are a unique source allowing disentangling of genetic and familial environmental influences on traits, risk of diseases, and mortality.

  18. Molecular Electronic Shift Registers

    Science.gov (United States)

    Beratan, David N.; Onuchic, Jose N.

    1990-01-01

    Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.

  19. IT Risk register

    OpenAIRE

    Kohout, Karel

    2011-01-01

    The theoretical part of the thesis analyzes several selected methodologies and best-practices related to information technology risks management, with focus on documents and guidance developed by ISACA. It builds a set of ideas and basic requirements for effective model of an IT risk register. Strong emphasis is placed on mapping CobiT 4.1 based Risk IT to COBIT 5. The practical part describes implementation of an exploratory web-based IT risk register in Python programming language utilizing...

  20. Quantum functional oracles

    International Nuclear Information System (INIS)

    Kim, Jinsoo; Lee, Soojoon; Chi, Dong Pyo

    2002-01-01

    The limitation on the size of quantum computers makes it important to reuse qubits for auxiliary registers even though they are entangled with others and are occupied by other computational processes. We construct a quantum algorithm that performs the functional phase rotation, which is the generalized form of the conventional conditional phase transforms, using the functional evaluation oracle. The constructed algorithm works without any a priori knowledge of the state of an auxiliary register at the beginning and it recovers the initial state of an auxiliary register at the end. This provides ample scope to choose qubits for auxiliary registers at will. (author)

  1. Post-quantum rsa

    NARCIS (Netherlands)

    Bernstein, D.J.; Heninger, N.; Lou, P.; Valenta, L.; Lange, T.; Takagi, T.

    2017-01-01

    This paper proposes RSA parameters for which (1) key generation, encryption, decryption, signing, and verification are feasible on today’s computers while (2) all known attacks are infeasible, even assuming highly scalable quantum computers. As part of the performance analysis, this paper introduces

  2. Scaling ion traps for quantum computing

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available The design, fabrication and preliminary testing of a chipscale, multi-zone, surface electrode ion trap is reported. The modular design and fabrication techniques used are anticipated to advance scalability of ion trap quantum computing architectures...

  3. Scalable error correction in distributed ion trap computers

    International Nuclear Information System (INIS)

    Oi, Daniel K. L.; Devitt, Simon J.; Hollenberg, Lloyd C. L.

    2006-01-01

    A major challenge for quantum computation in ion trap systems is scalable integration of error correction and fault tolerance. We analyze a distributed architecture with rapid high-fidelity local control within nodes and entangled links between nodes alleviating long-distance transport. We demonstrate fault-tolerant operator measurements which are used for error correction and nonlocal gates. This scheme is readily applied to linear ion traps which cannot be scaled up beyond a few ions per individual trap but which have access to a probabilistic entanglement mechanism. A proof-of-concept system is presented which is within the reach of current experiment

  4. Universal blind quantum computation for hybrid system

    Science.gov (United States)

    Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang

    2017-08-01

    As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.

  5. Quantum bus of metal nanoring with surface plasmon polaritons

    International Nuclear Information System (INIS)

    Lin Zhirong; Guo Guoping; Tu Tao; Li Haiou; Zou Changling; Ren Xifeng; Guo Guangcan; Chen Junxue; Lu Yonghua

    2010-01-01

    We develop an architecture for distributed quantum computation using quantum bus of plasmonic circuits and spin qubits in self-assembled quantum dots. Deterministic quantum gates between two distant spin qubits can be reached by using an adiabatic approach in which quantum dots couple with highly detuned plasmon modes in a metallic nanoring. Plasmonic quantum bus offers a robust and scalable platform for quantum optics experiments and the development of on-chip quantum networks composed of various quantum nodes, such as quantum dots, molecules, and nanoparticles.

  6. Quantum Error Correction and Fault Tolerant Quantum Computing

    CERN Document Server

    Gaitan, Frank

    2008-01-01

    It was once widely believed that quantum computation would never become a reality. However, the discovery of quantum error correction and the proof of the accuracy threshold theorem nearly ten years ago gave rise to extensive development and research aimed at creating a working, scalable quantum computer. Over a decade has passed since this monumental accomplishment yet no book-length pedagogical presentation of this important theory exists. Quantum Error Correction and Fault Tolerant Quantum Computing offers the first full-length exposition on the realization of a theory once thought impo

  7. Quantum Computing for Computer Architects

    CERN Document Server

    Metodi, Tzvetan

    2011-01-01

    Quantum computers can (in theory) solve certain problems far faster than a classical computer running any known classical algorithm. While existing technologies for building quantum computers are in their infancy, it is not too early to consider their scalability and reliability in the context of the design of large-scale quantum computers. To architect such systems, one must understand what it takes to design and model a balanced, fault-tolerant quantum computer architecture. The goal of this lecture is to provide architectural abstractions for the design of a quantum computer and to explore

  8. Scalable Techniques for Formal Verification

    CERN Document Server

    Ray, Sandip

    2010-01-01

    This book presents state-of-the-art approaches to formal verification techniques to seamlessly integrate different formal verification methods within a single logical foundation. It should benefit researchers and practitioners looking to get a broad overview of the spectrum of formal verification techniques, as well as approaches to combining such techniques within a single framework. Coverage includes a range of case studies showing how such combination is fruitful in developing a scalable verification methodology for industrial designs. This book outlines both theoretical and practical issue

  9. Developing Scalable Information Security Systems

    Directory of Open Access Journals (Sweden)

    Valery Konstantinovich Ablekov

    2013-06-01

    Full Text Available Existing physical security systems has wide range of lacks, including: high cost, a large number of vulnerabilities, problems of modification and support system. This paper covers an actual problem of developing systems without this list of drawbacks. The paper presents the architecture of the information security system, which operates through the network protocol TCP/IP, including the ability to connect different types of devices and integration with existing security systems. The main advantage is a significant increase in system reliability, scalability, both vertically and horizontally, with minimal cost of both financial and time resources.

  10. Hello! Are You Registered?

    Science.gov (United States)

    Institute for Political/Legal Education, Sewell, NJ.

    Organizational procedures and appropriate forms for high school students to conduct a community survey of non-registered voters are provided. Duties for student coordinator, field staff, and clerical staff are described and a flow chart depicts the relationship of personnel to one another and to the community. Students are instructed to notify…

  11. EU Transparency Register

    NARCIS (Netherlands)

    Mańko, R.; Thiel, M.; Bauer, E.

    2014-01-01

    Widespread lobbying in the EU institutions has led to criticism regarding the transparency and accountability of the EU's decision-making process. In response to these concerns, the Parliament set up its transparency register in 1995, followed by the Commission in 2008. The two institutions merged

  12. The Danish heart register

    DEFF Research Database (Denmark)

    Abildstrøm, Steen Z; Madsen, Mette

    2011-01-01

    Introduction: The Danish Heart Register (DHR) is a clinical database of invasive procedures within cardiology. Content: All providers of these procedures have been obliged to report to DHR since 2000. DHR is used to monitor the activity and quality of the procedures and serves as a data source...

  13. Register for Suicide Attempts

    DEFF Research Database (Denmark)

    Christiansen, Erik; Jensen, Børge Frank

    2004-01-01

    The Register for Suicide Attempts (RSA) is a product of the WHO research project "WHO/Euro Multicentre Study on Parasuicide", which, among other things, had the purpose of collecting data on suicide attempts from 13 European countries. Data is collected in order to calculate trends and identify...

  14. Scalable Fault-Tolerant Location Management Scheme for Mobile IP

    Directory of Open Access Journals (Sweden)

    JinHo Ahn

    2001-11-01

    Full Text Available As the number of mobile nodes registering with a network rapidly increases in Mobile IP, multiple mobility (home of foreign agents can be allocated to a network in order to improve performance and availability. Previous fault tolerant schemes (denoted by PRT schemes to mask failures of the mobility agents use passive replication techniques. However, they result in high failure-free latency during registration process if the number of mobility agents in the same network increases, and force each mobility agent to manage bindings of all the mobile nodes registering with its network. In this paper, we present a new fault-tolerant scheme (denoted by CML scheme using checkpointing and message logging techniques. The CML scheme achieves low failure-free latency even if the number of mobility agents in a network increases, and improves scalability to a large number of mobile nodes registering with each network compared with the PRT schemes. Additionally, the CML scheme allows each failed mobility agent to recover bindings of the mobile nodes registering with the mobility agent when it is repaired even if all the other mobility agents in the same network concurrently fail.

  15. The Photon Shell Game and the Quantum von Neumann Architecture with Superconducting Circuits

    Science.gov (United States)

    Mariantoni, Matteo

    2012-02-01

    Superconducting quantum circuits have made significant advances over the past decade, allowing more complex and integrated circuits that perform with good fidelity. We have recently implemented a machine comprising seven quantum channels, with three superconducting resonators, two phase qubits, and two zeroing registers. I will explain the design and operation of this machine, first showing how a single microwave photon | 1 > can be prepared in one resonator and coherently transferred between the three resonators. I will also show how more exotic states such as double photon states | 2 > and superposition states | 0 >+ | 1 > can be shuffled among the resonators as well [1]. I will then demonstrate how this machine can be used as the quantum-mechanical analog of the von Neumann computer architecture, which for a classical computer comprises a central processing unit and a memory holding both instructions and data. The quantum version comprises a quantum central processing unit (quCPU) that exchanges data with a quantum random-access memory (quRAM) integrated on one chip, with instructions stored on a classical computer. I will also present a proof-of-concept demonstration of a code that involves all seven quantum elements: (1), Preparing an entangled state in the quCPU, (2), writing it to the quRAM, (3), preparing a second state in the quCPU, (4), zeroing it, and, (5), reading out the first state stored in the quRAM [2]. Finally, I will demonstrate that the quantum von Neumann machine provides one unit cell of a two-dimensional qubit-resonator array that can be used for surface code quantum computing. This will allow the realization of a scalable, fault-tolerant quantum processor with the most forgiving error rates to date. [4pt] [1] M. Mariantoni et al., Nature Physics 7, 287-293 (2011.)[0pt] [2] M. Mariantoni et al., Science 334, 61-65 (2011).

  16. Facile, one-pot and scalable synthesis of highly emissive aqueous-based Ag,Ni:ZnCdS/ZnS core/shell quantum dots with high chemical and optical stability

    Science.gov (United States)

    Sahraei, Reza; Soheyli, Ehsan; Faraji, Zahra; Soleiman-Beigi, Mohammad

    2017-11-01

    We report here on a one-pot, mild and low cost aqueous-based synthetic route for the preparation of colloidally stable and highly luminescent dual-doped Ag,Ni:ZnCdS/ZnS core/shell quantum dots (QDs). The pure dopant emission of the Ni-doped core/shell QDs was found to be highly affected by the presence of a second dopant ion (Ag+). Results showed that the PL emission intensity increases while its peak position experiences an obvious blue shift with an increase in the content of Ag+ ions. Regarding the optical observations, we provide a simple scheme for absorption-recombination processes of the carriers through impurity centers. To obtain optimum conditions with a better emission characteristic, we also study the effect of different reaction parameters, such as refluxing temperature, the pH of the core and shell solution, molar ratio of the dopant ions (Ni:(Zn+Cd) and Ag:(Zn+Cd)), and concentration of the core and shell precursors. Nonetheless, the most effective parameter is the presence of the ZnS shell in a suitable amount to eliminate surface trap states and enhance their emission intensity. It can also improve the bio-compatibility of the prepared QDs by restricting the Cd2+ toxic ions inside the core of the QDs. The present suggested route also revealed the remarkable optical and chemical stability of the colloidal QDs which establishes them as a decent kind of nano-scale structure for light emitting applications, especially in biological technologies. The suggested process also has the potential to be scaled-up while maintaining the emission characteristics and structural quality necessary for industrial applications in optoelectronic devices.

  17. Scalable Performance Measurement and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gamblin, Todd [Univ. of North Carolina, Chapel Hill, NC (United States)

    2009-01-01

    Concurrency levels in large-scale, distributed-memory supercomputers are rising exponentially. Modern machines may contain 100,000 or more microprocessor cores, and the largest of these, IBM's Blue Gene/L, contains over 200,000 cores. Future systems are expected to support millions of concurrent tasks. In this dissertation, we focus on efficient techniques for measuring and analyzing the performance of applications running on very large parallel machines. Tuning the performance of large-scale applications can be a subtle and time-consuming task because application developers must measure and interpret data from many independent processes. While the volume of the raw data scales linearly with the number of tasks in the running system, the number of tasks is growing exponentially, and data for even small systems quickly becomes unmanageable. Transporting performance data from so many processes over a network can perturb application performance and make measurements inaccurate, and storing such data would require a prohibitive amount of space. Moreover, even if it were stored, analyzing the data would be extremely time-consuming. In this dissertation, we present novel methods for reducing performance data volume. The first draws on multi-scale wavelet techniques from signal processing to compress systemwide, time-varying load-balance data. The second uses statistical sampling to select a small subset of running processes to generate low-volume traces. A third approach combines sampling and wavelet compression to stratify performance data adaptively at run-time and to reduce further the cost of sampled tracing. We have integrated these approaches into Libra, a toolset for scalable load-balance analysis. We present Libra and show how it can be used to analyze data from large scientific applications scalably.

  18. A software methodology for compiling quantum programs

    Science.gov (United States)

    Häner, Thomas; Steiger, Damian S.; Svore, Krysta; Troyer, Matthias

    2018-04-01

    Quantum computers promise to transform our notions of computation by offering a completely new paradigm. To achieve scalable quantum computation, optimizing compilers and a corresponding software design flow will be essential. We present a software architecture for compiling quantum programs from a high-level language program to hardware-specific instructions. We describe the necessary layers of abstraction and their differences and similarities to classical layers of a computer-aided design flow. For each layer of the stack, we discuss the underlying methods for compilation and optimization. Our software methodology facilitates more rapid innovation among quantum algorithm designers, quantum hardware engineers, and experimentalists. It enables scalable compilation of complex quantum algorithms and can be targeted to any specific quantum hardware implementation.

  19. Complete quantum control of exciton qubits bound to isoelectronic centres.

    Science.gov (United States)

    Éthier-Majcher, G; St-Jean, P; Boso, G; Tosi, A; Klem, J F; Francoeur, S

    2014-05-30

    In recent years, impressive demonstrations related to quantum information processing have been realized. The scalability of quantum interactions between arbitrary qubits within an array remains however a significant hurdle to the practical realization of a quantum computer. Among the proposed ideas to achieve fully scalable quantum processing, the use of photons is appealing because they can mediate long-range quantum interactions and could serve as buses to build quantum networks. Quantum dots or nitrogen-vacancy centres in diamond can be coupled to light, but the former system lacks optical homogeneity while the latter suffers from a low dipole moment, rendering their large-scale interconnection challenging. Here, through the complete quantum control of exciton qubits, we demonstrate that nitrogen isoelectronic centres in GaAs combine both the uniformity and predictability of atomic defects and the dipole moment of semiconductor quantum dots. This establishes isoelectronic centres as a promising platform for quantum information processing.

  20. Quantum networks based on cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Stephan; Bochmann, Joerg; Figueroa, Eden; Hahn, Carolin; Kalb, Norbert; Muecke, Martin; Neuzner, Andreas; Noelleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Rempe, Gerhard [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)

    2014-07-01

    Quantum repeaters require an efficient interface between stationary quantum memories and flying photons. Single atoms in optical cavities are ideally suited as universal quantum network nodes that are capable of sending, storing, retrieving, and even processing quantum information. We demonstrate this by presenting an elementary version of a quantum network based on two identical nodes in remote, independent laboratories. The reversible exchange of quantum information and the creation of remote entanglement are achieved by exchange of a single photon. Quantum teleportation is implemented using a time-resolved photonic Bell-state measurement. Quantum control over all degrees of freedom of the single atom also allows for the nondestructive detection of flying photons and the implementation of a quantum gate between the spin state of the atom and the polarization of a photon upon its reflection from the cavity. Our approach to quantum networking offers a clear perspective for scalability and provides the essential components for the realization of a quantum repeater.

  1. Semihierarchical quantum repeaters based on moderate lifetime quantum memories

    Science.gov (United States)

    Liu, Xiao; Zhou, Zong-Quan; Hua, Yi-Lin; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-01

    The construction of large-scale quantum networks relies on the development of practical quantum repeaters. Many approaches have been proposed with the goal of outperforming the direct transmission of photons, but most of them are inefficient or difficult to implement with current technology. Here, we present a protocol that uses a semihierarchical structure to improve the entanglement distribution rate while reducing the requirement of memory time to a range of tens of milliseconds. This protocol can be implemented with a fixed distance of elementary links and fixed requirements on quantum memories, which are independent of the total distance. This configuration is especially suitable for scalable applications in large-scale quantum networks.

  2. Experimental demonstration of deterministic one-way quantum computing on a NMR quantum computer

    OpenAIRE

    Ju, Chenyong; Zhu, Jing; Peng, Xinhua; Chong, Bo; Zhou, Xianyi; Du, Jiangfeng

    2008-01-01

    One-way quantum computing is an important and novel approach to quantum computation. By exploiting the existing particle-particle interactions, we report the first experimental realization of the complete process of deterministic one-way quantum Deutsch-Josza algorithm in NMR, including graph state preparation, single-qubit measurements and feed-forward corrections. The findings in our experiment may shed light on the future scalable one-way quantum computation.

  3. Quantum computation architecture using optical tweezers

    DEFF Research Database (Denmark)

    Weitenberg, Christof; Kuhr, Stefan; Mølmer, Klaus

    2011-01-01

    We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits...... quantum computing....

  4. Register / Andri Ksenofontov

    Index Scriptorium Estoniae

    Ksenofontov, Andri, 1962-

    2007-01-01

    Näitused: Eesti Kujundusgraafikute Liidu aastanäitus "Register 2007" Kunstihoone galeriis, Signe Kivi "Võimuvaibad ja vaimukleidid" Arhitektuuri- ja Disainigaleriis, "Kehaturg / Sex market" (Dagmar Kase, Eveli Variku tööd) Tallinna Kunstihoones, Andrei Maksimjuki "Surematu klassika" Ühispanga galeriis, Katrin Veegeni "Varsti" A-galeriis, Eda Lõhmuse "Ülespoole" ja Rein Kelpmani "Grosso modo" ArtDepoo Galeriis, Jaan Elkeni "Valge valgus" Galeriis 008, Paul Rodgersi "Transplants" Hobusepea galeriis, Masayo Ave "Haptic Interface Design" Arhitektuuri- ja Disainigaleriis ja workshop Eesti Kunstiakadeemias

  5. Registered Replication Report

    DEFF Research Database (Denmark)

    Bouwmeester, S.; Verkoeijen, P. P.J.L.; Aczel, B.

    2017-01-01

    and colleagues. The results of studies using time pressure have been mixed, with some replication attempts observing similar patterns (e.g., Rand et al., 2014) and others observing null effects (e.g., Tinghög et al., 2013; Verkoeijen & Bouwmeester, 2014). This Registered Replication Report (RRR) assessed...... the size and variability of the effect of time pressure on cooperative decisions by combining 21 separate, preregistered replications of the critical conditions from Study 7 of the original article (Rand et al., 2012). The primary planned analysis used data from all participants who were randomly assigned...

  6. The Danish Education Registers

    DEFF Research Database (Denmark)

    Jensen, Vibeke Myrup; Rasmussen, Astrid Würtz

    to adults continuing education and training stem from administrative education reports. Therefore, for cohorts born 1945-1990, 97 percent of the Danish population has a valid education identifier. For the immigrant population born in the same cohorts the coverage is 85-90 percent. Despite a higher level......Collection of systematic information on education is a long established practice in Denmark. Since 1910, the Danish Ministry of Education's annual reports collects information about individual-level test scores in e.g. compulsory schooling. Today, several registers from compulsory schooling...

  7. The Danish Education Registers

    DEFF Research Database (Denmark)

    Jensen, Vibeke Myrup; Würtz Rasmussen, Astrid

    to adults continuing education and training stem from administrative education reports. Therefore, for cohorts born 1945-1990, 97 percent of the Danish population has a valid education identifier. For the immigrant population born in the same cohorts the coverage is 85-90 percent. Despite a higher level......Collection of systematic information on education is a long established practice in Denmark. Since 1910, the Danish Ministry of Education’s annual reports collects information about individual-level test scores in e.g. compulsory schooling. Today, several registers from compulsory schooling...

  8. The Danish Education Registers

    DEFF Research Database (Denmark)

    Jensen, Vibeke Myrup; Rasmussen, Astrid Würtz

    2011-01-01

    Collection of systematic information on education is a long established practice in Denmark. Since 1910, the Danish Ministry of Education’s annual reports collects information about individual-level test scores in e.g. compulsory schooling. Today, several registers from compulsory schooling...... to adults continuing education and training stem from administrative education reports. Therefore, for cohorts born 1945-1990, 97 percent of the Danish population has a valid education identifier. For the immigrant population born in the same cohorts the coverage is 85-90 percent. Despite a higher level...

  9. Requirements for Scalable Access Control and Security Management Architectures

    National Research Council Canada - National Science Library

    Keromytis, Angelos D; Smith, Jonathan M

    2005-01-01

    Maximizing local autonomy has led to a scalable Internet. Scalability and the capacity for distributed control have unfortunately not extended well to resource access control policies and mechanisms...

  10. Adaptive format conversion for scalable video coding

    Science.gov (United States)

    Wan, Wade K.; Lim, Jae S.

    2001-12-01

    The enhancement layer in many scalable coding algorithms is composed of residual coding information. There is another type of information that can be transmitted instead of (or in addition to) residual coding. Since the encoder has access to the original sequence, it can utilize adaptive format conversion (AFC) to generate the enhancement layer and transmit the different format conversion methods as enhancement data. This paper investigates the use of adaptive format conversion information as enhancement data in scalable video coding. Experimental results are shown for a wide range of base layer qualities and enhancement bitrates to determine when AFC can improve video scalability. Since the parameters needed for AFC are small compared to residual coding, AFC can provide video scalability at low enhancement layer bitrates that are not possible with residual coding. In addition, AFC can also be used in addition to residual coding to improve video scalability at higher enhancement layer bitrates. Adaptive format conversion has not been studied in detail, but many scalable applications may benefit from it. An example of an application that AFC is well-suited for is the migration path for digital television where AFC can provide immediate video scalability as well as assist future migrations.

  11. High-rate measurement-device-independent quantum cryptography

    DEFF Research Database (Denmark)

    Pirandola, Stefano; Ottaviani, Carlo; Spedalieri, Gaetana

    2015-01-01

    Quantum cryptography achieves a formidable task - the remote distribution of secret keys by exploiting the fundamental laws of physics. Quantum cryptography is now headed towards solving the practical problem of constructing scalable and secure quantum networks. A significant step in this direction...

  12. ALADDIN - enhancing applicability and scalability

    International Nuclear Information System (INIS)

    Roverso, Davide

    2001-02-01

    The ALADDIN project aims at the study and development of flexible, accurate, and reliable techniques and principles for computerised event classification and fault diagnosis for complex machinery and industrial processes. The main focus of the project is on advanced numerical techniques, such as wavelets, and empirical modelling with neural networks. This document reports on recent important advancements, which significantly widen the practical applicability of the developed principles, both in terms of flexibility of use, and in terms of scalability to large problem domains. In particular, two novel techniques are here described. The first, which we call Wavelet On- Line Pre-processing (WOLP), is aimed at extracting, on-line, relevant dynamic features from the process data streams. This technique allows a system a greater flexibility in detecting and processing transients at a range of different time scales. The second technique, which we call Autonomous Recursive Task Decomposition (ARTD), is aimed at tackling the problem of constructing a classifier able to discriminate among a large number of different event/fault classes, which is often the case when the application domain is a complex industrial process. ARTD also allows for incremental application development (i.e. the incremental addition of new classes to an existing classifier, without the need of retraining the entire system), and for simplified application maintenance. The description of these novel techniques is complemented by reports of quantitative experiments that show in practice the extent of these improvements. (Author)

  13. Fast and scalable inequality joins

    KAUST Repository

    Khayyat, Zuhair

    2016-09-07

    Inequality joins, which is to join relations with inequality conditions, are used in various applications. Optimizing joins has been the subject of intensive research ranging from efficient join algorithms such as sort-merge join, to the use of efficient indices such as (Formula presented.)-tree, (Formula presented.)-tree and Bitmap. However, inequality joins have received little attention and queries containing such joins are notably very slow. In this paper, we introduce fast inequality join algorithms based on sorted arrays and space-efficient bit-arrays. We further introduce a simple method to estimate the selectivity of inequality joins which is then used to optimize multiple predicate queries and multi-way joins. Moreover, we study an incremental inequality join algorithm to handle scenarios where data keeps changing. We have implemented a centralized version of these algorithms on top of PostgreSQL, a distributed version on top of Spark SQL, and an existing data cleaning system, Nadeef. By comparing our algorithms against well-known optimization techniques for inequality joins, we show our solution is more scalable and several orders of magnitude faster. © 2016 Springer-Verlag Berlin Heidelberg

  14. Quantum computers: Definition and implementations

    International Nuclear Information System (INIS)

    Perez-Delgado, Carlos A.; Kok, Pieter

    2011-01-01

    The DiVincenzo criteria for implementing a quantum computer have been seminal in focusing both experimental and theoretical research in quantum-information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. Therefore, the question is what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that, according to this definition, a device is a quantum computer if it obeys the following criteria: Any quantum computer must consist of a quantum memory, with an additional structure that (1) facilitates a controlled quantum evolution of the quantum memory; (2) includes a method for information theoretic cooling of the memory; and (3) provides a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault tolerantly. We discuss various existing quantum computing paradigms and how they fit within this framework. Finally, we present a decision tree for selecting an avenue toward building a quantum computer. This is intended to help experimentalists determine the most natural paradigm given a particular physical implementation.

  15. Photonic quantum technologies (Presentation Recording)

    Science.gov (United States)

    O'Brien, Jeremy L.

    2015-09-01

    The impact of quantum technology will be profound and far-reaching: secure communication networks for consumers, corporations and government; precision sensors for biomedical technology and environmental monitoring; quantum simulators for the design of new materials, pharmaceuticals and clean energy devices; and ultra-powerful quantum computers for addressing otherwise impossibly large datasets for machine learning and artificial intelligence applications. However, engineering quantum systems and controlling them is an immense technological challenge: they are inherently fragile; and information extracted from a quantum system necessarily disturbs the system itself. Of the various approaches to quantum technologies, photons are particularly appealing for their low-noise properties and ease of manipulation at the single qubit level. We have developed an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability. We will described our latest progress in generating, manipulating and interacting single photons in waveguide circuits on silicon chips.

  16. Quantum network with individual atoms and photons

    International Nuclear Information System (INIS)

    Rempe, G.

    2013-01-01

    Quantum physics allows a new approach to information processing. A grand challenge is the realization of a quantum network for long-distance quantum communication and large-scale quantum simulation. This paper highlights a first implementation of an elementary quantum network with two fibre-linked high-finesse optical resonators, each containing a single quasi-permanently trapped atom as a stationary quantum node. Reversible quantum state transfer between the two atoms and entanglement of the two atoms are achieved by the controlled exchange of a time-symmetric single photon. This approach to quantum networking is efficient and offers a clear perspective for scalability. It allows for arbitrary topologies and features controlled connectivity as well as, in principle, infinite-range interactions. Our system constitutes the largest man-made material quantum system to date and is an ideal test bed for fundamental investigations, e.g. quantum non-locality. (authors)

  17. Embedded High Performance Scalable Computing Systems

    National Research Council Canada - National Science Library

    Ngo, David

    2003-01-01

    The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a cooperative agreement between Sanders, A Lockheed Martin Company and DARPA that ran for three years, from Apr 1995 - Apr 1998...

  18. Scalable Engineering of Quantum Optical Information Processing Architectures (SEQUOIA)

    Science.gov (United States)

    2016-12-13

    fast: recently, it was demonstrated experimentally that photonic cluster states can be produced deterministically by photon scattering off a lambda ...U. The CNOT gate operation corresponds to the sub- matrix of the logic states, shown in solid-color bars and marked with red axis labels. Plots (c

  19. Resource-aware complexity scalability for mobile MPEG encoding

    NARCIS (Netherlands)

    Mietens, S.O.; With, de P.H.N.; Hentschel, C.; Panchanatan, S.; Vasudev, B.

    2004-01-01

    Complexity scalability attempts to scale the required resources of an algorithm with the chose quality settings, in order to broaden the application range. In this paper, we present complexity-scalable MPEG encoding of which the core processing modules are modified for scalability. Scalability is

  20. Benchmarking gate-based quantum computers

    Science.gov (United States)

    Michielsen, Kristel; Nocon, Madita; Willsch, Dennis; Jin, Fengping; Lippert, Thomas; De Raedt, Hans

    2017-11-01

    With the advent of public access to small gate-based quantum processors, it becomes necessary to develop a benchmarking methodology such that independent researchers can validate the operation of these processors. We explore the usefulness of a number of simple quantum circuits as benchmarks for gate-based quantum computing devices and show that circuits performing identity operations are very simple, scalable and sensitive to gate errors and are therefore very well suited for this task. We illustrate the procedure by presenting benchmark results for the IBM Quantum Experience, a cloud-based platform for gate-based quantum computing.

  1. Flux qubits on semiconducting quantum ring

    International Nuclear Information System (INIS)

    Szopa, M; Zipper, E

    2010-01-01

    The ability to control the quantum state of a single electrons in a quantum ring made of a semiconductor is at the heart of recent developments towards a scalable quantum computer. A peculiar dispersion relation of quantum rings allows to steer the ground state properties by the magnetic flux and offers spin and orbital degrees of freedom for quantum manipulations. We show that such ring can be effectively reduced to the two-state system forming a qubit on orbital or spin degrees of freedom.

  2. Cloud Quantum Computing of an Atomic Nucleus

    Science.gov (United States)

    Dumitrescu, E. F.; McCaskey, A. J.; Hagen, G.; Jansen, G. R.; Morris, T. D.; Papenbrock, T.; Pooser, R. C.; Dean, D. J.; Lougovski, P.

    2018-05-01

    We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.

  3. Portable shift register

    International Nuclear Information System (INIS)

    Halbig, J.K.; Bourret, S.C.; Hansen, W.J.; Hicks, D.V.; Klosterbuer, S.F.; Krick, M.S.

    1994-01-01

    An electronics package for a small, battery-operated, self-contained, neutron coincidence counter based on a portable shift-register (PSR) has been developed. The counter was developed for applications not adequately addressed by commercial packages, including in-plant measurements to demonstrate compliance with regulations (domestic and international), in-plant process control, and in-field measurements (environmental monitoring or safeguards). Our package's features, which address these applications, include the following: Small size for portability and ease of installation;battery or mains operation; a built-in battery to power the unit and a typical detector such as a small sample counter, for over 6 h if power lines are bad or noisy, if there is a temporary absence of power, or if portability is desired; complete support, including bias, for standard neutron detectors; a powerful communications package to easily facilitate robust external control over a serial port; and a C-library to simplify creating external control programs in computers or other controllers. Whereas the PSR specifically addresses the applications mentioned above, it also performs all the measurements made by previous electronics packages for neutron coincidence counters developed at Los Alamos and commercialized. The PSR electronics package, exclusive of carrying handle, is 8 by 10 by 20 cm; it contains the circuit boards, battery, and bias supply and weighs less than 2 kg. This instrument package is the second in an emerging family of portable measurement instruments being developed; the first was the Miniature and Modular Multichannel Analyzer (M 3 CA). The PSR makes extensive use of hardware and software developed for the M 3 CA; like the M 3 CA, it is intended primarily for use with an external controller interfaced over a serial channel

  4. The Concept of Business Model Scalability

    DEFF Research Database (Denmark)

    Lund, Morten; Nielsen, Christian

    2018-01-01

    -term pro table business. However, the main message of this article is that while providing a good value proposition may help the rm ‘get by’, the really successful businesses of today are those able to reach the sweet-spot of business model scalability. Design/Methodology/Approach: The article is based...... on a ve-year longitudinal action research project of over 90 companies that participated in the International Center for Innovation project aimed at building 10 global network-based business models. Findings: This article introduces and discusses the term scalability from a company-level perspective......Purpose: The purpose of the article is to de ne what scalable business models are. Central to the contemporary understanding of business models is the value proposition towards the customer and the hypotheses generated about delivering value to the customer which become a good foundation for a long...

  5. Declarative and Scalable Selection for Map Visualizations

    DEFF Research Database (Denmark)

    Kefaloukos, Pimin Konstantin Balic

    and is itself a source and cause of prolific data creation. This calls for scalable map processing techniques that can handle the data volume and which play well with the predominant data models on the Web. (4) Maps are now consumed around the clock by a global audience. While historical maps were singleuser......-defined constraints as well as custom objectives. The purpose of the language is to derive a target multi-scale database from a source database according to holistic specifications. (b) The Glossy SQL compiler allows Glossy SQL to be scalably executed in a spatial analytics system, such as a spatial relational......, there are indications that the method is scalable for databases that contain millions of records, especially if the target language of the compiler is substituted by a cluster-ready variant of SQL. While several realistic use cases for maps have been implemented in CVL, additional non-geographic data visualization uses...

  6. Scalable Density-Based Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2011-01-01

    For knowledge discovery in high dimensional databases, subspace clustering detects clusters in arbitrary subspace projections. Scalability is a crucial issue, as the number of possible projections is exponential in the number of dimensions. We propose a scalable density-based subspace clustering...... method that steers mining to few selected subspace clusters. Our novel steering technique reduces subspace processing by identifying and clustering promising subspaces and their combinations directly. Thereby, it narrows down the search space while maintaining accuracy. Thorough experiments on real...... and synthetic databases show that steering is efficient and scalable, with high quality results. For future work, our steering paradigm for density-based subspace clustering opens research potential for speeding up other subspace clustering approaches as well....

  7. Efficient universal quantum channel simulation in IBM's cloud quantum computer

    Science.gov (United States)

    Wei, Shi-Jie; Xin, Tao; Long, Gui-Lu

    2018-07-01

    The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. Inspired by the method of performing non-unitary operators by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of the universal single-qubit channel, described by a convex combination of "quasi-extreme" channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrated the whole algorithm experimentally using the universal IBM cloud-based quantum computer and studied the properties of different qubit quantum channels. We illustrated the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behavior of quantum capacity in different channels revealed which types of noise processes can support information transmission, and which types are too destructive to protect information. There was a general agreement between the theoretical predictions and the experiments, which strongly supports our method. By realizing the arbitrary qubit channel, this work provides a universally- accepted way to explore various properties of quantum channels and novel prospect for quantum communication.

  8. Enhancing Scalability of Sparse Direct Methods

    International Nuclear Information System (INIS)

    Li, Xiaoye S.; Demmel, James; Grigori, Laura; Gu, Ming; Xia, Jianlin; Jardin, Steve; Sovinec, Carl; Lee, Lie-Quan

    2007-01-01

    TOPS is providing high-performance, scalable sparse direct solvers, which have had significant impacts on the SciDAC applications, including fusion simulation (CEMM), accelerator modeling (COMPASS), as well as many other mission-critical applications in DOE and elsewhere. Our recent developments have been focusing on new techniques to overcome scalability bottleneck of direct methods, in both time and memory. These include parallelizing symbolic analysis phase and developing linear-complexity sparse factorization methods. The new techniques will make sparse direct methods more widely usable in large 3D simulations on highly-parallel petascale computers

  9. Software performance and scalability a quantitative approach

    CERN Document Server

    Liu, Henry H

    2009-01-01

    Praise from the Reviewers:"The practicality of the subject in a real-world situation distinguishes this book from othersavailable on the market."—Professor Behrouz Far, University of Calgary"This book could replace the computer organization texts now in use that every CS and CpEstudent must take. . . . It is much needed, well written, and thoughtful."—Professor Larry Bernstein, Stevens Institute of TechnologyA distinctive, educational text onsoftware performance and scalabilityThis is the first book to take a quantitative approach to the subject of software performance and scalability

  10. From Digital Disruption to Business Model Scalability

    DEFF Research Database (Denmark)

    Nielsen, Christian; Lund, Morten; Thomsen, Peter Poulsen

    2017-01-01

    This article discusses the terms disruption, digital disruption, business models and business model scalability. It illustrates how managers should be using these terms for the benefit of their business by developing business models capable of achieving exponentially increasing returns to scale...... will seldom lead to business model scalability capable of competing with digital disruption(s)....... as a response to digital disruption. A series of case studies illustrate that besides frequent existing messages in the business literature relating to the importance of creating agile businesses, both in growing and declining economies, as well as hard to copy value propositions or value propositions that take...

  11. The Danish Hip Arthroplasty Register

    DEFF Research Database (Denmark)

    Gundtoft, Per Hviid; Varnum, Claus; Pedersen, Alma Becic

    2016-01-01

    AIM OF DATABASE: The aim of the Danish Hip Arthroplasty Register (DHR) is to continuously monitor and improve the quality of treatment of primary and revision total hip arthroplasty (THA) in Denmark. STUDY POPULATION: The DHR is a Danish nationwide arthroplasty register established in January 1995...

  12. Content-Aware Scalability-Type Selection for Rate Adaptation of Scalable Video

    Directory of Open Access Journals (Sweden)

    Tekalp A Murat

    2007-01-01

    Full Text Available Scalable video coders provide different scaling options, such as temporal, spatial, and SNR scalabilities, where rate reduction by discarding enhancement layers of different scalability-type results in different kinds and/or levels of visual distortion depend on the content and bitrate. This dependency between scalability type, video content, and bitrate is not well investigated in the literature. To this effect, we first propose an objective function that quantifies flatness, blockiness, blurriness, and temporal jerkiness artifacts caused by rate reduction by spatial size, frame rate, and quantization parameter scaling. Next, the weights of this objective function are determined for different content (shot types and different bitrates using a training procedure with subjective evaluation. Finally, a method is proposed for choosing the best scaling type for each temporal segment that results in minimum visual distortion according to this objective function given the content type of temporal segments. Two subjective tests have been performed to validate the proposed procedure for content-aware selection of the best scalability type on soccer videos. Soccer videos scaled from 600 kbps to 100 kbps by the proposed content-aware selection of scalability type have been found visually superior to those that are scaled using a single scalability option over the whole sequence.

  13. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    .... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...

  14. Quantum information with Rydberg atoms

    DEFF Research Database (Denmark)

    Saffman, Mark; Walker, T.G.; Mølmer, Klaus

    2010-01-01

    Rydberg atoms with principal quantum number n»1 have exaggerated atomic properties including dipole-dipole interactions that scale as n4 and radiative lifetimes that scale as n3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom...... of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing....

  15. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    Science.gov (United States)

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  16. Using scalable vector graphics to evolve art

    NARCIS (Netherlands)

    den Heijer, E.; Eiben, A. E.

    2016-01-01

    In this paper, we describe our investigations of the use of scalable vector graphics as a genotype representation in evolutionary art. We describe the technical aspects of using SVG in evolutionary art, and explain our custom, SVG specific operators initialisation, mutation and crossover. We perform

  17. Scalable fast multipole accelerated vortex methods

    KAUST Repository

    Hu, Qi; Gumerov, Nail A.; Yokota, Rio; Barba, Lorena A.; Duraiswami, Ramani

    2014-01-01

    -node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff

  18. Scalable Domain Decomposed Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  19. Scalable Open Source Smart Grid Simulator (SGSim)

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Jacobsen, Rune Hylsberg; Stefanni, Francesco

    2017-01-01

    . This paper presents an open source smart grid simulator (SGSim). The simulator is based on open source SystemC Network Simulation Library (SCNSL) and aims to model scalable smart grid applications. SGSim has been tested under different smart grid scenarios that contain hundreds of thousands of households...

  20. Cooperative Scalable Moving Continuous Query Processing

    DEFF Research Database (Denmark)

    Li, Xiaohui; Karras, Panagiotis; Jensen, Christian S.

    2012-01-01

    of the global view and handle the majority of the workload. Meanwhile, moving clients, having basic memory and computation resources, handle small portions of the workload. This model is further enhanced by dynamic region allocation and grid size adjustment mechanisms that reduce the communication...... and computation cost for both servers and clients. An experimental study demonstrates that our approaches offer better scalability than competitors...

  1. Scalable optical switches for computing applications

    NARCIS (Netherlands)

    White, I.H.; Aw, E.T.; Williams, K.A.; Wang, Haibo; Wonfor, A.; Penty, R.V.

    2009-01-01

    A scalable photonic interconnection network architecture is proposed whereby a Clos network is populated with broadcast-and-select stages. This enables the efficient exploitation of an emerging class of photonic integrated switch fabric. A low distortion space switch technology based on recently

  2. Introducing quantum Ricci curvature

    Science.gov (United States)

    Klitgaard, N.; Loll, R.

    2018-02-01

    Motivated by the search for geometric observables in nonperturbative quantum gravity, we define a notion of coarse-grained Ricci curvature. It is based on a particular way of extracting the local Ricci curvature of a smooth Riemannian manifold by comparing the distance between pairs of spheres with that of their centers. The quantum Ricci curvature is designed for use on non-smooth and discrete metric spaces, and to satisfy the key criteria of scalability and computability. We test the prescription on a variety of regular and random piecewise flat spaces, mostly in two dimensions. This enables us to quantify its behavior for short lattices distances and compare its large-scale behavior with that of constantly curved model spaces. On the triangulated spaces considered, the quantum Ricci curvature has good averaging properties and reproduces classical characteristics on scales large compared to the discretization scale.

  3. Registering Researchers in Authority Files

    NARCIS (Netherlands)

    Altman, M.; Conlon, M.; Cristan, A.L.; Dawson, L.; Dunham, J.; Hickey, T.; Hook, D.; Horstmann, W.; MacEwan, A.; Schreur, P.; Smart, L.; Smith-Yoshimura, K.; Wacker, M.; Woutersen, S.

    2014-01-01

    Registering researchers in some type of authority file or identifier system has become more compelling as both institutions and researchers recognize the need to compile their scholarly output. The report presents functional requirements and recommendations for six stakeholders: researchers,

  4. Quantum computing with defects in diamond

    International Nuclear Information System (INIS)

    Jelezko, F.; Gaebel, T.; Popa, I.; Domhan, M.; Wittmann, C.; Wrachtrup, J.

    2005-01-01

    Full text: Single spins in semiconductors, in particular associated with defect centers, are promising candidates for practical and scalable implementation of quantum computing even at room temperature. Such an implementation may also use the reliable and well known gate constructions from bulk nuclear magnetic resonance (NMR) quantum computing. Progress in development of quantum processor based on defects in diamond will be discussed. By combining optical microscopy, and magnetic resonance techniques, the first quantum logical operations on single spins in a solid are now demonstrated. The system is perspective for room temperature operation because of a weak dependence of decoherence on temperature (author)

  5. Relating timed and register automata

    Directory of Open Access Journals (Sweden)

    Diego Figueira

    2010-11-01

    Full Text Available Timed automata and register automata are well-known models of computation over timed and data words respectively. The former has clocks that allow to test the lapse of time between two events, whilst the latter includes registers that can store data values for later comparison. Although these two models behave in appearance differently, several decision problems have the same (undecidability and complexity results for both models. As a prominent example, emptiness is decidable for alternating automata with one clock or register, both with non-primitive recursive complexity. This is not by chance. This work confirms that there is indeed a tight relationship between the two models. We show that a run of a timed automaton can be simulated by a register automaton, and conversely that a run of a register automaton can be simulated by a timed automaton. Our results allow to transfer complexity and decidability results back and forth between these two kinds of models. We justify the usefulness of these reductions by obtaining new results on register automata.

  6. Scalable Algorithms for Adaptive Statistical Designs

    Directory of Open Access Journals (Sweden)

    Robert Oehmke

    2000-01-01

    Full Text Available We present a scalable, high-performance solution to multidimensional recurrences that arise in adaptive statistical designs. Adaptive designs are an important class of learning algorithms for a stochastic environment, and we focus on the problem of optimally assigning patients to treatments in clinical trials. While adaptive designs have significant ethical and cost advantages, they are rarely utilized because of the complexity of optimizing and analyzing them. Computational challenges include massive memory requirements, few calculations per memory access, and multiply-nested loops with dynamic indices. We analyze the effects of various parallelization options, and while standard approaches do not work well, with effort an efficient, highly scalable program can be developed. This allows us to solve problems thousands of times more complex than those solved previously, which helps make adaptive designs practical. Further, our work applies to many other problems involving neighbor recurrences, such as generalized string matching.

  7. Scalable Packet Classification with Hash Tables

    Science.gov (United States)

    Wang, Pi-Chung

    In the last decade, the technique of packet classification has been widely deployed in various network devices, including routers, firewalls and network intrusion detection systems. In this work, we improve the performance of packet classification by using multiple hash tables. The existing hash-based algorithms have superior scalability with respect to the required space; however, their search performance may not be comparable to other algorithms. To improve the search performance, we propose a tuple reordering algorithm to minimize the number of accessed hash tables with the aid of bitmaps. We also use pre-computation to ensure the accuracy of our search procedure. Performance evaluation based on both real and synthetic filter databases shows that our scheme is effective and scalable and the pre-computation cost is moderate.

  8. Scalable fabrication of perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen; Klein, Talysa R.; Kim, Dong Hoe; Yang, Mengjin; Berry, Joseph J.; van Hest, Maikel F. A. M.; Zhu, Kai

    2018-03-27

    Perovskite materials use earth-abundant elements, have low formation energies for deposition and are compatible with roll-to-roll and other high-volume manufacturing techniques. These features make perovskite solar cells (PSCs) suitable for terawatt-scale energy production with low production costs and low capital expenditure. Demonstrations of performance comparable to that of other thin-film photovoltaics (PVs) and improvements in laboratory-scale cell stability have recently made scale up of this PV technology an intense area of research focus. Here, we review recent progress and challenges in scaling up PSCs and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology. We discuss common device and module architectures, scalable deposition methods and progress in the scalable deposition of perovskite and charge-transport layers. We also provide an overview of device and module stability, module-level characterization techniques and techno-economic analyses of perovskite PV modules.

  9. Quantum Erasure: Quantum Interference Revisited

    OpenAIRE

    Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.

    2005-01-01

    Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.

  10. Noise thresholds for optical quantum computers.

    Science.gov (United States)

    Dawson, Christopher M; Haselgrove, Henry L; Nielsen, Michael A

    2006-01-20

    In this Letter we numerically investigate the fault-tolerant threshold for optical cluster-state quantum computing. We allow both photon loss noise and depolarizing noise (as a general proxy for all local noise), and obtain a threshold region of allowed pairs of values for the two types of noise. Roughly speaking, our results show that scalable optical quantum computing is possible for photon loss probabilities <3 x 10(-3), and for depolarization probabilities <10(-4).

  11. Optical hybrid quantum teleportation and its applications

    Science.gov (United States)

    Takeda, Shuntaro; Okada, Masanori; Furusawa, Akira

    2017-08-01

    Quantum teleportation, a transfer protocol of quantum states, is the essence of many sophisticated quantum information protocols. There have been two complementary approaches to optical quantum teleportation: discrete variables (DVs) and continuous variables (CVs). However, both approaches have pros and cons. Here we take a "hybrid" approach to overcome the current limitations: CV quantum teleportation of DVs. This approach enabled the first realization of deterministic quantum teleportation of photonic qubits without post-selection. We also applied the hybrid scheme to several experiments, including entanglement swapping between DVs and CVs, conditional CV teleportation of single photons, and CV teleportation of qutrits. We are now aiming at universal, scalable, and fault-tolerant quantum computing based on these hybrid technologies.

  12. Scalable manufacturing processes with soft materials

    OpenAIRE

    White, Edward; Case, Jennifer; Kramer, Rebecca

    2014-01-01

    The emerging field of soft robotics will benefit greatly from new scalable manufacturing techniques for responsive materials. Currently, most of soft robotic examples are fabricated one-at-a-time, using techniques borrowed from lithography and 3D printing to fabricate molds. This limits both the maximum and minimum size of robots that can be fabricated, and hinders batch production, which is critical to gain wider acceptance for soft robotic systems. We have identified electrical structures, ...

  13. Architecture Knowledge for Evaluating Scalable Databases

    Science.gov (United States)

    2015-01-16

    Architecture Knowledge for Evaluating Scalable Databases 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Nurgaliev... Scala , Erlang, Javascript Cursor-based queries Supported, Not Supported JOIN queries Supported, Not Supported Complex data types Lists, maps, sets...is therefore needed, using technology such as machine learning to extract content from product documentation. The terminology used in the database

  14. Randomized Algorithms for Scalable Machine Learning

    OpenAIRE

    Kleiner, Ariel Jacob

    2012-01-01

    Many existing procedures in machine learning and statistics are computationally intractable in the setting of large-scale data. As a result, the advent of rapidly increasing dataset sizes, which should be a boon yielding improved statistical performance, instead severely blunts the usefulness of a variety of existing inferential methods. In this work, we use randomness to ameliorate this lack of scalability by reducing complex, computationally difficult inferential problems to larger sets o...

  15. Bitcoin-NG: A Scalable Blockchain Protocol

    OpenAIRE

    Eyal, Ittay; Gencer, Adem Efe; Sirer, Emin Gun; van Renesse, Robbert

    2015-01-01

    Cryptocurrencies, based on and led by Bitcoin, have shown promise as infrastructure for pseudonymous online payments, cheap remittance, trustless digital asset exchange, and smart contracts. However, Bitcoin-derived blockchain protocols have inherent scalability limits that trade-off between throughput and latency and withhold the realization of this potential. This paper presents Bitcoin-NG, a new blockchain protocol designed to scale. Based on Bitcoin's blockchain protocol, Bitcoin-NG is By...

  16. Scuba: scalable kernel-based gene prioritization.

    Science.gov (United States)

    Zampieri, Guido; Tran, Dinh Van; Donini, Michele; Navarin, Nicolò; Aiolli, Fabio; Sperduti, Alessandro; Valle, Giorgio

    2018-01-25

    The uncovering of genes linked to human diseases is a pressing challenge in molecular biology and precision medicine. This task is often hindered by the large number of candidate genes and by the heterogeneity of the available information. Computational methods for the prioritization of candidate genes can help to cope with these problems. In particular, kernel-based methods are a powerful resource for the integration of heterogeneous biological knowledge, however, their practical implementation is often precluded by their limited scalability. We propose Scuba, a scalable kernel-based method for gene prioritization. It implements a novel multiple kernel learning approach, based on a semi-supervised perspective and on the optimization of the margin distribution. Scuba is optimized to cope with strongly unbalanced settings where known disease genes are few and large scale predictions are required. Importantly, it is able to efficiently deal both with a large amount of candidate genes and with an arbitrary number of data sources. As a direct consequence of scalability, Scuba integrates also a new efficient strategy to select optimal kernel parameters for each data source. We performed cross-validation experiments and simulated a realistic usage setting, showing that Scuba outperforms a wide range of state-of-the-art methods. Scuba achieves state-of-the-art performance and has enhanced scalability compared to existing kernel-based approaches for genomic data. This method can be useful to prioritize candidate genes, particularly when their number is large or when input data is highly heterogeneous. The code is freely available at https://github.com/gzampieri/Scuba .

  17. A scalable distributed RRT for motion planning

    KAUST Repository

    Jacobs, Sam Ade

    2013-05-01

    Rapidly-exploring Random Tree (RRT), like other sampling-based motion planning methods, has been very successful in solving motion planning problems. Even so, sampling-based planners cannot solve all problems of interest efficiently, so attention is increasingly turning to parallelizing them. However, one challenge in parallelizing RRT is the global computation and communication overhead of nearest neighbor search, a key operation in RRTs. This is a critical issue as it limits the scalability of previous algorithms. We present two parallel algorithms to address this problem. The first algorithm extends existing work by introducing a parameter that adjusts how much local computation is done before a global update. The second algorithm radially subdivides the configuration space into regions, constructs a portion of the tree in each region in parallel, and connects the subtrees,i removing cycles if they exist. By subdividing the space, we increase computation locality enabling a scalable result. We show that our approaches are scalable. We present results demonstrating almost linear scaling to hundreds of processors on a Linux cluster and a Cray XE6 machine. © 2013 IEEE.

  18. DISP: Optimizations towards Scalable MPI Startup

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Huansong [Florida State University, Tallahassee; Pophale, Swaroop S [ORNL; Gorentla Venkata, Manjunath [ORNL; Yu, Weikuan [Florida State University, Tallahassee

    2016-01-01

    Despite the popularity of MPI for high performance computing, the startup of MPI programs faces a scalability challenge as both the execution time and memory consumption increase drastically at scale. We have examined this problem using the collective modules of Cheetah and Tuned in Open MPI as representative implementations. Previous improvements for collectives have focused on algorithmic advances and hardware off-load. In this paper, we examine the startup cost of the collective module within a communicator and explore various techniques to improve its efficiency and scalability. Accordingly, we have developed a new scalable startup scheme with three internal techniques, namely Delayed Initialization, Module Sharing and Prediction-based Topology Setup (DISP). Our DISP scheme greatly benefits the collective initialization of the Cheetah module. At the same time, it helps boost the performance of non-collective initialization in the Tuned module. We evaluate the performance of our implementation on Titan supercomputer at ORNL with up to 4096 processes. The results show that our delayed initialization can speed up the startup of Tuned and Cheetah by an average of 32.0% and 29.2%, respectively, our module sharing can reduce the memory consumption of Tuned and Cheetah by up to 24.1% and 83.5%, respectively, and our prediction-based topology setup can speed up the startup of Cheetah by up to 80%.

  19. A scalable distributed RRT for motion planning

    KAUST Repository

    Jacobs, Sam Ade; Stradford, Nicholas; Rodriguez, Cesar; Thomas, Shawna; Amato, Nancy M.

    2013-01-01

    Rapidly-exploring Random Tree (RRT), like other sampling-based motion planning methods, has been very successful in solving motion planning problems. Even so, sampling-based planners cannot solve all problems of interest efficiently, so attention is increasingly turning to parallelizing them. However, one challenge in parallelizing RRT is the global computation and communication overhead of nearest neighbor search, a key operation in RRTs. This is a critical issue as it limits the scalability of previous algorithms. We present two parallel algorithms to address this problem. The first algorithm extends existing work by introducing a parameter that adjusts how much local computation is done before a global update. The second algorithm radially subdivides the configuration space into regions, constructs a portion of the tree in each region in parallel, and connects the subtrees,i removing cycles if they exist. By subdividing the space, we increase computation locality enabling a scalable result. We show that our approaches are scalable. We present results demonstrating almost linear scaling to hundreds of processors on a Linux cluster and a Cray XE6 machine. © 2013 IEEE.

  20. Scalable robotic biofabrication of tissue spheroids

    International Nuclear Information System (INIS)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V; Brown, J; Beaver, W; Da Silva, J V L

    2011-01-01

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  1. Scalable robotic biofabrication of tissue spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V [Advanced Tissue Biofabrication Center, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC (United States); Brown, J [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Beaver, W [York Technical College, Rock Hill, SC (United States); Da Silva, J V L, E-mail: mironovv@musc.edu [Renato Archer Information Technology Center-CTI, Campinas (Brazil)

    2011-06-15

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  2. One-way quantum computing in superconducting circuits

    Science.gov (United States)

    Albarrán-Arriagada, F.; Alvarado Barrios, G.; Sanz, M.; Romero, G.; Lamata, L.; Retamal, J. C.; Solano, E.

    2018-03-01

    We propose a method for the implementation of one-way quantum computing in superconducting circuits. Measurement-based quantum computing is a universal quantum computation paradigm in which an initial cluster state provides the quantum resource, while the iteration of sequential measurements and local rotations encodes the quantum algorithm. Up to now, technical constraints have limited a scalable approach to this quantum computing alternative. The initial cluster state can be generated with available controlled-phase gates, while the quantum algorithm makes use of high-fidelity readout and coherent feedforward. With current technology, we estimate that quantum algorithms with above 20 qubits may be implemented in the path toward quantum supremacy. Moreover, we propose an alternative initial state with properties of maximal persistence and maximal connectedness, reducing the required resources of one-way quantum computing protocols.

  3. Register

    African Journals Online (AJOL)

    Denotes required field. Privacy Statement. The names and email addresses entered here will be used exclusively for the stated purposes of AJOL. We take your privacy seriously and we protect your personal information, which will not be made available for any other purpose or to any other party. AJOL African Journals ...

  4. Register

    African Journals Online (AJOL)

    Form Language. English, Français. To enter the information below in additional languages, first select the language. Username *. The username must contain only lowercase letters, numbers, and hyphens/underscores. Password *. The password must be at least 6 characters. Repeat password *. Salutation. First Name *.

  5. Quantum walks in brain microtubules--a biomolecular basis for quantum cognition?

    Science.gov (United States)

    Hameroff, Stuart

    2014-01-01

    Cognitive decisions are best described by quantum mathematics. Do quantum information devices operate in the brain? What would they look like? Fuss and Navarro () describe quantum lattice registers in which quantum superpositioned pathways interact (compute/integrate) as 'quantum walks' akin to Feynman's path integral in a lattice (e.g. the 'Feynman quantum chessboard'). Simultaneous alternate pathways eventually reduce (collapse), selecting one particular pathway in a cognitive decision, or choice. This paper describes how quantum walks in a Feynman chessboard are conceptually identical to 'topological qubits' in brain neuronal microtubules, as described in the Penrose-Hameroff 'Orch OR' theory of consciousness. Copyright © 2013 Cognitive Science Society, Inc.

  6. Qubus ancilla-driven quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Katherine Louise [School of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70808, United States and School of Physics and Astronomy, University of Leeds, LS2 9JT (United Kingdom); De, Suvabrata; Kendon, Viv [School of Physics and Astronomy, University of Leeds, LS2 9JT (United Kingdom); Munro, Bill [National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan and NTT Basic Research Laboratories, 3-1, Morinosato Wakamiya Atsugi-shi, Kanagawa 243-0198 (Japan)

    2014-12-04

    Hybrid matter-optical systems offer a robust, scalable path to quantum computation. Such systems have an ancilla which acts as a bus connecting the qubits. We demonstrate how using a continuous variable qubus as the ancilla provides savings in the total number of operations required when computing with many qubits.

  7. Numeric Analysis for Relationship-Aware Scalable Streaming Scheme

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2014-01-01

    Full Text Available Frequent packet loss of media data is a critical problem that degrades the quality of streaming services over mobile networks. Packet loss invalidates frames containing lost packets and other related frames at the same time. Indirect loss caused by losing packets decreases the quality of streaming. A scalable streaming service can decrease the amount of dropped multimedia resulting from a single packet loss. Content providers typically divide one large media stream into several layers through a scalable streaming service and then provide each scalable layer to the user depending on the mobile network. Also, a scalable streaming service makes it possible to decode partial multimedia data depending on the relationship between frames and layers. Therefore, a scalable streaming service provides a way to decrease the wasted multimedia data when one packet is lost. However, the hierarchical structure between frames and layers of scalable streams determines the service quality of the scalable streaming service. Even if whole packets of layers are transmitted successfully, they cannot be decoded as a result of the absence of reference frames and layers. Therefore, the complicated relationship between frames and layers in a scalable stream increases the volume of abandoned layers. For providing a high-quality scalable streaming service, we choose a proper relationship between scalable layers as well as the amount of transmitted multimedia data depending on the network situation. We prove that a simple scalable scheme outperforms a complicated scheme in an error-prone network. We suggest an adaptive set-top box (AdaptiveSTB to lower the dependency between scalable layers in a scalable stream. Also, we provide a numerical model to obtain the indirect loss of multimedia data and apply it to various multimedia streams. Our AdaptiveSTB enhances the quality of a scalable streaming service by removing indirect loss.

  8. Scalable and balanced dynamic hybrid data assimilation

    Science.gov (United States)

    Kauranne, Tuomo; Amour, Idrissa; Gunia, Martin; Kallio, Kari; Lepistö, Ahti; Koponen, Sampsa

    2017-04-01

    Scalability of complex weather forecasting suites is dependent on the technical tools available for implementing highly parallel computational kernels, but to an equally large extent also on the dependence patterns between various components of the suite, such as observation processing, data assimilation and the forecast model. Scalability is a particular challenge for 4D variational assimilation methods that necessarily couple the forecast model into the assimilation process and subject this combination to an inherently serial quasi-Newton minimization process. Ensemble based assimilation methods are naturally more parallel, but large models force ensemble sizes to be small and that results in poor assimilation accuracy, somewhat akin to shooting with a shotgun in a million-dimensional space. The Variational Ensemble Kalman Filter (VEnKF) is an ensemble method that can attain the accuracy of 4D variational data assimilation with a small ensemble size. It achieves this by processing a Gaussian approximation of the current error covariance distribution, instead of a set of ensemble members, analogously to the Extended Kalman Filter EKF. Ensemble members are re-sampled every time a new set of observations is processed from a new approximation of that Gaussian distribution which makes VEnKF a dynamic assimilation method. After this a smoothing step is applied that turns VEnKF into a dynamic Variational Ensemble Kalman Smoother VEnKS. In this smoothing step, the same process is iterated with frequent re-sampling of the ensemble but now using past iterations as surrogate observations until the end result is a smooth and balanced model trajectory. In principle, VEnKF could suffer from similar scalability issues as 4D-Var. However, this can be avoided by isolating the forecast model completely from the minimization process by implementing the latter as a wrapper code whose only link to the model is calling for many parallel and totally independent model runs, all of them

  9. The Danish Medical Birth Register

    DEFF Research Database (Denmark)

    Bliddal, Mette; Broe, Anne; Pottegård, Anton

    2018-01-01

    The Danish Medical Birth Register was established in 1973. It is a key component of the Danish health information system. The register enables monitoring of the health of pregnant women and their offspring, it provides data for quality assessment of the perinatal care in Denmark, and it is used...... on all births in Denmark and comprises primarily of data from the Danish National Patient Registry supplemented with forms on home deliveries and stillbirths. It contains information on maternal age provided by the Civil Registration System. Information on pre-pregnancy body mass index and smoking...

  10. Danish registers on aspects of reproduction

    DEFF Research Database (Denmark)

    Blenstrup, Lene Tølbøll; Knudsen, Lisbeth B.

    2011-01-01

    Introduction: The establishing of three Danish population based registers, namely the Fertility Database, the Register of Legally Induced Abortions and the In Vitro Fertilisation register aimed at providing data for surveying of reproductive outcome. Content: The registers include information...... on births, abortions and assisted reproduction as well as selected characteristics of the women (and men) involved. Validity and Coverage: Both the validity and coverage of each register is considered of high quality. Conclusions: These registers provide, both individually and in combination, unique...

  11. Beam Splitter for Spin Waves in Quantum Spin Network

    OpenAIRE

    Yang, S.; Song, Z.; Sun, C. P.

    2005-01-01

    We theoretically design and analytically study a controllable beam splitter for the spin wave propagating in a star-shaped (e.g., a $Y$-shaped beam) spin network. Such a solid state beam splitter can display quantum interference and quantum entanglement by the well-aimed controls of interaction on nodes. It will enable an elementary interferometric device for scalable quantum information processing based on the solid system.

  12. Effective Fault-Tolerant Quantum Computation with Slow Measurements

    International Nuclear Information System (INIS)

    DiVincenzo, David P.; Aliferis, Panos

    2007-01-01

    How important is fast measurement for fault-tolerant quantum computation? Using a combination of existing and new ideas, we argue that measurement times as long as even 1000 gate times or more have a very minimal effect on the quantum accuracy threshold. This shows that slow measurement, which appears to be unavoidable in many implementations of quantum computing, poses no essential obstacle to scalability

  13. Nano-islands Based Charge Trapping Memory: A Scalability Study

    KAUST Repository

    Elatab, Nazek; Saadat, Irfan; Saraswat, Krishna; Nayfeh, Ammar

    2017-01-01

    Zinc-oxide (ZnO) and zirconia (ZrO2) metal oxides have been studied extensively in the past few decades with several potential applications including memory devices. In this work, a scalability study, based on the ITRS roadmap, is conducted on memory devices with ZnO and ZrO2 nano-islands charge trapping layer. Both nano-islands are deposited using atomic layer deposition (ALD), however, the different sizes, distribution and properties of the materials result in different memory performance. The results show that at the 32-nm node charge trapping memory with 127 ZrO2 nano-islands can provide a 9.4 V memory window. However, with ZnO only 31 nano-islands can provide a window of 2.5 V. The results indicate that ZrO2 nano-islands are more promising than ZnO in scaled down devices due to their higher density, higher-k, and absence of quantum confinement effects.

  14. Nano-islands Based Charge Trapping Memory: A Scalability Study

    KAUST Repository

    Elatab, Nazek

    2017-10-19

    Zinc-oxide (ZnO) and zirconia (ZrO2) metal oxides have been studied extensively in the past few decades with several potential applications including memory devices. In this work, a scalability study, based on the ITRS roadmap, is conducted on memory devices with ZnO and ZrO2 nano-islands charge trapping layer. Both nano-islands are deposited using atomic layer deposition (ALD), however, the different sizes, distribution and properties of the materials result in different memory performance. The results show that at the 32-nm node charge trapping memory with 127 ZrO2 nano-islands can provide a 9.4 V memory window. However, with ZnO only 31 nano-islands can provide a window of 2.5 V. The results indicate that ZrO2 nano-islands are more promising than ZnO in scaled down devices due to their higher density, higher-k, and absence of quantum confinement effects.

  15. Optimally stopped variational quantum algorithms

    Science.gov (United States)

    Vinci, Walter; Shabani, Alireza

    2018-04-01

    Quantum processors promise a paradigm shift in high-performance computing which needs to be assessed by accurate benchmarking measures. In this article, we introduce a benchmark for the variational quantum algorithm (VQA), recently proposed as a heuristic algorithm for small-scale quantum processors. In VQA, a classical optimization algorithm guides the processor's quantum dynamics to yield the best solution for a given problem. A complete assessment of the scalability and competitiveness of VQA should take into account both the quality and the time of dynamics optimization. The method of optimal stopping, employed here, provides such an assessment by explicitly including time as a cost factor. Here, we showcase this measure for benchmarking VQA as a solver for some quadratic unconstrained binary optimization. Moreover, we show that a better choice for the cost function of the classical routine can significantly improve the performance of the VQA algorithm and even improve its scaling properties.

  16. The Pediatric Cataract Register (PECARE)

    DEFF Research Database (Denmark)

    Haargaard, Birgitte; Nyström, Alf; Rosensvärd, Annika

    2015-01-01

    examination with a pencil light at age 5 weeks, whereas newborn red reflex examination using a handheld ophthalmoscope is routine protocol in Swedish maternity wards. Data regarding age of referral were derived from the Pediatric Cataract Register (PECARE). All children operated on before 1 year of age...

  17. Are Local Registers the Solution?

    NARCIS (Netherlands)

    Baldwin, R.; English, C.; Lemmen, C.H.J.; Rose, I.; Smith, A.; Solovov, A.; Sullivan, T.

    2018-01-01

    This paper explores the possibility of using local registers to manage and update land rights. Secure land rights are largely taken for granted in the developed world. Yet for many people in developing nations, clear and enforceable land rights are not a reality. In the developed world, land rights

  18. Blueprint for a microwave trapped ion quantum computer.

    Science.gov (United States)

    Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G; Mølmer, Klaus; Devitt, Simon J; Wunderlich, Christof; Hensinger, Winfried K

    2017-02-01

    The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.

  19. Simulation of n-qubit quantum systems. III. Quantum operations

    Science.gov (United States)

    Radtke, T.; Fritzsche, S.

    2007-05-01

    During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today. Program summaryTitle of program: Feynman Catalogue identifier: ADWE_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10 Program language used:MAPLE 10 Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 processor with ⩾2 GHz or equivalent) and 5-20 MB of memory. Especially when working with symbolic expressions, however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems

  20. Programming Scala Scalability = Functional Programming + Objects

    CERN Document Server

    Wampler, Dean

    2009-01-01

    Learn how to be more productive with Scala, a new multi-paradigm language for the Java Virtual Machine (JVM) that integrates features of both object-oriented and functional programming. With this book, you'll discover why Scala is ideal for highly scalable, component-based applications that support concurrency and distribution. Programming Scala clearly explains the advantages of Scala as a JVM language. You'll learn how to leverage the wealth of Java class libraries to meet the practical needs of enterprise and Internet projects more easily. Packed with code examples, this book provides us

  1. Tip-Based Nanofabrication for Scalable Manufacturing

    Directory of Open Access Journals (Sweden)

    Huan Hu

    2017-03-01

    Full Text Available Tip-based nanofabrication (TBN is a family of emerging nanofabrication techniques that use a nanometer scale tip to fabricate nanostructures. In this review, we first introduce the history of the TBN and the technology development. We then briefly review various TBN techniques that use different physical or chemical mechanisms to fabricate features and discuss some of the state-of-the-art techniques. Subsequently, we focus on those TBN methods that have demonstrated potential to scale up the manufacturing throughput. Finally, we discuss several research directions that are essential for making TBN a scalable nano-manufacturing technology.

  2. Tip-Based Nanofabrication for Scalable Manufacturing

    International Nuclear Information System (INIS)

    Hu, Huan; Somnath, Suhas

    2017-01-01

    Tip-based nanofabrication (TBN) is a family of emerging nanofabrication techniques that use a nanometer scale tip to fabricate nanostructures. Here in this review, we first introduce the history of the TBN and the technology development. We then briefly review various TBN techniques that use different physical or chemical mechanisms to fabricate features and discuss some of the state-of-the-art techniques. Subsequently, we focus on those TBN methods that have demonstrated potential to scale up the manufacturing throughput. Finally, we discuss several research directions that are essential for making TBN a scalable nano-manufacturing technology.

  3. Towards a Scalable, Biomimetic, Antibacterial Coating

    Science.gov (United States)

    Dickson, Mary Nora

    Corneal afflictions are the second leading cause of blindness worldwide. When a corneal transplant is unavailable or contraindicated, an artificial cornea device is the only chance to save sight. Bacterial or fungal biofilm build up on artificial cornea devices can lead to serious complications including the need for systemic antibiotic treatment and even explantation. As a result, much emphasis has been placed on anti-adhesion chemical coatings and antibiotic leeching coatings. These methods are not long-lasting, and microorganisms can eventually circumvent these measures. Thus, I have developed a surface topographical antimicrobial coating. Various surface structures including rough surfaces, superhydrophobic surfaces, and the natural surfaces of insects' wings and sharks' skin are promising anti-biofilm candidates, however none meet the criteria necessary for implementation on the surface of an artificial cornea device. In this thesis I: 1) developed scalable fabrication protocols for a library of biomimetic nanostructure polymer surfaces 2) assessed the potential these for poly(methyl methacrylate) nanopillars to kill or prevent formation of biofilm by E. coli bacteria and species of Pseudomonas and Staphylococcus bacteria and improved upon a proposed mechanism for the rupture of Gram-negative bacterial cell walls 3) developed a scalable, commercially viable method for producing antibacterial nanopillars on a curved, PMMA artificial cornea device and 4) developed scalable fabrication protocols for implantation of antibacterial nanopatterned surfaces on the surfaces of thermoplastic polyurethane materials, commonly used in catheter tubings. This project constitutes a first step towards fabrication of the first entirely PMMA artificial cornea device. The major finding of this work is that by precisely controlling the topography of a polymer surface at the nano-scale, we can kill adherent bacteria and prevent biofilm formation of certain pathogenic bacteria

  4. Scalable Optical-Fiber Communication Networks

    Science.gov (United States)

    Chow, Edward T.; Peterson, John C.

    1993-01-01

    Scalable arbitrary fiber extension network (SAFEnet) is conceptual fiber-optic communication network passing digital signals among variety of computers and input/output devices at rates from 200 Mb/s to more than 100 Gb/s. Intended for use with very-high-speed computers and other data-processing and communication systems in which message-passing delays must be kept short. Inherent flexibility makes it possible to match performance of network to computers by optimizing configuration of interconnections. In addition, interconnections made redundant to provide tolerance to faults.

  5. Scalable Tensor Factorizations with Missing Data

    DEFF Research Database (Denmark)

    Acar, Evrim; Dunlavy, Daniel M.; Kolda, Tamara G.

    2010-01-01

    of missing data, many important data sets will be discarded or improperly analyzed. Therefore, we need a robust and scalable approach for factorizing multi-way arrays (i.e., tensors) in the presence of missing data. We focus on one of the most well-known tensor factorizations, CANDECOMP/PARAFAC (CP...... is shown to successfully factor tensors with noise and up to 70% missing data. Moreover, our approach is significantly faster than the leading alternative and scales to larger problems. To show the real-world usefulness of CP-WOPT, we illustrate its applicability on a novel EEG (electroencephalogram...

  6. Scalable and Anonymous Group Communication with MTor

    Directory of Open Access Journals (Sweden)

    Lin Dong

    2016-04-01

    Full Text Available This paper presents MTor, a low-latency anonymous group communication system. We construct MTor as an extension to Tor, allowing the construction of multi-source multicast trees on top of the existing Tor infrastructure. MTor does not depend on an external service to broker the group communication, and avoids central points of failure and trust. MTor’s substantial bandwidth savings and graceful scalability enable new classes of anonymous applications that are currently too bandwidth-intensive to be viable through traditional unicast Tor communication-e.g., group file transfer, collaborative editing, streaming video, and real-time audio conferencing.

  7. Grassmann Averages for Scalable Robust PCA

    DEFF Research Database (Denmark)

    Hauberg, Søren; Feragen, Aasa; Black, Michael J.

    2014-01-01

    As the collection of large datasets becomes increasingly automated, the occurrence of outliers will increase—“big data” implies “big outliers”. While principal component analysis (PCA) is often used to reduce the size of data, and scalable solutions exist, it is well-known that outliers can...... to vectors (subspaces) or elements of vectors; we focus on the latter and use a trimmed average. The resulting Trimmed Grassmann Average (TGA) is particularly appropriate for computer vision because it is robust to pixel outliers. The algorithm has low computational complexity and minimal memory requirements...

  8. Balanced Bipartite Graph Based Register Allocation for Network Processors in Mobile and Wireless Networks

    Directory of Open Access Journals (Sweden)

    Feilong Tang

    2010-01-01

    Full Text Available Mobile and wireless networks are the integrant infrastructure of mobile and pervasive computing that aims at providing transparent and preferred information and services for people anytime anywhere. In such environments, end-to-end network bandwidth is crucial to improve user's transparent experience when providing on-demand services such as mobile video playing. As a result, powerful computing power is required for networked nodes, especially for routers. General-purpose processors cannot meet such requirements due to their limited processing ability, and poor programmability and scalability. Intel's network processor IXP is specially designed for fast packet processing to achieve a broad bandwidth. IXP provides a large number of registers to reduce the number of memory accesses. Registers in an IXP are physically partitioned as two banks so that two source operands in an instruction have to come from the two banks respectively, which makes the IXP register allocation tricky and different from conventional ones. In this paper, we investigate an approach for efficiently generating balanced bipartite graph and register allocation algorithms for the dual-bank register allocation in IXPs. The paper presents a graph uniform 2-way partition algorithm (FPT, which provides an optimal solution to the graph partition, and a heuristic algorithm for generating balanced bipartite graph. Finally, we design a framework for IXP register allocation. Experimental results demonstrate the framework and the algorithms are efficient in register allocation for IXP network processors.

  9. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    ..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...

  10. Designing, programming, and optimizing a (small) quantum computer

    Science.gov (United States)

    Svore, Krysta

    In 1982, Richard Feynman proposed to use a computer founded on the laws of quantum physics to simulate physical systems. In the more than thirty years since, quantum computers have shown promise to solve problems in number theory, chemistry, and materials science that would otherwise take longer than the lifetime of the universe to solve on an exascale classical machine. The practical realization of a quantum computer requires understanding and manipulating subtle quantum states while experimentally controlling quantum interference. It also requires an end-to-end software architecture for programming, optimizing, and implementing a quantum algorithm on the quantum device hardware. In this talk, we will introduce recent advances in connecting abstract theory to present-day real-world applications through software. We will highlight recent advancement of quantum algorithms and the challenges in ultimately performing a scalable solution on a quantum device.

  11. Experimental realization of universal geometric quantum gates with solid-state spins.

    Science.gov (United States)

    Zu, C; Wang, W-B; He, L; Zhang, W-G; Dai, C-Y; Wang, F; Duan, L-M

    2014-10-02

    Experimental realization of a universal set of quantum logic gates is the central requirement for the implementation of a quantum computer. In an 'all-geometric' approach to quantum computation, the quantum gates are implemented using Berry phases and their non-Abelian extensions, holonomies, from geometric transformation of quantum states in the Hilbert space. Apart from its fundamental interest and rich mathematical structure, the geometric approach has some built-in noise-resilience features. On the experimental side, geometric phases and holonomies have been observed in thermal ensembles of liquid molecules using nuclear magnetic resonance; however, such systems are known to be non-scalable for the purposes of quantum computing. There are proposals to implement geometric quantum computation in scalable experimental platforms such as trapped ions, superconducting quantum bits and quantum dots, and a recent experiment has realized geometric single-bit gates in a superconducting system. Here we report the experimental realization of a universal set of geometric quantum gates using the solid-state spins of diamond nitrogen-vacancy centres. These diamond defects provide a scalable experimental platform with the potential for room-temperature quantum computing, which has attracted strong interest in recent years. Our experiment shows that all-geometric and potentially robust quantum computation can be realized with solid-state spin quantum bits, making use of recent advances in the coherent control of this system.

  12. The Copenhagen School Health Records Register

    DEFF Research Database (Denmark)

    Baker, Jennifer L; Sørensen, Thorkild I A

    2011-01-01

    The Copenhagen School Health Records Register is an electronic register of health examination information on 372,636 children who attended school in Copenhagen, Denmark from 1936 to 2005.......The Copenhagen School Health Records Register is an electronic register of health examination information on 372,636 children who attended school in Copenhagen, Denmark from 1936 to 2005....

  13. Hybrid quantum systems: Outsourcing superconducting qubits

    Science.gov (United States)

    Cleland, Andrew

    Superconducting qubits offer excellent prospects for manipulating quantum information, with good qubit lifetimes, high fidelity single- and two-qubit gates, and straightforward scalability (admittedly with multi-dimensional interconnect challenges). One interesting route for experimental development is the exploration of hybrid systems, i.e. coupling superconducting qubits to other systems. I will report on our group's efforts to develop approaches that will allow interfacing superconducting qubits in a quantum-coherent fashion to spin defects in solids, to optomechanical devices, and to resonant nanomechanical structures. The longer term goals of these efforts include transferring quantum states between different qubit systems; generating and receiving ``flying'' acoustic phonon-based as well as optical photon-based qubits; and ultimately developing systems that can be used for quantum memory, quantum computation and quantum communication, the last in both the microwave and fiber telecommunications bands. Work is supported by Grants from AFOSR, ARO, DOE and NSF.

  14. Strictly local one-dimensional topological quantum error correction with symmetry-constrained cellular automata

    Directory of Open Access Journals (Sweden)

    Nicolai Lang, Hans Peter Büchler

    2018-01-01

    Full Text Available Active quantum error correction on topological codes is one of the most promising routes to long-term qubit storage. In view of future applications, the scalability of the used decoding algorithms in physical implementations is crucial. In this work, we focus on the one-dimensional Majorana chain and construct a strictly local decoder based on a self-dual cellular automaton. We study numerically and analytically its performance and exploit these results to contrive a scalable decoder with exponentially growing decoherence times in the presence of noise. Our results pave the way for scalable and modular designs of actively corrected one-dimensional topological quantum memories.

  15. National register of research projects

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    This Register is intended to serve as a source of information on research which is being conducted in all fields (both natural and human sciences) in the Republic of South Africa. New research projects commenced during 1983 or 1984, and significantly changed research projects, as well as project that were completed or terminated during this period, on which information was received by the compilers before December 1984, are included, with the exception of confidential projects.

  16. VISUALIZATION OF REGISTERED SUBSURFACE ANATOMY

    DEFF Research Database (Denmark)

    2010-01-01

    A system and method for visualization of subsurface anatomy includes obtaining a first image from a first camera and a second image from a second camera or a second channel of the first camera, where the first and second images contain shared anatomical structures. The second camera and the secon....... A visual interface displays the registered visualization of the first and second images. The system and method are particularly useful for imaging during minimally invasive surgery, such as robotic surgery....

  17. Scalability Optimization of Seamless Positioning Service

    Directory of Open Access Journals (Sweden)

    Juraj Machaj

    2016-01-01

    Full Text Available Recently positioning services are getting more attention not only within research community but also from service providers. From the service providers point of view positioning service that will be able to work seamlessly in all environments, for example, indoor, dense urban, and rural, has a huge potential to open new markets. However, such system does not only need to provide accurate position estimates but have to be scalable and resistant to fake positioning requests. In the previous works we have proposed a modular system, which is able to provide seamless positioning in various environments. The system automatically selects optimal positioning module based on available radio signals. The system currently consists of three positioning modules—GPS, GSM based positioning, and Wi-Fi based positioning. In this paper we will propose algorithm which will reduce time needed for position estimation and thus allow higher scalability of the modular system and thus allow providing positioning services to higher amount of users. Such improvement is extremely important, for real world application where large number of users will require position estimates, since positioning error is affected by response time of the positioning server.

  18. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoit; Bajic, Vladimir B.; Kaushik, Dinesh

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  19. Algorithmic psychometrics and the scalable subject.

    Science.gov (United States)

    Stark, Luke

    2018-04-01

    Recent public controversies, ranging from the 2014 Facebook 'emotional contagion' study to psychographic data profiling by Cambridge Analytica in the 2016 American presidential election, Brexit referendum and elsewhere, signal watershed moments in which the intersecting trajectories of psychology and computer science have become matters of public concern. The entangled history of these two fields grounds the application of applied psychological techniques to digital technologies, and an investment in applying calculability to human subjectivity. Today, a quantifiable psychological subject position has been translated, via 'big data' sets and algorithmic analysis, into a model subject amenable to classification through digital media platforms. I term this position the 'scalable subject', arguing it has been shaped and made legible by algorithmic psychometrics - a broad set of affordances in digital platforms shaped by psychology and the behavioral sciences. In describing the contours of this 'scalable subject', this paper highlights the urgent need for renewed attention from STS scholars on the psy sciences, and on a computational politics attentive to psychology, emotional expression, and sociality via digital media.

  20. Scalable Simulation of Electromagnetic Hybrid Codes

    International Nuclear Information System (INIS)

    Perumalla, Kalyan S.; Fujimoto, Richard; Karimabadi, Dr. Homa

    2006-01-01

    New discrete-event formulations of physics simulation models are emerging that can outperform models based on traditional time-stepped techniques. Detailed simulation of the Earth's magnetosphere, for example, requires execution of sub-models that are at widely differing timescales. In contrast to time-stepped simulation which requires tightly coupled updates to entire system state at regular time intervals, the new discrete event simulation (DES) approaches help evolve the states of sub-models on relatively independent timescales. However, parallel execution of DES-based models raises challenges with respect to their scalability and performance. One of the key challenges is to improve the computation granularity to offset synchronization and communication overheads within and across processors. Our previous work was limited in scalability and runtime performance due to the parallelization challenges. Here we report on optimizations we performed on DES-based plasma simulation models to improve parallel performance. The net result is the capability to simulate hybrid particle-in-cell (PIC) models with over 2 billion ion particles using 512 processors on supercomputing platforms

  1. Towards Scalable Graph Computation on Mobile Devices.

    Science.gov (United States)

    Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng

    2014-10-01

    Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach.

  2. Scalable fast multipole accelerated vortex methods

    KAUST Repository

    Hu, Qi

    2014-05-01

    The fast multipole method (FMM) is often used to accelerate the calculation of particle interactions in particle-based methods to simulate incompressible flows. To evaluate the most time-consuming kernels - the Biot-Savart equation and stretching term of the vorticity equation, we mathematically reformulated it so that only two Laplace scalar potentials are used instead of six. This automatically ensuring divergence-free far-field computation. Based on this formulation, we developed a new FMM-based vortex method on heterogeneous architectures, which distributed the work between multicore CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm uses new data structures which can dynamically manage inter-node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s.

  3. Computational scalability of large size image dissemination

    Science.gov (United States)

    Kooper, Rob; Bajcsy, Peter

    2011-01-01

    We have investigated the computational scalability of image pyramid building needed for dissemination of very large image data. The sources of large images include high resolution microscopes and telescopes, remote sensing and airborne imaging, and high resolution scanners. The term 'large' is understood from a user perspective which means either larger than a display size or larger than a memory/disk to hold the image data. The application drivers for our work are digitization projects such as the Lincoln Papers project (each image scan is about 100-150MB or about 5000x8000 pixels with the total number to be around 200,000) and the UIUC library scanning project for historical maps from 17th and 18th century (smaller number but larger images). The goal of our work is understand computational scalability of the web-based dissemination using image pyramids for these large image scans, as well as the preservation aspects of the data. We report our computational benchmarks for (a) building image pyramids to be disseminated using the Microsoft Seadragon library, (b) a computation execution approach using hyper-threading to generate image pyramids and to utilize the underlying hardware, and (c) an image pyramid preservation approach using various hard drive configurations of Redundant Array of Independent Disks (RAID) drives for input/output operations. The benchmarks are obtained with a map (334.61 MB, JPEG format, 17591x15014 pixels). The discussion combines the speed and preservation objectives.

  4. Towards Scalable Graph Computation on Mobile Devices

    Science.gov (United States)

    Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng

    2015-01-01

    Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach. PMID:25859564

  5. Big data integration: scalability and sustainability

    KAUST Repository

    Zhang, Zhang

    2016-01-26

    Integration of various types of omics data is critically indispensable for addressing most important and complex biological questions. In the era of big data, however, data integration becomes increasingly tedious, time-consuming and expensive, posing a significant obstacle to fully exploit the wealth of big biological data. Here we propose a scalable and sustainable architecture that integrates big omics data through community-contributed modules. Community modules are contributed and maintained by different committed groups and each module corresponds to a specific data type, deals with data collection, processing and visualization, and delivers data on-demand via web services. Based on this community-based architecture, we build Information Commons for Rice (IC4R; http://ic4r.org), a rice knowledgebase that integrates a variety of rice omics data from multiple community modules, including genome-wide expression profiles derived entirely from RNA-Seq data, resequencing-based genomic variations obtained from re-sequencing data of thousands of rice varieties, plant homologous genes covering multiple diverse plant species, post-translational modifications, rice-related literatures, and community annotations. Taken together, such architecture achieves integration of different types of data from multiple community-contributed modules and accordingly features scalable, sustainable and collaborative integration of big data as well as low costs for database update and maintenance, thus helpful for building IC4R into a comprehensive knowledgebase covering all aspects of rice data and beneficial for both basic and translational researches.

  6. Quantum Instantons and Quantum Chaos

    OpenAIRE

    Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.

    1999-01-01

    Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.

  7. Quantum metrology

    International Nuclear Information System (INIS)

    Xiang Guo-Yong; Guo Guang-Can

    2013-01-01

    The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)

  8. Quantum Models of Classical World

    Directory of Open Access Journals (Sweden)

    Petr Hájíček

    2013-02-01

    Full Text Available This paper is a review of our recent work on three notorious problems of non-relativistic quantum mechanics: realist interpretation, quantum theory of classical properties, and the problem of quantum measurement. A considerable progress has been achieved, based on four distinct new ideas. First, objective properties are associated with states rather than with values of observables. Second, all classical properties are selected properties of certain high entropy quantum states of macroscopic systems. Third, registration of a quantum system is strongly disturbed by systems of the same type in the environment. Fourth, detectors must be distinguished from ancillas and the states of registered systems are partially dissipated and lost in the detectors. The paper has two aims: a clear explanation of all new results and a coherent and contradiction-free account of the whole quantum mechanics including all necessary changes of its current textbook version.

  9. Quantum Distinction: Quantum Distinctiones!

    OpenAIRE

    Zeps, Dainis

    2009-01-01

    10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...

  10. Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows.

    Science.gov (United States)

    Piracha, Afaq H; Rath, Patrik; Ganesan, Kumaravelu; Kühn, Stefan; Pernice, Wolfram H P; Prawer, Steven

    2016-05-11

    Diamond has emerged as a promising platform for nanophotonic, optical, and quantum technologies. High-quality, single crystalline substrates of acceptable size are a prerequisite to meet the demanding requirements on low-level impurities and low absorption loss when targeting large photonic circuits. Here, we describe a scalable fabrication method for single crystal diamond membrane windows that achieves three major goals with one fabrication method: providing high quality diamond, as confirmed by Raman spectroscopy; achieving homogeneously thin membranes, enabled by ion implantation; and providing compatibility with established planar fabrication via lithography and vertical etching. On such suspended diamond membranes we demonstrate a suite of photonic components as building blocks for nanophotonic circuits. Monolithic grating couplers are used to efficiently couple light between photonic circuits and optical fibers. In waveguide coupled optical ring resonators, we find loaded quality factors up to 66 000 at a wavelength of 1560 nm, corresponding to propagation loss below 7.2 dB/cm. Our approach holds promise for the scalable implementation of future diamond quantum photonic technologies and all-diamond photonic metrology tools.

  11. Minimal ancilla mediated quantum computation

    International Nuclear Information System (INIS)

    Proctor, Timothy J.; Kendon, Viv

    2014-01-01

    Schemes of universal quantum computation in which the interactions between the computational elements, in a computational register, are mediated by some ancillary system are of interest due to their relevance to the physical implementation of a quantum computer. Furthermore, reducing the level of control required over both the ancillary and register systems has the potential to simplify any experimental implementation. In this paper we consider how to minimise the control needed to implement universal quantum computation in an ancilla-mediated fashion. Considering computational schemes which require no measurements and hence evolve by unitary dynamics for the global system, we show that when employing an ancilla qubit there are certain fixed-time ancilla-register interactions which, along with ancilla initialisation in the computational basis, are universal for quantum computation with no additional control of either the ancilla or the register. We develop two distinct models based on locally inequivalent interactions and we then discuss the relationship between these unitary models and the measurement-based ancilla-mediated models known as ancilla-driven quantum computation. (orig.)

  12. Scalable conditional induction variables (CIV) analysis

    DEFF Research Database (Denmark)

    Oancea, Cosmin Eugen; Rauchwerger, Lawrence

    2015-01-01

    parallelizing compiler and evaluated its impact on five Fortran benchmarks. We have found that that there are many important loops using CIV subscripts and that our analysis can lead to their scalable parallelization. This in turn has led to the parallelization of the benchmark programs they appear in.......Subscripts using induction variables that cannot be expressed as a formula in terms of the enclosing-loop indices appear in the low-level implementation of common programming abstractions such as filter, or stack operations and pose significant challenges to automatic parallelization. Because...... the complexity of such induction variables is often due to their conditional evaluation across the iteration space of loops we name them Conditional Induction Variables (CIV). This paper presents a flow-sensitive technique that summarizes both such CIV-based and affine subscripts to program level, using the same...

  13. Scalable Faceted Ranking in Tagging Systems

    Science.gov (United States)

    Orlicki, José I.; Alvarez-Hamelin, J. Ignacio; Fierens, Pablo I.

    Nowadays, web collaborative tagging systems which allow users to upload, comment on and recommend contents, are growing. Such systems can be represented as graphs where nodes correspond to users and tagged-links to recommendations. In this paper we analyze the problem of computing a ranking of users with respect to a facet described as a set of tags. A straightforward solution is to compute a PageRank-like algorithm on a facet-related graph, but it is not feasible for online computation. We propose an alternative: (i) a ranking for each tag is computed offline on the basis of tag-related subgraphs; (ii) a faceted order is generated online by merging rankings corresponding to all the tags in the facet. Based on the graph analysis of YouTube and Flickr, we show that step (i) is scalable. We also present efficient algorithms for step (ii), which are evaluated by comparing their results with two gold standards.

  14. A graph algebra for scalable visual analytics.

    Science.gov (United States)

    Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V

    2012-01-01

    Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.

  15. iSIGHT-FD scalability test report.

    Energy Technology Data Exchange (ETDEWEB)

    Clay, Robert L.; Shneider, Max S.

    2008-07-01

    The engineering analysis community at Sandia National Laboratories uses a number of internal and commercial software codes and tools, including mesh generators, preprocessors, mesh manipulators, simulation codes, post-processors, and visualization packages. We define an analysis workflow as the execution of an ordered, logical sequence of these tools. Various forms of analysis (and in particular, methodologies that use multiple function evaluations or samples) involve executing parameterized variations of these workflows. As part of the DART project, we are evaluating various commercial workflow management systems, including iSIGHT-FD from Engineous. This report documents the results of a scalability test that was driven by DAKOTA and conducted on a parallel computer (Thunderbird). The purpose of this experiment was to examine the suitability and performance of iSIGHT-FD for large-scale, parameterized analysis workflows. As the results indicate, we found iSIGHT-FD to be suitable for this type of application.

  16. Scalable group level probabilistic sparse factor analysis

    DEFF Research Database (Denmark)

    Hinrich, Jesper Løve; Nielsen, Søren Føns Vind; Riis, Nicolai Andre Brogaard

    2017-01-01

    Many data-driven approaches exist to extract neural representations of functional magnetic resonance imaging (fMRI) data, but most of them lack a proper probabilistic formulation. We propose a scalable group level probabilistic sparse factor analysis (psFA) allowing spatially sparse maps, component...... pruning using automatic relevance determination (ARD) and subject specific heteroscedastic spatial noise modeling. For task-based and resting state fMRI, we show that the sparsity constraint gives rise to components similar to those obtained by group independent component analysis. The noise modeling...... shows that noise is reduced in areas typically associated with activation by the experimental design. The psFA model identifies sparse components and the probabilistic setting provides a natural way to handle parameter uncertainties. The variational Bayesian framework easily extends to more complex...

  17. A versatile scalable PET processing system

    International Nuclear Information System (INIS)

    Dong, H.; Weisenberger, A.; McKisson, J.; Wenze, Xi; Cuevas, C.; Wilson, J.; Zukerman, L.

    2011-01-01

    Positron Emission Tomography (PET) historically has major clinical and preclinical applications in cancerous oncology, neurology, and cardiovascular diseases. Recently, in a new direction, an application specific PET system is being developed at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with Duke University, University of Maryland at Baltimore (UMAB), and West Virginia University (WVU) targeted for plant eco-physiology research. The new plant imaging PET system is versatile and scalable such that it could adapt to several plant imaging needs - imaging many important plant organs including leaves, roots, and stems. The mechanical arrangement of the detectors is designed to accommodate the unpredictable and random distribution in space of the plant organs without requiring the plant be disturbed. Prototyping such a system requires a new data acquisition system (DAQ) and data processing system which are adaptable to the requirements of these unique and versatile detectors.

  18. The Concept of Business Model Scalability

    DEFF Research Database (Denmark)

    Nielsen, Christian; Lund, Morten

    2015-01-01

    The power of business models lies in their ability to visualize and clarify how firms’ may configure their value creation processes. Among the key aspects of business model thinking are a focus on what the customer values, how this value is best delivered to the customer and how strategic partners...... are leveraged in this value creation, delivery and realization exercise. Central to the mainstream understanding of business models is the value proposition towards the customer and the hypothesis generated is that if the firm delivers to the customer what he/she requires, then there is a good foundation...... for a long-term profitable business. However, the message conveyed in this article is that while providing a good value proposition may help the firm ‘get by’, the really successful businesses of today are those able to reach the sweet-spot of business model scalability. This article introduces and discusses...

  19. The scalable coherent interface, IEEE P1596

    International Nuclear Information System (INIS)

    Gustavson, D.B.

    1990-01-01

    IEEE P1596, the scalable coherent interface (formerly known as SuperBus) is based on experience gained while developing Fastbus (ANSI/IEEE 960--1986, IEC 935), Futurebus (IEEE P896.x) and other modern 32-bit buses. SCI goals include a minimum bandwidth of 1 GByte/sec per processor in multiprocessor systems with thousands of processors; efficient support of a coherent distributed-cache image of distributed shared memory; support for repeaters which interface to existing or future buses; and support for inexpensive small rings as well as for general switched interconnections like Banyan, Omega, or crossbar networks. This paper presents a summary of current directions, reports the status of the work in progress, and suggests some applications in data acquisition and physics

  20. BASSET: Scalable Gateway Finder in Large Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Tong, H; Papadimitriou, S; Faloutsos, C; Yu, P S; Eliassi-Rad, T

    2010-11-03

    Given a social network, who is the best person to introduce you to, say, Chris Ferguson, the poker champion? Or, given a network of people and skills, who is the best person to help you learn about, say, wavelets? The goal is to find a small group of 'gateways': persons who are close enough to us, as well as close enough to the target (person, or skill) or, in other words, are crucial in connecting us to the target. The main contributions are the following: (a) we show how to formulate this problem precisely; (b) we show that it is sub-modular and thus it can be solved near-optimally; (c) we give fast, scalable algorithms to find such gateways. Experiments on real data sets validate the effectiveness and efficiency of the proposed methods, achieving up to 6,000,000x speedup.

  1. Scalable graphene aptasensors for drug quantification

    Science.gov (United States)

    Vishnubhotla, Ramya; Ping, Jinglei; Gao, Zhaoli; Lee, Abigail; Saouaf, Olivia; Vrudhula, Amey; Johnson, A. T. Charlie

    2017-11-01

    Simpler and more rapid approaches for therapeutic drug-level monitoring are highly desirable to enable use at the point-of-care. We have developed an all-electronic approach for detection of the HIV drug tenofovir based on scalable fabrication of arrays of graphene field-effect transistors (GFETs) functionalized with a commercially available DNA aptamer. The shift in the Dirac voltage of the GFETs varied systematically with the concentration of tenofovir in deionized water, with a detection limit less than 1 ng/mL. Tests against a set of negative controls confirmed the specificity of the sensor response. This approach offers the potential for further development into a rapid and convenient point-of-care tool with clinically relevant performance.

  2. Scalable Transactions for Web Applications in the Cloud

    NARCIS (Netherlands)

    Zhou, W.; Pierre, G.E.O.; Chi, C.-H.

    2009-01-01

    Cloud Computing platforms provide scalability and high availability properties for web applications but they sacrifice data consistency at the same time. However, many applications cannot afford any data inconsistency. We present a scalable transaction manager for NoSQL cloud database services to

  3. New Complexity Scalable MPEG Encoding Techniques for Mobile Applications

    Directory of Open Access Journals (Sweden)

    Stephan Mietens

    2004-03-01

    Full Text Available Complexity scalability offers the advantage of one-time design of video applications for a large product family, including mobile devices, without the need of redesigning the applications on the algorithmic level to meet the requirements of the different products. In this paper, we present complexity scalable MPEG encoding having core modules with modifications for scalability. The interdependencies of the scalable modules and the system performance are evaluated. Experimental results show scalability giving a smooth change in complexity and corresponding video quality. Scalability is basically achieved by varying the number of computed DCT coefficients and the number of evaluated motion vectors but other modules are designed such they scale with the previous parameters. In the experiments using the “Stefan” sequence, the elapsed execution time of the scalable encoder, reflecting the computational complexity, can be gradually reduced to roughly 50% of its original execution time. The video quality scales between 20 dB and 48 dB PSNR with unity quantizer setting, and between 21.5 dB and 38.5 dB PSNR for different sequences targeting 1500 kbps. The implemented encoder and the scalability techniques can be successfully applied in mobile systems based on MPEG video compression.

  4. Building scalable apps with Redis and Node.js

    CERN Document Server

    Johanan, Joshua

    2014-01-01

    If the phrase scalability sounds alien to you, then this is an ideal book for you. You will not need much Node.js experience as each framework is demonstrated in a way that requires no previous knowledge of the framework. You will be building scalable Node.js applications in no time! Knowledge of JavaScript is required.

  5. Fourier transform based scalable image quality measure.

    Science.gov (United States)

    Narwaria, Manish; Lin, Weisi; McLoughlin, Ian; Emmanuel, Sabu; Chia, Liang-Tien

    2012-08-01

    We present a new image quality assessment (IQA) algorithm based on the phase and magnitude of the 2D (twodimensional) Discrete Fourier Transform (DFT). The basic idea is to compare the phase and magnitude of the reference and distorted images to compute the quality score. However, it is well known that the Human Visual Systems (HVSs) sensitivity to different frequency components is not the same. We accommodate this fact via a simple yet effective strategy of nonuniform binning of the frequency components. This process also leads to reduced space representation of the image thereby enabling the reduced-reference (RR) prospects of the proposed scheme. We employ linear regression to integrate the effects of the changes in phase and magnitude. In this way, the required weights are determined via proper training and hence more convincing and effective. Lastly, using the fact that phase usually conveys more information than magnitude, we use only the phase for RR quality assessment. This provides the crucial advantage of further reduction in the required amount of reference image information. The proposed method is therefore further scalable for RR scenarios. We report extensive experimental results using a total of 9 publicly available databases: 7 image (with a total of 3832 distorted images with diverse distortions) and 2 video databases (totally 228 distorted videos). These show that the proposed method is overall better than several of the existing fullreference (FR) algorithms and two RR algorithms. Additionally, there is a graceful degradation in prediction performance as the amount of reference image information is reduced thereby confirming its scalability prospects. To enable comparisons and future study, a Matlab implementation of the proposed algorithm is available at http://www.ntu.edu.sg/home/wslin/reduced_phase.rar.

  6. Improving diabetes medication adherence: successful, scalable interventions

    Directory of Open Access Journals (Sweden)

    Zullig LL

    2015-01-01

    Full Text Available Leah L Zullig,1,2 Walid F Gellad,3,4 Jivan Moaddeb,2,5 Matthew J Crowley,1,2 William Shrank,6 Bradi B Granger,7 Christopher B Granger,8 Troy Trygstad,9 Larry Z Liu,10 Hayden B Bosworth1,2,7,11 1Center for Health Services Research in Primary Care, Durham Veterans Affairs Medical Center, Durham, NC, USA; 2Department of Medicine, Duke University, Durham, NC, USA; 3Center for Health Equity Research and Promotion, Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA, USA; 4Division of General Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA; 5Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA; 6CVS Caremark Corporation; 7School of Nursing, Duke University, Durham, NC, USA; 8Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA; 9North Carolina Community Care Networks, Raleigh, NC, USA; 10Pfizer, Inc., and Weill Medical College of Cornell University, New York, NY, USA; 11Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA Abstract: Effective medications are a cornerstone of prevention and disease treatment, yet only about half of patients take their medications as prescribed, resulting in a common and costly public health challenge for the US healthcare system. Since poor medication adherence is a complex problem with many contributing causes, there is no one universal solution. This paper describes interventions that were not only effective in improving medication adherence among patients with diabetes, but were also potentially scalable (ie, easy to implement to a large population. We identify key characteristics that make these interventions effective and scalable. This information is intended to inform healthcare systems seeking proven, low resource, cost-effective solutions to improve medication adherence. Keywords: medication adherence, diabetes mellitus, chronic disease, dissemination research

  7. Adiabatic Quantum Computing

    Science.gov (United States)

    Landahl, Andrew

    2012-10-01

    Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with

  8. Scalable and Media Aware Adaptive Video Streaming over Wireless Networks

    Directory of Open Access Journals (Sweden)

    Béatrice Pesquet-Popescu

    2008-07-01

    Full Text Available This paper proposes an advanced video streaming system based on scalable video coding in order to optimize resource utilization in wireless networks with retransmission mechanisms at radio protocol level. The key component of this system is a packet scheduling algorithm which operates on the different substreams of a main scalable video stream and which is implemented in a so-called media aware network element. The concerned type of transport channel is a dedicated channel subject to parameters (bitrate, loss rate variations on the long run. Moreover, we propose a combined scalability approach in which common temporal and SNR scalability features can be used jointly with a partitioning of the image into regions of interest. Simulation results show that our approach provides substantial quality gain compared to classical packet transmission methods and they demonstrate how ROI coding combined with SNR scalability allows to improve again the visual quality.

  9. Quantum walks, quantum gates, and quantum computers

    International Nuclear Information System (INIS)

    Hines, Andrew P.; Stamp, P. C. E.

    2007-01-01

    The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included

  10. The Quantum Socket: Wiring for Superconducting Qubits - Part 3

    Science.gov (United States)

    Mariantoni, M.; Bejianin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    The implementation of a quantum computer requires quantum error correction codes, which allow to correct errors occurring on physical quantum bits (qubits). Ensemble of physical qubits will be grouped to form a logical qubit with a lower error rate. Reaching low error rates will necessitate a large number of physical qubits. Thus, a scalable qubit architecture must be developed. Superconducting qubits have been used to realize error correction. However, a truly scalable qubit architecture has yet to be demonstrated. A critical step towards scalability is the realization of a wiring method that allows to address qubits densely and accurately. A quantum socket that serves this purpose has been designed and tested at microwave frequencies. In this talk, we show results where the socket is used at millikelvin temperatures to measure an on-chip superconducting resonator. The control electronics is another fundamental element for scalability. We will present a proposal based on the quantum socket to interconnect a classical control hardware to a superconducting qubit hardware, where both are operated at millikelvin temperatures.

  11. Quantum acoustics with superconducting qubits

    Science.gov (United States)

    Chu, Yiwen

    2017-04-01

    The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects. These mechanical objects have important applications as quantum memories or transducers for measuring and connecting different types of quantum systems. In particular, there have been a few experiments that couple motion to nonlinear quantum objects such as superconducting qubits. This opens up the possibility of creating, storing, and manipulating non-Gaussian quantum states in mechanical degrees of freedom. However, before sophisticated quantum control of mechanical motion can be achieved, we must realize systems with long coherence times while maintaining a sufficient interaction strength. These systems should be implemented in a simple and robust manner that allows for increasing complexity and scalability in the future. In this talk, I will describe our recent experiments demonstrating a high frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction. In contrast to previous experiments with qubit-mechanical systems, our device requires only simple fabrication methods, extends coherence times to many microseconds, and provides controllable access to a multitude of phonon modes. We use this system to demonstrate basic quantum operations on the coupled qubit-phonon system. Straightforward improvements to the current device will allow for advanced protocols analogous to what has been shown in optical and microwave resonators, resulting in a novel resource for implementing hybrid quantum technologies.

  12. Comparing classical and quantum PageRanks

    Science.gov (United States)

    Loke, T.; Tang, J. W.; Rodriguez, J.; Small, M.; Wang, J. B.

    2017-01-01

    Following recent developments in quantum PageRanking, we present a comparative analysis of discrete-time and continuous-time quantum-walk-based PageRank algorithms. Relative to classical PageRank and to different extents, the quantum measures better highlight secondary hubs and resolve ranking degeneracy among peripheral nodes for all networks we studied in this paper. For the discrete-time case, we investigated the periodic nature of the walker's probability distribution for a wide range of networks and found that the dominant period does not grow with the size of these networks. Based on this observation, we introduce a new quantum measure using the maximum probabilities of the associated walker during the first couple of periods. This is particularly important, since it leads to a quantum PageRanking scheme that is scalable with respect to network size.

  13. Spectroscopy of Charged Quantum Dot Molecules

    Science.gov (United States)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.; Korenev, V. L.

    2006-03-01

    Spins of single charges in quantum dots are attractive for many quantum information and spintronic proposals. Scalable quantum information applications require the ability to entangle and operate on multiple spins in coupled quantum dots (CQDs). To further the understanding of these systems, we present detailed spectroscopic studies of InAs CQDs with control of the discrete electron or hole charging of the system. The optical spectrum reveals a pattern of energy anticrossings and crossings in the photoluminescence as a function of applied electric field. These features can be understood as a superposition of charge and spin configurations of the two dots and represent clear signatures of quantum mechanical coupling. The molecular resonance leading to these anticrossings is achieved at different electric fields for the optically excited (trion) states and the ground (hole) states allowing for the possibility of using the excited states for optically induced coupling of the qubits.

  14. Quantum memory Quantum memory

    Science.gov (United States)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  15. Quantum stochastics

    CERN Document Server

    Chang, Mou-Hsiung

    2015-01-01

    The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...

  16. Blind topological measurement-based quantum computation.

    Science.gov (United States)

    Morimae, Tomoyuki; Fujii, Keisuke

    2012-01-01

    Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf-Harrington-Goyal scheme. The error threshold of our scheme is 4.3 × 10(-3), which is comparable to that (7.5 × 10(-3)) of non-blind topological quantum computation. As the error per gate of the order 10(-3) was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach.

  17. A brilliant sandwich type fluorescent nanostructure incorporating a compact quantum dot layer and versatile silica substrates.

    Science.gov (United States)

    Huang, Liang; Wu, Qiong; Wang, Jing; Foda, Mohamed; Liu, Jiawei; Cai, Kai; Han, Heyou

    2014-03-18

    A "hydrophobic layer in silica" structure was designed to integrate a compact quantum dot (QD) layer with high quantum yield into scalable silica hosts containing desired functionality. This was based on metal affinity driven assembly of hydrophobic QDs with versatile silica substrates and homogeneous encapsulation of organosilica/silica layers.

  18. Quantum dot-micropillars: a bright source of coherent single photons

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; He, Yu-Ming; Maier, Sebastian

    2016-01-01

    We present the efficient generation of coherent single photons based on quantum dots in micropillars. We utilize a scalable lithography scheme leading to quantum dot-micropillar devices with 74% extraction efficiency. Via pulsed strict resonant pumping, we show an indistinguishability of consecut...

  19. Quantum Computing

    OpenAIRE

    Scarani, Valerio

    1998-01-01

    The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...

  20. Quantum Malware

    OpenAIRE

    Wu, Lian-Ao; Lidar, Daniel A.

    2005-01-01

    When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...

  1. Quantumness beyond quantum mechanics

    International Nuclear Information System (INIS)

    Sanz, Ángel S

    2012-01-01

    Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).

  2. Architectural design for a topological cluster state quantum computer

    International Nuclear Information System (INIS)

    Devitt, Simon J; Munro, William J; Nemoto, Kae; Fowler, Austin G; Stephens, Ashley M; Greentree, Andrew D; Hollenberg, Lloyd C L

    2009-01-01

    The development of a large scale quantum computer is a highly sought after goal of fundamental research and consequently a highly non-trivial problem. Scalability in quantum information processing is not just a problem of qubit manufacturing and control but it crucially depends on the ability to adapt advanced techniques in quantum information theory, such as error correction, to the experimental restrictions of assembling qubit arrays into the millions. In this paper, we introduce a feasible architectural design for large scale quantum computation in optical systems. We combine the recent developments in topological cluster state computation with the photonic module, a simple chip-based device that can be used as a fundamental building block for a large-scale computer. The integration of the topological cluster model with this comparatively simple operational element addresses many significant issues in scalable computing and leads to a promising modular architecture with complete integration of active error correction, exhibiting high fault-tolerant thresholds.

  3. Physical-resource requirements and the power of quantum computation

    International Nuclear Information System (INIS)

    Caves, Carlton M; Deutsch, Ivan H; Blume-Kohout, Robin

    2004-01-01

    The primary resource for quantum computation is the Hilbert-space dimension. Whereas Hilbert space itself is an abstract construction, the number of dimensions available to a system is a physical quantity that requires physical resources. Avoiding a demand for an exponential amount of these resources places a fundamental constraint on the systems that are suitable for scalable quantum computation. To be scalable, the number of degrees of freedom in the computer must grow nearly linearly with the number of qubits in an equivalent qubit-based quantum computer. These considerations rule out quantum computers based on a single particle, a single atom, or a single molecule consisting of a fixed number of atoms or on classical waves manipulated using the transformations of linear optics

  4. Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons

    OpenAIRE

    Kröger, H.

    2003-01-01

    We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.

  5. Oracle database performance and scalability a quantitative approach

    CERN Document Server

    Liu, Henry H

    2011-01-01

    A data-driven, fact-based, quantitative text on Oracle performance and scalability With database concepts and theories clearly explained in Oracle's context, readers quickly learn how to fully leverage Oracle's performance and scalability capabilities at every stage of designing and developing an Oracle-based enterprise application. The book is based on the author's more than ten years of experience working with Oracle, and is filled with dependable, tested, and proven performance optimization techniques. Oracle Database Performance and Scalability is divided into four parts that enable reader

  6. Scalable-to-lossless transform domain distributed video coding

    DEFF Research Database (Denmark)

    Huang, Xin; Ukhanova, Ann; Veselov, Anton

    2010-01-01

    Distributed video coding (DVC) is a novel approach providing new features as low complexity encoding by mainly exploiting the source statistics at the decoder based on the availability of decoder side information. In this paper, scalable-tolossless DVC is presented based on extending a lossy Tran...... codec provides frame by frame encoding. Comparing the lossless coding efficiency, the proposed scalable-to-lossless TDWZ video codec can save up to 5%-13% bits compared to JPEG LS and H.264 Intra frame lossless coding and do so as a scalable-to-lossless coding....

  7. Design issues for numerical libraries on scalable multicore architectures

    International Nuclear Information System (INIS)

    Heroux, M A

    2008-01-01

    Future generations of scalable computers will rely on multicore nodes for a significant portion of overall system performance. At present, most applications and libraries cannot exploit multiple cores beyond running addition MPI processes per node. In this paper we discuss important multicore architecture issues, programming models, algorithms requirements and software design related to effective use of scalable multicore computers. In particular, we focus on important issues for library research and development, making recommendations for how to effectively develop libraries for future scalable computer systems

  8. Scalable inference for stochastic block models

    KAUST Repository

    Peng, Chengbin

    2017-12-08

    Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of "big data," traditional inference algorithms for such a model are increasingly limited due to their high time complexity and poor scalability. In this paper, we propose a multi-stage maximum likelihood approach to recover the latent parameters of the stochastic block model, in time linear with respect to the number of edges. We also propose a parallel algorithm based on message passing. Our algorithm can overlap communication and computation, providing speedup without compromising accuracy as the number of processors grows. For example, to process a real-world graph with about 1.3 million nodes and 10 million edges, our algorithm requires about 6 seconds on 64 cores of a contemporary commodity Linux cluster. Experiments demonstrate that the algorithm can produce high quality results on both benchmark and real-world graphs. An example of finding more meaningful communities is illustrated consequently in comparison with a popular modularity maximization algorithm.

  9. Building Scalable Knowledge Graphs for Earth Science

    Science.gov (United States)

    Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Zhang, J.; Duan, X.; Bugbee, K.; Christopher, S. A.; Miller, J. J.

    2017-12-01

    Estimates indicate that the world's information will grow by 800% in the next five years. In any given field, a single researcher or a team of researchers cannot keep up with this rate of knowledge expansion without the help of cognitive systems. Cognitive computing, defined as the use of information technology to augment human cognition, can help tackle large systemic problems. Knowledge graphs, one of the foundational components of cognitive systems, link key entities in a specific domain with other entities via relationships. Researchers could mine these graphs to make probabilistic recommendations and to infer new knowledge. At this point, however, there is a dearth of tools to generate scalable Knowledge graphs using existing corpus of scientific literature for Earth science research. Our project is currently developing an end-to-end automated methodology for incrementally constructing Knowledge graphs for Earth Science. Semantic Entity Recognition (SER) is one of the key steps in this methodology. SER for Earth Science uses external resources (including metadata catalogs and controlled vocabulary) as references to guide entity extraction and recognition (i.e., labeling) from unstructured text, in order to build a large training set to seed the subsequent auto-learning component in our algorithm. Results from several SER experiments will be presented as well as lessons learned.

  10. CODA: A scalable, distributed data acquisition system

    International Nuclear Information System (INIS)

    Watson, W.A. III; Chen, J.; Heyes, G.; Jastrzembski, E.; Quarrie, D.

    1994-01-01

    A new data acquisition system has been designed for physics experiments scheduled to run at CEBAF starting in the summer of 1994. This system runs on Unix workstations connected via ethernet, FDDI, or other network hardware to multiple intelligent front end crates -- VME, CAMAC or FASTBUS. CAMAC crates may either contain intelligent processors, or may be interfaced to VME. The system is modular and scalable, from a single front end crate and one workstation linked by ethernet, to as may as 32 clusters of front end crates ultimately connected via a high speed network to a set of analysis workstations. The system includes an extensible, device independent slow controls package with drivers for CAMAC, VME, and high voltage crates, as well as a link to CEBAF accelerator controls. All distributed processes are managed by standard remote procedure calls propagating change-of-state requests, or reading and writing program variables. Custom components may be easily integrated. The system is portable to any front end processor running the VxWorks real-time kernel, and to most workstations supplying a few standard facilities such as rsh and X-windows, and Motif and socket libraries. Sample implementations exist for 2 Unix workstation families connected via ethernet or FDDI to VME (with interfaces to FASTBUS or CAMAC), and via ethernet to FASTBUS or CAMAC

  11. Ancestors protocol for scalable key management

    Directory of Open Access Journals (Sweden)

    Dieter Gollmann

    2010-06-01

    Full Text Available Group key management is an important functional building block for secure multicast architecture. Thereby, it has been extensively studied in the literature. The main proposed protocol is Adaptive Clustering for Scalable Group Key Management (ASGK. According to ASGK protocol, the multicast group is divided into clusters, where each cluster consists of areas of members. Each cluster uses its own Traffic Encryption Key (TEK. These clusters are updated periodically depending on the dynamism of the members during the secure session. The modified protocol has been proposed based on ASGK with some modifications to balance the number of affected members and the encryption/decryption overhead with any number of the areas when a member joins or leaves the group. This modified protocol is called Ancestors protocol. According to Ancestors protocol, every area receives the dynamism of the members from its parents. The main objective of the modified protocol is to reduce the number of affected members during the leaving and joining members, then 1 affects n overhead would be reduced. A comparative study has been done between ASGK protocol and the modified protocol. According to the comparative results, it found that the modified protocol is always outperforming the ASGK protocol.

  12. Scalable Combinatorial Tools for Health Disparities Research

    Directory of Open Access Journals (Sweden)

    Michael A. Langston

    2014-10-01

    Full Text Available Despite staggering investments made in unraveling the human genome, current estimates suggest that as much as 90% of the variance in cancer and chronic diseases can be attributed to factors outside an individual’s genetic endowment, particularly to environmental exposures experienced across his or her life course. New analytical approaches are clearly required as investigators turn to complicated systems theory and ecological, place-based and life-history perspectives in order to understand more clearly the relationships between social determinants, environmental exposures and health disparities. While traditional data analysis techniques remain foundational to health disparities research, they are easily overwhelmed by the ever-increasing size and heterogeneity of available data needed to illuminate latent gene x environment interactions. This has prompted the adaptation and application of scalable combinatorial methods, many from genome science research, to the study of population health. Most of these powerful tools are algorithmically sophisticated, highly automated and mathematically abstract. Their utility motivates the main theme of this paper, which is to describe real applications of innovative transdisciplinary models and analyses in an effort to help move the research community closer toward identifying the causal mechanisms and associated environmental contexts underlying health disparities. The public health exposome is used as a contemporary focus for addressing the complex nature of this subject.

  13. Percolator: Scalable Pattern Discovery in Dynamic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sutanay; Purohit, Sumit; Lin, Peng; Wu, Yinghui; Holder, Lawrence B.; Agarwal, Khushbu

    2018-02-06

    We demonstrate Percolator, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of Percolator is to dynamically decide and verify a small fraction of patterns and their in- stances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a) the feasibility of incremental pattern mining by walking through each component of Percolator, b) the efficiency and scalability of Percolator over the sheer size of real-world dynamic graphs, and c) how the user-friendly GUI of Percolator inter- acts with users to support keyword-based queries that detect, browse and inspect trending patterns. We also demonstrate two user cases of Percolator, in social media trend analysis and academic collaboration analysis, respectively.

  14. Scalable Notch Antenna System for Multiport Applications

    Directory of Open Access Journals (Sweden)

    Abdurrahim Toktas

    2016-01-01

    Full Text Available A novel and compact scalable antenna system is designed for multiport applications. The basic design is built on a square patch with an electrical size of 0.82λ0×0.82λ0 (at 2.4 GHz on a dielectric substrate. The design consists of four symmetrical and orthogonal triangular notches with circular feeding slots at the corners of the common patch. The 4-port antenna can be simply rearranged to 8-port and 12-port systems. The operating band of the system can be tuned by scaling (S the size of the system while fixing the thickness of the substrate. The antenna system with S: 1/1 in size of 103.5×103.5 mm2 operates at the frequency band of 2.3–3.0 GHz. By scaling the antenna with S: 1/2.3, a system of 45×45 mm2 is achieved, and thus the operating band is tuned to 4.7–6.1 GHz with the same scattering characteristic. A parametric study is also conducted to investigate the effects of changing the notch dimensions. The performance of the antenna is verified in terms of the antenna characteristics as well as diversity and multiplexing parameters. The antenna system can be tuned by scaling so that it is applicable to the multiport WLAN, WIMAX, and LTE devices with port upgradability.

  15. Scalable conditional induction variables (CIV) analysis

    KAUST Repository

    Oancea, Cosmin E.

    2015-02-01

    Subscripts using induction variables that cannot be expressed as a formula in terms of the enclosing-loop indices appear in the low-level implementation of common programming abstractions such as Alter, or stack operations and pose significant challenges to automatic parallelization. Because the complexity of such induction variables is often due to their conditional evaluation across the iteration space of loops we name them Conditional Induction Variables (CIV). This paper presents a flow-sensitive technique that summarizes both such CIV-based and affine subscripts to program level, using the same representation. Our technique requires no modifications of our dependence tests, which is agnostic to the original shape of the subscripts, and is more powerful than previously reported dependence tests that rely on the pairwise disambiguation of read-write references. We have implemented the CIV analysis in our parallelizing compiler and evaluated its impact on five Fortran benchmarks. We have found that that there are many important loops using CIV subscripts and that our analysis can lead to their scalable parallelization. This in turn has led to the parallelization of the benchmark programs they appear in.

  16. A Programmable, Scalable-Throughput Interleaver

    Directory of Open Access Journals (Sweden)

    E. J. C. Rijshouwer

    2010-01-01

    Full Text Available The interleaver stages of digital communication standards show a surprisingly large variation in throughput, state sizes, and permutation functions. Furthermore, data rates for 4G standards such as LTE-Advanced will exceed typical baseband clock frequencies of handheld devices. Multistream operation for Software Defined Radio and iterative decoding algorithms will call for ever higher interleave data rates. Our interleave machine is built around 8 single-port SRAM banks and can be programmed to generate up to 8 addresses every clock cycle. The scalable architecture combines SIMD and VLIW concepts with an efficient resolution of bank conflicts. A wide range of cellular, connectivity, and broadcast interleavers have been mapped on this machine, with throughputs up to more than 0.5 Gsymbol/second. Although it was designed for channel interleaving, the application domain of the interleaver extends also to Turbo interleaving. The presented configuration of the architecture is designed as a part of a programmable outer receiver on a prototype board. It offers (near universal programmability to enable the implementation of new interleavers. The interleaver measures 2.09 mm2 in 65 nm CMOS (including memories and proves functional on silicon.

  17. A Programmable, Scalable-Throughput Interleaver

    Directory of Open Access Journals (Sweden)

    Rijshouwer EJC

    2010-01-01

    Full Text Available The interleaver stages of digital communication standards show a surprisingly large variation in throughput, state sizes, and permutation functions. Furthermore, data rates for 4G standards such as LTE-Advanced will exceed typical baseband clock frequencies of handheld devices. Multistream operation for Software Defined Radio and iterative decoding algorithms will call for ever higher interleave data rates. Our interleave machine is built around 8 single-port SRAM banks and can be programmed to generate up to 8 addresses every clock cycle. The scalable architecture combines SIMD and VLIW concepts with an efficient resolution of bank conflicts. A wide range of cellular, connectivity, and broadcast interleavers have been mapped on this machine, with throughputs up to more than 0.5 Gsymbol/second. Although it was designed for channel interleaving, the application domain of the interleaver extends also to Turbo interleaving. The presented configuration of the architecture is designed as a part of a programmable outer receiver on a prototype board. It offers (near universal programmability to enable the implementation of new interleavers. The interleaver measures 2.09 m in 65 nm CMOS (including memories and proves functional on silicon.

  18. Toward Designing a Quantum Key Distribution Network Simulation Model

    OpenAIRE

    Miralem Mehic; Peppino Fazio; Miroslav Voznak; Erik Chromy

    2016-01-01

    As research in quantum key distribution network technologies grows larger and more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. In this paper, we described the design of simplified simulation environment of the quantum key distribution network with multiple links and nodes. In such simulation environment, we analyzed several ...

  19. Pollutant Release and Transfer Register

    International Nuclear Information System (INIS)

    2008-01-01

    Since 1974 a number of organisations have been working closely together in this pollutant register (PRTR) project to collect and formally establish the yearly releases of pollutants to air, water and soil in the Netherlands. Results of this project serve to underpin the national environmental policy. Data is in this way also provided for the many environmental reports to international organisations such as the European Union and the United Nations, e.g. the National Inventory Report for the Kyoto Protocol. This website shows the yearly releases (emissions) of the most important pollutants in the Netherlands. You can explore the emission data through various channels, such as maps, graphs and tables. But you can also download all the details into your own database. The data shown in this website is updated 2 to 3 times a year. The current release shows emissions for 1990, 1995, 2000, 2004, 2005 and 2006 The 2006 emissions are preliminary data and not yet shown in the maps. We expect to add an extra year in August 2008 [nl

  20. A Testbed for Highly-Scalable Mission Critical Information Systems

    National Research Council Canada - National Science Library

    Birman, Kenneth P

    2005-01-01

    ... systems in a networked environment. Headed by Professor Ken Birman, the project is exploring a novel fusion of classical protocols for reliable multicast communication with a new style of peer-to-peer protocol called scalable "gossip...

  1. Scalable Partitioning Algorithms for FPGAs With Heterogeneous Resources

    National Research Council Canada - National Science Library

    Selvakkumaran, Navaratnasothie; Ranjan, Abhishek; Raje, Salil; Karypis, George

    2004-01-01

    As FPGA densities increase, partitioning-based FPGA placement approaches are becoming increasingly important as they can be used to provide high-quality and computationally scalable placement solutions...

  2. Realization of quantum Fourier transform over ZN

    International Nuclear Information System (INIS)

    Fu Xiang-Qun; Bao Wan-Su; Li Fa-Da; Zhang Yu-Chao

    2014-01-01

    Since the difficulty in preparing the equal superposition state of amplitude is 1/√N, we construct a quantile transform of quantum Fourier transform (QFT) over Z N based on the elementary transforms, such as Hadamard transform and Pauli transform. The QFT over Z N can then be realized by the quantile transform, and used to further design its quantum circuit and analyze the requirements for the quantum register and quantum gates. However, the transform needs considerable quantum computational resources and it is difficult to construct a high-dimensional quantum register. Hence, we investigate the design of t-bit quantile transform, and introduce the definition of t-bit semiclassical QFT over Z N . According to probability amplitude, we prove that the transform can be used to realize QFT over Z N and further design its quantum circuit. For this transform, the requirements for the quantum register, the one-qubit gate, and two-qubit gate reduce obviously when compared with those for the QFT over Z N . (general)

  3. Quantum mechanics

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum

  4. Quantum matter

    International Nuclear Information System (INIS)

    Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin

    2008-01-01

    The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)

  5. Quantum fluctuations

    International Nuclear Information System (INIS)

    Reynaud, S.; Giacobino, S.; Zinn-Justin, J.

    1997-01-01

    This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)

  6. SOL: A Library for Scalable Online Learning Algorithms

    OpenAIRE

    Wu, Yue; Hoi, Steven C. H.; Liu, Chenghao; Lu, Jing; Sahoo, Doyen; Yu, Nenghai

    2016-01-01

    SOL is an open-source library for scalable online learning algorithms, and is particularly suitable for learning with high-dimensional data. The library provides a family of regular and sparse online learning algorithms for large-scale binary and multi-class classification tasks with high efficiency, scalability, portability, and extensibility. SOL was implemented in C++, and provided with a collection of easy-to-use command-line tools, python wrappers and library calls for users and develope...

  7. On the scalability of LISP and advanced overlaid services

    OpenAIRE

    Coras, Florin

    2015-01-01

    In just four decades the Internet has gone from a lab experiment to a worldwide, business critical infrastructure that caters to the communication needs of almost a half of the Earth's population. With these figures on its side, arguing against the Internet's scalability would seem rather unwise. However, the Internet's organic growth is far from finished and, as billions of new devices are expected to be joined in the not so distant future, scalability, or lack thereof, is commonly believed ...

  8. Scalable, full-colour and controllable chromotropic plasmonic printing

    OpenAIRE

    Xue, Jiancai; Zhou, Zhang-Kai; Wei, Zhiqiang; Su, Rongbin; Lai, Juan; Li, Juntao; Li, Chao; Zhang, Tengwei; Wang, Xue-Hua

    2015-01-01

    Plasmonic colour printing has drawn wide attention as a promising candidate for the next-generation colour-printing technology. However, an efficient approach to realize full colour and scalable fabrication is still lacking, which prevents plasmonic colour printing from practical applications. Here we present a scalable and full-colour plasmonic printing approach by combining conjugate twin-phase modulation with a plasmonic broadband absorber. More importantly, our approach also demonstrates ...

  9. Small-scale quantum information processing with linear optics

    International Nuclear Information System (INIS)

    Bergou, J.A.; Steinberg, A.M.; Mohseni, M.

    2005-01-01

    Full text: Photons are the ideal systems for carrying quantum information. Although performing large-scale quantum computation on optical systems is extremely demanding, non scalable linear-optics quantum information processing may prove essential as part of quantum communication networks. In addition efficient (scalable) linear-optical quantum computation proposal relies on the same optical elements. Here, by constructing multirail optical networks, we experimentally study two central problems in quantum information science, namely optimal discrimination between nonorthogonal quantum states, and controlling decoherence in quantum systems. Quantum mechanics forbids deterministic discrimination between nonorthogonal states. This is one of the central features of quantum cryptography, which leads to secure communications. Quantum state discrimination is an important primitive in quantum information processing, since it determines the limitations of a potential eavesdropper, and it has applications in quantum cloning and entanglement concentration. In this work, we experimentally implement generalized measurements in an optical system and demonstrate the first optimal unambiguous discrimination between three non-orthogonal states with a success rate of 55 %, to be compared with the 25 % maximum achievable using projective measurements. Furthermore, we present the first realization of unambiguous discrimination between a pure state and a nonorthogonal mixed state. In a separate experiment, we demonstrate how decoherence-free subspaces (DFSs) may be incorporated into a prototype optical quantum algorithm. Specifically, we present an optical realization of two-qubit Deutsch-Jozsa algorithm in presence of random noise. By introduction of localized turbulent airflow we produce a collective optical dephasing, leading to large error rates and demonstrate that using DFS encoding, the error rate in the presence of decoherence can be reduced from 35 % to essentially its pre

  10. Circuit quantum electrodynamics with a spin qubit.

    Science.gov (United States)

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  11. Numerical characteristics of quantum computer simulation

    Science.gov (United States)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  12. Responsive, Flexible and Scalable Broader Impacts (Invited)

    Science.gov (United States)

    Decharon, A.; Companion, C.; Steinman, M.

    2010-12-01

    In many educator professional development workshops, scientists present content in a slideshow-type format and field questions afterwards. Drawbacks of this approach include: inability to begin the lecture with content that is responsive to audience needs; lack of flexible access to specific material within the linear presentation; and “Q&A” sessions are not easily scalable to broader audiences. Often this type of traditional interaction provides little direct benefit to the scientists. The Centers for Ocean Sciences Education Excellence - Ocean Systems (COSEE-OS) applies the technique of concept mapping with demonstrated effectiveness in helping scientists and educators “get on the same page” (deCharon et al., 2009). A key aspect is scientist professional development geared towards improving face-to-face and online communication with non-scientists. COSEE-OS promotes scientist-educator collaboration, tests the application of scientist-educator maps in new contexts through webinars, and is piloting the expansion of maps as long-lived resources for the broader community. Collaboration - COSEE-OS has developed and tested a workshop model bringing scientists and educators together in a peer-oriented process, often clarifying common misconceptions. Scientist-educator teams develop online concept maps that are hyperlinked to “assets” (i.e., images, videos, news) and are responsive to the needs of non-scientist audiences. In workshop evaluations, 91% of educators said that the process of concept mapping helped them think through science topics and 89% said that concept mapping helped build a bridge of communication with scientists (n=53). Application - After developing a concept map, with COSEE-OS staff assistance, scientists are invited to give webinar presentations that include live “Q&A” sessions. The webinars extend the reach of scientist-created concept maps to new contexts, both geographically and topically (e.g., oil spill), with a relatively small

  13. Myria: Scalable Analytics as a Service

    Science.gov (United States)

    Howe, B.; Halperin, D.; Whitaker, A.

    2014-12-01

    At the UW eScience Institute, we're working to empower non-experts, especially in the sciences, to write and use data-parallel algorithms. To this end, we are building Myria, a web-based platform for scalable analytics and data-parallel programming. Myria's internal model of computation is the relational algebra extended with iteration, such that every program is inherently data-parallel, just as every query in a database is inherently data-parallel. But unlike databases, iteration is a first class concept, allowing us to express machine learning tasks, graph traversal tasks, and more. Programs can be expressed in a number of languages and can be executed on a number of execution environments, but we emphasize a particular language called MyriaL that supports both imperative and declarative styles and a particular execution engine called MyriaX that uses an in-memory column-oriented representation and asynchronous iteration. We deliver Myria over the web as a service, providing an editor, performance analysis tools, and catalog browsing features in a single environment. We find that this web-based "delivery vector" is critical in reaching non-experts: they are insulated from irrelevant effort technical work associated with installation, configuration, and resource management. The MyriaX backend, one of several execution runtimes we support, is a main-memory, column-oriented, RDBMS-on-the-worker system that supports cyclic data flows as a first-class citizen and has been shown to outperform competitive systems on 100-machine cluster sizes. I will describe the Myria system, give a demo, and present some new results in large-scale oceanographic microbiology.

  14. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  15. Registers of multiple sclerosis in Denmark

    DEFF Research Database (Denmark)

    Koch-Henriksen, N; Magyari, M; Laursen, B

    2015-01-01

    between a number of different environmental exposures in the past and the subsequent risk of MS. Some of these studies have been able to exonerate suspected risk factors. The other register, the nationwide Danish Multiple Sclerosis Treatment Register, is a follow-up register for all patients who have......There are two nationwide population-based registers for multiple sclerosis (MS) in Denmark. The oldest register is The Danish Multiple Sclerosis Registry (DMSR), which is an epidemiological register for estimation of prevalence and incidence of MS and survival, and for identifying exposures earlier...... received disease-modifying treatments since 1996. It has, in particular, contributed to the knowledge of the role of antibodies against the biological drugs used for the treatment of MS....

  16. Adiabatic quantum simulators

    Directory of Open Access Journals (Sweden)

    J. D. Biamonte

    2011-06-01

    Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.

  17. Scalable real space pseudopotential density functional codes for materials in the exascale regime

    Science.gov (United States)

    Lena, Charles; Chelikowsky, James; Schofield, Grady; Biller, Ariel; Kronik, Leeor; Saad, Yousef; Deslippe, Jack

    Real-space pseudopotential density functional theory has proven to be an efficient method for computing the properties of matter in many different states and geometries, including liquids, wires, slabs, and clusters with and without spin polarization. Fully self-consistent solutions using this approach have been routinely obtained for systems with thousands of atoms. Yet, there are many systems of notable larger sizes where quantum mechanical accuracy is desired, but scalability proves to be a hindrance. Such systems include large biological molecules, complex nanostructures, or mismatched interfaces. We will present an overview of our new massively parallel algorithms, which offer improved scalability in preparation for exascale supercomputing. We will illustrate these algorithms by considering the electronic structure of a Si nanocrystal exceeding 104 atoms. Support provided by the SciDAC program, Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-FG02-12ER4 (Berkeley).

  18. Quantum information

    International Nuclear Information System (INIS)

    Kilin, Sergei Ya

    1999-01-01

    A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)

  19. Quantum information

    Energy Technology Data Exchange (ETDEWEB)

    Kilin, Sergei Ya [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)

    1999-05-31

    A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)

  20. Quantum ontologies

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1988-12-01

    Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs

  1. Temperature Scaling Law for Quantum Annealing Optimizers.

    Science.gov (United States)

    Albash, Tameem; Martin-Mayor, Victor; Hen, Itay

    2017-09-15

    Physical implementations of quantum annealing unavoidably operate at finite temperatures. We point to a fundamental limitation of fixed finite temperature quantum annealers that prevents them from functioning as competitive scalable optimizers and show that to serve as optimizers annealer temperatures must be appropriately scaled down with problem size. We derive a temperature scaling law dictating that temperature must drop at the very least in a logarithmic manner but also possibly as a power law with problem size. We corroborate our results by experiment and simulations and discuss the implications of these to practical annealers.

  2. On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing

    Energy Technology Data Exchange (ETDEWEB)

    Gerrits, Thomas; Lita, Adriana E.; Calkins, Brice; Tomlin, Nathan A.; Fox, Anna E.; Linares, Antia Lamas; Mirin, Richard P.; Nam, Sae Woo [National Institute of Standards and Technology, Boulder, Colorado, 80305 (United States); Thomas-Peter, Nicholas; Metcalf, Benjamin J.; Spring, Justin B.; Langford, Nathan K.; Walmsley, Ian A. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Gates, James C.; Smith, Peter G. R. [Optoelectronics Research Centre, University of Southampton, Highfield SO17 1BJ (United Kingdom)

    2011-12-15

    Integration is currently the only feasible route toward scalable photonic quantum processing devices that are sufficiently complex to be genuinely useful in computing, metrology, and simulation. Embedded on-chip detection will be critical to such devices. We demonstrate an integrated photon-number-resolving detector, operating in the telecom band at 1550 nm, employing an evanescently coupled design that allows it to be placed at arbitrary locations within a planar circuit. Up to five photons are resolved in the guided optical mode via absorption from the evanescent field into a tungsten transition-edge sensor. The detection efficiency is 7.2{+-}0.5 %. The polarization sensitivity of the detector is also demonstrated. Detailed modeling of device designs shows a clear and feasible route to reaching high detection efficiencies.

  3. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J. [Fermilab; Cease, H. [Fermilab; Jaskierny, W. F. [Fermilab; Markley, D. [Fermilab; Pahlka, R. B. [Fermilab; Balakishiyeva, D. [Florida U.; Saab, T. [Florida U.; Filipenko, M. [Erlangen - Nuremberg U., ECAP

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used a conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.

  4. Validation of a Cerebral Palsy Register

    DEFF Research Database (Denmark)

    Topp, Monica; Langhoff-Roos, Jens; Uldall, P.

    1997-01-01

    OBJECTIVES: To analyse completeness and validity of data in the Cerebral Palsy Register in Denmark, 1979-1982. METHODS: Completeness has been assessed by comparing data from The Danish National Patient Register (DNPR) with the cases included in the Cerebral Palsy Register (CPR). Agreement between......, but gestational age was subject to a systematic error, and urinary infections in pregnancy (kappa = 0.43) and placental abruption (kappa = 0.52) were seriously under-reported in the CPR. CONCLUSIONS: Completeness of the Cerebral Palsy Register in Denmark, 1979-1982, has been assessed to maximal 85%, emphasizing...

  5. Register-based studies of healthcare costs

    DEFF Research Database (Denmark)

    Kruse, Marie; Christiansen, Terkel

    2011-01-01

    Introduction: The aim of this paper is to provide an overview and a few examples of how national registers are used in analyses of healthcare costs in Denmark. Research topics: The paper focuses on health economic analyses based on register data. For the sake of simplicity, the studies are divided...... into three main categories: economic evaluations of healthcare interventions, cost-of-illness analyses, and other analyses such as assessments of healthcare productivity. Conclusion: We examined a number of studies using register-based data on healthcare costs. Use of register-based data renders...

  6. Quantum Computer Games: Quantum Minesweeper

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  7. Fast and Scalable Computation of the Forward and Inverse Discrete Periodic Radon Transform.

    Science.gov (United States)

    Carranza, Cesar; Llamocca, Daniel; Pattichis, Marios

    2016-01-01

    The discrete periodic radon transform (DPRT) has extensively been used in applications that involve image reconstructions from projections. Beyond classic applications, the DPRT can also be used to compute fast convolutions that avoids the use of floating-point arithmetic associated with the use of the fast Fourier transform. Unfortunately, the use of the DPRT has been limited by the need to compute a large number of additions and the need for a large number of memory accesses. This paper introduces a fast and scalable approach for computing the forward and inverse DPRT that is based on the use of: a parallel array of fixed-point adder trees; circular shift registers to remove the need for accessing external memory components when selecting the input data for the adder trees; an image block-based approach to DPRT computation that can fit the proposed architecture to available resources; and fast transpositions that are computed in one or a few clock cycles that do not depend on the size of the input image. As a result, for an N × N image (N prime), the proposed approach can compute up to N(2) additions per clock cycle. Compared with the previous approaches, the scalable approach provides the fastest known implementations for different amounts of computational resources. For example, for a 251×251 image, for approximately 25% fewer flip-flops than required for a systolic implementation, we have that the scalable DPRT is computed 36 times faster. For the fastest case, we introduce optimized just 2N + ⌈log(2) N⌉ + 1 and 2N + 3 ⌈log(2) N⌉ + B + 2 cycles, architectures that can compute the DPRT and its inverse in respectively, where B is the number of bits used to represent each input pixel. On the other hand, the scalable DPRT approach requires more 1-b additions than for the systolic implementation and provides a tradeoff between speed and additional 1-b additions. All of the proposed DPRT architectures were implemented in VHSIC Hardware Description Language

  8. Scalable and Resilient Middleware to Handle Information Exchange during Environment Crisis

    Science.gov (United States)

    Tao, R.; Poslad, S.; Moßgraber, J.; Middleton, S.; Hammitzsch, M.

    2012-04-01

    The EU FP7 TRIDEC project focuses on enabling real-time, intelligent, information management of collaborative, complex, critical decision processes for earth management. A key challenge is to promote a communication infrastructure to facilitate interoperable environment information services during environment events and crises such as tsunamis and drilling, during which increasing volumes and dimensionality of disparate information sources, including sensor-based and human-based ones, can result, and need to be managed. Such a system needs to support: scalable, distributed messaging; asynchronous messaging; open messaging to handling changing clients such as new and retired automated system and human information sources becoming online or offline; flexible data filtering, and heterogeneous access networks (e.g., GSM, WLAN and LAN). In addition, the system needs to be resilient to handle the ICT system failures, e.g. failure, degradation and overloads, during environment events. There are several system middleware choices for TRIDEC based upon a Service-oriented-architecture (SOA), Event-driven-Architecture (EDA), Cloud Computing, and Enterprise Service Bus (ESB). In an SOA, everything is a service (e.g. data access, processing and exchange); clients can request on demand or subscribe to services registered by providers; more often interaction is synchronous. In an EDA system, events that represent significant changes in state can be processed simply, or as streams or more complexly. Cloud computing is a virtualization, interoperable and elastic resource allocation model. An ESB, a fundamental component for enterprise messaging, supports synchronous and asynchronous message exchange models and has inbuilt resilience against ICT failure. Our middleware proposal is an ESB based hybrid architecture model: an SOA extension supports more synchronous workflows; EDA assists the ESB to handle more complex event processing; Cloud computing can be used to increase and

  9. Optimised resource construction for verifiable quantum computation

    International Nuclear Information System (INIS)

    Kashefi, Elham; Wallden, Petros

    2017-01-01

    Recent developments have brought the possibility of achieving scalable quantum networks and quantum devices closer. From the computational point of view these emerging technologies become relevant when they are no longer classically simulatable. Hence a pressing challenge is the construction of practical methods to verify the correctness of the outcome produced by universal or non-universal quantum devices. A promising approach that has been extensively explored is the scheme of verification via encryption through blind quantum computation. We present here a new construction that simplifies the required resources for any such verifiable protocol. We obtain an overhead that is linear in the size of the input (computation), while the security parameter remains independent of the size of the computation and can be made exponentially small (with a small extra cost). Furthermore our construction is generic and could be applied to any universal or non-universal scheme with a given underlying graph. (paper)

  10. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.

    Science.gov (United States)

    Abbott, Jeffrey; Ye, Tianyang; Ham, Donhee; Park, Hongkun

    2018-03-20

    , clarifying how the nanoelectrode attains intracellular access. This understanding will be translated into a circuit model for the nanobio interface, which we will then use to lay out the strategies for improving the interface. The intracellular interface of the nanoelectrode is currently inferior to that of the patch clamp electrode; reaching this benchmark will be an exciting challenge that involves optimization of electrode geometries, materials, chemical modifications, electroporation protocols, and recording/stimulation electronics, as we describe in the Account. Another important theme of this Account, beyond the optimization of the individual nanoelectrode-cell interface, is the scalability of the nanoscale electrodes. We will discuss this theme using a recent development from our groups as an example, where an array of ca. 1000 nanoelectrode pixels fabricated on a CMOS integrated circuit chip performs parallel intracellular recording from a few hundreds of cardiomyocytes, which marks a new milestone in electrophysiology.

  11. Laplacian embedded regression for scalable manifold regularization.

    Science.gov (United States)

    Chen, Lin; Tsang, Ivor W; Xu, Dong

    2012-06-01

    world data sets show the effectiveness and scalability of the proposed framework.

  12. Experiments on quantum frequency conversion of photons

    International Nuclear Information System (INIS)

    Ramelow, S.

    2011-01-01

    Coherently converting photons between different states offers intriguing new possibilities and applications in quantum optical experiments. In this thesis three experiments on this theme are presented. The first experiment demonstrates the quantum frequency conversion of polarization entangled photons. Coherent frequency conversion of single photons offers an elegant solution for the often difficult trade-off of choosing the optimal photon wavelength, e.g. regarding optimal transmission and storage of photons in quantum memory based quantum networks. In our experiments, we verify the successful entanglement conversion by violating a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and fully characterised our close to unity fidelity entanglement transfer using quantum state- and process tomography. Our implementation is robust and flexible, making it a practical building block for future quantum technologies.The second part of the thesis introduces a deterministic scheme for photonic quantum information processing. While single photons offer many advantages for quantum information technologies, key unresolved challenges are scalable on-demand single photon sources; deterministic two-photon interactions; and near 100%-efficient detection. All these can be solved with a single versatile process - a novel four-wave mixing process that we introduce here as a special case of the more general scheme of coherent photon conversion (CPC). It can provide valuable photonic quantum processing tools, from scalably creating single- and multi-photon states to implementing deterministic entangling gates and high-efficiency detection. Notably, this would enable scalable photonic quantum computing. Using photonic crystal fibres, we experimentally demonstrate a nonlinear process suited for coherent photon conversion. We observe correlated photon-pair production at the predicted wavelengths and experimentally characterise the enhancement of the interaction strength by varying the pump

  13. Assessment of Human Pharmaceutical Products Registered in ...

    African Journals Online (AJOL)

    ... in order to determine the most common routes of administration and type of dosage forms that are used. Registered pharmaceutical products were categorized by route of administration and then sub-categorized by the dosage form. Oral dosage forms were the most common accounting for 73% of all registered products.

  14. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars

    Science.gov (United States)

    Wang, Shuguang; Zhou, Tong; Li, Dehui; Zhong, Zhenyang

    2016-06-01

    The scalable array of ordered nano-pillars with precisely controllable quantum nanostructures (QNs) are ideal candidates for the exploration of the fundamental features of cavity quantum electrodynamics. It also has a great potential in the applications of innovative nano-optoelectronic devices for the future quantum communication and integrated photon circuits. Here, we present a synthesis of such hybrid system in combination of the nanosphere lithography and the self-assembly during heteroepitaxy. The precise positioning and controllable evolution of self-assembled Ge QNs, including quantum dot necklace(QDN), QD molecule(QDM) and quantum ring(QR), on Si nano-pillars are readily achieved. Considering the strain relaxation and the non-uniform Ge growth due to the thickness-dependent and anisotropic surface diffusion of adatoms on the pillars, the comprehensive scenario of the Ge growth on Si pillars is discovered. It clarifies the inherent mechanism underlying the controllable growth of the QNs on the pillar. Moreover, it inspires a deliberate two-step growth procedure to engineer the controllable QNs on the pillar. Our results pave a promising avenue to the achievement of desired nano-pillar-QNs system that facilitates the strong light-matter interaction due to both spectra and spatial coupling between the QNs and the cavity modes of a single pillar and the periodic pillars.

  15. Fermion-fermion scattering in quantum field theory with superconducting circuits.

    Science.gov (United States)

    García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E

    2015-02-20

    We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.

  16. Quantum optics

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, P D [University of Queensland, St. Lucia, QLD (Australia).Physics Department

    1999-07-01

    Full text: Quantum optics in Australia has been an active research field for some years. I shall focus on recent developments in quantum and atom optics. Generally, the field as a whole is becoming more and more diverse, as technological developments drive experiments into new areas, and theorists either attempt to explain the new features, or else develop models for even more exotic ideas. The recent developments include quantum solitons, quantum computing, Bose-Einstein condensation, atom lasers, quantum cryptography, and novel tests of quantum mechanics. The talk will briefly cover current progress and outstanding problems in each of these areas. Copyright (1999) Australian Optical Society.

  17. In-memory interconnect protocol configuration registers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  18. Registered Nurses' views on their professional role.

    Science.gov (United States)

    Furåker, Carina

    2008-11-01

    The aim is to study Registered Nurses' opinions and reflections about their work tasks, competence and organization in acute hospital care. The definition of the role of nurses has changed over time and it is often discussed whether Registered Nurses have a professional status or not. A qualitative research design was used. Data were derived from written reflections on diaries and from focus group interviews. All respondents had difficulties in identifying the essence of their work. It can be argued that being 'a spider in the web' is an important aspect of the nursing profession. Registered Nurses tend to regard their professional role as vague. Managers must be considered key persons in defining the professional role of Registered Nurses. This study contributes to an understanding of the managers' and the importance of nursing education in Registered Nurses professional development.

  19. In-memory interconnect protocol configuration registers

    Science.gov (United States)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  20. On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot.

    Science.gov (United States)

    Wu, Xiaofei; Jiang, Ping; Razinskas, Gary; Huo, Yongheng; Zhang, Hongyi; Kamp, Martin; Rastelli, Armando; Schmidt, Oliver G; Hecht, Bert; Lindfors, Klas; Lippitz, Markus

    2017-07-12

    Quantum photonics holds great promise for future technologies such as secure communication, quantum computation, quantum simulation, and quantum metrology. An outstanding challenge for quantum photonics is to develop scalable miniature circuits that integrate single-photon sources, linear optical components, and detectors on a chip. Plasmonic nanocircuits will play essential roles in such developments. However, for quantum plasmonic circuits, integration of stable, bright, and narrow-band single photon sources in the structure has so far not been reported. Here we present a plasmonic nanocircuit driven by a self-assembled GaAs quantum dot. Through a planar dielectric-plasmonic hybrid waveguide, the quantum dot efficiently excites narrow-band single plasmons that are guided in a two-wire transmission line until they are converted into single photons by an optical antenna. Our work demonstrates the feasibility of fully on-chip plasmonic nanocircuits for quantum optical applications.

  1. Debug register rootkits : A study of malicious use of the IA-32 debug registers

    OpenAIRE

    Persson, Emil; Mattsson, Joel

    2012-01-01

    The debug register rootkit is a special type of rootkit that has existed for over a decade, and is told to be undetectable by any scanning tools. It exploits the debug registers in Intel’s IA-32 processor architecture. This paper investigates the debug register rootkit to find out why it is considered a threat, and which malware removal tools have implemented detection algorithms against this threat. By implementing and running a debug register rootkit against the most popular Linux tools, ne...

  2. A Scandinavian Experience of Register Collaboration: The Nordic Arthroplasty Register Association (NARA)

    DEFF Research Database (Denmark)

    Havelin, Leif I; Robertsson, Otto; Fenstad, Anne M

    2011-01-01

    The Nordic (Scandinavian) countries have had working arthroplasty registers for several years. However, the small numbers of inhabitants and the conformity within each country with respect to preferred prosthesis brands and techniques have limited register research.......The Nordic (Scandinavian) countries have had working arthroplasty registers for several years. However, the small numbers of inhabitants and the conformity within each country with respect to preferred prosthesis brands and techniques have limited register research....

  3. Quantum entanglement and quantum teleportation

    International Nuclear Information System (INIS)

    Shih, Y.H.

    2001-01-01

    One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. The ''ghost'' interference and the ''ghost'' image experiments demonstrated the astonishing nonlocal behavior of an entangled photon pair. Even though we still have questions in regard to fundamental issues of the entangled quantum systems, quantum entanglement has started to play important roles in quantum information and quantum computation. Quantum teleportation is one of the hot topics. We have demonstrated a quantum teleportation experiment recently. The experimental results proved the working principle of irreversibly teleporting an unknown arbitrary quantum state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that the complete set of Bell states can be distinguished in the Bell state measurement. Teleportation of a quantum state can thus occur with certainty in principle. (orig.)

  4. Nanophotonic rare-earth quantum memory with optically controlled retrieval

    Science.gov (United States)

    Zhong, Tian; Kindem, Jonathan M.; Bartholomew, John G.; Rochman, Jake; Craiciu, Ioana; Miyazono, Evan; Bettinelli, Marco; Cavalli, Enrico; Verma, Varun; Nam, Sae Woo; Marsili, Francesco; Shaw, Matthew D.; Beyer, Andrew D.; Faraon, Andrei

    2017-09-01

    Optical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout through an enhanced optical Stark shift of the comb frequencies. Our solid-state memory is integrable with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the network nodes.

  5. Quantum information processing with superconducting circuits: a review

    Science.gov (United States)

    Wendin, G.

    2017-10-01

    During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of quantum supremacy with fifty qubits is anticipated in just a few years. Quantum supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of superconducting devices, systems and applications. As such, the discussion of superconducting qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry.

  6. Homomorphic encryption experiments on IBM's cloud quantum computing platform

    Science.gov (United States)

    Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su

    2017-02-01

    Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.

  7. Quantum decision theory as quantum theory of measurement

    International Nuclear Information System (INIS)

    Yukalov, V.I.; Sornette, D.

    2008-01-01

    We present a general theory of quantum information processing devices, that can be applied to human decision makers, to atomic multimode registers, or to molecular high-spin registers. Our quantum decision theory is a generalization of the quantum theory of measurement, endowed with an action ring, a prospect lattice and a probability operator measure. The algebra of probability operators plays the role of the algebra of local observables. Because of the composite nature of prospects and of the entangling properties of the probability operators, quantum interference terms appear, which make actions noncommutative and the prospect probabilities nonadditive. The theory provides the basis for explaining a variety of paradoxes typical of the application of classical utility theory to real human decision making. The principal advantage of our approach is that it is formulated as a self-consistent mathematical theory, which allows us to explain not just one effect but actually all known paradoxes in human decision making. Being general, the approach can serve as a tool for characterizing quantum information processing by means of atomic, molecular, and condensed-matter systems

  8. Perspective: The future of quantum dot photonic integrated circuits

    Directory of Open Access Journals (Sweden)

    Justin C. Norman

    2018-03-01

    Full Text Available Direct epitaxial integration of III-V materials on Si offers substantial manufacturing cost and scalability advantages over heterogeneous integration. The challenge is that epitaxial growth introduces high densities of crystalline defects that limit device performance and lifetime. Quantum dot lasers, amplifiers, modulators, and photodetectors epitaxially grown on Si are showing promise for achieving low-cost, scalable integration with silicon photonics. The unique electrical confinement properties of quantum dots provide reduced sensitivity to the crystalline defects that result from III-V/Si growth, while their unique gain dynamics show promise for improved performance and new functionalities relative to their quantum well counterparts in many devices. Clear advantages for using quantum dot active layers for lasers and amplifiers on and off Si have already been demonstrated, and results for quantum dot based photodetectors and modulators look promising. Laser performance on Si is improving rapidly with continuous-wave threshold currents below 1 mA, injection efficiencies of 87%, and output powers of 175 mW at 20 °C. 1500-h reliability tests at 35 °C showed an extrapolated mean-time-to-failure of more than ten million hours. This represents a significant stride toward efficient, scalable, and reliable III-V lasers on on-axis Si substrates for photonic integrate circuits that are fully compatible with complementary metal-oxide-semiconductor (CMOS foundries.

  9. Perspective: The future of quantum dot photonic integrated circuits

    Science.gov (United States)

    Norman, Justin C.; Jung, Daehwan; Wan, Yating; Bowers, John E.

    2018-03-01

    Direct epitaxial integration of III-V materials on Si offers substantial manufacturing cost and scalability advantages over heterogeneous integration. The challenge is that epitaxial growth introduces high densities of crystalline defects that limit device performance and lifetime. Quantum dot lasers, amplifiers, modulators, and photodetectors epitaxially grown on Si are showing promise for achieving low-cost, scalable integration with silicon photonics. The unique electrical confinement properties of quantum dots provide reduced sensitivity to the crystalline defects that result from III-V/Si growth, while their unique gain dynamics show promise for improved performance and new functionalities relative to their quantum well counterparts in many devices. Clear advantages for using quantum dot active layers for lasers and amplifiers on and off Si have already been demonstrated, and results for quantum dot based photodetectors and modulators look promising. Laser performance on Si is improving rapidly with continuous-wave threshold currents below 1 mA, injection efficiencies of 87%, and output powers of 175 mW at 20 °C. 1500-h reliability tests at 35 °C showed an extrapolated mean-time-to-failure of more than ten million hours. This represents a significant stride toward efficient, scalable, and reliable III-V lasers on on-axis Si substrates for photonic integrate circuits that are fully compatible with complementary metal-oxide-semiconductor (CMOS) foundries.

  10. Scalable Computational Chemistry: New Developments and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, Yuri [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    The computational part of the thesis is the investigation of titanium chloride (II) as a potential catalyst for the bis-silylation reaction of ethylene with hexaclorodisilane at different levels of theory. Bis-silylation is an important reaction for producing bis(silyl) compounds and new C-Si bonds, which can serve as monomers for silicon containing polymers and silicon carbides. Ab initio calculations on the steps involved in a proposed mechanism are presented. This choice of reactants allows them to study this reaction at reliable levels of theory without compromising accuracy. The calculations indicate that this is a highly exothermic barrierless reaction. The TiCl2 catalyst removes a 50 kcal/mol activation energy barrier required for the reaction without the catalyst. The first step is interaction of TiCl2 with ethylene to form an intermediate that is 60 kcal/mol below the energy of the reactants. This is the driving force for the entire reaction. Dynamic correlation plays a significant role because RHF calculations indicate that the net barrier for the catalyzed reaction is 50 kcal/mol. They conclude that divalent Ti has the potential to become an important industrial catalyst for silylation reactions. In the programming part of the thesis, parallelization of different quantum chemistry methods is presented. The parallelization of code is becoming important aspects of quantum chemistry code development. Two trends contribute to it: the overall desire to study large chemical systems and the desire to employ highly correlated methods which are usually computationally and memory expensive. In the presented distributed data algorithms computation is parallelized and the largest arrays are evenly distributed among CPUs. First, the parallelization of the Hartree-Fock self-consistent field (SCF) method is considered. SCF method is the most common starting point for more accurate calculations. The Fock build (sub step of SCF) from AO integrals is

  11. 3D-printed components for quantum devices.

    Science.gov (United States)

    Saint, R; Evans, W; Zhou, Y; Barrett, T; Fromhold, T M; Saleh, E; Maskery, I; Tuck, C; Wildman, R; Oručević, F; Krüger, P

    2018-05-30

    Recent advances in the preparation, control and measurement of atomic gases have led to new insights into the quantum world and unprecedented metrological sensitivities, e.g. in measuring gravitational forces and magnetic fields. The full potential of applying such capabilities to areas as diverse as biomedical imaging, non-invasive underground mapping, and GPS-free navigation can only be realised with the scalable production of efficient, robust and portable devices. We introduce additive manufacturing as a production technique of quantum device components with unrivalled design freedom and rapid prototyping. This provides a step change in efficiency, compactness and facilitates systems integration. As a demonstrator we present an ultrahigh vacuum compatible ultracold atom source dissipating less than ten milliwatts of electrical power during field generation to produce large samples of cold rubidium gases. This disruptive technology opens the door to drastically improved integrated structures, which will further reduce size and assembly complexity in scalable series manufacture of bespoke portable quantum devices.

  12. Superconducting quantum electronics

    International Nuclear Information System (INIS)

    Kose, V.

    1989-01-01

    This book reviews recent accomplishments, presents new results and discusses possible future developments of superconducting quantum electronics and high T c superconductivity. The three main parts of the book deal with fundamentals, sensitive detectors, and precision metrology. New results reported include: correct equivalent circuits modelling superconducting electronic devices; exact solution of the Mattis-Bardeen equations describing various experiments for thin films; complete theoretical description and experimental results for a new broad band spectrum analyzer; a new Josephson junction potentiometer allowing tracing of unknown voltage ratios back to well-known frequency ratios; and fast superconducting SQUID shift registers enabling the production of calculable noise power spectra in the microwave region

  13. Quantum robots and quantum computers

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.

    1998-07-01

    Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.

  14. Quantum computers and quantum computations

    International Nuclear Information System (INIS)

    Valiev, Kamil' A

    2005-01-01

    This review outlines the principles of operation of quantum computers and their elements. The theory of ideal computers that do not interact with the environment and are immune to quantum decohering processes is presented. Decohering processes in quantum computers are investigated. The review considers methods for correcting quantum computing errors arising from the decoherence of the state of the quantum computer, as well as possible methods for the suppression of the decohering processes. A brief enumeration of proposed quantum computer realizations concludes the review. (reviews of topical problems)

  15. Towards deterministic optical quantum computation with coherently driven atomic ensembles

    International Nuclear Information System (INIS)

    Petrosyan, David

    2005-01-01

    Scalable and efficient quantum computation with photonic qubits requires (i) deterministic sources of single photons, (ii) giant nonlinearities capable of entangling pairs of photons, and (iii) reliable single-photon detectors. In addition, an optical quantum computer would need a robust reversible photon storage device. Here we discuss several related techniques, based on the coherent manipulation of atomic ensembles in the regime of electromagnetically induced transparency, that are capable of implementing all of the above prerequisites for deterministic optical quantum computation with single photons

  16. Cavity-assisted quantum computing in a silicon nanostructure

    International Nuclear Information System (INIS)

    Tang Bao; Qin Hao; Zhang Rong; Xue Peng; Liu Jin-Ming

    2014-01-01

    We present a scheme of quantum computing with charge qubits corresponding to one excess electron shared between dangling-bond pairs of surface silicon atoms that couple to a microwave stripline resonator on a chip. By choosing a certain evolution time, we propose the realization of a set of universal single- and two-qubit logical gates. Due to its intrinsic stability and scalability, the silicon dangling-bond charge qubit can be regarded as one of the most promising candidates for quantum computation. Compared to the previous schemes on quantum computing with silicon bulk systems, our scheme shows such advantages as a long coherent time and direct control and readout. (general)

  17. Procedure entry in the register of yachts

    Directory of Open Access Journals (Sweden)

    Zorana Kostović

    2011-01-01

    Full Text Available The procedure of ship registration is regulated in the Maritime Code of Croatia (2004. This procedure, in comparison with the recently suspended Maritime Code of Croatia (1994, includes substantial changes, especially in the domain of yacht registration. New Maritime Code has founded special yacht-register for yachts and yachts under construction. A yacht which is registered as a Croatian yacht is entitled to the benefits conffered by the Maritime Code of Croatia (right to fly a Croatian flag, etc.. There are two modes proscribed under the provisions of Maritime Code of Croatia (2004 for yacht-registration: 1 mandatory and 2 facultative. Yachts whose owners are Croatian citizens with residence i Republic Croatia or companies which are registered in the Republic of Croatia are obligated to register under the provisions of Maritime Code of Croatia (2004. On the other hand, yacht whose owners are not Croatian citizens or whose owners are Croatian citizens but without the residence in the Republic of Croatia, can be registered in the Republic of Croatia, depending on the will of the owner. Yachts under construction can be registered in special registers for such kind of vessels if they are built in Croatian shipyards (owners can be either Croatian citizens or foreigners. Jurisdiction in this matter belongs to port authorities and all procedure is carried out in accordance with the rules of administrative procedure.

  18. Entropy in quantum information theory - Communication and cryptography

    DEFF Research Database (Denmark)

    Majenz, Christian

    in quantum Shannon theory. While immensely more entanglement-consuming, the variant of port based teleportation is interesting for applications like instantaneous non-local computation and attacks on quantum position-based cryptography. Port based teleportation cannot be implemented perfectly......, for vanishing error. As a byproduct, a new lower bound for the size of the program register for an approximate universal programmable quantum processor is derived. Finally, the mix is completed with a result in quantum cryptography. While quantum key distribution is the most well-known quantum cryptographic...... protocol, there has been increased interest in extending the framework of symmetric key cryptography to quantum messages. We give a new denition for information-theoretic quantum non-malleability, strengthening the previous denition by Ambainis et al. We show that quantum non-malleability implies secrecy...

  19. Quantum mystery

    CERN Document Server

    Chanda, Rajat

    1997-01-01

    The book discusses the laws of quantum mechanics, several amazing quantum phenomena and some recent progress in understanding the connection between the quantum and the classical worlds. We show how paradoxes arise and how to resolve them. The significance of Bell's theorem and the remarkable experimental results on particle correlations are described in some detail. Finally, the current status of our understanding of quantum theory is summerised.

  20. Quality Scalability Compression on Single-Loop Solution in HEVC

    Directory of Open Access Journals (Sweden)

    Mengmeng Zhang

    2014-01-01

    Full Text Available This paper proposes a quality scalable extension design for the upcoming high efficiency video coding (HEVC standard. In the proposed design, the single-loop decoder solution is extended into the proposed scalable scenario. A novel interlayer intra/interprediction is added to reduce the amount of bits representation by exploiting the correlation between coding layers. The experimental results indicate that the average Bjøntegaard delta rate decrease of 20.50% can be gained compared with the simulcast encoding. The proposed technique achieved 47.98% Bjøntegaard delta rate reduction compared with the scalable video coding extension of the H.264/AVC. Consequently, significant rate savings confirm that the proposed method achieves better performance.

  1. Quantum criticality.

    Science.gov (United States)

    Coleman, Piers; Schofield, Andrew J

    2005-01-20

    As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.

  2. Quantum Computing

    Indian Academy of Sciences (India)

    In the first part of this article, we had looked at how quantum physics can be harnessed to make the building blocks of a quantum computer. In this concluding part, we look at algorithms which can exploit the power of this computational device, and some practical difficulties in building such a device. Quantum Algorithms.

  3. Data register and processor for multiwire chambers

    International Nuclear Information System (INIS)

    Karpukhin, V.V.

    1985-01-01

    A data register and a processor for data receiving and processing from drift chambers of a device for investigating relativistic positroniums are described. The data are delivered to the register input in the form of the Grey 8 bit code, memorized and transformed to a position code. The register information is delivered to the KAMAK trunk and to the front panel plug. The processor selects particle tracks in a horizontal plane of the facility. ΔY maximum coordinate divergence and minimum point quantity on the track are set from the processor front panel. Processor solution time is 16 μs maximum quantity of simultaneously analyzed coordinates is 16

  4. I, Quantum Robot: Quantum Mind control on a Quantum Computer

    OpenAIRE

    Zizzi, Paola

    2008-01-01

    The logic which describes quantum robots is not orthodox quantum logic, but a deductive calculus which reproduces the quantum tasks (computational processes, and actions) taking into account quantum superposition and quantum entanglement. A way toward the realization of intelligent quantum robots is to adopt a quantum metalanguage to control quantum robots. A physical implementation of a quantum metalanguage might be the use of coherent states in brain signals.

  5. Realizing Controllable Quantum States

    Science.gov (United States)

    Takayanagi, Hideaki; Nitta, Junsaku

    -T[stmbol] superconducting thin films with special arrangements of antidots / R. Wöerdenweber, P. Dymashevski and V. R. Misko. Quantum tunneling of relativistic fluxons / K. Konno et al. -- 6. Quantum information processing in solid states. Qubit decoherence by low-frequency noise / K. Rabenstein, V. A. Sverdlov and D. V. Averin. A critique of two-level approximation / K. Savran and T. Hakioǧlu. Josephson arrays as quantum channels / A. Romito, C. Bruder and R. Fazio. Fighting decoherence in a Josephson qubit circuit / E. Collin et al. Fast switching current detection at low critical currents / J. Walter, S. Corlevi and D. Haviland. Asymmetric flux bias for coupled qubits to observe entangled states / Y. Shimazu. Interaction of Josephson qubits with strong QED cavity modes: dynamical entanglement transfer and navigation / G. Falci et al. Controlling decoherence of transported quantum spin information in semiconductor spintronics / B. Nikolic and S. Souma. Decoherence due to telegraph and 1/f noise in Josephson qubits / E. Paladino et al. Detection of entanglement in NMR quantum information processing / R. Rahimi, K. Takeda and M. Kitagawa. Multiphoton absorption and SQUID switching current behaviors in superconducting flux-qubit experiments / H. Takayanagi et al. -- 7. Quantum information theory. Quantum query complexities / K. Iwama. A construction for non-stabilizer Clifford codes / M. Hagiwara and H. Imai. Quantum pushdown automata that can deterministically solve a certain problem / Y. Murakami et al. Trading classical for quantum computation using indirection / R. van Meter. Intractability of the initial arrangement of input data on qubits / Y. Kawano et al. Reversibility of modular squaring / N. Kunihiro, Y. Takahashi and Y. Kawano. Study of proximity effect at D-wave superconductors in quasiclassical methods / Y. Tanuma, Y. Tanaka and S. Kashiwaya -- 8. Spintronics in band electrons. Triplet superconductors: exploitable basis for scalable quantum computing / K. S. Wood et al. Spin

  6. Scalable DeNoise-and-Forward in Bidirectional Relay Networks

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Krigslund, Rasmus; Popovski, Petar

    2010-01-01

    In this paper a scalable relaying scheme is proposed based on an existing concept called DeNoise-and-Forward, DNF. We call it Scalable DNF, S-DNF, and it targets the scenario with multiple communication flows through a single common relay. The idea of the scheme is to combine packets at the relay...... in order to save transmissions. To ensure decodability at the end-nodes, a priori information about the content of the combined packets must be available. This is gathered during the initial transmissions to the relay. The trade-off between decodability and number of necessary transmissions is analysed...

  7. Quantum Logic and Quantum Reconstruction

    OpenAIRE

    Stairs, Allen

    2015-01-01

    Quantum logic understood as a reconstruction program had real successes and genuine limitations. This paper offers a synopsis of both and suggests a way of seeing quantum logic in a larger, still thriving context.

  8. Quantum dynamics of quantum bits

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha

    2011-01-01

    The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)

  9. Undetectable quantum transfer through a continuum

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Jing; Ye, Yin [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Xu, Luting [Department of Physics, Beijing Normal University, Beijing 100875 (China); Li, Xin-Qi, E-mail: xqli@red.semi.ac.cn [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Department of Physics, Beijing Normal University, Beijing 100875 (China); Yan, YiJing [Department of Chemistry, Hong Kong University of Science and Technology, Kowloon (Hong Kong); Gurvitz, Shmuel [Beijing Computational Science Research Center, Beijing 100084 (China); Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2013-03-15

    We demonstrate that a quantum particle, initially prepared in a quantum well, can propagate through a reservoir with a continuous spectrum and reappear in a distant well without being registered in the reservoir. It is shown that such a passage through the reservoir takes place even if the latter is continuously monitored. We discuss a possible experimental realization of such a teleportation phenomenon in mesoscopic systems.

  10. Manipulating cold atoms for quantum information processing

    International Nuclear Information System (INIS)

    Knight, P.

    2005-01-01

    Full text: I will describe how cold atoms can be manipulated to realize arrays of addressable qbits as prototype quantum registers, focussing on how atom chips can be used in combination with cavity qed techniques to form such an array. I will discuss how the array can be generated and steered using optical lattices and the Mott transition, and describe the sources of noise and how these place limits on the use of such chips in quantum information processing. (author)

  11. Australian Mining's product register 1992-93

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This annual product register contains an assessment of resources in Australia; statistical information on mine production of principal minerals; mineral industry statistics; directory of exploration and mining companies; buyers' guide; directory of consultants; list of services and a company index.

  12. Australian Mining's product register 1990-91

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Australian Minings' Product Register 1990-91 contains an industry review, resource assessment, mineral industry statistics, directory of exploration and mining companies, buyers guide and directory of consultants.

  13. Register-based studies of cardiovascular disease

    DEFF Research Database (Denmark)

    Abildstrøm, Steen Z; Torp-Pedersen, Christian; Madsen, Mette

    2011-01-01

    Introduction: The use of the unique personal identification number in the Nordic database systems enables the researchers to link the registers at the individual level. The registers can be used for both defining specific patient populations and to identify later events during follow-up. This rev...... the hospitalisation rate and treatment of cardiovascular disease. The risk of unmeasured factors affecting the results calls for cautious interpretation of the results.......-up. This review gives three examples within cardiovascular epidemiology to illustrate the use of the national administrative registers available to all researchers upon request. Research topics: The hospitalisation rate of acute myocardial infarction (AMI) was expected to be increased and case-fatality rate......-based treatment increased significantly over time and adherence to treatment was high. Finally, use of specific nonsteroidal antiinflammatory drugs by healthy subjects was associated with a dose-dependent increase in cardiovascular risk. CONCLUSION: The nationwide registers have proven very useful in monitoring...

  14. Job satisfaction of South African registered dietitians

    African Journals Online (AJOL)

    2012-01-25

    Jan 25, 2012 ... career growth,5,6,9 lack of respect from healthcare professionals,39 competition from ... a reminder was posted in the ADSA monthly newsletter, six weeks ..... research and conduct open interviews with registered dietitians or.

  15. Validation of the danish national diabetes register

    DEFF Research Database (Denmark)

    Green, Anders; Sortsø, Camilla; Jensen, Peter Bjødstrup

    2015-01-01

    The Danish National Diabetes Register (NDR) was established in 2006 and builds on data from Danish health registers. We validated the content of NDR, using full information from the Danish National Patient Register and data from the literature. Our study indicates that the completeness in NDR...... is ≥95% concerning ascertainment from data sources specific for diabetes, ie, prescriptions with antidiabetic drugs and diagnoses of diabetes in the National Patient Register. Since the NDR algorithm ignores diabetes-related hospital contacts terminated before 1990, the establishment of the date...... of encounter, has been taken as the date of inclusion in NDR. We also find that some 20% of the registrations in NDR may represent false positive inclusions of persons with frequent measurements of blood glucose without having diabetes. We conclude that NDR is a novel initiative to support research...

  16. Register-based research on twins

    DEFF Research Database (Denmark)

    Christensen, Kaare; Ohm Kyvik, Kirsten; Holm, Niels V

    2011-01-01

    Introduction: The Danish Twin Registry (DTR) has for more than 50 years been based on surveys and clinical investigations and over the two last decades also on register linkage. Currently these two approaches are merged within Statistics Denmark. Research topics: Here we report on three major...... groups of register-based research in the DTR that used the uniqueness of twinning. First, we focus on the ''long-term prognosis'' of being a twin compared with being a singleton and show that Danish twins have health trajectories in adulthood similar to singletons, which is a result of interest for twins...... illustrate how the co-twin control method in a register setting can be used to control for the effect of rearing environment and genetic factors in studies of the association between exposures and health. CONCLUSION: The spectrum of register-based twin studies is very wide and have changed in accordance...

  17. National Sample Survey of Registered Nurses

    Data.gov (United States)

    U.S. Department of Health & Human Services — The National Sample Survey of Registered Nurses (NSSRN) Download makes data from the survey readily available to users in a one-stop download. The Survey has been...

  18. Quantum frames

    Science.gov (United States)

    Brown, Matthew J.

    2014-02-01

    The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.

  19. Quantum Darwinism

    Science.gov (United States)

    Zurek, Wojciech Hubert

    2009-03-01

    Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.

  20. Register as the Situational Variety of Language

    Directory of Open Access Journals (Sweden)

    Natalya B. Boyeva-Omelechko

    2016-12-01

    Full Text Available The problem discussed in the article is topical due to the interest of scientists to different types of language variations and especially registers or situational dialects treated by M.A.K. Halliday as use-related varieties of language or varieties used in a particular social setting. As discourse categorization is a very complex problem scholarly consensus has not been reached for the definitions of the term «register». The universal criteria for defining and discriminating registers have not been worked out either. The authors of the article give the review of scientific works devoted to the problem in question especially works by M.A.K. Halliday, R. Quirk, M. Joos, D. Hymes P. Trudgill, E.I. Belyaeva and others and analyze different definitions of the term «register», spectrums of registers and criteria for their discriminating. It enables the authors to come to the conclusion that only registers with the same field (religious, political, business etc. and mode (oral/written, dialogue/monologue can be compared. The difference lies in the sphere of tenor which depends on the degree of formality, distance of power and socio-psychological distance between speakers. The authors believe that it is also necessary to take into account the cooperative/ uncooperative character of conversation and para-verbal and non-verbal components of the speech situation. With this in mind they offer their definition of the register and describe main characteristics of registers in the sphere of oral communication.

  1. Quantum dots

    International Nuclear Information System (INIS)

    Kouwenhoven, L.; Marcus, C.

    1998-01-01

    Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)

  2. A surface code quantum computer in silicon

    Science.gov (United States)

    Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2015-01-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  3. A surface code quantum computer in silicon.

    Science.gov (United States)

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.

  4. Quantum information. Teleporation - cryptography - quantum computer

    International Nuclear Information System (INIS)

    Breuer, Reinhard

    2010-01-01

    The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)

  5. Semiquantum-key distribution using less than four quantum states

    International Nuclear Information System (INIS)

    Zou Xiangfu; Qiu Daowen; Li Lvzhou; Wu Lihua; Li Lvjun

    2009-01-01

    Recently Boyer et al. [Phys. Rev. Lett. 99, 140501 (2007)] suggested the idea of semiquantum key distribution (SQKD) in which Bob is classical and they also proposed a semiquantum key distribution protocol (BKM2007). To discuss the security of the BKM2007 protocol, they proved that their protocol is completely robust. This means that nonzero information acquired by Eve on the information string implies the nonzero probability that the legitimate participants can find errors on the bits tested by this protocol. The BKM2007 protocol uses four quantum states to distribute a secret key. In this paper, we simplify their protocol by using less than four quantum states. In detail, we present five different SQKD protocols in which Alice sends three quantum states, two quantum states, and one quantum state, respectively. Also, we prove that all the five protocols are completely robust. In particular, we invent two completely robust SQKD protocols in which Alice sends only one quantum state. Alice uses a register in one SQKD protocol, but she does not use any register in the other. The information bit proportion of the SQKD protocol in which Alice sends only one quantum state but uses a register is the double as that in the BKM2007 protocol. Furthermore, the information bit rate of the SQKD protocol in which Alice sends only one quantum state and does not use any register is not lower than that of the BKM2007 protocol.

  6. Quantum symmetry in quantum theory

    International Nuclear Information System (INIS)

    Schomerus, V.

    1993-02-01

    Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry

  7. Simultaneous deterministic control of distant qubits in two semiconductor quantum dots.

    Science.gov (United States)

    Gamouras, A; Mathew, R; Freisem, S; Deppe, D G; Hall, K C

    2013-10-09

    In optimal quantum control (OQC), a target quantum state of matter is achieved by tailoring the phase and amplitude of the control Hamiltonian through femtosecond pulse-shaping techniques and powerful adaptive feedback algorithms. Motivated by recent applications of OQC in quantum information science as an approach to optimizing quantum gates in atomic and molecular systems, here we report the experimental implementation of OQC in a solid-state system consisting of distinguishable semiconductor quantum dots. We demonstrate simultaneous high-fidelity π and 2π single qubit gates in two different quantum dots using a single engineered infrared femtosecond pulse. These experiments enhance the scalability of semiconductor-based quantum hardware and lay the foundation for applications of pulse shaping to optimize quantum gates in other solid-state systems.

  8. Design for scalability in 3D computer graphics architectures

    DEFF Research Database (Denmark)

    Holten-Lund, Hans Erik

    2002-01-01

    This thesis describes useful methods and techniques for designing scalable hybrid parallel rendering architectures for 3D computer graphics. Various techniques for utilizing parallelism in a pipelines system are analyzed. During the Ph.D study a prototype 3D graphics architecture named Hybris has...

  9. Scalable storage for a DBMS using transparent distribution

    NARCIS (Netherlands)

    J.S. Karlsson; M.L. Kersten (Martin)

    1997-01-01

    textabstractScalable Distributed Data Structures (SDDSs) provide a self-managing and self-organizing data storage of potentially unbounded size. This stands in contrast to common distribution schemas deployed in conventional distributed DBMS. SDDSs, however, have mostly been used in synthetic

  10. Scalable force directed graph layout algorithms using fast multipole methods

    KAUST Repository

    Yunis, Enas Abdulrahman; Yokota, Rio; Ahmadia, Aron

    2012-01-01

    We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach

  11. Cascaded column generation for scalable predictive demand side management

    NARCIS (Netherlands)

    Toersche, Hermen; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2014-01-01

    We propose a nested Dantzig-Wolfe decomposition, combined with dynamic programming, for the distributed scheduling of a large heterogeneous fleet of residential appliances with nonlinear behavior. A cascaded column generation approach gives a scalable optimization strategy, provided that the problem

  12. Scalable power selection method for wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-01-01

    Full Text Available This paper addresses the problem of a scalable dynamic power control (SDPC) for wireless mesh networks (WMNs) based on IEEE 802.11 standards. An SDPC model that accounts for architectural complexities witnessed in multiple radios and hops...

  13. Efficient Enhancement for Spatial Scalable Video Coding Transmission

    Directory of Open Access Journals (Sweden)

    Mayada Khairy

    2017-01-01

    Full Text Available Scalable Video Coding (SVC is an international standard technique for video compression. It is an extension of H.264 Advanced Video Coding (AVC. In the encoding of video streams by SVC, it is suitable to employ the macroblock (MB mode because it affords superior coding efficiency. However, the exhaustive mode decision technique that is usually used for SVC increases the computational complexity, resulting in a longer encoding time (ET. Many other algorithms were proposed to solve this problem with imperfection of increasing transmission time (TT across the network. To minimize the ET and TT, this paper introduces four efficient algorithms based on spatial scalability. The algorithms utilize the mode-distribution correlation between the base layer (BL and enhancement layers (ELs and interpolation between the EL frames. The proposed algorithms are of two categories. Those of the first category are based on interlayer residual SVC spatial scalability. They employ two methods, namely, interlayer interpolation (ILIP and the interlayer base mode (ILBM method, and enable ET and TT savings of up to 69.3% and 83.6%, respectively. The algorithms of the second category are based on full-search SVC spatial scalability. They utilize two methods, namely, full interpolation (FIP and the full-base mode (FBM method, and enable ET and TT savings of up to 55.3% and 76.6%, respectively.

  14. Scalable Robust Principal Component Analysis Using Grassmann Averages

    DEFF Research Database (Denmark)

    Hauberg, Søren; Feragen, Aasa; Enficiaud, Raffi

    2016-01-01

    In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortu...

  15. A Scalable Smart Meter Data Generator Using Spark

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Liu, Xiufeng; Danalachi, Sergiu

    2017-01-01

    Today, smart meters are being used worldwide. As a matter of fact smart meters produce large volumes of data. Thus, it is important for smart meter data management and analytics systems to process petabytes of data. Benchmarking and testing of these systems require scalable data, however, it can ...

  16. Scalability and efficiency of genetic algorithms for geometrical applications

    NARCIS (Netherlands)

    Dijk, van S.F.; Thierens, D.; Berg, de M.; Schoenauer, M.

    2000-01-01

    We study the scalability and efficiency of a GA that we developed earlier to solve the practical cartographic problem of labeling a map with point features. We argue that the special characteristics of our GA make that it fits in well with theoretical models predicting the optimal population size

  17. Scalable electro-photonic integration concept based on polymer waveguides

    NARCIS (Netherlands)

    Bosman, E.; Steenberge, G. van; Boersma, A.; Wiegersma, S.; Harmsma, P.J.; Karppinen, M.; Korhonen, T.; Offrein, B.J.; Dangel, R.; Daly, A.; Ortsiefer, M.; Justice, J.; Corbett, B.; Dorrestein, S.; Duis, J.

    2016-01-01

    A novel method for fabricating a single mode optical interconnection platform is presented. The method comprises the miniaturized assembly of optoelectronic single dies, the scalable fabrication of polymer single mode waveguides and the coupling to glass fiber arrays providing the I/O's. The low

  18. A Massively Scalable Architecture for Instant Messaging & Presence

    NARCIS (Netherlands)

    Schippers, Jorrit; Remke, Anne Katharina Ingrid; Punt, Henk; Wegdam, M.; Haverkort, Boudewijn R.H.M.; Thomas, N.; Bradley, J.; Knottenbelt, W.; Dingle, N.; Harder, U.

    2010-01-01

    This paper analyzes the scalability of Instant Messaging & Presence (IM&P) architectures. We take a queueing-based modelling and analysis approach to ��?nd the bottlenecks of the current IM&P architecture at the Dutch social network Hyves, as well as of alternative architectures. We use the

  19. Adolescent sexuality education: An appraisal of some scalable ...

    African Journals Online (AJOL)

    Adolescent sexuality education: An appraisal of some scalable interventions for the Nigerian context. VC Pam. Abstract. Most issues around sexual intercourse are highly sensitive topics in Nigeria. Despite the disturbingly high adolescent HIV prevalence and teenage pregnancy rate in Nigeria, sexuality education is ...

  20. Scalable multifunction RF system concepts for joint operations

    NARCIS (Netherlands)

    Otten, M.P.G.; Wit, J.J.M. de; Smits, F.M.A.; Rossum, W.L. van; Huizing, A.

    2010-01-01

    RF systems based on modular architectures have the potential of better re-use of technology, decreasing development time, and decreasing life cycle cost. Moreover, modular architectures provide scalability, allowing low cost upgrades and adaptability to different platforms. To achieve maximum

  1. Estimates of the Sampling Distribution of Scalability Coefficient H

    Science.gov (United States)

    Van Onna, Marieke J. H.

    2004-01-01

    Coefficient "H" is used as an index of scalability in nonparametric item response theory (NIRT). It indicates the degree to which a set of items rank orders examinees. Theoretical sampling distributions, however, have only been derived asymptotically and only under restrictive conditions. Bootstrap methods offer an alternative possibility to…

  2. Novel Quantum Secret Sharing and Controlled Communication Schemes Based on Einstein–Podolsky–Rosen Correlations

    International Nuclear Information System (INIS)

    Yuan, Li; Gui-Hua, Zeng

    2009-01-01

    Employing quantum registers, we first proposed a novel (2, 3) quantum threshold scheme based on Einstein–Podolsky–Rosen (EPR) correlations in this letter. Motivated by the present threshold scheme, we also propose a controlled communication scheme to transmit the secret message with a controller. In the communication protocol, the encoded quantum message carried by particles sequence, is transmitted by legitimate communicators

  3. Metropolitan Quantum Key Distribution with Silicon Photonics

    Directory of Open Access Journals (Sweden)

    Darius Bunandar

    2018-04-01

    Full Text Available Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss. Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalable resource for future formation of metropolitan quantum-secure communications networks.

  4. Metropolitan Quantum Key Distribution with Silicon Photonics

    Science.gov (United States)

    Bunandar, Darius; Lentine, Anthony; Lee, Catherine; Cai, Hong; Long, Christopher M.; Boynton, Nicholas; Martinez, Nicholas; DeRose, Christopher; Chen, Changchen; Grein, Matthew; Trotter, Douglas; Starbuck, Andrew; Pomerene, Andrew; Hamilton, Scott; Wong, Franco N. C.; Camacho, Ryan; Davids, Paul; Urayama, Junji; Englund, Dirk

    2018-04-01

    Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalable resource for future formation of metropolitan quantum-secure communications networks.

  5. Quantum games as quantum types

    Science.gov (United States)

    Delbecque, Yannick

    In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other

  6. Evaluation of 3D printed anatomically scalable transfemoral prosthetic knee.

    Science.gov (United States)

    Ramakrishnan, Tyagi; Schlafly, Millicent; Reed, Kyle B

    2017-07-01

    This case study compares a transfemoral amputee's gait while using the existing Ossur Total Knee 2000 and our novel 3D printed anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee is 3D printed out of a carbon-fiber and nylon composite that has a gear-mesh coupling with a hard-stop weight-actuated locking mechanism aided by a cross-linked four-bar spring mechanism. This design can be scaled using anatomical dimensions of a human femur and tibia to have a unique fit for each user. The transfemoral amputee who was tested is high functioning and walked on the Computer Assisted Rehabilitation Environment (CAREN) at a self-selected pace. The motion capture and force data that was collected showed that there were distinct differences in the gait dynamics. The data was used to perform the Combined Gait Asymmetry Metric (CGAM), where the scores revealed that the overall asymmetry of the gait on the Ossur Total Knee was more asymmetric than the anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee had higher peak knee flexion that caused a large step time asymmetry. This made walking on the anatomically scalable transfemoral prosthetic knee more strenuous due to the compensatory movements in adapting to the different dynamics. This can be overcome by tuning the cross-linked spring mechanism to emulate the dynamics of the subject better. The subject stated that the knee would be good for daily use and has the potential to be adapted as a running knee.

  7. Blind Cooperative Routing for Scalable and Energy-Efficient Internet of Things

    KAUST Repository

    Bader, Ahmed; Alouini, Mohamed-Slim

    2016-01-01

    Multihop networking is promoted in this paper for energy-efficient and highly-scalable Internet of Things (IoT). Recognizing concerns related to the scalability of classical multihop routing and medium access techniques, the use of blind cooperation

  8. Quantum measurement

    CERN Document Server

    Busch, Paul; Pellonpää, Juha-Pekka; Ylinen, Kari

    2016-01-01

    This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4....

  9. Quantum Optics

    CERN Document Server

    Walls, D F

    2007-01-01

    Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook. More than 40 exercises helps readers test their understanding and provide practice in quantitative problem solving.

  10. Quantum gravity

    International Nuclear Information System (INIS)

    Markov, M.A.; West, P.C.

    1984-01-01

    This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981

  11. Functional verification of a safety class controller for NPPs using a UVM register Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu Chull [Dept. of Applied Computer Engineering, Dankook University, Cheonan (Korea, Republic of)

    2014-06-15

    A highly reliable safety class controller for NPPs (Nuclear Power Plants) is mandatory as even a minor malfunction can lead to disastrous consequences for people, the environment or the facility. In order to enhance the reliability of a safety class digital controller for NPPs, we employed a diversity approach, in which a PLC-type controller and a PLD-type controller are to be operated in parallel. We built and used structured testbenches based on the classes supported by UVM for functional verification of the PLD-type controller designed for NPPs. We incorporated a UVM register model into the testbenches in order to increase the controllability and the observability of the DUT(Device Under Test). With the increased testability, we could easily verify the datapaths between I/O ports and the register sets of the DUT, otherwise we had to perform black box tests for the datapaths, which is very cumbersome and time consuming. We were also able to perform constrained random verification very easily and systematically. From the study, we confirmed the various advantages of using the UVM register model in verification such as scalability, reusability and interoperability, and set some design guidelines for verification of the NPP controllers.

  12. Ancilla-driven quantum computation for qudits and continuous variables

    Science.gov (United States)

    Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia; Andersson, Erika; Kendon, Viv

    2017-05-01

    Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general "quantum variable" formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated "quantum memory" register and which may be applied to the setting of qubits, qudits (for d >2 ), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of a single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. Finally, we discuss settings in which these models may be of practical interest.

  13. Quantum Locality?

    OpenAIRE

    Stapp, Henry P.

    2011-01-01

    Robert Griffiths has recently addressed, within the framework of a 'consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. O...

  14. Quantum ratchets

    OpenAIRE

    Grifoni, Milena

    1997-01-01

    In this thesis, ratchet systems operating in the quantum regime are investigated. Ratchet systems, also known as Brownian motors, are periodic systems presenting an intrinsic asymmetry which can be exploited to extract work out of unbiased forces. As a model for ratchet systems, we consider the motion of a particle in a one-dimensional periodic and asymmetric potential, interacting with a thermal environment, and subject to an unbiased driving force. In quantum ratchets, intrinsic quantum flu...

  15. Quantum space and quantum completeness

    Science.gov (United States)

    Jurić, Tajron

    2018-05-01

    Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.

  16. Temporal scalability comparison of the H.264/SVC and distributed video codec

    DEFF Research Database (Denmark)

    Huang, Xin; Ukhanova, Ann; Belyaev, Evgeny

    2009-01-01

    The problem of the multimedia scalable video streaming is a current topic of interest. There exist many methods for scalable video coding. This paper is focused on the scalable extension of H.264/AVC (H.264/SVC) and distributed video coding (DVC). The paper presents an efficiency comparison of SV...

  17. Quantum mechanics

    International Nuclear Information System (INIS)

    Basdevant, J.L.; Dalibard, J.; Joffre, M.

    2008-01-01

    All physics is quantum from elementary particles to stars and to the big-bang via semi-conductors and chemistry. This theory is very subtle and we are not able to explain it without the help of mathematic tools. This book presents the principles of quantum mechanics and describes its mathematical formalism (wave function, Schroedinger equation, quantum operators, spin, Hamiltonians, collisions,..). We find numerous applications in the fields of new technologies (maser, quantum computer, cryptography,..) and in astrophysics. A series of about 90 exercises with their answers is included. This book is based on a physics course at a graduate level. (A.C.)

  18. Quantum information

    International Nuclear Information System (INIS)

    Rodgers, P.

    1998-01-01

    There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)

  19. Quantum information

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, P

    1998-03-01

    There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)

  20. Quantum Integers

    International Nuclear Information System (INIS)

    Khrennikov, Andrei; Klein, Moshe; Mor, Tal

    2010-01-01

    In number theory, a partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum information processing, we extend the concept of partitions in number theory as follows: for an integer n, we treat each partition as a basis state of a quantum system representing that number n, so that the Hilbert-space that corresponds to that integer n is of dimension p(n); the 'classical integer' n can thus be generalized into a (pure) quantum state ||ψ(n) > which is a superposition of the partitions of n, in the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, ρ(n) is a density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the notion of quantum numbers in quantum theory (such as in Bohr's model of the atom), we then try to go beyond the partitions, by defining (via recursion) the notion of 'sub-partitions' in number theory. Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide an alternative definition of the quantum integers [the pure-state |ψ'(n)> and the mixed-state ρ'(n),] this time using the sub-partitions as the basis states instead of the partitions, for describing the quantum number that corresponds to the integer n.

  1. Quantum computation

    International Nuclear Information System (INIS)

    Deutsch, D.

    1992-01-01

    As computers become ever more complex, they inevitably become smaller. This leads to a need for components which are fabricated and operate on increasingly smaller size scales. Quantum theory is already taken into account in microelectronics design. This article explores how quantum theory will need to be incorporated into computers in future in order to give them their components functionality. Computation tasks which depend on quantum effects will become possible. Physicists may have to reconsider their perspective on computation in the light of understanding developed in connection with universal quantum computers. (UK)

  2. Quantum information

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, P

    1998-03-01

    There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)

  3. Quantum Dots

    Science.gov (United States)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  4. The Danish multiple sclerosis treatment register

    DEFF Research Database (Denmark)

    Magyari, Melinda; Koch-Henriksen, Nils; Sørensen, Per Soelberg

    2016-01-01

    Aim of the database: The Danish Multiple Sclerosis Treatment Register (DMSTR) serves as a clinical quality register, enabling the health authorities to monitor the quality of the diseasemodifying treatment, and it is an important data source for epidemiological research. Study population: The DMSTR...... includes all patients with multiple sclerosis who had been treated with disease-modifying drugs since 1996. At present, more than 8,400 patients have been registered in this database. Data are continuously entered online into a central database from all sites in Denmark at start and at regular visits. Main...... variables: Include age, sex, onset year and year of the diagnosis, basic clinical information, and information about treatment, side effects, and relapses. Descriptive data: Notification is done at treatment start, and thereafter at every scheduled clinical visit 3 months after treatment start...

  5. The Danish registers of causes of death

    DEFF Research Database (Denmark)

    Juel, K; Helweg-Larsen, K

    1999-01-01

    In 1875 registration of causes of death in Denmark was established by the National Board of Health, and annual statistics of death have since been published. Until 1970 the national statistics were based upon punched cards with data collected from the death certificates. Since then the register has...... been fully computerized and includes individual based data of all deaths occurring among all residents in Denmark dying in Denmark. Furthermore, a microfilm of all death certificates from 1943 and onward is kept in the National Board of Health. The Danish Institute for Clinical Epidemiology (DICE) has...... established a computerized register of individual records of deaths in Denmark from 1943 and onwards. No other country covers computerized individual based data of death registration for such a long period, now 54 years. This paper describes the history of the registers, the data sources and access to data...

  6. NUHOMS registered - MP197 transport cask

    International Nuclear Information System (INIS)

    Shih, P.; Sicard, D.; Michels, L.

    2004-01-01

    The NUHOMS registered -MP197 cask is an optimized transport design which can be loaded in the spent fuel pool (wet loading) or loaded the canister from the NUHOMS concrete modules at the ISFSI site. With impact limiters attached, the package can be transported within the states or world-wide. The NUHOMS registered -MP197 packaging can be used to transport either BWR or PWR canisters. The NUHOMS registered -MP197 cask is designed to the ASME B and PV Code and meets the requirements of Section III, Division 3 for Transport Packaging. The cask with impact limiters has undergone drop testing to verify the calculated g loadings during the 9m drops. The test showed good correlation with analytical results and demonstrate that the impact limiters stay in place and protect the package and fuel during the hypothetical accidents

  7. Practical system for the generation of pulsed quantum frequency combs.

    Science.gov (United States)

    Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Sciara, Stefania; Zhang, Yanbing; Cino, Alfonso; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto

    2017-08-07

    The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.

  8. Quantum Computing with an Electron Spin Ensemble

    DEFF Research Database (Denmark)

    Wesenberg, Janus; Ardavan, A.; Briggs, G.A.D.

    2009-01-01

    We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized...

  9. A molecular quantum spin network controlled by a single qubit.

    Science.gov (United States)

    Schlipf, Lukas; Oeckinghaus, Thomas; Xu, Kebiao; Dasari, Durga Bhaktavatsala Rao; Zappe, Andrea; de Oliveira, Felipe Fávaro; Kern, Bastian; Azarkh, Mykhailo; Drescher, Malte; Ternes, Markus; Kern, Klaus; Wrachtrup, Jörg; Finkler, Amit

    2017-08-01

    Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.

  10. Real-time imaging of quantum entanglement.

    Science.gov (United States)

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  11. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.

    Science.gov (United States)

    Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J

    2013-04-19

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  12. Very wide register : an asymmetric register file organization for low power embedded processors.

    NARCIS (Netherlands)

    Raghavan, P.; Lambrechts, A.; Jayapala, M.; Catthoor, F.; Verkest, D.T.M.L.; Corporaal, H.

    2007-01-01

    In current embedded systems processors, multi-ported register files are one of the most power hungry parts of the processor, even when they are clustered. This paper presents a novel register file architecture, which has single ported cells and asymmetric interfaces to the memory and to the

  13. Quantum group and quantum symmetry

    International Nuclear Information System (INIS)

    Chang Zhe.

    1994-05-01

    This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs

  14. Quantum information. Teleportation - cryptography - quantum computer

    International Nuclear Information System (INIS)

    Koenneker, Carsten

    2012-01-01

    The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)

  15. Quantum ensembles of quantum classifiers.

    Science.gov (United States)

    Schuld, Maria; Petruccione, Francesco

    2018-02-09

    Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which - similar to Bayesian learning - the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.

  16. Quantum computer games: quantum minesweeper

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2010-07-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.

  17. Quantum Physics Without Quantum Philosophy

    CERN Document Server

    Dürr, Detlef; Zanghì, Nino

    2013-01-01

    It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.

  18. Quantum measurement in quantum optics

    International Nuclear Information System (INIS)

    Kimble, H.J.

    1993-01-01

    Recent progress in the generation and application of manifestly quantum or nonclassical states of the electromagnetic field is reviewed with emphasis on the research of the Quantum Optics Group at Caltech. In particular, the possibilities for spectroscopy with non-classical light are discussed both in terms of improved quantitative measurement capabilities and for the fundamental alteration of atomic radiative processes. Quantum correlations for spatially extended systems are investigated in a variety of experiments which utilize nondegenerate parametric down conversion. Finally, the prospects for measurement of the position of a free mass with precision beyond the standard quantum limit are briefly considered. (author). 38 refs., 1 fig

  19. Quantum Computing

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9. Quantum Computing - Building Blocks of a Quantum Computer. C S Vijay Vishal Gupta. General Article Volume 5 Issue 9 September 2000 pp 69-81. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Quantum spacetime

    International Nuclear Information System (INIS)

    Doplicher, S.

    1996-01-01

    We review some recent result and work in progress on the quantum structure of spacetime at scales comparable with the Planck length; the models discussed here are operationally motivated by the limitations in the accuracy of localization of events in spacetime imposed by the interplay between quantum mechanics and classical general relativity. (orig.)

  1. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    Science.gov (United States)

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  2. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

    Science.gov (United States)

    Hensgens, T.; Fujita, T.; Janssen, L.; Li, Xiao; van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K.

    2017-08-01

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  3. Assessment of Veterinary Pharmaceutical Products Registered in ...

    African Journals Online (AJOL)

    Topical, intramammary, intrauterine and ophthalmic routes accounted for 4.7%, 3.3%, 1.0% and 0.1% of the registered products respectively. ... Dosage forms for oral administration included solids (53.4%) namely powders, tablets, boluses, freeze dried products, granules; liquids (46.3%) namely suspensions, solutions, ...

  4. Danish Register of chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Lange, Peter; Tøttenborg, Sandra Søgaard; Sorknæs, Anne Dichmann

    2016-01-01

    AIM OF DATABASE: The Danish Register of Chronic Obstructive Pulmonary Disease (DrCOPD) is a nationwide database aiming to describe the quality of treatment of all patients with chronic obstructive pulmonary disease (COPD) in Denmark. STUDY POPULATION: DrCOPD comprises data on all patients...

  5. Registered manufacturers of renewable energy devices

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Registered manufacturers of renewable energy devices in India are listed. The list is arranged under the headings : solar water heating system, solar cooker, solar still and water pumping wind mill. In all 38 manufacturers are listed. The list gives the postal address, name of the contact person and phone number of each manufacturer. (M.G.B.)

  6. Ca teos report in register N 13377

    International Nuclear Information System (INIS)

    Pena, S; Arrighetti, R.

    2011-01-01

    This work is about a report about ca teos carried out in register N 13377 in the department of Canelones to know the depth of the field. The drilling done allowed to identify granite and clay. This granite outcrops are developed in the east of the middle course of the stream Pando

  7. Josephson shift register design and layout

    International Nuclear Information System (INIS)

    Przybysz, J.X.; Buttyan, J.; Blaugher, R.D.

    1989-01-01

    Integrated circuit chips were designed and fabricated, based on Josephson shift register circuit that simulated operation at 25 GHz using the SPICE program. The 6.25 mm square chip featured a twelve-gate, four-stage shift register fabricated with Nb/AlO/sub x//Nb Josephson junctions with a design value of 2000 A/cm/sup 2/ critical current density. SUPERCOMPACT, a general program for the design of monolithic microwave integrated circuits, was used to model the effects of layout geometry on the uniformity and phase coherence of logic gate bias currents. Gate bias resistors were treated as resistive transmission lines. A layout geometry for the superconductive transmission lines and thin film bias resistors was developed. The original SPICE-designed circuit was modified as a result of these calculations. Modeling indicated that bias current variations could be limited to 3% for all possible logic states of the shift register, and phase coherence of the gates could be maintained to within 2 degrees of 10 Ghz. The fundamental soundness of the circuit design was demonstrated by the proper operation of fabricated shift registers

  8. Registering Names and Addresses for Information Technology.

    Science.gov (United States)

    Knapp, Arthur A.

    The identification of administrative authorities and the development of associated procedures for registering and accessing names and addresses of communications data systems are considered in this paper. It is noted that, for data communications systems using standards based on the Open Systems Interconnection (OSI) Reference Model specified by…

  9. The Austrian Toxoplasmosis Register, 1992-2008.

    Science.gov (United States)

    Prusa, Andrea-Romana; Kasper, David C; Pollak, Arnold; Gleiss, Andreas; Waldhoer, Thomas; Hayde, Michael

    2015-01-15

    We aimed to determine the incidence of primary gestational infections with Toxoplasma gondii and congenital toxoplasmosis in Austria, a country with a nationwide prenatal serological screening program since 1974. We analyzed retrospective data from the Austrian Toxoplasmosis Register of pregnant women with Toxoplasma infection and their offspring with births between 1992 and 2008, identified by the prenatal mandatory screening program. Treatment was administered to women from diagnosis of a Toxoplasma infection until delivery. Infected infants were treated up to 1 year of life routinely. Clinical manifestations in infected infants were monitored at least for 1 year and documented in the register. The Austrian Toxoplasmosis Register included 2147 pregnant women with suspected Toxoplasma infection. Annually, 8.5 per 10 000 women acquired Toxoplasma infection during pregnancy, and 1.0 per 10 000 infants had congenital toxoplasmosis (13% mean transmission rate). Our data showed that women treated according to the Austrian scheme had a 6-fold decrease in the maternofetal transmission rate compared to women without treatment. Results from the Austrian Toxoplasmosis Register show the efficiency of the prenatal screening program. Our results are of clinical relevance for infants, healthcare systems, and policy makers to consider preventive Toxoplasma screening as a potential tool to reduce the incidence of congenital toxoplasmosis. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Single memory with multiple shift register functionality

    NARCIS (Netherlands)

    2010-01-01

    The present invention relates to a memory device comprising a memory (EM) having at least two predetermined register memory sections addressable by respective address ranges AS1-ASz) and at least one access port (P1-PZ) for providing access to said memory (EM). Furthermore, access control means (A)

  11. Scientific visualization uncertainty, multifield, biomedical, and scalable visualization

    CERN Document Server

    Chen, Min; Johnson, Christopher; Kaufman, Arie; Hagen, Hans

    2014-01-01

    Based on the seminar that took place in Dagstuhl, Germany in June 2011, this contributed volume studies the four important topics within the scientific visualization field: uncertainty visualization, multifield visualization, biomedical visualization and scalable visualization. • Uncertainty visualization deals with uncertain data from simulations or sampled data, uncertainty due to the mathematical processes operating on the data, and uncertainty in the visual representation, • Multifield visualization addresses the need to depict multiple data at individual locations and the combination of multiple datasets, • Biomedical is a vast field with select subtopics addressed from scanning methodologies to structural applications to biological applications, • Scalability in scientific visualization is critical as data grows and computational devices range from hand-held mobile devices to exascale computational platforms. Scientific Visualization will be useful to practitioners of scientific visualization, ...

  12. Fast & scalable pattern transfer via block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars

    2015-01-01

    A fully scalable and efficient pattern transfer process based on block copolymer (BCP) self-assembling directly on various substrates is demonstrated. PS-rich and PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are used to give monolayer sphere morphology after spin-casting of s......A fully scalable and efficient pattern transfer process based on block copolymer (BCP) self-assembling directly on various substrates is demonstrated. PS-rich and PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are used to give monolayer sphere morphology after spin...... on long range lateral order, including fabrication of substrates for catalysis, solar cells, sensors, ultrafiltration membranes and templating of semiconductors or metals....

  13. Semantic Models for Scalable Search in the Internet of Things

    Directory of Open Access Journals (Sweden)

    Dennis Pfisterer

    2013-03-01

    Full Text Available The Internet of Things is anticipated to connect billions of embedded devices equipped with sensors to perceive their surroundings. Thereby, the state of the real world will be available online and in real-time and can be combined with other data and services in the Internet to realize novel applications such as Smart Cities, Smart Grids, or Smart Healthcare. This requires an open representation of sensor data and scalable search over data from diverse sources including sensors. In this paper we show how the Semantic Web technologies RDF (an open semantic data format and SPARQL (a query language for RDF-encoded data can be used to address those challenges. In particular, we describe how prediction models can be employed for scalable sensor search, how these prediction models can be encoded as RDF, and how the models can be queried by means of SPARQL.

  14. Scalability of DL_POLY on High Performance Computing Platform

    Directory of Open Access Journals (Sweden)

    Mabule Samuel Mabakane

    2017-12-01

    Full Text Available This paper presents a case study on the scalability of several versions of the molecular dynamics code (DL_POLY performed on South Africa‘s Centre for High Performance Computing e1350 IBM Linux cluster, Sun system and Lengau supercomputers. Within this study different problem sizes were designed and the same chosen systems were employed in order to test the performance of DL_POLY using weak and strong scalability. It was found that the speed-up results for the small systems were better than large systems on both Ethernet and Infiniband network. However, simulations of large systems in DL_POLY performed well using Infiniband network on Lengau cluster as compared to e1350 and Sun supercomputer.

  15. On the Scalability of Time-predictable Chip-Multiprocessing

    DEFF Research Database (Denmark)

    Puffitsch, Wolfgang; Schoeberl, Martin

    2012-01-01

    Real-time systems need a time-predictable execution platform to be able to determine the worst-case execution time statically. In order to be time-predictable, several advanced processor features, such as out-of-order execution and other forms of speculation, have to be avoided. However, just using...... simple processors is not an option for embedded systems with high demands on computing power. In order to provide high performance and predictability we argue to use multiprocessor systems with a time-predictable memory interface. In this paper we present the scalability of a Java chip......-multiprocessor system that is designed to be time-predictable. Adding time-predictable caches is mandatory to achieve scalability with a shared memory multi-processor system. As Java bytecode retains information about the nature of memory accesses, it is possible to implement a memory hierarchy that takes...

  16. ATLAS Grid Data Processing: system evolution and scalability

    CERN Document Server

    Golubkov, D; The ATLAS collaboration; Klimentov, A; Minaenko, A; Nevski, P; Vaniachine, A; Walker, R

    2012-01-01

    The production system for Grid Data Processing handles petascale ATLAS data reprocessing and Monte Carlo activities. The production system empowered further data processing steps on the Grid performed by dozens of ATLAS physics groups with coordinated access to computing resources worldwide, including additional resources sponsored by regional facilities. The system provides knowledge management of configuration parameters for massive data processing tasks, reproducibility of results, scalable database access, orchestrated workflow and performance monitoring, dynamic workload sharing, automated fault tolerance and petascale data integrity control. The system evolves to accommodate a growing number of users and new requirements from our contacts in ATLAS main areas: Trigger, Physics, Data Preparation and Software & Computing. To assure scalability, the next generation production system architecture development is in progress. We report on scaling up the production system for a growing number of users provi...

  17. NPTool: Towards Scalability and Reliability of Business Process Management

    Science.gov (United States)

    Braghetto, Kelly Rosa; Ferreira, João Eduardo; Pu, Calton

    Currently one important challenge in business process management is provide at the same time scalability and reliability of business process executions. This difficulty becomes more accentuated when the execution control assumes complex countless business processes. This work presents NavigationPlanTool (NPTool), a tool to control the execution of business processes. NPTool is supported by Navigation Plan Definition Language (NPDL), a language for business processes specification that uses process algebra as formal foundation. NPTool implements the NPDL language as a SQL extension. The main contribution of this paper is a description of the NPTool showing how the process algebra features combined with a relational database model can be used to provide a scalable and reliable control in the execution of business processes. The next steps of NPTool include reuse of control-flow patterns and support to data flow management.

  18. Proof of Stake Blockchain: Performance and Scalability for Groupware Communications

    DEFF Research Database (Denmark)

    Spasovski, Jason; Eklund, Peter

    2017-01-01

    A blockchain is a distributed transaction ledger, a disruptive technology that creates new possibilities for digital ecosystems. The blockchain ecosystem maintains an immutable transaction record to support many types of digital services. This paper compares the performance and scalability of a web......-based groupware communication application using both non-blockchain and blockchain technologies. Scalability is measured where message load is synthesized over two typical communication topologies. The first is 1 to n network -- a typical client-server or star-topology with a central vertex (server) receiving all...... messages from the remaining n - 1 vertices (clients). The second is a more naturally occurring scale-free network topology, where multiple communication hubs are distributed throughout the network. System performance is tested with both blockchain and non-blockchain solutions using multiple cloud computing...

  19. Continuity-Aware Scheduling Algorithm for Scalable Video Streaming

    Directory of Open Access Journals (Sweden)

    Atinat Palawan

    2016-05-01

    Full Text Available The consumer demand for retrieving and delivering visual content through consumer electronic devices has increased rapidly in recent years. The quality of video in packet networks is susceptible to certain traffic characteristics: average bandwidth availability, loss, delay and delay variation (jitter. This paper presents a scheduling algorithm that modifies the stream of scalable video to combat jitter. The algorithm provides unequal look-ahead by safeguarding the base layer (without the need for overhead of the scalable video. The results of the experiments show that our scheduling algorithm reduces the number of frames with a violated deadline and significantly improves the continuity of the video stream without compromising the average Y Peek Signal-to-Noise Ratio (PSNR.

  20. Scalable, full-colour and controllable chromotropic plasmonic printing

    Science.gov (United States)

    Xue, Jiancai; Zhou, Zhang-Kai; Wei, Zhiqiang; Su, Rongbin; Lai, Juan; Li, Juntao; Li, Chao; Zhang, Tengwei; Wang, Xue-Hua

    2015-01-01

    Plasmonic colour printing has drawn wide attention as a promising candidate for the next-generation colour-printing technology. However, an efficient approach to realize full colour and scalable fabrication is still lacking, which prevents plasmonic colour printing from practical applications. Here we present a scalable and full-colour plasmonic printing approach by combining conjugate twin-phase modulation with a plasmonic broadband absorber. More importantly, our approach also demonstrates controllable chromotropic capability, that is, the ability of reversible colour transformations. This chromotropic capability affords enormous potentials in building functionalized prints for anticounterfeiting, special label, and high-density data encryption storage. With such excellent performances in functional colour applications, this colour-printing approach could pave the way for plasmonic colour printing in real-world commercial utilization. PMID:26567803

  1. Quantum Spin Lenses in Atomic Arrays

    Directory of Open Access Journals (Sweden)

    A. W. Glaetzle

    2017-09-01

    Full Text Available We propose and discuss quantum spin lenses, where quantum states of delocalized spin excitations in an atomic medium are focused in space in a coherent quantum process down to (essentially single atoms. These can be employed to create controlled interactions in a quantum light-matter interface, where photonic qubits stored in an atomic ensemble are mapped to a quantum register represented by single atoms. We propose Hamiltonians for quantum spin lenses as inhomogeneous spin models on lattices, which can be realized with Rydberg atoms in 1D, 2D, and 3D, and with strings of trapped ions. We discuss both linear and nonlinear quantum spin lenses: in a nonlinear lens, repulsive spin-spin interactions lead to focusing dynamics conditional to the number of spin excitations. This allows the mapping of quantum superpositions of delocalized spin excitations to superpositions of spatial spin patterns, which can be addressed by light fields and manipulated. Finally, we propose multifocal quantum spin lenses as a way to generate and distribute entanglement between distant atoms in an atomic lattice array.

  2. Quantum photonics

    CERN Document Server

    Pearsall, Thomas P

    2017-01-01

    This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of non­locality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...

  3. Quantum cosmology

    International Nuclear Information System (INIS)

    Hawking, S.W.

    1984-01-01

    The subject of these lectures is quantum effects in cosmology. The author deals first with situations in which the gravitational field can be treated as a classical, unquantized background on which the quantum matter fields propagate. This is the case with inflation at the GUT era. Nevertheless the curvature of spacetime can have important effects on the behaviour of the quantum fields and on the development of long-range correlations. He then turns to the question of the quantization of the gravitational field itself. The plan of these lectures is as follows: Euclidean approach to quantum field theory in flat space; the extension of techniques to quantum fields on a curved background with the four-sphere, the Euclidean version of De Sitter space as a particular example; the GUT era; quantization of the gravitational field by Euclidean path integrals; mini superspace model. (Auth.)

  4. Quantum mechanics

    CERN Document Server

    Rae, Alastair I M

    2016-01-01

    A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...

  5. Quantum magnetism

    CERN Document Server

    Richter, Johannes; Farnell, Damian; Bishop, Raymod

    2004-01-01

    The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.

  6. A Scalable Heuristic for Viral Marketing Under the Tipping Model

    Science.gov (United States)

    2013-09-01

    Flixster is a social media website that allows users to share reviews and other information about cinema . [35] It was extracted in Dec. 2010. – FourSquare...work of Reichman were developed independently . We also note that Reichman performs no experimental evaluation of the algorithm. A Scalable Heuristic...other dif- fusion models, such as the independent cascade model [21] and evolutionary graph theory [25] as well as probabilistic variants of the

  7. A Scalable Communication Architecture for Advanced Metering Infrastructure

    OpenAIRE

    Ngo Hoang , Giang; Liquori , Luigi; Nguyen Chan , Hung

    2013-01-01

    Advanced Metering Infrastructure (AMI), seen as foundation for overall grid modernization, is an integration of many technologies that provides an intelligent connection between consumers and system operators [ami 2008]. One of the biggest challenge that AMI faces is to scalable collect and manage a huge amount of data from a large number of customers. In our paper, we address this challenge by introducing a mixed peer-to-peer (P2P) and client-server communication architecture for AMI in whic...

  8. Scalable Multi-group Key Management for Advanced Metering Infrastructure

    OpenAIRE

    Benmalek , Mourad; Challal , Yacine; Bouabdallah , Abdelmadjid

    2015-01-01

    International audience; Advanced Metering Infrastructure (AMI) is composed of systems and networks to incorporate changes for modernizing the electricity grid, reduce peak loads, and meet energy efficiency targets. AMI is a privileged target for security attacks with potentially great damage against infrastructures and privacy. For this reason, Key Management has been identified as one of the most challenging topics in AMI development. In this paper, we propose a new Scalable multi-group key ...

  9. Economical and scalable synthesis of 6-amino-2-cyanobenzothiazole

    Directory of Open Access Journals (Sweden)

    Jacob R. Hauser

    2016-09-01

    Full Text Available 2-Cyanobenzothiazoles (CBTs are useful building blocks for: 1 luciferin derivatives for bioluminescent imaging; and 2 handles for bioorthogonal ligations. A particularly versatile CBT is 6-amino-2-cyanobenzothiazole (ACBT, which has an amine handle for straight-forward derivatisation. Here we present an economical and scalable synthesis of ACBT based on a cyanation catalysed by 1,4-diazabicyclo[2.2.2]octane (DABCO, and discuss its advantages for scale-up over previously reported routes.

  10. Space Situational Awareness Data Processing Scalability Utilizing Google Cloud Services

    Science.gov (United States)

    Greenly, D.; Duncan, M.; Wysack, J.; Flores, F.

    Space Situational Awareness (SSA) is a fundamental and critical component of current space operations. The term SSA encompasses the awareness, understanding and predictability of all objects in space. As the population of orbital space objects and debris increases, the number of collision avoidance maneuvers grows and prompts the need for accurate and timely process measures. The SSA mission continually evolves to near real-time assessment and analysis demanding the need for higher processing capabilities. By conventional methods, meeting these demands requires the integration of new hardware to keep pace with the growing complexity of maneuver planning algorithms. SpaceNav has implemented a highly scalable architecture that will track satellites and debris by utilizing powerful virtual machines on the Google Cloud Platform. SpaceNav algorithms for processing CDMs outpace conventional means. A robust processing environment for tracking data, collision avoidance maneuvers and various other aspects of SSA can be created and deleted on demand. Migrating SpaceNav tools and algorithms into the Google Cloud Platform will be discussed and the trials and tribulations involved. Information will be shared on how and why certain cloud products were used as well as integration techniques that were implemented. Key items to be presented are: 1.Scientific algorithms and SpaceNav tools integrated into a scalable architecture a) Maneuver Planning b) Parallel Processing c) Monte Carlo Simulations d) Optimization Algorithms e) SW Application Development/Integration into the Google Cloud Platform 2. Compute Engine Processing a) Application Engine Automated Processing b) Performance testing and Performance Scalability c) Cloud MySQL databases and Database Scalability d) Cloud Data Storage e) Redundancy and Availability

  11. Architectural Techniques to Enable Reliable and Scalable Memory Systems

    OpenAIRE

    Nair, Prashant J.

    2017-01-01

    High capacity and scalable memory systems play a vital role in enabling our desktops, smartphones, and pervasive technologies like Internet of Things (IoT). Unfortunately, memory systems are becoming increasingly prone to faults. This is because we rely on technology scaling to improve memory density, and at small feature sizes, memory cells tend to break easily. Today, memory reliability is seen as the key impediment towards using high-density devices, adopting new technologies, and even bui...

  12. Quantum computing

    International Nuclear Information System (INIS)

    Steane, Andrew

    1998-01-01

    The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from

  13. Quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Steane, Andrew [Department of Atomic and Laser Physics, University of Oxford, Clarendon Laboratory, Oxford (United Kingdom)

    1998-02-01

    The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from

  14. Superlinearly scalable noise robustness of redundant coupled dynamical systems.

    Science.gov (United States)

    Kohar, Vivek; Kia, Behnam; Lindner, John F; Ditto, William L

    2016-03-01

    We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.

  15. Event metadata records as a testbed for scalable data mining

    International Nuclear Information System (INIS)

    Gemmeren, P van; Malon, D

    2010-01-01

    At a data rate of 200 hertz, event metadata records ('TAGs,' in ATLAS parlance) provide fertile grounds for development and evaluation of tools for scalable data mining. It is easy, of course, to apply HEP-specific selection or classification rules to event records and to label such an exercise 'data mining,' but our interest is different. Advanced statistical methods and tools such as classification, association rule mining, and cluster analysis are common outside the high energy physics community. These tools can prove useful, not for discovery physics, but for learning about our data, our detector, and our software. A fixed and relatively simple schema makes TAG export to other storage technologies such as HDF5 straightforward. This simplifies the task of exploiting very-large-scale parallel platforms such as Argonne National Laboratory's BlueGene/P, currently the largest supercomputer in the world for open science, in the development of scalable tools for data mining. Using a domain-neutral scientific data format may also enable us to take advantage of existing data mining components from other communities. There is, further, a substantial literature on the topic of one-pass algorithms and stream mining techniques, and such tools may be inserted naturally at various points in the event data processing and distribution chain. This paper describes early experience with event metadata records from ATLAS simulation and commissioning as a testbed for scalable data mining tool development and evaluation.

  16. Scalable force directed graph layout algorithms using fast multipole methods

    KAUST Repository

    Yunis, Enas Abdulrahman

    2012-06-01

    We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach to graph layout that treats the vertices V as repelling charged particles with the edges E connecting them acting as springs. Traditionally, the amount of work required in applying the Force-Directed Graph Layout algorithm is O(|V|2 + |E|) using direct calculations and O(|V| log |V| + |E|) using truncation, filtering, and/or multi-level techniques. Correct application of the Fast Multipole Method allows us to maintain a lower complexity of O(|V| + |E|) while regaining most of the precision lost in other techniques. Solving layout problems for truly large graphs with millions of vertices still requires a scalable algorithm and implementation. We have been able to leverage the scalability and architectural adaptability of the ExaFMM library to create a Force-Directed Graph Layout implementation that runs efficiently on distributed multicore and multi-GPU architectures. © 2012 IEEE.

  17. The intergroup protocols: Scalable group communication for the internet

    Energy Technology Data Exchange (ETDEWEB)

    Berket, Karlo [Univ. of California, Santa Barbara, CA (United States)

    2000-12-04

    Reliable group ordered delivery of multicast messages in a distributed system is a useful service that simplifies the programming of distributed applications. Such a service helps to maintain the consistency of replicated information and to coordinate the activities of the various processes. With the increasing popularity of the Internet, there is an increasing interest in scaling the protocols that provide this service to the environment of the Internet. The InterGroup protocol suite, described in this dissertation, provides such a service, and is intended for the environment of the Internet with scalability to large numbers of nodes and high latency links. The InterGroup protocols approach the scalability problem from various directions. They redefine the meaning of group membership, allow voluntary membership changes, add a receiver-oriented selection of delivery guarantees that permits heterogeneity of the receiver set, and provide a scalable reliability service. The InterGroup system comprises several components, executing at various sites within the system. Each component provides part of the services necessary to implement a group communication system for the wide-area. The components can be categorized as: (1) control hierarchy, (2) reliable multicast, (3) message distribution and delivery, and (4) process group membership. We have implemented a prototype of the InterGroup protocols in Java, and have tested the system performance in both local-area and wide-area networks.

  18. Scalable Video Coding with Interlayer Signal Decorrelation Techniques

    Directory of Open Access Journals (Sweden)

    Yang Wenxian

    2007-01-01

    Full Text Available Scalability is one of the essential requirements in the compression of visual data for present-day multimedia communications and storage. The basic building block for providing the spatial scalability in the scalable video coding (SVC standard is the well-known Laplacian pyramid (LP. An LP achieves the multiscale representation of the video as a base-layer signal at lower resolution together with several enhancement-layer signals at successive higher resolutions. In this paper, we propose to improve the coding performance of the enhancement layers through efficient interlayer decorrelation techniques. We first show that, with nonbiorthogonal upsampling and downsampling filters, the base layer and the enhancement layers are correlated. We investigate two structures to reduce this correlation. The first structure updates the base-layer signal by subtracting from it the low-frequency component of the enhancement layer signal. The second structure modifies the prediction in order that the low-frequency component in the new enhancement layer is diminished. The second structure is integrated in the JSVM 4.0 codec with suitable modifications in the prediction modes. Experimental results with some standard test sequences demonstrate coding gains up to 1 dB for I pictures and up to 0.7 dB for both I and P pictures.

  19. Scalable Coverage Maintenance for Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun Lu

    2007-06-01

    Full Text Available Owing to numerous potential applications, wireless sensor networks have been attracting significant research effort recently. The critical challenge that wireless sensor networks often face is to sustain long-term operation on limited battery energy. Coverage maintenance schemes can effectively prolong network lifetime by selecting and employing a subset of sensors in the network to provide sufficient sensing coverage over a target region. We envision future wireless sensor networks composed of a vast number of miniaturized sensors in exceedingly high density. Therefore, the key issue of coverage maintenance for future sensor networks is the scalability to sensor deployment density. In this paper, we propose a novel coverage maintenance scheme, scalable coverage maintenance (SCOM, which is scalable to sensor deployment density in terms of communication overhead (i.e., number of transmitted and received beacons and computational complexity (i.e., time and space complexity. In addition, SCOM achieves high energy efficiency and load balancing over different sensors. We have validated our claims through both analysis and simulations.

  20. Quantum information processing in nanostructures

    International Nuclear Information System (INIS)

    Reina Estupinan, John-Henry

    2002-01-01

    that several hundred single quantum bit rotations and controlled-NOT gates could be performed before decoherence of the excitonic states takes place. In addition, the exciton coherent dynamics of a coupled QD system confined within a semiconductor single mode microcavity is reported. It is shown that this system enables the control of exciton entanglement by varying the coupling strength between the optically-driven dot system and the microcavity. The exciton entanglement shows collapses and revivals for suitable amplitudes of the incident radiation field and dot-cavity coupling strengths. The results given here could offer a new approach for the control of decoherence mechanisms arising from entangled 'artificial molecules'. In addition to these ultrafast coherent optical control proposals, an approach for reliable implementation of quantum logic gates and long decoherence times in a QD system based on nuclear magnetic resonance (NMR) is given, where the nuclear resonance is controlled by the ground state 'magic number' transitions of few-electron QDs in an external magnetic field. The dynamical evolution of quantum registers of arbitrary length in the presence of environmentally-induced decoherence effects is studied in detail. The cases of quantum bits (qubits) coupling individually to different environments ('independent decoherence'), and qubits interacting collectively with the same reservoir ('collective decoherence') are analysed in order to find explicit decoherence functions for any number of qubits. The decay of the coherences of the register is shown to strongly depend on the input states: this sensitivity is a characteristic of both types of coupling (collective and independent) and not only of the collective coupling, as has been reported previously. A non-trivial behaviour--'recoherence'-- is found in the decay of the off-diagonal elements of the reduced density matrix in the specific situation of independent decoherence. The results lead to the

  1. IEEE P1596, a scalable coherent interface for GigaByte/sec multiprocessor applications

    International Nuclear Information System (INIS)

    Gustavson, D.B.

    1988-11-01

    IEEE P1596, the Scalable Coherent Interface (formerly known as SuperBus) is based on experience gained during the development of Fastbus (IEEE 960), Futurebus (IEEE 896.1) and other modern 32-bit buses. SCI goals include a minimum bandwidth of 1 GByte/sec per processor; efficient support of a coherent distributed-cache image of shared memory; and support for segmentation, bus repeaters and general switched interconnections like Banyan, Omega, or full crossbar networks. To achieve these ambitious goals, SCI must sacrifice the immediate handshake characteristic of the present generation of buses in favor of a packet-like split-cycle protocol. Wire-ORs, broadcasts, and even ordinary passive bus structures are to be avoided. However, a lower performance (1 GByte/sec per backplane instead of per processor) implementation using a register insertion ring architecture on a passive ''backplane'' appears to be possible using the same interface as for the more costly switch networks. This paper presents a summary of current directions, and reports the status of the work in progress

  2. Error characterization and quantum control benchmarking in liquid state NMR using quantum information processing techniques

    Science.gov (United States)

    Laforest, Martin

    single and multi qubit systems. Even though liquid state NMR is argued to be unsuitable for scalable quantum information processing, it remains the best test-bed system to experimentally implement, verify and develop protocols aimed at increasing the control over general quantum information processors. For this reason, all the protocols described in this thesis have been implemented in liquid state NMR, which then led to further development of control and analysis techniques.

  3. Quantum mechanics with quantum time

    International Nuclear Information System (INIS)

    Kapuscik, E.

    1984-01-01

    Using a non-canonical Lie structure of classical mechanics a new algebra of quantum mechanical observables is constructed. The new algebra, in addition to the notion of classical time, makes it possible to introduce the notion of quantum time. A new type of uncertainty relation is derived. (author)

  4. Proceedings of quantum field theory, quantum mechanics, and quantum optics

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man; ko, V.I.

    1991-01-01

    This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups

  5. Scalability of Sustainable Business Models in Hybrid Organizations

    Directory of Open Access Journals (Sweden)

    Adam Jabłoński

    2016-02-01

    Full Text Available The dynamics of change in modern business create new mechanisms for company management to determine their pursuit and the achievement of their high performance. This performance maintained over a long period of time becomes a source of ensuring business continuity by companies. An ontological being enabling the adoption of such assumptions is such a business model that has the ability to generate results in every possible market situation and, moreover, it has the features of permanent adaptability. A feature that describes the adaptability of the business model is its scalability. Being a factor ensuring more work and more efficient work with an increasing number of components, scalability can be applied to the concept of business models as the company’s ability to maintain similar or higher performance through it. Ensuring the company’s performance in the long term helps to build the so-called sustainable business model that often balances the objectives of stakeholders and shareholders, and that is created by the implemented principles of value-based management and corporate social responsibility. This perception of business paves the way for building hybrid organizations that integrate business activities with pro-social ones. The combination of an approach typical of hybrid organizations in designing and implementing sustainable business models pursuant to the scalability criterion seems interesting from the cognitive point of view. Today, hybrid organizations are great spaces for building effective and efficient mechanisms for dialogue between business and society. This requires the appropriate business model. The purpose of the paper is to present the conceptualization and operationalization of scalability of sustainable business models that determine the performance of a hybrid organization in the network environment. The paper presents the original concept of applying scalability in sustainable business models with detailed

  6. Parallelization of quantum molecular dynamics simulation code

    International Nuclear Information System (INIS)

    Kato, Kaori; Kunugi, Tomoaki; Shibahara, Masahiko; Kotake, Susumu

    1998-02-01

    A quantum molecular dynamics simulation code has been developed for the analysis of the thermalization of photon energies in the molecule or materials in Kansai Research Establishment. The simulation code is parallelized for both Scalar massively parallel computer (Intel Paragon XP/S75) and Vector parallel computer (Fujitsu VPP300/12). Scalable speed-up has been obtained with a distribution to processor units by division of particle group in both parallel computers. As a result of distribution to processor units not only by particle group but also by the particles calculation that is constructed with fine calculations, highly parallelization performance is achieved in Intel Paragon XP/S75. (author)

  7. Unconditional polarization qubit quantum memory at room temperature

    Science.gov (United States)

    Namazi, Mehdi; Kupchak, Connor; Jordaan, Bertus; Shahrokhshahi, Reihaneh; Figueroa, Eden

    2016-05-01

    The creation of global quantum key distribution and quantum communication networks requires multiple operational quantum memories. Achieving a considerable reduction in experimental and cost overhead in these implementations is thus a major challenge. Here we present a polarization qubit quantum memory fully-operational at 330K, an unheard frontier in the development of useful qubit quantum technology. This result is achieved through extensive study of how optical response of cold atomic medium is transformed by the motion of atoms at room temperature leading to an optimal characterization of room temperature quantum light-matter interfaces. Our quantum memory shows an average fidelity of 86.6 +/- 0.6% for optical pulses containing on average 1 photon per pulse, thereby defeating any classical strategy exploiting the non-unitary character of the memory efficiency. Our system significantly decreases the technological overhead required to achieve quantum memory operation and will serve as a building block for scalable and technologically simpler many-memory quantum machines. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180. B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  8. Quantum physics

    International Nuclear Information System (INIS)

    Basdevant, J.L.; Dalibart, J.

    1997-01-01

    This pedagogical book gives an initiation to the principles and practice of quantum mechanics. A large part is devoted to experimental facts and to their analysis: concrete facts, phenomena and applications related to fundamental physics, elementary particles, astrophysics, high-technology, semi-conductors, micro-electronics and lasers. The book is divided in 22 chapters dealing with: quantum phenomena, wave function and Schroedinger equation, physical units and measurements, energy quantification of some simple systems, Hilbert space, Dirac formalism and quantum mechanics postulates, two-state systems and ammonia Maser principle, bands theory and crystals conductibility, commutation of observables, Stern and Gerlach experiment, approximation methods, kinetic momentum in quantum mechanics, first description of atoms, 1/2 spin formalism and magnetic resonance, Lagrangian, Hamiltonian and Lorentz force in quantum mechanics, addition of kinetic momenta and fine and hyper-fine structure of atomic lines, identical particle systems and Pauli principle, qualitative physics and scale of size of some microscopic and macroscopic phenomena, systems evolution, collisions and cross sections, invariance and conservation laws, quantum mechanics and astrophysics, and historical aspects of quantum mechanics. (J.S.)

  9. Quantum communications

    CERN Document Server

    Cariolaro, Gianfranco

    2015-01-01

    This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: ·         development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; ·         general formulation of a transmitter–receiver system ·         particular treatment of the most popular quantum co...

  10. Quantum Criticality

    Science.gov (United States)

    Drummond, P. D.; Chaturvedi, S.; Dechoum, K.; Comey, J.

    2001-02-01

    We investigate the theory of quantum fluctuations in non-equilibrium systems having large crit­ical fluctuations. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction, and also to envisage future tests of quantum theory in regions of macroscopic quantum fluctuations. A long-term objective of this research is to identify suitable physical sys­tems in which macroscopic 'Schrödinger cat'-like behaviour may be observed. We investigate two systems in particular of much current experimental interest, namely the degenerate parametric oscillator near threshold, and the evaporatively cooled (BEC). We compare the results obtained in the positive-P representation, as a fully quantum mechanical calculation, with the truncated Wigner phase space equation, also known as semi-classical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. In the region where the largest quantum fluctuations and Schrödinger cat-like behaviour might be expected, we find that the quantum predictions correspond very closely to the semi-classical theory. Nature abhors observing a Schrödinger cat. -Pacs: 03.65.Bz

  11. 46 CFR 401.510 - Operation without Registered Pilots.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Operation without Registered Pilots. 401.510 Section 401... REGULATIONS Penalties; Operations Without Registered Pilots § 401.510 Operation without Registered Pilots. (a... Registered Pilot when the vessel or its cargo is in distress or jeopardy. (b) A vessel may be navigated in...

  12. 1 CFR 11.7 - Federal Register Index.

    Science.gov (United States)

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Federal Register Index. 11.7 Section 11.7... REGISTER PUBLICATIONS SUBSCRIPTIONS § 11.7 Federal Register Index. The annual subscription price for the monthly Federal Register Index, purchased separately, in paper form, is $29. The price excludes postage...

  13. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  14. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  15. Cascade quantum teleportation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nan-run; GONG Li-hua; LIU Ye

    2006-01-01

    In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.

  16. Perfect quantum multiple-unicast network coding protocol

    Science.gov (United States)

    Li, Dan-Dan; Gao, Fei; Qin, Su-Juan; Wen, Qiao-Yan

    2018-01-01

    In order to realize long-distance and large-scale quantum communication, it is natural to utilize quantum repeater. For a general quantum multiple-unicast network, it is still puzzling how to complete communication tasks perfectly with less resources such as registers. In this paper, we solve this problem. By applying quantum repeaters to multiple-unicast communication problem, we give encoding-decoding schemes for source nodes, internal ones and target ones, respectively. Source-target nodes share EPR pairs by using our encoding-decoding schemes over quantum multiple-unicast network. Furthermore, quantum communication can be accomplished perfectly via teleportation. Compared with existed schemes, our schemes can reduce resource consumption and realize long-distance transmission of quantum information.

  17. Quantum mechanics

    CERN Document Server

    Powell, John L

    2015-01-01

    Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ

  18. Quantum mechanics

    International Nuclear Information System (INIS)

    Rae, A.I.M.

    1981-01-01

    This book, based on a thirty lecture course given to students at the beginning of their second year, covers the quantum mechanics required by physics undergraduates. Early chapters deal with wave mechanics, including a discussion of the energy states of the hydrogen atom. These are followed by a more formal development of the theory, leading to a discussion of some advanced applications and an introduction to the conceptual problems associated with quantum measurement theory. Emphasis is placed on the fundamentals of quantum mechanics. Problems are included at the end of each chapter. (U.K.)

  19. Quantum chaos

    International Nuclear Information System (INIS)

    Steiner, F.

    1994-01-01

    A short historical overview is given on the development of our knowledge of complex dynamical systems with special emphasis on ergodicity and chaos, and on the semiclassical quantization of integrable and chaotic systems. The general trace formular is discussed as a sound mathematical basis for the semiclassical quantization of chaos. Two conjectures are presented on the basis of which it is argued that there are unique fluctuation properties in quantum mechanics which are universal and, in a well defined sense, maximally random if the corresponding classical system is strongly chaotic. These properties constitute the quantum mechanical analogue of the phenomenon of chaos in classical mechanics. Thus quantum chaos has been found. (orig.)

  20. Quantum thermodynamics

    International Nuclear Information System (INIS)

    Beretta, G.P.; Gyftopoulos, E.P.; Park, J.L.

    1985-01-01

    A novel nonlinear equation of motion is proposed for a general quantum system consisting of more than one distinguishable elementary constituent of matter. In the domain of idempotent quantum-mechanical state operators, it is satisfied by all unitary evolutions generated by the Schroedinger equation. But in the broader domain of nonidempotent state operators not contemplated by conventional quantum mechanics, it generates a generally nonunitary evolution, it keeps the energy invariant and causes the entropy to increase with time until the system reaches a state of equilibrium or a limit cycle

  1. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  2. Enhancing resilience in registered aged care nurses.

    Science.gov (United States)

    Cameron, Fiona; Brownie, Sonya

    2010-06-01

    To identify the factors that impact the resilience of registered aged care nurses, that is their capacity to adapt to the physical, mental and emotional demands of working in aged care facilities. This study explored the lived experience of nine registered nurses working in residential aged care facilities on the Sunshine Coast, Queensland, who were asked to reflect on the phenomenon of resilience in the workplace. This study found that clinical expertise, a sense of purpose in a holistic care environment, a positive attitude and work-life balance are important determinants of resilience in aged care nurses. Resilience in nurses in residential aged care facilities is enhanced when they are able to maintain long-term, meaningful relationships with residents. Collegial support that provides opportunities to debrief and validate experiences as well as the use of humour to defuse stress promotes well-being and builds resilience in the workplace.

  3. Registered criminality and sanctioning of schizophrenia patients

    DEFF Research Database (Denmark)

    Munkner, Runa; Haastrup, Soeren; Joergensen, Torben

    2009-01-01

    BACKGROUND: Patients with schizophrenia have been shown to have an increased risk of criminality, especially violent crimes. AIMS: The aim of the current study was to describe the pattern of crimes committed by Danish patients with schizophrenia and examine the sanctions given for crimes...... in relation to the different periods in the patients' lives: not yet known to the psychiatric hospital system, known to the system but not yet diagnosed with schizophrenia, and after being diagnosed with schizophrenia. METHODS: Information from the Danish Psychiatric Central Research Register was correlated...... with data from the Danish National Crime Register. RESULTS: One of the more prominent findings was that 16% of patients diagnosed with schizophrenia receive a prison sentence or a suspended prison sentence, despite the fact that Denmark is a co-signatory of the European Prison Rules and should treat, rather...

  4. Spiritual care perspectives of Danish Registered Nurses

    DEFF Research Database (Denmark)

    Christensen, Kirsten Haugaard; Turner, de Sales

    2008-01-01

    Spiritual care perspectives of Danish Nurses The purpose of this study was to explore how Danish registered nurses understand the phenomenon of spiritual care and how their understanding impacts on their interventions with their patients. Nurses are responsible for the provision of care which...... approach rooted in the philosophy of Gadamer was chosen as methodology. In-depth interviews were used as data collection tool, and six registered nurses who worked within hospital settings in Denmark were interviewed. The findings revealed that deep knowing of the patients were essential before nurses...... would engage in provision of spiritual care. The participants acknowledged that their understanding of spirituality influenced their provision of spiritual care, which was recognized as a challenge requiring the nurse’s initiative and courage. Spirituality was primarily understood as a patient’s private...

  5. Toward Designing a Quantum Key Distribution Network Simulation Model

    Directory of Open Access Journals (Sweden)

    Miralem Mehic

    2016-01-01

    Full Text Available As research in quantum key distribution network technologies grows larger and more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. In this paper, we described the design of simplified simulation environment of the quantum key distribution network with multiple links and nodes. In such simulation environment, we analyzed several routing protocols in terms of the number of sent routing packets, goodput and Packet Delivery Ratio of data traffic flow using NS-3 simulator.

  6. Towards a scalable and accurate quantum approach for describing vibrations of molecule–metal interfaces

    Directory of Open Access Journals (Sweden)

    David M. Benoit

    2011-08-01

    Full Text Available We present a theoretical framework for the computation of anharmonic vibrational frequencies for large systems, with a particular focus on determining adsorbate frequencies from first principles. We give a detailed account of our local implementation of the vibrational self-consistent field approach and its correlation corrections. We show that our approach is both robust, accurate and can be easily deployed on computational grids in order to provide an efficient computational tool. We also present results on the vibrational spectrum of hydrogen fluoride on pyrene, on the thiophene molecule in the gas phase, and on small neutral gold clusters.

  7. A Scalable Qubit Architecture Based on Holes in Quantum Dot Molecules

    Science.gov (United States)

    2012-09-26

    certain way;5 physically, a dark state is created. When the two transitions have the same Rabi frequency, the bright state is an equal superposition of...qualitatively increase the hole spin mixing because the anisotropic masses of HHs and LHs cause the LH character to in- crease with increasing aspect

  8. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics

    Science.gov (United States)

    Zhang, Linfeng; Han, Jiequn; Wang, Han; Car, Roberto; E, Weinan

    2018-04-01

    We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.

  9. Reactive wavepacket dynamics for four atom systems on scalable parallel computers

    International Nuclear Information System (INIS)

    Goldfield, E.M.

    1994-01-01

    While time-dependent quantum mechanics has been successfully applied to many three atom systems, it was nevertheless a computational challenge to use wavepacket methods to study four atom systems, systems with several heavy atoms, and systems with deep potential wells. S.K. Gray and the author are studying the reaction of OH + CO ↔ (HOCO) ↔ H + CO 2 , a difficult reaction by all the above criteria. Memory considerations alone made it impossible to use a single IBM RS/6000 workstation to study a four degree-of-freedom model of this system. They have developed a scalable parallel wavepacket code for the IBM SP1 and have run it on the SP1 at Argonne and at the Cornell Theory Center. The wavepacket, defined on a four dimensional grid, is spread out among the processors. Two-dimensional FFT's are used to compute the kinetic energy operator acting on the wavepacket. Accomplishing this task, which is the computationally intensive part of the calculation, requires a global transpose of the data. This transpose is the only serious communication between processors. Since the problem is essentially data-parallel, communication is regular and load-balancing is excellent. But as the problem is moderately fine-grained and messages are long, the ratio of communication to computation is somewhat high and they typically get about 55% of ideal speed-up

  10. Geometric Design of Scalable Forward Scatterers for Optimally Efficient Solar Transformers.

    Science.gov (United States)

    Kim, Hye-Na; Vahidinia, Sanaz; Holt, Amanda L; Sweeney, Alison M; Yang, Shu

    2017-11-01

    It will be ideal to deliver equal, optimally efficient "doses" of sunlight to all cells in a photobioreactor system, while simultaneously utilizing the entire solar resource. Backed by the numerical scattering simulation and optimization, here, the design, synthesis, and characterization of the synthetic iridocytes that recapitulated the salient forward-scattering behavior of the Tridacnid clam system are reported, which presents the first geometric solution to allow narrow, precise forward redistribution of flux, utilizing the solar resource at the maximum quantum efficiency possible in living cells. The synthetic iridocytes are composed of silica nanoparticles in microspheres embedded in gelatin, both are low refractive index materials and inexpensive. They show wavelength selectivity, have little loss (the back-scattering intensity is reduced to less than ≈0.01% of the forward-scattered intensity), and narrow forward scattering cone similar to giant clams. Moreover, by comparing experiments and theoretical calculation, it is confirmed that the nonuniformity of the scatter sizes is a "feature not a bug" of the design, allowing for efficient, forward redistribution of solar flux in a micrometer-scaled paradigm. This method is environmentally benign, inexpensive, and scalable to produce optical components that will find uses in efficiency-limited solar conversion technologies, heat sinks, and biofuel production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. National Register of Historic Places - National Geospatial Data Asset (NGDA) NPS National Register Dataset

    Data.gov (United States)

    Federal Geographic Data Committee — A current, accurate spatial representation of all historic properties listed on the National Register of Historic Places is of interest to Federal agencies, the...

  12. Statement of Agreements Registered With The Agency

    International Nuclear Information System (INIS)

    1960-01-01

    This document contains a statement of all the agreements which had been registered with the Agency by 30 June 1960 under the Regulations for the Registration of Agreements adopted by the Board of Governors in implementation of Article XXII. B of the Statute. In compliance with Article VI of the Regulations this statement is hereby transmitted to all Members of the Agency for their information. A copy is also being sent to the Secretary-General of the United Nations

  13. Statement of Agreements Registered With The Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-23

    This document contains a statement of all the agreements which had been registered with the Agency by 30 June 1960 under the Regulations for the Registration of Agreements adopted by the Board of Governors in implementation of Article XXII. B of the Statute. In compliance with Article VI of the Regulations this statement is hereby transmitted to all Members of the Agency for their information. A copy is also being sent to the Secretary-General of the United Nations.

  14. Entanglement-fidelity relations for inaccurate ancilla-driven quantum computation

    International Nuclear Information System (INIS)

    Morimae, Tomoyuki; Kahn, Jonas

    2010-01-01

    It was shown by T. Morimae [Phys. Rev. A 81, 060307(R) (2010)] that the gate fidelity of an inaccurate one-way quantum computation is upper bounded by a decreasing function of the amount of entanglement in the register. This means that a strong entanglement causes the low gate fidelity in the one-way quantum computation with inaccurate measurements. In this paper, we derive similar entanglement-fidelity relations for the inaccurate ancilla-driven quantum computation. These relations again imply that a strong entanglement in the register causes the low gate fidelity in the ancilla-driven quantum computation if the measurements on the ancilla are inaccurate.

  15. RNA interference and Register Machines (extended abstract

    Directory of Open Access Journals (Sweden)

    Masahiro Hamano

    2012-11-01

    Full Text Available RNA interference (RNAi is a mechanism whereby small RNAs (siRNAs directly control gene expression without assistance from proteins. This mechanism consists of interactions between RNAs and small RNAs both of which may be single or double stranded. The target of the mechanism is mRNA to be degraded or aberrated, while the initiator is double stranded RNA (dsRNA to be cleaved into siRNAs. Observing the digital nature of RNAi, we represent RNAi as a Minsky register machine such that (i The two registers hold single and double stranded RNAs respectively, and (ii Machine's instructions are interpreted by interactions of enzyme (Dicer, siRNA (with RISC com- plex and polymerization (RdRp to the appropriate registers. Interpreting RNAi as a computational structure, we can investigate the computational meaning of RNAi, especially its complexity. Initially, the machine is configured as a Chemical Ground Form (CGF, which generates incorrect jumps. To remedy this problem, the system is remodeled as recursive RNAi, in which siRNA targets not only mRNA but also the machine instructional analogues of Dicer and RISC. Finally, probabilistic termination is investigated in the recursive RNAi system.

  16. Efficient quantum computing using coherent photon conversion.

    Science.gov (United States)

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting

  17. Applications of Atomic Systems in Quantum Simulation, Quantum Computation and Topological Phases of Matter

    Science.gov (United States)

    Wang, Shengtao

    and simulation. Trapped atomic ions are one of the leading platforms to build a scalable, universal quantum computer. The common one-dimensional setup, however, greatly limits the system's scalability. By solving the critical problem of micromotion, we propose a two-dimensional architecture for scalable trapped-ion quantum computation. Hamiltonian tomography for many-body quantum systems is essential for benchmarking quantum computation and simulation. By employing dynamical decoupling, we propose a scalable scheme for full Hamiltonian tomography. The required number of measurements increases only polynomially with the system size, in contrast to an exponential scaling in common methods. Finally, we work toward the goal of demonstrating quantum supremacy. A number of sampling tasks, such as the boson sampling problem, have been proposed to be classically intractable under mild assumptions. An intermediate quantum computer can efficiently solve the sampling problem, but the correct operation of the device is not known to be classically verifiable. Toward practical verification, we present an experimental friendly scheme to extract useful and robust information from the quantum boson samplers based on coarse-grained measurements. In a separate study, we introduce a new model built from translation-invariant Ising-interacting spins. This model possesses several advantageous properties, catalyzing the ultimate experimental demonstration of quantum supremacy.

  18. Control and Measurement of an Xmon with the Quantum Socket

    Science.gov (United States)

    McConkey, T. G.; Bejanin, J. H.; Earnest, C. T.; McRae, C. R. H.; Rinehart, J. R.; Weides, M.; Mariantoni, M.

    The implementation of superconducting quantum processors is rapidly reaching scalability limitations. Extensible electronics and wiring solutions for superconducting quantum bits (qubits) are among the most imminent issues to be tackled. The necessity to substitute planar electrical interconnects (e.g., wire bonds) with three-dimensional wires is emerging as a fundamental pillar towards scalability. In a previous work, we have shown that three-dimensional wires housed in a suitable package, named the quantum socket, can be utilized to measure high-quality superconducting resonators. In this work, we set out to test the quantum socket with actual superconducting qubits to verify its suitability as a wiring solution in the development of an extensible quantum computing architecture. To this end, we have designed and fabricated a series of Xmon qubits. The qubits range in frequency from about 6 to 7 GHz with anharmonicity of 200 MHz and can be tuned by means of Z pulses. Controlling tunable Xmons will allow us to verify whether the three-dimensional wires contact resistance is low enough for qubit operation. Qubit T1 and T2 times and single qubit gate fidelities are compared against current standards in the field.

  19. Quantum Noise

    International Nuclear Information System (INIS)

    Beenakker, C W J

    2005-01-01

    Quantum Noise is advertised as a handbook, and this is indeed how it functions for me these days: it is a book that I keep within hand's reach, ready to be consulted on the proper use of quantum stochastic methods in the course of my research on quantum dots. I should point out that quantum optics, the target field for this book, is not my field by training. So I have much to learn, and find this handbook to be a reliable and helpful guide. Crispin Gardiner previously wrote the Handbook of Stochastic Methods (also published by Springer), which provides an overview of methods in classical statistical physics. Quantum Noise, written jointly with Peter Zoller, is the counterpart for quantum statistical physics, and indeed the two books rely on each other by frequent cross referencing. The fundamental problem addressed by Quantum Noise is how the quantum dynamics of an open system can be described statistically by treating the environment as a source of noise. This is a general problem in condensed matter physics (in particular in the context of Josephson junctions) and in quantum optics. The emphasis in this book in on the optical applications (for condensed matter applications one could consult Quantum Dissipative Systems by Ulrich Weiss, published by World Scientific). The optical applications centre around the interaction of light with atoms, where the atoms represent the open system and the light is the noisy environment. A complete description of the production and detection of non-classical states of radiation (such as squeezed states) can be obtained using one of the equivalent quantum stochastic formulations: the quantum Langevin equation for the field operators (in either the Ito or the Stratonovich form), the Master equation for the density matrix, or the stochastic Schroedinger equation for the wave functions. Each formulation is fully developed here (as one would expect from a handbook), with detailed instructions on how to go from one to the other. The

  20. Quantum exam

    International Nuclear Information System (INIS)

    Nguyen, Ba An

    2006-01-01

    Absolutely and asymptotically secure protocols for organizing an exam in a quantum way are proposed basing judiciously on multipartite entanglement. The protocols are shown to stand against common types of eavesdropping attack